WO2011059101A1 - 光触媒コーティング - Google Patents

光触媒コーティング Download PDF

Info

Publication number
WO2011059101A1
WO2011059101A1 PCT/JP2010/070410 JP2010070410W WO2011059101A1 WO 2011059101 A1 WO2011059101 A1 WO 2011059101A1 JP 2010070410 W JP2010070410 W JP 2010070410W WO 2011059101 A1 WO2011059101 A1 WO 2011059101A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
silane coupling
acrylic
photocatalyst
coupling agent
Prior art date
Application number
PCT/JP2010/070410
Other languages
English (en)
French (fr)
Inventor
益健 玉岡
Original Assignee
タムネットワーク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タムネットワーク株式会社 filed Critical タムネットワーク株式会社
Priority to US13/509,833 priority Critical patent/US20120225770A1/en
Priority to JP2011540581A priority patent/JPWO2011059101A1/ja
Priority to EP10830057.5A priority patent/EP2502741A4/en
Priority to CN2010800517770A priority patent/CN102821944A/zh
Publication of WO2011059101A1 publication Critical patent/WO2011059101A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1693Antifouling paints; Underwater paints as part of a multilayer system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers

Definitions

  • the present invention relates to a photocatalytic structure for coating the surface of a substrate made of an organic material, and a method for constructing such a structure.
  • the surface of the substrate with photocatalyst is activated by irradiation with light such as ultraviolet rays, and the active oxygen generated on the surface oxidizes and decomposes organic substances, etc., and the surface becomes hydrophilic. It has the function of.
  • the organic material itself is deteriorated by the active oxygen on the surface of the base material made of the organic material, it cannot be directly coated on the surface.
  • the photocatalyst is an inorganic material such as titanium oxide, it is usually difficult to fix the photocatalyst to the surface of the base material made of an organic material. Therefore, a weather resistant layer, an organic-inorganic composite gradient film, and a photocatalytic material layer are sequentially formed on the surface of the substrate (for example, Patent Document 1).
  • silicon compounds such as water glass, colloidal silica, polyorganosiloxane, phosphates such as zinc phosphate and aluminum phosphate, heavy phosphates, inorganic binders such as cement, fluorine polymers, silicone polymers
  • a hydrophobic / water-repellent silicone resin coating is applied to the substrate surface, and the resulting coating surface is subjected to a hydrophilic treatment by irradiating ultraviolet rays, or a hydrophilic silicone resin coating is applied.
  • a hydrophilic silicone resin layer comprising a silicone resin film having a contact angle with water of 20 ° or less
  • an aqueous photocatalyst coating agent containing photocatalyst particles and a metal oxide binder is applied on the resin layer.
  • it has been proposed to produce a photocatalyst by heating or irradiating the obtained photocatalyst layer with ultraviolet rays for example, Patent Document 3).
  • each cell receives a lot of light and is installed outdoors, but since the amount of power generation per cell is not necessarily large, a large area in which many cells are spread is required. . Since each cell itself deteriorates when exposed to an outdoor environment, a protective member (for example, glass) that can transmit necessary sunlight is required. However, the surface of the protective member is easily soiled due to the outdoor environment, which causes a problem that the transmittance of sunlight is decreased due to the soiling, and the power generation efficiency is decreased.
  • a protective member for example, glass
  • the outermost surface side of the semiconductor element to be a cell is covered with a protective member, and a heat dissipation layer is provided on the outermost surface side, and the protective member surface absorbs ultraviolet rays and carries inorganic oxide particles having a photocatalytic function.
  • a semiconductor device that improves hydrophilicity has been proposed (for example, Patent Document 4).
  • a weather-resistant layer, an organic-inorganic composite gradient film, and a photocatalytic material layer complicates the structure, causes problems in quality stability, and costs high.
  • a base material (glass plate) of a binder such as a silane coupling agent or a fluorine-based polymer that is directly bonded to titanium oxide. Therefore, it is not always effective when titanium oxide is bonded to a different material.
  • the method of applying photocatalyst particles or the like on the hydrophilic silicone resin layer complicates the process and is not suitable for outdoor application. Therefore, it cannot be said that the photocatalyst having an effective antifouling function is sufficient for application to solar power generation.
  • the fixing method according to the conventional method as described above is not necessarily effective. Therefore, in order to adapt such a photocatalyst, it is necessary to propose a preferable fixing method including matching with the material of the base material. In addition, it is not preferable to create a special surface layer through a complicated process on a large area outdoors, so a simple photocatalyst deposition method is required.
  • the present inventor has conducted extensive research and found an optimal photocatalyst fixing method for a substrate exhibiting water repellency.
  • a predetermined amount of a preferable predetermined compound to a coating composition containing a photocatalyst, the coating composition is directly applied to the surface of a water-repellent substrate and dried to form a very strong photocatalytic layer. Succeeded in doing.
  • a photocatalytic layer comprising an acrylic base material, a silica layer mainly composed of silica formed on the surface thereof, and titanium oxide particles dispersed in a silica matrix formed thereon.
  • An antifouling acrylic plate comprising a bonding layer made of a silane coupling agent between the surface of the acrylic base and the silica layer. can do.
  • the acrylic base material may include a translucent base material made of acrylic resin and a translucent base material made of polycarbonate.
  • the acrylic resin is a polymer of acrylic acid ester or methacrylic acid ester, and is an amorphous synthetic resin with high transparency.
  • a transparent solid material made of polymethyl methacrylate resin (abbreviated as PMMA) may be included.
  • PMMA polymethyl methacrylate resin
  • Polycarbonate is a kind of thermoplastic plastic, and the joint between monomer units may be composed of a carbonate group.
  • the silica layer mentioned above should just be provided with the function to make the titanium oxide particle which has a photocatalyst function adhere to the surface of a base material.
  • the photocatalyst layer may include titanium oxide particles that are at least partially exposed from silica as a matrix.
  • the tie layer includes a first composition containing titanium oxide dispersed particles having an average primary particle size of 5 to 50 nm and an average dispersed particle size of 10 to 100 nm and a polymer dispersant in an aqueous solvent, and alkoxysilane hydrolysis.
  • a mixed composition containing a second composition containing a polycondensate and a silane coupling agent and having a pH value in the range of pH 5 to 9 is applied to the surface of the acrylic substrate.
  • the antifouling acrylic plate according to any one of (1) to (3) above can be provided.
  • the total thickness of the silica layer and the photocatalyst layer is 100 nm or less, and the titanium oxide particles of the photocatalyst layer are fixed in a state close to isolated dispersion, from the above (1) to (5 )
  • the antifouling acrylic plate described in any one of the above can be provided.
  • a weather-resistant solar cell using the antifouling acrylic plate described in any one of (1) to (6) above as a protective cover can be provided.
  • a titanium oxide particle-dispersed aqueous solution by adding titanium oxide powder and a polymer dispersant to water
  • a step of preparing a mixed solution a step of further mixing a silane coupling agent in the mixed solution to adjust an adhesive photocatalyst coating to the acrylic substrate, and a step of preparing the photocatalyst coating on the surface of the acrylic substrate. And a coating method.
  • the photocatalyst coating liquid for forming the photocatalyst layer comprises: a first composition containing titanium oxide dispersed particles having an average primary particle size of 5 to 50 nm and an average dispersed particle size of 10 to 100 nm; and a polymer dispersant in an aqueous solvent; A mixed composition comprising a second composition containing a silane hydrolysis polycondensate and a silane coupling agent, wherein the pH value is in the range of pH 5-9.
  • the average particle size of the titanium oxide particles is preferably 50 nm or less, more preferably 30 nm or less, and further preferably 10 nm or less.
  • the average particle diameter is preferably 1 nm or more, more preferably 10 nm or more, and further preferably 30 nm or more.
  • the average particle diameter can be defined as follows, for example.
  • the particle diameter can be defined as the diameter of a sphere with an equivalent sedimentation velocity in the measurement by the sedimentation method, and as the diameter of a sphere with an equivalent scattering property in the laser scattering method.
  • the particle size distribution is referred to as particle size (particle size) distribution.
  • the particle size when the sum of masses larger than a certain particle size occupies 50% of the total powder is defined as the average particle size D50.
  • these definitions and terms are both well known to those skilled in the art. For example, JISZ8901 “Test Powder and Test Particles” or “Basic Properties of Powder” (ISBN4-526-05544) edited by the Society of Powder Technology It is described in documents such as Chapter 1 of 1).
  • the integrated frequency distribution in terms of volume with respect to the particle diameter can be measured using a laser scattering type measuring device, but since the density is substantially constant, the volume conversion and the weight conversion distribution are the same. The particle diameter corresponding to 50% in this integrated (cumulative) frequency distribution can be obtained and used as the average particle diameter D50.
  • the average particle size is based on the median value (D50) of the particle size distribution measured by the particle size distribution measuring means by the laser scattering method described above.
  • D50 median value of the particle size distribution measured by the particle size distribution measuring means by the laser scattering method described above.
  • Various means other than those described above have been developed to determine the average particle diameter, and there are still some differences in the measured values. The significance is clear and is not necessarily limited to the above means.
  • the titanium oxide dispersion aqueous solution is prepared using a titanium oxide powder and a polymer dispersant as raw materials.
  • a titanium oxide powder for example, P25 manufactured by Nippon Aerosil Co., Ltd. can be suitably used.
  • the polymer dispersant a polymer dispersant of a type utilizing steric repulsion is preferably used.
  • a polymer dispersant mainly composed of an alkylamine salt of polycarboxylic acid is effective in preventing pigment settling and hard cake, and also has a dispersion effect in low-viscosity systems such as aqueous stains. .
  • a dispersant comprising an alkylol ammonium salt having an acid group which is a polymer dispersant mainly composed of an alkylammonium salt of a block copolymer containing an acid group (for example, trade name Disperbyk- sold by Big Chemie Japan) 180), titanium oxide and inorganic pigments are remarkably effective, the viscosity of the mill base is lowered, the paint can be made low in VOC, and both acidic and basic pigments are effective.
  • a dispersant comprising an aqueous solution of a high molecular weight block copolymer having a group having affinity for a pigment, which constitutes a polymer dispersant mainly composed of a block copolymer having affinity for the pigment (for example, Big Chemie The product name Disperbyk-190) sold by Japan Co., Ltd. has a remarkable effect on pigment concentrates that do not contain a dispersion resin or co-solvent, and can be used to design pigment concentrates with excellent storage stability. It is also effective.
  • the amount of the polymer dispersant used is preferably 10% by weight or more based on the weight of the titanium oxide powder, and preferably 30% by weight or more depending on the conditions, considering the dispersion effect.
  • the photocatalytic function per unit weight it is preferably 100% by weight or less based on the weight of the titanium oxide powder, and preferably 60% by weight or less depending on the conditions.
