WO2011052683A1 - 基板搬送装置、露光装置、基板支持装置及びデバイス製造方法 - Google Patents

基板搬送装置、露光装置、基板支持装置及びデバイス製造方法 Download PDF

Info

Publication number
WO2011052683A1
WO2011052683A1 PCT/JP2010/069177 JP2010069177W WO2011052683A1 WO 2011052683 A1 WO2011052683 A1 WO 2011052683A1 JP 2010069177 W JP2010069177 W JP 2010069177W WO 2011052683 A1 WO2011052683 A1 WO 2011052683A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
tray
unit
vibration
support member
Prior art date
Application number
PCT/JP2010/069177
Other languages
English (en)
French (fr)
Inventor
國博 河江
卓也 柳川
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2011538481A priority Critical patent/JPWO2011052683A1/ja
Priority to CN201080049093.7A priority patent/CN104221137B/zh
Priority to KR1020187002892A priority patent/KR101982454B1/ko
Publication of WO2011052683A1 publication Critical patent/WO2011052683A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/061Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67736Loading to or unloading from a conveyor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support

Definitions

  • the present invention relates to a substrate transport apparatus, an exposure apparatus, a substrate support apparatus, and a device manufacturing method.
  • processing apparatuses for large substrates such as exposure apparatuses and inspection apparatuses are used.
  • a transport apparatus as disclosed in the following patent document that transports a large substrate (for example, a glass substrate) to the processing apparatus is used.
  • the substrate and the substrate support device are separately supported when the substrate held in the carry-in / out section is transferred to the substrate support device. Therefore, depending on the substrate support method, the substrate may be bent downward by its own weight.
  • the substrate bent by its own weight is delivered to the substrate support device, the bent portion below the substrate comes into contact with the substrate support device, and the substrate is bent on the substrate support device due to the friction of the contacted portion. The state is maintained.
  • An object of an aspect of the present invention is to provide a substrate transport apparatus, an exposure apparatus, a substrate support apparatus, and a device manufacturing method that can eliminate the bending of the substrate when the substrate is delivered.
  • a substrate transport apparatus that transports a substrate placed on a substrate support member together with the substrate support member, wherein the substrate support member on which the substrate is placed is oscillated.
  • a substrate transfer apparatus including a vibration unit and a transfer unit that holds and moves the substrate support member.
  • an exposure apparatus that exposes the substrate by irradiating exposure light onto the substrate held by the substrate holder, wherein the substrate transport apparatus transports the substrate to the substrate holder.
  • An exposure apparatus is provided.
  • a substrate support apparatus for supporting a substrate, the placement portion on which the substrate is placed, and a vibration that is provided in the placement portion and vibrates the placement portion.
  • a substrate support device having a generator is provided.
  • a device manufacturing method comprising: exposing the substrate using the exposure apparatus described above; and processing the exposed substrate based on an exposure result. Is done.
  • a first embodiment of the present invention will be described with reference to the drawings. Note that the present invention is not limited to this.
  • an exposure apparatus that includes the substrate transport apparatus according to the present invention and that performs an exposure process for exposing a pattern for a liquid crystal display device to a substrate coated with a photosensitive agent, and a substrate support apparatus according to the present invention, An embodiment of the device manufacturing method is also described.
  • FIG. 1 is a cross-sectional plan view showing a schematic configuration of the exposure apparatus of the present embodiment.
  • the exposure apparatus 1 includes an exposure apparatus main body 3 that exposes a liquid crystal display device pattern on a substrate, a transfer robot (transfer section) 4, a carry-in / out section (port section) 5, and a substrate transfer apparatus 7 having a vibration unit (not shown). These are housed in a chamber 2 that is highly cleaned and adjusted to a predetermined temperature.
  • the vibration unit of the substrate transfer device 7 will be described in detail later with reference to the drawings.
  • the substrate is a large glass plate, and the size of one side thereof is, for example, 500 mm or more.
  • FIG. 2 is an external perspective view of the exposure apparatus main body 3 and the transfer robot 4 that transfers the substrate P to the exposure apparatus main body 3.
  • the exposure apparatus main body 3 is disposed below the mask stage, an illumination system (not shown) that illuminates the mask M with the exposure light IL, a mask stage (not shown) that holds the mask M on which the liquid crystal display device pattern is formed.
  • the two-dimensional movement of the substrate holder 9 with respect to the base 8 is performed in a horizontal plane, and the X axis and the Y axis are set in directions orthogonal to each other in the horizontal plane.
  • the holding surface of the substrate holder 9 with respect to the substrate P is parallel to the horizontal plane in a reference state (for example, a state when the substrate P is transferred).
  • the Z axis is set in a direction orthogonal to the X axis and the Y axis, and the optical axis of the projection optical system PL is parallel to the Z axis.
  • the directions around the X, Y, and Z axes are referred to as the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, respectively.
  • the moving mechanism 33 includes a moving mechanism main body 35 and a plate table 34 that is disposed on the moving mechanism main body 35 and holds the substrate holder 9.
  • the moving mechanism body 35 is supported by the gas bearing in a non-contact manner on the guide surface 8a (the upper surface of the base 8), and can move on the guide surface 8a in the XY directions.
  • the exposure apparatus main body 3 can move within a predetermined region of the guide surface 8a on the light emission side (image surface side of the projection optical system PL) while holding the substrate P.
  • the moving mechanism main body 35 can move in the XY plane on the guide surface 8a by the operation of a coarse movement system (moving mechanism) including an actuator such as a linear motor.
  • the plate table 34 is movable in the Z-axis, ⁇ X, and ⁇ Y directions with respect to the moving mechanism body 35 by the operation of a fine movement system including an actuator such as a voice coil motor.
  • the plate table 34 is moved in six directions including the X axis, the Y axis, the Z axis, the ⁇ X, the ⁇ Y, and the ⁇ Z directions while holding the substrate P by the operation of the substrate stage driving system including the coarse movement system and the fine movement system. It is movable.
  • the transfer robot 4 is for transferring the substrate P to the exposure apparatus main body 3 and the loading / unloading unit 5.
  • the transport robot 4 holds and moves a later-described tray (substrate support member, substrate support device) T that supports the placed substrate P, thereby transporting the substrate P together with the tray T, and the exposure apparatus main body 3 and The substrate P is delivered to the carry-in / out unit 5.
  • the exposure apparatus 1 performs step-and-scan exposure with the rectangular substrate P placed on the substrate holder 9, and a plurality of patterns formed on the mask P, for example 4
  • the images are sequentially transferred to two exposure areas (pattern transfer areas). That is, in the exposure apparatus 1, the slit M on the mask M is illuminated by the exposure light IL from the illumination system, and the mask M is moved by a controller (not shown) via a drive system (not shown).
  • the pattern of the mask M in one exposure region on the substrate P is obtained by moving the holding mask stage and the substrate holder 9 holding the substrate P in synchronization in a predetermined scanning direction (here, the Y-axis direction). Is transferred, that is, scanning exposure is performed.
  • the exposure apparatus 1 is a so-called multi-lens scan in which the projection optical system PL includes a plurality of projection optical modules, and the illumination system includes a plurality of illumination modules corresponding to the plurality of projection optical modules. It constitutes an exposure apparatus.
  • a stepping operation is performed in which the substrate holder 9 is moved in the X direction by a predetermined amount to the scanning start position of the next exposure area.
  • the pattern of the mask M is sequentially transferred to the four exposure regions by repeatedly performing such scanning exposure and stepping operation.
  • the transfer robot 4 has, for example, a horizontal joint type structure, and is connected to the arm portion 10 composed of a plurality of portions connected via a vertical joint axis, and the tip of the arm portion 10.
  • the conveyance hand 12 and the drive device 13 are provided.
  • the arm unit 10 can be moved, for example, in the vertical direction (Z-axis direction) by the driving device 13.
  • the driving of the driving device 13 is controlled by a control device (not shown).
  • the transport hand 12 is provided in a substantially U shape with an open end, and supports both sides 18 and 18 in the longitudinal direction of the tray T (long side direction of the substrate P) in parallel with the long side of the tray T.
  • the substrate P can be held via the tray T.
  • the transport hand 12 includes a power supply unit (not shown) that supplies power to a vibration actuator (vibration generation unit) (not shown) provided on the tray T.
  • the vibration actuator and the power feeding unit will be described in detail later with reference to the drawings.
  • FIG. 3 is a perspective view for explaining the operation of the transfer robot 4.
  • the transfer robot 4 changes the direction of the transfer hand 12 so that the longitudinal direction of the transfer hand 12 (long side direction of the substrate P) faces the substrate holder 9 side of the exposure apparatus main body 3. Be able to.
  • the transfer robot 4 delivers the substrate P to the substrate holder 9.
  • the transfer robot 4 is provided below the transfer hand 12, has the same mechanism as the transfer hand 12, and can be independently driven. It has a double arm structure with Further, the transfer robot 4 is not limited to a horizontal joint type robot, and can be realized by appropriately adopting or combining known robots (generally, a transfer mechanism).
  • FIG. 4 is a side view showing a schematic configuration of the carry-in / out section 5.
  • the carry-in / out section 5 is configured to receive the substrate P which has been coated with a photosensitive agent and conveyed by a coater / developer (not shown) disposed adjacent to the exposure apparatus 1.
  • the carry-in / out unit 5 includes a substrate support portion 51 that supports the substrate P and a tray support portion 52 that supports a tray T described later.
  • the substrate support portion 51 includes a flat plate-like first support portion 51a and a plurality of substrate support pins 51b that are erected on the first support portion 51a and support different portions of the lower surface of the substrate P. . In the present embodiment, for example, 30 substrate support pins 51b are provided.
  • Each of the substrate support pins 51b has a lower end portion fixed to the first support portion 51a and an upper end portion (upper end surface) provided so as to support the substrate P.
  • a suction hole connected to a vacuum pump (not shown) is provided on the upper end surface of the substrate support pin 51b so that the substrate P can be sucked and held.
  • a substrate detection unit (not shown) that detects whether or not the substrate P is placed on the substrate support pin 51b is provided at the upper end of the substrate support pin 51b.
  • the substrate support unit 51 is connected to the drive unit 54 via a connecting member 53.
  • the drive unit 54 is movable in the XY plane and the ⁇ Z direction on the base unit 55 by operation of a drive system including a coarse motion system and a fine motion system, for example.
  • a drive system including a coarse motion system and a fine motion system, for example.
  • the carry-in / out unit 5 can correct the position of the substrate P supported by the substrate support pins 51b or rotate the substrate P by 90 degrees.
  • the tray support portion 52 includes a frame-shaped second support portion 52a and a plurality of tray support pins (support portions) 52b that are provided on the second support portion 52a and support different portions of the lower surface of the tray T. It has.
  • the tray support unit 52 includes a power supply unit (not shown) that supplies power to a vibration actuator (vibration generation unit) (not shown) provided in the tray T.
  • the vibration actuator and the power feeding unit will be described in detail later with reference to the drawings.
  • Each tray support pin 52b has a lower end fixed to the second support 52a and an upper end provided to support the tray T.
  • the tray support pins 52b are disposed outside the first support portion 51a of the substrate support portion 51.
  • a tray detection unit (not shown) that detects whether or not the tray T is placed on the tray support pin 52b is provided at the upper end of the tray support pin 52b.
  • the tray support portion 52 is provided so as to be movable in the Z-axis direction along the guide portion 56 by the operation of a drive unit (not shown).
  • the guide unit 56 is provided outside the drive unit 54 and the base unit 55 of the substrate support unit 51.
  • the first support part 51a, the connecting member 53, and the drive part 54 of the substrate support part 51 are disposed inside the frame-shaped second support part 52a. Thereby, the tray support part 52 can move in the Z-axis direction without interfering with the first support part 51 a, the connecting member 53, and the drive part 54 of the substrate support part 51.
  • the tray support portion 52 moves up in the positive direction of the Z axis to raise the tray T supported by the tray support pins 52b in the positive direction of the Z axis and is supported on the substrate support pins 51b of the substrate support portion 51.
  • the substrate P is placed on the tray T.
  • the tray support 52 is supported by tray support pins 52 b and delivers the tray T on which the substrate P is placed to the transport hand 12 of the transport robot 4.
  • FIG. 5 is a plan view showing a planar structure of the tray T.
  • the tray T includes a mounting portion 20 formed in a lattice shape by a plurality of linear members 19 stretched at predetermined intervals in the vertical and horizontal directions. That is, the portion of the placement unit 20 where the linear member 19 is not disposed is a rectangular opening 21.
  • the tray T is configured to place the substrate P at a predetermined position between the both side portions 18 and 18 of the placement unit 20 and support the substrate P from below.
  • the shape of the tray T is not limited to the shape shown in FIG. 5.
  • the tray T is a frame-shaped single frame that supports only the peripheral edge of the substrate P and has only one opening 21. Also good.
  • the substrate P is arranged so that the long side is parallel to both side portions 18 and 18 of the placement portion 20.
  • the tray T is configured such that both side portions 18 and 18 are supported from below by the transport hand 12 of the transport robot 4 in a state where the substrate P is placed on the placement portion 20 (see FIGS. 2 and 3).
  • the transfer robot 4 in the present embodiment supports the substrate P through the tray T and transfers the substrate P to a predetermined position by holding and moving the tray T by the transfer hand 12. ing.
  • the tray T is configured such that the lower surface of the mounting portion 20 is supported by a plurality of tray support pins 52b of the tray support portion 52 of the carry-in / out portion 5 shown in FIG. Further, the tray T has a plurality of substrate support pins 51b of the substrate support portion 51 in a plurality of openings shown in FIG. 5 in a state where the lower surface of the placement portion 20 is supported by the tray support pins 52b as shown in FIG. It is made to pass through the portion 21.
  • the material for forming the tray T it is preferable to use a material capable of suppressing the bending due to the weight of the substrate P when the tray T supports the substrate P.
  • various synthetic resins or metals are used. Can do. Specific examples include nylon, polypropylene, AS resin, ABS resin, polycarbonate, fiber reinforced plastic, and stainless steel. Examples of the fiber reinforced plastic include GFRP (Glass Fiber Reinforced Plastic) and / or CFRP (Carbon Fiber Reinforced Plastic: carbon fiber reinforced thermosetting plastic).
  • the linear member 19 stretched around in a lattice shape may be formed using a member having excellent flexibility such as a wire.
  • a groove 30 for holding the tray T is formed on the upper surface of the substrate holder 9.
  • the groove portions 30 are provided in a lattice shape corresponding to the frame structure of the tray T.
  • a plurality of holding portions (holder portions) 31 for the substrate P are provided in an island shape by forming the groove portion 30 on the upper surface of the substrate holder 9.
  • the holding unit 31 has a size corresponding to the opening 21 of the tray T.
  • the upper surface of the holding part 31 is finished so that the substantial holding surface of the substrate holder 9 with respect to the substrate P has good flatness.
  • a plurality of suction holes K are provided on the upper surface of the holding portion 31 for bringing the substrate P into close contact with the surface (see FIG. 2).
  • Each suction hole K is connected to a vacuum pump (not shown).
  • FIG. 6 is a partial side sectional view showing a state where the tray T is accommodated in the groove portion of the substrate holder 9. As shown in FIG. 6, the thickness of the tray T is smaller than the depth of the groove 30. As a result, the tray T is inserted into the groove 30 and sinks, so that the holding portion 31 is protruded from the opening 21, and only the substrate P placed on the tray T is received by the holding portion 31. It is supposed to be passed.
  • Conical concave portions 41 are formed at the four corners on the lower surface side of the placement portion 20 of the tray T, and spherical convex portions 42 that engage with the concave portions 41 are provided at positions corresponding to the concave portions 41 in the groove portion 30. It has been.
  • the tray T is displaced when the mounting portion 20 is inserted into the groove portion 30 and the convex portion 42 of the substrate holder 9 is engaged with the concave portion 41 of the mounting portion 20 so that the tray T is accommodated in the groove portion 30. Is to be prevented.
  • FIGS. 7A, 7B, 8A, and 8B are diagrams for explaining the schematic configuration of the transport hand 12 and the tray T of the present embodiment.
  • FIG. 7A is a schematic cross-sectional view corresponding to the cross section taken along the line AA ′ of FIG. 7B is an enlarged view of the ⁇ portion in FIG. 7A.
  • 8A and 8B are views for explaining schematic configurations of the tray support portion 52 and the tray T of the present embodiment
  • FIG. 8A is a schematic cross-sectional view corresponding to a cross section taken along the line BB ′ of FIG.
  • FIG. 8B is an enlarged view of the ⁇ portion of FIG. 8A.
  • the substrate transport apparatus 7 of this embodiment includes a vibration unit V that vibrates the tray T.
  • the vibration unit V includes a vibration actuator (vibration generation unit) VA provided on the tray T, a tray side power supply unit (power supply unit) ET provided on the tray T, and a hand side power supply unit provided on the transport hand 12. (Power supply unit) EH.
  • the vibration part V has the support part side electric power feeding part (power feeding part) EP provided in the tray support part 52 of the carrying in / out part 5, as shown to FIG. 8A and 8B.
  • the vibration actuator VA is embedded in the linear member 19 constituting the placement unit 20, arranged inside the placement unit 20, and fixed to the placement unit 20.
  • the vibration actuator VA for example, a vibration motor that generates vibration by rotating an eccentric weight and / or an ultrasonic motor that includes a piezoelectric element that deforms according to an applied voltage can be used.
