WO2011061883A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2011061883A1
WO2011061883A1 PCT/JP2010/005380 JP2010005380W WO2011061883A1 WO 2011061883 A1 WO2011061883 A1 WO 2011061883A1 JP 2010005380 W JP2010005380 W JP 2010005380W WO 2011061883 A1 WO2011061883 A1 WO 2011061883A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
interlayer insulating
insulating film
vias
semiconductor device
Prior art date
Application number
PCT/JP2010/005380
Other languages
English (en)
French (fr)
Inventor
櫻井大輔
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080052347.0A priority Critical patent/CN102668047B/zh
Publication of WO2011061883A1 publication Critical patent/WO2011061883A1/ja
Priority to US13/415,338 priority patent/US8742584B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0501Shape
    • H01L2224/05016Shape in side view
    • H01L2224/05018Shape in side view being a conformal layer on a patterned surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05085Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
    • H01L2224/05089Disposition of the additional element
    • H01L2224/05093Disposition of the additional element of a plurality of vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05085Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
    • H01L2224/05089Disposition of the additional element
    • H01L2224/05093Disposition of the additional element of a plurality of vias
    • H01L2224/05094Disposition of the additional element of a plurality of vias at the center of the internal layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05085Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
    • H01L2224/05089Disposition of the additional element
    • H01L2224/05093Disposition of the additional element of a plurality of vias
    • H01L2224/05095Disposition of the additional element of a plurality of vias at the periphery of the internal layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05085Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
    • H01L2224/05089Disposition of the additional element
    • H01L2224/05093Disposition of the additional element of a plurality of vias
    • H01L2224/05096Uniform arrangement, i.e. array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05555Shape in top view being circular or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • H01L2224/05558Shape in side view conformal layer on a patterned surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04944th Group
    • H01L2924/04941TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04955th Group
    • H01L2924/04953TaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device provided with an input / output pad (external connection electrode) on an element formation region.
  • the mechanical strength of the low dielectric constant film is significantly lower than that of the conventionally employed silicon oxide film. This is a problem in the assembly process, particularly the wire bonding process, which is responsible for the packaging of the semiconductor elements after the diffusion process responsible for the circuit formation by the semiconductor is completed. Specifically, since the mechanical strength of the interlayer insulating film is not sufficient, when wire bonding is performed on a pad formed on a semiconductor element, an impact load at the time of wire bonding is applied to the interlayer insulating film immediately below the pad through the pad. The interlayer insulating film is greatly deformed. The deformation causes a crack in the interlayer insulating film and greatly affects the reliability of the quality of the semiconductor element itself.
  • a metal layer is formed directly under the pad with an interlayer insulating film interposed therebetween, and the formed metal layer and the pad are connected by a connection plug, so that an impact applied to the interlayer insulating film by bonding is applied to the metal layer. Take it. Furthermore, the vias support the metal layer attempting to deform in the direction in which the impact is applied due to the applied impact, thereby improving the mechanical strength of the interlayer insulating film formed directly under the pad ( For example, see Patent Document 1.) As a result, the impact transmitted to the interlayer insulating film by bonding is alleviated, and damage such as peeling and cracking of the interlayer insulating film is reduced.
  • FIG. 6 shows a cross-sectional structure of a conventional semiconductor device.
  • the conventional semiconductor device includes an interlayer insulating film 102, an interlayer insulating film 103, an interlayer insulating film 104, an interlayer insulating film 105, and an interlayer insulating film that are sequentially formed on a semiconductor substrate 101 made of silicon.
  • a film 106 and a bonding pad 107 formed on the interlayer insulating film 106 are provided.
  • the bonding pad 107 is formed.
  • the junction surface between the interlayer insulating films 102 to 106 between the lower region and the outer region thereof is divided, and the junction surface between the interlayer insulating films 102 to 106 in the lower region of the bonding pad 107 Split.
  • a structure for supporting the bonding pad 107 by providing the vias 132 to 162 has been proposed.
  • a low dielectric constant film is used for at least one of the interlayer insulating film 102 to the interlayer insulating film 106.
  • each of the vias 132 to 162 divides the bonding surface of each interlayer insulating film 102 to 106 into a plurality of parts, so that the stress between the interlayer insulating films 102 to 106 is alleviated, and each interlayer insulating film 102 to It is described that peeling of 106 can be prevented.
  • the conventional semiconductor device has the following problems.
  • the bonding pad 107 receives a tensile stress.
  • the metal wire is formed into a ball and is pressed onto the bonding pad 107, and then the metal wire is pulled up. At that time, a large tensile stress is applied to the bonding pad 107.
  • a bump-like bump made of, for example, a solder material, gold, or copper is formed on the bonding pad 107, and then the back surface of the wafer with the bump tip attached to a dicing tape in a wafer back grinding process. Backgrinded. Thereafter, when the dicing tape is peeled off, the bonding pad 107 receives a large tensile stress.
  • the semiconductor substrate 101 is arranged in a direction perpendicular to the substrate surface. Stress is concentrated in each of the vias 132 to 162. For example, stress concentrates on the interface between the via 132 and the stopper film 121, and the interlayer insulating film 102 or the interlayer insulating film 103 is broken or peeled off starting from the fragile interlayer insulating film 102 or the interlayer insulating film 103.
  • the present invention solves the above-described problem, and even when a low dielectric constant film is used as an interlayer insulating film provided with a pad electrode, the interlayer insulating film is not destroyed and interface peeling is prevented, and high connection reliability is achieved.
  • the purpose is to ensure it.
  • a plurality of vias are formed between a bonding pad (external connection electrode) and a metal layer provided with an insulating film interposed below the bonding pad.
  • the maximum interval is made larger than the width of the bonding pad.
  • a first semiconductor device includes an external connection electrode formed on a semiconductor substrate with at least two interlayer insulating films interposed, and the external connection electrode has an upper surface.
  • the second metal layer and the third metal layer are electrically connected to each other through the third metal layer and the first interlayer insulating film between the second metal layer and the third metal layer.
  • At least two first vias, and the maximum distance between the first vias is larger than the width dimension of the first metal layer.
  • the tensile stress received by the first metal layer is relaxed by being distributed and propagated to at least two vias on the second metal layer.
  • the maximum distance between vias formed on the second metal layer to which tensile stress is applied is larger than the width dimension of the first metal layer, the tensile stress received by the second metal layer is relieved. .
  • the fragile interlayer insulating film on the second metal layer can be prevented from being peeled and cracked, so that high connection reliability can be ensured even after assembly.
  • the external connection electrode passes through the second interlayer insulating film between the first metal layer and the third metal layer, and passes through the first metal layer and the third metal layer.
  • at least two second vias for electrically connecting the metal layers are further provided, and the maximum interval between the first vias is preferably larger than the maximum interval between the second vias.
  • the tensile stress received by the first metal layer is further relaxed by being propagated and dispersed through the first via having a wide interval on the substrate side.
  • the area of the second metal layer to which the tensile stress is applied is formed larger than the area of the first metal layer, the tensile stress received by the second metal layer is relaxed.
  • the tensile stress received by the second metal layer is alleviated, which effectively prevents the interlayer insulating film from peeling and cracking. Can be realized.
  • the third metal layer since it is possible to concentrate the tensile stress on the third metal layer, for example, if a hard insulating film is used as an interlayer insulating film in contact with the first metal layer, the lower brittleness than the third metal layer. Since the tensile stress transmitted to such an interlayer insulating film can be relaxed, it is possible to effectively realize the peeling and crack prevention of the interlayer insulating film.
  • the dielectric constant of the first interlayer insulating film may be lower than the dielectric constant of the second interlayer insulating film.
  • the maximum interval between the first vias provided in the first interlayer insulating film having a low dielectric constant is increased, the tensile stress received by the first metal layer can be relaxed. In addition, the breakage and delamination of the first interlayer insulating film can be prevented.
  • the thickness of the first interlayer insulating film may be equal to or greater than the thickness of the second interlayer insulating film.
  • the tensile stress received by the first interlayer insulating film does not exceed the breaking strength of the film, It becomes possible to prevent destruction and peeling. Therefore, in the configuration in which the first interlayer insulating film is thick, the dielectric constant of the interlayer insulating film can be lowered, and therefore the wiring delay can be minimized.
  • the thickness of the first interlayer insulating film may be equal to or less than the thickness of the second interlayer insulating film. In this way, the strength of the semiconductor device can be reliably improved. Further, when the semiconductor device of the present invention has the second via, the second via may be provided two-dimensionally and three or more.
  • the first metal layer may not be provided with a via directly.
  • the stress applied to the second metal layer can be further relaxed.
  • the tensile stress applied to the second metal layer is relaxed, for example, the fragile interlayer insulating film on the second metal layer can be prevented from being peeled and cracked. Reliability can be ensured.