  • This titanium oxide dispersion aqueous solution is prepared by dispersing and stabilizing using a disperser, preferably a bead mill disperser.
  • the alkoxysilane hydrolysis polycondensate solution used when producing the photocatalyst coating liquid of the present invention is obtained by hydrolyzing and polycondensing alkoxysilanes.
  • alkoxysilanes used in this case Preferably following General formula (1) RxSi (OR) 4-x (1) (Wherein, R is a substituent selected from an alkyl group, a methyl group, an ethyl group, a propyl group, etc., and may be the same or different from each other) More preferably, in the alkoxysilane represented by the general formula (1), the substituent R is a lower alkyl group having 1 to 4 carbon atoms, specifically, a methyl group, an ethyl group, a propyl group.
  • alkoxysilanes only 1 type can be used independently, it can also be used as a mixture of 2 or more types, and also it can be used as a low condensate obtained by partial hydrolysis. You can also.
  • the method for obtaining an alkoxysilane hydrolyzed polycondensate solution consisting of a water / alcohol mixed solution of the alkoxysilane hydrolyzed polycondensate by hydrolyzing and polycondensing the above alkoxysilanes is not particularly limited, For example, it is produced by causing hydrolysis and polycondensation of an alkoxysilane by causing a sol-gel reaction using an acid or aluminum alkoxide as a catalyst.
  • the silane coupling agent is an organosilicon compound having a functional group reactively bonded to an organic material and a functional group reactively bonded to an inorganic material in the molecule, such as Y—R—Si— (X) 3 . It is expressed in Y is a functional group reactively bonded to an organic material, and a vinyl group, an epoxy group, an amino group and the like are typical examples.
  • X is a functional group that reacts with the inorganic material, hydrolyzes with water or moisture to produce silanol, and reacts with the inorganic material.
  • Typical examples of X generally include an alkoxy group, an acetoxy group, a chloro atom, and the like.
  • silane coupling agents include vinyl-based vinylmethoxysilane and vinylethoxysilane, and amino-based N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane and 3-aminopropyltriethoxysilane.
  • the organic amines are not particularly limited as long as they are capable of preventing gelation and exhibiting the action as a stabilizer when the titanium oxide dispersion aqueous solution and the alkoxysilane hydrolyzed polycondensate solution are mixed.
  • trimethylamine, triethylamine And tertiary amines such as triethanolamine, and quaternary ammonium hydroxides such as tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), and trimethylethanolammonium hydroxide (choline).
  • TMAH tetramethylammonium hydroxide
  • TEAH tetraethylammonium hydroxide
  • choline trimethylethanolammonium hydroxide
  • Tertiary amines are preferred.
  • About these organic amines only 1 type can be used independently, and also it can also be used as a mixture of 2 or more types as needed.
  • the silver particles to be contained in the composition of the photocatalyst coating liquid are preferably fine particles of 10 nm or less that are uniformly dispersed in the composition, and the content of the silver particles in the composition is formed.
  • it is usually about 5 to 6% by weight or less, preferably about 2% by weight or less.
  • various silver particle addition methods such as adding a commercially available product or separately prepared silver colloid can be selected, and are not particularly limited. Even if it is added to the titanium oxide dispersion aqueous solution during the preparation of the photocatalyst coating solution, or added to the alkoxysilane hydrolyzed polycondensate solution, these titanium oxide dispersed aqueous solution and alkoxysilane hydrolyzed polycondensation are also available. You may divide and add to both of a physical solution suitably.
  • the method of adding the silver particles to the titanium oxide dispersed aqueous solution is not particularly limited, but the photocatalytic activity is increased by generating silver particles on the surface of the titanium oxide particles to increase the charge separation efficiency.
  • aqueous solution Utilizing the existing polymeric dispersant as a reducing agent can be exemplified needed to reduce silver ions is subjected to heating or the like, if a method such as to produce silver particles near the surface of titanium oxide.
  • photocatalytic activity is enhanced by forming silver particles near the surface of titanium oxide particles or near the surface of titanium oxide particles by such a method of reducing silver nitrate. Occurs.
  • the photocatalyst coating liquid of the present invention is (A) even if the dispersion medium is an aqueous medium and contains an organic solvent, it is of the order of ethanol, is close to neutral, has excellent handleability, and is given to the substrate and the environment. (B) The titanium oxide particles in the photocatalyst coating solution are stabilized with a dispersed particle size of 100 nm or less, so that the titanium oxide particles are uniformly dispersed in the film with a dispersed particle size of 100 nm or less during film formation. As a result, the titanium oxide particles are immobilized in the silica coating as close to isolated dispersion as possible, and exhibit excellent photocatalytic activity.
  • the silica-based film of the matrix is about half a day at room temperature. Since it hardens, construction on site is possible and easy.
  • D If the titanium oxide dispersion aqueous solution of the photocatalyst coating solution and the alkoxysilane hydrolysis polycondensate solution are stored separately, The titanium oxide particles are dispersed and stabilized in the titanium oxide dispersion aqueous solution for a long time without settling, and the alkoxysilane hydrolyzed polycondensate solution as the matrix component is also stable for a long time without gelation. It can be stored for a long period of one year or more, and even when both solutions are mixed, it is stable without gelling for up to about one week. It has excellent features such as excellent (E) ability to form a film in accordance with the wettability of the substrate to be coated, and wide substrate adaptability.
  • the photocatalyst coating liquid described above is made of metal, glass, ceramics, plastics, wood, stone, cement, concrete, a combination thereof, or a laminate thereof, and is required to have antifouling and / or antibacterial properties.
  • a photocatalytically active composite material can be formed by applying to the surface of any substrate and forming a predetermined photocatalyst coating film on the surface of the substrate.
  • the uniform dispersible photocatalyst coating liquid of the present invention can be used to change the alcohol concentration in the aqueous solvent, or to add a surfactant, a silane coupling agent, etc. in order to match the wettability of the substrate to be coated. Can be added.
  • the silane coupling agent as described above is effective for a resin such as polycarbonate.
  • the method of applying the photocatalyst coating liquid as described above to the surface of the substrate is not particularly limited, but the photocatalyst coating film formed on the surface of the substrate is transparent and durable.
  • the spray coating method is preferable, and the spray coating machine to be used is preferably a low pressure spray machine with high coating efficiency.
  • the spray conditions the nozzle diameter, spray distance, and operation speed are optimized, and the spray amount is preferably about 10 to 100 cm 3 / m 2 .
  • the photocatalyst coating film formed on the surface of the substrate is basically based on a single layer, but when the substrate has an organic material that tends to deteriorate or a surface with many irregularities, If necessary, as a protective layer or a smoothing layer, the first layer may be a silica coating film coated with an alkoxysilane hydrolyzed polycondensate, and the second layer may be the photocatalyst coating film of the present invention.
  • titanium oxide dispersed particles having an average dispersed particle size of 10 to 100 nm are immobilized in a matrix state of the photocatalyst coating film in a state close to isolated dispersion, and visible light is scattered.
  • the ratio of the total cross-sectional area of all the titanium oxide particles present in the same coating cross-section is increased while maintaining transparency without any photocatalytic activity (antifouling). Effect and / or antibacterial properties).
  • the photocatalyst layer or photocatalyst coating thus obtained is firmly adhered to the water-repellent resin surface and has excellent weather resistance.
  • the photocatalyst coating liquid used is excellent in dispersion stability, is excellent in handleability without giving a load to the environment, and is applied to the surface of the base material.
  • FIG. 1 is a cross-sectional view schematically showing an antifouling acrylic plate of the present invention.
  • a silica layer 2 mainly composed of silica is formed on a polycarbonate 4 as a base material via a bonding layer 3, and a photocatalytic layer 1 in which titanium oxide particles are dispersed is formed thereon.
  • the bonding layer 3 is shown to be thick, in practice, since it is formed extremely thin on the surface of each silica particle constituting the silica layer 3, it cannot be substantially seen.
  • the tie layer does not exist on the polycarbonate 4 as a homogeneous layer. The mechanism of the bonding layer will be described later.
  • Titanium oxide powder with an average primary particle size of 21 nm (Nippon Aerosil P25) and a polymeric dispersant of the type utilizing steric repulsion (trade name: Disperbyk-180 sold by Big Chemie Japan) were added to water, Using a bead mill disperser, a titanium oxide particle-dispersed aqueous solution having an average dispersed particle size of 80 nm and a particle concentration of 30% by weight was prepared. This liquid was confirmed to be dispersed and stabilized without precipitation of titanium oxide particles even after a year or more at room temperature. The average dispersed particle size in the liquid was confirmed using a light scattering particle size distribution meter.
  • Tetraethoxysilane was used as alkoxysilanes and hydrolyzed and polycondensed using nitric acid as a catalyst to prepare a tetraethoxysilane hydrolyzed polycondensate solution consisting of a water / ethanol mixed solution having a solid content concentration of 3% by weight. This tetraethoxysilane hydrolyzed polycondensate solution was confirmed to be stable for 1 year or more at room temperature and to be cured by room temperature drying for about half a day.
  • Polycarbonate generally has the following chemical formula and is excellent in transparency, impact resistance, heat resistance, flame retardancy, and the like.
  • the surface is water-repellent.
  • the silane coupling agent is bonded with hydrogen and / or dehydration on the surface of the silica forming the silica layer.
  • the functional group Y to be bonded is fixed by a chemical reaction or the like (see FIG. 10). In this way, the silica and polycarbonate surfaces are bonded together by a bonding film having a very thin surface rather than a gradient material.
  • the photocatalyst coating liquid of Experimental Example 7 was coated to a thickness of about 100 ⁇ m on one side of a polycarbonate plate (model number PS600, manufactured by Takiron Co., Ltd.) having a thickness of about 1 mm and 300 mm ⁇ 300 mm by spray coating. This was kept horizontal and dried at room temperature for about half a day to form a photocatalytic coating.
  • Two polycarbonate plates with a coating film thus obtained were prepared, and one polycarbonate plate itself was prepared as a control, and each was adhered with a mixture of oil / carbon black. Furthermore, as a control, a polycarbonate plate that was not soiled and a polycarbonate plate with a coating film were also prepared.
  • the two stained polycarbonate plates with a coating film were sealed with a sealing material (there is almost no air intrusion) and opened, and a sunshine weather meter (manufactured by Suga Test Instruments Co., Ltd., model number: WEL-7XS-) LHP.B.EC) for 300 hours.
  • the light source is a xenon arc light source defined in JIS K 7350-2-1995.
  • the weathering test was also performed for 300 hours with a sunshine weather meter under open conditions.
  • FIG. 2 shows the results of light and sunlight transmittance after the above-described weather resistance test.
  • FIG. 2 shows the result of transmittance according to a normal measurement method.
  • the unstained polycarbonate plate and the polycarbonate plate with a coating film show a high transmittance close to 90% at a wavelength of 400 nm or more. Although it was slightly absorbed by the coating, there was little difference.
