WO2011052157A1 - 半導体封止用樹脂組成物およびこれを用いた半導体装置 - Google Patents

半導体封止用樹脂組成物およびこれを用いた半導体装置 Download PDF

Info

Publication number
WO2011052157A1
WO2011052157A1 PCT/JP2010/006176 JP2010006176W WO2011052157A1 WO 2011052157 A1 WO2011052157 A1 WO 2011052157A1 JP 2010006176 W JP2010006176 W JP 2010006176W WO 2011052157 A1 WO2011052157 A1 WO 2011052157A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
epoxy resin
group
resin
semiconductor
Prior art date
Application number
PCT/JP2010/006176
Other languages
English (en)
French (fr)
Inventor
田中 祐介
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN2010800485197A priority Critical patent/CN102666642A/zh
Priority to US13/503,884 priority patent/US20120205822A1/en
Priority to JP2011538233A priority patent/JPWO2011052157A1/ja
Publication of WO2011052157A1 publication Critical patent/WO2011052157A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a semiconductor sealing resin composition and a semiconductor device using the same.
  • Semiconductor devices are sealed for the purpose of protecting semiconductor elements, ensuring electrical insulation, and facilitating handling.
  • sealing by transfer molding of an epoxy resin composition is mainly used because of excellent productivity, cost, reliability, and the like.
  • new bonding technologies such as surface mounting It has been developed and put into practical use.
  • Such technical trends have spread to resin compositions for semiconductor encapsulation, and the required performance has become more sophisticated and diversified year by year.
  • solder used for surface mounting is being switched to lead-free solder due to environmental issues.
  • the melting point of lead-free solder is higher than that of conventional lead / tin solder, and the reflow mounting temperature is increased from 220-240 ° C of conventional lead / tin solder to 240 ° C-260 ° C. Cracks and peeling are likely to occur, and the conventional sealing resin composition may have insufficient solder resistance.
  • bromine-containing epoxy resins and antimony oxide are used as flame retardants in conventional sealing resin compositions, but from the viewpoint of environmental protection and safety improvement in recent years. There is a growing momentum to eliminate these compounds.
  • Conventional techniques include a combination of an epoxy resin having a naphthalene skeleton and a phenol resin curing agent having a naphthalene skeleton to enhance high-temperature storage characteristics and solder resistance (for example, see Patent Documents 1 and 2), phosphoric acid Although methods for enhancing high-temperature storage characteristics and flame resistance by blending contained compounds have been proposed (see, for example, Patent Documents 3 and 4), these have a sufficient balance of flame resistance, continuous formability, and solder resistance. It may be difficult to say. As described above, in miniaturization and widespread use of in-vehicle electronic devices and the like, a sealing resin composition that satisfies a good balance of flame resistance, solder resistance, high temperature storage characteristics, and continuous moldability is required.
  • JP 2007-31691 Japanese Patent Laid-Open No. 06-216280 JP 2003-292731 A JP 2004-43613 A
  • the present invention is a sealing resin composition that exhibits flame retardancy without using a halogen compound and an antimony compound, and has a higher level of solder resistance, high-temperature storage characteristics and continuous moldability, And the semiconductor device excellent in the reliability using the said resin composition for sealing is provided.
  • a resin composition for encapsulating a semiconductor comprising a phenol resin (A), an epoxy resin (B), and an inorganic filler (C),
  • the phenol resin (A) is represented by the general formula (1):
  • R1 is a hydrocarbon group having 1 to 6 carbon atoms
  • R2 is a hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 14 carbon atoms, which are the same as each other.
  • A may be an integer of 0 to 2
  • m and n are each independently an integer of 1 to 10, m + n ⁇ 2, and is represented by a repetition number m.
  • the structural unit and the structural unit represented by the number of repetitions n may be arranged in succession, alternately with each other, or may be arranged at random.
  • the epoxy resin (B) contains at least one epoxy resin selected from the group consisting of a triphenolmethane type epoxy resin, a naphthol type epoxy resin and a dihydroanthracene type epoxy resin.
  • the epoxy resin (B) is General formula (2): (In the general formula (2), R3 is a hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 14 carbon atoms, which may be the same or different, and b is 0 to An epoxy resin (b1) represented by an integer of 4, p is an integer of 1 to 10, and G is a glycidyl group-containing organic group), General formula (3): (In the general formula (3), R4 is a hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 14 carbon atoms, which may be the same or different, and R5 is a hydrogen atom.
  • R6 is a hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 14 carbon atoms, which may be the same or different
  • d is 0 to
  • s is an integer of 0 to 10
  • G is a glycidyl group-containing organic group
  • the phenol resin (A) in the semiconductor encapsulating resin composition, has an ICI viscosity at 150 ° C. of 1.0 to 7.0 dPa ⁇ sec.
  • R1 in the general formula (1) is a methyl group.
  • (m, n) (2,1) in the phenol resin (A) measured by gel permeation chromatography (GPC) method.
  • the ratio of the polymer component is 30 to 80% by area.
  • the semiconductor sealing resin composition further includes a curing agent, and the phenol resin (A) is included in 50 to 100 parts by mass in 100 parts by mass of the curing agent.
  • At least one epoxy resin selected from the group consisting of a triphenolmethane type epoxy resin, a naphthol type epoxy resin, and a dihydroanthracene type epoxy resin is provided. And 50 to 100 parts by mass in 100 parts by mass of the epoxy resin (B).
  • the epoxy resin (b1) represented by the general formula (2), the epoxy resin (b2) represented by the general formula (3), and 50 to 100 parts by mass of at least one epoxy resin selected from the group consisting of the epoxy resin (b3) represented by the general formula (4) is contained in 100 parts by mass of the epoxy resin (B).
  • the content of the inorganic filler (C) is 70 to 93% by mass with respect to the entire resin composition.
  • the content of the inorganic filler (C) is 80 to 93% by mass with respect to the entire resin composition.
  • the epoxy resin (b1) represented by the general formula (2) is 50 to 100 parts by mass in 100 parts by mass of the epoxy resin (B). included.
  • the semiconductor sealing resin composition further includes a curing accelerator (D).
  • the curing accelerator (D) is a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, a phosphonium compound and a silane. It contains at least one curing accelerator selected from the group consisting of adducts with compounds.
  • the semiconductor encapsulating resin composition further includes a compound (E) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring.
  • the semiconductor sealing resin composition further includes a coupling agent (F).
  • the semiconductor encapsulating resin composition further includes an inorganic flame retardant (G).
  • G inorganic flame retardant
  • the epoxy resin (b2) represented by the general formula (3) is 50 to 100 parts by mass in 100 parts by mass of the epoxy resin (B). included.
  • the epoxy resin (b3) represented by the general formula (4) is 50 to 100 parts by mass in 100 parts by mass of the epoxy resin (B). included.
  • a semiconductor device obtained by sealing a semiconductor element with a cured product of the above semiconductor sealing resin composition.
  • the resin composition for encapsulating a semiconductor exhibits flame resistance without using a halogen compound and an antimony compound, and has a higher level of solder resistance, high-temperature storage characteristics and continuous moldability than the conventional level. And the semiconductor device excellent in reliability using this resin composition for semiconductor sealing can be obtained.
  • the resin composition for encapsulating a semiconductor of the present invention includes a phenol resin (A) containing a polymer (a1) having a structure represented by the general formula (1), a triphenolmethane type epoxy resin, a naphthol type epoxy resin, and It comprises an epoxy resin (B) containing at least one epoxy resin selected from the group consisting of dihydroanthracene type epoxy resins, and an inorganic filler (C).
  • the semiconductor device of the present invention is obtained by sealing a semiconductor element with a cured product of the above semiconductor sealing resin composition.
  • the resin composition for semiconductor encapsulation of this invention contains the phenol resin (A) (henceforth a phenol resin (A)) containing the polymer (a1) which has a structure represented by General formula (1).
  • R1 is a hydrocarbon group having 1 to 6 carbon atoms
  • R2 is a hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 14 carbon atoms, which are the same as each other.
  • A may be an integer of 0 to 2
  • m and n are each independently an integer of 1 to 10, m + n ⁇ 2, and is represented by a repetition number m.
  • the structural unit and the structural unit represented by the number of repetitions n may be arranged in succession, alternately with each other, or may be arranged at random.
  • the phenol resin (A) Since the phenol resin (A) has a naphthol skeleton in its molecule, it has excellent flame resistance, is excellent in hydrophobicity, and has an effect of reducing the elastic modulus at the solder reflow temperature, so that it has high solder resistance.
  • a novolak resin having a naphthol skeleton has a high softening point or a high viscosity, so that it is difficult to melt and knead and has poor fluidity. Therefore, such naphthol-containing novolak resins are often difficult to apply to molding materials.
  • the phenol resin (A) used in the present invention has an alkyl (R1) -substituted phenol skeleton in the molecule, the viscosity and the softening point are moderately reduced. Moreover, the moisture resistance of the phenol resin (A) is improved by the alkyl group (R1). Further, the phenol resin (A) has an alkyl group (R1) at the ortho position, and therefore exhibits better continuous moldability than when it has an alkyl group (R1) at the para position.
  • the phenol resin (A) bonds the alkyl-substituted phenol skeleton and the naphthol skeleton at a relatively short distance, the density of the hydroxyl group and naphthalene can be increased. As a result, the phenol resin (A) exhibits good reactivity with the epoxy resin, and the cured product can exhibit good heat resistance.
  • the repeating number m and n of each structural unit in the polymer (a1) having the structure represented by the general formula (1) contained in the phenol resin (A) is an integer of 1 to 10 independently of each other, m + n ⁇ 2. Within this range, the resin composition can be kneaded satisfactorily when heat-melt kneading. Preferably, m is 1 to 6, and n is 1 to 6. If it is this range, a resin composition can be shape
  • the phenol resin (A) obtained by synthesis has an arbitrary molecular weight distribution, but the main component is a component having m + n values of 3 and 4 from the viewpoint of balance between curability, flame resistance, heat resistance, and fluidity.
  • GPC gel permeation chromatography
  • a differential refractometer (RI detector, for example, a differential refractive index (RI) detector W2414 manufactured by WATERS) is used as the detector.
  • RI detector for example, a differential refractive index (RI) detector W2414 manufactured by WATERS
  • the guard column, the column, and the inside of the detector are kept stable at 40 ° C.
  • a THF solution of a phenol resin adjusted to a concentration of 3 to 4 mg / ml is prepared, and this is injected from an about 50 to 150 ⁇ l injector to perform measurement.
  • a calibration curve prepared from a monodisperse polystyrene (hereinafter referred to as PS) standard sample is used.
  • Standard PS samples for preparing a calibration curve include Shodex standard SL-105 series product numbers S-1.0 (peak molecular weight 1060), S-1.3 (peak molecular weight 1310), S-2. 0 (peak molecular weight 1990), S-3.0 (peak molecular weight 2970), S-4.5 (peak molecular weight 4490), S-5.0 (peak molecular weight 5030), S-6.9 (peak molecular weight 6930) S-11 (peak molecular weight 10700) and S-20 (peak molecular weight 19900) are used.
  • the values of m and n in the general formula (1) can be obtained by FD-MS measurement.
  • the molecular weight and the number of repetitions (m, n) are calculated from the detected mass (m / z).
  • Each (m, n) component can be identified by collating with each peak in GPC measurement. Further, the content ratio (mass ratio) of the intensity ratio of each peak can be obtained.
  • the resin viscosity of the phenol resin (A) is preferably 1.0 to 7.0 dPa ⁇ sec, more preferably 1.5 to 4.5 dPa ⁇ sec, as measured by ICI viscosity at 150 ° C. It is particularly preferably 0 to 4.0 dPa ⁇ sec.
  • the lower limit value of the ICI viscosity is within the above range, the curability and flame resistance of the resin composition are good.
  • the upper limit is within the above range, the fluidity is good.
  • the method for synthesizing the phenol resin (A) used in the present invention is not particularly limited.
  • the synthesis method include a method in which an alkyl-substituted phenol compound, a naphthol compound, and formaldehyde are polycondensed in the presence of an acidic catalyst (hereinafter sometimes referred to as “first synthesis method”), alkyl-substituted phenols. And formaldehydes are methylolated in the presence of a basic catalyst, and then a naphthol is added with an acid catalyst and co-condensed (hereinafter sometimes referred to as “second synthesis method”). Can be mentioned. After completion of the reaction, the acid catalyst used is neutralized or washed with water, and the residual monomer and moisture are removed by heating distillation under reduced pressure.
  • the naphthol compound is not particularly limited as long as it has a structure in which one hydroxyl group is bonded to the naphthalene ring.
  • ⁇ -naphthol, ⁇ -naphthol, and 6-hexyl-2-naphthol are preferable from the viewpoint of high yield and high reaction rate in the synthesis of phenol resin. Further, these naphthol compounds have low raw material costs and good reactivity with epoxy resins.
  • the alkyl-substituted phenol compound is not particularly limited as long as the alkyl substituent is bonded to the 2-position (ortho-position) of the phenol structure.
  • this alkyl group becomes the substituent R1 in the phenol resin (A) represented by the general formula (1) to be obtained.
  • the phenol resin (A) can show the outstanding continuous moldability by making the coupling
  • (m, n) (2,1) component
  • hydrogen atoms are bonded to the carbon atoms at the 4th and 6th positions of the alkyl-substituted phenol structure.
  • it is.
  • the alkyl-substituted phenol compound having a structure in which the alkyl substituent represented by R1 in the general formula (1) is a hydrocarbon group having 1 to 6 carbon atoms and bonded to the 2-position (ortho position) of the phenol structure includes, for example, ortho Cresol, 2,3-xylenol, 2,5-xylenol, 2-ethylphenol, 2-propylphenol, 2-butylphenol, 2-pentylphenol, 2-hexylphenol, and the like. It may be used alone or in combination of two or more.
  • the resulting phenol resin is likely to have a high molecular weight or a branched structure. Since the fluidity
  • alkyl substituent for R1 in the general formula (1) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, and a hexyl group.
  • a methyl group is preferred in that it has an excellent balance of fluidity, curability and moisture resistance of the resin composition.
  • alkyl-substituted phenol compound having a structure in which the alkyl substituent represented by R1 in the general formula (1) is a methyl group and is bonded to the 2-position (ortho-position) of the phenol structure include, for example, orthocresol, 2,3-xylenol 2,5-xylenol and the like. These may be used alone or in combination of two or more. Of these, orthocresol is preferably used from the viewpoint of balance between fluidity, curability, moisture resistance, and continuous moldability.
  • formaldehydes substances that formaldehyde, such as paraformaldehyde, trioxane, formaldehyde aqueous solution, or solutions of these formaldehydes can be used. Usually, it is preferable to use an aqueous formaldehyde solution in terms of workability and cost.
  • a basic catalyst generally known in the synthesis of resol type phenol resins can be used.
  • sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, ammonia, trimethylamine, etc. can be used, and these can be used alone or in combination of two or more.
  • combination of a novolak-type phenol resin can be used.
  • an inorganic acid such as sulfuric acid, hydrochloric acid, phosphoric acid, phosphorous acid, or an organic acid such as oxalic acid, formic acid, organic sulfonic acid, paratoluenesulfonic acid, dimethylsulfuric acid, zinc acetate, nickel acetate, etc. may be used. These may be used alone or in combination of two or more.
  • m + n ⁇ 2 component adjustment method In the case of the first synthesis method, the amount of formaldehyde is reduced, or the phenol resin obtained by synthesis is subjected to atmospheric distillation, vacuum distillation, steam distillation, water washing, etc.
  • the component m + n ⁇ 2 can be reduced by a technique such as taking a molecular weight adjustment method. In this case, as preferable distillation conditions, the temperature can be 50 ° C. or higher and 250 ° C. or lower.
  • the component of m + n ⁇ 2 can be reduced by a technique such as taking a molecular weight adjustment method such as vacuum distillation, steam distillation, or water washing.
  • a molecular weight adjustment method such as vacuum distillation, steam distillation, or water washing.
  • the temperature can be 50 ° C. or higher and 250 ° C. or lower as in the first synthesis method.
  • Adjustment method of m + n ⁇ 4 components In the case of the first synthesis method, the addition amount of the acidic catalyst used in the synthesis is reduced, the reaction temperature at the time of reaction with the acidic catalyst is reduced, the synthesis is obtained. It is possible to reduce m + n ⁇ 4 components by adjusting the molecular weight of the obtained phenol resin by extraction.
  • a molecular weight adjustment method by extraction a nonpolar solvent having low solubility in a phenolic resin such as toluene or xylene is added to a phenolic resin or a phenolic resin dissolved in a polar solvent such as alcohol, and is subjected to normal pressure or pressurization.
  • the mixture is stirred at a temperature of 20 to 150 ° C., left to stand or centrifuged to separate the nonpolar solvent phase and the other component phase, and the nonpolar solvent phase is removed from the system to remove the nonpolar solvent.
  • High molecular weight components dissolved in the phase can be removed.
  • (M, n) (2,1)
  • ⁇ -naphthol is used for naphthols
  • the amount of naphthols is increased in the first synthesis method
  • the second synthesis method is used, or
  • the resin composition for semiconductor encapsulation of the present invention can be used in combination with other curing agents as long as the effect of using the phenol resin (A) is not impaired.
  • curing agent which can be used together,
  • curing agent etc. can be mentioned.
  • polyaddition type curing agent examples include aliphatic polyamines such as diethylenetriamine, triethylenetetramine and metaxylylenediamine, aromatic polyamines such as diaminodiphenylmethane, m-phenylenediamine and diaminodiphenylsulfone, dicyandiamide, organic Polyamine compounds containing acid dihydralazide; alicyclic acid anhydrides such as hexahydrophthalic anhydride and methyltetrahydrophthalic anhydride; aromatic acid anhydrides such as trimellitic anhydride, pyromellitic anhydride and benzophenonetetracarboxylic acid Acid anhydride containing; polyphenol compound such as novolac type phenol resin and phenol polymer; polymercaptan compound such as polysulfide, thioester and thioether; isocyanate prepolymer, Isocyanate compounds such as rock isocyanate; and organic acids such as carboxy
  • catalyst-type curing agent examples include tertiary amine compounds such as benzyldimethylamine and 2,4,6-trisdimethylaminomethylphenol; imidazole compounds such as 2-methylimidazole and 2-ethyl-4-methylimidazole; Lewis acids such as BF3 complex can be mentioned.
  • condensation type curing agent examples include phenolic resin-based curing agents such as novolak type phenolic resin and resol type phenolic resin; urea resin such as methylol group-containing urea resin; melamine resin such as methylol group-containing melamine resin, and the like. Can be mentioned.
  • a phenol resin-based curing agent is preferable from the viewpoint of balance of flame resistance, moisture resistance, electrical characteristics, curability, storage stability, and the like.
  • the phenol resin-based curing agent is a monomer, oligomer, or polymer having two or more phenolic hydroxyl groups in one molecule, and the molecular weight and molecular structure are not particularly limited.
  • phenol resin-based curing agent examples include novolak resins such as phenol novolak resins, cresol novolak resins, and naphthol novolak resins; polyfunctional phenol resins such as triphenolmethane phenol resins; Modified phenol resins such as cyclopentadiene-modified phenol resins; Aralkyl type resins such as phenol aralkyl resins having a phenylene skeleton and / or biphenylene skeleton, naphthol aralkyl resins having a phenylene and / or biphenylene skeleton; Bisphenol compounds such as bisphenol A and bisphenol F These may be used, and these may be used alone or in combination of two or more. Of these, a hydroxyl equivalent of 90 to 250 g / eq is preferred from the viewpoint of curability.
  • the blending ratio of the phenol resin (A) is preferably 50% by mass or more and more preferably 60% by mass or more with respect to the total curing agent. It is preferably 70% by mass or more.
  • the blending ratio is within the above range, it is possible to obtain the effect of improving the flame resistance and solder resistance while maintaining good fluidity and curability.