  • a second semiconductor device includes an external connection electrode formed on a semiconductor substrate with at least two layers of interlayer insulating films interposed therebetween, and the external connection electrode exposes the upper surface.
  • a fourth metal layer formed between the first metal layer and the third metal layer, and a fifth metal layer formed between the third metal layer and the second metal layer And at least two second metal layers that penetrate the first interlayer insulating film between the fifth metal layer and the second metal layer to electrically connect the fifth metal layer and the second metal layer.
  • the first metal layer and the fourth metal layer through the second interlayer insulating film between the first via and the first metal layer and the fourth metal layer.
  • At least two second vias electrically connecting the tall layer and a third interlayer insulating film between the fourth metal layer and the third metal layer Penetrating at least two third vias electrically connecting the third metal layer and a fourth interlayer insulating film between the third metal layer and the fifth metal layer, At least two fourth vias that electrically connect the metal layer and the fifth metal layer, the maximum distance between the first vias being the width dimension of the first metal layer and the second The maximum distance between the vias is greater than the maximum distance between the third vias, and the maximum distance between the second vias is smaller than the maximum distance between the first vias. Greater than the maximum spacing between vias.
  • the second semiconductor device of the present invention when an interlayer insulating film having a low dielectric constant is provided below the third metal layer, the tensile stress transmitted to the fragile interlayer insulating film can be further alleviated. Therefore, peeling of the interlayer insulating film and prevention of cracks can be effectively realized.
  • the dielectric constant of the first interlayer insulating film may be 3.0 or less.
  • the semiconductor substrate may have an element formation region in which a semiconductor element is formed, and the external connection electrode may be formed above the element formation region.
  • an intermediate point connecting at least two vias formed on the same plane may be formed concentrically in a direction perpendicular to the main surface of the semiconductor substrate. Good.
  • each metal layer may be formed concentrically in a direction perpendicular to the main surface of the semiconductor substrate.
  • the interlayer insulating film is not broken and does not cause interface peeling, and is high after assembly. Connection reliability can be ensured.
  • FIG. 1A and 1B show a semiconductor device according to the first embodiment of the present invention
  • FIG. 1A is a plan view
  • FIG. 1B is a plan view of FIG. It is sectional drawing in the Ib-Ib line.
  • FIG. 2A is a plan view showing a semiconductor device according to a first modification of the first embodiment of the present invention.
  • FIG. 2B is a plan view showing a semiconductor device according to a second modification of the first embodiment of the present invention.
  • FIG. 3 is a sectional view showing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 4 is a sectional view showing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 5 is a plan view showing a semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a conventional semiconductor device.
  • the multilayer wiring structure constituting the semiconductor device according to the first embodiment is formed on a semiconductor substrate 1 made of, for example, silicon (Si). .
  • the multilayer wiring structure is an external connection electrode, and includes an interlayer insulating film 11, a metal layer 2, an interlayer insulating film 21, a metal layer 3, an interlayer insulating film 31, a metal layer 4, an interlayer insulating film 41, a metal layer 5, and an interlayer.
  • the insulating film 51, the metal layer 6, the interlayer insulating film 61, the metal layer 7, and the pad metal layer 8 are sequentially stacked.
  • the multilayer wiring structure may be formed on the element formation region on the semiconductor substrate 1.
  • the interlayer insulating film 21, the interlayer insulating film 31, the interlayer insulating film 41, the interlayer insulating film 51, and the interlayer insulating film 61 include a metal layer 2 and a metal layer 3, a metal layer 3 and a metal layer 4, and a metal layer 4 and a metal layer 5.
  • At least two vias 22, vias 32, vias 42, vias 52, and vias 62 are formed so as to electrically connect the metal layer 5 and the metal layer 6 and between the metal layer 6 and the metal layer 7, respectively.
  • the vias 22, 32, 42, 52, and 62 are arranged so that the maximum gap in the same layer becomes larger as the via is formed in a layer closer to the semiconductor substrate 1.
  • each interlayer insulating film 11, 21, 31, and 41 uses an insulating film having a dielectric constant lower than 3.0.
  • each interlayer insulating film 11, 21, 31, and 41 is an ELK (Extreme Low-k) film having a thickness of 100 nm to 200 nm and a dielectric constant of 2.4.
  • ELK Extreme Low-k
  • a TEOS Tetra-ethyl-ortho-silicate
  • Each metal layer 2, 3, 4, 5, 6 and 7 is made of a copper (Cu) or Cu alloy film containing a barrier metal made of tantalum (Ta) or tantalum nitride (TaN).
  • Each of the vias 22, 32, 42, 52, and 62 is mainly formed by embedding Cu or a Cu alloy.
  • the pad metal layer 8 exposing the upper surface is made of, for example, aluminum (Al) and is formed of an Al laminated film including a barrier metal made of titanium nitride (TiN) / titanium (Ti).
  • the vias 22 formed on the metal layer 2 closest to the semiconductor substrate 1 are arranged concentrically on the interlayer insulating film 21 at equal intervals.
  • the maximum interval between the vias 22 is indicated by b.
  • the pad metal layer 8 is formed so that the diameter a is smaller than the maximum distance b of the vias 22.
  • the maximum distance between the vias 62 formed below the metal layer 7 is smaller than the diameter a of the pad metal layer 8.
  • the vias 52, 42, and 32 are formed so that the maximum interval between the vias increases as the layer in which these layers are formed becomes the lower layer and does not exceed b.
  • a is 50 ⁇ m
  • b is 100 ⁇ m
  • the maximum intervals between the vias 62, 52, 42, and 32 are 40 ⁇ m, 60 ⁇ m, 80 ⁇ m, and 90 ⁇ m, respectively.
  • the vias of each layer are formed in a staircase shape so that the diameter a of the pad metal layer 8 is smaller than the maximum interval b of the lowermost via 22 and the maximum interval increases toward the lower layer. For this reason, even if the pad metal layer 8 is subjected to a tensile stress during assembly or the like, the stress is alleviated by sequentially propagating downward through the vias formed in a staircase shape and dispersing them. Further, the tensile stress received by each of the metal layers 2, 3, 4, and 5 is suppressed by the hard interlayer insulating film 51 and the interlayer insulating film 61 that are in close contact with the pad metal layer 8 and relaxed.
  • a seed layer made of titanium (Ti), tungsten (W), copper (Cu) or the like is formed on the pad metal layer 8, and then nickel (Ni), copper (Cu) or An under bump metal made of gold (Au) or the like is formed.
  • a protruding solder bump is formed on the formed under bump metal with a solder material.
  • the formed solder bump side is affixed to a dicing tape, and after back grinding is performed on the semiconductor substrate 1, the multilayer wiring portion located under the pad metal layer 8 is cut by a focused ion beam (FIB).
  • FIB focused ion beam
  • the semiconductor device is diced into chips, and then the semiconductor chip is mounted on a multilayer substrate made of glass epoxy coated with flux, and the solder bumps are melted by a reflow furnace, The semiconductor chip and the multilayer substrate are joined with a solder material. Subsequently, a sealing resin is injected, and the injected sealing resin is cured to manufacture a semiconductor package. Even if the semiconductor package manufactured in this way is subjected to a temperature cycle test in which a high temperature state and a low temperature state are periodically repeated, there is an effect that an abnormality such as an open defect is suppressed.
  • the semiconductor device according to the first embodiment has the interlayer insulating film 11 and the like that have undergone the process of receiving the tensile stress on the pad metal layer 8 such as the back grinding process, the reflow process, and the temperature cycle test.
  • Such a fragile ELK film is not peeled off or cracked.
  • each interlayer insulating film 11, 21, 31, and 41 which is an ELK film, is stacked for four layers is shown, but the present invention is not limited to this. That is, in the case of a laminated structure made of a fragile film having a low dielectric constant, it is only necessary that vias can be provided in all the layers regardless of the number of laminated layers.
  • the fragile interlayer insulating film is not limited to the ELK film, and the fragile interlayer insulating film is peeled off by using a film having a low dielectric constant such as an ULK (Ultra low-k) film or a carbon-containing silicon oxide (SiOC) film. And the occurrence of cracks can be suppressed. In particular, the above effect can be obtained in an interlayer insulating film having a dielectric constant of 3.0 or less.
  • the pad metal layer 8 and the underlying metal layers 2, 3, 4, 5, 6 and 7 all have a planar circular structure, but the present invention is not limited to this.
  • each of the metal layers may be a plane quadrangle, a plane hexagon, a plane octagon, a plane ellipse, or the like.
  • the pad metal layer 8 and the metal layers 2, 3, 4, 5, The planar shapes of 6 and 7 may be different.
  • FIG. 2 shows a semiconductor device according to a first modification of the first embodiment.
  • the pad metal layer 8 and the underlying metal layers 2, 3, 4, 5 and 6 all have a planar octagonal configuration, and each of the vias 22 and 32 has eight. It is provided near each vertex of the square. Even in such a configuration, since the maximum distance b of the via 22 on the metal 2 is larger than the width dimension a of the pad metal 8, the same effect as in the first embodiment can be obtained.
  • the planar shape of the pad metal layer 8 is an octagon, and the planar surfaces of the metal layers 2, 3, 4, 5 and 6 below the pad metal layer 8.
  • the shape is a quadrangle.
  • the maximum interval b of the vias 22 is larger than the width dimension a of the pad metal layer 8, and the difference is larger than that in the first modification example of FIG. For example, it can be effectively applied to 2.2).
  • the multilayer wiring structure constituting the semiconductor device according to the second embodiment is formed on a semiconductor substrate 1 made of, for example, silicon (Si).
  • the multilayer wiring structure is an external connection electrode, and includes an interlayer insulating film 11, a metal layer 2, an interlayer insulating film 21, a metal layer 3, an interlayer insulating film 31, a metal layer 4, an interlayer insulating film 41, a metal layer 5, and an interlayer.
  • the insulating film 51, the metal layer 6, the interlayer insulating film 61, the metal layer 7, and the pad metal layer 8 are sequentially stacked.