  • a configuration including a plurality of vibration actuators VA will be described. In other embodiments, there may be one vibration actuator VA depending on conditions.
  • the vibration actuator VA is limited to the vibration motor and / or the ultrasonic motor as long as the vibration actuator VA can be fixed to the placement unit 20 and can vibrate the placement unit 20 at a desired frequency.
  • the vibration actuator VA does not necessarily need to be embedded in the placement portion 20, and can be fixed to the lower surface and / or the side surface of the linear member 19.
  • it is effective to arrange the vibration actuator VA in the vicinity of a place where it is desired to apply vibration of the placement unit 20.
  • the vibration actuator VA is driven when a predetermined voltage is applied to the terminal portion VAT, and vibrates the placement portion 20 of the tray T at a predetermined frequency.
  • the frequency of vibration of the vibration actuator VA is set according to the frequency of vibration of the placement unit 20.
  • the frequency of vibration of the placement unit 20 is a high frequency that causes the lower surface of the substrate P placed on the placement unit 20 and the upper surface (substrate support surface) 20a of the placement unit 20 to slip due to the action of vibration. Is set.
  • the hand side power supply unit EH includes a power supply unit (not shown) provided in the transport robot 4, a hand side wiring 14, and a hand side terminal unit 15.
  • the hand side wiring 14 has one end connected to the hand side terminal 15 and the other end connected to a power supply (not shown) of the transfer robot 4 to electrically connect the hand side terminal 15 and the power supply. is doing.
  • the hand side terminal portion 15 is formed to be exposed on the upper surface of the transport hand 12 corresponding to the tray side terminal portion 22 disposed on the lower surface of the tray T.
  • the hand-side terminal portion 15 comes into contact with the tray-side terminal portion 22 that is exposed and formed on the lower surface of the tray T. It is electrically connected to the side terminal portion 22.
  • the hand side terminal portion 15 is provided so as to be elastically deformable.
  • the hand side terminal portion 15 contacts the tray side terminal portion 22 provided on the tray T and is elastically deformed toward the transport hand 12 side.
  • the tray side terminal portion 22 is biased.
  • the hand side terminal part 15 contacts in the state pressed with respect to the tray side terminal part 22, and the electrical connection with the tray side terminal part 22 is made
  • the tray-side power supply unit ET includes a tray-side wiring 23 provided on the tray T and a tray-side terminal unit 22.
  • the tray-side wiring 23 has one end connected to the terminal portion VAT of the vibration actuator VA and the other end connected to the tray-side terminal portion 22, thereby exposing the tray-side terminal portion 22 and the placement portion exposed on the lower surface of the tray T. 20 is electrically connected to the terminal portion VAT of the vibration actuator VA disposed inside.
  • the tray side terminal portion 22 is formed to be exposed on the lower surface of the placement portion 20 corresponding to the hand side terminal portion 15 disposed on the upper surface of the transport hand 12.
  • the tray side terminal section 22 comes into contact with the hand side terminal section 15 formed to be exposed on the upper surface of the transport hand 12, It is electrically connected to the hand side terminal portion 15.
  • the tray-side terminal portion 22 is provided so as to be elastically deformable, and when the transport hand 12 holds the tray T, the tray-side terminal portion 22 comes into contact with the hand-side terminal portion 15 provided on the transport hand 12 and elastically deforms to the tray T side. Thus, the hand side terminal portion 15 is biased. Thereby, the tray side terminal part 22 contacts in the state pressed with respect to the hand side terminal part 15, and the electrical connection with the hand side terminal part 15 is made
  • the hand-side power feeding unit EH and the tray-side power feeding unit ET are connected to the other end of the hand-side wiring 14 when the hand-side terminal unit 15 and the tray-side terminal unit 22 are electrically connected.
  • the power supplied from the power supply unit (not shown) can be supplied to the vibration actuator VA as the vibration generating unit via the hand side wiring 14 and the tray side wiring 23.
  • a plurality of contact portions 16 that support the lower surface of the tray 20 mounting portion 20 are provided on the upper surface of the transport hand 12.
  • the contact portion 16 is disposed at a position that does not overlap with the vibration actuator VA provided on the tray T in plan view.
  • the vibration actuator VA is disposed between the two contact portions 16 and 16 with respect to the direction along the tray T in a state where the tray T is positioned and held with respect to the transport hand 12. ing.
  • the vibration actuator VA is disposed at a position that becomes an antinode of vibration of the linear member 19 when the placing portion 20 of the tray T supported by the contact portion 16 vibrates.
  • the support part side power supply part EP includes a power supply part (not shown) provided in the carry-in / out part 5, a support part side wiring 57, and a support part side terminal part 58. .
  • the support part side wiring 57 is electrically connected between the support part side terminal part 58 and the power supply part by connecting one end side to the support part side terminal part 58 and connecting the other end side to a power supply part (not shown) of the carry-in / out part 5. Connected.
  • the support portion side terminal portion 58 is formed to be exposed at the upper end portion of the tray support pin 52b corresponding to the tray side terminal portion 22 arranged on the lower surface of the tray T.
  • the support portion side terminal portion 58 comes into contact with the tray side terminal portion 22 formed to be exposed on the lower surface of the tray T. It is electrically connected to the side terminal portion 22.
  • the support portion side terminal portion 58 is provided so as to be elastically deformable.
  • the support portion side terminal portion 58 comes into contact with the tray side terminal portion 22 provided on the tray T and moves toward the tray support portion 52 side.
  • the tray side terminal portion 22 is biased.
  • the support part side terminal part 58 contacts in the state pressed with respect to the tray side terminal part 22, and the electrical connection with the tray side terminal part 22 is made
  • the support portion side power feeding portion EP is not connected to the other end of the support portion side wiring 57 when the support portion side terminal portion 58 and the tray side terminal portion 22 are electrically connected.
  • the power supplied from the power source unit is supplied to the vibration actuator VA as a vibration generating unit via the support unit side wiring 57 and the tray side wiring 23.
  • a plurality of contact portions 52c that support the lower surface of the tray 20 mounting portion 20 are provided on the upper surface of the tray support pin 52b.
  • the tray support pins 52b are arranged so as not to overlap with the vibration actuator VA provided on the tray T when the tray T is supported. That is, when the tray T is positioned with respect to the tray support pin 52b and supported by the tray support pin 52b, the vibration actuator VA monitors the two contact portions 52c and 52c in the direction along the tray T. It is arranged between and.
  • the vibration actuator VA is disposed at a position where the linear member 19 becomes a vibration antinode when the placement portion 20 of the tray T supported by the contact portion 52c vibrates.
  • FIG. 9 is a plan view showing the deflection of the substrate P supported by the substrate support pins 51b shown in FIG.
  • the lighter the color the more the substrate P is bent downward (in the negative direction of the Z axis in FIG. 4).
  • the lower surface side of the substrate P is supported by a total of 30 substrate support pins 51b arranged in a 5 ⁇ 6 matrix. Therefore, the central portion and / or the outer edge portion of the substrate P away from the substrate support pins 51b is bent downward due to the weight of the substrate P. Further, the portion along the long side of the substrate P is bent most downward, and then the portion along the short side and the central portion parallel to the short side are bent downward.
  • the operation of the exposure apparatus 1 will be described. Specifically, a method for loading and unloading the substrate P by the transfer robot 4 will be described. Here, a procedure for placing the substrate P on the tray T and carrying the substrate P placed on the tray T into and out of the exposure apparatus main body 3 by the transport robot 4 will be described.
  • the substrate P coated with the photosensitive agent is conveyed from the coater / developer to the carry-in / out unit 5 shown in FIG. 1, and is positioned and placed at a predetermined position on the substrate support pins 51b of the substrate support unit 51 shown in FIG. Then, it is sucked and held on the upper surface of the substrate support pin 51b. As described above, the substrate P supported by the plurality of substrate support pins 51b is in a state where the portion not supported by the substrate support pins 51b is bent downward as shown in FIG.
  • the substrate support portion 51 When the substrate P is sucked and held on the upper surface of the substrate support pin 51b, the substrate support portion 51 operates the driving unit 54 in a state where the substrate P is sucked and held on the upper surface of the substrate support pin 51b, and the tray T The substrate P is aligned.
  • the carry-in / out section 5 raises the tray support section 52 along the guide section 56 and raises the tray T on the tray support pins 52b. Thereby, the board
  • FIGS. 10A to 10C are schematic views for explaining a process of transferring the substrate P0 from the carry-in / out section 500 of the conventional exposure apparatus to the conventional tray T0.
  • the substrate P0 supported by the plurality of substrate support pins 510b is in a state where a portion not supported by the substrate support pins 510b is bent downward.
  • the tray support portion 520 is raised and the tray T0 supported by the tray support pins 520b is raised.
  • the substrate P0 is placed on the tray T0, and the substrate P0 is transferred from the substrate support pin 510b of the loading / unloading unit 500 to the tray T0.
  • the substrate P0 comes into contact with the tray T0 from the downwardly bent portion, and the substrate P cannot be spread on the tray T0 due to friction between the portion and the tray T0, and is bent so as to wave. Is maintained.
  • the transfer hand 1200 of the transfer robot 400 arranged below the tray T0 is raised.
  • both sides of the tray T0 are held by the transport hand 1200, and the tray T0 is lifted above the tray support pins 520b with the substrate P0 placed thereon. Since both sides of the tray T0 are supported, the space between the both sides supported by the transport hand 1200 is bent downward due to the weight of the substrate P0 and the tray T0. Then, the substrate P0 is warped so that the central portion protrudes downward, and stress that is compressed toward the central portion acts, and the planar area of the substrate P0 viewed from above is reduced. Thereafter, the transport hand 1200 is moved to transport the tray T0 on which the substrate P0 is placed toward the upper side of the substrate holder 900 shown in FIG.
  • FIG. 11 is a schematic diagram for explaining a process of transferring the substrate P0 from the conventional tray T0 to the substrate holder 900 of the conventional exposure apparatus.
  • the transport hand 1200 is lowered.
  • the tray T0 is accommodated in the groove portion 300 of the substrate holder 900, and the substrate P0 is placed on the substrate holder 900.
  • substrate P0 contacts the board
  • the substrate P0 is placed on the substrate holder 900, and the substrate P0 is transferred from the tray T0 to the substrate holder 900.
  • the tray T0 comes into contact with the bottom of the groove 300 of the substrate holder 900, and the tray T0 is transferred from the transport hand 1200 to the groove 300 of the substrate holder 900.
  • the bent shape of the substrate P0 is not completely restored, and the plane area of the substrate P0 is reduced as compared with the case where the substrate P0 is completely flat.
  • the substrate P0 is bent on the substrate holder 900, and there may be a problem of exposure failure such that predetermined exposure cannot be performed at an appropriate position on the substrate. is there.
  • the exposure apparatus 1 of the present embodiment uses the substrate transfer apparatus 7 in order to solve such problems of the conventional exposure apparatus.
  • the operation of the substrate transfer apparatus 7 of this embodiment will be described together with the operation of the exposure apparatus 1.
  • 12A to 12C are schematic views for explaining a process of transferring the substrate P from the carry-in / out section 5 of the exposure apparatus 1 of the present embodiment to the tray T.
  • FIG. 12A the substrate P supported by the plurality of substrate support pins 51b is in a state where a portion not supported by the substrate support pins 51b is bent downward.
  • the tray T is supported by the tray support pins 52b.
  • the tray-side terminal portion 22 provided on the lower surface of the tray T and the support provided at the tip portion of the tray support pins 52b.
  • the part side terminal part 58 contacts and is electrically connected. That is, the support portion side power supply portion EP is in a state where it can supply power to the terminal portion VAT of the vibration actuator VA provided on the tray T by supplying power from a power supply portion (not shown). In this state, the tray support 52 is raised, and the tray T supported by the tray support pins 52b is raised.
  • the substrate P is placed on the tray T, and the substrate P is transferred from the substrate support pin 51b of the loading / unloading unit 5 to the tray T.
  • the carry-in / out unit 5 supplies power to the terminal portion VAT of the vibration actuator VA by a power supply unit (not shown) of the support unit side power supply unit EP, and vibrates the vibration actuator VA at a predetermined frequency.
  • the vibration actuator VA vibrates at a predetermined frequency
  • the placing portion 20 of the tray T to which the vibration actuator VA is fixed vibrates at a predetermined frequency.
  • the vibration frequency of the vibration actuator VA is set according to the vibration frequency of the mounting portion 20. Further, the frequency of vibration of the placement unit 20 is set to a high frequency such that the lower surface of the substrate P placed on the placement unit 20 and the upper surface 20a of the placement unit 20 slip due to the action of vibration. Yes. Therefore, when the mounting unit 20 vibrates at a predetermined frequency, the upper surface 20a of the mounting unit 20 and the lower surface of the substrate P are partially and instantaneously separated and contacted repeatedly. The frictional force between 20a and the lower surface of the substrate P is reduced.
  • FIG. 12A the stress of the substrate P placed on the placement portion 20 of the tray T is released in a state where the plane area is reduced by being compressed so as to be compressed in the plane direction.
  • FIG. 12B the outer edge portion of the substrate P moves so as to expand from the central portion of the substrate P toward the outside. Thereby, the board
  • the tray support pins 52b are arranged at positions that do not overlap with the vibration actuator VA provided on the tray T in a plane. Therefore, the linear member 19 between the tray support pins 52b can be more easily vibrated, and the placement unit 20 can be vibrated efficiently. Furthermore, when the vibration actuator VA is disposed in a portion that becomes the antinode of the vibration of the linear member 19, the vibration of the linear member 19 can be amplified, and the mounting portion 20 can be vibrated more efficiently and effectively. . Next, after adjusting the substrate P to a temperature at which the exposure process is performed, the transport hand 12 of the transport robot 4 disposed below the tray T is raised.
  • both side portions 18 and 18 (see FIGS. 2 and 5) of the tray T are held by the transport hand 12, and the tray support pins 52b are placed in a state where the substrate T is placed on the tray T. Is lifted upward. Since both sides 18 and 18 of the tray T are supported, the space between the sides 18 and 18 supported by the transport hand 12 is bent downward due to the weight of the substrate P and the tray T.
  • the hand side terminal portion 15 provided on the upper surface of the transport hand 12 and the tray side terminal portion 22 provided on the lower surface of the tray T come into contact with each other electrically. It is connected.
  • the hand-side power supply unit EH is in a state where it can supply power to the terminal unit VAT of the vibration actuator VA provided on the tray T by supplying power from a power supply unit (not shown).
  • the power is supplied to the terminal portion VAT of the vibration actuator VA by the power supply unit (not shown) of the hand-side power feeding unit EH.
  • the vibration actuator VA vibrates at a predetermined frequency
  • the placing portion 20 of the tray T to which the vibration actuator VA is fixed vibrates at a predetermined frequency.
  • the vibration frequency of the vibration actuator VA is set according to the vibration frequency of the mounting portion 20. Further, the frequency of vibration of the placement unit 20 is set to a high frequency such that the lower surface of the substrate P placed on the placement unit 20 and the upper surface 20a of the placement unit 20 slip due to the action of vibration. Yes. Therefore, when the mounting unit 20 vibrates at a predetermined frequency, the upper surface 20a of the mounting unit 20 and the lower surface of the substrate P are partially and instantaneously separated and contacted repeatedly. The frictional force between 20a and the lower surface of the substrate P is reduced.
  • the lower surface of the substrate P and the upper surface 20a of the mounting portion 20 of the tray T slide so as to release the stress of the substrate P, and the substrate P bends and undulates. It is prevented from entering a state. Moreover, the stress which compresses the board
  • the transfer robot 4 changes the direction of the transfer hand 12 so that the longitudinal direction of the transfer hand 12 (long side direction of the substrate P) faces the substrate holder 9 side of the exposure apparatus body 3. .
  • the transport hand 12 is moved, and the tray T on which the substrate P is placed is transported upward of the substrate holder 9 shown in FIG.
  • the power supply to the vibration actuator VA by the hand-side power feeding unit EH may be continued to continue the vibration of the placement unit 20 of the tray T, or the power supply to the vibration actuator VA is temporarily interrupted.
  • the vibration of the placement unit 20 of the tray T may be interrupted.
  • the transport hand 12 transports the substrate P so that the surface of the substrate P and the holding portion 31 of the substrate holder 9 are substantially parallel.
  • substantially parallel means that the substrate P is in a parallel or nearly parallel state when the deflection of the substrate P due to its own weight is excluded.
  • the transport hand 12 transports the substrate P so that the held portion of the substrate P by the tray T and the substrate placement surface of the holding unit 31 are substantially parallel.
  • FIG. 13 is a schematic diagram for explaining a process of transferring the substrate P from the tray T to the substrate holder 9 of the exposure apparatus 1.
  • the transfer robot 4 transfers the substrate P to the upper side of the substrate holder 9 by the transfer hand 12, aligns the tray T with the groove 30, and then drives the drive shown in FIG.
  • the apparatus 13 is driven and the transport hand 12 is lowered.
  • the tray T is accommodated in the groove portion 30 of the substrate holder 9, and the substrate P is placed on the substrate holder 9.
  • substrate P contacts the holding part 31 (refer FIG. 3) of the board