  • the lower limit of the ratio of the curing agent in the resin composition is not particularly limited, it is preferably 0.8% by mass or more and more preferably 1.5% by mass or more in the entire resin composition. When the lower limit value of the blending ratio is within the above range, sufficient fluidity can be obtained.
  • curing agent in a resin composition is also not specifically limited, It is preferable that it is 10 mass% or less in the whole resin composition, and it is more preferable that it is 8 mass% or less. When the upper limit of the blending ratio is within the above range, good solder resistance can be obtained.
  • an epoxy resin (B) containing at least one epoxy resin selected from the group consisting of a triphenolmethane type epoxy resin, a naphthol type epoxy resin and a dihydroanthracene type epoxy resin is provided.
  • Triphenolmethane type epoxy resin, naphthol type epoxy resin and dihydroanthracene type epoxy resin are preferable in terms of excellent curability, heat resistance, solder resistance and continuous moldability.
  • a triphenolmethane type epoxy resin is preferable, and in terms of high heat resistance and high fluidity, a naphthol type epoxy resin is preferable, and high heat resistance, low water absorption, From the viewpoint of low warpage, a dihydroanthracene type epoxy resin is preferred. All of these three types of epoxy resins are excellent in heat resistance, but in terms of heat resistance, the order is triphenolmethane type epoxy resin, naphthol type epoxy resin, and dihydroanthracene type epoxy resin. It is preferable to select an epoxy resin in accordance with characteristics required for a resin composition for semiconductor encapsulation other than heat resistance and / or high heat resistance.
  • the epoxy equivalent of the epoxy resin is preferably 100 to 500 g / eq, and more preferably 150 to 210 g / eq. When the epoxy equivalent is within this range, the crosslink density of the cured product of the resin composition is increased, and the cured product can have a high glass transition point.
  • the triphenolmethane type epoxy resin used in the resin composition for semiconductor encapsulation of the present invention is not particularly limited, but is an epoxy resin represented by the general formula (2) from the viewpoint of curability and continuous moldability. (B1) is preferable.
  • Examples of commercially available products include E-1032H60 and YL6677 manufactured by Japan Epoxy Resin Co., Ltd., Tactix 742 manufactured by Huntsman Co., Ltd., and the like.
  • R3 is a hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 14 carbon atoms, which may be the same or different, and b is 0 to 4 is an integer, p is an integer of 1 to 10, and G is a glycidyl group-containing organic group).
  • the naphthol type epoxy resin used in the resin composition for encapsulating a semiconductor of the present invention is not particularly limited, but an epoxy represented by the general formula (3) having two naphthalene skeletons from the viewpoint of fluidity.
  • the resin (b2) is preferable, and examples thereof include commercially available products such as HP-4700, HP-4701, HP-4735, HP-4750, and HP-4770 manufactured by DIC Corporation.
  • R4 is a hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 14 carbon atoms, which may be the same or different
  • R5 is a hydrogen atom.
  • c is an integer of 0 to 5
  • q and r are integers of 0 or 1 independent of each other
  • G is a glycidyl group-containing organic group).
  • the dihydroanthracene type epoxy resin used in the resin composition for semiconductor encapsulation of the present invention is not particularly limited, but the epoxy resin (b3) represented by the general formula (4) from the viewpoint of low water absorption and warpage.
  • the epoxy resin (b3) represented by the general formula (4) from the viewpoint of low water absorption and warpage.
  • YX8800 manufactured by Japan Epoxy Resin Co., Ltd. may be mentioned.
  • R6 is a hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 14 carbon atoms, which may be the same or different, and d is 0 to 8 is an integer, s is an integer of 0 to 10, and G is a glycidyl group-containing organic group).
  • Epoxy resins that can be used in combination include novolak epoxy resins such as phenol novolac epoxy resins and cresol novolak epoxy resins; phenol aralkyl epoxy resins having a phenylene skeleton, naphthol aralkyl epoxy resins having a phenylene skeleton, and phenols having a biphenylene skeleton.
  • Aralkyl epoxy resins such as aralkyl epoxy resins and naphthol aralkyl epoxy resins having a biphenylene skeleton; dihydroxynaphthalene epoxy resins; triazine nucleus-containing epoxy resins such as triglycidyl isocyanurate and monoallyl diglycidyl isocyanurate; dicyclopentadiene modification Examples include bridged cyclic hydrocarbon compound-modified phenol type epoxy resins such as phenol type epoxy resins.
  • the epoxy equivalent is 100 g / eq or more and 500 g / eq or less is preferable. These may be used alone or in combination of two or more.
  • the blending ratio of the three types of epoxy resins is preferably 50% by mass or more, and 60% by mass or more with respect to the total epoxy resin (B). More preferably, it is particularly preferably 70% by mass or more.
  • hardenability can be acquired as a compounding ratio exists in the said range.
  • the lower limit value of the total amount of the epoxy resin (B) in the resin composition for semiconductor encapsulation is preferably 2% by mass or more, more preferably 4% by mass with respect to the total amount of the resin composition for semiconductor encapsulation. % Or more. When the lower limit is within the above range, the resulting resin composition has good fluidity. Moreover, the upper limit of the compounding quantity of all the epoxy resins (B) in the resin composition for semiconductor sealing is preferably 15% by mass or less, more preferably based on the total amount of the resin composition for semiconductor sealing. It is 13 mass% or less. When the upper limit is within the above range, the resulting resin composition has good solder resistance.
  • the phenol resin curing agent and the epoxy resin are the number of epoxy groups (EP) of all epoxy resins and the number of phenolic hydroxyl groups (OH) of all phenol resin curing agents.
  • the equivalent ratio (EP) / (OH) to 0.8) is preferably 0.8 to 1.3. When the equivalent ratio is within the above range, sufficient curing characteristics can be obtained when the resulting resin composition is molded.
  • an inorganic filler (C) is used in the resin composition for semiconductor encapsulation of the present invention.
  • an inorganic filler (C) used for the resin composition for semiconductor sealing of this invention The inorganic filler generally used in the said field
  • the particle size of the inorganic filler is desirably 0.01 ⁇ m or more and 150 ⁇ m or less from the viewpoint of filling properties into the mold cavity.
  • the content of the inorganic filler in the resin composition for semiconductor encapsulation is not particularly limited, but is preferably 70% by mass or more, more preferably 80% by mass with respect to the total amount of the resin composition for semiconductor encapsulation. Or more, more preferably 83% by mass or more, and particularly preferably 86% by mass or more. If the lower limit of the content is within the above range, the cured product of the resulting resin composition for encapsulating a semiconductor can suppress the amount of moisture absorbed, and the decrease in strength can be reduced, so that the cured product has good solder resistance. Can be obtained.
  • the upper limit value of the content of the inorganic filler in the semiconductor sealing resin composition is preferably 93% by mass or less, more preferably 91% by mass with respect to the total amount of the semiconductor sealing resin composition. Or less, more preferably 90% by mass or less.
  • the resulting resin composition has good fluidity and good moldability.
  • inorganic flame retardants such as metal hydroxides such as aluminum hydroxide and magnesium hydroxide, zinc borate, zinc molybdate and antimony trioxide described later, these inorganic flame retardants and the above It is desirable that the total amount of the inorganic filler is within the above range.
  • a curing accelerator (D) can be further used.
  • the curing accelerator (D) has the effect of promoting the crosslinking reaction between the epoxy resin and the curing agent, and can control the balance between fluidity and curability at the time of curing of the resin composition for semiconductor encapsulation.
  • the curing characteristics of the cured product can also be changed.
  • Specific examples of curing accelerators (D) include organic phosphines, tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, and phosphorus atom-containing curing accelerations such as adducts of phosphonium compounds and silane compounds.
  • a phosphorus atom-containing curing accelerator obtains preferable curability.
  • Tetra-substituted phosphonium compounds are particularly preferred when emphasizing fluidity, and phosphobetaine compounds, phosphine compounds and quinones when emphasizing the low thermal modulus of a cured resin cured resin composition.
  • An adduct with a compound is particularly preferred, and an adduct of a phosphonium compound and a silane compound is particularly preferred when importance is attached to latent curing properties.
  • Examples of the organic phosphine that can be used in the semiconductor sealing resin composition of the present invention include a first phosphine such as ethylphosphine and phenylphosphine, a second phosphine such as dimethylphosphine and diphenylphosphine, trimethylphosphine, triethylphosphine, and tributyl. Third phosphine such as phosphine and triphenylphosphine can be mentioned.
  • Examples of the tetra-substituted phosphonium compound that can be used in the resin composition for encapsulating a semiconductor of the present invention include a compound represented by the general formula (5).
  • P represents a phosphorus atom
  • R7, R8, R9 and R10 each represents an aromatic group or an alkyl group
  • A represents any functional group selected from a hydroxyl group, a carboxyl group, and a thiol group.
  • AH represents an aromatic organic acid having at least one functional group selected from a hydroxyl group, a carboxyl group, and a thiol group in an aromatic ring.
  • Y is an integer from 1 to 3
  • z is an integer from 0 to 3
  • x y).
  • the compound represented by the general formula (5) is obtained, for example, as follows, but is not limited thereto. First, a tetra-substituted phosphonium halide, an aromatic organic acid and a base are mixed in an organic solvent and mixed uniformly to generate an aromatic organic acid anion in the solution system. Subsequently, when water is added, the compound represented by the general formula (5) is precipitated.
  • R7, R8, R9 and R10 bonded to the phosphorus atom are phenyl groups
  • AH is a compound having a hydroxyl group in an aromatic ring, that is, phenols
  • Examples of the phosphobetaine compound that can be used in the resin composition for encapsulating a semiconductor of the present invention include a compound represented by the general formula (6).
  • P represents a phosphorus atom
  • X1 represents an alkyl group having 1 to 3 carbon atoms
  • Y1 represents a hydroxyl group
  • f is an integer of 0 to 5
  • g is 0 to 4
  • the compound represented by the general formula (6) is obtained as follows, for example. First, a triaromatic substituted phosphine that is a third phosphine and a diazonium salt are brought into contact with each other, and the triaromatic substituted phosphine and the diazonium group of the diazonium salt are substituted to obtain a compound represented by the general formula (6). However, it is not limited to this method.
  • Examples of the adduct of a phosphine compound and a quinone compound that can be used in the semiconductor sealing resin composition of the present invention include compounds represented by the general formula (7).
  • P represents a phosphorus atom
  • R11, R12 and R13 represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms, and may be the same or different from each other.
  • R14, R15 and R16 each represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms, and may be the same or different from each other, or R14 and R15 are bonded to form a cyclic structure. Also good).
  • Examples of the phosphine compound used for the adduct of the phosphine compound and the quinone compound include aromatic compounds such as triphenylphosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, trinaphthylphosphine, and tris (benzyl) phosphine.
  • aromatic compounds such as triphenylphosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, trinaphthylphosphine, and tris (benzyl) phosphine.
  • Those having a substituent or a substituent such as an alkyl group and an alkoxyl group are preferred, and examples of the substituent such as an alkyl group and an alkoxyl group include those having 1 to 6 carbon atoms. From the viewpoint of availability, triphenylphosphine is
  • examples of the quinone compound used for the adduct of the phosphine compound and the quinone compound include o-benzoquinone, p-benzoquinone and anthraquinones, and among them, p-benzoquinone is preferable from the viewpoint of storage stability.
  • Examples of the method for producing an adduct of a phosphine compound and a quinone compound include a method of obtaining an adduct by contacting and mixing in a solvent in which both an organic tertiary phosphine and a benzoquinone can be dissolved.
  • a solvent in which both an organic tertiary phosphine and a benzoquinone can be dissolved.
  • ketones such as acetone and methyl ethyl ketone which have low solubility in the adduct are preferable.
  • the present invention is not limited to this.
  • R11, R12 and R13 bonded to the phosphorus atom are phenyl groups, and R14, R15 and R16 are hydrogen atoms, that is, 1,4-benzoquinone and triphenyl
  • R11, R12 and R13 bonded to the phosphorus atom are phenyl groups
  • R14, R15 and R16 are hydrogen atoms, that is, 1,4-benzoquinone and triphenyl
  • a compound to which phosphine is added is preferable in that the elastic modulus during heating of the cured resin composition for semiconductor encapsulation can be kept low.
  • Examples of the adduct of a phosphonium compound and a silane compound that can be used in the semiconductor sealing resin composition of the present invention include compounds represented by the general formula (8).
  • P represents a phosphorus atom
  • Si represents a silicon atom
  • R17, R18, R19, and R20 each represents an organic group having an aromatic ring or a heterocyclic ring, or an aliphatic group
  • X2 is an organic group bonded to the groups Y2 and Y3, where X3 is an organic group bonded to the groups Y4 and Y5, where Y2 and Y3 are protons
  • a donating group represents a group formed by releasing protons, and groups Y2 and Y3 in the same molecule are bonded to a silicon atom to form a chelate structure.
  • Y4 and Y5 are proton-donating groups that release protons.
  • Y4 and Y5 in the same molecule are bonded to a silicon atom to form a chelate structure
  • X2 and X3 may be the same or different from each other.
  • Y2, Y3, Y4, and Y5 is .Z1 which may be the same or different from each other is an organic group or an aliphatic group, an aromatic ring or a heterocyclic ring).
  • R17, R18, R19 and R20 are, for example, phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, naphthyl group, hydroxynaphthyl group, benzyl group, methyl group, ethyl group, Examples thereof include n-butyl group, n-octyl group and cyclohexyl group, and among these, aromatic group having a substituent such as phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, hydroxynaphthyl group or the like. A substituted aromatic group is more preferred.
  • X2 is an organic group bonded to the groups Y2 and Y3.
  • X3 is an organic group that binds to groups Y4 and Y5.
  • Y2 and Y3 are groups formed by proton-donating groups releasing protons, and groups Y2 and Y3 in the same molecule are combined with a silicon atom to form a chelate structure.
  • Y4 and Y5 are groups formed by proton-donating groups releasing protons, and groups Y4 and Y5 in the same molecule are combined with a silicon atom to form a chelate structure.
  • the groups X2 and X3 may be the same or different from each other, and the groups Y2, Y3, Y4, and Y5 may be the same or different from each other.
  • Such a group represented by —Y2-X2-Y3- and Y4-X3-Y5- in the general formula (8) is composed of a group in which a proton donor releases two protons.
  • Examples of proton donors include catechol, pyrogallol, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,2′-biphenol, 1,1′-bi-2-naphthol, salicylic acid, Examples include 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, chloranilic acid, tannic acid, 2-hydroxybenzyl alcohol, 1,2-cyclohexanediol, 1,2-propanediol, and glycerin. Of these, catechol, 1,2-dihydroxynaphthalene, and 2,3-dihydroxynaphthalene are more preferable.
  • Z1 in the general formula (8) represents an organic group having an aromatic ring or a heterocyclic ring, or an aliphatic group. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, Aliphatic hydrocarbon groups such as hexyl group and octyl group, aromatic hydrocarbon groups such as phenyl group, benzyl group, naphthyl group and biphenyl group, glycidyloxypropyl group, mercaptopropyl group, aminopropyl group and vinyl group Although a reactive substituent etc.
  • a methyl group, an ethyl group, a phenyl group, a naphthyl group, and a biphenyl group are more preferable at the point that the thermal stability of General formula (8) improves.
  • a silane compound such as phenyltrimethoxysilane and a proton donor such as 2,3-dihydroxynaphthalene are added to a flask containing methanol, and then dissolved.
  • Sodium methoxide-methanol solution is added dropwise with stirring.
  • crystals are precipitated. The precipitated crystals are filtered, washed with water, and vacuum dried to obtain an adduct of a phosphonium compound and a silane compound.
  • the compounding ratio of the curing accelerator (D) that can be used in the resin composition for semiconductor encapsulation of the present invention is preferably 0.1% by mass or more and 1% by mass or less in the total resin composition.
  • the blending amount of the curing accelerator (D) is within the above range, sufficient curability and fluidity can be obtained.
  • the resin composition for encapsulating a semiconductor of the present invention further comprises a compound (E) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring (hereinafter also referred to as “compound (E)”). May be included.
  • Compound (E) is a case where a phosphorus atom-containing curing accelerator having no latent property is used as a curing accelerator (D) that promotes the crosslinking reaction between the phenol resin and the epoxy resin by using this compound.
  • D curing accelerator
  • the reaction during the melt-kneading of the resin compound can be suppressed, and the semiconductor sealing resin composition can be obtained stably.
  • the compound (E) also has an effect of lowering the melt viscosity of the resin composition for semiconductor encapsulation and improving the fluidity.
  • a monocyclic compound represented by the general formula (9) or a polycyclic compound represented by the general formula (10) can be used, and these compounds are substituents other than a hydroxyl group. You may have. (In the general formula (9), when one of R21 and R25 is a hydroxyl group and one is a hydroxyl group, the other is a hydrogen atom, a hydroxyl group, or a substituent other than a hydroxyl group, and R22, R23, and R24 are hydrogen atoms.
  • R31 and R32 are a hydroxyl group, and when one is a hydroxyl group, the other is a hydrogen atom, a hydroxyl group or a substituent other than a hydroxyl group, and R26, R27, R28, R29 and R30 are It is a hydrogen atom, a hydroxyl group or a substituent other than a hydroxyl group.
  • Examples of the monocyclic compound represented by the general formula (9) include catechol, pyrogallol, gallic acid, gallic acid ester, and derivatives thereof.
  • Examples of the polycyclic compound represented by the general formula (10) include 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, and derivatives thereof.
  • a compound in which a hydroxyl group is bonded to each of two adjacent carbon atoms constituting an aromatic ring is preferable because of easy control of fluidity and curability.
  • the mother nucleus is a compound having a low volatility and a highly stable weighing naphthalene ring.
  • the compound (E) can be a compound having a naphthalene ring such as 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof.
  • These compounds (E) may be used individually by 1 type, or may use 2 or more types together.
  • the compounding amount of the compound (E) is preferably 0.01% by mass or more and 1% by mass or less, more preferably 0.03% by mass or more and 0.8% by mass in the entire resin composition for encapsulating a semiconductor. % Or less, particularly preferably 0.05% by mass or more and 0.5% by mass or less.
  • the lower limit value of the compounding amount of the compound (E) is within the above range, a sufficient viscosity reduction and fluidity improvement effect of the resin composition for semiconductor encapsulation can be obtained.
  • the upper limit value of the compounding amount of the compound (E) is within the above range, there is little possibility of causing cracks at the lowering of the curability and continuous moldability of the semiconductor sealing resin composition and at the solder reflow temperature.
  • a coupling agent (F) can be further added in order to improve the adhesion between the epoxy resin and the inorganic filler.
  • a silane coupling agent is preferable.
  • the silane coupling agent include, but are not limited to, epoxy silane, amino silane, ureido silane, mercapto silane, etc., but react or act between the epoxy resin and the inorganic filler, and the epoxy resin and the inorganic filler. There is no particular limitation as long as the interface strength is improved.
  • the coupling agent (F) can also increase the effect of the compound (E) to lower the melt viscosity of the resin composition and improve the fluidity when used in combination with the aforementioned compound (E). is there.
  • epoxy silane examples include ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, and ⁇ - (3,4 epoxycyclohexyl) ethyltrimethoxysilane. Etc.
  • aminosilane examples include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, and N- ⁇ (aminoethyl) ⁇ -aminopropyl.