  • what was measured after the weathering test on the stained polycarbonate plate (without the coating film) had a low transmittance of about 60% at a wavelength of 450 nm or more, but the stained polycarbonate plate with the coating film was about 80 after the weathering test. There was a transmittance up to nearly%. It was slightly higher when there was no sealant.
  • Fig. 3 shows the results of a measurement method that also collected scattered light using an integrating sphere.
  • the stained polycarbonate plate with a coating film had substantially the same transmittance as the polycarbonate plate with a coating film that was not soiled after the weather resistance test. Therefore, the light is scattered and becomes slightly whitish, and the transmittance is lowered. However, if the light is not far away from the polycarbonate substrate, the scattered light is also usable light and is considered to contribute to the transmittance. For example, when used as a cover for a solar cell, the distance from the solar cell is short, so it is considered that a large amount of scattered light reaches the solar cell.
  • 4 and 5 show the relative transmittance measured under sunlight in the same manner as in FIGS. The results were almost the same as in FIGS.
  • FIG. 6 represents the spectral illuminance of the reference sunlight defined in JIS.
  • the photocatalyst coating liquid of Experimental Example 7 was coated to a thickness of about 100 ⁇ m on one side of a polycarbonate plate (model number PS600, manufactured by Takiron Co., Ltd.) having a thickness of about 1 mm and 100 mm ⁇ 100 mm by spray coating.
  • a polycarbonate plate with a coating film was prepared.
  • the light-receiving surface (64 ⁇ 28 mm) of the solar cell was completely covered with this protective material, and irradiation was continued with a simulated solar light source (Model SS-301S manufactured by USHIO INC.) Having an intensity of 45 mW / cm 2 .
  • the distance between the light-receiving surface of the solar cell and the protective material was about 2 mm.
  • the surface temperature of the light receiving surface of the solar cell was measured with a thermocouple, and the open circuit voltage Voc and the short-circuit current Isc at 28 ° C. were measured with a multimeter.
  • the characteristic test of the solar cell can be evaluated in the enclosed area by drawing a current / voltage curve as shown in FIG.
  • the shape of the curve is close to a rectangle, it can be generally evaluated relatively by “short circuit current density isc ⁇ open circuit voltage Voc”. This time, it is not a test of the solar cell itself, it is unlikely that the shape of the current / voltage curve will change greatly with or without the protective material, and it is only necessary to know the relative changes in the short circuit current density isc and the open circuit voltage Voc. become.
  • it is relative evaluation using the same photovoltaic cell it is possible to substitute the short-circuit current Isc instead of the short-circuit current density isc.
  • the solar intensity rather than 100 mW / cm 2, at 45 mW / cm 2, at a temperature of 25 ° C. instead 28 ° C., rather than absolute evaluation, so that it is relative evaluation.
  • the solar cell was made of polycrystalline silicone. For other types of solar cells, the results can vary slightly.
  • the protective material is a polycarbonate plate (original plate), a polycarbonate plate with a coating film obtained by attaching a photocatalyst coating film (Experimental Example 7), and after being soiled with oil / carbon black, the weather resistance test described above is performed for 300 hours. The test was conducted, and the above-mentioned weather resistance test was conducted for 300 hours after the polycarbonate plate (original plate) was soiled with oil / carbon black.
  • the protective material with photocatalyst after the weather resistance test was able to obtain the same voltage and current as the control original plate.
  • the protective material without a photocatalyst significantly decreased both in voltage and current. From this, the antifouling function of the photocatalyst was confirmed.
  • FIG. 8 schematically shows a main part 10 of photovoltaic power generation.
  • the protective material 14 covers the solar battery cell 12 from above.
  • the protective material 14 is a polycarbonate excellent in impact resistance and strength. Since the surface 15 of the protective material 14 is installed outdoors, it is exposed to wind and rain, etc., and the above-described photocatalyst coating film (Experimental Example 7) is attached thereto. If it does in this way, the photocatalyst of the surface 15 will be activated by the light of the comparatively short high energy from the sunlight 20, and dirt will be oxidatively decomposed
  • the surface becomes hydrophilic due to the effect of active oxygen, the cleaning effect due to rain or the like is enhanced.
  • solar cells are usually installed with a slight tilt to the south, so a self-cleaning effect due to rain is expected.
  • the transmittance of the protective material is sufficiently high, and there is not much influence of absorption of light energy due to photocatalysis.
  • FIG. 9 schematically shows an example of an indoor vegetable garden using solar power generation.
  • a protective material 14 made of polycarbonate and a photocatalyst on the surface 15 are disposed on the solar battery cell 12. Electricity is supplied through the lead wire 24 to the LED 22 disposed below by the light energy from the sunlight 20. Thereby, the plant 30 grows on the artificial soil 32. In this figure, the LED is placed immediately below. However, if the lead wire 24 is extended, for example, electricity from the photovoltaic power generation arranged on the roof can be provided to the LED 22 of the artificial vegetable garden arranged underground. This prevents abnormal warming due to sunlight in the city, and enables vegetable cultivation in the city.
  • the range of the wavelength of light used by the photocatalyst is not often reduced by the range of the wavelength of light used by the solar cell, thereby reducing the efficiency of utilization of light energy.
  • LED since it becomes possible for LED to emit preferable light energy according to the plant to grow, light energy can be utilized efficiently in total.
  • FIG. 11 is a principle diagram showing how light enters the protective base material 14a with the photocatalytic coating film 15a.
  • the protective substrate 14a for example, a light-transmitting inorganic glass such as quartz glass or soda glass, or a light-transmitting organic material such as acrylic or polycarbonate can be used.
  • the photocatalyst coating film 15a is made of any kind of photocatalyst coating or photocatalyst layer described in this specification.
  • the photocatalytic coating film 15a has a weight ratio of 1 for silica and 2 for titania, and the respective refractive indexes are 1.4 and 2.1.
  • the protective substrate 14a is 1.45 for quartz glass and 1.585 for polycarbonate. That is, the light 21 entering at the incident angle ⁇ 1 is reflected and absorbed and transmitted through the surface of the photocatalyst coating film 15a. The transmitted light enters the photocatalyst coating film 15a at a refraction angle ⁇ 2, and is further refracted at the interface between the photocatalyst coating film 15a and the protective base material 14a, and a part thereof is reflected and absorbed, but most is refracted. The light is refracted and transmitted 21t at an angle ⁇ 4.
  • the incident light amount A21 is divided into a reflected light amount A21r, a transmitted light amount A21t, and an absorbed light amount. Since the amount of transmitted light A21t is used in solar power generation, it is preferable that reflection and absorption be small.
  • FIG. 12 shows a typical light incidence model.
  • the reflected light undergoes amplitude changes and phase jumps.
  • the complex amplitude reflectance is r ⁇ exp (i ⁇ ).
  • the value of the complex amplitude reflectance is determined by the incident angle of light and the refractive index of the interface.
  • the complex amplitude reflectance also depends on the polarization state of incident light.
  • the component of the light whose electric vector oscillates in the incident plane is defined as P component (P-polarized light)
  • the component of the light whose electric vector oscillates perpendicularly to the incident surface is defined as S component (S-polarized)
  • the refractive index n from the air is expressed as follows.
  • the Fresnel coefficient complex amplitude reflectance
  • 0 or ⁇ can be set.
  • FIG. 13 shows the intensity reflectance.
  • Incident light which is sunlight, has P-polarized light and S-polarized light components. However, if all of the sunlight components can be converted to P-polarized light, almost no light is reflected at the Brewster angle and most of the light is transmitted. It can be used as light. It can also be seen that the Brewster angle depends on the refractive index and increases as the refractive index increases. That is, if the refractive index is higher (for example, a photocatalytic coating film), a larger incident angle becomes the Brewster angle. Further, as can be seen from FIG.
  • the orientation of the surface of the protective material 14 or the like may be automatically changed according to the movement of the sun.
  • FIG. 14 is a diagram schematically showing the movement of the sun when performing solar power generation.
  • An ellipse 50 imitates a horizontal line, and a semicircular object 52 imitates the ecliptic.
  • the solar power generation module (solar cell) 12 is irradiated with light through a protective material 14 (typically a light-transmitting inorganic or organic material coated with a photocatalytic coating) to generate power. .
  • a protective material 14 typically a light-transmitting inorganic or organic material coated with a photocatalytic coating
  • the sun 20 rises from the east (back side in the figure), goes south, and sinks to the west (front side in the figure).
  • the solar cells 12 are typically fixed to a roof or the like, morning sunlight enters at a relatively large angle of incidence angle ⁇ 1. For this reason, as shown in FIG.
  • a P-polarized component can be taken out by a polarizer and only the component can be irradiated to the photovoltaic power generation module 12.
  • a birefringent crystal such as calcite can be used to separate a monochromatic incident beam into two beams having opposite polarization states. The two beams usually propagate at different speeds in different directions. The energy of the original beam is split between the two new beams, but the proportion depends on the relative angle between the polarization vector of the original beam and the optical axis. In this way, the solar power generation module (solar cell) 12 is irradiated with light having a particularly large P-polarized component. Moreover, a thing like a polarization cube beam splitter can also be used.
  • the solar power generation module 12 is usually attached to a south-facing roof or the like, and is set so that the solar power generation module 12 can receive the most amount of light (that is, light energy) at the time of south and middle. However, it is preferable to continue power generation in the morning and evening, and various measures can be taken to obtain the amount of light necessary for that purpose. For example, at a predetermined elevation angle (for example, an angle at which sunlight is incident substantially perpendicularly during south-south (incident angle is 0 °), or a larger incident angle but a predetermined incident angle (for example, 5 ° or less)) It is possible to configure a solar power generation system including the solar cell module 12 attached to a roof or the like and the protective material 14.
  • a predetermined elevation angle for example, an angle at which sunlight is incident substantially perpendicularly during south-south (incident angle is 0 °), or a larger incident angle but a predetermined incident angle (for example, 5 ° or less)
  • polarized light that adjusts the polarization component (in particular, increases the P-polarization component) as described above.
  • An element 60 can be further provided, and the polarizing element 60 is preferably installed so that the angle can be freely changed according to the position of the sun, preferably can be automatically adjusted, and is preferably provided so as to be detachable.
  • the reflection ratio is low, such as during south-central time, it is preferable to remove the polarizing element 60.
  • Any commercially available polarizing element may be used as such a polarizing element 60.
  • the light component may be phase-converted and combined with the polarization phase, which is preferable because more light can be utilized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

