WO2011034152A1 - リチウム二次電池の負極用炭素材料及びその製造方法 - Google Patents

リチウム二次電池の負極用炭素材料及びその製造方法 Download PDF

Info

Publication number
WO2011034152A1
WO2011034152A1 PCT/JP2010/066096 JP2010066096W WO2011034152A1 WO 2011034152 A1 WO2011034152 A1 WO 2011034152A1 JP 2010066096 W JP2010066096 W JP 2010066096W WO 2011034152 A1 WO2011034152 A1 WO 2011034152A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
graphite
lithium secondary
secondary battery
lithium
Prior art date
Application number
PCT/JP2010/066096
Other languages
English (en)
French (fr)
Inventor
鈴木 貴志
坂本 明男
保 田野
中西 和久
大山 隆
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to KR1020127008412A priority Critical patent/KR101820071B1/ko
Priority to EP10817265.1A priority patent/EP2479823A4/en
Priority to CN201080041837.0A priority patent/CN102511096B/zh
Publication of WO2011034152A1 publication Critical patent/WO2011034152A1/ja
Priority to US13/422,513 priority patent/US8617508B2/en
Priority to US14/089,392 priority patent/US20140079622A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a carbon material used as a negative electrode of a lithium secondary battery and a method for producing the same.
  • lithium secondary batteries are lighter and have higher input / output characteristics than nickel cadmium batteries, nickel metal hydride batteries, and lead batteries, which are conventional secondary batteries.
  • this type of battery is configured by a positive electrode containing lithium capable of reversible intercalation of lithium and a negative electrode made of a carbon material facing each other with a non-aqueous electrolyte interposed therebetween. Therefore, this type of battery is assembled in a discharged state and cannot be discharged unless it is charged.
  • the charge / discharge reaction will be described by taking as an example a case where a lithium cobaltate (LiCoO 2 ) is used as the positive electrode, a carbon material is used as the negative electrode, and a non-aqueous electrolyte containing a lithium salt is used as the electrolyte.
  • a lithium cobaltate LiCoO 2
  • a carbon material is used as the negative electrode
  • a non-aqueous electrolyte containing a lithium salt is used as the electrolyte.
  • Carbon materials used as negative electrode materials for lithium secondary batteries are generally divided roughly into graphite and amorphous materials.
  • the graphite-based carbon material has an advantage that the energy density per unit volume is higher than that of the amorphous carbon material. Accordingly, graphite-based carbon materials are generally used as negative electrode materials in lithium ion secondary batteries for mobile phones and notebook computers that are compact but require a large charge / discharge capacity.
  • Graphite has a structure in which hexagonal network surfaces of carbon atoms are regularly stacked, and lithium ion insertion / extraction reaction proceeds at the edge of the hexagonal network surface during charge / discharge.
  • this type of battery has been actively studied as a power storage device for automobiles, industrial use, and power supply infrastructure in recent years. Higher reliability is required than when it is used for personal computers.
  • reliability is a characteristic related to the lifetime, even when the charge / discharge cycle is repeated, stored in a state charged to a predetermined voltage, or charged continuously at a constant voltage (floating). Even when charged), the charge / discharge capacity and internal resistance hardly change (are not easily deteriorated).
  • the life characteristics of lithium ion secondary batteries that have been used in conventional mobile phones and notebook computers are largely dependent on the anode material.
  • the reason is that, in principle, it is impossible to make the charge / discharge efficiency of the positive electrode reaction (Formula 2) and the negative electrode reaction (Formula 3) exactly the same, and the charge / discharge efficiency is lower in the negative electrode.
  • the charge / discharge efficiency is the ratio of the electric capacity that can be discharged to the electric capacity consumed for charging.
  • the positive electrode potential in the end-of-discharge state shifts in a more noble direction than the original potential before charge / discharge, while the negative electrode potential also has a noble direction than the original potential before charge / discharge. Will be transferred to. This is because all of the lithium released during the charging process of the positive electrode is not occluded (does not return) during discharging, so the potential that has shifted in the noble direction during the charging process shifts in the naive direction during the discharging process.
  • the discharge of the lithium secondary battery is completed when the battery voltage (that is, the difference between the positive electrode potential and the negative electrode potential) reaches a predetermined value (discharge end voltage). This is because if the potential becomes noble, the negative electrode potential also shifts in the noble direction accordingly.
  • this type of battery can be obtained within a predetermined voltage range (within a discharge end voltage and a charge end voltage range) by changing the operating region of the positive / negative electrode capacity when the charge / discharge cycle is repeated.
  • a reaction mechanism of capacity degradation has also been reported by academic societies and the like (for example, Non-Patent Document 1 and Non-Patent Document 2).
  • the positive and negative potentials once changed in the operating region are irreversible, cannot be restored in principle, and lack of capacity recovery means also exacerbates this problem.
  • the reaction mechanism of capacity deterioration that occurs when the above-described charge / discharge cycle is repeated is basically the same as each reaction mechanism of capacity deterioration when the battery is stored in the charged state or capacity deterioration when the battery is floating charged. The same is true.
  • the capacity lost due to side reactions / competitive reactions occurring in the charged state that is, the self-discharge amount is larger in the negative electrode than in the positive electrode.
  • the battery capacity after storage deteriorates when the operating region changes before and after storage (for example, Non-Patent Document 3).
  • the difference in the self-discharge rate between the positive and negative electrodes in the charged state is similar to the difference in the charge and discharge efficiency between the positive and negative electrodes described above. This is due to the higher rate of side reactions and competitive reactions that occur.
  • the leakage current on the negative electrode side becomes larger than the leakage current on the positive electrode side, so that the negative electrode potential shifts to a direction in which the leakage current decreases, that is, a noble direction. Shifts in the direction of increasing, that is, the noble direction. Even when floating charging is performed in this manner, the operating areas of the positive and negative electrode capacities change irreversibly, resulting in a problem that the battery capacity deteriorates.
  • the present invention is to improve the capacity deterioration of the lithium secondary battery as described above, and its purpose is to reduce the capacity deterioration due to repeated charge / discharge cycles, storage in a charged state, and floating charge.