  • Methyldimethoxysilane N-phenyl ⁇ -aminopropyltriethoxysilane, N-phenyl ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N-6- (aminohexyl) 3 -Aminopropyltrimethoxysilane, N- (3- (trimethoxysilylpropyl) -1,3-benzenedimethanane, etc.
  • Potential of protecting the primary amino moiety of aminosilane by reaction with ketone or aldehyde It may be used as an aminosilane coupling agent.
  • ureidosilanes include ⁇ -ureidopropyltriethoxysilane, hexamethyldisilazane, etc.
  • Mercaptosilanes include, for example, ⁇ -mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane.
  • silane coupling agents that exhibit the same functions as mercaptosilane coupling agents by thermal decomposition, such as bis (3-triethoxysilylpropyl) tetrasulfide and bis (3-triethoxysilylpropyl) disulfide
  • silane coupling agents may be pre-hydrolyzed, and these silane coupling agents may be used alone or in combination of two or more. Good.
  • the lower limit of the blending ratio of the coupling agent (F) that can be used for the semiconductor sealing resin composition of the present invention is preferably 0.01% by mass or more, more preferably 0.05% in the total resin composition. It is at least 0.1% by mass, particularly preferably at least 0.1% by mass. If the lower limit value of the blending ratio of the coupling agent (F) is within the above range, the interface strength between the epoxy resin and the inorganic filler does not decrease, and good solder resistance in the semiconductor device can be obtained. .
  • 1.0 mass% or less is preferable in all the resin compositions, More preferably, it is 0.8 mass% or less, Most preferably, it is 0.6 mass% or less.
  • the blending ratio of the coupling agent (F) When the upper limit of the blending ratio of the coupling agent (F) is within the above range, the interface strength between the epoxy resin and the inorganic filler is not lowered, and good solder resistance in the semiconductor device can be obtained. . Further, when the blending ratio of the coupling agent (F) is within the above range, the water absorption of the cured product of the resin composition does not increase, and good solder resistance in the semiconductor device can be obtained.
  • an inorganic flame retardant (G) can be further added to improve the flame resistance.
  • examples thereof include, but are not limited to, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, zinc borate, zinc molybdate, and antimony trioxide. These inorganic flame retardants (G) may be used alone or in combination of two or more.
  • the blending ratio of the inorganic flame retardant (G) that can be used in the resin composition for semiconductor encapsulation of the present invention is preferably 0.5% by mass or more and 6.0% by mass or less in the total resin composition.
  • the blending ratio of the inorganic flame retardant (G) is within the above range, curing that improves flame resistance can be obtained without impairing curability and characteristics.
  • the following additives can be blended in the resin composition for semiconductor encapsulation of the present invention as necessary: colorants such as carbon black, bengara, titanium oxide; natural waxes such as carnauba wax. , Synthetic waxes such as polyethylene wax, higher fatty acids such as stearic acid and zinc stearate and metal salts thereof or mold release agents such as paraffin; low-stress additives such as silicone oil and silicone rubber; inorganics such as bismuth oxide hydrate Ion exchangers: Non-inorganic flame retardants such as phosphate esters and phosphazenes.
  • colorants such as carbon black, bengara, titanium oxide
  • natural waxes such as carnauba wax.
  • Synthetic waxes such as polyethylene wax, higher fatty acids such as stearic acid and zinc stearate and metal salts thereof or mold release agents such as paraffin
  • low-stress additives such as silicone oil and silicone rubber
  • inorganics such as bismuth oxide hydrate I
  • the resin composition for encapsulating a semiconductor of the present invention is obtained by uniformly mixing a phenol resin (A), an epoxy resin (B), an inorganic filler (C), and other components described above with a mixer or the like at room temperature. To mix.
  • melt kneading using a kneader such as a heating roll, a kneader or an extruder, and then cooling and pulverizing as necessary to adjust to a desired degree of dispersion and fluidity.
  • a kneader such as a heating roll, a kneader or an extruder, and then cooling and pulverizing as necessary to adjust to a desired degree of dispersion and fluidity.
  • the semiconductor device of the present invention will be described.
  • a method of manufacturing a semiconductor device using the resin composition for semiconductor encapsulation of the present invention for example, after a lead frame or a circuit board on which a semiconductor element is mounted is placed in a mold cavity, the resin for semiconductor encapsulation is used.
  • molding methods such as a transfer mold, a compression mold, and an injection mold, is mentioned.
  • Examples of the semiconductor element to be sealed include, but are not limited to, an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element.
  • DIP dual in-line package
  • PLCC chip carrier with plastic lead
  • QFP quad flat package
  • LQFP low profile quad flat package
  • SOP Small Outline Package
  • SOJ Small Outline J Lead Package
  • TSOP Thin Small Outline Package
  • TQFP Tape Carrier Package
  • BGA ball grid array
  • CSP chip size package
  • a semiconductor device in which a semiconductor element is encapsulated by a molding method such as transfer molding of a resin composition for encapsulating a semiconductor is used as it is or at a temperature of about 80 ° C. to 200 ° C. for about 10 minutes to 10 hours. After completely curing the resin composition, it is mounted on an electronic device or the like.
  • FIG. 1 is a view showing a cross-sectional structure of an example of a semiconductor device using a resin composition for encapsulating a semiconductor according to the present invention.
  • the semiconductor element 1 is fixed on the die pad 3 via the die bond material cured body 2.
  • the electrode pad of the semiconductor element 1 and the lead frame 5 are connected by a bonding wire 4.
  • the semiconductor element 1 is sealed with a cured body 6 of a semiconductor sealing resin composition.
  • FIG. 2 is a diagram showing a cross-sectional structure of an example of a single-side sealed semiconductor device using the resin composition for semiconductor sealing according to the present invention.
  • the semiconductor element 1 On the surface of the substrate 8, the semiconductor element 1 is fixed via the die-bonding material cured body 2 on the solder resist 7 of the laminated body in which the layer of the solder resist 7 is formed.
  • the solder resist 7 on the electrode pad is removed by a developing method so that the electrode pad is exposed. Therefore, the semiconductor device of FIG. 2 is designed to connect the electrode pad of the semiconductor element 1 and the electrode pad on the substrate 8 by the bonding wire 4.
  • the sealing resin composition in the semiconductor device By sealing the sealing resin composition in the semiconductor device and forming the cured body 6, it is possible to obtain a semiconductor device in which only one side of the substrate 8 on which the semiconductor element 1 is mounted is sealed.
  • the electrode pads on the substrate 8 are bonded to the solder balls 9 on the non-sealing surface side on the substrate 8 inside.
  • the following phenol resins 1 to 6 were used. Of these, the phenol resins 1 and 2 correspond to the phenol resin (A).
  • Phenolic resin 1 108 g (1 mol) of o-cresol (manufactured by Tokyo Chemical Industry Co., Ltd.) was charged into a flask equipped with a thermometer, a stirrer and a condenser, and completely dissolved while maintaining the temperature at 30 ° C. in a nitrogen atmosphere. It was. After dissolution, 134 g of 30% aqueous sodium hydroxide solution (1 mol of sodium hydroxide) was added dropwise to the reaction solution. Thereafter, the reaction temperature was further kept at 30 ° C. for 1 hour.
  • reaction temperature was raised to 50 ° C., and immediately 10 g of concentrated hydrochloric acid (0.1 mol as a hydrochloric acid hydration component) was added dropwise. After the dropwise addition, the reaction temperature was raised to 60 ° C. for 2 hours, and further heated to 80 ° C. for 1 hour. After completion of the reaction, in order to remove the acid catalyst, it was dissolved in 1000 ml of methyl isobutyl ketone, and washing with water was repeated.
  • the GPC chart is shown in FIG. 3, and the results of FD-MS are shown in FIG.
  • t is an integer of 0 to 10).
  • Phenol resin 6 Triphenylmethane type phenol resin (Maywa Kasei Co., Ltd., MEH-7500, hydroxyl group equivalent 97, softening point 110 ° C., ICI viscosity 5.8 dPa ⁇ sec at 150 ° C.).
  • the GPC measurement of phenol resin 1 was performed under the following conditions. 6 ml of the solvent tetrahydrofuran (THF) was added to 20 mg of the phenol resin 1 sample and sufficiently dissolved, and subjected to GPC measurement.
  • the GPC system includes WATERS module W2695, Tosoh Corporation's TSK GUARDCOLUMN HHR-L (diameter 6.0 mm, tube length 40 mm, guard column), Tosoh Corporation's TSK-GEL GMHHR-L (diameter 7.8 mm, A tube having a tube length of 30 mm and two polystyrene gel columns) and a differential refractive index (RI) detector W2414 manufactured by WATERS, in series, was used. The flow rate of the pump was 0.5 ml / min, the temperature in the column and the differential refractometer was 40 ° C., and measurement was performed by injecting the measurement solution from a 100 ⁇ l injector.
  • FD-MS measurement of phenol resin 1 was performed under the following conditions. After adding 1 g of the solvent dimethyl sulfoxide to 10 mg of the phenol resin 1 sample and dissolving it sufficiently, it was applied to the FD emitter and subjected to measurement.
  • the FD-MS system uses an MS-FD15A manufactured by JEOL Ltd. as the ionization unit, and a MS-700 model name double-focusing mass spectrometer manufactured by JEOL Ltd. connected to the detector. (M / z) Measured at 50 to 2000.
  • the following epoxy resins 1 to 4 were used as the epoxy resin (B).
  • Epoxy resin 1 Triphenylmethane type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., E-1032H60, epoxy equivalent 171 g / eq, softening point 59 ° C., ICI viscosity 1.3 dPa ⁇ sec at 150 ° C.)
  • Epoxy resin 2 Mixture of triphenylmethane type epoxy resin and biphenyl type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YL6677, epoxy equivalent 163 g / eq, softening point 59 ° C., ICI viscosity 0.13 dPa ⁇ sec at 150 ° C.)
  • Epoxy resin 3 naphthol type epoxy resin (manufactured by DIC Corporation, HP-4770, epoxy equivalent 205 g / eq, softening point 72 ° C., ICI viscosity 0.90 dPa ⁇ sec at 150 ° C.)
  • Epoxy resin 4 dihydroanthracene type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX8800, epoxy equivalent 181 g / eq, softening point 110 ° C., ICI viscosity 0.11 dPa ⁇ sec at 150 ° C.)
  • Epoxy resin 5 Orthocresol novolak type epoxy resin (manufactured by DIC Corporation, N660, epoxy equivalent 210 g / eq, softening point 62 ° C., ICI viscosity 2.34 dPa ⁇ sec at 150 ° C.)
  • Epoxy resin 6 Biphenyl type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX4000K, epoxy equivalent 185 g / eq, softening point 107 ° C., ICI viscosity 0.11 dPa ⁇ sec at 150 ° C.)
  • inorganic filler (C) fused spherical silica FB560 (average particle size 30 ⁇ m) manufactured by Denki Kagaku Kogyo Co., Ltd. 87.7 mass%, synthetic spherical silica SO-C2 manufactured by Admatex Co., Ltd. (average particle size 0.5 ⁇ m)
  • Curing accelerator 1 Curing accelerator represented by the following formula (12)
  • Curing accelerator 2 Curing accelerator represented by the following formula (13)
  • silane coupling agent (F) the following silane coupling agents 1 to 3 were used.
  • Silane coupling agent 1 ⁇ -mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-803)
  • Silane coupling agent 2 ⁇ -glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403)
  • Silane coupling agent 3 N-phenyl-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-573)
  • inorganic flame retardant (G) aluminum hydroxide (CL-310, manufactured by Sumitomo Chemical Co., Ltd.) was used.
  • As the release agent carnauba wax (Nikko carnauba, melting point 83 ° C.) manufactured by Nikko Fine Co., Ltd. was used.
  • Example 1 The following components were mixed at room temperature with a mixer, melt-kneaded with a heating roll at 80 ° C. to 100 ° C., then cooled, and then pulverized to obtain a resin composition for semiconductor encapsulation.
  • Phenolic resin 2 5.43 parts by mass Epoxy resin 1 7.07 parts by mass Inorganic filler 1 86.5 parts by mass Curing accelerator 1 0.4 parts by mass Silane coupling agent 1 0.1 parts by mass Silane coupling agent 2 0 0.05 part by weight Silane coupling agent 3 0.05 part by weight Carbon black 0.3 part by weight Carnauba wax 0.1 part by weight
  • the obtained resin composition for semiconductor encapsulation was evaluated for the following items. The evaluation results are shown in Tables 1 and 2.
  • Wire flow rate Using a low-pressure transfer automatic molding machine (GP-ELF, manufactured by Daiichi Seiko Co., Ltd.), with a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 70 seconds.
  • 160-pin LQFP preplating frame: nickel / palladium alloy gold-plated, package outer dimensions: 24 mm x 24 mm x 1.4 mm thickness, pad size: 8.5 mm x 8.5 mm
  • chip size 7.4 mm ⁇ 7.4 mm ⁇ 350 ⁇ m thickness).
  • the obtained 160-pin LQFP package was observed with a soft X-ray fluoroscope (PRO-TEST100, manufactured by Softex Corporation), and the ratio of (flow rate) / (wire length) was determined as the flow rate of the wire. The unit is%.
  • the resin composition for semiconductor encapsulation obtained in Example 1 showed a good result with a wire flow rate of 6%.
  • Flame resistance Semiconductor sealing using a low-pressure transfer molding machine (KTS-30, KTS-30) under conditions of a mold temperature of 175 ° C., an injection time of 15 seconds, a curing time of 120 seconds, and an injection pressure of 9.8 MPa.
  • the resin composition for injection was injection-molded to produce a 3.2 mm-thick flame resistance test piece, which was heat-treated at 175 ° C. for 4 hours.
  • the flame resistance test was done according to the specification of UL94 vertical method.
  • the table shows Fmax, ⁇ F and the fire resistance rank after the determination.
  • the resin composition for encapsulating a semiconductor obtained in Example 1 exhibited good flame resistance such as Fmax: 4 seconds, ⁇ F: 9 seconds, and fire resistance rank: V-0.
  • Glass transition point Using a low-pressure transfer molding machine (TEP-50-30, manufactured by Towa Seiki Co., Ltd.), mold temperature 175 ° C., pressure 9.8 MPa, curing time 120 seconds, length 15 mm, width 4 mm, thickness A 3 mm thick test piece was molded and heat treated at 175 ° C. for 4 hours as a post cure, and then heated at a rate of temperature increase of 5 ° C./min using a thermal dilatometer (TMA-120 manufactured by Seiko Instruments Inc.). Then, the temperature at which the elongation percentage of the test piece rapidly changes was measured as the glass transition point. The unit is ° C.
  • the test piece can be measured by cutting out a test piece having a length of 5 mm, a width of 4 mm, and a thickness of 2 mm from an 80-pin QFP produced in a solder resistance test described later.
  • the semiconductor sealing resin composition obtained in Example 1 exhibited a glass transition temperature of 164 ° C. and a glass transition temperature suitable for obtaining an appropriate thermal elastic modulus.
  • Boiling water absorption disk-shaped test using a low-pressure transfer molding machine (KTS-30, manufactured by Kotaki Seiki Co., Ltd.) with a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, a curing time of 120 seconds, a diameter of 50 mm, and a thickness of 3 mm Pieces were molded and heat treated at 175 ° C. for 4 hours. The mass change before the moisture absorption treatment of the test piece and after the boiling treatment in pure water for 24 hours was measured, and the water absorption rate of the test piece was shown as a percentage. The unit is mass%.
  • the semiconductor sealing resin composition obtained in Example 1 exhibited a low water absorption of 0.129% by mass.
  • Continuous moldability 7.5 g of the resin composition material for semiconductor encapsulation obtained above was loaded into a tablet with a size of ⁇ 16 mm using a rotary tableting machine, and tableted with a tableting pressure of 600 Pa. Obtained. The tablet was loaded into a tablet supply magazine and set inside the molding apparatus. Using a low-pressure transfer automatic molding machine (SY-COMP, manufactured by Cynex Co., Ltd.), a silicon resin tablet for semiconductor encapsulation is used with a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 60 seconds.
  • SY-COMP low-pressure transfer automatic molding machine
  • Solder resistance test 1 For semiconductor encapsulation using a low pressure transfer molding machine (Daiichi Seiko Co., Ltd., GP-ELF) under conditions of a mold temperature of 180 ° C., an injection pressure of 7.4 MPa, and a curing time of 120 seconds. A resin composition is injected and a lead frame on which a semiconductor element (silicon chip) is mounted is sealed and molded. 80 pQFP (Quad Flat Package, Cu lead frame, size is 14 ⁇ 20 mm ⁇ thickness 2.00 mm, semiconductor The element was 7 ⁇ 7 mm ⁇ thickness 0.35 mm, and the semiconductor element and the inner lead portion of the lead frame were bonded with a gold wire with a diameter of 25 ⁇ m.
  • a low pressure transfer molding machine (Daiichi Seiko Co., Ltd., GP-ELF) under conditions of a mold temperature of 180 ° C., an injection pressure of 7.4 MPa, and a curing time of 120 seconds.
  • a resin composition is injected and
  • Solder Resistance Test 2 Same as Solder Resistance Test 1 except that six semiconductor devices heat-treated at 175 ° C. for 4 hours in the above-mentioned solder resistance test 1 were treated at 30 ° C. and 60% relative humidity for 96 hours. The test was conducted. The semiconductor device obtained in Example 1 showed a good reliability of 0/6. A case where the defect was 0 in both of the solder resistance tests 1 and 2 was judged as ⁇ , and a case where a defect occurred in both or one of the solder resistance tests 1 and 2 was judged as x.
  • High-temperature storage characteristics For semiconductor encapsulation using a low-pressure transfer molding machine (Daiichi Seiko Co., Ltd., GP-ELF) at a mold temperature of 180 ° C. and an injection pressure of 6.9 ⁇ 0.17 MPa for 90 seconds. Resin composition is injected to encapsulate a lead frame on which a semiconductor element (silicon chip) is mounted.
  • a low-pressure transfer molding machine Daiichi Seiko Co., Ltd., GP-ELF
  • a 16-pin DIP (Dual Inline Package, 42 alloy lead frame, size is 7 mm x 11.5 mm x thickness
  • the thickness of the semiconductor element is 5 ⁇ 9 mm ⁇ thickness 0.35 mm
  • the semiconductor element is formed by forming an oxide layer having a thickness of 5 ⁇ m on the surface and further forming an aluminum wiring pattern having a line and space of 10 ⁇ m on the oxide layer.
  • the aluminum wiring pad part on the element and the lead frame pad part are bonded with a gold wire with a diameter of 25 ⁇ m)
  • a body device was produced.
  • the initial resistance value of 10 semiconductor devices heat-treated at 175 ° C. for 4 hours as a post cure was measured, and a high-temperature storage treatment at 185 ° C. for 1000 hours was performed.
  • the semiconductor device having 130% or more of the initial resistance value is regarded as defective, and when the number of defective semiconductor devices is 0, a circle is displayed and the number of defective semiconductor devices is When the number was 1 to 10, x was displayed.
  • the semiconductor device obtained in Example 1 showed a good reliability of 0/10.
  • the phenol resin (A) containing the polymer (a1) having the structural unit represented by the general formula (1), the triphenolmethane type epoxy resin, the naphthol type epoxy resin, and the dihydroanthracene type epoxy A resin composition comprising an epoxy resin (B) containing at least one epoxy resin selected from the group consisting of resins and an inorganic filler (C), and the structure of the naphthol of the phenol resin (A) was changed ,
  • Comparative Examples 1 and 2 using phenol resins 3 and 4 in which the alkyl-substituted phenol of phenol resin (A) is substituted with paracresol are fluidity (spiral flow, wire flow), continuous formability, solder resistance.
  • Comparative Examples 3 and 4 using an ortho cresol novolac type epoxy resin instead of the above three types of epoxy resins high heat resistance (glass transition point) was not obtained, resulting in poor high-temperature storage. Also, the continuous formability was inferior.
  • Comparative Examples 5 and 6 using 4,4′-dimethylbiphenyl type epoxy resin instead of the above three types of epoxy resins high heat resistance (glass transition point) was not obtained, and the high temperature storage property was poor. Became.
  • Comparative Examples 2, 4, and 6 using the phenol resin 4 in which the alkyl-substituted phenol of the phenol resin (A) was substituted with paracresol resulted in a decrease in continuous moldability due to a slight decrease in curability.
  • Comparative Example 7 using the existing cresol and naphthol co-condensation type curing agent KAYAHARD NHN since the viscosity of the resin composition is high, the wire flow rate is extremely inferior, and the solder resistance and continuous moldability are inferior. As a result.
  • Comparative Example 8 in which the polyfunctional epoxy resin and the polyfunctional curing agent were used in combination good high-temperature storage properties were obtained at a high glass transition point, but the results were extremely poor in flame resistance and solder resistance.
  • the resin composition for encapsulating a semiconductor exhibits flame resistance without using a halogen compound and an antimony compound, and has a higher level of solder resistance, high-temperature storage characteristics and continuous moldability than the conventional level. Therefore, it is suitable for sealing semiconductor devices used for electronic devices and the like that are assumed to be used outdoors, and particularly for sealing semiconductor devices used for in-vehicle electronic devices that require high-temperature storage characteristics. is there.