  • the multilayer wiring structure may be formed on the element formation region on the semiconductor substrate 1.
  • the interlayer insulating film 21, the interlayer insulating film 31, the interlayer insulating film 41, the interlayer insulating film 51, and the interlayer insulating film 61 include a metal layer 2 and a metal layer 3, a metal layer 3 and a metal layer 4, and a metal layer 4 and a metal layer 5.
  • At least two vias 22, vias 32, vias 42, vias 52, and vias 62 are formed so as to electrically connect the metal layer 5 and the metal layer 6 and between the metal layer 6 and the metal layer 7, respectively. ing.
  • Each interlayer insulating film 11, 21, 31, and 41 uses an insulating film having a dielectric constant lower than 3.0.
  • Each of the interlayer insulating films 11, 21 and 31 is, for example, an ELK film having a thickness of 100 nm to 160 nm and a dielectric constant of 2.4
  • the interlayer insulating film 41 is, for example, 160 nm to 250 nm of a dielectric constant.
  • ULK membrane ULK membrane.
  • the interlayer insulating film 51 and the interlayer insulating film 61 are, for example, FSG (fluorosilicate glass film) films having a film thickness of 800 nm to 1200 nm and a dielectric constant of 3.8.
  • Each metal layer 2, 3, 4, 5, 6 and 7 is made of Cu or a Cu alloy film containing a barrier metal made of Ta or TaN.
  • Each of the vias 22, 32, 42, 52, and 62 is mainly formed by embedding Cu or a Cu alloy.
  • the pad metal layer 8 exposing the upper surface is made of, for example, Al and is formed of an Al laminated film including a barrier metal made of TiN / Ti.
  • the pad metal layer 8 exposing the upper surface has, for example, a planar octagonal shape, and its diameter (maximum width) is indicated by a.
  • the metal layer 7 formed in contact with the lower surface of the pad metal layer 8 is formed in a quadrangular shape having a diameter smaller than that of the pad metal layer 8.
  • the metal layer 6 formed below the metal layer 7 is formed as a wiring in a planar rectangular region smaller than the metal layer 7.
  • the metal layers 5 and 2 below the metal layer 6 are formed such that the diameter (maximum width) thereof becomes larger as the layer is closer to the semiconductor substrate 1.
  • the maximum distance between vias in the same layer connecting the metal layers 2 to 7 decreases from the pad metal layer 8 to the metal layer 5 in the lower layer.
  • the maximum interval b between the vias 42 formed in the interlayer insulating film 41 that is a fragile ULK film having a low dielectric constant is the interlayer insulating film that is a hard FSG film. It is larger than the maximum interval c between the vias 52 formed in the film 51. For this reason, the tensile stress received by the via 52 formed in the FSG film is relaxed and falls below the fracture stress of the ULK film and the interface stress of the film. As a result, it is possible to prevent cracks or peeling occurring in the interlayer insulating film 51 and the interlayer insulating film 61 and cracks or peeling generated at the interface between the interlayer insulating film 51 and the interlayer insulating film 41.
  • the multilayer wiring structure constituting the semiconductor device according to the third embodiment is formed on a semiconductor substrate 1 made of, for example, silicon (Si).
  • the multilayer wiring structure is an external connection electrode, and includes an interlayer insulating film 11, a metal layer 2, an interlayer insulating film 21, a metal layer 3, an interlayer insulating film 31, a metal layer 4, an interlayer insulating film 41, a metal layer 5, and an interlayer.
  • the insulating film 51, the metal layer 6, the interlayer insulating film 61, the metal layer 7, and the pad metal layer 8 are sequentially stacked.
  • the multilayer wiring structure may be formed on the element formation region on the semiconductor substrate 1.
  • the interlayer insulating film 21, the interlayer insulating film 31, the interlayer insulating film 41, the interlayer insulating film 51, and the interlayer insulating film 61 include a metal layer 2 and a metal layer 3, a metal layer 3 and a metal layer 4, and a metal layer 4 and a metal layer 5.
  • At least two vias 22, vias 32, vias 42, vias 52, and vias 62 are formed so as to electrically connect the metal layer 5 and the metal layer 6 and between the metal layer 6 and the metal layer 7, respectively. ing.
  • Each interlayer insulating film 11, 21, 31, and 41 uses an insulating film having a dielectric constant lower than 3.0.
  • each interlayer insulating film 11, 21, 31 and 41 is a ULK film having a thickness of 100 nm to 160 nm and a dielectric constant of 2.7.
  • a SiOC film having a film thickness of 800 nm to 1200 nm and a dielectric constant of 4.7 is used for the interlayer insulating film 51 and the interlayer insulating film 61.
  • Each metal layer 2, 3, 4, 5, 6 and 7 is made of Cu or a Cu alloy film containing a barrier metal made of Ta or TaN.
  • Each of the vias 22, 32, 42, 52, and 62 is mainly formed by embedding Cu or a Cu alloy.
  • the pad metal layer 8 exposing the upper surface is made of, for example, Al and is formed of an Al laminated film including a barrier metal made of TiN / Ti.
  • the vias 62 formed between the metal layer 6 and the metal layer 7 have a plurality of vias 62 arranged two-dimensionally at equal intervals so as to cover the entire lower surface of the metal layer 7.
  • the diameter of the metal layer 7 is 50 ⁇ m
  • the diameter of the via 62 is 5 ⁇ m
  • the distance between the vias is 10 ⁇ m.
  • the via 52 formed below the metal layer 6 is not disposed in a region immediately below the via 62.
  • the plurality of vias 62 are provided two-dimensionally below the metal layer 7 formed in contact with the lower surface of the pad metal layer 8, so that the pad metal layer 8 receives the two-dimensionally.
  • the stress is concentrated on the interface between the metal layer 6 and the interlayer insulating film 51 and below the region where the via 62 is disposed. Since the interlayer insulating film 51 is a strong film made of SiCO, peeling and cracking do not occur due to stress generated in the assembly process.
  • the via 52 is arranged outside the via 62, even if the via 52 is subjected to tensile stress, the tensile stress is suppressed to the strong interlayer insulating film 51, and thus occurs in the interlayer insulating film 51. Cracks and delamination can be suppressed.
  • a stud bump bonding method is used on the pad metal layer 8 to form a gold ball by discharging a gold wire having a diameter of 25 ⁇ m, and an ultrasonic wave is applied while heating and pressing to form a gold ball and Al.
  • the pad metal layer 8 is pressure-bonded to each other. Subsequently, in a state where the semiconductor substrate 1 is fixed by vacuum suction, the gold wire is pulled up to break the gold wire. Even if the stud bumps are formed by the above steps, there is an effect that peeling and cracking generated in the interlayer insulating film 51 and the like can be suppressed.
  • the multilayer wiring structure constituting the semiconductor device according to the fourth embodiment is formed on a semiconductor substrate 1 made of, for example, silicon (Si).
  • the multilayer wiring structure is an external connection electrode, and includes an interlayer insulating film 11, a metal layer 2, an interlayer insulating film 21, a metal layer 3, an interlayer insulating film 31, a metal layer 4, an interlayer insulating film 41, a metal layer 5, and an interlayer.
  • the insulating film 51, the metal layer 6, the interlayer insulating film 61, the metal layer 7, and the pad metal layer 8 are sequentially stacked.
  • the multilayer wiring structure may be formed on the element formation region on the semiconductor substrate 1.
  • Each interlayer insulating film 11, 21, 31, and 41 uses an insulating film having a dielectric constant lower than 3.0.
  • each interlayer insulating film 11, 21, 31, and 41 is an ELK film having a film thickness of 150 nm to 200 nm and a dielectric constant of 2.4.
  • a TEOS film having a film thickness of 700 nm to 800 nm and a dielectric constant of 4.3 is used for the interlayer insulating film 51 and the interlayer insulating film 61.
  • Each metal layer 2, 3, 4, 5, 6 and 7 is made of Cu or a Cu alloy film containing a barrier metal made of Ta or TaN.
  • the pad metal layer 8 exposing the upper surface is made of, for example, Al and is formed of an Al laminated film including a barrier metal made of TiN / Ti.
  • the interlayer insulating film 21, the interlayer insulating film 31 and the interlayer insulating film 41 include a metal layer 2 and a metal layer 3, a metal layer 3 and a metal layer 4, and a metal layer 4 and a metal layer 5.
  • At least two vias 22, vias 32, and vias 42 in which mainly Cu or Cu alloy is embedded are formed so as to be electrically connected to each other.
  • no via is provided between the metal layer 5 and the metal layer 6 and between the metal layer 6 and the metal layer 7, and only the interlayer insulating film 51 and the interlayer insulating film 61 are formed, respectively.
  • the maximum interval b in the via 42 is provided so as to be larger than the dimension a of the pad metal layer 8, and the maximum interval between the lower via 32 and the via 22 is provided so as to be larger than the upper layer thereof. It has been.
  • the stress received in the pad metal layer 8 is received on the entire surface of the interlayer insulating film 51, the stress is transferred from the interlayer insulating film 51 to the lower layer. .
  • the maximum distance b between the vias 42 formed in the interlayer insulating film 41 is larger than the dimension a of the pad metal layer 8. For this reason, the stress received by the fragile ELK film itself, which is the interlayer insulating film 41, and the stress received by the interface are alleviated and lower than the film strength and the interface strength. As a result, peeling and cracks occurring in the fragile interlayer insulating film 41 are not seen.
  • the interlayer insulating film 31 and the interlayer insulating film 21 which are ELK films, the occurrence of film breakdown and interface breakdown is prevented.
  • the film thickness of the interlayer insulating film increases as the layer from the semiconductor substrate 1 becomes higher.
  • the present invention is not limited to this.
  • the thickness of the fragile interlayer insulating film can be increased as long as it is less than the breaking stress of the film.
  • the interlayer insulating film may be thick in the layer below the fragile ELK film.
  • each of the interlayer insulating films 11, 21, and 31 is an ELK film, and the thickness of each insulating film is 250 nm.
  • the interlayer insulating film 41 and the interlayer insulating film 51 are FSG films, and the thickness of each layer may be 150 nm.
  • an intermediate point connecting at least two vias formed in the same interlayer insulating film may be formed concentrically in a direction perpendicular to the main surface of the semiconductor substrate 1.
  • the metal layers 2 to 7 may be formed concentrically with each other in a direction perpendicular to the main surface of the semiconductor substrate 1.
  • the interlayer insulating film is not broken and does not cause interface peeling, and is not formed on the element formation region. This is useful for a semiconductor device having an input / output pad.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