  • the present invention intends to provide a negative electrode material for lithium secondary batteries for automobiles, industrial use, and power storage infrastructure that requires high reliability.
  • a first aspect of the invention is the crystallite size L in the c-axis direction calculated from the (112) diffraction line obtained by the X-ray wide angle diffraction method ( 112) is a 2.0 ⁇ 4.2 nm, and, in the Raman spectrum analysis using an argon ion laser beam having a wavelength of 5145 angstroms, the half width of the peaks present in the wavelength region of 1580 cm -1 ⁇ 100 cm -1 Artificial graphite for negative electrodes of lithium secondary batteries having ⁇ G of 15 to 19 cm ⁇ 1 .
  • a second aspect of the invention according to the present application is artificial graphite for a negative electrode of a lithium secondary battery obtained through a step of performing a heat treatment after a heavy oil composition is subjected to a coking treatment by a delayed coking process.
  • the crude oil composition is artificial graphite for negative electrodes of lithium secondary batteries having a normal paraffin content of 5 to 20 wt% and an aromatic index fa determined by the Knight method of 0.3 to 0.65.
  • the third aspect of the present invention relates to a step of obtaining a carbon fine particle material by carbonizing and pulverizing the heat treatment step at 1500 ° C. or lower, and a maximum ultimate temperature of the carbon fine particle material in an inert gas atmosphere. And heating to 2200 to 2600 ° C. to obtain the artificial graphite, the artificial graphite for a lithium secondary battery negative electrode.
  • a fourth aspect of the invention according to the present application is a method for producing graphite for a lithium secondary battery negative electrode comprising a step of coke treatment of a heavy oil composition by a delayed coking process and then heat treatment.
  • the oil composition is a method for producing artificial graphite for a negative electrode of a lithium secondary battery having a normal paraffin content of 5 to 20 wt% and an aromatic index fa determined by the Knight method of 0.3 to 0.65.
  • a fifth aspect of the invention according to the present application is artificial graphite for a lithium secondary battery negative electrode obtained by the above production method.
  • a positive electrode including lithium capable of reversible lithium intercalation, and the lithium secondary according to claim 1, claim 2, 3 or claim 5.
  • a lithium secondary battery including a negative electrode including artificial graphite for a battery negative electrode and a non-aqueous electrolyte.
  • the crystallite size L in the c-axis direction calculated from the (112) diffraction line obtained by the X-ray wide angle diffraction method (112 ) is a 2.0 ⁇ 4.2 nm, and, in the Raman spectrum analysis using an argon ion laser beam having a wavelength of 5145 angstroms, a peak of the half width existing in the wavelength region of 1580cm -1 ⁇ 100cm -1 ⁇ wherein the carbon material G is 15 ⁇ 19cm -1, despite very high surface crystallinity of the carbon material, it lies in lower crystallinity of the inner bulk.
  • carbon materials obtained by carbonizing and graphitizing certain types of organic polymer compounds differ in the degree of graphitization of the surface layer and the degree of graphitization inside the bulk, and the surface layer develops crystals faster (for example, non-patented Literature 4 and Non-patent literature 5).
  • the carbon material according to the first and second aspects of the present application also utilizes this property.
  • a predetermined heavy oil composition is subjected to coking treatment, and the obtained raw coke is calcined at about 1400 ° C., and then has a predetermined particle size.
  • a process of pulverizing and classifying and graphitizing at about 2400 ° C. is known (for example, Patent Document 1).
  • Graphite powder that has been graphitized after pulverizing and classifying such raw coke or calcined coke also has different crystallinity on the particle surface (surface layer) and crystallinity on the inside of the particle (bulk). The degree is generally higher.
  • the crystallinity of the particle surface in the Raman spectrum analysis using an argon ion laser beam having a wavelength of 5145 Angstroms, with a peak of half width .DELTA..nu G existing in the wavelength region of 1580 cm -1 ⁇ 100 cm -1, the internal particle crystals
  • the degree of conversion can be evaluated by the crystallite size L (112) calculated from the (112) diffraction line obtained by the X-ray wide angle diffraction method. It is generally known that ⁇ G has a smaller half-value width as the integrity of the local graphite crystal on the particle surface is higher (for example, Non-Patent Document 6).
  • a high degree of graphitization of the surface layer means that the exposed region of the crystallite edge in the surface layer is small.
  • a crystallite edge has a large number of dangling bonds, that is, many states of localized electrons that are not saturated with valence electron bonds and exist without a bonding partner.
  • the present inventors have found that these localized electrons are present on the surface of the negative electrode carbon material in the charging process, that is, at the interface where the electrolyte and the carbon material are in contact. It has been found that the charging / discharging efficiency of the negative electrode is reduced by the catalytic action and side reactions / competitive reactions caused by reductive decomposition of the electrolyte.
  • the present inventors can greatly improve the charge / discharge efficiency when the crystallinity of the particle surface is highly developed, that is, when ⁇ G of Raman spectrum analysis is smaller than a predetermined value. I found out.
  • ⁇ G exceeds 19 cm ⁇ 1 , side reactions and competitive reactions due to reductive decomposition of the electrolyte are likely to occur rapidly on the particle surface, which is not preferable.
  • ⁇ G is preferably as small as possible.
  • the inventors have made various studies on the synthesis method, and as a result, it was impossible to obtain a product having a value of less than 15 cm ⁇ 1.
  • ⁇ G is defined as 15 to 19 cm ⁇ 1 .
  • the negative electrode carbon material according to the invention has a crystallite size L (112) calculated from a (112) diffraction line obtained by an X-ray wide angle diffraction method of 2.0 to 4.2 nm. It is prescribed.
  • L (112) calculated from a (112) diffraction line obtained by an X-ray wide angle diffraction method of 2.0 to 4.2 nm. It is prescribed.
  • the electrolyte solvent molecules are also taken together and co-intercalated, and reduced and decomposed between the crystal layers.
  • the phenomenon is generally known (for example, Non-Patent Document 7).
  • the co-intercalated solvent is easily reduced and decomposed between the crystal layers of graphite, so that the charge / discharge efficiency is inevitably lowered.
