WO2011045880A1 - 水素ガス回収システムおよび水素ガスの分離回収方法 - Google Patents

水素ガス回収システムおよび水素ガスの分離回収方法 Download PDF

Info

Publication number
WO2011045880A1
WO2011045880A1 PCT/JP2010/004754 JP2010004754W WO2011045880A1 WO 2011045880 A1 WO2011045880 A1 WO 2011045880A1 JP 2010004754 W JP2010004754 W JP 2010004754W WO 2011045880 A1 WO2011045880 A1 WO 2011045880A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
gas
activated carbon
hydrogen chloride
chlorosilanes
Prior art date
Application number
PCT/JP2010/004754
Other languages
English (en)
French (fr)
Inventor
靖志 黒澤
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN2010800466355A priority Critical patent/CN102574680A/zh
Priority to AU2010307920A priority patent/AU2010307920A1/en
Priority to US13/501,522 priority patent/US8778061B2/en
Priority to EP10823149A priority patent/EP2489630A1/en
Publication of WO2011045880A1 publication Critical patent/WO2011045880A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1431Pretreatment by other processes
    • B01D53/1437Pretreatment by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2064Chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40086Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by using a purge gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • Y02P20/156Methane [CH4]

Definitions

  • the present invention relates to a hydrogen gas recovery system and a hydrogen gas separation and recovery method, and more specifically, a technique for separating and recovering hydrogen from a reaction exhaust gas of a polycrystalline silicon production apparatus using trichlorosilane as a raw material, and using this separately.
  • a hydrogen gas recovery system and a hydrogen gas separation and recovery method and more specifically, a technique for separating and recovering hydrogen from a reaction exhaust gas of a polycrystalline silicon production apparatus using trichlorosilane as a raw material, and using this separately.
  • tetrachlorosilane and hydrogen by-produced according to Formula 2 can be converted to trichlorosilane by a reaction reverse to Formula 2, so that these by-products can be reused as a raw material gas for producing polycrystalline silicon. It is being used.
  • the loss of the above-mentioned by-products is reduced and converted into trichlorosilane with high efficiency, that is, exhaust gas from the polycrystalline silicon manufacturing system is recovered and circulated with high efficiency. ⁇ Technology to reuse is required.
  • the reaction exhaust gas from the polycrystalline silicon manufacturing system includes other As a by-product gas, a small amount of monochlorosilane (SiH 3 Cl) and dichlorosilane (SiH 2 Cl 2 ) are contained. In addition, as trace impurities, carbon monoxide (CO), methane (CH 4 ), monosilane (SiH 4 ), and nitrogen (N 2 ) are included.
  • CO carbon monoxide
  • CH 4 methane
  • SiH 4 monosilane
  • N 2 nitrogen
  • chlorosilanes tetrachlorosilane, trichlorosilane, dichlorosilane, and monochlorosilane are collectively referred to as chlorosilanes, and the liquid is referred to as a chlorosilane liquid.
  • the reaction exhaust gas from the polycrystalline silicon manufacturing apparatus is first separated into hydrogen and other components by a hydrogen recovery and circulation device directly connected to the polycrystalline silicon manufacturing apparatus, and the separated hydrogen is circulated and again returned to the polycrystalline silicon manufacturing apparatus.
  • a hydrogen separation and recovery method is as follows: “New Energy Development Organization Commissioned Business Results Report, 1987-62, Development of Technology for Practical Use of Solar Power Generation System, Low-cost Silicon Experimental Refining Verification (Technology Development of Chlorsilane Hydrogen Reduction Process) It is publicly known by “Summary Version” (Non-Patent Document 1), Japanese Patent Laid-Open No. 2008-143775 (Patent Document 1), and the like.
  • a gas absorption method using a chlorosilane solution is employed as a method for separating hydrogen chloride. Since the solubility of hydrogen chloride in a chlorosilane solution is not large, it is necessary to separate hydrogen chloride by a gas absorption method at a low temperature ( ⁇ 20 ° C. or lower), but it can be separated efficiently if sufficient heat recovery is performed.
  • the separation method by adsorption utilizes the fact that the amount of impurities adsorbed on the surface of an adsorbent such as activated carbon increases at high pressure and low temperature, but decreases at low pressure and high temperature. This is a batch operation method in which adsorption operation and regeneration operation under low pressure and high temperature are performed alternately.
  • a general activated carbon adsorption tower is composed of a plurality of activated carbon packed towers that are selectively used. Activated carbon loses its adsorption capacity after a certain period of time. This is called breakthrough, but it is switched to a regenerated activated carbon packed tower before breakthrough occurs.
  • the used activated carbon is regenerated by releasing the adsorbed components by purging with a carrier gas under low pressure and high temperature. This is called adsorption component desorption.
  • a carrier gas for regeneration of activated carbon is required to have a purity comparable to that of recovered hydrogen.
  • recovered hydrogen purified by an activated carbon adsorption tower is used, or high purity hydrogen is replenished from the outside. And it is discharged
  • Non-Patent Document 1 hydrogen as a carrier gas is newly supplied from the outside, and the desorption gas is sent to the conversion step of tetrachlorosilane to trichlorosilane and reused.
  • the desorption gas is sent to the conversion step of tetrachlorosilane to trichlorosilane and reused.
  • the present invention has been made in view of the above-mentioned problems, and its object is to effectively separate and reuse the desorption gas, and chlorosilanes, hydrogen chloride from the reaction exhaust gas of the polycrystalline silicon production apparatus,
  • An object of the present invention is to provide a technique for producing polycrystalline silicon with low cost and high purity by reducing the replenishment amount of hydrogen gas used for separating nitrogen, carbon monoxide, methane, and monosilane as much as possible.
  • a hydrogen gas recovery system of the present invention is a hydrogen gas recovery system used for separating and recovering hydrogen gas from reaction exhaust gas from an apparatus for producing polycrystalline silicon using trichlorosilane as a raw material.
  • the condensation separation device for condensing and separating chlorosilanes from the reaction exhaust gas containing hydrogen from the polycrystalline silicon manufacturing process, the compression device for compressing the reaction exhaust gas containing hydrogen via the condensation separation device, and the compression device An absorption device that absorbs and separates hydrogen chloride by bringing a reaction exhaust gas containing hydrogen into contact with an absorbing solution, and adsorbs and removes methane, hydrogen chloride, and chlorosilanes contained in the reaction exhaust gas containing hydrogen that has passed through the absorption device.
  • Each of the activated carbon packed towers is an activated carbon in the activated carbon packed tower.
  • As a discharge line for hydrogen gas as a carrier used at the time of life it has a first line for discharging out of the system, and a second line for once circulating out of the adsorption device and circulating to the adsorption device.
  • the second line includes a chlorosilane condensation / separation unit, a gas compression unit, and hydrogen chloride.
  • the absorption separation part is provided in this order.
  • the hydrogen chloride absorption / separation unit may be the absorption device.
  • the gas compression unit may be the compression device, and the absorption / separation unit may be the absorption device.
  • the condensation separation part of the chlorosilanes may be the condensation separation apparatus, the gas compression part may be the compression apparatus, and the absorption separation part may be the absorption apparatus.
  • the hydrogen gas separation and recovery method of the present invention is a method of separating and recovering hydrogen gas from reaction exhaust gas from an apparatus for producing polycrystalline silicon using trichlorosilane as a raw material, and using the hydrogen gas recovery system of the present invention.