  • the transfer robot 4 supplies power to the vibration actuator VA by the hand-side power feeding unit EH to vibrate the vibration actuator VA, and vibrates the placement unit 20 of the tray T at a predetermined frequency. Then, the frictional force between the upper surface 20a of the placement unit 20 and the lower surface of the substrate P is reduced. And when the contact area of the board
  • the substrate P is placed on the holding portion 31 of the substrate holder 9 and the substrate P is transferred from the tray T to the substrate holder 9 as shown in FIG. Further, the tray T comes into contact with the bottom of the groove 30 of the substrate holder 9, and the tray T is transferred from the transport hand 12 to the groove 30 of the substrate holder 9.
  • the substrate P is prevented from being bent when the substrate P is delivered, and the substrate P becomes flat on the substrate holder 9. Therefore, predetermined exposure can be satisfactorily performed at an appropriate position on the substrate P.
  • the transfer robot 4 retracts the transfer hand 12 from the substrate holder 9.
  • the mask M shown in FIG. 2 is illuminated with the exposure light IL by the illumination system.
  • the pattern of the mask M illuminated with the exposure light IL is projected and exposed to the substrate P placed on the substrate holder 9 via the projection optical system PL. Since the exposure apparatus 1 can satisfactorily place the substrate P on the substrate holder 9 as described above, predetermined exposure can be performed at an appropriate position on the substrate P with high accuracy, and reliability can be improved. High exposure processing can be realized. In addition, since the exposure apparatus 1 can smoothly transfer the substrate P to the tray T and the substrate holder 9 as described above, the exposure processing for the substrate P can be performed without delay.
  • the transport hand 12 is described as carrying the substrate P out, but another transport hand in the double hand structure may be carried out.
  • the transport robot 4 drives the transport hand 12 and inserts the transport hand 12 from the ⁇ Y direction side on both sides in the X-axis direction of the substrate holder 9 below the tray T placed on the substrate holder 9. To do. At the same time, suction by the vacuum pump is released by a control device (not shown), and the adsorption of the substrate P by the substrate holder 9 is released.
  • the transport hand 12 comes into contact with the lower surfaces of the side portions 18, 18 of the tray 20.
  • the transport hand 12 is further driven upward, the substrate P placed on the holding unit 31 of the substrate holder 9 is transferred to the tray T.
  • the substrate P is flattened on the mounting portion 20 of the tray T as compared with the conventional case. It can be placed in a state.
  • the tray T supporting the substrate P is lifted above the substrate holder 9, and the placement unit 20 is separated from the substrate holder 9.
  • the tray T holding the substrate P is retracted from the substrate holder 9 by the transport hand 12. In this way, the carry-out operation of the substrate P with respect to the exposure apparatus main body 3 is completed.
  • the substrate transfer apparatus 7a of the present embodiment is the same as that of the first embodiment described above in that the vibration generating unit is provided not in the tray (substrate support member) T1 but in the transfer robot 4a and the loading / unloading unit (port unit) 5a. Different from the substrate transfer device 7. Since the other points are the same as those of the substrate transfer apparatus 7 of the first embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 14 is a schematic cross-sectional view showing a schematic configuration of the tray T1 and the transport hand 12 of the present embodiment.
  • the tray T1 of this embodiment is different from the tray T described in the first embodiment in that the vibration actuator VA and the tray-side power feeding unit ET shown in FIGS. 7A and 7B are not provided.
  • the other points are the same as those of the tray T.
  • the transport robot (transport unit) 4a includes a transport hand 12 that holds the tray T1, a hand actuator (actuator, vibration generating unit) 61 that moves the transport hand 12, and a hand control unit that controls the hand actuator 61 (control unit, Vibration generation unit) 62.
  • the hand actuator 61 includes an actuator main body 61 a, a lift drive unit 63, and a linear drive unit 64.
  • the elevating drive unit 63 is fixed to the conveying hand 12, a feed screw 63 a that moves up and down the conveying hand 12 by rotating around the axis, an elevating motor 63 b that is fixed to the actuator body 61 a and rotates the feeding screw 63 a around the axis.
  • Hand support portion 63c A slide groove 61b is formed in the actuator body 61a along the direction in which the transport hand 12 is moved up and down.
  • the hand support portion 63c has an engagement portion 63d that is slidable in the extending direction of the slide groove 61b by engaging with the slide groove 61b provided in the actuator body 61a.
  • the elevating drive unit 63 rotates the feed screw 63a around the axis by the elevating motor 63b, and moves the conveying hand 12 along the slide groove 61b together with the hand supporting unit 63c, thereby moving the conveying hand 12 to the placement portion of the tray T. 20 is moved in a direction intersecting with the upper surface 20a of, for example, a vertical direction (Z direction).
  • the linear motion drive unit 64 includes a linear motor 64a that moves the actuator main body 61a along the upper surface 20a of the placement unit 20 of the tray T1, and a linear motion guide 64b that engages the actuator main body 61a in a slidable manner. Yes.
  • the linear motor 64 a and the linear motion guide 64 b are provided along the moving direction of the transport hand 12 along the upper surface 20 a of the placement unit 20.
  • the linear motion drive unit 64 drives the linear motor 64a and moves the actuator main body 61a along the linear motion guide 64b, thereby placing the transport hand 12 connected to the actuator main body 61a via the hand support portion 63c. It is made to move in the direction along the upper surface 20a of the part 20, for example, the horizontal direction (XY plane direction).
  • the hand control unit 62 is provided so that predetermined control signals can be transmitted to the lifting motor 63b and the linear motor 64a of the hand actuator 61, and the lifting motor 63b and the linear motor 64a are respectively vibrationally controllable.
  • vibration control means that each motor is vibrated at a predetermined frequency, and the transport hand 12 is vibrated at a predetermined frequency in each moving direction.
  • the number of vibration frequencies of the lift motor 63b and the linear motor 64a is set based on the vibration frequency of the transport hand 12. Further, the vibration frequency of the transport hand 12 is set based on the vibration frequency of the mounting unit 20 when the vibration of the transport hand 12 is transmitted to the tray T1 held by the transport hand 12 and the tray T1 vibrates.
  • the frequency of vibration of the placement unit 20 is set similarly to the frequency of vibration of the placement unit 20 of the tray T that is vibrated by the vibration actuator VA in the first embodiment.
  • a plurality of contact portions 17 that support the lower surface of the placement portion 20 of the tray T are provided on the upper surface of the transport hand 12.
  • the contact portion 17 of the present embodiment is provided so that vibration generated in the transport hand 12 can be efficiently transmitted to the tray T1. That is, the contact portion 17 of the present embodiment also functions as a vibration transmission member that transmits vibration.
  • FIG. 15 is a schematic cross-sectional view showing a schematic configuration of the tray T1 and the tray support portion 52 of the carry-in / out portion 5a of the present embodiment.
  • the tray support portion 52 of the carry-in / out portion 5a of this embodiment includes a support portion actuator (actuator, vibration generating portion) 71 that moves the tray support portion 52 up and down, and a support portion control that controls the support portion actuator.
  • the support section actuator 71 is provided so that the tray support section 52 can be moved in the Z-axis direction along the guide section 56 shown in FIG.
  • the support part control unit 72 is provided so as to be able to transmit a predetermined control signal to the support part actuator 71 and is provided so as to be able to control the support part actuator 71 in a vibrational manner.
  • vibration control means that each actuator is caused to vibrate at a predetermined frequency and the tray support 52 is vibrated at a predetermined frequency along the Z direction.
  • the hand actuator 61 and the hand control unit 62, and the support unit actuator 71 and the support unit control unit 72 described above constitute a vibration generation unit that generates vibrations in the transport hand 12 and the tray support unit 52, respectively.
  • these vibration generating units constitute an exciting unit V1 that generates vibrations on the transport hand 12 holding the tray T and the tray support pins 52b based on the supplied power.
  • a plurality of contact portions 52e for supporting the lower surface of the tray 20 mounting portion 20 are provided on the upper surface of the tray support pin 52b.
  • the contact portion 52e of the present embodiment is provided so that vibration generated in the tray support portion 52 can be efficiently transmitted to the tray T1. That is, the contact portion 52e of the present embodiment also functions as a vibration transmission member that transmits vibration.
  • the support portion actuator shown in FIG. 71 is activated. Then, as shown in FIG. 12A, by raising the tray support portion 52, the tray T1 held by the tray support pins 52b is raised.
  • the support portion actuator shown in FIG. 71 is vibrated at a predetermined frequency. Then, as shown in FIG. 15, the vibration of the support portion actuator 71 is transmitted to the tray support portion 52, and the tray support pin 52b vibrates at a predetermined frequency.
  • the vibration is transmitted to the tray T1 via the contact portion 52e, and the placement unit 20 of the tray T1 has a predetermined frequency as in the first embodiment. Vibrate. Thereby, similarly to 1st Embodiment shown in FIG.12 (b), the bending of the board
  • the vibrations of the elevating motor 63b and the linear motor 64a are transmitted to the transport hand 12, and the transport hand 12 vibrates in a direction intersecting the upper surface 20a of the tray T1 and a direction along the upper surface 20a at a predetermined frequency.
  • the vibration of the transport hand 12 is transmitted to the tray T1 via the contact portion 17, and the placement unit 20 of the tray T1 vibrates in each direction at a predetermined frequency.
  • the substrate transfer device 7b of the present embodiment is the same as that of the first embodiment described above in that the vibration generating unit is provided not in the tray (substrate support member) T2, but in the transfer robot 4b and the carry-in / out unit (port unit) 5b. Different from the substrate transfer device 7. Since the other points are the same as those of the substrate transfer apparatus 7 of the first embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 16A and 16B are diagrams for explaining the schematic configuration of the transport hand 12 and the tray T2 of the present embodiment.
  • FIG. 16A is a schematic cross-sectional view corresponding to a cross section taken along the line AA ′ of FIG.
  • FIG. 16B is an enlarged view of a part ⁇ 1 in FIG. 16A.
  • 17A and 17B are diagrams for explaining the schematic configuration of the tray support 52 and the tray T2 of the present embodiment
  • FIG. 17A is a schematic cross-sectional view corresponding to the cross section along the line BB ′ of FIG.
  • FIG. 17B is an enlarged view of the ⁇ 1 portion of FIG. 17A.
  • the tray T2 of the present embodiment is the same as the tray T described in the first embodiment in that the vibration actuator VA and the tray-side power feeding unit ET shown in FIGS. 7A and 7B are not provided.
  • the other points are the same as the tray T.
  • the substrate transport apparatus 7b of the present embodiment includes a vibration unit V2 that vibrates the transport hand 12 and vibrates the tray T2.
  • the vibration unit V ⁇ b> 2 includes a plurality of vibration actuators (vibration generation units) VA ⁇ b> 1 provided in the transport hand 12 and a hand side power supply unit (power supply unit) EH ⁇ b> 2 provided in the transport hand 12.
  • the vibration unit V2 includes a vibration actuator (vibration generation unit) VA2 provided in the tray support unit 52 of the carry-in / out unit 5b, and a support unit side power supply unit (power supply unit) EP2. have.
  • the vibration actuator VA1 is the same as the vibration actuator VA of the first embodiment, and is embedded in the transport hand 12 and fixed to the transport hand 12.
  • the vibration actuator VA1 is provided on both of the pair of claw-like portions that support the side portions 18 and 18 of the placement portion 20 of the tray T2.
  • the hand side power supply unit EH2 includes a power supply unit (not shown) provided in the transfer robot 4b and a hand side wiring 14b.
  • the hand side wiring 14b has one end connected to the terminal VAT1 of the vibration actuator VA1 and the other end connected to a power supply (not shown) of the transfer robot 4b, thereby connecting the terminal VAT1 and the power supply of the vibration actuator VA1. Electrically connected.
  • a plurality of contact portions 17 similar to those in the second embodiment described above are provided on the upper surface of the transport hand 12.
  • the contact portion 17 is provided in the vicinity of the vibration actuator VA1, and is disposed so as to overlap the vibration actuator VA1 in a plan view.
  • the vibration actuator VA1 is provided in the vicinity of the contact portion 17 and is disposed at a position overlapping the contact portion 17 in plan view.
  • the vibration actuator VA2 is the same as the vibration actuator VA of the first embodiment, and is embedded in the tray support pin 52b and fixed to the tray support pin 52b.
  • the support part side power supply part EP2 includes a power supply part (not shown) provided in the carry in / out part 5b and a support part side wiring 57b. One end side of the support part side wiring 57b is connected to the vibration actuator VA2, and the other end side is connected to a power supply unit (not shown) of the loading / unloading part 5b, thereby electrically connecting the vibration actuator VA2 and the power supply part. .
  • a contact portion 52e similar to that of the second embodiment described above is provided on the upper surface of the tray support pin 52b.
  • the contact portion 52e is provided in the vicinity of the vibration actuator VA2, and is disposed so as to overlap the vibration actuator VA2.
  • the vibration actuator VA2 is provided in the vicinity of the contact portion 52e, and is disposed at a position overlapping the contact portion 52e in plan view.
  • FIGS. 17A and 17B when the substrate P supported by the substrate support pins 51b is placed on the placement portion 20 of the tray T2, FIGS. 17A and 17B. Electric power is supplied to the vibration actuator VA2 from the support part side power supply part EP2 shown in FIG. 3 to vibrate the vibration actuator VA2 at a predetermined frequency. Then, as shown in FIG. 17B, the tray support pin 52b is vibrated at a predetermined frequency by the vibration actuator VA2.
  • the vibration is transmitted to the tray T2 via the contact portion 52e, and the placing portion 20 of the tray T2 is moved similarly to the first embodiment and the second embodiment. Vibrates at a predetermined frequency. Thereby, similarly to 1st Embodiment shown in FIG.12 (b), the bending of the board
  • the vibration actuator VA2 is provided in the vicinity of the contact portion 52e and is disposed at a position overlapping the contact portion 52e in a planar manner. Accordingly, vibration attenuation is prevented, and vibration energy generated in the vibration actuator VA2 can be efficiently transmitted to the tray T2 and the substrate P.
  • the vibration actuator VA1 when the tray T is held and lifted by the transport hand 12, power is supplied to the vibration actuator VA1 by the hand-side power feeding unit EH2 shown in FIGS.
  • the actuator VA1 is vibrated at a predetermined frequency.
  • the vibration actuator VA1 vibrates at a predetermined frequency
  • the transport hand 12 is vibrated at a predetermined frequency.
  • the vibration of the transport hand 12 is transmitted to the tray T2 via the contact portion 17, and the placement unit 20 of the tray T2 vibrates at the predetermined frequency.
  • the vibration actuator VA1 is provided in the vicinity of the contact portion 17 and is disposed at a position overlapping the contact portion 17 in a plan view. Accordingly, vibration attenuation is prevented, and vibration energy generated in the vibration actuator VA1 can be efficiently transmitted to the tray T2 and the substrate P.
  • the substrate P in the above-described embodiment not only a glass substrate for a display device but also a semiconductor wafer for manufacturing a semiconductor device, a ceramic wafer for a thin film magnetic head, or an original mask or reticle used in an exposure apparatus ( Synthetic quartz, silicon wafer) or the like is applied.
  • a step-and-scan type scanning exposure apparatus that moves the mask M and the substrate P synchronously to scan and expose the substrate P with the exposure light IL through the pattern of the mask M.
  • the present invention may be applied to a step-and-repeat projection exposure apparatus (stepper) in which the pattern of the mask M is collectively exposed while the mask M and the substrate P are stationary, and the substrate P is sequentially moved stepwise. it can.
  • the present invention also relates to a twin-stage type exposure having a plurality of substrate stages as disclosed in US Pat. No. 6,341,007, US Pat. No. 6,208,407, US Pat. No. 6,262,796, and the like. It can also be applied to devices.
  • the present invention relates to a substrate stage for holding a substrate as disclosed in US Pat. No. 6,897,963, European Patent Application No. 1713113, etc., and a reference mark without holding the substrate.
  • the present invention can also be applied to an exposure apparatus that includes a formed reference member and / or a measurement stage on which various photoelectric sensors are mounted.
  • An exposure apparatus including a plurality of substrate stages and measurement stages can be employed.
  • a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used.
  • a variable shaped mask also called an electronic mask, an active mask, or an image generator
  • a pattern forming apparatus including a self-luminous image display element may be provided instead of the variable molding mask including the non-luminous image display element.
  • the exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection, and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus.
  • comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • a microdevice such as a semiconductor device includes a step 201 for designing the function and performance of the microdevice, a step 202 for producing a mask (reticle) based on the design step, and a substrate which is a base material of the device.
  • Manufacturing step 203 including substrate processing (exposure processing) including exposing the substrate with exposure light using a mask pattern and developing the exposed substrate (photosensitive agent) according to the above-described embodiment
  • the substrate is manufactured through a substrate processing step 204, a device assembly step (including processing processes such as a dicing process, a bonding process, and a packaging process) 205, an inspection step 206, and the like.
  • the photosensitive agent is developed to form an exposure pattern layer (developed photosensitive agent layer) corresponding to the mask pattern, and the substrate is processed through the exposure pattern layer. It is.
  • support part actuator (actuator, Vibration generating unit), 72 ... support unit control unit (control unit, vibration generating unit), EH, EH2 ... hand side power supply unit (power supply unit), EP, EP2 ... support unit side power supply unit (power supply unit), ET ... tray Side feeding unit (feeding unit), IL ... exposure , P ... substrate, T, T1, T2 ... tray (substrate supporting member, the substrate supporting device), V, V1, V2 ... exciting units, VA, VA1, VA2 ... vibration actuator (vibration generating portion)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 基板支持部材(T)に載置された基板(P)を基板支持部材とともに搬送する基板搬送装置(7)であって、基板が載置された基板支持部材を振動させる加振部(V)と、基板支持部材を保持して移動する搬送部(4)と、を備える。