Abstract

 本発明によれば、フェノール樹脂(A)と、エポキシ樹脂(B)と、無機充填材(C)とを含む半導体封止用樹脂組成物であって、フェノール樹脂(A)が一般式(1)で表される構造を有する重合体(a1)を含み、前記エポキシ樹脂(B)が、トリフェノールメタン型エポキシ樹脂、ナフトール型エポキシ樹脂およびジヒドロアントラセン型エポキシ樹脂からなる群より選択される少なくとも1種のエポキシ樹脂を含むことを特徴とする半導体封止用樹脂組成物、ならびに、その半導体封止用樹脂組成物の硬化物で半導体素子を封止して得られることを特徴とする半導体装置が提供される。

Description

半導体封止用樹脂組成物およびこれを用いた半導体装置
 本発明は、半導体封止用樹脂組成物およびこれを用いた半導体装置に関する。
 半導体装置は、半導体素子の保護、電気絶縁性の確保、ハンドリングの容易化などの目的から、封止が行われる。半導体装置の封止には、生産性やコスト、信頼性等に優れることから、エポキシ樹脂組成物のトランスファー成形による封止が主に用いられる。電子機器の小型化、軽量化、高性能化という市場の要求に応えるべく、半導体素子の高集積化、半導体装置の小型化、高密度化のみならず、表面実装のような新たな接合技術が開発、実用化されてきた。こうした技術動向は、半導体封止用樹脂組成物にも波及し、要求性能は年々高度化、多様化してきている。
 たとえば、表面実装に用いられる半田については環境問題を背景とした無鉛半田への切り替えが進められている。無鉛半田の融点は従来の鉛/スズ半田に比べて高く、リフロー実装温度は従来の鉛/スズ半田の220~240℃から、240℃~260℃へと高くなり、そのため、半導体装置内の樹脂クラックや剥離が生じやすく、従来の封止用樹脂組成物では耐半田性が不足する場合がある。
 また、従来の封止用樹脂組成物には、難燃性を付与する目的から、難燃剤として臭素含有エポキシ樹脂と酸化アンチモンが使用されているが、近年の環境保護、安全性向上の観点からこれらの化合物を撤廃する機運が高まっている。
 さらに近年では、自動車や携帯電話などの屋外での使用を前提とした電子機器が普及し、これらの用途では、従来のパソコンや家電製品よりも厳しい環境下での動作信頼性が求められる。特に車載用途においては、必須要求項目のひとつとして高温保管特性が求められ、150~180℃の高温下で半導体装置がその動作、機能を維持する必要がある。
 従来の技術としては、ナフタレン骨格を有するエポキシ樹脂、ナフタレン骨格を有するフェノール樹脂硬化剤とを組み合わせて、高温保管特性と耐半田性を高める手法(例えば、特許文献1、2参照)や、リン酸含有化合物を配合することによって、高温保管特性と耐燃性を高める手法(例えば、特許文献3、4参照)が提案されているものの、これらは耐燃性、連続成形性、耐半田性のバランスが十分とは言い難い場合がある。以上のように、車載用電子機器等の小型化と普及にあたっては、耐燃性、耐半田性、高温保管特性、連続成形性をバランスよく満たす封止用樹脂組成物が求められる。
特開2007-31691号公報 特開平06-216280号公報 特開2003-292731号公報 特開2004-43613号公報
 本発明は、ハロゲン化合物およびアンチモン化合物を使用することなく難燃性を示し、従来よりも高いレベルで、耐半田性、高温保管特性および連続成形性のバランスに優れた封止用樹脂組成物、ならびに、当該封止用樹脂組成物を用いた信頼性に優れた半導体装置を提供するものである。
 本発明によると、フェノール樹脂(A)と、エポキシ樹脂(B)と、無機充填材(C)とを含む半導体封止用樹脂組成物であって、
 前記フェノール樹脂(A)が一般式(1):
Figure JPOXMLDOC01-appb-I000001
(一般式(1)において、R1は炭素数1~6の炭化水素基であり、R2は炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、互いに同じであっても異なっていてもよく、aは0~2の整数であり、mおよびnは互いに独立して、1~10の整数であり、m+n≧2であり、繰り返し数mで表される構造単位と繰り返し数nで表される構造単位は、それぞれが連続で並んでいても、お互いが交互に並んでいても、ランダムに並んでいてもよいが、それぞれの間には必ず-CH2-を有する構造をとる)
で表される構造を有する重合体(a1)を含み、
 エポキシ樹脂(B)が、トリフェノールメタン型エポキシ樹脂、ナフトール型エポキシ樹脂およびジヒドロアントラセン型エポキシ樹脂からなる群より選択される少なくとも1種のエポキシ樹脂を含む、半導体封止用樹脂組成物が提供される。
 本発明の一実施形態によると、上記半導体封止樹脂組成物において、上記エポキシ樹脂(B)が、
  一般式(2):
Figure JPOXMLDOC01-appb-I000002
(一般式(2)において、R3は炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、互いに同じであっても異なっていてもよく、bは0~4の整数であり、pは1~10の整数であり、Gはグリシジル基含有有機基である)で表されるエポキシ樹脂(b1)、
  一般式(3):
Figure JPOXMLDOC01-appb-I000003
(一般式(3)において、R4は炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、互いに同じであっても異なっていてもよく、R5は水素原子、炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、cは0~5の整数であり、qおよびrは互いに独立して0または1の整数であり、Gはグリシジル基含有有機基である)で表されるエポキシ樹脂(b2)、および
  一般式(4):
Figure JPOXMLDOC01-appb-I000004
(一般式(4)において、R6は炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、互いに同じであっても異なっていてもよく、dは0~8の整数であり、sは0~10の整数であり、Gはグリシジル基含有有機基である)で表されるエポキシ樹脂(b3)、
からなる群より選択される少なくとも1種のエポキシ樹脂を含む。
 本発明の一実施形態によると、上記半導体封止樹脂組成物において、上記フェノール樹脂(A)の150℃におけるICI粘度が1.0~7.0dPa・secである。
 本発明の一実施形態によると、上記半導体封止樹脂組成物において、上記一般式(1)におけるR1がメチル基である。
 本発明の一実施形態によると、上記半導体封止樹脂組成物において、ゲルパーミエーションクロマトグラフィー(GPC)法により測定した、上記フェノール樹脂(A)における、(m,n)=(2,1)である重合体成分の割合が30~80面積%である。
 本発明の一実施形態によると、上記半導体封止樹脂組成物は硬化剤をさらに含み、上記フェノール樹脂(A)が上記硬化剤100質量部中に50~100質量部含まれる。
 本発明の一実施形態によると、上記半導体封止樹脂組成物において、トリフェノールメタン型エポキシ樹脂、ナフトール型エポキシ樹脂およびジヒドロアントラセン型エポキシ樹脂からなる群より選択される少なくとも1種の上記エポキシ樹脂が、上記エポキシ樹脂(B)100質量部中に50~100質量部含まれる。
 本発明の一実施形態によると、上記半導体封止樹脂組成物において、上記一般式(2)で表されるエポキシ樹脂(b1)、上記一般式(3)で表されるエポキシ樹脂(b2)および上記一般式(4)で表されるエポキシ樹脂(b3)からなる群より選択される少なくとも1種の上記エポキシ樹脂が、上記エポキシ樹脂(B)100質量部中に50~100質量部含まれる。
 本発明の一実施形態によると、上記半導体封止樹脂組成物において、上記無機充填材(C)の含有割合が樹脂組成物全体に対して70~93質量%である。
 本発明の一実施形態によると、上記半導体封止樹脂組成物において、上記無機充填材(C)の含有割合が樹脂組成物全体に対して80~93質量%である。
 本発明の一実施形態によると、上記半導体封止樹脂組成物において、上記一般式(2)で表されるエポキシ樹脂(b1)が上記エポキシ樹脂(B)100質量部中に50~100質量部含まれる。
 本発明の一実施形態によると、上記半導体封止樹脂組成物は、硬化促進剤(D)をさらに含む。
 本発明の一実施形態によると、上記半導体封止樹脂組成物において、上記硬化促進剤(D)が、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物からなる群から選択される少なくとも1種の硬化促進剤を含む。
 本発明の一実施形態によると、上記半導体封止樹脂組成物は、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(E)をさらに含む。
 本発明の一実施形態によると、上記半導体封止樹脂組成物は、カップリング剤(F)をさらに含む。
 本発明の一実施形態によると、上記半導体封止樹脂組成物は、無機難燃剤(G)をさらに含む。
 本発明の一実施形態によると、上記半導体封止樹脂組成物において、上記一般式(3)で表されるエポキシ樹脂(b2)が上記エポキシ樹脂(B)100質量部中に50~100質量部含まれる。
 本発明の一実施形態によると、上記半導体封止樹脂組成物において、上記一般式(4)で表されるエポキシ樹脂(b3)が上記エポキシ樹脂(B)100質量部中に50~100質量部含まれる。
 本発明によれば、上記半導体封止用樹脂組成物の硬化物で半導体素子を封止して得られる半導体装置が提供される。
 本発明に従うと、ハロゲン化合物およびアンチモン化合物を使用することなく耐燃性を示し、従来よりも高いレベルで、耐半田性、高温保管特性および連続成形性のバランスに優れた半導体封止用樹脂組成物、ならびにこの半導体封止用樹脂組成物を用いた信頼性に優れた半導体装置を得ることができる。
本発明に係る半導体封止用樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。 本発明に係る半導体封止用樹脂組成物を用いた片面封止型の半導体装置の一例について、断面構造を示した図である。 実施例で用いたフェノール樹脂1のGPCチャートである。 実施例で用いたフェノール樹脂1のFD-MSチャートである。
 図面を用いて、本発明による半導体封止用樹脂組成物および半導体装置の好適な実施形態について詳細に説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。
 本発明の半導体封止用樹脂組成物は、一般式(1)で表される構造を有する重合体(a1)を含むフェノール樹脂(A)と、トリフェノールメタン型エポキシ樹脂、ナフトール型エポキシ樹脂およびジヒドロアントラセン型エポキシ樹脂からなる群より選択される少なくとも1種のエポキシ樹脂を含むエポキシ樹脂(B)と、無機充填材(C)と、を含むことを特徴とする。また、本発明の半導体装置は、上記半導体封止用樹脂組成物の硬化物で半導体素子を封止して得られることを特徴とする。以下、本発明について詳細に説明する。
 まず、本発明の半導体封止用樹脂組成物について説明する。本発明の半導体封止用樹脂組成物は、一般式(1)で表される構造を有する重合体(a1)を含むフェノール樹脂(A)(以下、フェノール樹脂(A)と称する)を含む。
Figure JPOXMLDOC01-appb-I000005
(一般式(1)において、R1は炭素数1~6の炭化水素基であり、R2は炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、互いに同じであっても異なっていてもよく、aは0~2の整数であり、mおよびnは互いに独立して、1~10の整数であり、m+n≧2であり、繰り返し数mで表される構造単位と繰り返し数nで表される構造単位は、それぞれが連続で並んでいても、お互いが交互に並んでいても、ランダムに並んでいてもよいが、それぞれの間には必ず-CH2-を有する構造をとる)。
 フェノール樹脂(A)は、その分子中にナフトール骨格を有することにより、耐燃性に優れるとともに、疎水性に優れ、かつ半田リフロー温度における弾性率を低減する効果を有することから、高い耐半田性を有する。一般に、ナフトール骨格を有するノボラック樹脂は、高軟化点または高粘度であるため、溶融混練しにくく、流動性が乏しい。そのため、このようなナフトール含有ノボラック樹脂は、成形材料への適用がしばしば困難となる。しかし、本発明で用いられるフェノール樹脂(A)は、その分子中にアルキル(R1)置換フェノール骨格を有することにより、粘度と軟化点が適度に低減される。また、アルキル基(R1)により、フェノール樹脂(A)の耐湿性は向上する。さらに、フェノール樹脂(A)は、オルソ位にアルキル基(R1)を有することで、パラ位にアルキル基(R1)を有する場合よりも良好な連続成形性を示す。また、フェノール樹脂(A)の分子中の-CH2-により、アルキル置換フェノール骨格とナフトール骨格との間が比較的短い距離で結合されるため、水酸基およびナフタレンの密度を高くすることができ、結果としてフェノール樹脂(A)はエポキシ樹脂と良好な反応性を示し、その硬化物は良好な耐熱性を発現することができる。
 フェノール樹脂(A)に含まれる一般式(1)で表される構造を有する重合体(a1)における各構造単位の繰り返し数m、nは、互いに独立して1~10の整数であり、m+n≧2である。この範囲であれば、樹脂組成物を加熱溶融混練する際に、良好に混練することができる。好ましくは、mが1~6、nが1~6である。この範囲であれば、樹脂組成物を良好に成形することができる。合成によって得られるフェノール樹脂(A)は、任意の分子量分布を有するが、硬化性、耐燃性、耐熱性、ならびに流動性のバランスという観点から、m+nの値が3および4である成分が主成分であることが好ましく、特に(m,n)=(2,1)成分が主成分であることがより好ましい。(m,n)=(2,1)成分は、その成分中でナフトール骨格の占有する割合が高いことから、耐半田性、耐燃性が良好で、かつ流動性にも優れる。これらの成分の含有割合について特に制限はないが、好ましい範囲としては下記の範囲を挙げることができる。ゲルパーミエーションクロマトグラフィー(GPC)法において、(m,n)=(2,1)成分が30~80面積%であることが好ましく、40~70面積%であることがより好ましい。各(m、n)成分の含有割合を前述の好ましい範囲とするためには、後述する方法により調整することができる。
 本発明において、ゲルパーミエーションクロマトグラフィー(GPC)測定は、次のように行う。GPC装置は、ポンプ、インジェクター、ガードカラム、カラムおよび検出器から構成される。測定には、溶媒としてテトラヒドロフラン(THF)を用いた。ポンプの流速は0.5ml/分であった。ガードカラムとして市販のガードカラム(例えば、東ソー株式会社製TSK GUARDCOLUMN HHR-L:径6.0mm、管長40mm)、カラムとして市販のポリスチレンジェルカラム(東ソー株式会社製TSK-GEL GMHHR-L:径7.8mm、管長30mm)を用い、これらを複数本直列接続させる。検出器には示差屈折率計(RI検出器。例えば、WATERS社製示差屈折率(RI)検出器W2414)を用いる。測定に先立ち、ガードカラム、カラムおよび検出器内部は40℃に安定させておく。試料には、濃度3~4mg/mlに調整したフェノール樹脂のTHF溶液を用意し、これを約50~150μlインジェクターより注入して測定を行う。試料の解析にあたっては、単分散ポリスチレン(以下、PSと称する)標準試料により作成した検量線を用いる。検量線はPSの分子量の対数値とPSのピーク検出時間(保持時間)をプロットし、3次式に回帰したものを用いる。検量線作成用の標準PS試料としては、昭和電工株式会社製ShodexスタンダードSL-105シリーズの品番S-1.0(ピーク分子量1060)、S-1.3(ピーク分子量1310)、S-2.0(ピーク分子量1990)、S-3.0(ピーク分子量2970)、S-4.5(ピーク分子量4490)、S-5.0(ピーク分子量5030)、S-6.9(ピーク分子量6930)、S-11(ピーク分子量10700)、S-20(ピーク分子量19900)を使用する。
 一般式(1)のm、nの値は、FD-MS測定により求めることができる。検出質量(m/z)範囲50~2000にて測定した、FD-MS分析で検出された各ピークについて、検出質量(m/z)からは分子量、および繰り返し数(m、n)の値を得ることができ、GPC測定での各ピークとを照合することで、各(m、n)成分を同定することができる。さらに各ピークの強度比を含有割合(質量割合)を求めることができる。
 フェノール樹脂(A)の樹脂粘度は、150℃におけるICI粘度測定において1.0~7.0dPa・secであることが好ましく、1.5~4.5dPa・secであることがより好ましく、2.0~4.0dPa・secであることが特に好ましい。ICI粘度の下限値が上記の範囲内の場合、樹脂組成物の硬化性と耐燃性が良好となる。一方、上限値が上記の範囲内の場合、流動性が良好となる。
 本発明に用いるフェノール樹脂(A)の合成方法は、特に制限はない。合成法の例としては、アルキル置換フェノール化合物とナフトール化合物とホルムアルデヒド類とを、酸性触媒下で重縮合させる方法(以下、「第1の合成法」と称することがある。)、アルキル置換フェノール類とホルムアルデヒド類とを塩基性触媒下でメチロール化させた後、ナフトール類とを酸触媒とを添加し、共縮合させる方法(以下、「第2の合成法」と称することがある。)、を挙げることができる。反応終了後、使用した酸触媒は、中和あるいは水洗し、さらに、残留モノマーおよび水分を減圧下、加熱蒸留により除去する。
 ナフトール化合物としては、ナフタレン環に1個の水酸基が結合した構造であれば、特に限定されず、例えば、α-ナフトール、2-メチル-1-ナフトール、3-メチル-1-ナフトール、4-メチル-1-ナフトール、6-メチル-1-ナフトール、7-メチル-1-ナフトール、8-メチル-1-ナフトール、9-メチル-1-ナフトール、3-メチル-2-ナフトール、5-メチル-1-ナフトール、6,7-ジメチル-1-ナフトール、5,7-ジメチル-1-ナフトール、2,5,8-トリメチル-1-ナフトール、2,6-ジメチル-1-ナフトール、2,3-ジメチル-1-ナフトール、2-メチル-3-フェニル-1-ナフトール、2-メチル-3-エチル-1-ナフトールなどのα-ナフトール類、β-ナフトール、1,6-ジ-ターシャル-ブチルナフタレン―2-オール、6-ヘキシル-2-ナフトール等のβ-ナフトール類が挙げられる。これらの中でも、フェノール樹脂の合成において、高収率、高反応率という観点からは、α-ナフトール、β-ナフトール、6-ヘキシル-2-ナフトールが好ましい。また、これらのナフトール化合物は、原料コストが安く、エポキシ樹脂との反応性が良好である。
 アルキル置換フェノール化合物としては、フェノール構造の2位(オルソ位)にアルキル置換基が結合する構造であれば、特に限定はない。ここで、このアルキル基は、得られる一般式(1)で表されるフェノール樹脂(A)における置換基R1となる。一般式(1)のR1となるアルキル置換基の結合位置をオルソ位とすることで、フェノール樹脂(A)は、優れた連続成形性を示すことができる。この理由について詳細は不明ではあるが、以下のようなモデルが考えられる。一般に、フェノール化合物およびナフトール化合物において、水酸基に対してオルソ位とパラ位の炭素原子は、反応性が高く、優先的に結合が起こる(オルソ、パラ配向性という)。ここで、パラ位またはオルソ位にアルキル基(R1)を有するフェノール骨格を有する場合の一例として、パラクレゾールに2つのβ-ナフトール(または、α―ナフトールでもよい)がメチレン基(-CH2-)を介して結合した構造をモデルとして取り上げる。この場合、上述の配向性によって、クレゾールの2位と6位の位置に、メチレン基が結合し、さらにβ-ナフトールの1位に結節した、パラクレゾールを中心とした対称性の高い化学構造を取る。このようなモデル構造において、3個の水酸基は立体位置が著しく接近し分子内水素結合を形成し、さらにその周囲を2個の嵩高いナフタレンが対称的に囲いこむ構造となるため、効率よくエポキシ基と反応することが困難となる。すなわち、樹脂組成物を金型成形する際に、3個の水酸基がエポキシ基と効率よく架橋構造を形成することができず、その結果、連続成形性が低下することが推測される。一方、上述のモデル構造で、オルソクレゾールを用いた場合には、クレゾールの4位と6位に、メチレン基を介してβ-ナフトールが結節する構造をとり、パラクレゾールを用いた場合よりも、ナフタレンの結合位置の対称性が低く、3個の水酸基は適度に分散し、上述の硬化阻害因子が少なく、結果として連続成形性に優れた樹脂組成物が得られると考えられる。また、上述のモデル構造、(m,n)=(2,1)成分の含有割合を高めるという観点からは、アルキル置換フェノール構造の4位と6位の炭素原子には水素原子が結合していることが好ましい。