  • At least one of the plurality of activated carbon packed towers performs adsorption removal of the methane, hydrogen chloride, and chlorosilanes, and at the same time, activated carbon regeneration in another activated carbon packed tower is performed. It includes operations (1) and (2).
  • the operation (1) is an operation of lowering the pressure in the activated carbon packed tower and exhausting the activated carbon adsorbate from the first line with the hydrogen carrier gas
  • the operation (2) is the operation ( After 1), the discharge line is switched to the second line, the adsorption device is heated to raise the activated carbon temperature, hydrogen chloride and chlorosilanes are desorbed and discharged out of the adsorption device with a hydrogen carrier gas. Then, hydrogen chloride and chlorosilanes are recovered from the exhaust gas, and the hydrogen gas is circulated to the adsorption device.
  • liquid chlorosilanes can be used as the absorbing liquid.
  • the adsorbed component when the adsorbed component is desorbed and regenerated from the activated carbon in which the reaction exhaust gas in the activated carbon packed tower is brought into contact and the components other than hydrogen are adsorbed, hydrogen is used as a carrier gas and desorption is performed in two stages. That is, the component to be desorbed by reducing the pressure inside the tower by extracting the hydrogen gas from the activated carbon packed tower is discharged out of the system together with the hydrogen and the carrier gas sent into the tower, and then the carrier gas is sent. The line is switched, the activated carbon packed tower is heated to desorb hydrogen chloride and chlorosilanes, and hydrogen chloride and chlorosilanes are recovered and hydrogen as a carrier gas is purified and recovered.
  • FIG. 1 is a flowchart for explaining each step of the exhaust gas separation and recovery method of the present invention
  • FIG. 2 is a schematic diagram showing an example of the configuration of the exhaust gas separation and recovery system of the present invention.
  • reaction exhaust gas from the polycrystalline silicon manufacturing apparatus (100) is supplied to the first condensing apparatus (10), and chlorosilane is condensed and separated (S101).
  • This condensation and separation step is performed so that chlorosilanes do not liquefy in the first pressurizer (20) used in the compression step (S102) and damage the pressurizer (20). It is provided to reduce the thermal load in the step (S103), and is for removing (part of) chlorosilanes in advance prior to compression of the reaction exhaust gas.
  • the reaction exhaust gas from the polycrystalline silicon manufacturing apparatus is cooled to remove a part of the chlorosilanes from the reaction exhaust gas.
  • the cooling temperature should just be below the temperature which chlorosilanes do not condense under the pressure after compression in a compression process (S102). Accordingly, the cooling temperature may be ⁇ 10 ° C. or lower, preferably ⁇ 20 ° C. or lower.
  • the reaction exhaust gas after passing through the condensation and separation step (S101) is sent to the compression step (S102).
  • a pressurizer (20) for separating, purifying, and recycling the reaction exhaust gas is used in the compression step (S102).
  • This pressurizer (20) provides mechanical and chemical durability to the reaction exhaust gas. It can be used as long as it can be safely operated and does not change the composition of the reaction exhaust gas.
  • the reaction exhaust gas compressed and pressurized in the compression step (S102) contains unseparated chlorosilanes, hydrogen chloride, hydrogen, nitrogen, carbon monoxide, methane, and monosilane. Therefore, the chlorosilanes and hydrogen chloride contained in the reaction exhaust gas are absorbed into the absorption liquid in the hydrogen chloride absorption step (S103).
  • An absorption liquid mainly composed of liquid chlorosilanes is supplied from the hydrogen chloride distillation apparatus (40) to the hydrogen chloride absorption apparatus (30), and the reaction exhaust gas comes into gas-liquid contact with the absorption liquid, thereby causing reaction in the reaction exhaust gas. Chlorosilanes and hydrogen chloride are absorbed by the absorbent.
  • the hydrogen chloride absorber (30) As the hydrogen chloride absorber (30), a packed tower, a plate tower, a spray tower, a wet wall tower, etc. can be used. However, since the solubility of hydrogen chloride in chlorosilanes is not large, the gas-liquid is efficiently and continuously. It must be a device that can be contacted.
  • the hydrogen chloride absorption step (S103) is preferably performed at a low temperature and a high pressure. Specifically, a temperature range of ⁇ 30 ° C. to ⁇ 60 ° C. and a pressure range of 0.4 MPaG to 1.0 MPaG are selected.
  • the absorbing solution in which hydrogen chloride is dissolved is led from the hydrogen chloride absorbing device (30) to the hydrogen chloride distillation device (40), where hydrogen chloride gas is separated at a temperature of 50 ° C. to 140 ° C. (S104).
  • the hydrogen chloride gas separated here is recovered as a tower top component and can be reused in a synthesis process of trichlorosilane, a conversion process of tetrachlorosilane to trichlorosilane, or the like.
  • the absorption liquid after separation of hydrogen chloride gas is cooled to ⁇ 30 ° C. to ⁇ 60 ° C. and then sent to the hydrogen chloride absorption device (30), where it is used again as the absorption liquid in the hydrogen chloride absorption step (S103).
  • the reaction exhaust gas from which chlorosilanes and hydrogen chloride have been removed by the hydrogen chloride absorption device (30) is introduced into the adsorption device (50), and purified hydrogen is recovered (S105).
  • the adsorption device (50) used in this step is filled with activated carbon, and while the hydrogen-based gas passes through the activated carbon packed bed, unseparated chlorosilanes, hydrogen chloride, and nitrogen contained in the gas Carbon monoxide, methane, and monosilane are adsorbed on the activated carbon and removed from the gas to obtain purified hydrogen.
  • the adsorption device (50) shown in FIG. 2 includes a plurality (three) of activated carbon packed columns (50a to c) so that one or more columns can always perform the adsorption step (S105). .
  • Each of these activated carbon packed towers functions as an adsorption tower. By providing a plurality of activated carbon packed towers, while another activated carbon packed tower is performing heat desorption regeneration, the other activated carbon packed towers are in the adsorption step (S105). Can be performed.
  • the procedure for heat desorption regeneration of the activated carbon packed tower is performed in two stages as follows. First, the activated carbon packed tower to be heated and desorbed and regenerated is depressurized. This is because desorption proceeds more advantageously under low pressure conditions, and the pressure is reduced to 0.03 MPa or less. Following this pressure reduction, when a part of the hydrogen recovered by the adsorption device (50) is passed through the target activated carbon packed tower as a regeneration carrier gas, impurities such as nitrogen, carbon monoxide, methane, and monosilane are present. Discharged. Hydrogen containing these impurities is discharged out of the system. Of course, this hydrogen may be regenerated by a separate hydrogen purification / recovery line other than those described later.
  • the activated carbon packed tower is heated from 140 ° C to 170 ° C.
  • hydrogen chloride, chlorosilanes, and the like are desorbed from the surface of the activated carbon and are driven out of the activated carbon packed tower by hydrogen as a carrier gas to complete regeneration of the activated carbon.
  • hydrogen containing hydrogen chloride and the like is recovered and purified as described later.
  • regeneration can be again used as an active adsorption tower only by cooling and pressurizing to the temperature and pressure at the time of adsorption
  • Each of the activated carbon packed towers (50a to 50c) is a discharge line (the first line) for discharging the desorption gas (impurities such as nitrogen, carbon monoxide, methane, monosilane) generated during the pressure reduction in the above-described activated carbon regeneration step.
  • the desorption gas (hydrogen chloride and chlorosilanes) generated during the regeneration of the activated carbon that is executed following the above-mentioned pressure reduction are once discharged out of the adsorption device (50) and then recirculated to the adsorption device (50). 2, in FIG.