Description

基板搬送装置、露光装置、基板支持装置及びデバイス製造方法
 本発明は、基板搬送装置、露光装置、基板支持装置及びデバイス製造方法に関するものである。
 本願は、2009年10月28日に出願された米国仮出願第61/272,745号に基づき優先権を主張しその内容をここに援用する。
 フラットパネルディスプレイ等の電子デバイスの製造工程においては、露光装置や検査装置等の大型基板の処理装置が用いられている。これらの処理装置を用いた露光工程、検査工程では、大型基板(例えばガラス基板)を処理装置に搬送する下記特許文献に開示されるような搬送装置が用いられる。
特開2001-100169号公報
 ところで、上述の大型基板の搬送装置においては、搬出入部に保持された基板を基板支持装置に受け渡す際に、基板と基板支持装置とが別々に支持される。そのため、基板の支持方法によっては、基板が自重で下方に撓む場合がある。自重で撓んだ状態の基板が基板支持装置に受け渡されると、基板の下方に撓んだ部分が基板支持装置と接触し、接触した部分の摩擦により、基板支持装置上で基板が撓んだ状態が維持される。
 例えば露光装置では、このように撓んだ状態の基板が受け渡されると、基板上の適正な位置に所定の露光を行うことができなくなる等の露光不良の問題が生じる。また、基板支持装置に載置された基板に撓みが生じた場合、それを解消するために受け渡しをやり直すことにより、基板の処理が遅延するという問題が生じる。
 本発明の態様は、基板の受け渡し時に基板の撓みを解消できる基板搬送装置、露光装置、基板支持装置及びデバイス製造方法を提供することを目的としている。
 本発明の第1の態様に従えば、基板支持部材に載置された基板を前記基板支持部材とともに搬送する基板搬送装置であって、前記基板が載置された前記基板支持部材を振動させる加振部と、前記基板支持部材を保持して移動する搬送部と、を備える基板搬送装置が提供される。
 本発明の第2の態様に従えば、基板ホルダが保持する基板に露光光を照射して前記基板を露光する露光装置であって、前記基板ホルダに前記基板を搬送する上記の基板搬送装置を備える露光装置が提供される。
 本発明の第3の態様に従えば、基板を支持する基板支持装置であって、前記基板が載置される載置部と、前記載置部に設けられ、前記載置部を振動させる振動発生部と、を有する基板支持装置が提供される。
 本発明の第4の態様に従えば、上記の露光装置を用いて、前記基板を露光することと、露光された前記基板を露光結果に基づいて処理することと、を含むデバイス製造方法が提供される。
 本発明の態様によれば、基板の受け渡し時に基板の撓みを解消できる。
露光装置の全体概略を示す断面平面図である。 搬送ロボットの外観斜視図である。 搬送ロボットの動作を説明するための斜視図である。 搬出入部の概略構成を示す側面図である。 トレイの平面構造を示す平面図である。 トレイが基板ホルダの溝部に収容された状態を示す部分側断面図である。 第1実施形態のトレイ及び搬送ハンドの概略構成を示す断面図である。 第1実施形態のトレイ及び搬送ハンドの概略構成を示す断面図である。 第1実施形態のトレイ及び搬出入部の概略構成を示す断面図である。 第1実施形態のトレイ及び搬出入部の概略構成を示す断面図である。 基板の撓みを色の濃淡で示す平面図である。 従来の露光装置の基板受け渡し工程を説明する模式図である。 従来の露光装置の基板受け渡し工程を説明する模式図である。 本実施形態の露光装置の基板受け渡し工程を説明する模式図である。 本実施形態の露光装置の基板受け渡し工程を説明する模式図である。 第2実施形態のトレイ及び搬送ハンドの概略構成を示す断面図である。 第2実施形態のトレイ及び搬出入部の概略構成を示す断面図である。 第3実施形態のトレイ及び搬送ハンドの概略構成を示す断面図である。 第3実施形態のトレイ及び搬送ハンドの概略構成を示す断面図である。 第3実施形態のトレイ及び搬出入部の概略構成を示す断面図である。 第3実施形態のトレイ及び搬出入部の概略構成を示す断面図である。 本実施形態のデバイス製造方法を説明するフローチャートである。
 本発明の第1実施形態について図面を参照しながら説明する。なお、本発明はこれに限定されることはない。以下では、本発明に係る基板搬送装置を備え、感光剤を塗布された基板に対して液晶表示デバイス用パターンを露光する露光処理を行う露光装置について説明するとともに、本発明に係る基板支持装置、及びデバイス製造方法の一実施形態についても説明する。
 図1は、本実施形態の露光装置の概略構成を示す断面平面図である。露光装置1は、基板に液晶表示デバイス用パターンを露光する露光装置本体3と、搬送ロボット(搬送部)4、搬出入部(ポート部)5、及び不図示の加振部を有する基板搬送装置7と、を備えており、これらは高度に清浄化され、且つ所定温度に調整されたチャンバ2内に収められている。基板搬送装置7の加振部については、後に図面を用いて詳細に説明する。本実施形態において、基板は、大型のガラスプレートであり、その一辺のサイズは、例えば500mm以上である。
 図2は、露光装置本体3、及びこの露光装置本体3に基板Pを搬送する搬送ロボット4の外観斜視図である。露光装置本体3は、マスクMを露光光ILで照明する不図示の照明系と、液晶表示デバイス用パターンが形成されたマスクMを保持する不図示のマスクステージと、このマスクステージの下方に配置された投影光学系PLと、投影光学系PLの下方に配置されたベース8上を2次元的に移動可能に設けられた基板ホルダ9と、基板ホルダ9を保持するとともにその基板ホルダ9を移動させる移動機構33とを備えている。すなわち、露光装置本体3は、基板ホルダ9と移動機構33とを備えたステージ装置が設けられている。
 なお、以下の説明においては、ベース8に対する基板ホルダ9の2次元的な移動が水平面内で行われるものとし、この水平面内で互いに直交する方向にX軸およびY軸を設定している。基板Pに対する基板ホルダ9の保持面は、基準の状態(例えば、基板Pの受け渡しを行う時の状態)において水平面に平行とされる。また、X軸およびY軸と直交する方向にZ軸を設定しており、投影光学系PLの光軸はZ軸に平行とされている。なお、X軸、Y軸およびZ軸まわりの各方向を、それぞれθX方向、θY方向およびθZ方向と呼ぶ。
 移動機構33は、移動機構本体35と、移動機構本体35上に配置され、基板ホルダ9を保持するプレートテーブル34とを有する。移動機構本体35は、気体軸受によって、ガイド面8a(ベース8の上面)に非接触で支持されており、ガイド面8a上をXY方向に移動可能である。露光装置本体3は、基板Pを保持した状態で、光射出側(投影光学系PLの像面側)において、ガイド面8aの所定領域内を移動可能である。
 移動機構本体35は、例えばリニアモータ等のアクチュエータを含む粗動システム(移動機構)の作動により、ガイド面8a上でXY平面内を移動可能である。プレートテーブル34は、例えばボイスコイルモータ等のアクチュエータを含む微動システムの作動により、移動機構本体35に対してZ軸、θX、θY方向に移動可能である。プレートテーブル34は、粗動システム及び微動システムを含む基板ステージ駆動システムの作動により、基板Pを保持した状態で、X軸、Y軸、Z軸、θX、θY、およびθZ方向の6つの方向に移動可能である。
 搬送ロボット4は、露光装置本体3及び搬出入部5に対して基板Pを搬送するためのものである。搬送ロボット4は、載置された基板Pを支持する後述のトレイ(基板支持部材、基板支持装置)Tを保持して移動させることで、基板PをトレイTとともに搬送し、露光装置本体3及び搬出入部5に対して基板Pを受け渡す。
 露光装置1は、上記基板ホルダ9上に長方形の基板Pが載置された状態でステップ・アンド・スキャン方式の露光が行われ、マスクMに形成されたパターンが基板P上の複数、例えば4つの露光領域(パターン転写領域)に順次転写されるようになっている。すなわち、この露光装置1では、照明系からの露光光ILにより、マスクM上のスリット状の照明領域が照明された状態で、不図示のコントローラによって不図示の駆動系を介して、マスクMを保持するマスクステージと基板Pを保持する基板ホルダ9とを同期して所定の走査方向(ここではY軸方向とする)に移動させることにより、基板P上の1つの露光領域にマスクMのパターンが転写される、すなわち走査露光が行われる。なお、本実施形態に係る露光装置1は、投影光学系PLが複数の投影光学モジュールを有し、上記照明系が複数の投影光学モジュールに対応する複数の照明モジュールを含む、所謂マルチレンズ型スキャン露光装置を構成するものである。
 この1つの露光領域の走査露光の終了後に、基板ホルダ9を次の露光領域の走査開始位置まで所定量X方向に移動するステッピング動作が行われる。そして、露光装置本体3では、このような走査露光とステッピング動作を繰り返し行うことにより、順次4つの露光領域にマスクMのパターンが転写される。
 図2に示すように、搬送ロボット4は、例えば水平関節型構造を有するものであり、垂直な関節軸を介して連結された複数部分からなるアーム部10と、このアーム部10の先端に連結される搬送ハンド12と、駆動装置13と、を備えている。アーム部10は、駆動装置13により例えば上下方向(Z軸方向)に移動可能となっている。駆動装置13は、不図示の制御装置により、その駆動が制御されている。
 搬送ハンド12は、先端部が開放された略U型の形状に設けられ、トレイTの長手方向(基板Pの長辺方向)の両側部18,18をトレイTの長辺と平行な支持方向に支持することで、トレイTを介して基板Pを保持可能になっている。また、搬送ハンド12は、トレイTに設けられた不図示の振動アクチュエータ(振動発生部)に電力を供給する不図示の給電部を備えている。振動アクチュエータ及び給電部については、後に図面を用いて詳細に説明する。
 図3は搬送ロボット4の動作を説明するための斜視図である。図2及び図3に示すように、搬送ロボット4は、搬送ハンド12の長手方向(基板Pの長辺方向)を露光装置本体3の基板ホルダ9側に向けるように搬送ハンド12の向きを変えることができるようになっている。これにより、搬送ロボット4は基板Pを基板ホルダ9に受け渡すようになっている。
 なお、この搬送ロボット4は、図2及び図3には便宜上図示していないが、搬送ハンド12の下方に設けられ、この搬送ハンド12と同様の機構を有し、且つ独立駆動可能な搬送ハンドを備えたダブルアーム構造になっている。また、搬送ロボット4は、水平関節型構造のロボットに限定されるものではなく、公知のロボット(一般には搬送機構)を適宜採用もしくは組み合わせて実現可能なものである。
 図4は、搬出入部5の概略構成を示す側面図である。搬出入部5は、露光装置1に隣接配置されたコータ・デベロッパ(不図示)において感光剤が塗布されて搬送されてきた基板Pが受け渡されるようになっている。搬出入部5は、基板Pを支持する基板支持部51と、後述のトレイTを支持するトレイ支持部52とを備えている。基板支持部51は、平板状の第1支持部51aと、この第1支持部51a上に立設され、基板Pの下面の異なる箇所をそれぞれ支持する複数の基板支持ピン51bとを備えている。本実施形態において基板支持ピン51bは、例えば30本設けられている。
 基板支持ピン51bの各々は、下端部が第1支持部51aに固定され、上端部(上端面)が基板Pを支持可能に設けられている。基板支持ピン51bの上端面には不図示の真空ポンプに接続された吸着孔が設けられ、基板Pを吸着して保持することができるようになっている。また、基板支持ピン51bの上端部には、基板支持ピン51bに基板Pが載置されているか否かを検出する不図示の基板検出部が設けられている。
 基板支持部51は、連結部材53を介して駆動部54に接続されている。駆動部54は、例えば、粗動システム及び微動システムを含む駆動システムの作動により、ベース部55上でXY平面、及びθZ方向に移動可能になっている。これにより、搬出入部5は、基板支持ピン51bに支持された基板Pの位置補正をしたり、基板Pを90度回転させることができるようになっている。
 トレイ支持部52は、枠状の第2支持部52aと、この第2支持部52a上に立設され、トレイTの下面の異なる箇所をそれぞれ支持する複数のトレイ支持ピン(支持部)52bとを備えている。また、トレイ支持部52は、トレイTが備える不図示の振動アクチュエータ(振動発生部)に電力を供給する不図示の給電部を備えている。振動アクチュエータ及び給電部については、後に図面を用いて詳細に説明する。
 トレイ支持ピン52bの各々は、下端部が第2支持部52aに固定され、上端部がトレイTを支持可能に設けられている。トレイ支持ピン52bは基板支持部51の第1支持部51aよりも外側に配置されている。また、トレイ支持ピン52bの上端部には、トレイ支持ピン52bにトレイTが載置されているか否かを検出する不図示のトレイ検出部が設けられている。
 トレイ支持部52は、不図示の駆動部の作動により、ガイド部56に沿ってZ軸方向に移動可能に設けられている。ガイド部56は、基板支持部51の駆動部54及びベース部55の外側に設けられている。また、基板支持部51の第1支持部51a、連結部材53及び駆動部54は、枠状の第2支持部52aの内側に配置されている。これにより、トレイ支持部52は、基板支持部51の第1支持部51a、連結部材53及び駆動部54と干渉することなく、Z軸方向に移動できるようになっている。
 また、トレイ支持部52は、Z軸正方向に上昇することで、トレイ支持ピン52bに支持されたトレイTをZ軸正方向に上昇させ、基板支持部51の基板支持ピン51b上に支持された基板Pを、トレイTに載置させるようになっている。また、トレイ支持部52は、トレイ支持ピン52bにより支持され、基板Pが載置されたトレイTを、搬送ロボット4の搬送ハンド12に受け渡すようになっている。
 次に、トレイTの構造について詳述する。図5は、トレイTの平面構造を示す平面図である。図5に示すように、トレイTは、縦横に所定間隔で張り巡らされた複数本の線状部材19により格子状に形成された載置部20を備えている。すなわち、載置部20の線状部材19が配置されていない部分は、矩形状の開口部21となっている。トレイTは、載置部20の両側部18,18の間の所定位置に基板Pを載置して、基板Pを下方から支持するようになっている。なお、トレイTの形状は図5に示す形状に限定されることはなく、例えば開口部21が一つのみ形成された、基板Pの周縁部のみを支持する枠状の単一フレームであってもよい。
 基板Pは、長辺が載置部20の両側部18,18に平行になるように配置される。トレイTは、載置部20に基板Pを載置した状態で、両側部18,18が搬送ロボット4の搬送ハンド12によって下方から支持されるようになっている(図2及び図3参照)。すなわち、本実施形態における搬送ロボット4は、搬送ハンド12によりトレイTを保持して移動させることで、トレイTを介して基板Pを支持するとともに、基板Pを所定の位置に搬送するようになっている。