 一般式(1)のR1となるアルキル置換基が炭素数1~6の炭化水素基であり、フェノール構造の2位(オルソ位)に結合する構造となるアルキル置換フェノール化合物としては、例えば、オルソクレゾール、2,3-キシレノール、2,5-キシレノール、2-エチルフェノール、2-プロピルフェノール、2-ブチルフェノール、2-ペンチルフェノール、2-ヘキシルフェノールなどを挙げることができ、これらは、1種類を単独で用いても、2種類以上を併用してもよい。
 また、一般式(1)のR1となるアルキル置換基を有さないフェノールを用いた場合には、得られるフェノール樹脂が高分子量化しやすい、あるいは分岐構造をとりやすいために、高粘度となり、樹脂組成物の流動性が損なわれる場合があるために好ましくない。また、一般式(1)のR1となるアルキル置換基の炭素数が7よりも大きい場合には、立体障害効果により、隣接する水酸基の反応性が損なわれ、樹脂組成物の硬化性が低下するために好ましくない。一般式(1)のR1となるアルキル置換基としては、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。なかでもメチル基が、樹脂組成物の流動性、硬化性および耐湿性のバランスに優れる点で好ましい。
 一般式(1)のR1となるアルキル置換基がメチル基であり、フェノール構造の2位(オルソ位)に結合する構造となるアルキル置換フェノール化合物としては、例えば、オルソクレゾール、2,3-キシレノール、2,5-キシレノールなどを挙げることができ、これらは、1種類を単独で用いても、2種類以上を併用してもよい。なかでも、流動性、硬化性、耐湿性、連続成形性のバランスという観点からオルソクレゾールを用いることが好ましい。
 ホルムアルデヒド類としては、パラホルムアルデヒド、トリオキサン、ホルムアルデヒド水溶液などホルムアルデヒド発生源となる物質、あるいは、これらのホルムアルデヒドの溶液を使用することができる。通常は、ホルムアルデヒド水溶液を使用することが作業性やコストの面で好ましい。
 第2の合成法で用いられる塩基性触媒としては、通常レゾール型フェノール樹脂の合成において公知である塩基性触媒を用いることができる。例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、アンモニア、トリメチルアミン等を用いることが可能であり、これらは、1種類を単独で用いても、2種類以上を併用してもよい。また、第1の合成法および第2の合成法で用いられる酸性触媒としては、通常ノボラック型フェノール樹脂の合成において公知である酸性触媒を用いることができる。例えば、硫酸、塩酸、リン酸、亜リン酸等の無機酸、あるいは、シュウ酸、蟻酸、有機スルホン酸、パラトルエンスルホン酸、ジメチル硫酸等の有機酸、酢酸亜鉛、酢酸ニッケル等を用いることが可能であり、これらは、1種類を単独で用いても、2種類以上を併用してもよい。
 各(m、n)成分を調整する方法としては、下記の方法を挙げることができる。
 m+n≦2成分の調整方法:第1の合成法の場合には、ホルムアルデヒド類の配合量を減らす、あるいは、合成して得られたフェノール樹脂を常圧蒸留、減圧蒸留、水蒸気蒸留、水洗などの分子量調整法をとる、などの手法により、m+n≦2成分を低減することができる。この場合、好ましい蒸留条件としては、温度は、50℃以上、250℃以下を挙げることができる。蒸留温度が50℃未満の場合、蒸留による効率が悪くなり、生産性の観点から好ましくなく、250℃を超える場合は、フェノール樹脂の分解と高分子量化が複雑に起こるために好ましくない。具体的には、120~200℃、5000Paの条件で減圧蒸留することによりアルキル置換フェノール類、ナフトール類などモノマー成分を、200~250℃、5000Paの条件で減圧水蒸気蒸留することによりm+n≦2成分を、それぞれ効率よく除去することができる。水洗による分子量調整方法としては、フェノール樹脂を有機溶剤で完全に溶解させたものに、水を加えて、常圧あるいは加圧の下、20~150℃の温度で攪拌させた後に、静置あるいは遠心分離で水相と有機相と分離させ、水相を系外へ除去することで、水相に溶解した低分子量成分(m+n≦2成分)を低減することができる。第2の合成法の場合には、フェノール類とホルムアルデヒド類とを塩基性触媒下でメチロール化する際、ホルムアルデヒド類の配合量を減らす、あるいは、合成して得られたフェノール樹脂を常圧蒸留、減圧蒸留、水蒸気蒸留、水洗などの分子量調整法をとる、などの手法により、m+n≦2成分を低減することができる。好ましい蒸留条件としては、第1の合成法と同様に、温度は、50℃以上、250℃以下を挙げることができる。
 m+n≧4成分の調整方法:第1の合成法の場合には、合成の際に用いる酸性触媒の添加量を低減する、酸性触媒で反応する際の反応温度を低減する、合成して得られたフェノール樹脂を抽出によって分子量調整する、などの手法により、m+n≧4成分を低減することができる。抽出による分子量調整方法としては、トルエン、キシレン等のフェノール樹脂に対する溶解性の低い非極性溶剤を、フェノール樹脂、あるいは、アルコール等の極性溶剤に溶解させたフェノール樹脂に添加し、常圧あるいは加圧の下、20~150℃の温度で攪拌させてから、静置あるいは遠心分離で非極性溶剤相と他成分相とを分離させ、非極性溶剤相を系外へ除去することで、非極性溶剤相に溶解した高分子量成分を除去させることができる。これらの操作を行うことで、m+n≧4成分の量を低減することが可能である。第2の合成法の場合には、二段階目の反応の際に用いる酸性触媒の添加量を低減する、酸性触媒で反応する際の反応温度を低減する、合成して得られたフェノール樹脂を抽出によって分子量調整する、などの手法により、m+n≧4成分を低減することができる。
 m+n=3成分の調整方法:m+n=3成分については、上述の調整方法を各種組み合わせることにより調整することができる。(m、n)=(2,1)成分を調整する方法としては、ナフトール類にβ-ナフトールを用いる、第1の合成法においてナフトール類配合量を増やす、第2の合成法を用いる、あるいは、第2の合成法においてホルムアルデヒド類の配合量を増やす、などの方法を用いることによって、(m,n)=(2,1)成分を増やすことができる。
 本発明の半導体封止用樹脂組成物は、上記フェノール樹脂(A)を用いることによる効果が損なわれない範囲で、他の硬化剤を併用することができる。併用できる硬化剤としては、特に限定されないが、例えば重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤などを挙げることができる。
 重付加型の硬化剤としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、メタキシレリレンジアミンなどの脂肪族ポリアミン、ジアミノジフェニルメタン、m-フェニレンジアミン、ジアミノジフェニルスルホンなどの芳香族ポリアミンのほか、ジシアンジアミド、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸などの脂環族酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸などの芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、フェノールポリマーなどのポリフェノール化合物;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられる。
 触媒型の硬化剤としては、例えば、ベンジルジメチルアミン、2,4,6-トリスジメチルアミノメチルフェノールなどの3級アミン化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾールなどのイミダゾール化合物;BF3錯体などのルイス酸などが挙げられる。
 縮合型の硬化剤としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂系硬化剤;メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などが挙げられる。
 これらの中でも、耐燃性、耐湿性、電気特性、硬化性、保存安定性などのバランスの点からフェノール樹脂系硬化剤が好ましい。フェノール樹脂系硬化剤とは、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマーであり、その分子量、分子構造は特に限定されない。このようなフェノール樹脂系硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂などのノボラック型樹脂;トリフェノールメタン型フェノール樹脂などの多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂などの変性フェノール樹脂;フェニレン骨格および/またはビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル樹脂などのアラルキル型樹脂;ビスフェノールA、ビスフェノールFなどのビスフェノール化合物などが挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。これらのうち、硬化性の点から水酸基当量は90~250g/eqのものが好ましい。
 このような他の硬化剤を併用する場合において、フェノール樹脂(A)の配合割合としては、全硬化剤に対して、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが特に好ましい。配合割合が上記範囲内であると、良好な流動性と硬化性を保持しつつ、耐燃性、耐半田性を向上させる効果を得ることができる。
 樹脂組成物中の硬化剤の割合の下限値は、特に限定されないが、全樹脂組成物中に、0.8質量%以上であることが好ましく1.5質量%以上であることがより好ましい。配合割合の下限値が上記範囲内であると、充分な流動性を得ることができる。また、樹脂組成物中の硬化剤の割合の上限値もまた特に限定されないが、全樹脂組成物中に、10質量%以下であることが好ましく、8質量%以下であることがより好ましい。配合割合の上限値が上記範囲内であると、良好な耐半田性を得ることができる。
 本発明の半導体封止用樹脂組成物では、トリフェノールメタン型エポキシ樹脂、ナフトール型エポキシ樹脂およびジヒドロアントラセン型エポキシ樹脂からなる群より選択される少なくとも1種のエポキシ樹脂を含むエポキシ樹脂(B)を用いる。トリフェノールメタン型エポキシ樹脂、ナフトール型エポキシ樹脂およびジヒドロアントラセン型エポキシ樹脂は、硬化性、耐熱性、耐半田性および連続成形性が優れる点で好ましい。特に、高耐熱性、高硬化性、連続成形性の観点ではトリフェノールメタン型エポキシ樹脂が好ましく、高耐熱性、高流動性の観点ではナフトール型エポキシ樹脂が好ましく、高耐熱性、低吸水率、低反りの観点ではジヒドロアントラセン型エポキシ樹脂が好ましい。これらの3種のエポキシ樹脂はどれも耐熱性に優れるが、耐熱性を比較すると、トリフェノールメタン型エポキシ樹脂、ナフトール型エポキシ樹脂、ジヒドロアントラセン型エポキシ樹脂の順となる。耐熱性および/または高耐熱性以外の半導体封止用樹脂組成物に求められる特性に合わせてエポキシ樹脂を選択することが好ましい。上記の3種類のエポキシ樹脂中から2種類の組合せ、あるいは3種類を同時に使用することも可能である。また、得られる半導体封止用樹脂組成物の耐湿信頼性の観点から、イオン性不純物であるNa+イオンやCl-イオンを極力含まないことが好ましい。半導体樹脂組成物の硬化性の観点から、エポキシ樹脂のエポキシ当量は、100~500g/eqであることが好ましく、150~210g/eqであることがより好ましい。エポキシ当量がこの範囲内にあると、樹脂組成物の硬化物の架橋密度が高くなり、硬化物が高ガラス転移点を有することが可能である。
 本発明の半導体封止用樹脂組成物で用いられるトリフェノールメタン型エポキシ樹脂は、特に限定されるものではないが、硬化性、連続成形性の観点から一般式(2)で表されるエポキシ樹脂(b1)であることが好ましく、例えば、市販品として、ジャパンエポキシレジン株式会社製E-1032H60、YL6677、ハンツマン株式会社製Tactix742等が挙げられる。
Figure JPOXMLDOC01-appb-I000006
(一般式(2)において、R3は炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、互いに同じであっても異なっていてもよく、bは0~4の整数であり、pは1~10の整数であり、Gはグリシジル基含有有機基である)。
 本発明の半導体封止用樹脂組成物で用いられるナフトール型エポキシ樹脂は、特に限定されるものではないが、流動性の観点からナフタレン骨格が2個である一般式(3)で表されるエポキシ樹脂(b2)であることが好ましく、例えば、市販品である、DIC株式会社製HP-4700、HP-4701、HP-4735、HP-4750、HP-4770等が挙げられる。
Figure JPOXMLDOC01-appb-I000007
(一般式(3)において、R4は炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、互いに同じであっても異なっていてもよく、R5は水素原子、炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、cは0~5の整数であり、qおよびrは互いに独立の0または1の整数であり、Gはグリシジル基含有有機基である)。
 本発明の半導体封止用樹脂組成物で用いられるジヒドロアントラセン型エポキシ樹脂は、特に限定されるものではないが、低吸水性、反りの観点から一般式(4)で表されるエポキシ樹脂(b3)であることが好ましく、例えば、市販品として、ジャパンエポキシレジン株式会社製YX8800、等が挙げられる。
Figure JPOXMLDOC01-appb-I000008
(一般式(4)において、R6は炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、互いに同じであっても異なっていてもよく、dは0~8の整数であり、sは0~10の整数であり、Gはグリシジル基含有有機基である)。
 本発明の半導体封止用樹脂組成物は、上記3種のエポキシ樹脂を用いることによる効果が損なわれない範囲で、他のエポキシ樹脂を併用することができる。併用できるエポキシ樹脂としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレン骨格を有するナフトールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂が挙げられる。半導体封止用エポキシ樹脂組成物としての耐湿信頼性を考慮すると、イオン性不純物であるNa+イオンやCl-イオンが極力少ない方が好ましく、硬化性の点からエポキシ当量としては100g/eq以上500g/eq以下が好ましい。これらは1種類を単独で用いても2種類以上を併用してもよい。
 このような他のエポキシ樹脂を併用する場合において、上記3種のエポキシ樹脂の配合割合としては、全エポキシ樹脂(B)に対して、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが特に好ましい。配合割合が上記範囲内であると、良好なガラス転移点と硬化性を向上させる効果を得ることができる。
 半導体封止用樹脂組成物中における全エポキシ樹脂(B)の配合量の下限値は、半導体封止用樹脂組成物の全量に対して、好ましくは2質量%以上であり、より好ましくは4質量%以上である。下限値が上記範囲内であると、得られる樹脂組成物は良好な流動性を有する。また、半導体封止用樹脂組成物中における全エポキシ樹脂(B)の配合量の上限値は、半導体封止用樹脂組成物の全量に対して、好ましくは15質量%以下であり、より好ましくは13質量%以下である。上限値が上記範囲内であると、得られる樹脂組成物は良好な耐半田性を有する。
 なお、硬化剤としてフェノール樹脂系硬化剤のみを用いる場合におけるフェノール樹脂系硬化剤とエポキシ樹脂とは、全エポキシ樹脂のエポキシ基数(EP)と、全フェノール樹脂系硬化剤のフェノール性水酸基数(OH)との当量比(EP)/(OH)が、0.8以上、1.3以下となるように配合することが好ましい。当量比が上記範囲内であると、得られる樹脂組成物を成形する際、十分な硬化特性を得ることができる。
 本発明の半導体封止用樹脂組成物では、無機充填材(C)を用いる。本発明の半導体封止用樹脂組成物に用いられる無機充填材(C)としては、特に限定されないが、当該分野で一般的に用いられる無機充填材を使用することができる。例えば、溶融シリカ、球状シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミなどが挙げられる。無機充填材の粒径は、金型キャビティへの充填性の観点から、0.01μm以上、150μm以下であることが望ましい。
 半導体封止用樹脂組成物中における無機充填材の含有量は、特に限定されないが、半導体封止用樹脂組成物の全量に対して、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは83質量%以上、特に好ましくは86質量%以上である。含有量の下限値が上記範囲内であると、得られる半導体封止用樹脂組成物の硬化物の吸湿量を抑えることや、強度の低下を低減でき、したがって良好な耐半田性を有する硬化物を得ることができる。また、半導体封止用樹脂組成物中における無機充填材の含有量の上限値は、半導体封止用樹脂組成物の全量に対して、好ましくは93質量%以下であり、より好ましくは91質量%以下であり、さらに好ましくは90質量%以下である。含有量の上限値が上記範囲内であると、得られる樹脂組成物は良好な流動性を有するとともに、良好な成形性を備える。なお、後述する、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物や、硼酸亜鉛、モリブデン酸亜鉛、三酸化アンチモンなどの無機系難燃剤を用いる場合には、これらの無機系難燃剤と上記無機充填材の合計量を上記範囲内とすることが望ましい。
 本発明の半導体封止用樹脂組成物では、硬化促進剤(D)をさらに用いることができる。硬化促進剤(D)は、エポキシ樹脂と硬化剤との架橋反応を促進する作用を有するほか、半導体封止用樹脂組成物の硬化時の流動性と硬化性とのバランスを制御でき、さらには硬化物の硬化特性を変えることもできる。硬化促進剤(D)の具体例としては、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物などのリン原子含有硬化促進剤;1,8-ジアザビシクロ(5,4,0)ウンデセン-7、ベンジルジメチルアミン、2-メチルイミダゾールなどの化合物が挙げられ、これらのうち、リン原子含有硬化促進剤が好ましい硬化性を得ることができる。流動性と硬化性とのバランスの観点から、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物よりなる群から選ばれる少なくとも1種類の化合物がより好ましい。流動性という点を重視する場合にはテトラ置換ホスホニウム化合物が特に好ましく、また半導体封止用樹脂組成物の硬化物熱時低弾性率という点を重視する場合にはホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物が特に好ましく、また潜伏的硬化性という点を重視する場合にはホスホニウム化合物とシラン化合物との付加物が特に好ましい。