  • a second condensing device (60) that is a condensation / separation part of chlorosilanes and a second pressurizer that is a gas compression part (70) and a second hydrogen chloride absorption device (90) which is an absorption separation part of hydrogen chloride are provided in this order.
  • Each of the activated carbon packed towers has a function of selecting whether the hydrogen gas (exhaust gas containing) is sent to the first line or the second line.
  • the above switching can be managed not by temperature but by the time from the start of regeneration. Therefore, the above-described two stages in the heat desorption regeneration of the activated carbon packed tower are a stage of selecting a discharge line for discharging the gas discharged from the packed tower according to the state of the activated carbon to the outside of the system, and hydrogen chloride. And after the process which collect
  • the hydrogen gas recovery system of the present invention may have, for example, the mode illustrated in FIGS. 3 to 6 in addition to the mode illustrated in FIG.
  • the first condensing device (10) is used as the condensing / separating unit for chlorosilanes
  • the first pressurizer (20) is used as the gas compressing unit
  • the hydrogen chloride absorbing device (30) is used as the absorbing / separating unit. ing. Accordingly, the desorption gas (hydrogen chloride and chlorosilanes) generated during the regeneration of the activated carbon discharged to the outside of the adsorption device (50) is removed from the first condensing device (10) and the first addition device provided in the second line. It will circulate through the pressure device (20) and the hydrogen chloride absorption device (30) sequentially to the adsorption device (50) again.
  • the second condensing device (60) is used as the condensing / separating unit for chlorosilanes
  • the first pressurizer (20) is used as the gas compressing unit
  • the hydrogen chloride absorbing device (30) is used as the absorbing / separating unit. ing. Therefore, the desorption gas (hydrogen chloride and chlorosilanes) generated during the regeneration of the activated carbon discharged to the outside of the adsorption device (50) is discharged from the second condensing device (60) and the first addition device provided in the second line. It will circulate through the pressure device (20) and the hydrogen chloride absorption device (30) sequentially to the adsorption device (50) again.
  • the second condensing device (60) is used as the condensing / separating unit for chlorosilanes
  • the second pressurizer (70) is used as the gas compressing unit
  • the hydrogen chloride absorbing device (30) is used as the absorbing / separating unit. ing. Accordingly, the desorption gas (hydrogen chloride and chlorosilanes) generated during the regeneration of the activated carbon discharged to the outside of the adsorption device (50) is removed from the second condensing device (60) and the second addition gas provided in the second line. It will circulate through the pressure device (70) and the hydrogen chloride absorption device (30) sequentially to the adsorption device (50) again.
  • the third condenser (80) is provided between the second pressurizer (70) and the hydrogen chloride absorber (30) in the embodiment shown in FIG.
  • separation of hydrogen chloride and chlorosilanes from other impurity components can be achieved only by adopting a simple configuration of separating the path of the desorption gas generated at the time of depressurization in the activated carbon regeneration step and the desorption gas generated at the time of heating the activated carbon. The reason is as follows.
  • the adsorption state of each component on the activated carbon surface can be estimated from the relationship between the adsorption temperature (denoted as T ad ) and the critical temperature (T c ) of each component, and is as follows. Liquid: T ad ⁇ T c Liquid + compressed gas: T ad ⁇ T c Compressed gas: T ad > T c
  • the adsorption state of the adsorption gas component of the adsorption tower on the activated carbon surface is as follows.
  • nitrogen, carbon monoxide, methane, and monosilane are components that can be easily desorbed by reducing the pressure below the pressure during adsorption without requiring heat of vaporization because the adsorption state is compressed gas.
  • hydrogen chloride and chlorosilanes are adsorbed in a liquid state, and it is necessary to give heat of vaporization during desorption.
  • the activated carbon packed tower repeats the high-pressure / low-temperature adsorption process and the low-pressure / high-temperature regeneration process.
  • the pressure reduction usually takes a short time.
  • it takes a long time to raise the temperature by heating. This is because the packed bed of activated carbon has a low thermal conductivity and a large heat capacity.
  • the desorption gas in the pressure reduction stage at the initial stage of the regeneration process containing impurities such as nitrogen, carbon monoxide, methane, and monosilane is released out of the system, while the desorption gas in the heat regeneration stage containing hydrogen chloride and chlorosilanes is released.
  • a third condensing device (80) may be provided to increase the degree of condensation.
  • the recovered hydrogen purified in the adsorption step (S105) is sent to the polycrystalline silicon production apparatus (100) through the circulation pipe and reused.
  • This purified hydrogen does not contain boron chloride, phosphorus, arsenic, carbon compounds, etc., which are harmful impurities when incorporated into silicon crystals as well as hydrogen chloride, and has sufficient purity for producing high-purity polycrystalline silicon. Have.
  • the compression step (S102) and the hydrogen chloride absorption step (S103) are provided after the condensation separation step (S101) for separating chlorosilanes. This is because hydrogen chloride is more easily absorbed at lower temperatures and higher pressures, but such low-temperature and high-pressure conditions are also suitable for condensation of chlorosilanes. (30) When passing through the interior, chlorosilanes are simultaneously separated and removed.
  • the regeneration carrier gas can be reduced. It is also advantageous for reducing the amount of use.
  • the pressure of the reaction exhaust gas recovery system is the polycrystalline silicon that is the cause of pressure increase.
  • the amount of by-product hydrogen in the production equipment, the amount of exhaust gas outside the reaction exhaust gas recovery system that is the cause of pressure drop, the amount of hydrogen consumed in the polycrystalline silicon production equipment, dissolved in the chlorosilane solution and discharged out of the system Determined by the amount of hydrogen.
  • the hydrogen gas can be taken out of the system as surplus hydrogen, and the effective use of the tetrachlorosilane to the trichlorosilane conversion device (200) is also possible. It becomes possible.
  • the balance is negative, it is necessary to replenish high-purity hydrogen gas from outside the system as make-up hydrogen.
  • the reaction temperature in the polycrystalline silicon production apparatus is 1060 ° C.
  • the feed gas is 520 Nm 3 / hr of hydrogen and 1,150 kg / hr of trichlorosilane.
  • the discharge amount of each component of the reaction exhaust gas is as shown in Table 2.
  • the temperature of the condensation / separation step (S101) is ⁇ 20 ° C.
  • the temperature in the hydrogen chloride absorption step (S103) is ⁇ 40 ° C. and the pressure is 0.8 MPa.
  • the temperature of the adsorption step (S105) was 30 ° C.
  • the pressure was 0.8 MPa
  • the amount of hydrogen as a carrier gas used for regeneration was 62 Nm 3 / hr in terms of time average flow rate.
  • the temperature in the second condensation step (S106) was ⁇ 40 ° C., and the desorption gas was discharged out of the system only for the initial 2 hours during regeneration.
  • hydrogen purified by separating hydrogen chloride, chlorosilanes, and other trace impurities contained in the reaction exhaust gas generated from the production process of polycrystalline silicon using trichlorosilane as a raw material It is possible to minimize hydrogen to be supplied to the circulation system and hydrogen released to the outside of the system when the gas is recycled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 本発明は、多結晶シリコン製造装置の反応排ガスの分離を行うために使用する補給水素の量を極力低減する。塩化水素吸収装置(30)でクロロシラン類及び塩化水素が除去された反応排ガスは吸着装置(50)に導入され、精製された水素の回収が行なわれる(S105)。吸着装置(50)には活性炭が充填されており、水素主体のガスが該活性炭充填層を通過する間に、ガス中に含まれる未分離のクロロシラン類、塩化水素、および窒素、一酸化炭素、メタン、モノシランが活性炭に吸着されてガス中から除去され、精製された水素が得られる。窒素、一酸化炭素、メタン、モノシランは吸着状態が圧縮気体であるが、塩化水素およびクロロシラン類は吸着状態が液体であり脱着時には気化熱を与える必要がある。この特性を利用して、脱着ガスの経路を分離するだけで、塩化水素およびクロロシラン類とその他の不純物成分の分離を可能としている。