 トレイTは、載置部20の下面が、図4に示す搬出入部5のトレイ支持部52の複数のトレイ支持ピン52bによって支持されるようになっている。また、トレイTは、図4に示すように載置部20の下面がトレイ支持ピン52bによって支持された状態で、基板支持部51の複数の基板支持ピン51bを、図5に示す複数の開口部21に挿通させるようになっている。
 なお、トレイTの形成材料としては、トレイTが基板Pを支持した際に基板Pの自重による撓みを抑制することが可能な材料を用いることが好ましく、例えば各種合成樹脂、あるいは金属を用いることができる。具体的には、ナイロン、ポリプロピレン、AS樹脂、ABS樹脂、ポリカーボネート、繊維強化プラスチック、ステンレス鋼等が挙げられる。繊維強化プラスチックとしては、GFRP(Glass Fiber Reinforced Plastic:ガラス繊維強化熱硬化性プラスチック)、及び/又はCFRP(Carbon Fiber Reinforced Plastic:炭素繊維強化熱硬化性プラスチック)が挙げられる。また、格子状に張り巡らされる線状部材19は、ワイヤー等の柔軟性に優れた部材を用いて形成してもよい。
 ここで、図2に示すように、基板ホルダ9の上面には、トレイTを保持する溝部30が形成されている。溝部30は、トレイTのフレーム構造に対応して格子状に設けられている。また、基板ホルダ9の上面には、溝部30が形成されることにより、基板Pの保持部(ホルダ部)31が島状に複数設けられている。保持部31は、トレイTの開口部21に対応する大きさを有している。
 保持部31の上面は、基板Pに対する基板ホルダ9の実質的な保持面が良好な平面度を有するように仕上げられている。さらに、保持部31の上面には、基板Pをこの面に倣わせて密着させるための吸引孔Kが複数設けられている(図2参照)。各吸引孔Kは、不図示の真空ポンプに接続されている。
 図6は、トレイTが基板ホルダ9の溝部に30収容された状態を示す部分側断面図である。図6に示すように、トレイTの厚さは、溝部30の深さよりも小さくなっている。これにより、トレイTが溝部30内に挿入されて沈み込むことで、開口部21から保持部31が突出された状態となり、トレイT上に載置されている基板Pのみが保持部31に受け渡されるようになっている。
 トレイTの載置部20の下面側の四隅には円錐状の凹部41が形成され、溝部30内で各凹部41に対応する位置には、凹部41に係合する球状の凸部42が設けられている。トレイTは、載置部20が溝部30に挿入された際に載置部20の凹部41内に基板ホルダ9の凸部42が係合することで、溝部30に収容された際の位置ずれが防止されるようになっている。
 以下、本実施形態の基板搬送装置7の加振部、振動発生部及び給電部について、図7A、図7B、図8A、及び図8Bを用いて詳細に説明する。
 図7A及び7Bは、本実施形態の搬送ハンド12及びトレイTの概略構成を説明する図であり、図7Aは図2のA-A’線に沿う断面に対応する模式的な断面図、図7Bは図7Aのα部の拡大図である。図8A及び8Bは、本実施形態のトレイ支持部52及びトレイTの概略構成を説明する図であり、図8Aは図4のB-B’線に沿う断面に対応する模式的な断面図、図8Bは図8Aのβ部の拡大図である。
 図7A及び図7Bに示すように、本実施形態の基板搬送装置7は、トレイTを振動させる加振部Vを備えている。加振部Vは、トレイTに設けられた振動アクチュエータ(振動発生部)VAと、トレイTに設けられたトレイ側給電部(給電部)ETと、搬送ハンド12に設けられたハンド側給電部(給電部)EHとを有している。また、加振部Vは、図8A及び図8Bに示すように、搬出入部5のトレイ支持部52に設けられた支持部側給電部(給電部)EPを有している。
 振動アクチュエータVAは、載置部20を構成する線状部材19に埋め込まれて載置部20の内部に配置され、載置部20に対して固定されている。振動アクチュエータVAとしては、例えば偏心した分銅を回転させることで振動を発生させる振動モータ及び/又は、印加する電圧に応じて変形する圧電素子を備えた超音波モータ等を用いることができる。本実施形態では複数の振動アクチュエータVAを備える構成について説明する。他の実施形態において、条件によっては振動アクチュエータVAは1つにできる。
 なお、振動アクチュエータVAは、載置部20に固定することができ、載置部20を所望の振動数で振動させることができるものであれば、上記の振動モータ及び/又は超音波モータに限定されない。また、振動アクチュエータVAは、必ずしも載置部20の内部に埋め込む必要はなく、線状部材19の下面及び/又は側面に固定することもできる。また、振動アクチュエータVAは、載置部20の振動を与えたい箇所の近傍に配置するのが効果的である。
 振動アクチュエータVAは、端子部VATに所定の電圧が印加されることで駆動され、トレイTの載置部20を所定の振動数で振動させるようになっている。ここで、振動アクチュエータVAの振動の周波数は、載置部20の振動の周波数に応じて設定される。載置部20の振動の周波数は、載置部20に載置された基板Pの下面と載置部20の上面(基板支持面)20aとが振動の作用により滑りを生じるような、高周波に設定される。
 ハンド側給電部EHは、搬送ロボット4に設けられた電源部(図示略)と、ハンド側配線14と、ハンド側端子部15と、を備える。ハンド側配線14は、一端側がハンド側端子部15に接続され、他端側が搬送ロボット4の不図示の電源部に接続されることで、ハンド側端子部15と電源部とを電気的に接続している。
 ハンド側端子部15は、トレイTの下面に配置されたトレイ側端子部22に対応して、搬送ハンド12の上面に露出して形成されている。ハンド側端子部15は、搬送ハンド12がトレイTに対して位置決めされてトレイTを保持したときに、トレイTの下面に露出して形成されたトレイ側端子部22と接触することで、トレイ側端子部22と電気的に接続されるようになっている。
 また、ハンド側端子部15は弾性変形可能に設けられ、搬送ハンド12がトレイTを保持したときに、トレイTに設けられたトレイ側端子部22と接触して搬送ハンド12側に弾性変形することで、トレイ側端子部22に対して付勢されるようになっている。これにより、ハンド側端子部15は、トレイ側端子部22に対して押圧された状態で接触し、トレイ側端子部22との電気的な接続が確実になされるようになっている。
 トレイ側給電部ETは、トレイTに設けられたトレイ側配線23と、トレイ側端子部22と、を備える。
 トレイ側配線23は、一端が振動アクチュエータVAの端子部VATに接続され、他端がトレイ側端子部22に接続されることで、トレイTの下面に露出したトレイ側端子部22と載置部20内部に配置された振動アクチュエータVAの端子部VATとを電気的に接続している。
 トレイ側端子部22は、搬送ハンド12の上面に配置されたハンド側端子部15に対応して、載置部20の下面に露出して形成されている。トレイ側端子部22は、搬送ハンド12がトレイTに対して位置決めされ、トレイTを保持したときに、搬送ハンド12の上面に露出して形成されたハンド側端子部15と接触することで、ハンド側端子部15と電気的に接続されるようになっている。
 また、トレイ側端子部22は弾性変形可能に設けられ、搬送ハンド12がトレイTを保持したときに、搬送ハンド12に設けられたハンド側端子部15と接触してトレイT側に弾性変形することで、ハンド側端子部15に対して付勢されるようになっている。これにより、トレイ側端子部22は、ハンド側端子部15に対して押圧された状態で接触し、ハンド側端子部15との電気的な接続が確実になされるようになっている。
 以上の構成により、ハンド側給電部EH及びトレイ側給電部ETは、ハンド側端子部15とトレイ側端子部22とが電気的に接続されたときに、ハンド側配線14の他端に接続された不図示の電源部が供給する電力を、ハンド側配線14及びトレイ側配線23を介して振動発生部としての振動アクチュエータVAに供給可能になっている。
 また、搬送ハンド12の上面には、トレイTの載置部20の下面を支持する複数の当接部16が設けられている。当接部16は、トレイTに設けられた振動アクチュエータVAと平面視で重ならない位置に配置されている。換言すると、振動アクチュエータVAは、トレイTが搬送ハンド12に対して位置決めされて保持された状態で、トレイTに沿った方向に関して2つの当接部16と当接部16との間に配置されている。ここで、振動アクチュエータVAは、当接部16によって支持されたトレイTの載置部20が振動する際に、線状部材19の振動の腹となる位置に配置されることが望ましい。
 図8A及び図8Bに示すように、支持部側給電部EPは、搬出入部5に設けられた電源部(図示略)と、支持部側配線57と、支持部側端子部58と、を備える。支持部側配線57は、一端側が支持部側端子部58に接続され、他端側が搬出入部5の不図示の電源部に接続されることで、支持部側端子部58と電源部とを電気的に接続している。
 支持部側端子部58は、トレイTの下面に配置されたトレイ側端子部22に対応して、トレイ支持ピン52bの上端部に露出して形成されている。支持部側端子部58は、トレイTがトレイ支持ピン52bに対して位置決めされて保持されたときに、トレイTの下面に露出して形成されたトレイ側端子部22と接触することで、トレイ側端子部22と電気的に接続されるようになっている。
 また、支持部側端子部58は弾性変形可能に設けられ、トレイ支持ピン52bがトレイTを支持したときに、トレイTに設けられたトレイ側端子部22と接触してトレイ支持部52側に弾性変形することで、トレイ側端子部22に対して付勢されるようになっている。これにより、支持部側端子部58は、トレイ側端子部22に対して押圧された状態で接触し、トレイ側端子部22との電気的な接続が確実になされるようになっている。
 以上の構成により、支持部側給電部EPは、支持部側端子部58とトレイ側端子部22とが電気的に接続されたときに、支持部側配線57の他端に接続された不図示の電源部が供給する電力を、支持部側配線57及びトレイ側配線23を介して振動発生部としての振動アクチュエータVAに供給するようになっている。
 また、トレイ支持ピン52bの上面には、トレイTの載置部20の下面を支持する複数の当接部52cが設けられている。トレイ支持ピン52bは、トレイTを支持したときに、トレイTに設けられた振動アクチュエータVAと平面視で重ならないように配置されている。すなわち、振動アクチュエータVAはトレイTがトレイ支持ピン52bに対して位置決めされてトレイ支持ピン52bによって支持されたときに、トレイTに沿った方向に監視て2つの当接部52cと当接部52cとの間に配置されるようになっている。ここで、振動アクチュエータVAは、当接部52cによって支持されたトレイTの載置部20が振動する際に、線状部材19の振動の腹となる位置に配置されることが望ましい。
 図9は、図4に示す基板支持ピン51bによって支持された基板Pの撓みを色の濃淡で示す平面図である。図中、色が薄いほど基板Pが下方(図4におけるZ軸負方向)に撓んでいることを示している。図9に示すように、基板Pは、5×6のマトリクス状に配置された合計30本の基板支持ピン51bによって下面側が支持される。そのため、基板支持ピン51bから離れた基板Pの中央部及び/又は外縁部は、基板Pの自重により下方に撓んだ状態となる。また、基板Pの長辺に沿う部分が最も下方に撓んだ状態となり、次いで短辺に沿う部分及び短辺に平行な中央部分が下方に撓んだ状態となる。
 次に、露光装置1の動作について説明する。具体的には、搬送ロボット4により基板Pを搬入及び搬出する方法について説明する。ここでは、基板PをトレイTに載置し、このトレイTに載置された基板Pを搬送ロボット4で露光装置本体3に対して搬入、搬出する手順について説明する。
 感光剤が塗布された基板Pは、コータ・デベロッパから図1に示す搬出入部5に搬送され、図4に示す基板支持部51の基板支持ピン51b上の所定の位置に位置決めされて載置され、基板支持ピン51bの上面に吸着保持される。このように、複数の基板支持ピン51bによって支持された基板Pは、図9に示すように、基板支持ピン51bによって支持されていない部分が下方に撓んだ状態となっている。
 基板Pが基板支持ピン51bの上面に吸着保持されると、基板支持部51は、基板支持ピン51bの上面に基板Pを吸着保持した状態で、駆動部54を作動させ、トレイTに対して基板Pを位置合わせする。基板PとトレイTとの位置合わせが終了すると、搬出入部5は、トレイ支持部52をガイド部56に沿って上昇させ、トレイ支持ピン52b上のトレイTを上昇させる。これにより、基板Pは位置決めされた状態でトレイTの載置部20上に載置される。
 このとき、従来の露光装置では、撓んだ状態の基板をトレイに載置させる際に、以下のような問題があった。図10(a)~(c)は、従来の露光装置の搬出入部500から従来のトレイT0へ基板P0を受け渡す工程を説明する模式図である。
 図10(a)に示すように、複数の基板支持ピン510bによって支持された基板P0は、基板支持ピン510bによって支持されていない部分が下方に撓んだ状態になっている。この状態で、トレイ支持部520を上昇させ、トレイ支持ピン520bによって支持されたトレイT0を上昇させる。
 すると、図10(b)に示すように、基板P0はトレイT0上に載置され、搬出入部500の基板支持ピン510bからトレイT0に基板P0が受け渡される。このとき、基板P0は、下方に撓んだ部分からトレイT0と接触し、その部分とトレイT0との摩擦により、基板PがトレイT0上で拡がることができず、波打つように撓んだ状態が維持される。次に、トレイT0の下方に配置した搬送ロボット400の搬送ハンド1200を上昇させる。
 すると、10(c)に示すように、トレイT0の両側部が搬送ハンド1200によって保持され、トレイT0が基板P0を載置した状態でトレイ支持ピン520bの上方へ持ち上げられる。トレイT0は両側部が支持されることで、基板P0とトレイT0の自重により、搬送ハンド1200によって支持された両側部の間が下方に撓んだ状態になる。すると、基板P0は中央部が下方に凸となるように反った状態となり、中央部に向けて圧縮されるような応力が作用すると共に、上方から見た基板P0の平面積が小さくなる。
 その後、搬送ハンド1200を移動させ、基板P0を載置したトレイT0を、図11に示す基板ホルダ900の上方へ向けて搬送する。
 図11は、従来のトレイT0から従来の露光装置の基板ホルダ900に基板P0を受け渡す工程を説明する模式図である。
 図11(a)に示すように、搬送ハンド1200により基板P0を基板ホルダ900の上方へ搬送した後、搬送ハンド1200を下降させる。すると、図11(b)に示すように、トレイT0は、基板ホルダ900の溝部300に収容され、基板P0は基板ホルダ900上に載置される。このとき、基板P0は最も下方に撓んだ部分から基板ホルダ900と接触する。