 本発明の半導体封止用樹脂組成物で用いることができる有機ホスフィンとしては、例えばエチルホスフィン、フェニルホスフィンなどの第1ホスフィン、ジメチルホスフィン、ジフェニルホスフィンなどの第2ホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィンなどの第3ホスフィンが挙げられる。
 本発明の半導体封止用樹脂組成物で用いることができるテトラ置換ホスホニウム化合物としては、例えば一般式(5)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-I000009
(一般式(5)において、Pはリン原子を表り、R7、R8、R9およびR10は芳香族基またはアルキル基を表し、Aはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸のアニオンを表し、AHはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸を表し、yは1~3の整数であり、zは0~3の整数であり、かつx=yである)。
 一般式(5)で表される化合物は、例えば以下のようにして得られるがこれに限定されるものではない。まず、テトラ置換ホスホニウムハライドと芳香族有機酸と塩基を有機溶剤に混ぜ均一に混合し、その溶液系内に芳香族有機酸アニオンを発生させる。次いで水を加えると、一般式(5)で表される化合物を沈殿する。一般式(5)で表される化合物において、リン原子に結合するR7、R8、R9およびR10がフェニル基であり、かつAHはヒドロキシル基を芳香環に有する化合物、すなわちフェノール類であり、かつAは該フェノール類のアニオンであるのが好ましい。
 本発明の半導体封止用樹脂組成物で用いることができるホスホベタイン化合物としては、例えば一般式(6)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-I000010
(一般式(6)において、Pはリン原子を表し、X1は炭素数1~3のアルキル基を表し、Y1はヒドロキシル基を表し、fは0~5の整数であり、gは0~4の整数である)。
 一般式(6)で表される化合物は、例えば以下のようにして得られる。まず、第三ホスフィンであるトリ芳香族置換ホスフィンとジアゾニウム塩とを接触させ、トリ芳香族置換ホスフィンとジアゾニウム塩が有するジアゾニウム基とを置換させ、一般式(6)で表される化合物を得る。しかしこの方法に限定されるものではない。
 本発明の半導体封止用樹脂組成物で用いることができるホスフィン化合物とキノン化合物との付加物としては、例えば一般式(7)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-I000011
(一般式(7)において、Pはリン原子を表し、R11、R12およびR13は炭素数1~12のアルキル基または炭素数6~12のアリール基を表し、互いに同一であっても異なっていてもよく、R14、R15およびR16は水素原子または炭素数1~12の炭化水素基を表し、互いに同一であっても異なっていてもよく、またはR14とR15が結合して環状構造となっていてもよい)。
 ホスフィン化合物とキノン化合物との付加物に用いるホスフィン化合物としては、例えばトリフェニルホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィンなどの芳香環に無置換またはアルキル基、アルコキシル基などの置換基が存在するものが好ましく、アルキル基、アルコキシル基などの置換基としては1~6の炭素数を有するものが挙げられる。入手しやすさの観点からはトリフェニルホスフィンが好ましい。
 またホスフィン化合物とキノン化合物との付加物に用いるキノン化合物としては、o-ベンゾキノン、p-ベンゾキノン、アントラキノン類が挙げられ、中でもp-ベンゾキノンが保存安定性の点から好ましい。
 ホスフィン化合物とキノン化合物との付加物の製造方法としては、有機第三ホスフィンとベンゾキノン類の両者が溶解することができる溶媒中で接触、混合させることにより付加物を得る方法が挙げられる。溶媒としてはアセトンやメチルエチルケトンなどのケトン類で付加物への溶解性が低いものがよい。しかしこれに限定されるものではない。
 一般式(7)で表される化合物において、リン原子に結合するR11、R12およびR13がフェニル基であり、かつR14、R15およびR16が水素原子である化合物、すなわち1,4-ベンゾキノンとトリフェニルホスフィンを付加させた化合物が半導体封止用樹脂組成物の硬化物の熱時弾性率を低く維持できる点で好ましい。
 本発明の半導体封止用樹脂組成物で用いることができるホスホニウム化合物とシラン化合物との付加物としては、例えば一般式(8)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-I000012
(一般式(8)において、Pはリン原子を表し、Siは珪素原子を表し、R17、R18、R19およびR20は、それぞれ、芳香環または複素環を有する有機基、あるいは脂肪族基を表し、互いに同一であっても異なっていてもよい。X2は、基Y2およびY3と結合する有機基である。式中X3は、基Y4およびY5と結合する有機基である。Y2およびY3は、プロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基Y2およびY3が珪素原子と結合してキレート構造を形成するものである。Y4およびY5はプロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基Y4およびY5が珪素原子と結合してキレート構造を形成するものである。X2、およびX3は互いに同一であっても異なっていてもよく、Y2、Y3、Y4、およびY5は互いに同一であっても異なっていてもよい。Z1は芳香環または複素環を有する有機基、あるいは脂肪族基である)。
 一般式(8)において、R17、R18、R19およびR20としては、例えば、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ナフチル基、ヒドロキシナフチル基、ベンジル基、メチル基、エチル基、n-ブチル基、n-オクチル基およびシクロヘキシル基などが挙げられ、これらの中でも、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ヒドロキシナフチル基などの置換基を有する芳香族基もしくは無置換の芳香族基がより好ましい。
 また、一般式(8)において、X2は、基Y2およびY3と結合する有機基である。同様に、X3は、基Y4およびY5と結合する有機基である。Y2およびY3はプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基Y2およびY3が珪素原子と結合してキレート構造を形成するものである。同様にY4およびY5はプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基Y4およびY5が珪素原子と結合してキレート構造を形成するものである。基X2およびX3は互いに同一であっても異なっていてもよく、基Y2、Y3、Y4、およびY5は互いに同一であっても異なっていてもよい。このような一般式(8)中の-Y2-X2-Y3-、およびY4-X3-Y5-で表される基は、プロトン供与体が、プロトンを2個放出してなる基で構成されるものであり、プロトン供与体としては、例えば、カテコール、ピロガロール、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,2'-ビフェノール、1,1'-ビ-2-ナフトール、サリチル酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、クロラニル酸、タンニン酸、2-ヒドロキシベンジルアルコール、1,2-シクロヘキサンジオール、1,2-プロパンジオールおよびグリセリンなどが挙げられるが、これらの中でも、カテコール、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレンがより好ましい。
 また、一般式(8)中のZ1は、芳香環または複素環を有する有機基、あるいは脂肪族基を表し、これらの具体的な例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基およびオクチル基などの脂肪族炭化水素基や、フェニル基、ベンジル基、ナフチル基およびビフェニル基などの芳香族炭化水素基、グリシジルオキシプロピル基、メルカプトプロピル基、アミノプロピル基およびビニル基などの反応性置換基などが挙げられるが、これらの中でも、メチル基、エチル基、フェニル基、ナフチル基およびビフェニル基が一般式(8)の熱安定性が向上するという点で、より好ましい。
 ホスホニウム化合物とシラン化合物との付加物の製造方法としては、メタノールを入れたフラスコに、フェニルトリメトキシシランなどのシラン化合物、2,3-ジヒドロキシナフタレンなどのプロトン供与体を加えて溶かし、次に室温攪拌下ナトリウムメトキシド-メタノール溶液を滴下する。さらにそこへ予め用意したテトラフェニルホスホニウムブロマイドなどのテトラ置換ホスホニウムハライドをメタノールに溶かした溶液を室温攪拌下滴下すると結晶が析出する。析出した結晶を濾過、水洗、真空乾燥すると、ホスホニウム化合物とシラン化合物との付加物が得られる。しかし、これに限定されるものではない。
 本発明の半導体封止用樹脂組成物に用いることができる硬化促進剤(D)の配合割合は、全樹脂組成物中0.1質量%以上、1質量%以下であることが好ましい。硬化促進剤(D)の配合量が上記範囲内であると、充分な硬化性、流動性を得ることができる。
 本発明の半導体封止用樹脂組成物は、さらに、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(E)(以下、「化合物(E)」とも称する)を含み得る。化合物(E)は、これを用いることにより、フェノール樹脂とエポキシ樹脂との架橋反応を促進させる硬化促進剤(D)として、潜伏性を有しないリン原子含有硬化促進剤を用いた場合であっても、樹脂配合物の溶融混練中での反応を抑えることができ、安定して半導体封止用樹脂組成物を得ることができる。また、化合物(E)は、半導体封止用樹脂組成物の溶融粘度を下げ、流動性を向上させる効果も有するものである。化合物(E)としては、一般式(9)で表される単環式化合物または一般式(10)で表される多環式化合物などを用いることができ、これらの化合物は水酸基以外の置換基を有していてもよい。
Figure JPOXMLDOC01-appb-I000013
(一般式(9)において、R21およびR25はどちらか一方が水酸基であり、片方が水酸基のとき、他方は水素原子、水酸基、または水酸基以外の置換基であり、R22、R23、およびR24は水素原子、水酸基または水酸基以外の置換基である)。
Figure JPOXMLDOC01-appb-I000014
(一般式(10)において、R31およびR32はどちらか一方が水酸基であり、片方が水酸基のとき他方は水素原子、水酸基または水酸基以外の置換基であり、R26、R27、R28、R29およびR30は水素原子、水酸基または水酸基以外の置換基である。)
 一般式(9)で表される単環式化合物は、例えば、カテコール、ピロガロール、没食子酸、没食子酸エステルまたはこれらの誘導体等が挙げられる。また、一般式(10)で表される多環式化合物は、例えば、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレンおよびこれらの誘導体等が挙げられる。これらのうち、流動性と硬化性との制御のしやすさから、芳香環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物が好ましい。また、混練工程での揮発を考慮した場合、母核は低揮発性で秤量安定性の高いナフタレン環である化合物とすることがより好ましい。この場合、化合物(E)を、具体的には、例えば、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレンおよびその誘導体などのナフタレン環を有する化合物とすることができる。これらの化合物(E)は1種類を単独で用いても2種以上を併用してもよい。
 化合物(E)の配合量は、全半導体封止用樹脂組成物中に0.01質量%以上、1質量%以下であることが好ましく、より好ましくは0.03質量%以上、0.8質量%以下、特に好ましくは0.05質量%以上、0.5質量%以下である。化合物(E)の配合量の下限値が上記範囲内であると、半導体封止用樹脂組成物の充分な低粘度化と流動性向上効果を得ることができる。また、化合物(E)の配合量の上限値が上記範囲内であると、半導体封止用樹脂組成物の硬化性および連続成形性の低下や半田リフロー温度でクラックを引き起こす恐れが少ない。
 本発明の半導体封止用樹脂組成物においては、エポキシ樹脂と無機充填材との密着性を向上させるため、カップリング剤(F)をさらに添加することができる。カップリング剤(F)としては、シランカップリング剤が好ましい。シランカップリング剤としては、特に限定されないが、エポキシシラン、アミノシラン、ウレイドシラン、メルカプトシランなどが挙げられるが、エポキシ樹脂と無機充填材との間で反応または作用し、エポキシ樹脂と無機充填材の界面強度を向上させるものであれば、特に限定されない。また、カップリング剤(F)は、前述の化合物(E)と併用することで、樹脂組成物の溶融粘度を下げ、流動性を向上させるという化合物(E)の効果を高めることもできるものである。
 エポキシシランとしては、例えば、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシランなどが挙げられる。
 また、アミノシランとしては、例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-フェニルγ-アミノプロピルトリエトキシシラン、N-フェニルγ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-6-(アミノヘキシル)3-アミノプロピルトリメトキシシラン、N-(3-(トリメトキシシリルプロピル)-1,3-ベンゼンジメタナンなどが挙げられる。アミノシランの1級アミノ部位をケトンまたはアルデヒドを反応させて保護した潜在性アミノシランカップリング剤として用いてもよい。また、ウレイドシランとしては、例えば、γ-ウレイドプロピルトリエトキシシラン、ヘキサメチルジシラザンなどが挙げられる。また、メルカプトシランとしては、例えば、γ-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシランのほか、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィドのような熱分解することによってメルカプトシランカップリング剤と同様の機能を発現するシランカップリング剤など、が挙げられる。またこれらのシランカップリング剤は予め加水分解反応させたものを配合してもよい。これらのシランカップリング剤は1種類を単独で用いても2種類以上を併用してもよい。
 本発明の半導体封止用樹脂組成物に用いることができるカップリング剤(F)の配合割合の下限値としては、全樹脂組成物中0.01質量%以上が好ましく、より好ましくは0.05質量%以上、特に好ましくは0.1質量%以上である。カップリング剤(F)の配合割合の下限値が上記範囲内であれば、エポキシ樹脂と無機充填材との界面強度が低下することがなく、半導体装置における良好な耐半田性を得ることができる。また、カップリング剤(F)の上限値としては、全樹脂組成物中1.0質量%以下が好ましく、より好ましくは0.8質量%以下、特に好ましくは0.6質量%以下である。カップリング剤(F)の配合割合の上限値が上記範囲内であれば、エポキシ樹脂と無機充填材との界面強度が低下することがなく、半導体装置における良好な耐半田性を得ることができる。また、カップリング剤(F)の配合割合が上記範囲内であれば、樹脂組成物の硬化物の吸水性が増大することがなく、半導体装置における良好な耐半田性を得ることができる。
 本発明の半導体封止用樹脂組成物においては、耐燃性を向上させるため、無機難燃剤(G)をさらに添加することができる。その例としては、特に限定されるものではないが、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物や、硼酸亜鉛、モリブデン酸亜鉛、三酸化アンチモンなどが挙げられる。これらの無機難燃剤(G)は、1種類を単独で用いても2種類以上を併用してもよい。
 本発明の半導体封止用樹脂組成物に用いることができる無機難燃剤(G)の配合割合は、全樹脂組成物中0.5質量%以上、6.0質量%以下であることが好ましい。無機難燃剤(G)の配合割合が上記範囲内であると、硬化性や特性を損なうことなく、耐燃性を向上させる硬化を得ることができる。
 本発明の半導体封止用樹脂組成物には、前述した成分以外に、必要に応じて、以下の添加剤を配合できる:カーボンブラック、ベンガラ、酸化チタンなどの着色剤;カルナバワックスなどの天然ワックス、ポリエチレンワックスなどの合成ワックス、ステアリン酸やステアリン酸亜鉛などの高級脂肪酸およびその金属塩類若しくはパラフィンなどの離型剤;シリコーンオイル、シリコーンゴムなどの低応力添加剤;酸化ビスマス水和物などの無機イオン交換体;燐酸エステル、ホスファゼンなどの非無機系難燃剤。
 本発明の半導体封止用樹脂組成物は、フェノール樹脂(A)、エポキシ樹脂(B)および無機充填材(C)、ならびに上述のその他の成分などを、例えば、ミキサーなどを用いて常温で均一に混合する。
 その後、必要に応じて、加熱ロール、ニーダーまたは押出機などの混練機を用いて溶融混練し、続いて必要に応じて冷却、粉砕することにより、所望の分散度や流動性などに調整することができる。
 次に、本発明の半導体装置について説明する。本発明の半導体封止用樹脂組成物を用いて半導体装置を製造する方法としては、例えば、半導体素子を搭載したリードフレームまたは回路基板などを金型キャビティ内に設置した後、半導体封止用樹脂組成物をトランスファーモールド、コンプレッションモールド、インジェクションモールドなどの成形方法で成形、硬化させることにより、この半導体素子を封止する方法が挙げられる。
 封止される半導体素子としては、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子などが挙げられるが、これらに限定されない。
 得られる半導体装置の形態としては、例えば、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリヤ(PLCC)、クワッド・フラット・パッケージ(QFP)、ロー・プロファイル・クワッド・フラット・パッケージ(LQFP)、スモール・アウトライン・パッケージ(SOP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)などが挙げられるが、これらに限定されない。
 半導体封止用樹脂組成物のトランスファーモールドなどの成形方法により半導体素子が封止された半導体装置は、そのまま、あるいは80℃から200℃程度の温度で、10分から10時間程度の時間をかけてこの樹脂組成物を完全硬化させた後、電子機器などに搭載される。
 図1は、本発明に係る半導体封止用樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。ダイパッド3上に、ダイボンド材硬化体2を介して半導体素子1が固定されている。半導体素子1の電極パッドとリードフレーム5との間はボンディングワイヤー4によって接続されている。半導体素子1は、半導体封止用樹脂組成物の硬化体6によって封止されている。