Description

水素ガス回収システムおよび水素ガスの分離回収方法
 本発明は水素ガス回収システムおよび水素ガスの分離回収方法に関し、より詳細には、トリクロロシランを原料とする多結晶シリコン製造装置の反応排ガスから水素を分離して回収し、これを循環使用する技術に関する。
 トリクロロシラン(HSiCl)を原料とする多結晶シリコンの製造工程では、主として下式で表される反応が進行し、式1により多結晶シリコンが生成する。
  HSiCl + H  → Si + 3HCl   ・・・(式1)
  HSiCl + HCl → SiCl + H ・・・(式2)
 現在、多結晶シリコン製造工程の省電力化を目的として、多結晶シリコンの析出速度を高めるため、原料であるトリクロロシランの高濃度化と反応圧力の高圧化が進められている。そのため、上記2つの反応式のうちの式2で表される反応が、式1の反応に優先して進む傾向が強くなり、その結果、当該反応により副生するテトラクロロシラン(SiCl)と水素(H)の量は従来のものに比較して増加する傾向にある。
 一方、式2に従い副生するテトラクロロシランと水素は、式2とは逆の反応によりトリクロロシランへと転換させることが可能であるから、これら副生物を再び多結晶シリコン製造用の原料ガスとして再利用することが行われている。多結晶シリコンの製造コスト削減のためには、上述の副生物のロスを低減してトリクロロシランへと高い効率で転換させること、つまり、多結晶シリコン製造システムからの排ガスを高効率で回収・循環・再利用する技術が求められることとなる。
 多結晶シリコン製造システム(装置)からの反応排ガスには、上記式1及び式2に示されているテトラクロロシラン、水素、微量の塩化水素(HCl)、及び未反応のトリクロロシラン以外にも、その他の副生ガスとして、微量のモノクロロシラン(SiHCl)、ジクロロシラン(SiHCl)が含まれている。また、極微量不純物として、一酸化炭素(CO)、メタン(CH)、モノシラン(SiH)、窒素(N)が含まれている。なお、以下では、テトラクロロシラン、トリクロロシラン、ジクロロシラン、モノクロロシランを総称してクロロシラン類と称し、その液体をクロロシラン液と称することとする。
 多結晶シリコン製造装置からの反応排ガスは、先ず、多結晶シリコン製造装置に直結する水素回収循環装置により水素とそれ以外の成分に分離され、分離された水素は循環されて再び多結晶シリコン製造装置へと導入される。このような、水素分離回収方法は、「昭和55~62年度新エネルギー総合開発機構委託業務成果報告書 太陽光発電システム実用化技術開発 低コストシリコン実験精製検証(クロルシランの水素還元工程の技術開発) 総括版」(非特許文献1)や特開2008-143775号公報(特許文献1)などにより公知となっている。
 これらの文献に開示されている技術においては、クロロシラン類を分離する方法として、沸点の大きく異なる成分を分離する場合に広く採用される凝縮を採用している。
 また、塩化水素の分離方法としては、クロロシラン液によるガス吸収方法が採用されている。クロロシラン液に対する塩化水素の溶解度は大きくないため、ガス吸収方法による塩化水素の分離は低温(-20℃以下)で行う必要があるが、熱回収などを充分行えば効率良く分離できる。
 最後に、微量に残ったクロロシラン類、塩化水素、その他の不純物を、活性炭により吸着分離する。吸着による分離方法は、活性炭のような吸着材表面への不純物の吸着量が、高圧・低温下では増加する一方、低圧・高温下では減少することを利用しており、高圧・低温下での吸着操作と低圧・高温下での再生操作を交互に行うバッチ運転方式である。
 一般的な活性炭吸着塔は、選択的に切り替え使用される複数の活性炭充填塔から構成されている。活性炭は一定時間使用すると吸着能力がなくなる。これを破過というが、破過が生じる前に再生済みの活性炭充填塔に切り替えられる。使用後の活性炭は、低圧・高温下でのキャリアガスによるパージにより、吸着した成分を放出させて再生される。これを吸着成分の脱着という。このような、活性炭再生のためのキャリアガスには、回収水素と同程度の純度が要求される。一般的には、活性炭吸着塔により精製された回収水素が使用されるか、外部から高純度水素が補給される。そして、活性炭吸着塔から、脱着成分と混合した状態で、脱着ガスとして排出される。
 排ガス回収工程において消費される水素は、このキャリアガスとして使用される水素が大部分である。
 従って、テトラクロロシランのトロクロロシランへの転換工程を備えた多結晶シリコン製造システムにおいては、キャリアガスとしての水素の補給を削減し、且つ脱着ガスの回収・再利用を効率よく行うことが、コスト低減のための重要な要素となる。
特開2008-143775号公報
「昭和55~62年度新エネルギー総合開発機構委託業務成果報告書 太陽光発電システム実用化技術開発 低コストシリコン実験精製検証(クロルシランの水素還元工程の技術開発) 総括版」((独)新エネルギー・産業技術総合開発機構 昭和63年11月)
 非特許文献1に記載の手法では、キャリアガスとしての水素を外部より新たに補給し、脱着ガスはテトラクロロシランのトリクロロシランへの転換工程に送られて再使用されている。しかし、水素のロスが発生することが避けられない問題として認識されてはいるものの、これに対する効果的な対策を見出すまでには至っていない。
 また、特許文献1に記載の手法では、脱着ガスに含まれるクロロシラン類の再利用にとどまり、水素や塩化水素の再利用については全く考慮されていない。
 より安価な多結晶シリコンを得るためには、原料ガスの使用量を極力低減することが重要になるが、そのためには、クロロシラン類、塩化水素、水素ガスの回収率を低下させることなく、且つ、テトラクロロシランのトリクロロシランへの転換工程まで考慮して、水素ガスの外部からの補給を極力抑制することのできる、合理的なシステムを提供することが求められる。
 本発明は、上述した問題に鑑みてなされたもので、その目的とするところは、脱着ガスを効果的に分離・再利用し、多結晶シリコン製造装置の反応排ガスからのクロロシラン類、塩化水素、窒素、一酸化炭素、メタン、モノシランの分離を行うために使用される水素ガスの補給量を極力低減し、安価且つ高純度な多結晶シリコンを製造するための技術を提供することにある。
 上記課題を解決するために、本発明の水素ガス回収システムは、トリクロロシランを原料として多結晶シリコンを製造する装置からの反応排ガスから水素ガスを分離回収するために用いる水素ガス回収システムであって、多結晶シリコン製造工程からの、水素を含む反応排ガスからクロロシラン類を凝縮分離する凝縮分離装置と、前記凝縮分離装置を経た、水素を含む反応排ガスを圧縮する圧縮装置と、前記圧縮装置を経た、水素を含む反応排ガスを吸収液と接触させて塩化水素を吸収分離する吸収装置と、前記吸収装置を経た、水素を含む反応排ガスに含まれる、メタン、塩化水素、およびクロロシラン類を吸着除去するための複数の活性炭充填塔からなる吸着装置を備え、前記活性炭充填塔のそれぞれは、該活性炭充填塔内での活性炭再生時に用いるキャリアとしての水素ガスの排出ラインとして、系外に排出するための第1のラインと、前記吸着装置外に一旦排出した後に該吸着装置へと循環させる第2のラインとを有し、且つ、前記水素ガスを前記第1および第2のラインの何れに送るかを選択可能に構成されており、前記第2のラインには、クロロシラン類の凝縮分離部とガス圧縮部と塩化水素の吸収分離部がこの順で設けられていることを特徴とする。
 本発明の水素ガス回収システムは、前記塩化水素の吸収分離部は前記吸収装置である態様とすることができる。また、前記ガス圧縮部は前記圧縮装置であり、前記吸収分離部は前記吸収装置である態様とすることもできる。さらに、前記クロロシラン類の凝縮分離部は前記凝縮分離装置であり、前記ガス圧縮部は前記圧縮装置であり、前記吸収分離部は前記吸収装置である態様とすることもできる。
 また、本発明の水素ガスの分離回収方法は、トリクロロシランを原料として多結晶シリコンを製造する装置からの反応排ガスから水素ガスを分離回収する方法であって、本発明の水素ガス回収システムを用い、前記複数の活性炭充填塔の少なくとも1つに前記メタン、塩化水素、およびクロロシラン類の吸着除去を実行させると同時に、他の活性炭充填塔内の活性炭再生を実行し、該活性炭再生は、下記の操作(1)および(2)を含むことを特徴とする。
 ここで、操作(1)は、前記活性炭充填塔内の圧力を下げ、水素キャリアガスにより、活性炭吸着物を前記第1のラインより系外排気する操作であり、操作(2)は、操作(1)の後、前記排出ラインを前記第2のラインに切替え、前記吸着装置を加熱して活性炭温度を上昇させ、塩化水素およびクロロシラン類を脱着すると共に水素キャリアガスにより前記吸着装置外へと排出し、該排出ガスから塩化水素およびクロロシラン類の回収を行い、水素ガスは前記吸着装置へ循環させる操作である。