  • the graphite powder synthesized by the manufacturing method described in Patent Document 1 that is, a method in which raw coke or calcined coke is pulverized and classified and then graphitized, has a large degree of crystallinity inside the particle (bulk). If it becomes too much, that is, if L (112) exceeds 4.2 nm, the above-mentioned co-intercalation phenomenon is likely to occur in the charging process, and the co-intercalated solvent is reduced and decomposed between the crystal layers as described above. As a result, the charge / discharge efficiency is remarkably lowered, which is not preferable.
  • Non-Patent Document 8 It is generally known that the chargeable / dischargeable capacity of the negative electrode carbon material is smaller as the crystallite size calculated by the X-ray wide angle diffraction method is smaller (for example, Non-Patent Document 8). This tendency is similarly recognized for the carbon material defined in the first aspect of the present invention. That is, when L (112) is smaller than 2.0 nm, the chargeable / dischargeable capacity becomes small, which is not preferable.
  • the crystallite size L (112) calculated from the (112) diffraction line obtained by the X-ray wide angle diffraction method is 2.0 to 4 A point of .2 nm is also specified.
  • the electrochemical characteristics as a negative electrode of graphite powder in which L (112) is 2.0 to 4.2 nm and ⁇ G specified as described above is 15 to 19 cm ⁇ 1 are reversible.
  • the chargeable / dischargeable capacity is large, and side reactions and competitive reactions due to co-intercalation of solvent molecules and dangling bonds on the particle surface are suppressed even during the charging process.
  • the second aspect of the invention according to the present application defines a raw material oil composition for obtaining the carbon material defined in the first aspect. That is, the second aspect of the invention according to the present application is artificial graphite for a lithium secondary battery negative electrode obtained by subjecting a heavy oil composition to a coking treatment by a delayed coking process, followed by a heat treatment step,
  • the heavy oil composition is artificial graphite for a negative electrode of a lithium secondary battery having a normal paraffin content of 5 to 20 wt% and an aromatic index fa determined by the Knight method of 0.3 to 0.65.
  • the feature of the carbon material defined in the first aspect of the invention related to the present application is that the degree of graphitization of the particle surface (surface layer) is extremely higher than the degree of graphitization inside the particle (bulk). is there.
  • raw coke or calcined coke is used.
  • a method of pulverizing and classifying, adjusting the particle size, and then graphitizing is generally used.
  • the degree of graphitization on the particle surface (surface layer) of the obtained graphite powder can be made higher than the degree of graphitization inside the particles (bulk).
  • raw coke refers to the pyrolysis of heavy oil in a delayed coker
  • calcined coke refers to carbonization of raw coke in an industrial furnace to remove moisture and volatiles to develop a crystal structure. It shall refer to something.
  • the graphite powder obtained by pulverizing after graphitization gives mechanical energy by pulverization to the particle surface, so that the graphitization degree on the particle surface is lower than the graphitization degree inside the particle. For this reason, it is not possible to obtain a graphite powder that achieves the physical properties defined in the first aspect of the present invention.
  • Unstructured carbon refers to carbon that is not incorporated into the carbon hexagonal network plane, and its characteristics are that the carbon hexagon gradually increases with increasing processing temperature while interfering with the growth and selective orientation of adjacent carbon crystallites. It is a carbon atom that is incorporated into the mesh plane.
  • the present inventors have determined that the crystal structure of raw coke or calcined coke to be pulverized can be latticed on its surface layer even when mechanical energy is applied by pulverization. It was found that a graphite powder with a highly developed crystal structure of the surface layer can be obtained by controlling the structure so that defects and unstructured carbon are difficult to be introduced. Further, the present inventors have found that this structure can be realized by controlling the production method of raw coke and calcined coke.
  • the structure is a crystalline structure having a selective orientation composed of crystallites in which hexagonal mesh planes of relatively small sizes are stacked. If the crystal structure is such a structure, even when mechanical energy is applied by crushing, the size of the hexagonal mesh plane to be stacked is small, so the probability of cracking between adjacent crystallites increases, and the hexagonal mesh It is possible to greatly reduce the probability that the plane will be cleaved and the probability that the hexagonal plane will crack.
  • the structure of the crystal structure of raw coke or calcined coke to be crushed is composed of crystallites in which relatively large hexagonal mesh planes are stacked, the mechanical energy by crushing is relatively large.
  • the crystal structure of crushed raw coke or calcined coke is a structure composed of crystallites composed of relatively small hexagonal mesh planes. It can also be said that the manufacturing method for this is specifically defined.
  • the inventors In order to produce raw coke and calcined coke having such a structure by a delayed coking process suitable for mass production, the inventors have to control the physical properties and coking conditions of the heavy oil composition used as a raw material. As a result, the inventors have found that the second aspect of the invention according to the present application has been completed.
  • the physical properties of the heavy oil composition used as a raw material are characterized by a normal paraffin content of 5 to 20 wt% and an aromatic index fa calculated by a specific method of 0.3 to 0. .65.
  • a heavy oil component that produces a good bulk mesophase and a function of limiting the size of the hexagonal mesh plane laminate constituting the mesophase when the bulk mesophase is polycondensed and carbonized and solidified It is effective to use a feed oil composition containing both heavy oil components capable of producing a gas.
  • the heavy oil component that produces a good bulk mesophase is a component that gives an aromatic index fa of 0.3 to 0.65, and the heavy oil component that can generate gas is 5 to 20 wt% of the normal paraffin content. It is a component equivalent to.
  • fa is the aromatic carbon fraction (fa) determined by the Knight method.
  • the distribution of carbon is divided into three components (A1, A2, A3) as a spectrum of aromatic carbon by the 13 C-NMR method.
  • A1 is the number of carbon atoms inside the aromatic ring, half of the aromatic carbon that is not substituted with the substituted aromatic carbon (corresponding to a peak of about 40-60 ppm of 13 C-NMR), and A2 is substituted no other half of the aromatic carbons (corresponding to the peak of about 60 ⁇ 80 ppm of 13 C-NMR),
  • the 13 C-NMR method is the best method for quantitatively determining fa, which is the most basic amount of chemical structural parameters of pitches.