アクリル系の有機材料からなる基材表面に適する光触媒層をコーティングした防汚性のアクリル板を提供する。アクリル系基材と、その表面上に形成されるシリカを主成分とするシリカ層と、更にその上に形成されるシリカマトリックス中に分散する酸化チタン粒子とからなる光触媒層と、からなる防汚性のアクリル板であって、前記アクリル系基材の表面と前記シリカ層との間に、シランカップリング剤からなる結合層を備える。前記シランカップリング剤は、エポキシ系のシランカップリング剤、若しくは、ビニル系のシランカップリング剤である。

Description

光触媒コーティング
 本発明は、有機材料からなる基材の表面をコーティングする光触媒構造、及びそのような構造を構成する方法に関する。
 光触媒を付けた基材表面は、紫外線等の光が照射されることにより活性化し、表面に生成する活性酸素により有機物等を酸化分解したり、表面が親水化するので、防汚、防曇等の機能を備える。しかし、有機材料からなる基材表面においては、その活性酸素により有機材料自体の劣化が生じるため、直接表面にコーティングすることはできなかった。また、光触媒は、酸化チタン等の無機系の材料であるため、有機材料からなる基材の表面に固定することは通常困難であった。そのため、基材表面に耐候層、有機-無機複合傾斜膜、そして、光触媒性材料層が順次形成されている(例えば、特許文献1)。
 また、水ガラス、コロイダルシリカ、ポリオルガノシロキサンなどのケイ素化合物、リン酸亜鉛、リン酸アルミニウムなどのリン酸塩、重リン酸塩、セメントなどの無機系結着剤、フッ素系ポリマー、シリコーン系ポリマーなどの有機系結着剤などの難分解性結着剤を介して光触媒粒子を基材上に接着させることにより、光触媒粒子をあらゆる基材上に、その光触媒機能を損なうことなく、強固に、かつ、長期間にわたって接着することができることが開示されている(例えば、特許文献2)。
 更に、基材表面に、疎水性/撥水性シリコーン系樹脂塗料を塗布し、得られた被膜表面に、紫外線を照射して親水化処理を行うか、又は親水性シリコーン系樹脂塗料を塗布して、水との接触角が20°以下のシリコーン系樹脂被膜からなる親水性シリコーン系樹脂層を形成した後、該樹脂層の上に、光触媒粒子と金属酸化物バインダーを含む水性光触媒コーティング剤を塗布し、得られた光触媒層を加熱または紫外線照射して光触媒体を製造することが提案されている(例えば、特許文献3)。
 一方、このような光触媒作用を利用した種々の応用が考案されている。例えば、太陽光発電においては、各セルは多くの光を受けるため屋外に設置されるが、1セルあたりの発電量は必ずしも大きくないため、多くのセルを敷き詰めた広大な面積が必要とされる。各セル自体は、屋外環境に曝されると劣化してしまうので、必要な太陽光を透過できる保護部材(例えば、ガラス)が必要である。しかるに、屋外環境のため保護部材の表面は汚れ易く、この汚れのため太陽光の透過率が低下し、ひいては発電効率が低下するという不具合が生じる。そのため、セルとなる半導体素子の最表面側が保護部材によりカバーされ、最裏面側には放熱層が設けられており、保護部材表面に紫外線を吸収して光触媒機能を備える無機酸化物粒子が担持されて親水性を向上させる半導体装置が提案されている(例えば、特許文献4)。
特開2002-361807号公報 特開平7-171408号公報 特開2003-10696号公報 特開2000-150936号公報
 しかしながら、耐候層、有機-無機複合傾斜膜、そして、光触媒性材料層を形成すると、構造が複雑になり、品質の安定性に問題があり、コストもかかる。また、難分解性結着剤を介して光触媒粒子を基材上に接着させる方法では、例えば、酸化チタンと直接結合するシランカップリング剤やフッ素系ポリマー等の結着材の基材(ガラス板やアクリル板)へ固着することが前提となるため、酸化チタンが異なる材料と結合している場合は、必ずしも有効ではない。また、親水性シリコーン系樹脂層の上に光触媒粒子等を塗布する方法では工程が複雑となり、屋外適用には向かない。従って、有効な防汚機能を備える光触媒として、太陽光発電に適用するには十分とはいえない。
 特に、光触媒粒子(例えば、アナターゼ)を基材の表面に固定する際に、酸化ケイ素等の無機酸化物を利用する場合は、上述するような従来の方法による固着方法は必ずしも有効ではない。従って、このような光触媒を適応するためには、基材の材質とのマッチングを含め、好ましい固着方法を提案する必要がある。また、複雑な工程を経て、特殊な表面層を作るのは、屋外で大面積に対して行うのは好ましくないので、簡単な光触媒の付着方法が必要である。
 そこで、本発明者は、鋭意研究を行い、基材として撥水性を示すものに最適な光触媒の固着方法を見出すことができた。特に、光触媒を含む塗料組成物に、好ましい所定の化合物を所定量添加することにより、かかる塗料組成物をそのまま撥水性の基材表面に塗り、乾燥させることにより、非常に強固な光触媒層を形成することに成功した。
 より具体的には、以下のようなものを提供する。
(1)アクリル系基材と、その表面上に形成されるシリカを主成分とするシリカ層と、更にその上に形成されるシリカマトリックス中に分散する酸化チタン粒子とからなる光触媒層と、からなる防汚性のアクリル板であって、前記アクリル系基材の表面と前記シリカ層との間に、シランカップリング剤からなる結合層を備えることを特徴とする防汚性のアクリル板を提供することができる。
 ここで、アクリル系基材とは、アクリル樹脂からなる透光性のある基材及びポリカーボネートからなる透光性のある基材を含んでよい。アクリル樹脂は、アクリル酸エステルあるいはメタクリル酸エステルの重合体で、透明性の高い非晶質の合成樹脂である。例えば、ポリメタクリル酸メチル樹脂(略称PMMA)による透明固体材を含んでよい。また、ポリカーボネートは、熱可塑性プラスチックの一種であり、モノマー単位同士の接合部は、カーボネート基で構成されてよい。上述するシリカ層は、光触媒機能を持つ酸化チタン粒子を基材の表面に付着させる機能を備えるものであればよい。従って、均一な厚みの層、不均一な厚みの層、部分的に基材の表面を覆うものであってもよい。光触媒により発生する活性な酸素によるアクリル系基材の表面攻撃を防止又は制限可能に、かかるシリカ層が形成されることがより好ましい。例えば、均一に基材表面を覆うことが密着性及び防護性の観点から好ましい。光触媒層は、少なくとも一部がマトリックスとなるシリカから露出している酸化チタン粒子を含んでよい。
(2)前記シランカップリング剤がエポキシ系のシランカップリング剤であることを特徴とする上記(1)に記載の防汚性のアクリル板を提供することができる。
(3)前記シランカップリング剤がビニル系のシランカップリング剤であることを特徴とする上記(1)に記載の防汚性のアクリル板を提供することができる。
(4)前記結合層は、水系溶剤中に平均一次粒径5~50nm及び平均分散粒径10~100nmの酸化チタン分散粒子及び高分子分散剤を含む第1の組成物と、アルコキシシラン加水分解重縮合物を含む第2の組成物と、シランカップリング剤と、を含むものであって、pH値がpH5~9の範囲内である混合組成物を前記アクリル系基材の表面に塗布することにより形成されることを特徴とする上記(1)から(3)いずれかに記載の防汚性のアクリル板を提供することができる。
(5)前記高分子分散剤は、酸基を含むブロック共重合物のアルキルアンモニウム塩を主成分として含むことを特徴とする上記(1)から(4)いずれかに記載の防汚性のアクリル板を提供することができる。
(6)前記シリカ層及び光触媒層の合計厚みが、100nm以下であり、前記光触媒層の酸化チタン粒子は孤立分散に近い状態で固定化されていることを特徴とする上記(1)から(5)いずれかに記載の防汚性のアクリル板を提供することができる。
(7)上記(1)から(6)いずれか記載の防汚性のアクリル板を保護カバーとして用いることを特徴とする耐候性太陽電池を提供することができる。
(8)アクリル系基材の表面にシリカマトリックス中に分散する酸化チタン粒子を含む光触媒層を形成する形成方法において、酸化チタン粉体及び高分子分散剤を水に添加して酸化チタン粒子分散水溶液を調製するステップと、アルコキシシランを加水分解・重縮合させてテトラエトキシシラン加水分解重縮合物溶液を調製するステップと、前記酸化チタン粒子分散水溶液及び前記テトラエトキシシラン加水分解重縮合物溶液を混合して混合溶液を調製するステップと、前記混合溶液にシランカップリング剤を更に混合して前記アクリル系基材に密着性の光触媒塗料を調整するステップと、前記光触媒塗料を前記アクリル系基材表面に塗布するステップと、を含む形成方法を提供することができる。
(9)前記混合溶液を調製するステップにおいて、有機アミンからなるゲル化防止安定剤を混合することを特徴とする上記(8)に記載の形成方法を提供することができる。
 上記光触媒層を形成する光触媒コーティング液は、水系溶剤中に平均一次粒径5~50nm及び平均分散粒径10~100nmの酸化チタン分散粒子及び高分子分散剤を含む第1の組成物と、アルコキシシラン加水分解重縮合物を含む第2の組成物と、シランカップリング剤と、を含む混合組成物であって、pH値がpH5~9の範囲内である。
 ここで、酸化チタン粒子は、一次径として、光触媒としての活性度を考慮すれば、平均粒径が、50nm以下が好ましく、30nm以下がより好ましく、10nm以下がさらに好ましい。また、取り扱いの容易さ、保存性等を考慮すれば、この平均粒径が、1nm以上が好ましく、10nm以上がより好ましく、30nm以上がさらに好ましい。なお、平均粒径は、例えば以下のように定義することができる。粒子径は、沈降法による測定においては沈降速度が等価な球の直径として、レーザ散乱法においては散乱特性が等価な球の直径として定義できる。また、粒子径の分布を粒度(粒径)分布という。粒径分布において、ある粒子径より大きい質量の総和が、全粉体のそれの50%を占める場合の粒子径が、平均粒径D50として定義される。この定義および用語は、いずれも当業者において周知であり、例えば、JISZ8901「試験用粉体及び試験用粒子」、または、粉体工学会編「粉体の基礎物性」(ISBN4-526-05544-1)の第1章等諸文献に記載されている。そして、レーザ散乱式の測定装置を使用して、粒子径に対する体積換算の積算頻度分布を測定することができるが、密度がほぼ一定であるので、体積換算と重量換算の分布は等しい。この積算(累積)頻度分布における50%に相当する粒子径を求めて、平均粒径D50とすることができる。ここでは平均粒径は、上述のレーザ散乱法による粒度分布測定手段によって測定する粒度分布の中央価(D50)に基づく。平均粒径を求める手段については、上述以外にも多様な手段が開発され、現在も続いている現状にあり、測定値に若干の違いが生じることもあり得るが、平均粒径それ自体の意味、意義は明確であり、必ずしも上記手段に限定されない。
 ここで、酸化チタン分散水溶液は、酸化チタン粉体と高分子分散剤とを原料として調製されるが、酸化チタン粉体としては、例えば日本アエロジル製P25を好適に用いることができる。また、高分子分散剤としては、立体反発を利用するタイプの高分子分散剤が好適に用いられる。例えば、ポリカルボン酸のアルキルアミン塩を主成分とする高分子分散剤であれば、顔料の沈降防止やハードケーキの防止に有効であり、水性ステインなど低粘度の系にも分散の効果がある。また、酸基を含むブロック共重合物のアルキルアンモニウム塩を主成分とする高分子分散剤である酸基を有するアルキロールアンモニウム塩からなる分散剤(例えば、ビックケミー・ジャパン社販売の商品名Disperbyk-180)であれば、酸化チタン、無機顔料に顕著に効果があり、ミルベースの粘度を低下し、塗料の低VOC化が可能であり、酸性、塩基性の顔料共に有効である。そして、顔料に親和性のあるブロック共重合物を主成分とする高分子分散剤を構成する顔料に親和性のある基を有する高分子量ブロック共重合物の水溶液からなる分散剤(例えば、ビックケミー・ジャパン社販売の商品名Disperbyk-190)であれば、分散樹脂、共溶剤を含まないピグメントコンセントレートに顕著に効果があり、貯蔵安定性に優れたピグメントコンセントレートが設計でき、通常の湿潤分散剤としても有効である。そして、この高分子分散剤の使用量は、分散効果を考慮すると、酸化チタン粉体の重量に対して10重量%以上であることが好ましく、条件により30重量%以上が好ましい。一方、単位重量あたりの光触媒機能を考えると、酸化チタン粉体の重量に対して100重量%以下であるのが好ましく、また条件により60重量%以下が好ましい。この酸化チタン分散水溶液は、分散機、好ましくはビーズミル分散機を使用して分散安定化することにより調製される。
 また、本発明の光触媒コーティング液を製造する際に用いるアルコキシシラン加水分解重縮合物溶液は、アルコキシシラン類を加水分解・重縮合させて得られるものである。そして、この際に使用するアルコキシシラン類としては、特に限定されないが、好ましくは下記一般式(1)
           RxSi(OR)4-x …… (1)
(但し、式中、Rはアルキル基、メチル基、エチル基、及びプロピル基等から選ばれた置換基であり、互いに同じであっても異なっていてもよい。)で表されるアルコキシシラン類であり、より好ましくは、この一般式(1)で表されるアルコキシシラン類において、置換基Rが炭素数1~4の低級アルキル基であり、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基等を例示することができ、特に好ましくはテトラエトキシシラン、メチルトリエトキシシラン、及びジメチルジエトキシシランを挙げることができる。また、これらアルコキシシラン類については、その1種のみを単独で用いることができるほか、2種以上の混合物として用いることもでき、更に、部分的に加水分解して得られる低縮合物として用いることもできる。