 図2は、本発明に係る半導体封止用樹脂組成物を用いた片面封止型の半導体装置の一例について、断面構造を示した図である。基板8の表面に、ソルダーレジスト7の層が形成された積層体のソルダーレジスト7上にダイボンド材硬化体2を介して半導体素子1を固定する。尚、半導体素子1と基板8との導通をとるため、電極パッドが露出するよう、電極パッド上のソルダーレジスト7は、現像法により除去されている。従って、図2の半導体装置は、半導体素子1の電極パッドと基板8上の電極パッドとの間はボンディングワイヤー4によって接続する設計となっている。半導体装置に封止用樹脂組成物を封止し、硬化体6を形成することによって、基板8の半導体素子1が搭載された片面側のみが封止された半導体装置を得ることができる。基板8上の電極パッドは基板8上の非封止面側の半田ボール9と内部で接合されている。
 以下、実施例を用いて本発明を詳細に説明するが、本発明はこれらの実施例の記載に何ら限定されるものではない。以下に記載の各成分の配合量は、特に記載しない限り、質量部とする。
 硬化剤は、以下のフェノール樹脂1~6を使用した。
 このうち、フェノール樹脂1、2がフェノール樹脂(A)に該当する。
 フェノール樹脂1:温度計、攪拌機、冷却管を付けたフラスコにo-クレゾール(東京化成工業株式会社製)108g(1モル)を仕込み、窒素雰囲気下において温度を30℃に保ちながら完全に溶解させた。溶解後、反応液に30%水酸化ナトリウム水溶液134g(水酸化ナトリウム1モル)を滴下した。この後、さらに反応温度を30℃で1時間保温した。次に、パラホルムアルデヒド(東京化成工業株式会社製)60g(2モル)を添加し、反応温度30℃で1時間、さらに反応温度45℃で2時間反応して、クレゾールのメチロール化合物を得た。その後、この反応液を20℃に冷却し、濃硫酸91.3gを発熱に注意しながら滴下することで、反応液を中和した。次に、この反応液に、メタノール250ml、α-ナフトール(東京化成工業株式会社製)864g(6モル)を添加した。添加後、反応温度を50℃にし、ただちに濃塩酸10g(塩酸潤成分として0.1モル)を滴下した。滴下後、反応温度を60℃にして2時間反応し、さらに80℃に加熱して1時間反応した。反応終了後、酸触媒を除くため、メチルイソブチルケトン1000mlに溶解し、水洗いを繰り返した。水洗いを繰り返し行うことにより中性に戻したメチルイソブチルケトン相を、減圧下、加熱蒸留し、メチルイソブチルケトン、未反応α-ナフトールを取り除き、フェノール樹脂1(軟化点107℃、水酸基当量140g/eq、150℃ICI粘度3.60dPa・sec、(m,n)=(2,1)成分57面積%)を得た。GPCチャートを図3に、FD-MSの結果を図4に示す。
 フェノール樹脂2:合成例1において、α-ナフトール864g(6モル)の代わりにβ-ナフトール(東京化成工業株式会社製)864g(6モル)を使用した以外は、同様な操作によりフェノール樹脂2(軟化点105℃、水酸基当量138g/eq、150℃ICI粘度3.50dPa・sec、(m,n)=(2,1)成分59面積%)を得た。
 フェノール樹脂3:合成例1において、o-クレゾール108g(1モル)の代わりにp-クレゾール(東京化成工業株式会社製)108g(1モル)を使用した以外は、同様な操作によりフェノール樹脂3(軟化点106℃、水酸基当量139g/eq、150℃ICI粘度3.60dPa・sec、(m,n)=(2,1)成分58面積%)を得た。
 フェノール樹脂4:合成例1において、o-クレゾール108g(1モル)の代わりにp-クレゾール(東京化成工業株式会社製)108g(1モル)を使用し、α-ナフトール864g(6モル)の代わりにβ-ナフトール(東京化成工業株式会社製)864g(6モル)を使用した以外は、同様な操作によりフェノール樹脂4(軟化点105℃、水酸基当量139g/eq、150℃ICI粘度3.50dPa・sec、(m,n)=(2,1)成分59面積%)を得た。
 フェノール樹脂5:式(11)で表される、p-クレゾールとα-ナフトールとの共縮合型フェノール樹脂(日本化薬株式会社製、KAYAHARD NHN。水酸基当量143g/eq、軟化点109℃、150℃におけるICI粘度23.0dPa・sec、(m,n)=(2,1)成分54面積%)。
Figure JPOXMLDOC01-appb-I000015
(式(11)において、tは0~10の整数である)。
 フェノール樹脂6:トリフェニルメタン型フェノール樹脂(明和化成株式会社製、MEH-7500、水酸基当量97、軟化点110℃、150℃におけるICI粘度5.8dPa・sec)。
 フェノール樹脂1のGPC測定は、次の条件で行った。フェノール樹脂1の試料20mgに溶剤テトラヒドロフラン(THF)を6ml加えて十分溶解しGPC測定に供した。GPCシステムは、WATERS社製モジュールW2695、東ソー株式会社製のTSK GUARDCOLUMN HHR-L(径6.0mm、管長40mm、ガードカラム)、東ソー株式会社製のTSK-GEL GMHHR-L(径7.8mm、管長30mm、ポリスチレンジェルカラム)2本、WATERS社製示差屈折率(RI)検出器W2414を直列に接続したものを用いた。ポンプの流速は0.5ml/分、カラムおよび示差屈折率計内温度を40℃とし、測定溶液を100μlインジェクターより注入して測定を行った。
 フェノール樹脂1のFD-MS測定は次の条件で行った。フェノール樹脂1の試料10mgに溶剤ジメチルスルホキシド1gを加えて十分溶解したのち、FDエミッターに塗布の後、測定に供した。FD-MSシステムは、イオン化部に日本電子株式会社製のMS-FD15Aを、検出器に日本電子株式会社製のMS-700機種名二重収束型質量分析装置を接続して用い、検出質量範囲(m/z)50~2000にて測定した。
 エポキシ樹脂(B)として、以下のエポキシ樹脂1~4を使用した。
 エポキシ樹脂1:トリフェニルメタン型エポキシ樹脂(ジャパンエポキシレジン株式会社製、E-1032H60、エポキシ当量171g/eq、軟化点59℃、150℃におけるICI粘度1.3dPa・sec)
 エポキシ樹脂2:トリフェニルメタン型エポキシ樹脂とビフェニル型エポキシ樹脂の混合物(ジャパンエポキシレジン株式会社製、YL6677、エポキシ当量163g/eq、軟化点59℃、150℃におけるICI粘度0.13dPa・sec)
 エポキシ樹脂3:ナフトール型エポキシ樹脂(DIC株式会社製、HP-4770、エポキシ当量205g/eq、軟化点72℃、150℃におけるICI粘度0.90dPa・sec)
 エポキシ樹脂4:ジヒドロアントラセン型エポキシ樹脂(ジャパンエポキシレジン株式会社製、YX8800、エポキシ当量181g/eq、軟化点110℃、150℃におけるICI粘度0.11dPa・sec)
 エポキシ樹脂5:オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製、N660、エポキシ当量210g/eq、軟化点62℃、150℃におけるICI粘度2.34dPa・sec)
 エポキシ樹脂6:ビフェニル型エポキシ樹脂(ジャパンエポキシレジン株式会社製、YX4000K、エポキシ当量185g/eq、軟化点107℃、150℃におけるICI粘度0.11dPa・sec)
 無機充填材(C)としては、電気化学工業株式会社製溶融球状シリカFB560(平均粒径30μm)87.7質量%、株式会社アドマテックス製合成球状シリカSO-C2(平均粒径0.5μm)5.7質量%、株式会社アドマテックス製合成球状シリカSO-C5(平均粒径30μm)6.6質量%のブレンド(無機充填材1)を使用した。
 硬化促進剤(D)は、以下の硬化促進剤1、2を使用した。
 硬化促進剤1:下記式(12)で表される硬化促進剤
Figure JPOXMLDOC01-appb-I000016
硬化促進剤2:下記式(13)で表される硬化促進剤
Figure JPOXMLDOC01-appb-I000017
 シランカップリング剤(F)は、以下のシランカップリング剤1~3を使用した。
 シランカップリング剤1:γ-メルカプトプロピルトリメトキシシラン(信越化学工業株式会社製、KBM-803)
 シランカップリング剤2:γ-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、KBM-403)
 シランカップリング剤3:N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製、KBM-573)
 無機難燃剤(G)は、水酸化アルミニウム(住友化学株式会社製、CL-310)を使用した。
 着色剤は、三菱化学株式会社製のカーボンブラック(MA600)を使用した。
 離型剤は、日興ファイン株式会社製のカルナバワックス(ニッコウカルナバ、融点83℃)を使用した。
(実施例1)
 以下の成分をミキサーにて常温で混合し、80℃~100℃の加熱ロールで溶融混練し、その後冷却し、次いで粉砕して、半導体封止用樹脂組成物を得た。
 フェノール樹脂2        5.43質量部
 エポキシ樹脂1         7.07質量部
 無機充填材1          86.5質量部
 硬化促進剤1          0.4質量部
 シランカップリング剤1     0.1質量部
 シランカップリング剤2     0.05質量部
 シランカップリング剤3     0.05質量部
 カーボンブラック        0.3質量部
 カルナバワックス        0.1質量部
得られた半導体封止用樹脂組成物を、以下の項目について評価した。評価結果を表1および表2に示す。
 スパイラルフロー:低圧トランスファー成形機(コータキ精機株式会社製、KTS-15)を用いて、EMMI-1-66に準じたスパイラルフロー測定用金型に、175℃、注入圧力6.9MPa、保圧時間120秒の条件にて上記で得られた半導体封止用樹脂組成物を注入し、流動長を測定した。スパイラルフローは、流動性のパラメータであり、数値が大きい方が、流動性が良好である。単位はcmである。実施例1で得られた半導体封止用樹脂組成物は、90cmと高流動性を示した。
 ワイヤー流れ率:低圧トランスファー自動成形機(第一精工株式会社製、GP-ELF)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間70秒の条件で、エポキシ樹脂組成物によりシリコンチップ等を封止成形して、160ピンLQFP(プリプレーティングフレーム:ニッケル/パラジウム合金に金メッキしたもの、パッケージ外寸:24mm×24mm×1.4mm厚、パッドサイズ:8.5mm×8.5mm、チップサイズ7.4mm×7.4mm×350μm厚)を得た。得られた160ピンLQFPパッケージを軟X線透視装置(ソフテックス株式会社製、PRO-TEST100)で観察し、ワイヤーの流れ率として(流れ量)/(ワイヤー長)の比率を求めた。単位は%である。実施例1で得られた半導体封止用樹脂組成物は、ワイヤー流れ率が6%と良好な結果を示した。
 耐燃性:低圧トランスファー成形機(コータキ精機株式会社製、KTS-30)を用いて、金型温度175℃、注入時間15秒、硬化時間120秒、注入圧力9.8MPaの条件で、半導体封止用樹脂組成物を注入成形して、3.2mm厚の耐燃試験片を作製し、175℃で4時間加熱処理した。得られた試験片について、UL94垂直法の規格に則り耐燃性試験を行った。表には、Fmax、ΣFおよび判定後の耐燃ランクを示した。実施例1で得られた半導体封止用樹脂組成物は、Fmax:4秒、ΣF:9秒、耐燃ランク:V-0と良好な耐燃性を示した。
 ガラス転移点:低圧トランスファー成形機(藤和精機株式会社製、TEP-50-30)を用いて、金型温度175℃、圧力9.8MPa、硬化時間120秒で、長さ15mm、幅4mm、厚さ3mmの試験片を成形し、ポストキュアとして175℃で4時間加熱処理した後、熱膨張計(セイコーインスツルメント社製TMA‐120)を用い、5℃/分の昇温速度で昇温して、試験片の伸び率が急激に変化する温度をガラス転移点として測定した。単位は℃である。また、試験片は後述する耐半田性試験で作製する80ピンQFPから、長さ5mm、幅4mm、厚さ2mm程度の試験片を切り出して、測定することもできる。実施例1で得られた半導体封止用樹脂組成物は、ガラス転移温度164℃と、適正な熱時弾性率を得るために適したガラス転移温度を示した。
 煮沸吸水率:低圧トランスファー成形機(コータキ精機株式会社製、KTS-30)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒で直径50mm、厚さ3mmの円盤状試験片を成形し、175℃で4時間加熱処理した。試験片の吸湿処理前と、24時間純水中で煮沸処理後の質量変化を測定し、試験片の吸水率を百分率で示した。単位は質量%である。実施例1で得られた半導体封止用樹脂組成物は、0.129質量%と低吸水性を示した。
 連続成形性:上記で得られた半導体封止用樹脂組成物質量7.5gをロータリー式打錠機にて、サイズφ16mm打錠型に装填し、打錠圧力600Paにて打錠してタブレットを得た。タブレットはタブレット供給マガジンに装填し、成形装置内部にセットした。低圧トランスファー自動成形機(サイネックス株式会社製、SY-COMP)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間60秒の条件で、半導体封止用樹脂組成物のタブレットによりシリコンチップなどを封止して208ピンQFP(Cu製リードフレーム、パッケージ外寸:28mm×28mm×3.2mm厚、パッドサイズ:15.5mm×15.5mm、チップサイズ:15.0mm×15.0mm×0.35mm厚)の半導体装置を得る成形を、連続で300ショットまで行った。この際、25ショット毎に半導体装置の成形状態(未充填の有無)を確認し、300ショット以上連続成形できたものを○、150ショット以上、300ショット未満のものを△、150ショット未満のものを×とした。実施例1で得られた半導体封止用樹脂組成物は、300ショット以上と良好な連続成形性を示した。
 耐半田性試験1:低圧トランスファー成形機(第一精工株式会社製、GP-ELF)を用いて、金型温度180℃、注入圧力7.4MPa、硬化時間120秒の条件で、半導体封止用樹脂組成物を注入して半導体素子(シリコンチップ)が搭載されたリードフレームなどを封止成形し、80pQFP(Quad Flat Package、Cu製リードフレーム、サイズは14×20mm×厚さ2.00mm、半導体素子は7×7mm×厚さ0.35mm、半導体素子とリードフレームのインナーリード部とは25μm径の金ワイヤーでボンディングされている。)なる半導体装置を作製した。175℃で4時間加熱処理した半導体装置6個を、30℃、相対湿度60%で192時間処理した後、IRリフロー処理(260℃、JEDEC・Level3条件に従う)を行った。これらの半導体装置内部の剥離およびクラックの有無を超音波探傷装置(日立建機ファインテック製、mi-scope10)で観察し、剥離またはクラックのいずれか一方でも発生したものを不良とした。不良半導体装置の個数がn個であるとき、n/6と表示した。実施例1で得られた半導体装置は0/6と良好な信頼性を示した。
 耐半田性試験2:上述の耐半田性試験1における175℃で4時間加熱処理した半導体装置6個を30℃、相対湿度60%で96時間処理とした以外は、耐半田性試験1と同様に試験を実施した。実施例1で得られた半導体装置は0/6と良好な信頼性を示した。
 耐半田性試験1、2共に不良が0のものを○、耐半田性試験1、2の両方またはいずれか一方に不良が発生したものを×と判定した。
 高温保管特性:低圧トランスファー成形機(第一精工株式会社製、GP-ELF)を用いて、金型温度180℃、注入圧力6.9±0.17MPa、90秒の条件で、半導体封止用樹脂組成物を注入して半導体素子(シリコンチップ)が搭載されたリードフレームなどを封止成形し、16ピン型DIP(Dual Inline  Package、42アロイ製リードフレーム、サイズは7mm×11.5mm×厚さ1.8mm、半導体素子は5×9mm×厚さ0.35mm。半導体素子は、表面に厚さ5μmの酸化層を形成し、さらにその上にラインアンドスペース10μmのアルミ配線パターンを形成したものであり、素子上のアルミ配線パッド部とリードフレームパッド部とは25μm径の金ワイヤーでボンディングされている)の半導体装置を作製した。ポストキュアとして175℃で4時間加熱処理した半導体装置10個の初期抵抗値を測定し、185℃、1000時間の高温保管処理を行った。高温処理後に半導体装置の抵抗値を測定し、初期抵抗値の130%以上となった半導体装置を不良とし、不良半導体装置の個数が0個のとき、○と表示して、不良半導体装置の個数が1~10個のとき、×と表示した。実施例1で得られた半導体装置は0/10と良好な信頼性を示した。
 実施例2~9、比較例1~8
 表1、表2の配合に従い、実施例1と同様にして半導体封止用樹脂組成物を製造し、実施例1と同様にして評価した。評価結果を表1、2に示す。
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
 実施例1~9は、一般式(1)で表される構造単位を有する重合体(a1)を含むフェノール樹脂(A)と、トリフェノールメタン型エポキシ樹脂、ナフトール型エポキシ樹脂およびジヒドロアントラセン型エポキシ樹脂からなる群より選択される少なくとも1種のエポキシ樹脂を含むエポキシ樹脂(B)と、無機充填材(C)とを含む樹脂組成物であり、フェノール樹脂(A)のナフトールの構造を変更したもの、上記3種のエポキシ樹脂の種類を変更したもの、硬化促進剤(D)の種類を変更したもの、無機難燃剤(G)を添加したものを含むものであるが、いずれにおいても、流動性(スパイラルフロー、ワイヤー流れ率)、耐燃性、耐熱性(ガラス転移点)、吸水性、連続成形性、耐半田性、高温保管特性のバランスに優れた結果が得られた。
 一方、フェノール樹脂(A)のアルキル置換フェノールをパラクレゾールに置換したフェノール樹脂3、4を用いた比較例1、2は、流動性(スパイラルフロー、ワイヤーの流れ)、連続成形性、耐半田性が劣る結果になった。上記3種のエポキシ樹脂の代わりにオルソクレゾールノボラック型エポキシ樹脂を用いた比較例3、4は、高い耐熱性(ガラス転移点)が得られず、高温保管性が劣る結果になった。また、連続成形性も劣る結果となった。同様に上記3種のエポキシ樹脂の代わりに4,4'-ジメチルビフェニル型エポキシ樹脂を用いた比較例5、6も、高い耐熱性(ガラス転移点)が得られず、高温保管性が劣る結果になった。また、連続成形性も劣る結果となった。総じて、フェノール樹脂(A)のアルキル置換フェノールをパラクレゾールに置換したフェノール樹脂4を用いた比較例2、4、6は硬化性が若干落ちることで、連続成形性が落ちる結果となった。既存のクレゾールとナフトールの共縮合型硬化剤KAYAHARD NHNを用いた比較例7は、樹脂組成物の粘度が高くなるため、ワイヤー流れ率が極端に劣り、且つ、耐半田性と連続成形性が劣る結果となった。多官能型のエポキシ樹脂と多官能型の硬化剤を併用した比較例8は、高ガラス転移点で良高温保管性が得られるものの、耐燃性と耐半田性が著しく劣る結果になった。
 上記の結果の通り、本願発明のフェノール樹脂(A)および上記3種のエポキシ樹脂を併用した樹脂組成物においてのみ、流動性(スパイラルフロー)、耐燃性、ガラス転移点、吸水率、連続成形性、耐半田性、高温保管特性、ワイヤー流れ率のバランスに優れる結果が得られるものであり、期待できる範疇を超えた顕著な効果となっている。
 本発明に従うと、ハロゲン化合物およびアンチモン化合物を使用することなく耐燃性を示し、従来よりも高いレベルで、耐半田性、高温保管特性および連続成形性のバランスに優れた半導体封止用樹脂組成物を得ることができるため、屋外での使用を前提とした電子機器等に用いられる半導体装置封止、とりわけ、高温保管特性が求められ車載用電子機器等に用いられる半導体装置封止用として好適である。