  • the literature (“Pitch Characterization II. Chemical Structure” Yokono, Sanada, (Carbon, 1981 (No. 105), p73-81)).
  • the content of normal paraffin in the raw material oil composition means a value measured by a gas chromatograph equipped with a capillary column. Specifically, after testing with a normal paraffin standard substance, the sample of the non-aromatic component separated by the elution chromatography method is passed through a capillary column and measured. The content rate based on the total mass of the raw material oil composition can be calculated from this measured value.
  • the yield of coke from the heavy oil composition becomes extremely low, and a good bulk mesophase cannot be formed. It is not preferable because the tissue is difficult to develop. If it exceeds 0.65, a large number of mesophases are generated abruptly in the matrix during the production process of raw coke, and abrupt coalescence of mesophases is mainly repeated rather than single growth of mesophases. For this reason, the rate of coalescence between the mesophases is faster than the rate of gas generation due to the normal paraffin-containing component, which makes it impossible to limit the hexagonal mesh plane of the bulk mesophase to a small size.
  • the aromatic index fa of the heavy oil composition is preferably 0.3 to 0.65.
  • the aromatic index fa is such that the density D of the heavy oil composition is 0.91 to 1.02 g / cm 3 and the viscosity V is 10 to 220 mm 2 / sec.
  • Particularly preferred are heavy oil compositions having a fa of 0.3 to 0.65.
  • the normal paraffin component appropriately contained in the heavy oil composition plays an important role in limiting the size of the bulk mesophase to a small size by generating gas during the coking process as described above. ing.
  • This gas generation also has a function of uniaxially orienting adjacent mesophases limited to a small size and selectively orienting the entire system. For this reason, although the size of the mesophase is limited to a small size, when the pulverized particles are carbonized and graphitized, the crystal structure of the particle surface layer is particularly easily developed. It is an essential component for obtaining an effect.
  • the normal paraffin content of the normal paraffin-containing component is less than 5 wt%, the mesophase grows more than necessary and a huge carbon hexagonal plane is formed, which is not preferable.
  • the normal paraffin content is preferably 5 to 20 wt%.
  • This feedstock oil includes fluid catalytic cracking oil bottom oil (FCC DO), heavy oil with advanced hydrodesulfurization treatment, vacuum residue (VR), coal liquefied oil, coal solvent extraction oil, atmospheric pressure Residual oil, shell oil, tar sand bitumen, naphthatar pitch, coal tar pitch, ethylene bottom oil, heavy oil obtained by hydrotreating these, and the like.
  • FCC DO fluid catalytic cracking oil bottom oil
  • VR vacuum residue
  • coal liquefied oil coal solvent extraction oil
  • atmospheric pressure Residual oil shell oil, tar sand bitumen, naphthatar pitch, coal tar pitch, ethylene bottom oil, heavy oil obtained by hydrotreating these, and the like.
  • a heavy oil subjected to a high degree of hydrodesulfurization treatment including an appropriate saturated component and an appropriate normal paraffin in the component can be preferably used.
  • the blending ratio may be appropriately adjusted according to the properties of the raw material oil to be used. The properties of the raw material oil vary depending on the type of crude oil and the processing conditions until the raw material oil is obtained from the crude oil.
  • the heavy oil composition according to this embodiment is coked, then carbonized and graphitized as necessary, and used as a carbon material for a negative electrode of a lithium secondary battery.
  • a delayed coking method is preferable. More specifically, raw coke is obtained by heat-treating the raw oil composition with a delayed coker under pressurized conditions. At this time, in order to obtain the effect of the present invention, the conditions of the delayed coker are preferably a pressure of 0.1 to 0.8 MPa and a temperature of 400 to 600 ° C.
  • the reason why a preferable range is defined for the pressure is that the release rate of the gas generated from the component containing normal paraffin to the outside of the system can be limited by the pressure.
  • the residence time of the generated gas in the system is an important control for determining the size of the hexagonal mesh plane. It becomes a parameter.
  • the preferable range is defined for the temperature is that it is an important temperature for growing the mesophase from the heavy oil adjusted to obtain the effect of the present invention.
  • the graphite powder produced by a predetermined method is then used. Even if there is only a low graphitization degree of the surface layer, or if it is not graphitized until the crystallite size L (112) exceeds 4.2 nm, the degree of graphitization of the surface layer will not develop. It is not preferable.
  • the second aspect of the invention according to the present application is artificial graphite for a lithium secondary battery negative electrode obtained by subjecting a heavy oil composition to a coking treatment by a delayed coking process and then a heat treatment step.
  • the heavy oil composition has a normal paraffin content of 5 to 20 wt% and an aromatic index fa determined by the Knight method in the range of 0.3 to 0.65.
  • the heat treatment is a heat treatment for obtaining a stable quality graphite material by heating the raw material powder to remove volatile components, and by dehydration, thermal decomposition, and solid phase graphitization reaction, preferably 1500 ° C. or less, preferably , Carbonized at 500 to 1500 ° C., and then graphitized at a temperature of 2000 ° C. or higher, preferably the maximum temperature of 2200 to 2600 ° C., which is the graphitization start temperature, and refers to a series of heat treatment processes.
  • the heavy oil composition subjected to the coking treatment is subjected to 500 to 1500 in an inert gas atmosphere such as nitrogen or argon.
  • an inert gas atmosphere such as nitrogen or argon.
  • An example is a heat treatment process in which carbonization is performed at 0 ° C., pulverization and classification to an average particle diameter of 50 ⁇ m or less, and then graphitization is performed at a maximum temperature of 2200 to 2600 ° C. in an inert gas atmosphere.
  • the graphite powder produced by such a method is less prone to introduce lattice strain in the crystalline region of the particle surface and is measured by Raman spectroscopy. This is because it is possible to suppress the ⁇ G to be reduced.
  • the reason why the particle size is 50 ⁇ m or less is that it is a general particle size required for this type of graphite material.
  • the method for producing a negative electrode for a lithium secondary battery is not particularly limited.