 上記のアルコキシシラン類を加水分解・重縮合させてアルコキシシラン加水分解重縮合物の水・アルコール混合溶液からなるアルコキシシラン加水分解重縮合物溶液を得る方法についても、特に制限されるものではなく、例えば、アルコキシシラン類を酸あるいはアルミニウムアルコキシドを触媒としたゾル-ゲル反応を起こさせて加水分解・重縮合させることにより製造される。
 上記混合工程において添加されるシランカップリング剤としては、ビニル系及び/又はエポキシ系のシランカップリング剤が好ましい。ここで、シランカップリング剤は、分子内に有機材料と反応結合する官能基、および無機材料と反応結合する官能基を同時に有する有機ケイ素化合物で、Y-R-Si-(X) のように表される。Yは有機材料と反応結合する官能基で、ビニル基、エポキシ基、アミノ基等がその代表例として挙げられる。Xは無機材料と反応する官能基で、水、あるいは湿気により加水分解を受けてシラノールを生成し、無機材料と反応結合する。Xの代表例としてアルコキシ基、アセトキシ基、クロル原子等が一般に挙げられる。シランカップリング剤の例を挙げれば、ビニル系のビニルメトキシシラン、ビニルエトキシシラン等があり、アミノ系のN-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン等があり、エポキシ系の3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等があり、メタクリロキシ系の3-メタクリロキシプロピルトリメトキシシラン等があり、メルカプト系の3-メルカプトプロピルトリメトキシシラン等があり、ケチミン系のN-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等があり、カチオン系のN-[2-(ビニルベンジンアミノ)エチル]-3-アミノプロピルトリメトキシシラン・塩酸等がある。また、これらのシランカップリング剤は、コーティング液中に含まれる上述する高分子分散剤との結合性が高く、これらを含ませるとより強固な密着性を達成できる。
 上記有機アミン類としては、それが酸化チタン分散水溶液とアルコキシシラン加水分解重縮合物溶液との混合時にゲル化を防いで安定剤としての作用を発現できるものであればよく、例えば、トリメチルアミン、トリエチルアミン、トリエタノールアミン等の三級アミン類や、水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム(TEAH)、水酸化トリメチルエタノールアンモニウム(コリン)等の水酸化第四級アンモニウム類等を挙げることができ、好ましくは三級アミン類である。これらの有機アミン類については、その1種のみを単独で使用することができるほか、必要により2種以上の混合物として用いることもできる。
 より優れた抗菌作用を発現させるために、均一分散性光触媒コーティング液の組成物中に銀粒子を含有させるのがよい。この際に光触媒コーティング液の組成物中に含有させる銀粒子は、組成物中に均一分散する10nm以下の微細粒子状であるのがよく、また、組成物中における銀粒子の含有量は、形成される光触媒コーティング塗膜が黒色化するのを避けるために、通常5-6重量%程度以下、好ましくは2重量%程度以下であるのがよい。
 この銀粒子を光触媒コーティング液の組成物中に含有させる方法については、例えば市販品あるいは別途作製した銀コロイドを添加する等の種々の銀粒子の添加方法を選択でき、特に制限されるものではなく、光触媒コーティング液の調製時に酸化チタン分散水溶液中に添加しても、また、アルコキシシラン加水分解重縮合物溶液中に添加しても、更には、これら酸化チタン分散水溶液及びアルコキシシラン加水分解重縮合物溶液の両者に適宜分割して添加してもよい。
 更に、この銀粒子を酸化チタン分散水溶液中に添加する方法についても、特に制限されるものではないが、酸化チタン粒子表面に銀粒子を生成させて電荷分離効率を高めることによって光触媒活性を高活性化するという観点から、好ましくは硝酸銀を添加して銀イオンを、光還元あるいは酸化チタン表面に分散安定化のために存在する高分子分散剤による還元により、できる限り酸化チタン表面近くに銀粒子を生成させるのがより好ましく、例えば、酸化チタン分散水溶液に硝酸銀を加えて攪拌下にブラックライトを照射し、主として酸化チタンの光触媒反応によって生成した電子により銀イオンを還元して銀粒子を酸化チタン粒子表面に成長させる方法や、酸化チタン分散水溶液に硝酸銀を加え、酸化チタン粒子表面に分散安定化のために存在する高分子分散剤を還元剤として利用して、必要があれば加熱等を施して銀イオンを還元して銀粒子を酸化チタン表面近くに生成させる方法等を例示することができる。このような硝酸銀を還元する方法によって、酸化チタン粒子表面、あるいは、酸化チタン粒子表面近くに銀粒子を生成させることにより、光触媒活性(防汚性及び/又は抗菌性)が高活性化するという利点が生じる。
 本発明の光触媒コーティング液は、(A)その分散媒が水系であって有機溶媒が含まれるとしてもエタノール程度のもので中性に近く、取扱い性に優れているほか、基材及び環境に与える影響が少ない、(B)光触媒コーティング液中の酸化チタン粒子が100nm以下の分散粒径で分散安定化しているので、膜形成時に酸化チタン粒子が100nm以下の分散粒径で膜中に均一に分散し、結果として酸化チタン粒子がシリカ塗膜中で可及的に孤立分散に近い状態で固定化され、優れた光触媒活性を発現する、(C)マトリックスのシリカ系膜が常温下において半日程度で硬化するので、現場施工が可能かつ容易である、(D)光触媒コーティング液の酸化チタン分散水溶液とアルコキシシラン加水分解重縮合物溶液とを別々に保存すれば、酸化チタン分散水溶液中で酸化チタン粒子が沈降することなく長期間に亘って分散安定化していると共に、マトリックス成分となるアルコキシシラン加水分解重縮合物溶液もゲル化することなく長期間に亘って安定化しており、1年間あるいはそれ以上の長期間に亘って保存が可能であり、また、両溶液を混合した場合にも1週間程度まではゲル化することなく安定しており、その取扱い性に優れている、(E)コーティングされる基材の濡れ性に合わせて造膜することができ、基材適応性が広い、等の特長を有する。
 また、上述する光触媒コーティング液は、金属、ガラス、セラミックス、プラスチックス、木、石、セメント、コンクリート、又はこれらの組み合わせ、若しくはこれらの積層体等からなり、防汚及び/又は抗菌性が求められるあらゆる基材の表面に塗布し、この基材の表面に所定の光触媒コーティング塗膜を形成せしめることにより、光触媒活性複合材を形成することができる。また、本発明の均一分散性光触媒コーティング液は、これらのコーティングされる基材の濡れ性に合わせるために、水系溶剤中のアルコール濃度を変えたり、あるいは、界面活性剤、シランカップリング剤等を添加することができる。特に上述するようなシランカップリング剤は、ポリカーボネートのような樹脂に対して有効である。
 ここで、基材の表面に上述するような光触媒コーティング液を塗布する方法については、特に制限されるものではないが、基材の表面に形成される光触媒コーティング塗膜については透明性や耐久性の観点からそのマトリックス膜の平均乾燥膜厚が好ましくは100nm以下であるのが望ましいので、好ましくはスプレーコート法であり、使用するスプレー塗装機については好ましくは塗着効率の高い低圧スプレー機がよく、また、スプレー条件については、ノズル径、噴霧距離、運行速度を最適化し、噴霧量を10~100cm/m程度とするのがよい。
 また、基材の表面に形成される光触媒コーティング塗膜は、基本的には一層であることをベースとするが、基材が劣化し易い有機材料等あるいは凹凸の多い表面を持つ場合には、必要により保護層あるいは平滑化する層として、一層目をアルコキシシラン加水分解重縮合物でコーティングしたシリカ系塗膜とし、二層目を本発明の光触媒コーティング塗膜としてもよい。
 本発明の光触媒活性複合材においては、その光触媒コーティング塗膜のマトリックス膜中に平均分散粒径10~100nmの酸化チタン分散粒子が孤立分散に近い状態で固定化されており、可視光が散乱されることなく透明性を維持したまま、同一の塗膜断面に存在する酸化チタン全粒子の総断面積の占める割合が高くなることで、有効に光触媒作用が働くことで、その光触媒活性(防汚性及び/又は抗菌性)を高めるという効果を発揮する。
 このようにして得られた光触媒層又は光触媒コーティングは、撥水性の樹脂表面にも、強固に密着し、耐候性に優れる。また、使用される光触媒コーティング液は、分散安定性に優れており、また、環境に負荷を与えずに取扱い性にも優れており、しかも、基材の表面に塗布してこの基材の表面に光触媒活性(防汚性)、透明性、及び耐久性に優れた光触媒コーティング塗膜を形成することができる。
本発明の実施例の防汚アクリル板の断面を模式的に示す図である。 光触媒付きポリカーボネート等の光透過率を示すグラフである。 光触媒付きポリカーボネート等の光透過率を示すグラフである。 光触媒付きポリカーボネート等の光透過率を示すグラフである。 光触媒付きポリカーボネート等の光透過率を示すグラフである。 JISに規定する太陽光のスペクトルを示すグラフである。 太陽電池を評価する方法に関する電流と電圧の関係を示すグラフである。 太陽光発電の主要部を示す模式図である。 太陽光発電を利用した菜園の模式図である。 シランカップリング剤の想定される働きを模式的に示す図である。 光触媒コーティング膜付保護材への光の入射原理を示す図である。 偏光成分を考慮した光の反射を模式的に示す図である。 反射率の入射角に対する変化を表すグラフである。 太陽電池セルの野外設置に関する模式図である。
 次に、本発明の実施の形態について、図面を参照しながら説明する。各図面において同一の構成又は機能を有する構成要素及び相当部分には、同一の符号を付し、その説明は省略する。また、以下の説明では、本発明に係る実施の態様の例を示したに過ぎず、当業者の技術常識に基づき、本発明の範囲を超えることなく、適宜変更可能である。従って、本発明の範囲はこれらの具体例に限定されるものではない。また、これらの図面は、説明のために強調されて表されており、実際の寸法とは異なる場合がある。
 図1は、本発明の防汚アクリル板を模式的に示す断面図である。基材であるポリカーボネート4上に、結合層3を介して、主にシリカからなるシリカ層2が形成され、その上に酸化チタン粒子が分散する光触媒層1が形成される。ここでは、結合層3を厚く表しているが実際には、シリカ層3を構成する各シリカ粒子の表面に極薄く形成されるので、実質的に見ることはできない。従って、結合層は均質な層としてポリカーボネート4上に存在するわけではない。結合層のメカニズムについては後述する。
[酸化チタン分散水の調製]
 平均一次粒径21nmの酸化チタン粉体(日本アエロジルP25)と立体反発を利用するタイプの高分子分散剤(ビックケミー・ジャパン社販売の商品名:Disperbyk-180)を水に添加して、分散機としてビーズミル分散機を用いて、粒子濃度30重量%の平均分散粒径80nmの酸化チタン粒子分散水溶液を調製した。この液は、常温で1年以上経過しても酸化チタン粒子が沈降せずに分散安定化していることを確認した。なお、液中の平均分散粒径は光散乱式粒度分布計を用いて確認した。
 アルコキシシラン類としてテトラエトキシシランを用い、硝酸を触媒にして加水分解・重縮合させ、固形分濃度3重量%の水・エタノール混合溶液からなるテトラエトキシシラン加水分解重縮合物溶液を調製した。このテトラエトキシシラン加水分解重縮合物溶液は、常温では1年以上安定で、半日程度の常温乾燥で硬化することを確認した。
[加水分解重縮合物との混合]
 次に、調製された酸化チタンの分散水溶液96.7重量部とテトラエトキシシラン加水分解重縮合物溶液3.3重量部とを用い、また、これら酸化チタン分散水溶液とテトラエトキシシラン加水分解重縮合物溶液とを混合する際にゲル化を防止する安定剤として有機アミン類のトリエタノールアミンを用い、実際にコーティングする前に、これらを通常の攪拌機で混合した。この光触媒混合物は、粒子の沈降もなく常温でゲル化せずに約1週間は安定であることを確認した。
[シランカップリング剤の混合]
 上記光触媒混合物に各種のシランカップリング剤を混合し、表1にまとめる光触媒コーティング液を得た。尚、シランカップリング剤としては、表1にまとめたものを用いた。
Figure JPOXMLDOC01-appb-T000001
[塗布及び塗膜強度試験]
 実験例1から16の光触媒コーティング液をディッピングにより、厚さ約1mmで20mm×20mmのポリカーボネート板(タキロン株式会社製、型番PS600)に約100μmの厚さにコーティングした。垂直に吊り下げたまま、室温で約半日乾燥し、光触媒塗膜を形成した。尚、実験例8については、ゲル化してしまったため、塗装に使用できなかった。翌日、塗膜の硬度試験(JIS5400K)を行い、塗膜の付着強度を評価した。評価結果を表2にまとめる。
Figure JPOXMLDOC01-appb-T000002
 上記表2において、※注1では、目視にて判定を行い、※注2では、JIS K5600-5-4 に規定する鉛筆法によって測定し、※注3では、JIS K5600-5-6 に規定するクロスカット法によって測定した。この表からわかるように、ビニル系のシランカップリング剤を用いると溶液としての安定が高いが、硬化時間が増加し、密着性が若干劣る。一方、エポキシ系のシランカップリング剤を用いると、密着性を含めてすべての特性で優れることが分かった。特に、3-グリシドキシプロピルトリメトキシシランを用いた場合は、溶液時の安定性が極めて優れていた。また、メタクリロキシ系では、ビニル系と同様密着性が若干劣った。
 ポリカーボネートは、一般に、下記のような化学式を持ち、透明性・耐衝撃性・耐熱性・難燃性等において優れる。
Figure JPOXMLDOC01-appb-C000003
 有機材料であるので、表面は撥水性であるが、シランカップリング剤を施した光触媒コーティング液では、シリカ層を形成するシリカの表面に、シランカップリング剤が水素結合及び/又は脱水結合して固着し、他方有機材料であるポリカーボネート表面では、結合する官能基Yが化学反応等により固着する(図10参照)。このようにして、傾斜材料ではなく、極薄い表面の結合膜によりシリカとポリカーボネート表面が結合される。