 半導体基板(1)の上方に、層間絶縁膜(11)、(21)等を介在させて形成された外部接続用電極を備えている。外部接続用電極は、上面を露出するパッドメタル層(8)と、該パッドメタル層(8)と半導体基板(1)との間に形成された第1のメタル層(2)と、層間絶縁膜(21)を貫通してパッドメタル層(8)と第1のメタル層(2)とを電気的に接続し、且つ、層間絶縁膜(21)に形成された少なくとも2つの第1のビア(22)とを有している。第1のビア(22)同士の最大の間隔bは、パッドメタル層(8)の幅寸法aよりも大きい。

Description

半導体装置
 本発明は、半導体装置に関し、特に、素子形成領域上に入出力パッド(外部接続用電極)を備えた半導体装置に関する。
 近年、情報技術の広がりと共にコンピュータ及び携帯電話等の電子機器の能力として高速化の要求は高まっている。それに伴い電子機器の性能に大きく影響するシステムLSI(Large Scale Integration)に代表される半導体素子の性能として更なる高速化が必然的に求められている。しかし、半導体素子の高速化に大きな妨げになるのが、MOSトランジスタ自体の遅延とその上層にある配線自身及び配線間の寄生容量による配線遅延がある。
 従来は、ゲート長を短くする微細化技術によりMOSトランジスタ自体の遅延を低減してきた。しかしながら、微細化技術の開発によるMOSトランジスタ自体の遅延が小さくなるに従い配線遅延の問題が表面化してきている。そこで、配線間遅延を小さくするため、配線同士の間に埋められている絶縁膜に誘電率が低い絶縁膜(低誘電率膜)を採用することにより、配線遅延を小さくしようとしている。
 しかしながら、低誘電率膜は、従来から採用されていたシリコン酸化膜よりも機械的強度が大幅に低下する。このことは、半導体による回路形成を担う拡散工程が完了し、半導体素子のパッケージングを担う組立工程、特にワイヤボンド工程で問題となる。具体的には、層間絶縁膜の機械的強度が十分でないため、半導体素子に形成されているパッドの上にワイヤボンドを行うと、ワイヤボンド時の衝撃荷重がパッドを通じてパッド直下の層間絶縁膜に伝わって、層間絶縁膜を大きく変形させる。その変形が層間絶縁膜にクラックを発生させ、半導体素子自体の品質の信頼性に大きく影響する。
 そこで、従来はパッドの直下に層間絶縁膜を挟んでメタル層を形成し、形成されたメタル層とパッドとを接続プラグによって接続することにより、ボンディングにより層間絶縁膜に印加される衝撃をメタル層が受け止める。さらに、印加された衝撃でメタル層が衝撃の印加方向に変形しようとするのをビアが支えるようになり、パッドの直下に成膜された層間絶縁膜の機械的強度を向上させようとしている( 例えば、特許文献1を参照。) 。その結果、ボンディングにより層間絶縁膜に伝わる衝撃が緩和されて、層間絶縁膜の剥離及びクラック等のダメージが低減する。
 しかし、上記の構成では、層間絶縁膜の接合面に設けたパッドと層間絶縁膜のストレスが大きく、層間絶縁膜に誘電率が低い、いわゆるlow-k膜を用いた場合に、プロービング、ワイヤボンディング又はダイシング時等に層間絶縁膜にクラックが発生する。
 この課題に対し、従来は以下のような構造が提案されている(例えば、特許文献2を参照。)。図6は従来例に係る半導体装置の断面構成を示している。図6に示すように、従来例に係る半導体装置は、シリコンからなる半導体基板101の上に順次形成された層間絶縁膜102、層間絶縁膜103、層間絶縁膜104、層間絶縁膜105及び層間絶縁膜106と、該層間絶縁膜106の上に形成されたボンディングパッド107とを有している。ここで、各層間絶縁膜102~106におけるボンディングパッド107の下側の領域にそれぞれ複数のビア132、ビア142、ビア152及びビア162を格子状に貫通するように設けることにより、ボンディングパッド107の下側の領域とその外側の領域との各層間絶縁膜102~106の間の接合面を分断し、且つ、ボンディングパッド107の下側の領域において各層間絶縁膜102~106の間の接合面を分割する。このように、各ビア132~162を設けることにより、ボンディングパッド107を支持する構造が提案されている。ここで、層間絶縁膜102から層間絶縁膜106のうちの少なくとも1つには、低誘電率膜が用いられている。
 この構造によれば、各ビア132~162が各層間絶縁膜102~106の接合面を複数に分割するため、各層間絶縁膜間102~106のストレスが緩和されて、各層間絶縁膜102~106の剥離を防止することができると記述されている。
特開2000-114309号公報 特開2005-116788号公報
 しかしながら、前記従来の半導体装置には、下記のような問題がある。すなわち、ゲート長の著しい微細化の進展に伴い、層間絶縁膜の低誘電率化が進んでおり、層間絶縁膜はより脆弱化してきている。一方、組立工程においては、ボンディングパッド107に引張応力を受ける。例えば、ワイヤボンディング工法又はフリップチップ工法におけるスタッドバンプ形成工程においては、金属ワイヤをボール化し、ボンディングパッド107に圧着した後、金属ワイヤを引き上げる。その際、ボンディングパッド107には大きな引張応力が加わる。また、例えば半田材、金又は銅等からなる突起状のバンプをボンディングパッド107の上に形成し、その後、ウエーハバックグラインド工程において、バンプの先端部をダイシングテープに貼り付けた状態でウエーハの裏面をバックグラインド加工する。その後、ダイシングテープを剥がす際に、ボンディングパッド107に大きな引張応力を受ける。
 このように、組立工程において、脆弱すなわち強度が低い各層間絶縁膜103~106の上に形成されたボンディングパッド107に大きな引張応力が加えられると、半導体基板101の基板面に垂直な方向に配置された各ビア132~162には応力が集中する。例えば、ビア132とストッパ膜121との界面に応力が集中して、脆弱な層間絶縁膜102又は層間絶縁膜103を起点として、層間絶縁膜102又は層間絶縁膜103に破壊又は剥離が発生するという問題がある
 また、半導体パッケージの組立後においても、マザーボードへの実装工程において、リフロー後の冷却プロセス(例えば、240℃~260℃から20℃~30℃までの冷却)において、引張方向に対して大きな熱応力がボンディングパッド107に発生し、上述したのと同様に、脆弱な層間絶縁膜102又は層間絶縁膜103を起点として破壊又は剥離が発生するという問題がある。
 さらに、高温状態及び低温状態が繰り返される使用環境下においても、繰り返して引張応力が加わることにより、脆弱な層間絶縁膜の界面において、亀裂破壊又は剥離が発生するという問題もある。
 本発明は、前記の問題を解決し、パッド電極が設けられる層間絶縁膜に低誘電率膜を用いた場合にも、該層間絶縁膜の破壊及び界面剥離を発生させず、高い接続信頼性を確保できるようにすることを目的とする。
 前記の目的を達成するため、本発明は、半導体装置を、ボンディングパッド(外部接続用電極)と該ボンディングパッドの下方に絶縁膜を介在させて設けるメタル層との間に形成する複数のビア同士の最大の間隔をボンディングパッドの幅よりも大きくする構成とする。
 具体的に、本発明に係る第1の半導体装置は、半導体基板の上に、少なくとも2層の層間絶縁膜を介在させて形成された外部接続用電極を備え、外部接続用電極は、上面を露出する第1のメタル層と、第1のメタル層と半導体基板との間に形成された第2のメタル層と、第1のメタル層と第2のメタル層との間に形成された第3のメタル層と、第2のメタル層と第3のメタル層との間の第1の層間絶縁膜を貫通して、第2のメタル層と第3のメタル層とを電気的に接続する少なくとも2つの第1のビアとを有し、第1のビア同士の最大の間隔は、第1のメタル層の幅寸法よりも大きい。
 本発明の第1の半導体装置によると、第1のメタル層が受けた引張応力が第2のメタル層の上の少なくとも2つのビアに分散されて伝播することにより緩和される。また、引張応力が加わる第2のメタル層の上に形成されたビア同士の最大の間隔が第1のメタル層の幅寸法よりも大きいため、第2のメタル層が受ける引張応力が緩和される。これにより、例えば第2のメタル層の上にある脆弱な層間絶縁膜の剥離及び亀裂破壊を防ぐことができるので、組立後も高い接続信頼性を確保することができる。
 本発明の第1の半導体装置において、外部接続用電極は、第1のメタル層と第3のメタル層との間の第2の層間絶縁膜を貫通して、第1のメタル層と第3のメタル層とを電気的に接続する少なくとも2つの第2のビアをさらに有し、第1のビア同士の最大の間隔は、第2のビア同士の最大の間隔よりも大きいことが好ましい。
 このようにすると、第1のメタル層が受けた引張応力が、基板側にその間隔が広い第1のビアを伝播して分散されることにより一層緩和される。また、引張応力が加わる第2のメタル層の面積が第1のメタル層の面積よりも大きく形成されるため、第2のメタル層が受ける引張応力は緩和される。さらに、各メタル層の引張応力を受ける領域はすべて層間絶縁膜により押さえられているため、第2のメタル層が受ける引張応力が緩和されるので、層間絶縁膜の剥離及び亀裂防止を効果的に実現することができる。さらに、第3のメタル層に引張応力を集中することが可能となるため、例えば第1のメタル層と接する層間絶縁膜に硬い絶縁膜を用いれば、第3のメタル層よりの下側の脆弱な層間絶縁膜に伝わる引張応力を緩和できるので、層間絶縁膜の剥離及び亀裂防止を効果的に実現することができる。
 この場合に、第1の層間絶縁膜の誘電率は、第2の層間絶縁膜の誘電率よりも低くてもよい。
 このようにすると、誘電率が低い第1の層間絶縁膜に設けられた第1のビア同士の最大の間隔が大きくなるため、第1のメタル層が受けた引張応力を緩和することができるので、第1の層間絶縁膜の破壊及び層間剥離を防ぐことができる。
 この場合に、第1の層間絶縁膜の厚さは、第2の層間絶縁膜の厚さ以上であってもよい。
 このように、誘電率が低い第1の層間絶縁膜を第2の層間絶縁膜の厚さ以上に厚くしても、第1の層間絶縁膜が受ける引張応力が膜の破壊強度を上回らず、破壊及び剥離を防ぐことが可能となる。従って、第1の層間絶縁膜が厚い構成においては、層間絶縁膜の誘電率を下げることができるため、配線遅延を最小限にすることができる。
 また、この場合に、第1の層間絶縁膜の厚さは、第2の層間絶縁膜の厚さ以下であってもよい。このようにすると、半導体装置の強度を確実に向上することができる。