  • a method in which (negative electrode mixture) is pressure-molded to a predetermined size is exemplified.
  • a carbon material to which the invention according to the present application is applied, a binder (binder), a conductive auxiliary agent, and the like are kneaded and slurried in an organic solvent, and the slurry is a current collector such as a copper foil.
  • a method in which a coated and dried (negative electrode mixture) is rolled and cut into a predetermined size.
  • binder examples include polyvinylidene fluoride, polytetrafluoroethylene, and SBR (styrene-butadiene rubber).
  • the content of the binder in the negative electrode mixture may be appropriately set as necessary in terms of battery design, from about 1 to 30 parts by mass with respect to 100 parts by mass of the carbon material.
  • Examples of the conductive assistant include carbon black, graphite, acetylene black, conductive indium-tin oxide, or conductive polymers such as polyaniline, polythiophene, and polyphenylene vinylene.
  • the amount of the conductive aid used is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the carbon material.
  • organic solvent examples include dimethylformamide, N-methylpyrrolidone, isopropanol, toluene and the like.
  • the carbon material, the binder, and, if necessary, the conductive aid and the organic solvent known devices such as a screw type kneader, a ribbon mixer, a universal mixer, a planetary mixer and the like can be used.
  • the mixture is formed by roll pressing or press pressing, and the pressure at this time is preferably about 100 to 300 MPa.
  • the material of the current collector can be used without particular limitation as long as it does not form an alloy with lithium.
  • copper, nickel, titanium, stainless steel, etc. can be mentioned.
  • the shape of the current collector can be used without any particular limitation.
  • Examples of the current collector include a belt-like shape such as a foil shape, a perforated foil shape, and a mesh shape.
  • a porous material such as porous metal (foamed metal) or carbon paper can also be used.
  • the method of applying the slurry to the current collector is not particularly limited, for example, metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, Known methods such as a screen printing method and a die coater method can be used. After coating, it is common to perform a rolling process using a flat plate press, a calender roll, or the like as necessary. Further, the integration of the negative electrode material slurry formed into a sheet shape, a pellet shape, and the like with the current collector can be performed by a known method such as a roll, a press, or a combination thereof.
  • the lithium secondary battery using the carbon material for a negative electrode of a lithium ion secondary battery according to the present embodiment is arranged such that, for example, the negative electrode and the positive electrode manufactured as described above face each other with a separator interposed therebetween. It can be obtained by injecting a liquid.
  • the active material used for the positive electrode is not particularly limited. For example, a metal compound, metal oxide, metal sulfide, or conductive polymer material that can be doped or intercalated with lithium ions may be used.
  • lithium cobaltate LiCoO 2
  • lithium nickelate LiNiO 2
  • lithium manganate LiMn 2 O 4
  • lithium vanadium compound V 2 O 5, V 6 O 13, VO 2, MnO 2, TiO 2, MoV 2 O 8, TiS 2, V 2 S 5, VS 2, MoS 2, MoS 3, Cr 3 O 8, Cr 2 O 5, olivine-type LiMPO 4 (M: Co, Ni , Mn, Fe), polyacetylene, polyaniline, polypyrrole Polythiophene, mention may be made of conductive polymers such as polyacene, porous carbon or the like and mixtures thereof.
  • the separator for example, a nonwoven fabric, a cloth, a microporous film, or a combination thereof having a polyolefin such as polyethylene or polypropylene as a main component can be used.
  • a separator when it is set as the structure where the positive electrode and negative electrode of the lithium ion secondary battery to produce are not in direct contact, it is not necessary to use a separator.
  • electrolyte and electrolyte used for the lithium secondary battery known organic electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used.
  • organic electrolyte is preferable from the viewpoint of electrical conductivity.
  • organic electrolyte examples include dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, ethylene glycol phenyl ether, and other ethers, N-methylformamide, N, N-dimethylformamide, N Amides such as ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N-diethylacetamide, sulfur-containing compounds such as dimethylsulfoxide and sulfolane, methyl ethyl ketone, Dialkyl ketones such as methyl isobutyl ketone, cyclic ethers such as tetrahydrofuran and 2-methoxytetrahydrofuran, ethylene carbonate , Cyclic carbonates such as butylene carbonate, propylene carbonate,
  • lithium salts can be used as the solute of these solvents.
  • Commonly known lithium salts include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2, LiN (C 2 F 5 SO 2 ) 2 and the like.
  • polymer solid electrolyte examples include a polyethylene oxide derivative and a polymer containing the derivative, a polypropylene oxide derivative and a polymer containing the derivative, a phosphate ester polymer, a polycarbonate derivative and a polymer containing the derivative.
  • the structure of the lithium ion secondary battery is not particularly limited, a wound electrode group in which a positive electrode and a negative electrode formed in a strip shape are wound in a spiral shape through a separator is inserted into a battery case and sealed.
  • a structure in which a laminated electrode plate group in which a positive electrode and a negative electrode formed in a flat plate shape are sequentially laminated via a separator is enclosed in an exterior body.
  • the lithium secondary battery is used as, for example, a paper-type battery, a button-type battery, a coin-type battery, a stacked battery, a cylindrical battery, a rectangular battery, or the like.
  • the lithium secondary battery using the carbon material according to the invention of the present application can ensure a high degree of reliability as compared with a lithium secondary battery using a conventional carbon material. Specifically, it can be used for industrial purposes such as for hybrid vehicles, plug-in hybrid vehicles, electric vehicles, and power storage for grid infrastructure.
  • the X-ray diffractometer was D8 ADVANCE (encapsulated tube type) manufactured by Bruker-AXS, the X-ray source was CuK ⁇ ray (using K ⁇ filter Ni), and the applied voltage and current to the X-ray tube were 40 kV and 40 mA.
  • the obtained diffraction pattern was also analyzed by a method based on JIS R7651 (2007). Specifically, the measurement data is subjected to smoothing treatment, background removal, absorption correction, polarization correction, and Lorentz correction, and the peak position and value width of the (422) diffraction line of the Si standard sample are used. (112) The diffraction line was corrected and the crystallite size was calculated.