[防汚試験]
 実験例7の光触媒コーティング液を、スプレーコーティングにより、厚さ約1mmで300mm×300mmのポリカーボネート板(タキロン株式会社製、型番PS600)の片面に約100μmの厚さにコーティングした。これを水平に保ち、室温で約半日乾燥し、光触媒塗膜を形成した。このようにして得られた塗膜付きポリカーボネート板を2枚、対照としてポリカーボネート板そのものを1枚用意し、それぞれ、オイル/カーボンブラックの混合物により汚れを付着させた。更に、対照として汚さなかったポリカーボネート板そのもの、及び、塗膜付きポリカーボネート板もそれぞれ1枚用意した。そして、汚した塗膜付きポリカーボネート板2枚は、シール材により密閉された状態(空気の侵入が殆どない)及び開放状態で、サンシャインウェザーメータ(スガ試験機株式会社製、型番:WEL-7XS-LHP.B.EC)により300時間耐候試験を行った。光源は、JIS K 7350-2-1995に規定するキセノンアーク光源である。ト板も開放条件でサンシャインウェザーメータにより300時間耐候試験を行った。
 図2から5に、上述した耐候試験後の光や太陽光の透過率の結果を示す。図2は、通常の測定法による透過率の結果である。汚さなかったポリカーボネート板原板及び塗膜付きポリカーボネート板は当然のように90%に近い高い透過率を波長400nm以上で示す。塗膜による吸収を若干受けているが、殆ど差はなかった。一方、汚したポリカーボネート板(塗膜無し)を耐候試験後に測定したものは、波長450nm以上で透過率が約60%と低かったが、汚した塗膜付きポリカーボネート板は、耐候試験後、約80%近くまでの透過率があった。シール材がない方が若干高かった。
 図3は、積分球を使って散乱光も捕集した測定法での結果を示す。散乱光も捕集してみると、汚した塗膜付きポリカーボネート板は、耐候試験後、汚さなかった塗膜付きポリカーボネート板とほぼ同じだけの透過率を備えていた。そのため、光が散乱して少し白っぽくなり透過率は低下するが、ポリカーボネート基板からあまり離れていないならば、散乱光も同様に使用可能な光であり、透過率に寄与すると考えられる。例えば、太陽電池のカバーとして用いた場合は、太陽電池との間の距離は短いので、散乱光も多くは太陽電池に届いていると考えられる。図4及び5は、太陽光下での相対透過率を図2及び3と同様に測定したものである。結果は、図2及び3とほぼ同じものであった。尚、図6は、JISに規定する基準太陽光の分光照度を表すものである。
[発電試験]
 実験例7の光触媒コーティング液を、スプレーコーティングにより、厚さ約1mmで100mm×100mmのポリカーボネート板(タキロン株式会社製、型番PS600)の片面に約100μmの厚さにコーティングし、上述と同様にして、塗膜付きポリカーボネート板を準備した。この保護材により太陽電池の受光面(64×28mm)を完全に覆って、強度45mW/cmの擬似太陽光源(ウシオ電機製 Model SS-301S)で照射し続けた。保護材で覆う場合には、太陽電池の受光面と保護材との間隔は、約2mmであった。太陽電池の受光面の表面温度を熱電対で測定し、28℃になった時の開放電圧Voc、及び短絡電流Iscをマルチメータで計測した。
 太陽電池の特性試験は、図7のような電流/電圧曲線を描かせて、囲まれた面積で評価することができる。一般に曲線の形が長方形に近いので、「短絡電流密度isc×開放電圧Voc」で、概ね相対的に評価できる。今回は、太陽電池そのものの試験でなく、保護材の有無で電流/電圧曲線の形が大きく変化することは考えられず、短絡電流密度isc及び開放電圧Vocの相対的な変化を知ればよいことになる。また、同じ太陽電池セルを使った相対的評価であるので、短絡電流密度iscではなく、短絡電流Iscで代用可能である。正規の試験と比べて、太陽光強度は100mW/cmではなく、45mW/cmで、温度が25℃ではなく28℃で、絶対評価ではなく、相対評価ができることになる。また太陽電池は、多結晶シリコーンをした。他の種類の太陽電池では、結果が少し変わる可能性がある。
 実験結果を表3にまとめる。ここで、保護材は、ポリカーボネート板(原板)、光触媒の塗膜(実験例7)を付けて得た塗膜付きポリカーボネート板であってオイル/カーボンブラックにより汚したのち300時間上述する耐候試験を行ったもの、そして、ポリカーボネート板(原板)をオイル/カーボンブラックにより汚した後300時間上述する耐候試験を行ったものである。
Figure JPOXMLDOC01-appb-T000004
 この表からわかるように、耐候試験後の光触媒付き保護材は、対照である原板と同じ電圧及び電流を得ることができた。一方、光触媒のない保護材では、電圧及び電流の両者で有意に低下した。このことから、光触媒の防汚機能が確認された。
[太陽光発電の応用]
 図8は、太陽光発電の主要部10を模式的に示す。太陽電池セル12を保護材14が上から覆っている。保護材14は、耐衝撃性や強度に優れるポリカーボネートである。この保護材14の表面15は、屋外に設置されるので風雨等に曝されるが、ここに上述してきた光触媒の塗膜(実験例7)を付ける。このようにすると、太陽光20からの波長の比較的短い高いエネルギーの光により、表面15の光触媒が活性化され、活性な酸素の作用により汚れが酸化分解される。また、活性な酸素の効果により表面が親水性になるので、雨等による洗浄効果が高められる。この図では水平に設置されているが、通常太陽電池は南に少し傾かせて設置されるので、雨による自浄作用が期待される。尚、太陽光発電に用いる光の波長の範囲において、保護材の透過率は十分高く、且つ、光触媒作用による光エネルギーの吸収の影響があまりない。
 図9は、太陽光発電を利用した屋内菜園の例を模式的に示す。太陽電池セル12の上には、ポリカーボネートからなる保護材14及びその表面15の光触媒が配置される。太陽光20からの光エネルギーにより、下に配置されたLED22へ、リード線24を通して電気が供給される。これにより、植物30が人工土壌32の上に育つ。この図では、LEDを直ぐ下に置いたが、リード線24を延ばせば、例えば、屋上に配置された太陽光発電からの電気を地下に配置した人工菜園のLED22に提供することができる。これにより、都市の太陽光による異常温暖化を防止し、都市での野菜の栽培を可能にする。特に、光触媒が利用する光の波長の範囲が、太陽光電池で利用する光の波長の範囲とかぶって、光エネルギー利用の効率を低下することはあまりない。またLEDでは、育てる植物に応じて好ましい光エネルギーを発することが可能となるため、光エネルギーをトータルに効率よく活用できる。
[入射光・透過光・反射光]
 図11は、光触媒コーティング膜15aを付けた保護基材14aにどのように光が入るかを示している原理図である。保護基材14aは、例えば、石英ガラス、ソーダガラス等の透光性のある無機ガラスや、アクリル、ポリカーボネート等の透光性のある有機物を使用することができる。光触媒コーティング膜15aは、本明細書に記載の如何なる種類の光触媒コーティング若しくは光触媒層からなる。典型的に、光触媒コーティング膜15aは、シリカが2に対してチタニアが1の重量比で構成され、それぞれの屈折率が1.4及び2.1であるから、加重平均で求まるとすると、その屈折率は、(1.4×2+2.1×1)/(2+1)=1.63となる。一方、保護基材14aは、石英ガラスならば、1.45であり、ポリカーボネートならば1.585である。即ち、入射角θ1で入った光21は、光触媒コーティング膜15a表面で、反射21r、吸収、及び、透過される。透過光は、屈折角θ2で、光触媒コーティング膜15a内に入り、更に、光触媒コーティング膜15aと保護基材14aとの界面で屈折されて、一部が反射、吸収されるが、大部分は屈折角θ4で屈折し透過21tされる。このとき、スネルの式を当てはめると次のようになる。
  sin(θ1)/sin(θ2) = 1.63/1 = 1.63
石英ガラスならば、次のようになる。
  sin(θ3)/sin(θ4) = 1.45/1.63 = 0.89
ポリカードネートならば、次のようになる。
  sin(θ3)/sin(θ4) = 1.585/1.63 = 0.97
尚、図から明白なように、θ2=θ3である。
 つまり、光触媒コーティング膜15aによる屈折で、より深く入り込み、次の保護基材14aにより、若干浅く入るようになる。ここで、光触媒コーティング膜15aと保護基材14aとの間の界面の反射や吸収等を無視すると、入射した光量A21は、反射する光量A21rと透過する光量A21tと吸収される光量に分けられる。太陽光発電で利用されるのは、透過光量A21tであるので、反射や吸収が少ないことが好ましい。
 次に、光の反射率について考える。図12は典型的な光の入射モデルを示す。一般に、光が界面で反射される際、反射光では、振幅の変化と位相の跳びが生じる。反射の際の振幅反射率をr、位相の跳びをδとすると、複素振幅反射率は、r・exp(iδ)となる。複素振幅反射率の値は、光の入射角と界面の屈折率で決まる。また、複素振幅反射率は入射する光の偏光状態にも依存する。電気ベクトルが入射面内で振動する光の成分をP成分(P偏光)とし、電気ベクトルが入射面に垂直に振動する光の成分をS成分(S偏光)とし、空気中から屈折率nの透明媒質に入射角θ1で光が入射するときのフレネル係数の式は、次のように表される。
  rp=[n・cos(θ1)-cos(θ2)]/[n・cos(θ1)+cos(θ2)]
    =tan(θ1-θ2)/tan(θ1+θ2)
  rs=[cos(θ1)-n・cos(θ2)]/[cos(θ1)+cos(θ2)]
    =sin(θ1-θ2)/sin(θ1+θ2)
 反射面が水やガラスのように透明な物質の場合、フレネル係数(複素振幅反射率)は実数となるので、δ=0またはπとすることができる。図13に、強度反射率を示す。P偏光では、ブリュ-スター角(偏光角θB)で反射率が0となる。P偏光に対するフレネル係数の式から次の式が成り立つ。
  tan(θB)=n
 太陽光である入射光には、P偏光及びS偏光のそれぞれの成分があるが、仮に、太陽光の成分を全てP偏光成分とできれば、ブリュ-スター角において、殆ど反射せず、殆どが透過光として利用できることになる。また、このブリュ-スター角は、屈折率に依存し、屈折率が大きくなると大きくなることがわかる。即ち、より高い屈折率(例えば光触媒コーティング膜)であればより大きな入射角がブリュ-スター角となる。また、図13から分かるように、入射角が80°(保護材14の面に対する仰角が10°に相当)を超えると特に、P偏光及びS偏光において、反射率が高くなる。そのため、このような角度とならないような工夫が好ましく、例えば、太陽の動きに応じて保護材14等の面の向きを自動で変えられるようにしてもよい。
 図14は、太陽光発電を行う際の太陽の動きを模式的に示す図である。楕円50は水平線を模したものであり、半円状のもの52は黄道を模したものである。典型的には、太陽光発電モジュール(太陽電池セル)12は、保護材14(典型的には光触媒コーティングを施された透光性の無機材料又は有機材料)を通して光を照射され、発電を行う。このとき、太陽20は、東(図中奥側)から昇り、南中し、西(図中手前側)に沈む。太陽電池セル12は、典型的には、屋根等に固定されるので、朝方の太陽光は、入射角θ1の比較的大きな角度で入射する。このため、図13にあるように、S偏光成分は、多くは反射角θrで反射12rしていまい、太陽光発電に使用できない。一方、P偏光成分は、反射が殆どないため、透過12tされ有効に活用されることがわかる。そのため、このような高い入射角からの光に対しては、偏光素子60により、P偏光成分を多くするように偏光させて、有効に活用することができる。
 このような偏光素子60としては、例えば、偏光子によりP偏光成分を取り出してその成分だけを太陽光発電モジュール12に照射することもできる。更に、カルサイトのような複屈折性結晶を用いて、単色の入射ビームを互いに逆の偏光状態の2本のビームに分離することもできる。この2本のビームは、通常は、別々の方向に別々の速度で伝播する。元のビームのエネルギーは、2本の新たなビームの間で分割されるが、その割合は元のビームの偏光ベクトルと光学軸との相対角度に依存する。このようにして特にP偏光成分の多い光を太陽光発電モジュール(太陽電池セル)12に照射する。また、偏光キューブビームスプリッターのようなものを用いることもできる。
 ここで、述べたように、通常南向きの屋根等に取り付けられ、太陽光発電モジュール12が南中時に最も多くの光量(即ち、光エネルギー)を受けられるように設定される。しかしながら、朝方や夕方もできるだけ発電を継続することが好ましく、そのために必要な光量を得るために、種々の工夫をすることができる。例えば、所定の仰角(例えば、南中時にほぼ垂直に太陽光が入射する角度(入射角が0°)、又は、それより入射角は大きいが所定の入射角度(例えば、5°以下等)で屋根等に取り付けられた太陽電池モジュール12及びその保護材14からなる太陽光発電システムを構成することができる。ここでは、上述のように偏光成分を調整する(特にP偏光成分を増大させる)偏光素子60を更に備えることができる。この偏光素子60は、太陽の位置に応じて角度を自在に変更可能に設置することが好ましい。自動調整できることが好ましい。また、脱着可能に備えることが好ましい。南中時等、反射の割合が低い場合は、脱装することが好ましい。このような偏光素子60としては、市販の如何なる偏光素子を用いてもよい。また、分離した偏光成分を、相転換し、偏光相を合わせて混成してももよい。より多くの光量を活用することができ好ましい。
  10  太陽光発電主要部
  12  太陽電池セル
  14  保護材
  15  保護材の表面
  20  太陽光
  22  LED
  24  リード線
  30  植物
  32  人工土壌