 また、本発明の半導体装置が第2のビアを有する場合に、第2のビアは、2次元的に且つ3つ以上設けられていてもよい。
 このようにすると、第1のメタル層の直下の応力を3つ以上のビアによって緩和することができるため、層間絶縁膜の剥離及び亀裂防止をより効果的に実現することができる。
 また、第1の半導体装置において、第1のメタル層にはビアが直接に設けられていなくてもよい。
 このようにすると、第1のパッドメタルに加わった引張応力を第1のメタル層の直下の層間絶縁膜の全面で受けるため、第2のメタル層が受ける応力をさらに緩和することができる。その結果、第2のメタル層が受ける引張応力が緩和されるため、例えば第2のメタル層の上にある脆弱な層間絶縁膜の剥離及び亀裂破壊を防ぐことができるので、組立後も高い接続信頼性を確保することができる。
 本発明に係る第2の半導体装置は、半導体基板の上に、少なくとも2層の層間絶縁膜を介在させて形成された外部接続用電極を備え、外部接続用電極は、上面を露出する第1のメタル層と、第1のメタル層と半導体基板との間に形成された第2のメタル層と、第1のメタル層と第2のメタル層との間に形成された第3のメタル層と、第1のメタル層と第3のメタル層との間に形成された第4のメタル層と、第3のメタル層と第2のメタル層との間に形成された第5のメタル層と、第5のメタル層と第2のメタル層との間の第1の層間絶縁膜を貫通して、第5のメタル層と第2のメタル層とを電気的に接続する少なくとも2つの第1のビアと、第1のメタル層と第4のメタル層との間の第2の層間絶縁膜を貫通して、第1のメタル層と第4のメタル層とを電気的に接続する少なくとも2つの第2のビアと、第4のメタル層と第3のメタル層との間の第3の層間絶縁膜を貫通して、第4のメタル層と第3のメタル層とを電気的に接続する少なくとも2つの第3のビアと、第3のメタル層と第5のメタル層との間の第4の層間絶縁膜を貫通して、第3のメタル層と第5のメタル層とを電気的に接続する少なくとも2つの第4のビアとを有し、第1のビア同士の最大の間隔は、第1のメタル層の幅寸法及び第2のビア同士の最大の間隔よりも大きく、第3のビア同士の最大の間隔は、第2のビア同士の最大の間隔よりも小さく、且つ、第1のビア同士の最大の間隔は、第4のビア同士の最大の間隔よりも大きい。
 本発明の第2の半導体装置によると、第3のメタル層より下側に低誘電率の層間絶縁膜が設けられている場合に、この脆弱な層間絶縁膜に伝わる引張応力をより一層緩和できるため、層間絶縁膜の剥離及び亀裂防止を効果的に実現できる。
 また、本発明の第1又は第2の半導体装置において、第1の層間絶縁膜の誘電率は、3.0以下であってもよい。
 また、本発明の第1又は第2の半導体装置において、半導体基板は、半導体素子が形成された素子形成領域を有し、外部接続用電極は、素子形成領域の上方に形成されていてもよい。
 本発明の第1又は第2の半導体装置において、同一平面上に形成された少なくとも2つの各ビア同士を結ぶ中間点は、半導体基板の主面と垂直な方向に同心上に形成されていてもよい。
 また、本発明の第1又は第2の半導体装置において、各メタル層は、半導体基板の主面と垂直な方向に同心上に形成されていてもよい。
 本発明に係る半導体装置によると、パッド電極が設けられる層間絶縁膜に低誘電率膜を用いた場合にも、該層間絶縁膜の破壊及び界面剥離を発生させすることがなく、組立後も高い接続信頼性を確保することができる。
図1(a)及び図1(b)は本発明の第1の実施形態に係る半導体装置を示し、図1(a)は平面図であり、図1(b)は図1(a)のIb-Ib線における断面図である。 図2(a)は本発明の第1の実施形態の第1変形例に係る半導体装置を示す平面図である。図2(b)は本発明の第1の実施形態の第2変形例に係る半導体装置を示す平面図である。 図3は本発明の第2の実施形態に係る半導体装置を示す断面図である。 図4は本発明の第3の実施形態に係る半導体装置を示す断面図である。 図5は本発明の第4の実施形態に係る半導体装置を示す平面図である。 図6は従来例に係る半導体装置を示す断面図である。
 (第1の実施形態)
 本発明の第1の実施形態に係る半導体装置ついて図面を参照しながら説明する。
 図1(a)及び図1(b)に示すように、第1の実施形態に係る半導体装置を構成する多層配線構造は、例えばシリコン(Si)からなる半導体基板1の上に形成されている。多層配線構造は、外部接続用電極であって、層間絶縁膜11、メタル層2、層間絶縁膜21、メタル層3、層間絶縁膜31、メタル層4、層間絶縁膜41、メタル層5、層間絶縁膜51、メタル層6、層間絶縁膜61、メタル層7及びパッドメタル層8が順次積層されて形成されている。なお、多層配線構造は、半導体基板1上の素子形成領域上に形成されていてもよい。
 層間絶縁膜21、層間絶縁膜31、層間絶縁膜41、層間絶縁膜51及び層間絶縁膜61には、メタル層2とメタル層3、メタル層3とメタル層4、メタル層4とメタル層5、メタル層5とメタル層6及びメタル層6とメタル層7の間をそれぞれ電気的に接続するように、少なくとも2個ずつのビア22、ビア32、ビア42、ビア52及びビア62が形成されている。ここで、各ビア22、32、42、52及び62は、半導体基板1に近い層に形成されているビアほど、同一の層内の最大の間隔が大きくなるように配置されている。
 各層間絶縁膜11、21、31及び41は、誘電率が3.0よりも低い絶縁膜を用いる。例えば、各層間絶縁膜11、21、31及び41には、それぞれ膜厚が100nm~200nmであり、誘電率が2.4のELK(Extreme low-k)膜を用いる。これに対し、層間絶縁膜51、61には、例えば、膜厚が500nm~1000nmであり、誘電率が4.3のTEOS(Tetra-ethyl-ortho-silicate)膜を用いる。
 各メタル層2、3、4、5、6及び7は、タンタル(Ta)又は窒化タンタル(TaN)等からなるバリアメタルを含む銅(Cu)又はCu合金膜からなる。各ビア22、32、42、52及び62は、主にCu又はCu合金が埋め込まれて形成されている。上面を露出するパッドメタル層8は、例えばアルミニウム(Al)からなり、窒化チタン(TiN)/チタン(Ti)からなるバリアメタルを含むAl積層膜により形成されている。
 以下に、第1の実施形態に係る多層配線構造の特徴を説明する。図1(a)に示すように、パッドメタル層8は平面円形状を有しており、その直径(=幅)をaで示す。一方、半導体基板1に最も近いメタル層2の上に形成されたビア22は、層間絶縁膜21に同心円上に等間隔で配置されている。このビア22の最大間隔をbで示す。ここで、パッドメタル層8の直径aはビア22の最大間隔bよりも小さくなるように形成する。また、メタル層7の下側に形成されるビア62の最大間隔は、パッドメタル層8の直径aよりも小さく形成する。さらに、メタル層6から下層においては、各ビア52、42及び32は、これらが形成される層が下層となるにつれて各ビアの最大間隔を大きくし、且つbを上回らないように形成する。例えば、aを50μmとし、bを100μmとし、各ビア62、52、42及び32の最大間隔は、それぞれ40μm、60μm、80μm及び90μmである。
 このように、パッドメタル層8の直径aが最下層のビア22の最大間隔bよりも小さく、且つ下層に向かうにつれて最大間隔が広がるように各層のビアが階段状に形成されている。このため、組立時等に、パッドメタル層8に引張応力を受けたとしても、その応力は階段状に形成された各ビアを順次下方に伝播して分散されることにより緩和される。また、各メタル層2、3、4及び5が受ける引張応力は、パッドメタル層8と密着する硬い層間絶縁膜51及び層間絶縁膜61に抑えられて緩和される。
 従って、層間絶縁膜11等を構成する、脆弱なELK膜と接するメタル層2等が受ける引張応力が緩和されるため、脆弱な層間絶縁膜の剥離及び亀裂破壊を防ぐことが可能となる。その結果、組立後も高い接続信頼性を確保することができるようになる。
 例えば、パッドメタル層8の上に、チタン(Ti)、タングステン(W)又は銅(Cu)等からなるシード層を形成し、その後、シード層の上にニッケル(Ni)、銅(Cu)又は金(Au)等からなるアンダーバンプメタルを形成する。続いて、形成したアンダーバンプメタルの上に半田材により突起状の半田バンプを形成する。その後、形成された半田バンプ側をダイシングテープに貼り付け、半導体基板1に対してバックグラインドを行った後、収束イオンビーム(FIB)によりパッドメタル層8の下に位置する多層配線部を切断加工したとしても、脆弱なELK膜の剥離及び亀裂の発生を抑止できるという効果がある。さらに、例えば、バックグラインド工程の後に半導体装置をチップ状にダイシングし、その後、半導体チップをフラックスが塗布されたガラスエポキシからなる多層基板の上に搭載し、リフロー炉により半田バンプを溶融させて、半導体チップと多層基板とを半田材により接合する。続いて、封止樹脂を注入し、注入された封止樹脂を硬化させて、半導体パッケージを作製する。このように作製された半導体パッケージを、高温状態と低温状態とを周期的に繰り返す温度サイクル試験に投入しても、オープン不良等の異常が抑止されるという効果がある。
 このように、第1の実施形態に係る半導体装置は、バックグラインド工程、リフロー工程及び温度サイクル試験等のように、パッドメタル層8に引張応力を受ける工程を経ても、層間絶縁膜11等のような、脆弱なELK膜に剥離又は亀裂が見られない。
 なお、本実施形態においては、ELK膜である各層間絶縁膜11、21、31及び41が4層分積層された構造を示したが、これに限られない。すなわち、誘電率が低い脆弱な膜からなる積層構造であれば、その積層数に拘わらず、その全ての層にビアを設けることができればよい。また、脆弱な層間絶縁膜もELK膜に限られず、ULK(Ultra low-k)膜又は炭素含有酸化シリコン(SiOC)膜等の誘電率が低い膜を用いることにより、脆弱な層間絶縁膜の剥離及び亀裂の発生を抑えることができる。特に、誘電率が3.0以下の層間絶縁膜に上記の効果を得ることができる。
 第1の実施形態においては、パッドメタル層8及びその下の各メタル層2、3、4、5、6及び7がいずれも平面円形状の構造を示したが、これに限られない。例えば、各メタル層のいずれもが、平面四角形、平面六角形、平面八角形又は平面楕円形等でもよく、さらには、パッドメタル層8とその下の各メタル層2、3、4、5、6及び7の平面形状が異なっていても構わない。
 (第1の実施形態の第1変形例)
 図2に第1の実施形態の第1変形例に係る半導体装置を示す。図2(a)に示すように、パッドメタル層8及びその下の各メタル層2、3、4、5及び6がいずれも平面八角形状の構成であり、且つ各ビア22及び32等は八角形の各頂点付近に設けられている。このような構成でも、パッドメタル8の幅寸法aよりも、メタル2の上のビア22の最大間隔bの方が大きいため、第1の実施形態と同様の効果を得ることができる。
 (第1の実施形態の第2変形例)
 図2(b)に示すように、第2変形例に係る半導体装置は、パッドメタル層8の平面形状が八角形であり、その下の各メタル層2、3、4、5及び6の平面形状が四角形である。この構成では、ビア22の最大間隔bがパッドメタル層8の幅寸法aよりも大きく、その差は図2(a)の第1変形例の場合よりも大きいため、極めて誘電率が低い膜(例えば2.2等)に効果的に適用可能である。
 (第2の実施形態)
 以下、本発明の第2の実施形態に係る半導体装置ついて図面を参照しながら説明する。
 図3に示すように、第2の実施形態に係る半導体装置を構成する多層配線構造は、例えばシリコン(Si)からなる半導体基板1の上に形成されている。多層配線構造は、外部接続用電極であって、層間絶縁膜11、メタル層2、層間絶縁膜21、メタル層3、層間絶縁膜31、メタル層4、層間絶縁膜41、メタル層5、層間絶縁膜51、メタル層6、層間絶縁膜61、メタル層7及びパッドメタル層8が順次積層されて形成されている。なお、多層配線構造は、半導体基板1上の素子形成領域上に形成されていてもよい。