Claims (19)

  1.  フェノール樹脂(A)と、エポキシ樹脂(B)と、無機充填材(C)とを含む半導体封止用樹脂組成物であって、
     前記フェノール樹脂(A)が一般式(1):
    Figure JPOXMLDOC01-appb-I000020
    (一般式(1)において、R1は炭素数1~6の炭化水素基であり、R2は炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、互いに同じであっても異なっていてもよく、aは0~2の整数であり、mおよびnは互いに独立して、1~10の整数であり、m+n≧2であり、繰り返し数mで表される構造単位と繰り返し数nで表される構造単位は、それぞれが連続で並んでいても、お互いが交互に並んでいても、ランダムに並んでいてもよいが、それぞれの間には必ず-CH2-を有する構造をとる)
    で表される構造を有する重合体(a1)を含み、
     前記エポキシ樹脂(B)が、トリフェノールメタン型エポキシ樹脂、ナフトール型エポキシ樹脂およびジヒドロアントラセン型エポキシ樹脂からなる群より選択される少なくとも1種のエポキシ樹脂を含む、半導体封止用樹脂組成物。
  2.  前記エポキシ樹脂(B)が、
      一般式(2):
    Figure JPOXMLDOC01-appb-I000021
    (一般式(2)において、R3は炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、互いに同じであっても異なっていてもよく、bは0~4の整数であり、pは1~10の整数であり、Gはグリシジル基含有有機基である)で表されるエポキシ樹脂(b1)、
      一般式(3):
    Figure JPOXMLDOC01-appb-I000022
    (一般式(3)において、R4は炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、互いに同じであっても異なっていてもよく、R5は水素原子、炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、cは0~5の整数であり、qおよびrは互いに独立して0または1の整数であり、Gはグリシジル基含有有機基である)で表されるエポキシ樹脂(b2)、および
      一般式(4):
    Figure JPOXMLDOC01-appb-I000023
    (一般式(4)において、R6は炭素数1~6の炭化水素基または炭素数6~14の芳香族炭化水素基であり、互いに同じであっても異なっていてもよく、dは0~8の整数であり、sは0~10の整数であり、Gはグリシジル基含有有機基である)で表されるエポキシ樹脂(b3)、
    からなる群より選択される少なくとも1種のエポキシ樹脂を含む、請求項1記載の半導体封止用樹脂組成物。
  3.  前記フェノール樹脂(A)の150℃におけるICI粘度が1.0~7.0dPa・secである、請求項1に記載の半導体封止用樹脂組成物。
  4.  前記一般式(1)におけるR1がメチル基である、請求項1に記載の半導体封止用樹脂組成物。
  5.  ゲルパーミエーションクロマトグラフィー(GPC)法により測定した、前記フェノール樹脂(A)における、(m,n)=(2,1)である重合体成分の割合が30~80面積%である、請求項1に記載の半導体封止用樹脂組成物。
  6.  前記半導体封止用樹脂組成物が硬化剤をさらに含み、前記フェノール樹脂(A)が前記硬化剤100質量部中に50~100質量部含まれる、請求項1に記載の半導体封止用樹脂組成物。
  7.  トリフェノールメタン型エポキシ樹脂、ナフトール型エポキシ樹脂およびジヒドロアントラセン型エポキシ樹脂からなる群より選択される少なくとも1種の前記エポキシ樹脂が、前記エポキシ樹脂(B)100質量部中に50~100質量部含まれる、請求項1に記載の半導体封止用樹脂組成物。
  8.  前記一般式(2)で表されるエポキシ樹脂(b1)、前記一般式(3)で表されるエポキシ樹脂(b2)および前記一般式(4)で表されるエポキシ樹脂(b3)からなる群より選択される少なくとも1種の前記エポキシ樹脂が、前記エポキシ樹脂(B)100質量部中に50~100質量部含まれる、請求項2に記載の半導体封止用樹脂組成物。
  9.  前記無機充填材(C)の含有割合が樹脂組成物全体に対して70~93質量%である、請求項1に記載の半導体封止用樹脂組成物。
  10.  前記無機充填材(C)の含有割合が樹脂組成物全体に対して80~93質量%である、請求項1に記載の半導体封止用樹脂組成物。
  11.  前記一般式(2)で表されるエポキシ樹脂(b1)が前記エポキシ樹脂(B)100質量部中に50~100質量部含まれる、請求項2に記載の半導体封止用樹脂組成物。
  12.  硬化促進剤(D)をさらに含む、請求項1に記載の半導体封止用樹脂組成物。
  13.  前記硬化促進剤(D)が、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物からなる群から選択される少なくとも1種の硬化促進剤を含む、請求項12に記載の半導体封止用樹脂組成物。
  14.  芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(E)をさらに含む、請求項1に記載の半導体封止用樹脂組成物。
  15.  カップリング剤(F)をさらに含む、請求項1に記載の半導体封止用樹脂組成物。
  16.  無機難燃剤(G)をさらに含む、請求項1に記載の半導体封止用樹脂組成物。
  17.  前記一般式(3)で表されるエポキシ樹脂(b2)が前記エポキシ樹脂(B)100質量部中に50~100質量部含まれる、請求項2に記載の半導体封止用樹脂組成物。
  18.  前記一般式(4)で表されるエポキシ樹脂(b3)が前記エポキシ樹脂(B)100質量部中に50~100質量部含まれる、請求項2に記載の半導体封止用樹脂組成物。
  19.  請求項1に記載の半導体封止用樹脂組成物の硬化物で半導体素子を封止して得られる半導体装置。
PCT/JP2010/006176 2009-10-26 2010-10-19 半導体封止用樹脂組成物およびこれを用いた半導体装置 WO2011052157A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800485197A CN102666642A (zh) 2009-10-26 2010-10-19 半导体封装用树脂组合物及使用其的半导体装置
US13/503,884 US20120205822A1 (en) 2009-10-26 2010-10-19 Resin composition for encapsulating semiconductor and semiconductor device using the resin composition
JP2011538233A JPWO2011052157A1 (ja) 2009-10-26 2010-10-19 半導体封止用樹脂組成物およびこれを用いた半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009245304 2009-10-26
JP2009-245304 2009-10-26

Publications (1)

Publication Number Publication Date
WO2011052157A1 true WO2011052157A1 (ja) 2011-05-05

Family

ID=43921594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006176 WO2011052157A1 (ja) 2009-10-26 2010-10-19 半導体封止用樹脂組成物およびこれを用いた半導体装置

Country Status (6)

Country Link
US (1) US20120205822A1 (ja)
JP (1) JPWO2011052157A1 (ja)
KR (1) KR20120101413A (ja)
CN (1) CN102666642A (ja)
TW (1) TW201125922A (ja)
WO (1) WO2011052157A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241177A (ja) * 2011-05-24 2012-12-10 Panasonic Corp 圧縮成形用エポキシ樹脂組成物と半導体装置
CN103311212A (zh) * 2012-03-08 2013-09-18 瑞萨电子株式会社 半导体装置
JP2014065791A (ja) * 2012-09-25 2014-04-17 Dic Corp クレゾール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2014065829A (ja) * 2012-09-26 2014-04-17 Dic Corp クレゾール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2014114352A (ja) * 2012-12-07 2014-06-26 Dic Corp 活性エステル樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2014114411A (ja) * 2012-12-12 2014-06-26 Dic Corp 活性エステル樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
WO2017022721A1 (ja) * 2015-08-03 2017-02-09 日立化成株式会社 エポキシ樹脂組成物、フィルム状エポキシ樹脂組成物及び電子装置
JP2018123245A (ja) * 2017-02-01 2018-08-09 日立化成株式会社 封止用樹脂組成物及び半導体装置
WO2020171004A1 (ja) * 2019-02-21 2020-08-27 日立化成株式会社 硬化性樹脂組成物及び電子部品装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102558769B (zh) * 2010-12-31 2015-11-25 第一毛织株式会社 用于封装半导体器件的环氧树脂组合物以及由该环氧树脂组合物封装的半导体器件
TWI501868B (zh) * 2012-01-06 2015-10-01 Lg Chemical Ltd 包封用薄膜
JP6507506B2 (ja) * 2014-07-16 2019-05-08 住友ベークライト株式会社 封止用樹脂組成物及び半導体装置
US10163765B2 (en) 2016-04-19 2018-12-25 Kabushiki Kaisha Toshiba Semiconductor device that includes a molecular bonding layer for bonding of elements
CN112513217B (zh) * 2018-08-03 2023-07-14 株式会社力森诺科 胶黏剂组合物、膜状胶黏剂、胶黏剂片及半导体装置的制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060591A (ja) * 2000-08-23 2002-02-26 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2004300431A (ja) * 2003-03-17 2004-10-28 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物および半導体装置
JP2006206748A (ja) * 2005-01-28 2006-08-10 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2007023213A (ja) * 2005-07-20 2007-02-01 Dainippon Ink & Chem Inc エポキシ樹脂組成物及びその硬化物
JP2007031691A (ja) * 2005-06-24 2007-02-08 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2007039655A (ja) * 2005-06-27 2007-02-15 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2008115382A (ja) * 2006-10-12 2008-05-22 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2008266610A (ja) * 2007-03-23 2008-11-06 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物及び半導体装置
JP2009221357A (ja) * 2008-03-17 2009-10-01 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4404050B2 (ja) * 2003-03-11 2010-01-27 住友ベークライト株式会社 半導体封止用樹脂組成物およびこれを用いた半導体装置
SG110189A1 (en) * 2003-09-26 2005-04-28 Japan Epoxy Resins Co Ltd Epoxy compound, preparation method thereof, and use thereof
WO2005085316A1 (ja) * 2004-03-03 2005-09-15 Hitachi Chemical Co., Ltd. 封止用エポキシ樹脂成形材料及び電子部品装置
KR101193005B1 (ko) * 2004-07-22 2012-10-19 스미토모 베이클라이트 가부시키가이샤 반도체 밀봉용 수지 조성물 및 반도체 장치
WO2006059542A1 (ja) * 2004-11-30 2006-06-08 Sumitomo Bakelite Co., Ltd. エポキシ樹脂組成物及び半導体装置
JPWO2007018287A1 (ja) * 2005-08-11 2009-02-19 協和発酵ケミカル株式会社 樹脂組成物
CN102516499B (zh) * 2006-03-07 2014-07-16 住友电木株式会社 密封半导体用环氧树脂组合物及半导体装置
JP5321057B2 (ja) * 2006-03-31 2013-10-23 住友ベークライト株式会社 半導体封止用樹脂組成物及び半導体装置
KR101640961B1 (ko) * 2009-03-11 2016-07-19 스미토모 베이클리트 컴퍼니 리미티드 반도체 봉지용 수지 조성물 및 반도체 장치
KR101687847B1 (ko) * 2009-06-03 2016-12-19 스미또모 베이크라이트 가부시키가이샤 반도체 밀봉용 수지 조성물 및 반도체 장치
CN102459397B (zh) * 2009-06-22 2014-05-07 住友电木株式会社 半导体密封用树脂组合物、以及半导体装置
SG10201406600RA (en) * 2009-10-20 2014-11-27 Sumitomo Bakelite Co Epoxy resin composition for encapsulating semiconductor, semiconductor device, and mold releasing agent

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060591A (ja) * 2000-08-23 2002-02-26 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2004300431A (ja) * 2003-03-17 2004-10-28 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物および半導体装置
JP2006206748A (ja) * 2005-01-28 2006-08-10 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2007031691A (ja) * 2005-06-24 2007-02-08 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2007039655A (ja) * 2005-06-27 2007-02-15 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2007023213A (ja) * 2005-07-20 2007-02-01 Dainippon Ink & Chem Inc エポキシ樹脂組成物及びその硬化物
JP2008115382A (ja) * 2006-10-12 2008-05-22 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2008266610A (ja) * 2007-03-23 2008-11-06 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物及び半導体装置
JP2009221357A (ja) * 2008-03-17 2009-10-01 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241177A (ja) * 2011-05-24 2012-12-10 Panasonic Corp 圧縮成形用エポキシ樹脂組成物と半導体装置
US9368463B2 (en) 2012-03-08 2016-06-14 Renesas Electronics Corporation Semiconductor device
CN103311212A (zh) * 2012-03-08 2013-09-18 瑞萨电子株式会社 半导体装置
JP2013187373A (ja) * 2012-03-08 2013-09-19 Renesas Electronics Corp 半導体装置
US9230930B2 (en) 2012-03-08 2016-01-05 Renesas Electronics Corporation Semiconductor device
JP2014065791A (ja) * 2012-09-25 2014-04-17 Dic Corp クレゾール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2014065829A (ja) * 2012-09-26 2014-04-17 Dic Corp クレゾール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2014114352A (ja) * 2012-12-07 2014-06-26 Dic Corp 活性エステル樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2014114411A (ja) * 2012-12-12 2014-06-26 Dic Corp 活性エステル樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
WO2017022721A1 (ja) * 2015-08-03 2017-02-09 日立化成株式会社 エポキシ樹脂組成物、フィルム状エポキシ樹脂組成物及び電子装置
JP2018123245A (ja) * 2017-02-01 2018-08-09 日立化成株式会社 封止用樹脂組成物及び半導体装置
JP7172019B2 (ja) 2017-02-01 2022-11-16 昭和電工マテリアルズ株式会社 封止用樹脂組成物及び半導体装置
WO2020171004A1 (ja) * 2019-02-21 2020-08-27 日立化成株式会社 硬化性樹脂組成物及び電子部品装置

Also Published As

Publication number Publication date
JPWO2011052157A1 (ja) 2013-03-14
US20120205822A1 (en) 2012-08-16
TW201125922A (en) 2011-08-01
CN102666642A (zh) 2012-09-12
KR20120101413A (ko) 2012-09-13

Similar Documents

Publication Publication Date Title
WO2011052157A1 (ja) 半導体封止用樹脂組成物およびこれを用いた半導体装置
JP6202114B2 (ja) 封止用樹脂組成物及び電子部品装置
JP5692070B2 (ja) 半導体封止用樹脂組成物、及び半導体装置
WO2011114687A1 (ja) 半導体封止用樹脂組成物およびこれを用いた半導体装置
WO2013136685A1 (ja) 封止用樹脂組成物およびこれを用いた電子装置
US8138266B2 (en) Semiconductor-encapsulating resin composition and semiconductor device
JP5494137B2 (ja) 半導体封止用樹脂組成物および半導体装置
JP6008107B2 (ja) 樹脂組成物および電子部品装置
JP5573343B2 (ja) 半導体封止用樹脂組成物、および半導体装置
JP5126045B2 (ja) 半導体封止用樹脂組成物及び半導体装置
JP5050923B2 (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2012007086A (ja) 封止用樹脂組成物及び電子部品装置
JP5672947B2 (ja) 封止用樹脂組成物及び電子部品装置
JP5565081B2 (ja) 半導体封止用樹脂組成物、および半導体装置
JP5651968B2 (ja) 半導体封止用樹脂組成物及び半導体装置
JP5186965B2 (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置
JP5316282B2 (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2011094106A (ja) 半導体封止用樹脂組成物及び半導体装置
JP5868573B2 (ja) 半導体封止用樹脂組成物及び半導体装置
JP2011094105A (ja) 半導体封止用樹脂組成物及び半導体装置
JP5573344B2 (ja) 封止用樹脂組成物及び電子部品装置
JP5211737B2 (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048519.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826294

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538233

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13503884

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201001904

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20127013599

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10826294

Country of ref document: EP

Kind code of ref document: A1