Claims (9)

  1.  アクリル系基材と、その表面上に形成されるシリカを主成分とするシリカ層と、更にその上に形成されるシリカマトリックス中に分散する酸化チタン粒子とからなる光触媒層と、からなる防汚性のアクリル板であって、前記アクリル系基材の表面と前記シリカ層との間に、シランカップリング剤からなる結合層を備えることを特徴とする防汚性のアクリル板。
  2.  前記シランカップリング剤がエポキシ系のシランカップリング剤であることを特徴とする請求項1に記載の防汚性のアクリル板。
  3.  前記シランカップリング剤がビニル系のシランカップリング剤であることを特徴とする請求項1に記載の防汚性のアクリル板。
  4.  前記結合層は、水系溶剤中に平均一次粒径5~50nm及び平均分散粒径10~100nmの酸化チタン分散粒子及び高分子分散剤を含む第1の組成物と、アルコキシシラン加水分解重縮合物を含む第2の組成物と、シランカップリング剤と、を含むものであって、pH値がpH5~9の範囲内である混合組成物を前記アクリル系基材の表面に塗布することにより形成されることを特徴とする請求項1から3いずれかに記載の防汚性のアクリル板。
  5.  前記高分子分散剤は、酸基を含むブロック共重合物のアルキルアンモニウム塩を主成分として含むことを特徴とする請求項1から4いずれかに記載の防汚性のアクリル板。
  6.  前記シリカ層及び光触媒層の合計厚みが、100nm以下であり、前記光触媒層の酸化チタン粒子は孤立分散に近い状態で固定化されていることを特徴とする請求項1から5いずれかに記載の防汚性のアクリル板。
  7.  請求項1から6いずれか記載の防汚性のアクリル板を保護カバーとして用いることを特徴とする耐候性太陽電池。
  8.  アクリル系基材の表面にシリカマトリックス中に分散する酸化チタン粒子を含む光触媒層を形成する形成方法において、
     酸化チタン粉体及び高分子分散剤を水に添加して酸化チタン粒子分散水溶液を調製するステップと、
     アルコキシシランを加水分解・重縮合させてテトラエトキシシラン加水分解重縮合物溶液を調製するステップと、
     前記酸化チタン粒子分散水溶液及び前記テトラエトキシシラン加水分解重縮合物溶液を混合して混合溶液を調製するステップと、
     前記混合溶液にシランカップリング剤を更に混合して前記アクリル系基材に密着性の光触媒塗料を調整するステップと、
     前記光触媒塗料を前記アクリル系基材表面に塗布するステップと、を含む形成方法。
  9.  前記混合溶液を調製するステップにおいて、有機アミンからなるゲル化防止安定剤を混合することを特徴とする請求項8に記載の形成方法。
PCT/JP2010/070410 2009-11-16 2010-11-16 光触媒コーティング WO2011059101A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/509,833 US20120225770A1 (en) 2009-11-16 2010-11-16 Photocatalyst coating
JP2011540581A JPWO2011059101A1 (ja) 2009-11-16 2010-11-16 光触媒コーティング
EP10830057.5A EP2502741A4 (en) 2009-11-16 2010-11-16 PHOTOCATALYTIC COATING
CN2010800517770A CN102821944A (zh) 2009-11-16 2010-11-16 光催化剂涂层

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-261375 2009-11-16
JP2009261375 2009-11-16

Publications (1)

Publication Number Publication Date
WO2011059101A1 true WO2011059101A1 (ja) 2011-05-19

Family

ID=43991754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070410 WO2011059101A1 (ja) 2009-11-16 2010-11-16 光触媒コーティング

Country Status (5)