  • the crystallite size was calculated from the half width of the corrected peak using the following Scherrer equation. Measurement and analysis were performed three times each, and the average value was L (112).
  • L crystal size (nm)
  • ⁇ B Bragg angle
  • ⁇ 0 Half width (correction value)
  • Table 1 The results of measurement of L (112) of the graphite powder described in Examples and Comparative Examples are as shown in Table 1.
  • A1 is the number of carbon atoms inside the aromatic ring, half of the aromatic carbon that is not substituted with the substituted aromatic carbon (corresponding to a peak of about 40-60 ppm of 13 C-NMR), and A2 is substituted
  • the other half of the aromatic carbon corresponding to about 60-80 ppm peak of 13 C-NMR
  • the normal paraffin content of the raw material oil of the graphite powder and the aromatic index fa described in all Examples and Comparative Examples other than Comparative Example 8 are as shown in Table 1.
  • FIG. 1 shows a cross-sectional view of a negative electrode material evaluation cell 1.
  • the evaluation cell 1 uses as a container a hollow metal body 2 that can be kept airtight inside by a packing 4 made of ethylene tetrafluoride. In the hollow metal body 2, first, the reference electrode 15 and the working electrode 7 obtained by the above process were arranged apart from each other.
  • a separator 9 made of a polypropylene microporous film (Celgard # 2400) having a diameter of ⁇ 24 mm and a counter electrode 5 made of a disk-like lithium metal foil having a thickness of 0.7 mm and a diameter of ⁇ 17 mm are formed on these electrodes. Laminated in order. In addition, the lamination positional relationship between the lithium metal foil and the working electrode was held by the holding jig 3 so that the outer peripheral portion of the lithium metal foil projected on the working electrode side surrounded the outer periphery of the working electrode 7. Further, terminals 8, 10, and 12 extending from the counter electrode 5, the working electrode 7, and the reference electrode 15 to the outside of the metal frame 2 are provided.
  • the electrolytic solution 6 is injected into the hollow metal body 3, and the laminate is pressed by a stainless spring 13 through a stainless steel (SUS304) disk 11 having a thickness of 1 mm and a diameter of ⁇ 20 mm.
  • the hollow metal body 3 is sealed so that a reference electrode 15 in which a lithium metal is wound around a nickel lead plate (thickness 50 ⁇ m, width 3 mm) is fixed in the vicinity of the working electrode 7, and the negative electrode material evaluation cell 1 was made.
  • the electrolyte 6 used was obtained by dissolving lithium hexafluorophosphate (LiPF6) in a solvent in which ethylene carbonate and ethylethylmethyl carbonate were mixed at a volume ratio of 3: 7 so as to have a concentration of 1 mol / L. .
  • the negative electrode material evaluation cell was placed in a thermostatic chamber at 25 ° C., and the following charge / discharge test was performed. First, using the area of the working electrode as a reference, the counter electrode and the working electrode are energized (discharged) at a current value such that the current density is 0.1 mA / cm 2, and the potential of the working electrode with respect to the reference electrode becomes 0.01V. Until this time, the working electrode was doped with lithium. After a pause of 10 minutes, electricity was charged (charged) with the same current value until the potential of the working electrode with respect to the reference electrode reached 1.2 V, and the lithium occluded in the working electrode was dedoped.
  • the obtained lithium doping capacity (mAh / g) and lithium dedoping capacity (mAh / g) were confirmed, and the charge / discharge efficiency (%) of the initial charge / discharge cycle was calculated from the following formula from these values.
  • the lithium dedoping capacity and the charge / discharge efficiency of the graphite powder described in Examples and Comparative Examples are as shown in Table 1.
  • FIG. 2 shows a cross-sectional view of the battery 20 manufactured.
  • the positive electrode 21 is composed of lithium nickel oxide having an average particle diameter of 6 ⁇ m (LiNi 0.8 Co 0.15 Al 0.05 manufactured by Toda Kogyo Co., Ltd.) and a polyvinylidene fluoride binder (KF # 1320 manufactured by Kureha Co., Ltd.).
  • Acetylene black (Denka Black manufactured by Denka) was mixed at a weight ratio of 89: 6: 5, kneaded with N-methyl-2-pyrrolidinone, and then pasted into a 30 ⁇ m thick aluminum foil.
  • the negative electrode 23 is composed of graphite powder obtained in the following Examples or Comparative Examples, which are negative electrode materials, polyvinylidene fluoride as a binder (KF # 9310, manufactured by Kureha), and acetylene black (Denka black, manufactured by Denka).
  • the sheet electrode After mixing at a weight ratio of 90: 2: 8, adding N-methyl-2-pyrrolidinone and kneading, paste it, apply it to one side of a 18 ⁇ m thick copper foil, perform drying and rolling operations,
  • the sheet electrode is cut so that the size of the application part is 32 mm in width and 52 mm in length. A part of this sheet electrode is scraped off the negative electrode mixture perpendicularly to the longitudinal direction of the sheet, and the exposed copper foil is integrally connected to the current collector 24 (copper foil) of the coating part. It plays a role as a lead plate.
  • the battery 20 was fabricated by sufficiently drying the positive electrode 21, the negative electrode 23, the separator 25, the outer package 27, and other parts, and introducing them into a glove box filled with argon gas having a dew point of ⁇ 100 ° C.
  • the drying conditions are such that the positive electrode 21 and the negative electrode 23 are under reduced pressure at 150 ° C. for 12 hours or more, and the separator 25 and other members are under reduced pressure at 70 ° C. for 12 hours or more.
  • the positive electrode 21 and the negative electrode 23 thus dried were laminated with the positive electrode application portion and the negative electrode application portion facing each other with a microporous film made of polypropylene (Celgard # 2400) facing each other, and polyimide Fixed with tape.
  • the positive electrode and the negative electrode were stacked so that the peripheral portion of the positive electrode application portion projected onto the negative electrode application portion was surrounded by the inside of the peripheral edge portion of the negative electrode application portion.
  • the obtained single-layer electrode body is embedded with an aluminum laminate film, an electrolyte solution is injected, and the laminate film is heat-sealed in a state where the positive and negative electrode lead plates protrude from the sealed single unit electrode.