 前記吸収液としては、液状のクロロシラン類を用いることができる。
 本発明では、活性炭充填塔内の、反応排ガスを接触させ、水素以外の成分を吸着した活性炭より吸着成分を脱着再生する際、キャリアガスとして水素を用いると共に、脱着を2つの段階で行う。即ち活性炭充填塔内の水素ガスを抜くことにより塔内圧を降圧することで脱着する成分を該水素およびそれに続き塔内に送入されるキャリアガスと共に系外に排出し、次にキャリアガスを送るラインを切り替え、活性炭充填塔の加熱を行って塩化水素およびクロロシラン類を脱着させると共に、塩化水素およびクロロシラン類の回収およびキャリアガスとしての水素を精製回収するものである。
 そして、上述のように、再生時に水素を用い、かつ、2段階の再生により一部水素のみを系外に排出する方法を採るため、不活性ガスで再生を行った場合に必要な不活性ガスと水素の置換工程や、キャリアガスに水素を用いた1段階の再生を行った場合に必要な多量の水素の消費量を大幅に削減することができる。
本発明の排ガス分離回収方法の各工程を説明するためのフローチャートである。 本発明の排ガス分離回収システムの構成の一例を示す概略図である。 本発明の排ガス分離回収システムの構成の他の例を示す概略図である。 本発明の排ガス分離回収システムの構成の他の例を示す概略図である。 本発明の排ガス分離回収システムの構成の他の例を示す概略図である。 本発明の排ガス分離回収システムの構成の他の例を示す概略図である。
 以下に、図面を参照して、本発明の実施の形態について説明する。
 図1は本発明の排ガス分離回収方法の各工程を説明するためのフローチャートであり、図2は本発明の排ガス分離回収システムの構成の一例を示す概略図である。
 図1及び図2を参照すると、先ず、多結晶シリコン製造装置(100)からの反応排ガスが第1凝縮装置(10)に供給され、クロロシランの凝縮分離が行なわれる(S101)。
 この凝縮分離工程は、圧縮工程(S102)で用いる第1加圧器(20)内でクロロシラン類が液化して当該加圧器(20)を損傷することのないように、また、後述の塩化水素吸収工程(S103)での熱負荷を低減するために設けられており、反応排ガスの圧縮に先立って予めクロロシラン類(の一部)を除去するためのものである。
 具体的には、多結晶シリコン製造装置からの反応排ガスを冷却してクロロシラン類の一部を反応排ガスから除去する。冷却温度は、圧縮工程(S102)における圧縮後圧力下でクロロシラン類が凝縮しない温度以下であれば良い。従って、冷却温度は-10℃以下であればよく、好ましくは-20℃以下である。
 凝縮分離工程(S101)を経た後の反応排ガスは圧縮工程(S102)へと送られる。圧縮工程(S102)では、反応排ガスを分離・精製・循環再利用するための加圧器(20)が用いられるが、この加圧器(20)は、反応排ガスに対する機械的・化学的な耐久性を有し、安全に運転でき、且つ、反応排ガスの組成を変化させないものであればよい。
 圧縮工程(S102)により圧縮加圧された反応排ガス中には、未分離のクロロシラン類、塩化水素、水素、窒素、一酸化炭素、メタン、モノシランが含まれている。そこで、この反応排ガス中に含まれているクロロシラン類及び塩化水素を、塩化水素吸収工程(S103)で吸収液に吸収させる。塩化水素吸収装置(30)には、塩化水素蒸留装置(40)から、液状のクロロシラン類を主体とする吸収液が供給され、反応排ガスがこの吸収液と気液接触することにより、反応排ガス中のクロロシラン類及び塩化水素が吸収液に吸収される。
 塩化水素吸収装置(30)には、充填塔や棚段塔、スプレイ塔、濡れ壁塔などを用いることができるが、塩化水素のクロロシラン類に対する溶解度は大きくないため、連続的に効率良く気液接触できる装置であることが必要である。また、塩化水素吸収工程(S103)は、低温、高圧力下で行なうことが好ましい。具体的には、温度範囲として-30℃~-60℃、圧力範囲として0.4MPaG~1.0MPaGが選定される。
 塩化水素を溶解した吸収液は、塩化水素吸収装置(30)から塩化水素蒸留装置(40)へと導かれ、50℃~140℃の温度での塩化水素ガスの分離が行なわれる(S104)。ここで分離された塩化水素ガスは塔頂成分として回収され、トリクロロシランの合成工程や、テトラクロロシランのトリクロロシランへの転換工程などで再利用することができる。また、塩化水素ガス分離後の吸収液は、-30℃~-60℃に冷却した後に塩化水素吸収装置(30)へと送られて、塩化水素吸収工程(S103)の吸収液として再び使用される。
 塩化水素吸収装置(30)でクロロシラン類及び塩化水素が除去された反応排ガスは吸着装置(50)に導入され、精製された水素の回収が行なわれる(S105)。この工程で用いられる吸着装置(50)には活性炭が充填されており、水素主体のガスが該活性炭充填層を通過する間に、ガス中に含まれる未分離のクロロシラン類、塩化水素、および窒素、一酸化炭素、メタン、モノシランが活性炭に吸着されてガス中から除去され、精製された水素が得られる。
 図2で示した吸着装置(50)は、常に1つ以上の塔が吸着工程(S105)を実行可能となるように、複数(3つ)の活性炭充填塔(50a~c)を備えている。これらの活性炭充填塔はそれぞれが吸着塔として機能するが、活性炭充填塔を複数設けたことにより、ある活性炭充填塔が加熱脱着再生を行なっている間、その他の活性炭充填塔が吸着工程(S105)を実行することが可能である。
 なお、活性炭充填塔の加熱脱着再生の手順は、以下のとおり2段階で行われる。先ず、加熱脱着再生する活性炭充填塔の降圧を行う。これは、脱着は低圧条件下の方が有利に進行するためであり、圧力0.03MPa以下に降圧される。この降圧に続き、吸着装置(50)により回収された水素の一部を再生用キャリアガスとして利用して対象となる活性炭充填塔に通過させると、窒素、一酸化炭素、メタン、モノシランといった不純物が排出される。これらの不純物を含む水素は系外に排出されるが、もちろん、この水素は後述のものとは別系統の水素精製回収ラインにより再生を行っても良い。
 つぎに、該活性炭充填塔を140℃から170℃まで加熱させる。これにより、活性炭表面から塩化水素およびクロロシラン類等が脱着し、キャリアガスである水素によって活性炭充填塔から追い出されて活性炭の再生が完結する。また、塩化水素等を含む水素は後述のように回収精製される。なお、活性炭再生の終了後は、再び、吸着時の温度および圧力まで、冷却および加圧しておくだけで、再度活性な吸着塔として使用が可能である。
 活性炭充填塔(50a~c)は、それぞれ、上述した活性炭再生工程の降圧時に発生する脱着ガス(窒素、一酸化炭素、メタン、モノシランといった不純物)を系外に排出するための放出ライン(第1のライン)、および、上記降圧に続いて実行される活性炭再生時に発生する脱着ガス(塩化水素およびクロロシラン類)を一旦吸着装置(50)外へと排出した後に再度吸着装置(50)へと循環させる第2のラインとを有しており、図2では、第2のラインの経路内に、クロロシラン類の凝縮分離部である第2凝縮装置(60)とガス圧縮部である第2加圧器(70)と塩化水素の吸収分離部である第2塩化水素吸収装置(90)がこの順で設けられている。
 なお、活性炭充填塔のそれぞれは、水素ガス(を含有する排出ガス)を第1のラインと第2のラインとの何れに送るかを選択する機能を有する。
 上記説明では、加熱の有無により2段階を設定した場合について説明したが、実際の装置においては活性炭充填塔の昇温に時間がかかるため、加熱の有無による段階の設定は実用的でない場合がある。そこで、別法として、第1段階を活性炭充填塔の降圧開始と共にメタン等の脱着をしてキャリアガスと共に系外への排出を行うものとし、同時に加熱を開始する。次に、充填塔の温度が一定温度、例えば100℃を超えたところで、第2段階としてキャリアガスの排出ラインを切り替え、塩化水素の回収に送るという方法を用いても良い。
 もちろん上記切り替えは、温度ではなく、再生開始からの時間で管理することもありうる。従って、上述した活性炭充填塔の加熱脱着再生における2段階とは、活性炭の状態に従って充填塔より排出されるガスの送ガス方向を、系外に排出するための排出ラインを選ぶ段階と、塩化水素およびクロロシランを回収する処理の後、再び吸着装置に戻すラインを選ぶ段階からなる。
 なお、本発明の水素ガス回収システムは、図2に例示した態様のほか、例えば、図3乃至6に図示した態様のものとしてもよい。