 図11(c)に示すように、さらに搬送ハンド1200を下降させると、基板P0が基板ホルダ900に載置され、基板P0がトレイT0から基板ホルダ900に受け渡される。また、トレイT0が基板ホルダ900の溝部300の底部と当接して、トレイT0が搬送ハンド1200から基板ホルダ900の溝部300に受け渡される。このとき、基板ホルダ900と基板P0との摩擦により、基板P0の撓んだ状態の形状は完全には元に戻らず、基板P0は完全に平坦な場合よりも平面積が縮小してしまう。このように、従来の露光装置では、基板P0が基板ホルダ900上で撓んだ状態となり、基板上の適正な位置に所定の露光を行うことができなくなる等の露光不良の問題が生じる場合がある。
 一方、本実施形態の露光装置1は、このような従来の露光装置の問題を解消するために、上記の基板搬送装置7を用いている。以下、露光装置1の動作と共に本実施形態の基板搬送装置7の作用を説明する。
 図12(a)~(c)は、本実施形態の露光装置1の搬出入部5からトレイTへ基板Pを受け渡す工程を説明する模式図である。
 図12(a)に示すように、複数の基板支持ピン51bによって支持された基板Pは、基板支持ピン51bによって支持されていない部分が下方に撓んだ状態になっている。
 また、トレイTはトレイ支持ピン52bによって支持され、図8A及び図8Bに示すように、トレイTの下面に設けられたトレイ側端子部22と、トレイ支持ピン52bの先端部に設けられた支持部側端子部58とが接触して電気的に接続されている。すなわち、支持部側給電部EPは、不図示の電源部により電力を供給し、トレイTに設けられた振動アクチュエータVAの端子部VATに対して給電可能な状態になっている。この状態で、トレイ支持部52を上昇させ、トレイ支持ピン52bによって支持されたトレイTを上昇させる。
 すると、図12(b)に示すように、基板PはトレイT上に載置され、搬出入部5の基板支持ピン51bからトレイTに基板Pが受け渡される。このとき、搬出入部5は、支持部側給電部EPの不図示の電源部によって振動アクチュエータVAの端子部VATに電力を供給し、振動アクチュエータVAを所定の周波数で振動させる。振動アクチュエータVAが所定の周波数で振動すると、振動アクチュエータVAが固定されたトレイTの載置部20が所定の周波数で振動する。
 ここで、振動アクチュエータVAの振動の周波数は、載置部20の振動の周波数に応じて設定されている。また、載置部20の振動の周波数は、載置部20に載置された基板Pの下面と載置部20の上面20aとが振動の作用により滑りを生じるような、高周波に設定されている。そのため、載置部20が所定の周波数で振動すると、載置部20の上面20aと基板Pの下面とが部分的かつ瞬間的に離間と接触を繰り返すような状態となり、載置部20の上面20aと基板Pの下面との間の摩擦力が低下したような状態になる。
 これにより、図12(a)に示すように面方向に圧縮されるように撓んで平面積が小さくなった状態でトレイTの載置部20に載置された基板Pの応力が開放され、図12(b)に示すように、基板Pの外縁部が基板Pの中央部から外側に向けて拡がるように移動する。これにより、基板PがトレイTの載置部20に平坦な状態で載置される。
 このとき、図8A及び8Bに示すように、トレイ支持ピン52bは、トレイTに設けられた振動アクチュエータVAと平面的に重ならない位置に配置されている。そのため、トレイ支持ピン52b間の線状部材19をより振動しやすくすることができ、載置部20を効率よく振動させることができる。さらに、振動アクチュエータVAを線状部材19の振動の腹となる部分に配置した場合には、線状部材19の振動を増幅させ、載置部20をより効率よく効果的に振動させることができる。
 次に、基板Pを露光処理が実施される温度に調整した後、トレイTの下方に配置した搬送ロボット4の搬送ハンド12を上昇させる。
 すると、12(c)に示すように、トレイTの両側部18,18(図2及び図5参照)が搬送ハンド12によって保持され、トレイTが基板Pを載置した状態でトレイ支持ピン52bの上方へ持ち上げられる。トレイTは両側部18,18が支持されることで、基板PとトレイTの自重により、搬送ハンド12によって支持された両側部18,18の間が下方に撓んだ状態になる。
 このとき、図7A及び図7Bに示すように、搬送ハンド12の上面に設けられたハンド側端子部15と、トレイTの下面に設けられたトレイ側端子部22とが接触して電気的に接続されている。すなわち、ハンド側給電部EHは、不図示の電源部により電力を供給し、トレイTに設けられた振動アクチュエータVAの端子部VATに対して給電可能な状態になっている。
 そこで、搬送ロボット4は、搬送ハンド12によりトレイTの両側部18,18を支持して上方へ持ち上げる際に、ハンド側給電部EHの不図示の電源部によって振動アクチュエータVAの端子部VATに電力を供給し、振動アクチュエータVAを所定の周波数で振動させる。振動アクチュエータVAが所定の周波数で振動すると、振動アクチュエータVAが固定されたトレイTの載置部20が所定の周波数で振動する。
 ここで、振動アクチュエータVAの振動の周波数は、載置部20の振動の周波数に応じて設定されている。また、載置部20の振動の周波数は、載置部20に載置された基板Pの下面と載置部20の上面20aとが振動の作用により滑りを生じるような、高周波に設定されている。そのため、載置部20が所定の周波数で振動すると、載置部20の上面20aと基板Pの下面とが部分的かつ瞬間的に離間と接触を繰り返すような状態となり、載置部20の上面20aと基板Pの下面との間の摩擦力が低下したような状態になる。
 これにより、図12(c)に示すように、基板Pの下面とトレイTの載置部20の上面20aとが、基板Pの応力を開放するように滑り、基板Pが撓んで波打つような状態になることが防止される。また、基板Pを中央部に向けて圧縮するような応力が緩和される。
 続いて、図3に示すように、搬送ロボット4は、搬送ハンド12の長手方向(基板Pの長辺方向)を露光装置本体3の基板ホルダ9側に向けるように搬送ハンド12の向きを変える。その後、搬送ハンド12を移動させ、基板Pを載置したトレイTを、図13に示す基板ホルダ9の上方へ向けて搬送する。このとき、ハンド側給電部EHによる振動アクチュエータVAへの電力供給を継続して、トレイTの載置部20の振動を継続させてもよいし、振動アクチュエータVAへの電力供給を一次的に中断して、トレイTの載置部20の振動を中断させてもよい。
 なお、搬送ハンド12は、基板Pの表面と基板ホルダ9の保持部31とがほぼ平行になるように基板Pを搬送する。ここで、ほぼ平行とは、自重による基板Pの撓みを排除した場合に平行もしくは平行に近い状態であることを意味している。具体的には、搬送ハンド12は、トレイTによる基板Pの被保持部分と保持部31の基板載置面とがほぼ平行となるように基板Pを搬送する。これにより、トレイTの搬送時に載置部20の振動を継続させた場合であっても、基板P及び/又はトレイTの位置ずれを防止することができる。
 図13は、トレイTから露光装置1の基板ホルダ9に基板Pを受け渡す工程を説明する模式図である。
 搬送ロボット4は、図13(a)に示すように、搬送ハンド12により基板Pを基板ホルダ9の上方へ搬送し、トレイTと溝部30との位置合わせを行った後、図2に示す駆動装置13を駆動させ、搬送ハンド12を下降させる。すると、図13(b)に示すように、トレイTは基板ホルダ9の溝部30に収容され、基板Pは基板ホルダ9上に載置される。このとき、基板Pは最も下方に撓んだ部分から基板ホルダ9の保持部31(図3参照)と接触する。
 ここで、搬送ロボット4は、ハンド側給電部EHにより振動アクチュエータVAへ電力を供給して振動アクチュエータVAを振動させ、トレイTの載置部20を所定の振動数で振動させる。すると、載置部20の上面20aと基板Pの下面との間の摩擦力が低下したような状態になる。そして、基板Pと基板ホルダ9の保持部31との接触面積が増加していく際に、基板Pの下面とトレイTの載置部20の上面20aとが滑ることで基板Pの応力が開放され、基板Pの撓みが防止される。
 さらに搬送ハンド12を下降させると、図13(c)に示すように、基板Pが基板ホルダ9の保持部31に載置され、基板PがトレイTから基板ホルダ9に受け渡される。また、トレイTが基板ホルダ9の溝部30の底部と当接して、トレイTが搬送ハンド12から基板ホルダ9の溝部30に受け渡される。このように、本実施形態の露光装置1では、基板Pの受け渡し時に基板Pの撓みが防止され、基板Pが基板ホルダ9上で平坦な状態となる。したがって、基板P上の適正な位置に所定の露光を良好に行うことができる。
 基板ホルダ9への基板Pの受け渡しが完了すると、搬送ロボット4は搬送ハンド12を基板ホルダ9上から退避させる。
 基板ホルダ9に基板Pが載置された後、図2に示すマスクMは照明系により露光光ILで照明される。露光光ILで照明されたマスクMのパターンは、基板ホルダ9に載置されている基板Pに投影光学系PLを介して投影露光される。
 露光装置1では、上述のように基板ホルダ9上に良好に基板Pを載置することができるため、基板P上の適正な位置に所定の露光を高精度に行うことができ、信頼性の高い露光処理を実現できる。また、露光装置1では、上述のようにトレイT及び基板ホルダ9に対する基板Pの受け渡しを円滑に行うことができるため、基板Pに対する露光処理を遅延なく行うことができる。
 次に、露光処理終了後の基板ホルダ9からの基板Pの搬出動作について説明する。なお、以下の説明では搬送ハンド12が基板Pの搬出を行うように説明するが、ダブルハンド構造のうちのもう1つの搬送ハンドが搬出を行うようにしてもよい。
 露光処理が終了すると、搬送ロボット4は搬送ハンド12を駆動し、基板ホルダ9上に載置されたトレイTの下方で基板ホルダ9のX軸方向両側に搬送ハンド12を-Y方向側から挿入する。これと同時に、不図示の制御装置により真空ポンプによる吸引が解除され、基板ホルダ9による基板Pの吸着が解除される。
 次に、駆動装置13により搬送ハンド12が所定量上方に駆動されると、搬送ハンド12がトレイTの載置部20の両側部18,18の下面にそれぞれ当接する。さらに上方に搬送ハンド12が駆動されると、基板ホルダ9の保持部31に載置された基板PがトレイTに受け渡される。このとき、本実施形態によれば上述のように基板Pの撓みが防止されているため、トレイTを上方へ移動したときに基板PをトレイTの載置部20上に従来よりも平坦な状態で載置することができる。さらに上方に搬送ハンド12が駆動されると、基板Pを支持するトレイTが基板ホルダ9の上方に持ち上げられ、載置部20が基板ホルダ9から離間する。
 この載置部20と基板ホルダ9とが離間する位置までトレイTが持ち上げられた時点で、基板Pを保持しているトレイTが搬送ハンド12によって基板ホルダ9上から退避される。このようにして、露光装置本体3に対する基板Pの搬出動作が完了する。
 次に、本発明の第2実施形態について、図1~図13を援用し、図14及び図15を用いて説明する。本実施形態の基板搬送装置7aは、振動発生部がトレイ(基板支持部材)T1ではなく、搬送ロボット4a及び搬出入部(ポート部)5aに設けられている点で、上述の第1実施形態の基板搬送装置7と異なっている。その他の点は第1実施形態の基板搬送装置7と同様であるので、同一の部分には同一の符号を付して説明は省略する。
 図14は、本実施形態のトレイT1及び搬送ハンド12の概略構成を示す模式的な断面図である。
 図14に示すように、本実施形態のトレイT1は、図7A及び図7Bに示す振動アクチュエータVA及びトレイ側給電部ETが設けられてない点で第1実施形態において説明したトレイTと異なっており、その他の点はトレイTと同様に設けられている。
 搬送ロボット(搬送部)4aは、トレイT1を保持する搬送ハンド12と、搬送ハンド12を移動させるハンドアクチュエータ(アクチュエータ、振動発生部)61と、ハンドアクチュエータ61を制御するハンド制御部(制御部、振動発生部)62と、を備えている。ハンドアクチュエータ61は、アクチュエータ本体61aと、昇降駆動部63と、直動駆動部64と、を有している。
 昇降駆動部63は、軸回りに回転することで搬送ハンド12を昇降させる送りねじ63aと、アクチュエータ本体61aに固定されて送りねじ63aを軸回りに回転させる昇降モータ63bと、搬送ハンド12に固定されたハンド支持部63cとを備えている。アクチュエータ本体61aには、搬送ハンド12を昇降させる方向に沿ってスライド溝61bが形成されている。ハンド支持部63cは、アクチュエータ本体61aに設けられたスライド溝61bと係合してスライド溝61bの延在方向にスライド可能に設けられた係合部63dを有している。
 昇降駆動部63は、昇降モータ63bにより送りねじ63aを軸回りに回転させ、搬送ハンド12をハンド支持部63cと共にスライド溝61bに沿って移動させることで、搬送ハンド12をトレイTの載置部20の上面20aと交差する方向、例えば鉛直方向(Z方向)に移動させるようになっている。
 直動駆動部64は、アクチュエータ本体61aをトレイT1の載置部20の上面20aに沿って移動させるリニアモータ64aと、アクチュエータ本体61aをスライド可能に係合させる直動ガイド64bとを有している。リニアモータ64a及び直動ガイド64bは載置部20の上面20aに沿う搬送ハンド12の移動方向に沿って設けられている。
 直動駆動部64は、リニアモータ64aを駆動させ、アクチュエータ本体61aを直動ガイド64bに沿って移動させることで、ハンド支持部63cを介してアクチュエータ本体61aと連結された搬送ハンド12を載置部20の上面20aに沿う方向、例えば水平方向(XY平面方向)に移動させるようになっている。
 ハンド制御部62は、ハンドアクチュエータ61の昇降モータ63b及びリニアモータ64aにそれぞれ所定の制御信号を伝達可能に設けられ、昇降モータ63b及びリニアモータ64aをそれぞれ振動的に制御可能に設けられている。ここで、振動的に制御するとは、各モータに所定の周波数の振動を発生させ、搬送ハンド12を各移動方向に所定の周波数で振動させることをいう。
 昇降モータ63b及びリニアモータ64aの振動の周波数数は、搬送ハンド12の振動の周波数に基づいて設定される。また、搬送ハンド12の振動の周波数は、搬送ハンド12に保持されたトレイT1に搬送ハンド12の振動が伝達されてトレイT1が振動する際の載置部20の振動の周波数に基づいて設定される。載置部20の振動の周波数は、第1実施形態において振動アクチュエータVAにより振動されるトレイTの載置部20の振動の周波数と同様に設定される。
 搬送ハンド12の上面には、トレイTの載置部20の下面を支持する複数の当接部17が設けられている。本実施形態の当接部17は、搬送ハンド12において発生した振動を効率よくトレイT1に伝達可能に設けられている。すなわち、本実施形態の当接部17は、振動を伝達する振動伝達部材としても機能している。
 図15は、本実施形態のトレイT1及び搬出入部5aのトレイ支持部52の概略構成を示す模式的な断面図である。