  • a layer laminate battery was prepared.
  • the electrolyte used was a solution in which lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7. .
  • Atmospheric distillation residue having a sulfur content of 3.1% by mass was hydrodesulfurized in the presence of a catalyst so that the hydrocracking rate was 25% or less to obtain hydrodesulfurized oil.
  • the hydrodesulfurization conditions are a total pressure of 180 MPa, a hydrogen partial pressure of 160 MPa, and a temperature of 380 ° C.
  • an atmospheric distillation residue oil was distilled under reduced pressure and further hydrodesulfurized (sulfur content: 380 mass ppm, density: 0.83 g / cm 3 at 15 ° C.), reaction temperature: 530 ° C., total pressure: 2.3 kgf / cm 2.
  • a silica / alumina catalyst having platinum supported thereon was used as the catalyst.
  • the above-mentioned hydrodesulfurized oil, fluid catalytic cracking residual oil, and ethylene bottom oil are mixed at a mass ratio of 1: 3: 1 to produce a heavy oil composition (hereinafter, particularly a raw oil composition) that becomes a raw material for coke. (Abbreviated as "thing").
  • Table 1 shows the normal paraffin content and the aromatic index fa of this raw material oil composition. This raw material oil composition was introduced into a delayed coker apparatus and subjected to coking treatment at 550 ° C.
  • the raw coal composition was introduced into a rotary kiln and calcined at 1400 ° C. to obtain a carbon material.
  • the obtained carbon material is pulverized with a mechanical pulverizer (Super Rotor Mill / Nisshin Engineering) and classified with a precision air classifier (Turbo Classifier / Nisshin Engineering) to obtain carbon having an average particle size of 12 ⁇ m.
  • a particulate material was obtained.
  • This carbon fine particle material was put into a crucible, installed in an electric furnace, and heat-treated at a maximum temperature of 2100 ° C. in a nitrogen gas stream of 80 L / min.
  • the heat treatment after obtaining the carbon fine particle material is hereinafter referred to as “graphitization”.
  • the obtained graphite powder is designated as graphite A.
  • Example 1 The carbon fine particle material obtained in the same manner as in Comparative Example 1 was graphitized in the same manner as in Comparative Example 1 except that the maximum temperature reached 2200 ° C.
  • the obtained graphite powder is designated as graphite B.
  • Example 2 The carbon fine particle material obtained in the same manner as in Comparative Example 1 was graphitized in the same manner as in Comparative Example 1 except that the maximum temperature reached 2400 ° C.
  • the obtained graphite powder is designated as graphite C.
  • Example 3 The carbon fine particle material obtained in the same manner as in Comparative Example 1 was graphitized in the same manner as in Comparative Example 1 except that the maximum temperature reached 2600 ° C.
  • the obtained graphite powder is designated as graphite D.
  • Comparative Example 4 The normal paraffin content of the fluid catalytic cracking residual oil described in Comparative Example 1 and the aromatic index fa are shown in Table 1. Using this fluid catalytic cracking residual oil as a raw material oil composition, a raw material charcoal composition and carbon fine particles were obtained in the same manner as described in Comparative Example 1. The carbon fine particle material was graphitized in the same manner as in Comparative Example 1 except that the maximum temperature reached 2400 ° C. The obtained graphite powder is designated as graphite G.
  • Example 4 The fluid catalytic cracking residual oil described in Comparative Example 1 was mixed by adding the same volume of n-heptane, and then selectively extracted with dimethylformamide to separate it into an aromatic component and a saturated component. Among them, the aromatic component and the hydrodesulfurized oil described in Comparative Example 1 were mixed at a mass ratio of 4: 1 to obtain a coke raw material oil composition. Table 1 shows the normal paraffin content and the aromatic index fa of this raw material oil composition. This raw material oil was processed in the same manner as described in Comparative Example 1 to obtain a raw material carbon composition and carbon fine particles. The carbon fine particle material was graphitized in the same manner as in Comparative Example 1 except that the maximum temperature reached 2400 ° C. The obtained graphite powder is designated as graphite H.
  • Example 5 The same volume of n-heptane was added to and mixed with the fluid catalytic cracking residual oil described in Comparative Example 1, and then selectively extracted with dimethylformamide to separate it into an aromatic component and a saturated component. Among them, the saturated content and the fluid catalytic cracking residual oil described in Comparative Example 1 were mixed at a mass ratio of 1: 1 to obtain a coke raw material oil composition. Table 1 shows the normal paraffin content and the aromatic index fa of this raw material oil composition. This raw material oil composition was treated in the same manner as in the method described in Comparative Example 1 to obtain a raw material charcoal composition and carbon fine particles. The carbon fine particle material was graphitized in the same manner as in Comparative Example 1 except that the maximum temperature reached 2400 ° C. The obtained graphite powder is designated as graphite J.
  • Comparative Example 7 The fluid catalytic cracking residual oil described in Comparative Example 1 was selectively extracted with dimethylformamide and separated into an aromatic component and a saturated component. The aromatic component and the saturated component thus obtained were mixed at a mass ratio of 4: 1 to obtain a coke raw material oil composition. Table 1 shows the normal paraffin content and the aromatic index fa of this raw material oil composition.
  • This raw material oil was processed in the same manner as described in Comparative Example 1 to obtain a raw material carbon composition and carbon fine particles.
  • the carbon fine particle material was graphitized in the same manner as in Comparative Example 1 except that the maximum temperature reached 2400 ° C.
  • the obtained graphite powder is designated as graphite L.
  • Comparative Example 1 ⁇ Consideration on Test Results of Examples and Comparative Examples> Comparative Example 1, Examples 1 to 3 and Comparative Example 2 are graphite powders obtained from the same raw material oil composition, and differ only in the graphitization temperature.
  • Graphite A of Comparative Example 1 has L (112) of 1.5 nm, ⁇ G of 22.3 cm ⁇ 1 , L (112) which is the range of the first aspect according to the present application is 2 to 4.2 nm, ⁇ G is out of the two ranges of 15 to 19 cm ⁇ 1 .