 図3に示した態様では、クロロシラン類の凝縮分離部として第1凝縮装置(10)を、ガス圧縮部として第1加圧器(20)を、吸収分離部として塩化水素吸収装置(30)を用いている。従って、吸着装置(50)外へと排出された活性炭再生時に発生する脱着ガス(塩化水素およびクロロシラン類)は、第2のライン内に設けられている第1凝縮装置(10)、第1加圧器(20)、塩化水素吸収装置(30)を順次経由して、再度、吸着装置(50)へと循環することとなる。
 図4に示した態様では、クロロシラン類の凝縮分離部として第2凝縮装置(60)を、ガス圧縮部として第1加圧器(20)を、吸収分離部として塩化水素吸収装置(30)を用いている。従って、吸着装置(50)外へと排出された活性炭再生時に発生する脱着ガス(塩化水素およびクロロシラン類)は、第2のライン内に設けられている第2凝縮装置(60)、第1加圧器(20)、塩化水素吸収装置(30)を順次経由して、再度、吸着装置(50)へと循環することとなる。
 図5に示した態様では、クロロシラン類の凝縮分離部として第2凝縮装置(60)を、ガス圧縮部として第2加圧器(70)を、吸収分離部として塩化水素吸収装置(30)を用いている。従って、吸着装置(50)外へと排出された活性炭再生時に発生する脱着ガス(塩化水素およびクロロシラン類)は、第2のライン内に設けられている第2凝縮装置(60)、第2加圧器(70)、塩化水素吸収装置(30)を順次経由して、再度、吸着装置(50)へと循環することとなる。
 図6に示した態様では、図5に示した態様において、第2加圧器(70)と塩化水素吸収装置(30)との間に、第3凝縮装置(80)を設けている。
 従来の活性炭充填塔の再生では、キャリアガスとして、窒素等の不活性ガスまたは水素をキャリアガスとして、1段階で再生する方法が用いられてきた。しかし、安価な窒素ガスを用いた場合には脱着時の窒素ガスのコストは低いものの、再使用をする際の塔内ガスを窒素から水素に切り替える際に多量の水素を用いることになる。
 一方、水素をキャリアガスとして用いると、メタンと塩化水素を含有する水素が生成することになるが、このような水素を多結晶シリコン製造用に再生しようとした場合、メタンと塩化水素の両方を水素から除去するためには単純な操作で達成することが難しく、本発明のように多くの付加装置を用いずに水素ガスの回収精製系に戻してやることができない。
 本発明では、活性炭再生工程の降圧時に発生する脱着ガスと活性炭加熱時に発生する脱着ガスの経路を分離するという単純な構成を採用するだけで、塩化水素およびクロロシラン類とその他の不純物成分の分離を可能としているが、その理由は下記のとおりである。
 活性炭表面への各成分の吸着状態は、吸着温度(Tadと記す)と各成分の臨界温度(T)との関係から推定可能であり、以下の通りである。
   液体: Tad<<T
   液体+圧縮気体: Tad≒T
   圧縮気体: Tad>T
 吸着温度(Tad)として常温(30℃)を選定した場合、吸着塔の入口ガス成分の活性炭表面への吸着状態は、下記の通りとなる。
Figure JPOXMLDOC01-appb-T000001
 活性炭の再生にあたっては、窒素、一酸化炭素、メタン、モノシランは吸着状態が圧縮気体であるため、気化熱を要せず吸着時の圧力よりも圧力を下げただけで容易に脱着する成分である。これに対して、塩化水素およびクロロシラン類は吸着状態が液体であり、脱着時には気化熱を与える必要がある。
 活性炭充填塔は、高圧・低温の吸着工程と、低圧・高温の再生工程を繰り返すが、吸着工程から再生工程へ移行する際、降圧と加熱を同時に開始しても、通常は、降圧が短時間で終了するのに対して、加熱による昇温には長い時間がかかる。これは、活性炭の充填層は熱伝導率が小さく且つ熱容量も大きいためである。
 本発明ではこの特性を利用して、活性炭充填塔の再生工程初期の降圧段階における脱着ガスとその後の加熱再生段階における脱着ガスの経路を分離するだけで、塩化水素およびクロロシラン類とその他の不純物成分の分離を可能としている。
 つまり、本発明では、窒素、一酸化炭素、メタン、モノシランといった不純物を含む再生工程初期の降圧段階での脱着ガスを系外に放出する一方、塩化水素およびクロロシラン類を含む加熱再生段階の脱着ガスを、クロロシランの凝縮を-30~-60℃の温度範囲で行うための第1凝縮装置(10)や第2凝縮装置(60)を用いた第2凝縮工程(S106)および第1加圧器(20)や第2加圧器(70)を用いた第2圧縮工程(S107)を経て、上述した塩化水素吸収工程(S103)へと循環させる。なお、必要に応じて、図6に示したように、第3凝縮装置(80)を設けて凝縮の程度を高めておくようにしても良い。
 このような反応排ガスの循環系では、系外へと排出される水素ガスは、活性炭再生工程の降圧時に発生する脱着ガス(窒素、一酸化炭素、メタン、モノシランといった不純物)と一緒に排出される分のみとなるから、系外からの水素ガス補給量を大幅に削減することができる。
 吸着工程(S105)において精製された回収水素は循環管路を通じて多結晶シリコン製造装置(100)へと送られて再使用される。なお、この精製水素は、塩化水素は勿論、シリコン結晶中に取り込まれると有害な不純物元素であるボロン、リン、ヒ素、炭素化合物等を含まず、高純度多結晶シリコン製造用として十分な純度を有している。
 上述したように、本発明では、クロロシラン類を分離するための凝縮分離工程(S101)の後に、圧縮工程(S102)および塩化水素吸収工程(S103)を設けている。これは、塩化水素は温度が低いほどまた圧力が高いほど吸収され易いためであるが、このような低温・高圧条件は、クロロシラン類の凝縮にも好適であるため、反応排ガスが塩化水素吸収装置(30)内を通過する際にクロロシラン類も同時に分離除去される。
 このため、吸着工程(S105)で反応排ガス中に含まれている未分離のクロロシラン類を除去する際の負荷が低減され、活性炭塔の再生回数を減らすことが可能となるから、再生用キャリアガスの使用量低減にも有利である。
 なお、多結晶シリコン製造装置も含めた反応排ガス回収系の圧力を一定に保つために補給水素と余剰水素の管路を設けるが、反応排ガス回収系の圧力は、圧力上昇要因である多結晶シリコン製造装置内での副生水素量と、圧力下降要因である反応排ガス回収系外への排出ガス量、多結晶シリコン製造装置内での消費水素量、クロロシラン液に溶解して系外に出される水素量の収支により決まる。
 そして、上記圧力上昇要因と圧力下降要因の収支がプラスの場合は、水素ガスを余剰水素として系外に取り出すことが可能となり、テトラクロロシランのトリクロロシランへの転換装置(200)での有効利用も可能となる。一方、収支がマイナスとなる場合は、高純度水素ガスを補給水素として系外から補給する必要が生じる。
実施例
 上述した本発明の排ガス分離回収システムにより、多結晶シリコン製造装置からの反応排ガスから水素を分離回収した実施例を以下に示す。
 多結晶シリコン製造装置内の反応温度は1060℃であり、供給原料ガスは水素520Nm/hr、トリクロロシラン1,150kg/hrである。また、反応排ガスの成分毎の排出量は表2に示したとおりである。
Figure JPOXMLDOC01-appb-T000002
 凝縮分離工程(S101)の温度は-20℃である。また、塩化水素吸収工程(S103)の温度は-40℃、圧力は0.8MPaである。さらに、吸着工程(S105)の温度は30℃、圧力は0.8MPaであり、再生に使用するキャリアガスとしての水素量は時間平均流量で62Nm/hrであった。なお、第2凝縮工程(S106)の温度は-40℃で、再生時初期2時間のみ脱着ガの系外排出を行った。
 上記条件にて、本発明の排ガス分離回収システムを稼動させた結果、水素ガスの補給は不要(補給水素ガス量0Nm/hr)であった。また、系外排出ガスは時間平均流量で4Nm/hr、余剰水素としてテトラクロロシランのトリクロロシランへの転換工程に送った時間平均流量は21Nm/hr、テトラクロロシランのトリクロロシランへの転換装置(200)にて原料として供給した水素量は23Nm/hrであり、転換装置(200)にて消費される約50%の水素を回収水素により賄うことができた。
 以上説明したように、本発明によれば、トリクロロシランを原料とする多結晶シリコンの製造工程から発生する反応排ガス中に含まれる塩化水素、クロロシラン類、その他微量不純物を分離して精製された水素を循環再利用する際に、循環系に補給する水素及び系外への放出水素を最小限に抑えることが可能となる。
 10 第1凝縮装置
 20 第1加圧器
 30 塩化水素吸収装置
 40 塩化水素蒸留装置
 50 吸着装置
 60 第2凝縮装置
 70 第2加圧器
 80 第3凝縮装置
 90 第2塩化水素吸収装置
 100 多結晶シリコン製造装置
 200 テトラクロロシランのトリクロロシランへの転換装置