 層間絶縁膜21、層間絶縁膜31、層間絶縁膜41、層間絶縁膜51及び層間絶縁膜61には、メタル層2とメタル層3、メタル層3とメタル層4、メタル層4とメタル層5、メタル層5とメタル層6及びメタル層6とメタル層7の間をそれぞれ電気的に接続するように、少なくとも2個ずつのビア22、ビア32、ビア42、ビア52及びビア62が形成されている。
 各層間絶縁膜11、21、31及び41は、誘電率が3.0よりも低い絶縁膜を用いる。各層間絶縁膜11、21及び31は、例えば、それぞれ膜厚が100nm~160nmで誘電率が2.4のELK膜であり、層間絶縁膜41は、例えば膜厚が160nm~250nmで誘電率が2.8のULK膜である。また、層間絶縁膜51及び層間絶縁膜61は、例えば膜厚が800nm~1200nmで誘電率が3.8のFSG(fluorosilicate glass film)膜である。
 各メタル層2、3、4、5、6及び7は、Ta又はTaN等からなるバリアメタルを含むCu又はCu合金膜からなる。各ビア22、32、42、52及び62は、主にCu又はCu合金が埋め込まれて形成されている。上面を露出するパッドメタル層8は、例えばAlからなり、TiN/Tiからなるバリアメタルを含むAl積層膜により形成されている。
 以下に、第2の実施形態に係る多層配線構造の特徴を説明する。上面を露出するパッドメタル層8は、例えば平面八角形状を有しており、その径(最大幅)をaで示す。パッドメタル層8の下面と接して形成されたメタル層7は、パッドメタル層8よりも径が小さい四角形状に形成されている。さらに、メタル層7の下方に形成されたメタル層6は、メタル層7よりも小さい平面四角形状の領域に配線として形成されている。一方、メタル層6よりも下層のメタル層5~2は、半導体基板1に近い層ほどその径(最大幅)が大きくなるように形成されている。
 これに伴い、各メタル層2~7を接続する同一層におけるビア同士の最大間隔は、パッドメタル層8からメタル層5までは、下層ほどビア同士の最大間隔が小さくなる。これに対し、メタル層5から下層は、下層ほどビア同士の最大間隔が大きくなる。すなわち、パッドメタル層8の最大寸法をa、ビア52の最大間隔をc、ビア42の最大間隔をbとすると、これらの関係はc<a<bで表現される。例えば、a=70μm、b=90μm、及びc=55μmである。
 このように、第2の実施形態に係る半導体装置によると、誘電率が低く、脆弱なULK膜である層間絶縁膜41に形成されたビア42の最大間隔bは、硬いFSG膜である層間絶縁膜51に形成されたビア52の最大間隔cよりも大きい。このため、FSG膜に形成されたビア52が受ける引張応力は緩和されて、ULK膜の破壊応力及び膜の界面応力を下回ることになる。その結果、層間絶縁膜51及び層間絶縁膜61中に生じる亀裂又は剥離と、層間絶縁膜51と層間絶縁膜41との界面に生じる亀裂又は剥離とを防ぐことができる。
 さらに、メタル層5が受ける応力が軽減される効果に加え、各ビア42、32及び22が下層に向かうほど階段状に広がって配置されているため、脆弱なULK膜及び該ULK膜が受ける応力は大きく緩和されるので、ULK膜である各層間絶縁膜11~31に生じる剥離及び亀裂を効果的に防止することができる。
 (第3の実施形態)
 以下、本発明の第3の実施形態に係る半導体装置ついて図面を参照しながら説明する。
 図4に示すように、第3の実施形態に係る半導体装置を構成する多層配線構造は、例えばシリコン(Si)からなる半導体基板1の上に形成されている。多層配線構造は、外部接続用電極であって、層間絶縁膜11、メタル層2、層間絶縁膜21、メタル層3、層間絶縁膜31、メタル層4、層間絶縁膜41、メタル層5、層間絶縁膜51、メタル層6、層間絶縁膜61、メタル層7及びパッドメタル層8が順次積層されて形成されている。なお、多層配線構造は、半導体基板1上の素子形成領域上に形成されていてもよい。
 層間絶縁膜21、層間絶縁膜31、層間絶縁膜41、層間絶縁膜51及び層間絶縁膜61には、メタル層2とメタル層3、メタル層3とメタル層4、メタル層4とメタル層5、メタル層5とメタル層6及びメタル層6とメタル層7の間をそれぞれ電気的に接続するように、少なくとも2個ずつのビア22、ビア32、ビア42、ビア52及びビア62が形成されている。
 各層間絶縁膜11、21、31及び41は、誘電率が3.0よりも低い絶縁膜を用いる。例えば、各層間絶縁膜11、21、31及び41には、それぞれ膜厚が100nm~160nmであり、誘電率が2.7のULK膜を用いる。これに対し、層間絶縁膜51及び層間絶縁膜61には、例えば、膜厚が800nm~1200nmであり、誘電率が4.7のSiOC膜を用いる。
 各メタル層2、3、4、5、6及び7は、Ta又はTaN等からなるバリアメタルを含むCu又はCu合金膜からなる。各ビア22、32、42、52及び62は、主にCu又はCu合金が埋め込まれて形成されている。上面を露出するパッドメタル層8は、例えばAlからなり、TiN/Tiからなるバリアメタルを含むAl積層膜により形成されている。
 以下に、第3の実施形態に係る多層配線構造の特徴を説明する。上面を露出するパッドメタル層8は、例えば平面円形状を有しており、その直径をaで示す。パッドメタル層8の下面と接触して形成されたメタル層7は、パッドメタル層8よりも径が小さい円形状に形成されている。さらに、メタル層7の下方に形成されたメタル層6は、メタル層7よりも大きい平面四角形状の領域に配線として形成されている。また、メタル層6よりも下層のメタル層5~2は、半導体基板1に近い層ほどその径が大きくなるように形成されている。これに伴い、メタル層6から下層は、下層ほどビア同士の最大間隔が大きくなる。
 さらに、メタル層6とメタル層7との間に形成されるビア62は、メタル層7の下面の全体を覆うように、複数のビア62が2次元的に等間隔で配置されている。ここで、例えば、メタル層7の直径を50μmとすると、ビア62の径が5μmでビア同士の間隔が10μmである。また、メタル層6の下側に形成されるビア52は、ビア62の直下の領域には配置されない。
 このように、第3の実施形態によると、パッドメタル層8の下面と接して形成されたメタル層7の下側に複数のビア62を2次元的に設けることにより、パッドメタル層8が受けた応力はメタル層6と層間絶縁膜51との界面のうち、ビア62が配置された領域の下方に集中して受けることになる。なお、層間絶縁膜51はSiCOからなる強固な膜であるため、組立工程で発生する応力によっては剥離及び亀裂が生じない。さらに、ビア62よりもビア52の方が外側に配置されているため、ビア52が引張応力を受けても、該引張応力は強固な層間絶縁膜51に抑えられるので、層間絶縁膜51に生じる亀裂及び剥離を抑止することができる。
 例えば、パッドメタル層8の上にスタッドバンプボンディング工法を用い、径が25μmの金線を放電させて金ボールを形成し、加熱及び加圧しながら超音波を印加して、金ボールとAlからなるパッドメタル層8とを互いに圧着する。続いて、半導体基板1を真空吸着により固定した状態で、金線を引き上げて該金線を破断する。以上の工程により、スタッドバンプを形成しても、層間絶縁膜51等に生じる剥離及び亀裂を抑制できるという効果を有する。
 (第4の実施形態)
 以下、本発明の第4の実施形態に係る半導体装置ついて図面を参照しながら説明する。
 図5に示すように、第4の実施形態に係る半導体装置を構成する多層配線構造は、例えばシリコン(Si)からなる半導体基板1の上に形成されている。多層配線構造は、外部接続用電極であって、層間絶縁膜11、メタル層2、層間絶縁膜21、メタル層3、層間絶縁膜31、メタル層4、層間絶縁膜41、メタル層5、層間絶縁膜51、メタル層6、層間絶縁膜61、メタル層7及びパッドメタル層8が順次積層されて形成されている。なお、多層配線構造は、半導体基板1上の素子形成領域上に形成されていてもよい。
 各層間絶縁膜11、21、31及び41は、誘電率が3.0よりも低い絶縁膜を用いる。例えば、各層間絶縁膜11、21、31及び41には、それぞれ膜厚が150nm~200nmであり、誘電率が2.4のELK膜を用いる。これに対し、層間絶縁膜51及び層間絶縁膜61には、例えば、膜厚が700nm~800nmであり、誘電率が4.3のTEOS膜を用いる。
 各メタル層2、3、4、5、6及び7は、Ta又はTaN等からなるバリアメタルを含むCu又はCu合金膜からなる。上面を露出するパッドメタル層8は、例えばAlからなり、TiN/Tiからなるバリアメタルを含むAl積層膜により形成されている。
 第4の実施形態の特徴として、層間絶縁膜21、層間絶縁膜31及び層間絶縁膜41には、メタル層2とメタル層3、メタル層3とメタル層4及びメタル層4とメタル層5の間をそれぞれ電気的に接続するように、少なくとも2個ずつの主にCu又はCu合金が埋め込まれたビア22、ビア32及びビア42が形成されている。これに対し、メタル層5とメタル層6、及びメタル層6とメタル層7との間には、ビアは設けておらず、それぞれ層間絶縁膜51と層間絶縁膜61のみが形成されている。
 ビア42における最大間隔bは、パッドメタル層8の寸法aよりも大きくなるように設けられており、その下層のビア32及びビア22のそれぞれの最大間隔はそれらの上層よりも大きくなるように設けられている。
 このように、第4の実施形態によると、パッドメタル層8に受けた引張応力は、層間絶縁膜51の全面で受けるため、該層間絶縁膜51から下の層には応力が緩和されて伝わる。さらに、層間絶縁膜41に形成されたビア42の最大間隔bは、パッドメタル層8の寸法aよりも大きい。このため、層間絶縁膜41である脆弱なELK膜自体が受ける応力及びその界面が受ける応力が緩和されて、膜強度及び界面強度を下回る。その結果、脆弱な層間絶縁膜41に生じる剥がれ及び亀裂が見られなくなる。同様に、ELK膜である層間絶縁膜31及び層間絶縁膜21においても膜破壊及び界面破壊の発生が防止される。
 なお、上述した第1~第4の各実施形態において、半導体基板1から上層になるほど、層間絶縁膜の膜厚が厚くなるように説明したが、これに限られない。各実施形態においては、ビア同士の最大間隔を広げることにより引張応力が緩和されるため、膜の破壊応力を下回りさえすれば、脆弱な層間絶縁膜の膜厚を厚くすることができる。例えば、脆弱なELK膜から下方の層において層間絶縁膜の膜厚が厚くても構わない。
 例えば、各層間絶縁膜11、21及び31はELK膜であり、各絶縁膜の膜厚は250nmとする。一方、層間絶縁膜41及び層間絶縁膜51はFSG膜であり、各層の膜厚は150nmとするという構成を採っても構わない。
 また、各実施形態において、同一の層間絶縁膜に形成された少なくとも2つの各ビア同士を結ぶ中間点は、半導体基板1の主面と垂直な方向に同心上に形成されていてもよい。
 また、各メタル層2~7は、半導体基板1の主面と垂直な方向に互いに同心上に形成されていてもよい。
 本発明に係る半導体装置は、パッド電極が設けられる層間絶縁膜に低誘電率膜を用いた場合にも、該層間絶縁膜の破壊及び界面剥離を発生させすることがなく、素子形成領域上に入出力パッドを備えた半導体装置等に有用である。
1  半導体基板
2  メタル層
3  メタル層
4  メタル層
5  メタル層
6  メタル層
7  メタル層
8  パッドメタル層
11 層間絶縁膜
21 層間絶縁膜
31 層間絶縁膜
41 層間絶縁膜
51 層間絶縁膜
61 層間絶縁膜
22 ビア
32 ビア
42 ビア
52 ビア
62 ビア
a  パッドメタル層の寸法
b  ビアの最大間隔
c  ビアの最大間隔