 図15に示すように、本実施形態の搬出入部5aのトレイ支持部52は、トレイ支持部52を昇降させる支持部アクチュエータ(アクチュエータ、振動発生部)71と、支持部アクチュエータを制御する支持部制御部(制御部、振動発生部)72と、を有している。
 支持部アクチュエータ71は、上述の第1実施形態において説明したように、トレイ支持部52を図4に示すガイド部56に沿ってZ軸方向に移動可能に設けられている。支持部制御部72は、支持部アクチュエータ71に所定の制御信号を伝達可能に設けられ、支持部アクチュエータ71を振動的に制御可能に設けられている。ここで、振動的に制御するとは、各アクチュエータに所定の周波数の振動を発生させ、トレイ支持部52をZ方向に沿って所定の周波数で振動させることをいう。
 本実施形態では、上述のハンドアクチュエータ61及びハンド制御部62、並びに、支持部アクチュエータ71及び支持部制御部72が、それぞれ搬送ハンド12及びトレイ支持部52に振動を発生させる振動発生部を構成している。また、これらの振動発生部が、供給電力に基づき、トレイTを保持する搬送ハンド12及びトレイ支持ピン52bにそれぞれ振動を発生させる加振部V1を構成している。
 また、トレイ支持ピン52bの上面には、トレイTの載置部20の下面を支持する複数の当接部52eが設けられている。本実施形態の当接部52eは、トレイ支持部52において発生した振動を効率よくトレイT1に伝達可能に設けられている。すなわち、本実施形態の当接部52eは、振動を伝達する振動伝達部材としても機能している。
 図12(a)~図12(b)に示すように基板支持ピン51bによって支持された基板PをトレイT1の載置部20に載置させる際には、まず、図15に示す支持部アクチュエータ71を作動させる。そして、図12(a)に示すように、トレイ支持部52を上昇させることで、トレイ支持ピン52bによって保持したトレイT1を上昇させる。
 次いで、図12(b)に示すように基板支持ピン51bによって支持された基板PをトレイT1の載置部20に載置させる際に、図15に示す支持部制御部72により、支持部アクチュエータ71を所定の周波数で振動させる。すると、図15に示すように、支持部アクチュエータ71の振動がトレイ支持部52に伝達され、トレイ支持ピン52bが所定の周波数で振動する。
 トレイ支持ピン52bが所定の振動数で振動すると、その振動が当接部52eを介してトレイT1に伝達され、第1実施形態と同様に、トレイT1の載置部20が所定の振動数で振動する。これにより、図12(b)に示す第1実施形態と同様に、基板Pの撓みが除去され基板Pが平坦になる。
 また、図12(c)に示すように、トレイTを搬送ハンド12によって保持して持ち上げる際に、図14に示すハンド制御部62によりハンドアクチュエータ61の昇降モータ63b及びリニアモータ64aを所定の振動数で振動させる。このとき、基板Pの状況に応じて、昇降モータ63bのみを振動させるようにしてもよいし、リニアモータ64aのみを振動させるようにしてもよい。
 すると、昇降モータ63b及びリニアモータ64aの振動が搬送ハンド12に伝達され、搬送ハンド12が所定の振動数でトレイT1の上面20aと交差する方向及び上面20aに沿う方向に振動する。搬送ハンド12が所定の振動数で振動すると、搬送ハンド12の振動が当接部17を介してトレイT1に伝達され、トレイT1の載置部20が所定の振動数で各方向に振動する。
 すると、図12(c)に示す第1実施形態と同様に、基板Pの下面とトレイT1の載置部20の上面20aとが滑り、基板Pの応力が開放され、基板Pの撓みが防止される。さらに、図13(a)~図13(c)に示すように、トレイT1に載置された基板Pを基板ホルダ9に受け渡す際にも、第1実施形態と同様に基板Pの撓みを防止することができる。
 以上説明したように、本実施形態によれば第1実施形態と同様の効果が得られるだけでなく、トレイTに振動アクチュエータVA及び/又はトレイ側給電部ETを設ける必要が無く、基板搬送装置7の構成を簡潔にすることが可能になる。
 次に、本発明の第3実施形態について、図1~図13を援用し、図16A、図16B、図17A、及び図17Bを用いて説明する。本実施形態の基板搬送装置7bは、振動発生部がトレイ(基板支持部材)T2ではなく、搬送ロボット4b及び搬出入部(ポート部)5bに設けられている点で、上述の第1実施形態の基板搬送装置7と異なっている。その他の点は第1実施形態の基板搬送装置7と同様であるので、同一の部分には同一の符号を付して説明は省略する。
 図16A及び16Bは、本実施形態の搬送ハンド12及びトレイT2の概略構成を説明する図であり図16Aは図2のA-A’線に沿う断面に対応する模式的な断面図、図16Bは図16Aのα1部の拡大図である。図17A及び17Bは、本実施形態のトレイ支持部52及びトレイT2の概略構成を説明する図であり、図17Aは図4のB-B’線に沿う断面に対応する模式的な断面図、図17Bは図17Aのβ1部の拡大図である。
 図16A及び図16Bに示すように、本実施形態のトレイT2は、図7A及び図7Bに示す振動アクチュエータVA及びトレイ側給電部ETが設けられてない点で第1実施形態において説明したトレイTと異なっており、その他の点はトレイTと同様に設けられている。
 図16A及び図16Bに示すように、本実施形態の基板搬送装置7bは、搬送ハンド12を振動させてトレイT2を振動させる加振部V2を備えている。加振部V2は、搬送ハンド12に設けられた複数の振動アクチュエータ(振動発生部)VA1と、搬送ハンド12に設けられたハンド側給電部(給電部)EH2とを有している。また、加振部V2は、図17A及び図17Bに示すように、搬出入部5bのトレイ支持部52に設けられた振動アクチュエータ(振動発生部)VA2と、支持部側給電部(給電部)EP2を有している。
 図16A及び図16Bに示すように、振動アクチュエータVA1は、第1実施形態の振動アクチュエータVAと同様のものが用いられ、搬送ハンド12の内部に埋め込まれて搬送ハンド12に固定されている。振動アクチュエータVA1は、トレイT2の載置部20の両側部18,18を支持する一対の爪状の部分の双方にそれぞれ設けられている。
 ハンド側給電部EH2は、搬送ロボット4bに設けられた電源部(図示略)と、ハンド側配線14bとを備える。ハンド側配線14bは、一端側が振動アクチュエータVA1の端子部VAT1に接続され、他端側が搬送ロボット4bの不図示の電源部に接続されることで、振動アクチュエータVA1の端子部VAT1と電源部とを電気的に接続している。
 また、搬送ハンド12の上面には、上述の第2実施形態と同様の当接部17が複数設けられている。本実施形態では、当接部17は振動アクチュエータVA1の近傍に設けられ、振動アクチュエータVA1と平面的に重なるように配置されている。換言すると、本実施形態において、振動アクチュエータVA1は、当接部17の近傍に設けられ、当接部17と平面的に重なる位置に配置されている。
 図17A及び図17Bに示すように、振動アクチュエータVA2は、第1実施形態の振動アクチュエータVAと同様のものが用いられ、トレイ支持ピン52bに埋め込まれてトレイ支持ピン52bに固定されている。支持部側給電部EP2は、搬出入部5bに設けられた電源部(図示略)と、支持部側配線57bと、を備える。支持部側配線57bは、一端側が振動アクチュエータVA2に接続され、他端側が搬出入部5bの不図示の電源部に接続されることで、振動アクチュエータVA2と電源部とを電気的に接続している。
 また、トレイ支持ピン52bの上面には、上述の第2実施形態と同様の当接部52eが設けられている。本実施形態では、当接部52eは振動アクチュエータVA2の近傍に設けられ、振動アクチュエータVA2と平面的に重なるように配置されている。換言すると、本実施形態において、振動アクチュエータVA2は、当接部52eの近傍に設けられ、当接部52eと平面的に重なる位置に配置されている。
 本実施形態では、図12(a)~図12(b)に示すように基板支持ピン51bによって支持された基板PをトレイT2の載置部20に載置させる際に、図17A及び図17Bに示す支持部側給電部EP2から振動アクチュエータVA2に電力を供給して、振動アクチュエータVA2を所定の振動数で振動させる。すると、図17Bに示すように、振動アクチュエータVA2によりトレイ支持ピン52bが所定の周波数で振動させられる。
 トレイ支持ピン52bが所定の振動数で振動すると、その振動が当接部52eを介してトレイT2に伝達され、第1実施形態及び第2実施形態と同様に、トレイT2の載置部20が所定の振動数で振動する。これにより、図12(b)に示す第1実施形態と同様に、基板Pの撓みが除去され基板Pが平坦になる。
 ここで、本実施形態では、振動アクチュエータVA2が当接部52eの近傍に設けられ、当接部52eと平面的に重なる位置に配置されている。したがって、振動の減衰が防止され、振動アクチュエータVA2において発生した振動エネルギをトレイT2と基板Pに効率よく伝達することができる。
 また、図12(c)に示すように、トレイTを搬送ハンド12によって保持して持ち上げる際に、図16A及び図16Bに示すハンド側給電部EH2により振動アクチュエータVA1に電力を供給して、振動アクチュエータVA1を所定の振動数で振動させる。振動アクチュエータVA1が所定の振動数で振動すると、搬送ハンド12が所定の振動数で振動させられる。搬送ハンド12が所定の振動数で振動すると、搬送ハンド12の振動が当接部17を介してトレイT2に伝達され、トレイT2の載置部20が所定の振動数で振動する。
 すると、図12(c)に示す第1実施形態と同様に、基板Pの下面とトレイT2の載置部20の上面20aとが滑り、基板Pの応力が開放され、基板Pの撓みが防止される。さらに、図13(a)~図13(c)に示すように、トレイT2に載置された基板Pを基板ホルダ9に受け渡す際にも、第1実施形態と同様に基板Pの撓みを防止することができる。
 ここで、本実施形態では、図16A及び図16Bに示すように、振動アクチュエータVA1が当接部17の近傍に設けられ、当接部17と平面的に重なる位置に配置されている。したがって、振動の減衰が防止され、振動アクチュエータVA1において発生した振動エネルギをトレイT2と基板Pに効率よく伝達することができる。
 以上説明したように、本実施形態によれば第1実施形態と同様の効果が得られるだけでなく、トレイTに振動アクチュエータVA及び/又はトレイ側給電部ETを設ける必要が無く、基板搬送装置7の構成を簡潔にすることが可能になる。また、第2実施形態と比較して、搬送ハンド12及びトレイ支持部52の移動中もトレイT2に対して一様な振動を継続的に付与することが可能になる。
 なお、本実施形態では振動アクチュエータVA1,VA2をそれぞれ複数備える構成について説明したが、これらは搬送ハンド12及びトレイ支持部52に少なくとも1つずつ設けられていればよい。
 また、上述の実施形態の基板Pとしては、ディスプレイデバイス用のガラス基板のみならず、半導体デバイス製造用の半導体ウエハ、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。
 また、露光装置としては、マスクMと基板Pとを同期移動してマスクMのパターンを介した露光光ILで基板Pを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。
 また、本発明は、米国特許第6341007号明細書、米国特許第6208407号明細書、米国特許第6262796号明細書等に開示されているような、複数の基板ステージを備えたツインステージ型の露光装置にも適用できる。
 また、本発明は、米国特許第6897963号明細書、欧州特許出願公開第1713113号明細書等に開示されているような、基板を保持する基板ステージと、基板を保持せずに、基準マークが形成された基準部材及び/又は各種の光電センサを搭載した計測ステージとを備えた露光装置にも適用することができる。また、複数の基板ステージと計測ステージとを備えた露光装置を採用することができる。
 なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いたが、このマスクに代えて、例えば米国特許第6778257号明細書に開示されているように、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する可変成形マスク(電子マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれる)を用いてもよい。また、非発光型画像表示素子を備える可変成形マスクに代えて、自発光型画像表示素子を含むパターン形成装置を備えるようにしても良い。
 上述の実施形態の露光装置は、各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。
 各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
 半導体デバイス等のマイクロデバイスは、図18に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、上述の実施形態に従って、マスクのパターンを用いて露光光で基板を露光すること、及び露光された基板(感光剤)を現像することを含む基板処理(露光処理)を含む基板処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)205、検査ステップ206等を経て製造される。なお、ステップ204では、感光剤を現像することで、マスクのパターンに対応する露光パターン層(現像された感光剤の層)を形成し、この露光パターン層を介して基板を加工することが含まれる。
 なお、上述の実施形態の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許容される限りにおいて、上述の実施形態で引用した露光装置などに関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。
1…露光装置、3…露光装置本体、4,4a,4b…搬送ロボット(搬送部)、5,5a,5b…搬出入部(ポート部)、7,7a,7b…基板搬送装置、9…基板ホルダ、12…搬送ハンド、16,17…当接部、18…側部、20…載置部、20a…上面(基板支持面)、30…溝部、31…保持部(ホルダ部)、52b…トレイ支持ピン(支持部)、52c,52e…当接部、61…ハンドアクチュエータ(アクチュエータ、振動発生部)、62…ハンド制御部(制御部、振動発生部)、71…支持部アクチュエータ(アクチュエータ、振動発生部)、72…支持部制御部(制御部、振動発生部)、EH,EH2…ハンド側給電部(給電部)、EP,EP2…支持部側給電部(給電部)、ET…トレイ側給電部(給電部)、IL…露光光、P…基板、T,T1,T2…トレイ(基板支持部材、基板支持装置)、V,V1,V2…加振部、VA,VA1,VA2…振動アクチュエータ(振動発生部)