Claims (6)

  1. トリクロロシランを原料として多結晶シリコンを製造する装置からの反応排ガスから水素ガスを分離回収するために用いる水素ガス回収システムであって、
    多結晶シリコン製造工程からの、水素を含む反応排ガスからクロロシラン類を凝縮分離する凝縮分離装置と、
    前記凝縮分離装置を経た、水素を含む反応排ガスを圧縮する圧縮装置と、
    前記圧縮装置を経た、水素を含む反応排ガスを吸収液と接触させて塩化水素を吸収分離する吸収装置と、
    前記吸収装置を経た、水素を含む反応排ガスに含まれる、メタン、塩化水素、およびクロロシラン類を吸着除去するための複数の活性炭充填塔からなる吸着装置を備え、
    前記活性炭充填塔のそれぞれは、該活性炭充填塔内での活性炭再生時に用いるキャリアとしての水素ガスの排出ラインとして、系外に排出するための第1のラインと、前記吸着装置外に一旦排出した後に該吸着装置へと循環させる第2のラインとを有し、且つ、前記水素ガスを前記第1および第2のラインの何れに送るかを選択可能に構成されており、
    前記第2のラインには、クロロシラン類の凝縮分離部とガス圧縮部と塩化水素の吸収分離部がこの順で設けられていることを特徴とする水素ガス回収システム。
  2. 前記塩化水素の吸収分離部は前記吸収装置である、請求項1に記載の水素ガス回収システム。
  3. 前記ガス圧縮部は前記圧縮装置であり、前記吸収分離部は前記吸収装置である、請求項1に記載の水素ガス回収システム。
  4. 前記クロロシラン類の凝縮分離部は前記凝縮分離装置であり、前記ガス圧縮部は前記圧縮装置であり、前記吸収分離部は前記吸収装置である、請求項1に記載の水素ガス回収システム。
  5. トリクロロシランを原料として多結晶シリコンを製造する装置からの反応排ガスから水素ガスを分離回収する方法であって、
    請求項1乃至4の何れか1項に記載の水素ガス回収システムを用い、前記複数の活性炭充填塔の少なくとも1つに前記メタン、塩化水素、およびクロロシラン類の吸着除去を実行させると同時に、他の活性炭充填塔内の活性炭再生を実行し、該活性炭再生は、下記の操作(1)および(2)を含むことを特徴とする水素ガスの分離回収方法。
    操作(1):前記活性炭充填塔内の圧力を下げ、水素キャリアガスにより、活性炭吸着物を前記第1のラインより系外排気する操作、および
    操作(2):操作(1)の後、前記排出ラインを前記第2のラインに切替え、前記吸着装置を加熱して活性炭温度を上昇させ、塩化水素およびクロロシラン類を脱着すると共に水素キャリアガスにより前記吸着装置外へと排出し、該排出ガスから塩化水素およびクロロシラン類の回収を行い、水素ガスは前記吸着装置へ循環させる操作。
  6. 前記吸収液として液状のクロロシラン類を用いる、請求項5に記載の水素ガスの分離回収方法。
PCT/JP2010/004754 2009-10-14 2010-07-26 水素ガス回収システムおよび水素ガスの分離回収方法 WO2011045880A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800466355A CN102574680A (zh) 2009-10-14 2010-07-26 氢气回收系统以及氢气的分离回收方法
AU2010307920A AU2010307920A1 (en) 2009-10-14 2010-07-26 Hydrogen gas recovery system and hydrogen gas separation and recovery method
US13/501,522 US8778061B2 (en) 2009-10-14 2010-07-26 Hydrogen gas recovery system and hydrogen gas separation and recovery method
EP10823149A EP2489630A1 (en) 2009-10-14 2010-07-26 Hydrogen gas recovery system and hydrogen gas separation and recovery method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009237415A JP2011084422A (ja) 2009-10-14 2009-10-14 水素ガス回収システムおよび水素ガスの分離回収方法
JP2009-237415 2009-10-14

Publications (1)

Publication Number Publication Date
WO2011045880A1 true WO2011045880A1 (ja) 2011-04-21

Family

ID=43875937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004754 WO2011045880A1 (ja) 2009-10-14 2010-07-26 水素ガス回収システムおよび水素ガスの分離回収方法

Country Status (6)