Claims (12)

  1.  半導体基板の上に、少なくとも2層の層間絶縁膜を介在させて形成された外部接続用電極を備え、
     前記外部接続用電極は、
     上面を露出する第1のメタル層と、
     前記第1のメタル層と前記半導体基板との間に形成された第2のメタル層と、
     前記第1のメタル層と前記第2のメタル層との間に形成された第3のメタル層と、
     前記第2のメタル層と前記第3のメタル層との間の第1の層間絶縁膜を貫通して、前記第2のメタル層と前記第3のメタル層とを電気的に接続する少なくとも2つの第1のビアとを有し、
     前記第1のビア同士の最大の間隔は、前記第1のメタル層の幅寸法よりも大きい半導体装置。
  2.  請求項1において、
     前記外部接続用電極は、
     前記第1のメタル層と前記第3のメタル層との間の第2の層間絶縁膜を貫通して、前記第1のメタル層と前記第3のメタル層とを電気的に接続する少なくとも2つの第2のビアをさらに有し、
     前記第1のビア同士の最大の間隔は、前記第2のビア同士の最大の間隔よりも大きい半導体装置。
  3.  請求項2において、
     前記第1の層間絶縁膜の誘電率は、前記第2の層間絶縁膜の誘電率よりも低い半導体装置。
  4.  請求項3において、
     前記第1の層間絶縁膜の厚さは、前記第2の層間絶縁膜の厚さ以上である半導体装置。
  5.  請求項4において、
     前記第2のビアは、2次元的に且つ3つ以上設けられている半導体装置。
  6.  請求項5において、
     前記第1の層間絶縁膜の誘電率は、3.0以下である半導体装置。
  7.  請求項6において、
     前記半導体基板は、半導体素子が形成された素子形成領域を有し、
     前記外部接続用電極は、前記素子形成領域の上方に形成されている半導体装置。
  8.  請求項7において、
     同一平面上に形成された前記少なくとも2つの各ビア同士を結ぶ中間点は、前記半導体基板の主面と垂直な方向に同心上に形成されている半導体装置。
  9.  請求項8において、
     前記各メタル層は、前記半導体基板の主面と垂直な方向に同心上に形成されている半導体装置。
  10.  請求項3において、
     前記第1の層間絶縁膜の厚さは、前記第2の層間絶縁膜の厚さ以下である半導体装置。
  11.  請求項1において、
     前記第1のメタル層にはビアが直接に設けられていない半導体装置。
  12.  半導体基板の上に、少なくとも2層の層間絶縁膜を介在させて形成された外部接続用電極を備え、
     前記外部接続用電極は、
     上面を露出する第1のメタル層と、
     前記第1のメタル層と前記半導体基板との間に形成された第2のメタル層と、
     前記第1のメタル層と前記第2のメタル層との間に形成された第3のメタル層と、
     前記第1のメタル層と前記第3のメタル層との間に形成された第4のメタル層と、
     前記第3のメタル層と前記第2のメタル層との間に形成された第5のメタル層と、
     前記第5のメタル層と前記第2のメタル層との間の第1の層間絶縁膜を貫通して、前記第5のメタル層と前記第2のメタル層とを電気的に接続する少なくとも2つの第1のビアと、
     前記第1のメタル層と前記第4のメタル層との間の第2の層間絶縁膜を貫通して、前記第1のメタル層と前記第4のメタル層とを電気的に接続する少なくとも2つの第2のビアと、
     前記第4のメタル層と前記第3のメタル層との間の第3の層間絶縁膜を貫通して、前記第4のメタル層と前記第3のメタル層とを電気的に接続する少なくとも2つの第3のビアと、
     前記第3のメタル層と前記第5のメタル層との間の第4の層間絶縁膜を貫通して、前記第3のメタル層と前記第5のメタル層とを電気的に接続する少なくとも2つの第4のビアとを有し、
     前記第1のビア同士の最大の間隔は、前記第1のメタル層の幅寸法及び前記第2のビア同士の最大の間隔よりも大きく、
     前記第3のビア同士の最大の間隔は、前記第2のビア同士の最大の間隔よりも小さく、且つ、前記第1のビア同士の最大の間隔は、前記第4のビア同士の最大の間隔よりも大きい半導体装置。
PCT/JP2010/005380 2009-11-18 2010-09-01 半導体装置 WO2011061883A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080052347.0A CN102668047B (zh) 2009-11-18 2010-09-01 半导体装置
US13/415,338 US8742584B2 (en) 2009-11-18 2012-03-08 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-262761 2009-11-18
JP2009262761A JP5383446B2 (ja) 2009-11-18 2009-11-18 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/415,338 Continuation US8742584B2 (en) 2009-11-18 2012-03-08 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2011061883A1 true WO2011061883A1 (ja) 2011-05-26