Claims (21)

  1.  基板支持部材に載置された基板を前記基板支持部材とともに搬送する基板搬送装置であって、
     前記基板が載置された前記基板支持部材を振動させる加振部と、
     前記基板支持部材を保持して移動する搬送部と、
    を備える基板搬送装置。
  2.  前記加振部は、前記基板支持部材に設けられて供給電力に基づき前記基板支持部材に振動を発生させる少なくとも1つの振動発生部を含む請求項1に記載の基板搬送装置。
  3.  前記加振部は、前記振動発生部に対して電力供給を行う給電部を含み、前記給電部の少なくとも一部は、前記搬送部に設けられている請求項2に記載の基板搬送装置。
  4.  前記基板が載置された前記基板支持部材を支持するポート部をさらに備え、
     前記加振部は、前記振動発生部に対して電力供給を行う給電部を含み、前記給電部の少なくとも一部は、前記ポート部に設けられ、
     前記搬送部は、前記ポート部に支持された前記基板支持部材を保持して移動する請求項2に記載の基板搬送装置。
  5.  前記ポート部は、前記基板支持部材の異なる箇所をそれぞれ支持する複数の支持部を有し、
     前記複数の支持部は、前記複数の支持部が支持する前記基板支持部材上の前記振動発生部と平面視で重ならない位置に配置される請求項4に記載の基板搬送装置。
  6.  前記加振部は、供給電力に基づき前記搬送部のうち前記基板支持部材を保持する部分に振動を発生させる少なくとも1つの振動発生部を含む請求項1に記載の基板搬送装置。
  7.  前記搬送部は、前記基板支持部材を保持する搬送ハンドと、前記搬送ハンドを移動させるアクチュエータとを備え、
     前記振動発生部は、前記搬送ハンドが振動するように前記アクチュエータを制御する制御部を有する請求項6に記載の基板搬送装置。
  8.  前記搬送部は、前記基板支持部材を保持する搬送ハンドを備え、
     前記振動発生部は、前記搬送ハンドに設けられ、前記搬送ハンドを振動させる少なくとも1つの振動アクチュエータを有する請求項6に記載の基板搬送装置。
  9.  前記搬送部は、前記基板支持部材を支持する複数の当接部をさらに備え、
     前記振動アクチュエータは、前記当接部の近傍に配置される請求項8に記載の基板搬送装置。
  10.  前記アクチュエータは、前記搬送ハンドを前記基板支持部材の基板支持面に沿う方向及び前記基板支持面と交差する方向の少なくとも一方に移動可能に設けられている請求項7から請求項9のいずれか一項に記載の基板搬送装置。
  11.  前記基板が載置された前記基板支持部材を支持するポート部をさらに備え、
     前記加振部は、前記ポート部に設けられて供給電力に基づき前記ポート部に振動を発生させる少なくとも1つの振動発生部を含む請求項1に記載の基板搬送装置。
  12.  前記ポート部は、前記基板支持部材の異なる箇所をそれぞれ支持する複数の支持部を有し、
     前記振動発生部は、前記支持部に設けられ、前記支持部を振動させる少なくとも1つの振動アクチュエータを有する請求項11に記載の基板搬送装置。
  13.  前記ポート部は、前記基板支持部材の異なる箇所をそれぞれ支持する複数の支持部と、前記支持部を移動させるアクチュエータと、を備え、
     前記振動発生部は、前記支持部が振動するように前記アクチュエータを制御する制御部を有する請求項11又は請求項12に記載の基板搬送装置。
  14.  前記搬送部は、前記基板を保持する基板ホルダに向けて前記基板支持部材を移動させて、前記基板支持部材が支持する前記基板を前記基板ホルダに受け渡す請求項1から請求項13のいずれか一項に記載の基板搬送装置。
  15.  前記搬送部は、前記基板支持部材を前記基板ホルダに受け渡す請求項14に記載の基板搬送装置。
  16.  前記搬送部は、前記基板ホルダのうち前記基板が載置されるホルダ部に前記基板を受け渡し、前記基板ホルダのうち前記ホルダ部と異なる部分に前記基板支持部材を受け渡す請求項15に記載の基板搬送装置。
  17.  前記搬送部は、前記基板ホルダのうち前記ホルダ部に対して溝状に設けられた溝部に前記基板支持部材を受け渡す請求項16に記載の基板搬送装置。
  18.  前記搬送部は、前記基板支持部材の両側部を保持する請求項2から請求項17のいずれか一項に記載の基板搬送装置。
  19.  基板ホルダが保持する基板に露光光を照射して前記基板を露光する露光装置であって、
     前記基板ホルダに前記基板を搬送する請求項1から請求項18のいずれか一項に記載の基板搬送装置を備える露光装置。
  20.  基板を支持する基板支持装置であって、
     前記基板が載置される載置部と、
     前記載置部に設けられ、前記載置部を振動させる振動発生部と、
     を有する基板支持装置。
  21.  請求項19に記載の露光装置を用いて、前記基板を露光することと、
     露光された前記基板を露光結果に基づいて処理することと、を含むデバイス製造方法。
PCT/JP2010/069177 2009-10-28 2010-10-28 基板搬送装置、露光装置、基板支持装置及びデバイス製造方法 WO2011052683A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011538481A JPWO2011052683A1 (ja) 2009-10-28 2010-10-28 基板搬送装置、露光装置、基板支持装置及びデバイス製造方法
CN201080049093.7A CN104221137B (zh) 2009-10-28 2010-10-28 基板搬送装置、曝光装置、基板支持装置及元件制造方法
KR1020187002892A KR101982454B1 (ko) 2009-10-28 2010-10-28 기판 반송 장치, 노광 장치, 기판 지지 장치 및 디바이스 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27274509P 2009-10-28 2009-10-28
US61/272,745 2009-10-28

Publications (1)

Publication Number Publication Date
WO2011052683A1 true WO2011052683A1 (ja) 2011-05-05

Family

ID=43922105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069177 WO2011052683A1 (ja) 2009-10-28 2010-10-28 基板搬送装置、露光装置、基板支持装置及びデバイス製造方法

Country Status (5)

Country Link
JP (1) JPWO2011052683A1 (ja)
KR (2) KR20120100956A (ja)
CN (2) CN104221137B (ja)
TW (1) TW201132570A (ja)
WO (1) WO2011052683A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150043667A (ko) * 2013-10-15 2015-04-23 주식회사 케이씨텍 기판 처리 장치
JP2018190869A (ja) * 2017-05-09 2018-11-29 キヤノン株式会社 搬送装置、リソグラフィ装置及び物品の製造方法
JP2021536032A (ja) * 2018-08-23 2021-12-23 エーエスエムエル ネザーランズ ビー.ブイ. 基板サポート、リソグラフィ装置、基板検査装置、デバイス製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273702A (ja) * 2003-03-07 2004-09-30 Nikon Corp 搬送装置及び搬送方法、露光装置
JP2007114570A (ja) * 2005-10-21 2007-05-10 Nikon Corp 基板ホルダ、露光装置及びデバイスの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3659520B2 (ja) * 1995-11-07 2005-06-15 大日本スクリーン製造株式会社 基板搬送装置
JPH11121580A (ja) * 1997-10-13 1999-04-30 Hitachi Ltd 板状物体の支持方法及び処理装置
KR100825691B1 (ko) 1999-07-26 2008-04-29 가부시키가이샤 니콘 기판지지장치 및 기판처리장치
TWI447840B (zh) * 2004-11-15 2014-08-01 尼康股份有限公司 基板搬運裝置、基板搬運方法以及曝光裝置
JP2008124347A (ja) * 2006-11-14 2008-05-29 Murata Mach Ltd 枚葉搬送用トレイ
JP2008288506A (ja) * 2007-05-21 2008-11-27 Nikon Corp 調整方法、露光装置、及びデバイス製造方法
JP2009147042A (ja) * 2007-12-13 2009-07-02 Sharp Corp 基板受取方法および基板ステージ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273702A (ja) * 2003-03-07 2004-09-30 Nikon Corp 搬送装置及び搬送方法、露光装置
JP2007114570A (ja) * 2005-10-21 2007-05-10 Nikon Corp 基板ホルダ、露光装置及びデバイスの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150043667A (ko) * 2013-10-15 2015-04-23 주식회사 케이씨텍 기판 처리 장치
KR101975278B1 (ko) 2013-10-15 2019-05-07 주식회사 케이씨텍 기판 처리 장치
JP2018190869A (ja) * 2017-05-09 2018-11-29 キヤノン株式会社 搬送装置、リソグラフィ装置及び物品の製造方法
JP2021536032A (ja) * 2018-08-23 2021-12-23 エーエスエムエル ネザーランズ ビー.ブイ. 基板サポート、リソグラフィ装置、基板検査装置、デバイス製造方法
JP7203194B2 (ja) 2018-08-23 2023-01-12 エーエスエムエル ネザーランズ ビー.ブイ. 基板サポート、リソグラフィ装置、基板検査装置、デバイス製造方法

Also Published As

Publication number Publication date
CN104221137B (zh) 2018-08-03
KR20120100956A (ko) 2012-09-12
JPWO2011052683A1 (ja) 2013-03-21
CN109003917A (zh) 2018-12-14
TW201132570A (en) 2011-10-01
KR20180014244A (ko) 2018-02-07
CN104221137A (zh) 2014-12-17
KR101982454B1 (ko) 2019-05-27

Similar Documents

Publication Publication Date Title
JP6245308B2 (ja) 基板搬送方法、デバイス製造方法、基板搬送装置および露光装置
TWI587430B (zh) A conveyance device, a conveying method, an exposure apparatus, and an element manufacturing method
TWI261041B (en) Conveying apparatus, application system and inspection system
JP5469852B2 (ja) 搬送装置、搬送方法、露光装置、露光方法、及びデバイス製造方法
JP6486140B2 (ja) 搬送ハンド、リソグラフィ装置及び被搬送物を搬送する方法
KR102268360B1 (ko) 반송 핸드, 반송 장치, 리소그래피 장치, 물품 제조 방법, 및 보유지지 기구
CN118748157A (zh) 接合装置和接合方法
WO2014024483A1 (ja) 物体交換方法、物体交換システム、露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
WO2011052683A1 (ja) 基板搬送装置、露光装置、基板支持装置及びデバイス製造方法
JP5471088B2 (ja) 基板保持部材、基板搬送装置、基板搬送方法、ステージ装置、露光装置及びデバイス製造方法
JP5730664B2 (ja) 電子部品実装機
WO2011049133A1 (ja) 基板支持装置、基板支持部材、基板搬送装置、露光装置、及びデバイス製造方法
CN111615739A (zh) 基板处理装置、以及基板处理方法
JP2014165322A (ja) 露光用基板搬送装置
CN110520798B (zh) 物体交换装置、物体处理装置、平板显示器的制造方法、元件制造方法、物体交换方法、以及物体处理方法
JP2010267807A (ja) 基板保持装置、ステージ装置、露光装置、及びデバイス製造方法
JP2023077250A (ja) 基板保持装置、リソグラフィ装置、基板保持方法、および物品の製造方法
JP2024040937A (ja) 基板搬送機構、リソグラフィ装置及び物品の製造方法
JP2023077671A (ja) 接合装置、及び接合方法
JP2011113086A (ja) 受け渡し機構、ステージ装置、搬送装置、露光装置、及びデバイス製造方法
JP2011086764A (ja) 基板支持部材、搬送装置、露光装置、及びデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826815

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538481

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127010991

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826815

Country of ref document: EP

Kind code of ref document: A1