Country Link
US (1) US8778061B2 (ja)
EP (1) EP2489630A1 (ja)
JP (1) JP2011084422A (ja)
CN (1) CN102574680A (ja)
AU (1) AU2010307920A1 (ja)
WO (1) WO2011045880A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105258453A (zh) * 2015-11-13 2016-01-20 四川天采科技有限责任公司 一种从石化厂尾气中回收轻烃和氢气的方法
CN106268162A (zh) * 2015-06-12 2017-01-04 新特能源股份有限公司 一种尾气回收系统
US20180237298A1 (en) * 2015-08-28 2018-08-23 Shin-Etsu Chemical Co., Ltd. Hydrogen gas recovery system and hydrogen gas separation and recovery method
CN116375037A (zh) * 2023-04-17 2023-07-04 江苏中能硅业科技发展有限公司 一种甲硅烷回收系统及方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102284225B (zh) * 2011-06-15 2014-07-16 四川瑞能硅材料有限公司 多晶硅尾气干法分离系统吸附柱解析方法
CN102580459A (zh) * 2012-03-02 2012-07-18 洛阳晶辉新能源科技有限公司 一种处理多晶硅生产废气的方法
JP6179246B2 (ja) * 2012-07-31 2017-08-16 三菱マテリアル株式会社 多結晶シリコン製造方法及び製造装置
JP5914240B2 (ja) * 2012-08-07 2016-05-11 株式会社トクヤマ 多結晶シリコンの製造方法
CN102838121B (zh) * 2012-09-18 2015-03-25 新特能源股份有限公司 一种多晶硅生产尾气再回收利用的方法及其装置
WO2015111886A1 (ko) 2014-01-24 2015-07-30 한화케미칼 주식회사 폐가스의 정제방법 및 정제장치
CN104826595A (zh) * 2015-05-29 2015-08-12 中国恩菲工程技术有限公司 多晶硅生产用活性炭在线再生的方法
KR102326287B1 (ko) * 2016-10-12 2021-11-15 가부시끼가이샤 도꾸야마 다결정 실리콘의 제조 방법
EP3569573A4 (en) * 2017-01-16 2019-11-20 Tokuyama Corporation PROCESS FOR PREPARING POLYCRYSTALLINE SILICON
CN107029518A (zh) * 2017-04-20 2017-08-11 阮卫星 一种三酸废气净化机
CN110542725A (zh) * 2018-05-29 2019-12-06 新疆新特新能材料检测中心有限公司 检测氢气中的氮气的工艺
CN111036029B (zh) * 2018-10-15 2022-03-04 新特能源股份有限公司 多晶硅生产过程中废气的回收方法
CN112138524A (zh) * 2019-06-28 2020-12-29 新特能源股份有限公司 多晶硅还原工艺尾气的净化方法及净化系统
CN112758935B (zh) * 2021-03-02 2022-09-30 中国恩菲工程技术有限公司 一种用于多晶硅生产的氢气循环系统
CN113277471B (zh) * 2021-06-10 2022-08-30 中国恩菲工程技术有限公司 一种多晶硅生产中还原尾气的回收方法及装置
CN113264506B (zh) * 2021-06-24 2023-08-29 河南中科清能科技有限公司 一种氢气液化装置的氢低温吸附器再生工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149509A (ja) * 1997-06-03 1999-02-23 Tokuyama Corp 炭素含有量の少ない多結晶シリコンの製造方法
JP2001353420A (ja) * 2000-04-10 2001-12-25 Osaka Oxygen Ind Ltd 化合物半導体の製造装置から生ずる排気ガスから半導体特殊材料ガスの回収
JP2003095635A (ja) * 2001-09-27 2003-04-03 Sumitomo Titanium Corp 多結晶シリコン製造装置
JP2006131491A (ja) * 2004-10-05 2006-05-25 Tokuyama Corp シリコンの製造方法
JP2008143776A (ja) * 2006-11-14 2008-06-26 Mitsubishi Materials Corp 水素精製回収方法および水素精製回収設備
JP2008143775A (ja) 2006-11-14 2008-06-26 Mitsubishi Materials Corp 水素分離回収方法および水素分離回収設備
US20090165646A1 (en) * 2007-12-31 2009-07-02 Sarang Gadre Effluent gas recovery process for silicon production
JP2009256143A (ja) * 2008-04-17 2009-11-05 Tokuyama Corp シリコンの製造方法
WO2010103847A1 (ja) * 2009-03-12 2010-09-16 新日本石油株式会社 排ガス処理装置および排ガス処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19536976A1 (de) * 1995-10-04 1997-04-10 Basf Ag Verfahren zur selektiven Abtrennung und Wiedergewinnung von Chlor aus Gasgemischen
EP1811011A1 (en) * 2006-01-13 2007-07-25 Gasrec Ltd Methane recovery from a landfill gas
WO2008059887A1 (fr) * 2006-11-14 2008-05-22 Mitsubishi Materials Corporation Procédé de séparation/collecte d'hydrogène et dispositif de séparation/collecte d'hydrogène
CN101327912B (zh) * 2007-06-18 2011-11-30 中国恩菲工程技术有限公司 从生产多晶硅所产生的尾气中回收氢气的方法
US20120145000A1 (en) * 2010-12-10 2012-06-14 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Drying Process For Flue Gas Treatment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149509A (ja) * 1997-06-03 1999-02-23 Tokuyama Corp 炭素含有量の少ない多結晶シリコンの製造方法
JP2001353420A (ja) * 2000-04-10 2001-12-25 Osaka Oxygen Ind Ltd 化合物半導体の製造装置から生ずる排気ガスから半導体特殊材料ガスの回収
JP2003095635A (ja) * 2001-09-27 2003-04-03 Sumitomo Titanium Corp 多結晶シリコン製造装置
JP2006131491A (ja) * 2004-10-05 2006-05-25 Tokuyama Corp シリコンの製造方法
JP2008143776A (ja) * 2006-11-14 2008-06-26 Mitsubishi Materials Corp 水素精製回収方法および水素精製回収設備
JP2008143775A (ja) 2006-11-14 2008-06-26 Mitsubishi Materials Corp 水素分離回収方法および水素分離回収設備
US20090165646A1 (en) * 2007-12-31 2009-07-02 Sarang Gadre Effluent gas recovery process for silicon production
JP2009256143A (ja) * 2008-04-17 2009-11-05 Tokuyama Corp シリコンの製造方法
WO2010103847A1 (ja) * 2009-03-12 2010-09-16 新日本石油株式会社 排ガス処理装置および排ガス処理方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106268162A (zh) * 2015-06-12 2017-01-04 新特能源股份有限公司 一种尾气回收系统
CN106268162B (zh) * 2015-06-12 2019-05-17 新特能源股份有限公司 一种尾气回收系统
US20180237298A1 (en) * 2015-08-28 2018-08-23 Shin-Etsu Chemical Co., Ltd. Hydrogen gas recovery system and hydrogen gas separation and recovery method
US10611635B2 (en) * 2015-08-28 2020-04-07 Shin-Etsu Chemical Co., Ltd. Hydrogen gas recovery system and hydrogen gas separation and recovery method
CN105258453A (zh) * 2015-11-13 2016-01-20 四川天采科技有限责任公司 一种从石化厂尾气中回收轻烃和氢气的方法
CN105258453B (zh) * 2015-11-13 2017-11-07 四川天采科技有限责任公司 一种从石化厂尾气中回收轻烃和氢气的方法
CN116375037A (zh) * 2023-04-17 2023-07-04 江苏中能硅业科技发展有限公司 一种甲硅烷回收系统及方法

Also Published As

Publication number Publication date
US20120198998A1 (en) 2012-08-09
JP2011084422A (ja) 2011-04-28
US8778061B2 (en) 2014-07-15
AU2010307920A1 (en) 2012-05-17
CN102574680A (zh) 2012-07-11
EP2489630A1 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
WO2011045880A1 (ja) 水素ガス回収システムおよび水素ガスの分離回収方法
JP6433867B2 (ja) 水素ガス回収システムおよび水素ガスの分離回収方法
JP4869671B2 (ja) シリコンの製造方法
CN103058140B (zh) 多晶硅生产中副产物的回收系统以及回收方法
EP2484631B1 (en) Method for reusing hydrogen
JP6179246B2 (ja) 多結晶シリコン製造方法及び製造装置
CN101978234A (zh) 高炉煤气的分离方法
CN101254387A (zh) 分离含有氢及氯硅烷和/或氯化氢混合气体的变压吸附方法
CN101732945A (zh) 从含氯硅烷尾气中回收氢气的方法
JP2011139987A (ja) パージ排ガスの処理方法及び水素源としての使用
JP5344114B2 (ja) 水素精製回収方法および水素精製回収設備
JP2018071894A (ja) 高炉ガスからの水素の分離回収方法、水素の製造方法、および、高炉ガスからの水素の分離回収装置
CN112591711B (zh) 一种HF/HCl混合气体高纯度高收率的FTrPSA分离与净化提取方法
JP6698762B2 (ja) 水素ガス回収システムおよび水素ガスの分離回収方法
JP6446163B2 (ja) 多結晶シリコンの製造方法
CN114620731B (zh) 一种多晶硅的还原尾气回收方法及其回收装置
CN112573485B (zh) 一种基于烷烃与硅烷反应的SiC-CVD无氯外延制程尾气FTrPSA回收方法
CN112642259A (zh) 一种烷烃与硅烷反应的氯基SiC-CVD外延制程尾气FTrPSA回收方法
JP2507296B2 (ja) メタノ−ル改質水素製造方法
JP2020066585A (ja) 有機物の合成装置および合成方法
CN112645335B (zh) 一种外延制程尾气全温程变压吸附提取硅烷的方法
JP2012082080A (ja) アルゴン精製方法、およびアルゴン精製装置
WO2008059883A1 (fr) Procédé de purification/collecte d'hydrogène et appareil de purification/collecte d'hydrogène
JP3466437B2 (ja) 空気分離装置
JP6667381B2 (ja) 水素ガス製造方法及び水素ガス製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080046635.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823149

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010823149

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13501522

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010307920

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010307920

Country of ref document: AU

Date of ref document: 20100726

Kind code of ref document: A