Country Link
US (1) US20120225770A1 (ja)
EP (1) EP2502741A4 (ja)
JP (1) JPWO2011059101A1 (ja)
CN (1) CN102821944A (ja)
WO (1) WO2011059101A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014017575A1 (ja) * 2012-07-26 2016-07-11 株式会社サクラクレパス 光触媒塗布液およびその製造方法並びに光触媒体
JP2018508606A (ja) * 2015-02-11 2018-03-29 アライド バイオサイエンス, インコーポレイテッド 抗微生物コーティングおよびそれを形成させるための方法
US10258046B2 (en) 2014-11-04 2019-04-16 Allied Bioscience, Inc. Antimicrobial coatings comprising quaternary silanes
WO2019150780A1 (ja) * 2018-01-31 2019-08-08 富士フイルム株式会社 コート剤、積層体、及び積層体の製造方法
JP2020033510A (ja) * 2018-08-31 2020-03-05 シャープ株式会社 光触媒塗料、光触媒塗料の製造方法、及び光触媒体の製造方法
US10980236B2 (en) 2014-11-04 2021-04-20 Allied Bioscience, Inc. Broad spectrum antimicrobial coatings comprising combinations of organosilanes
US10993441B2 (en) 2014-11-04 2021-05-04 Allied Bioscience, Inc. Antimicrobial coatings comprising organosilane homopolymers
JP2022076646A (ja) * 2020-11-10 2022-05-20 Dic株式会社 金属化合物を担持した酸化チタンの水性組成物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8936734B2 (en) * 2012-12-20 2015-01-20 Sunpower Technologies Llc System for harvesting oriented light—water splitting
JP6239958B2 (ja) * 2013-12-03 2017-11-29 ケイミュー株式会社 化粧建築板
CN104629506B (zh) * 2015-02-15 2018-05-11 广东天安新材料股份有限公司 电子束固化涂料、电子束固化涂层的制备方法以及应用
CN105983272B (zh) * 2015-02-17 2018-05-08 刘朝南 一种纳米光触媒悬浮滤料及其制备方法
JP6579274B2 (ja) * 2016-08-29 2019-09-25 信越化学工業株式会社 光触媒積層体
US11859105B2 (en) * 2017-11-02 2024-01-02 Universiteit Antwerpen Self-cleaning coating
JP7155787B2 (ja) * 2018-09-14 2022-10-19 富士フイルムビジネスイノベーション株式会社 植物保護剤
CN111268996B (zh) * 2020-03-16 2021-09-21 绍兴蓝竹新材料科技有限公司 一种光催化空气净化装饰板的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171408A (ja) 1993-06-28 1995-07-11 Ishihara Sangyo Kaisha Ltd 光触媒体およびその製造方法
JPH0983005A (ja) * 1995-06-14 1997-03-28 Toto Ltd 自己浄化性のカバーを備えた太陽電池
JP2000150936A (ja) 1998-11-17 2000-05-30 Canon Inc 半導体装置及び太陽光発電装置
JP2001348512A (ja) * 2000-06-09 2001-12-18 Nippon Soda Co Ltd 光触媒コーティング剤及び光触媒担持構造体
JP2002361807A (ja) 2001-06-01 2002-12-18 Ube Nitto Kasei Co Ltd 防汚性ポリカーボネート板
JP2003010696A (ja) 2001-07-05 2003-01-14 Kawasaki Steel Corp 光触媒体およびその製造方法
JP2005261997A (ja) * 2004-03-16 2005-09-29 Nbc Inc 光触媒体の製造方法
JP2007047605A (ja) * 2005-08-11 2007-02-22 Toyo Ink Mfg Co Ltd 光散乱膜用組成物、およびそれを用いた光散乱膜
WO2007097284A1 (ja) * 2006-02-20 2007-08-30 Tama Chemicals Co., Ltd. 均一分散性光触媒コーティング液及びその製造方法並びにこれを用いて得られる光触媒活性複合材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168134A (ja) * 1997-08-08 1999-03-09 Bridgestone Corp 太陽電池モジュール
JPWO2004096935A1 (ja) * 2003-04-30 2006-07-13 宇部日東化成株式会社 光触媒塗工液、光触媒膜および光触媒部材
PT2185662E (pt) * 2007-08-28 2011-01-27 Basf Se Tio2 fotoactivos em materiais de cobertura
EP2442906B1 (en) * 2009-06-18 2017-11-01 Innovcoat Nanocoatings And Surface Products Industry, Sales and R&D Incorporation Photocatalytic nanocomposite structured with boron

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171408A (ja) 1993-06-28 1995-07-11 Ishihara Sangyo Kaisha Ltd 光触媒体およびその製造方法
JPH0983005A (ja) * 1995-06-14 1997-03-28 Toto Ltd 自己浄化性のカバーを備えた太陽電池
JP2000150936A (ja) 1998-11-17 2000-05-30 Canon Inc 半導体装置及び太陽光発電装置
JP2001348512A (ja) * 2000-06-09 2001-12-18 Nippon Soda Co Ltd 光触媒コーティング剤及び光触媒担持構造体
JP2002361807A (ja) 2001-06-01 2002-12-18 Ube Nitto Kasei Co Ltd 防汚性ポリカーボネート板
JP2003010696A (ja) 2001-07-05 2003-01-14 Kawasaki Steel Corp 光触媒体およびその製造方法
JP2005261997A (ja) * 2004-03-16 2005-09-29 Nbc Inc 光触媒体の製造方法
JP2007047605A (ja) * 2005-08-11 2007-02-22 Toyo Ink Mfg Co Ltd 光散乱膜用組成物、およびそれを用いた光散乱膜
WO2007097284A1 (ja) * 2006-02-20 2007-08-30 Tama Chemicals Co., Ltd. 均一分散性光触媒コーティング液及びその製造方法並びにこれを用いて得られる光触媒活性複合材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"JIS Z 8901", THE SOCIETY OF POWDER TECHNOLOGY, JAPAN, article "Powder Body for Test and Particle for Test"
See also references of EP2502741A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014017575A1 (ja) * 2012-07-26 2016-07-11 株式会社サクラクレパス 光触媒塗布液およびその製造方法並びに光触媒体
US10463046B2 (en) 2014-11-04 2019-11-05 Allied Bioscience, Inc. Antimicrobial coatings capable of reducing the number of murine norovirus inoculated thereon
US10980236B2 (en) 2014-11-04 2021-04-20 Allied Bioscience, Inc. Broad spectrum antimicrobial coatings comprising combinations of organosilanes
US10258046B2 (en) 2014-11-04 2019-04-16 Allied Bioscience, Inc. Antimicrobial coatings comprising quaternary silanes
US11369114B2 (en) 2014-11-04 2022-06-28 Allied Bioscience, Inc. Antimicrobial coatings comprising organosilane homopolymers
US10420342B2 (en) 2014-11-04 2019-09-24 Allied Bioscience, Inc. Methods of coating a surface with an antimicrobial coating capable of reducing the number of murine norovirus inoculated thereon
US11033031B1 (en) 2014-11-04 2021-06-15 Allied Bioscience, Inc. Broad spectrum antimicrobial coatings comprising combinations of organosilanes
US10993441B2 (en) 2014-11-04 2021-05-04 Allied Bioscience, Inc. Antimicrobial coatings comprising organosilane homopolymers
US10194664B2 (en) 2014-11-04 2019-02-05 Allied Bioscience, Inc. Methods of preparing self-decontaminating surfaces using reactive silanes, triethanolamine and titanium anatase sol
JP2018508606A (ja) * 2015-02-11 2018-03-29 アライド バイオサイエンス, インコーポレイテッド 抗微生物コーティングおよびそれを形成させるための方法
WO2019150780A1 (ja) * 2018-01-31 2019-08-08 富士フイルム株式会社 コート剤、積層体、及び積層体の製造方法
JP2020033510A (ja) * 2018-08-31 2020-03-05 シャープ株式会社 光触媒塗料、光触媒塗料の製造方法、及び光触媒体の製造方法
JP7101570B2 (ja) 2018-08-31 2022-07-15 シャープ株式会社 光触媒塗料、光触媒塗料の製造方法、及び光触媒体の製造方法
JP2022076646A (ja) * 2020-11-10 2022-05-20 Dic株式会社 金属化合物を担持した酸化チタンの水性組成物
JP7238877B2 (ja) 2020-11-10 2023-03-14 Dic株式会社 金属化合物を担持した酸化チタンの水性組成物

Also Published As

Publication number Publication date
CN102821944A (zh) 2012-12-12
EP2502741A4 (en) 2013-04-24
JPWO2011059101A1 (ja) 2013-04-04
US20120225770A1 (en) 2012-09-06
EP2502741A1 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
WO2011059101A1 (ja) 光触媒コーティング
Sakhuja et al. Outdoor performance and durability testing of antireflecting and self-cleaning glass for photovoltaic applications
Zhang et al. Sol− gel preparation of PDMS/Silica hybrid antireflective coatings with controlled thickness and durable antireflective performance
Pagliaro et al. Silica-based hybrid coatings
JP6813553B2 (ja) 光線透過率を高める塗料組成物及びそれからなるコーティング層
Chang et al. Preparation of water-resistant antifog hard coatings on plastic substrate
CN105378510B (zh) 太阳能电池组件用防眩膜、带有防眩膜的太阳能电池组件及它们的制造方法
JP2011071523A (ja) ソーラーセル
CN105765015A (zh) 水性涂布剂、膜、膜的制造方法、层叠体、及太阳能电池模块
MXPA06013796A (es) Revestimientos de multiples capas con una capa que contiene red de oxido inorganico y metodos para su aplicacion.
MXPA06013795A (es) Recubrimientos en multicapas y metodos relacionados.
BRPI1009429B1 (pt) Composição de revestimento, película de revestimento, laminado, método para fabricar o mesmo, módulo de célula solar, dispositivo refletor, e, sistema de geração de energia térmica solar
JP4048912B2 (ja) 表面防汚性複合樹脂フィルム、表面防汚性物品、化粧板
KR101846959B1 (ko) 수성 방오 코트제, 방오 코트층, 적층체 및 태양 전지 모듈
JP2004123766A (ja) コーティング用組成物
JP2004168057A (ja) フッ素系複合樹脂フィルム及び太陽電池
KR20110030385A (ko) 보호 필름 및 태양 전지용 프론트 시트
CN103059617B (zh) 一种纳米增透自洁镀膜液的制备方法
JP5343172B1 (ja) コーティング液及び反射防止膜
Jiang et al. All-polymer superhydrophobic radiative cooling coating based on polytetrafluoroethylene/polydimethylsiloxane composites
KR101121207B1 (ko) 내식성이 우수한 저굴절 특성의 반사 방지 코팅 조성물, 및 이의 제조방법
JP5749807B2 (ja) 太陽電池モジュール用赤外線反射膜及び赤外線反射体
JP4943883B2 (ja) 樹脂積層体
JP4869578B2 (ja) 滑雪用塗膜形成コーティング組成物、滑雪用塗膜および滑雪用部材
KR100958690B1 (ko) 태양전지모듈 보호용 코팅 조성물의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051777.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10830057

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011540581

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13509833

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010830057

Country of ref document: EP