Family

ID=44059371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005380 WO2011061883A1 (ja) 2009-11-18 2010-09-01 半導体装置

Country Status (4)

Country Link
US (1) US8742584B2 (ja)
JP (1) JP5383446B2 (ja)
CN (1) CN102668047B (ja)
WO (1) WO2011061883A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378030A (zh) * 2012-04-18 2013-10-30 中芯国际集成电路制造(上海)有限公司 硅通孔结构

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198916A (ja) * 2007-02-15 2008-08-28 Spansion Llc 半導体装置及びその製造方法
US20130320522A1 (en) * 2012-05-30 2013-12-05 Taiwan Semiconductor Manufacturing Company, Ltd. Re-distribution Layer Via Structure and Method of Making Same
FR2996354A1 (fr) * 2012-10-01 2014-04-04 St Microelectronics Crolles 2 Dispositif semiconducteur comprenant une structure d'arret de fissure
TWI676279B (zh) * 2013-10-04 2019-11-01 新力股份有限公司 半導體裝置及固體攝像元件
JP2017084944A (ja) * 2015-10-27 2017-05-18 株式会社デンソー 半導体装置
CN107072044B (zh) * 2017-06-05 2024-04-12 广东顺德施瑞科技有限公司 一种双面柔性线路板
US20190385962A1 (en) * 2018-06-15 2019-12-19 Texas Instruments Incorporated Semiconductor structure and method for wafer scale chip package
JP2021034560A (ja) * 2019-08-23 2021-03-01 キオクシア株式会社 半導体装置およびその製造方法
CN117059590B (zh) * 2023-10-11 2024-03-12 荣耀终端有限公司 晶圆结构及芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005564A (ja) * 2003-06-13 2005-01-06 Matsushita Electric Ind Co Ltd パッド構造
JP2006108329A (ja) * 2004-10-04 2006-04-20 Fujitsu Ltd 半導体装置
JP2006128720A (ja) * 2002-04-12 2006-05-18 Renesas Technology Corp 半導体装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100200700B1 (ko) * 1996-02-29 1999-06-15 윤종용 다층 패드를 구비하는 반도체장치 및 그 제조방법
JP2974022B1 (ja) 1998-10-01 1999-11-08 ヤマハ株式会社 半導体装置のボンディングパッド構造
JP4801296B2 (ja) * 2001-09-07 2011-10-26 富士通セミコンダクター株式会社 半導体装置及びその製造方法
JP2003289104A (ja) * 2002-03-28 2003-10-10 Ricoh Co Ltd 半導体装置の保護回路及び半導体装置
TWI300971B (en) 2002-04-12 2008-09-11 Hitachi Ltd Semiconductor device
CN1601735B (zh) * 2003-09-26 2010-06-23 松下电器产业株式会社 半导体器件及其制造方法
JP2005116788A (ja) 2003-10-08 2005-04-28 Renesas Technology Corp 半導体装置
US7038280B2 (en) * 2003-10-28 2006-05-02 Analog Devices, Inc. Integrated circuit bond pad structures and methods of making
JP2005327913A (ja) 2004-05-14 2005-11-24 Renesas Technology Corp 半導体装置
JP2007087975A (ja) * 2005-09-16 2007-04-05 Ricoh Co Ltd 半導体装置
JP4675231B2 (ja) * 2005-12-28 2011-04-20 パナソニック株式会社 半導体集積回路装置
US8084858B2 (en) * 2009-04-15 2011-12-27 International Business Machines Corporation Metal wiring structures for uniform current density in C4 balls

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128720A (ja) * 2002-04-12 2006-05-18 Renesas Technology Corp 半導体装置
JP2005005564A (ja) * 2003-06-13 2005-01-06 Matsushita Electric Ind Co Ltd パッド構造
JP2006108329A (ja) * 2004-10-04 2006-04-20 Fujitsu Ltd 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378030A (zh) * 2012-04-18 2013-10-30 中芯国际集成电路制造(上海)有限公司 硅通孔结构

Also Published As

Publication number Publication date
US20120168961A1 (en) 2012-07-05
US8742584B2 (en) 2014-06-03
CN102668047B (zh) 2015-04-29
JP5383446B2 (ja) 2014-01-08
CN102668047A (zh) 2012-09-12
JP2011108869A (ja) 2011-06-02

Similar Documents

Publication Publication Date Title
JP5383446B2 (ja) 半導体装置
US7391114B2 (en) Electrode pad section for external connection
US8405199B2 (en) Conductive pillar for semiconductor substrate and method of manufacture
US8729700B2 (en) Multi-direction design for bump pad structures
KR100580970B1 (ko) 반도체장치
US8048778B1 (en) Methods of dicing a semiconductor structure
CN101894814A (zh) 焊料凸块ubm结构
US9899308B2 (en) Semiconductor package and method of fabricating the same
US10002814B2 (en) Apparatuses and methods to enhance passivation and ILD reliability
US8476764B2 (en) Bonding pad structure for semiconductor devices
US20060060980A1 (en) Ic package having ground ic chip and method of manufacturing same
JP2010062178A (ja) 半導体装置
JP5424747B2 (ja) 半導体装置
JP4021376B2 (ja) パッド構造
TWI830763B (zh) 晶片結構及其製造方法
KR20110076605A (ko) 반도체 패키지 및 그 제조 방법
TWI479617B (zh) 半導體結構及其製造方法
US20230097173A1 (en) Type of bumpless and wireless semiconductor device
JP2005005565A (ja) 半導体装置
KR20220147401A (ko) 반도체 패키지 및 그 제조방법
CN114551374A (zh) 一种降低焊球应力的结构及其构造方法
TWI449144B (zh) 半導體封裝件及其基板
JP2005079432A (ja) 半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052347.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831283

Country of ref document: EP

Kind code of ref document: A1