  • L (112) is relatively small at 2 nm or less is considered that the graphitization temperature is as low as 2100 ° C. . For this reason, the capacity as the negative electrode (lithium dedoping capacity of the negative electrode material evaluation cell) was lowered.
  • the capacity retention rate after 1000 cycles of the battery using graphite A as the negative electrode was 75%, which was a relatively low value.
  • the reason for this is that the following considerations do not limit the technical scope of the present invention.
  • ⁇ G is low and there are many exposed portions of crystallites on the particle surface, that is, unstructured carbon and dangling bonds, This is probably because the electrolyte solvent is easily reduced and decomposed in this region, and the resistance polarization increases with the progress of the charge / discharge cycle.
  • ⁇ G of the graphite powder used for the negative electrode exceeds the upper limit range of 19 cm ⁇ 1 stipulated in the first aspect of the present application, the cycle deterioration of the battery increases, which is not preferable.
  • graphites B, C and D in Examples 1 to 3 are graphite powders produced from the same raw material oil as in Comparative Example 1, but differ only in that the graphitization temperature is high and it is 2200 to 2600 ° C. L (112) and ⁇ G are both included in the scope of the present invention. Therefore, the capacity as the negative electrode (lithium dedoping capacity of the negative electrode material evaluation cell) is ensured to be 290 mAh / g or more, and the capacity retention rate after 1000 cycles of the batteries using these graphite powders as the negative electrode is 90% or more. It is preferable because it is secured.
  • Graphite E of Comparative Example 2 is also a graphite powder produced from the same raw material oil as in Examples 1 to 3, except that the graphitization temperature is higher and it is 2700 ° C.
  • Graphite E of Comparative Example 2 has a small .DELTA..nu G, but the exposed area of the edge surface of the crystallites present on the particle surfaces is small, the size of the crystallite L (112) is relatively large, inter lithium in graphite crystal When the curation is performed, the solvent of the electrolytic solution is easily co-inserted. For this reason, this solvent molecule was easily reduced and decomposed between the crystal layers, and the initial charge / discharge efficiency (charge / discharge efficiency of the negative electrode material evaluation cell) was greatly reduced to 62%.
  • the capacity retention rate after 1000 cycles of the battery using graphite E as the negative electrode was 72%, which was significantly lower than that of the batteries of Examples 1 to 3 (90 to 93%).
  • the following considerations do not limit the technical scope of the present invention at all.
  • the cause is that the reductive decomposition reaction of the solvent co-inserted into the graphite crystal continues even when the charge / discharge cycle is repeated. I suggest that. That is, in the charging process in each cycle, this type of side reaction occurs, the resulting reaction product continues to accumulate, and the resistance polarization increases each time the cycle is repeated.
  • L (112) of the negative electrode graphite powder exceeds 4.2 nm, which is the upper limit range of the first aspect according to the present application, cycle deterioration of a battery using the same becomes unfavorable.
  • Graphite F of Comparative Example 3 is also a graphite powder produced from the same raw material oil as in Examples 1 to 3 and Comparative Examples 1 and 2, except that it is pulverized after graphitization.
  • L (112) of graphite F is the same as that of graphite C, and is within the scope of the invention of the present application. but its .DELTA..nu G became a large value compared 21.3 cm -1, and the it graphite C and (17.4cm -1).
  • the reversible capacity of graphite F as the negative electrode that is, the lithium dedoping capacity of the negative electrode material evaluation cell is the same as that of graphite C having the same L (112), but the capacity after 1000 cycles of the battery used as the negative electrode The maintenance rate is 68%, which is significantly lower than that of graphite C.
  • the reason for this is that, as is evident from the low ⁇ G, there are many unstructured carbons and dangling bonds present on the particle surface, so the electrolyte solvent is easily reduced and decomposed in this region, and the charge / discharge cycle progresses. This is the same as in the case of graphite A because the resistance polarization increases.
  • Graphite G of Comparative Example 4 is considered to have a small ⁇ G of 13.6 cm ⁇ 1 and a small amount of unstructured carbon and the region where the crystallite edge of the particle surface is exposed. For this reason, when the charge / discharge cycle is repeated, the region in which the solvent is reductively decomposed is small, and it is considered that the cycle deterioration can be suppressed.
  • L (112) is as large as 4.7 nm. The upper limit is exceeded. For this reason, the capacity maintenance rate of the charge / discharge cycle of the battery was as low as 62% and the cycle deterioration was large, but this is considered to be the same as the graphite E of Comparative Example 2.
  • L (112) is within the range of the first aspect according to the present application, while ⁇ G is as large as 19.8 cm ⁇ 1 , exceeding the upper limit range of the invention according to the present application. Yes. For this reason, the capacity maintenance rate of the charge / discharge cycle of the battery was as low as 78%, and the cycle deterioration was large. The cause of this is considered to be the same as that of the graphite A of Comparative Example 1.
  • Graphite K of Comparative Example 6 is the same as Graphite C of Example 2, Graphite H of Example 4, and Graphite J of Example 5 at a heat treatment temperature of 2400 ° C., but L (112) is the first in the present application. It is below the lower limit of one embodiment and ⁇ G is as large as 21.4, which exceeds the upper limit range of the invention according to the present application. For this reason, the capacity maintenance rate of the charge / discharge cycle of the battery was as low as 64%, and the cycle deterioration was large. It is considered that this cause is exactly the same as that of the graphite A of Comparative Example 1.
  • Graphite L of Comparative Example 7 is the same as Graphite C of Example 2, Graphite H of Example 4, and Graphite J of Example 5 at a heat treatment temperature of 2400 ° C., but L (112) is the first in the present application. It became larger than the upper limit of the aspect of one invention.
  • ⁇ G is within the range defined in the aspect of the first invention according to the present application, but a large cycle deterioration was recognized as in the behavior of the batteries of Comparative Examples 2 and 4. This is because L (112) is too large, and even if ⁇ G is a graphite material within the range defined in the first aspect of the present invention, the co-insertion reaction of the solvent cannot be suppressed. As a result of reductive decomposition between graphite crystal layers and the reaction products continuously deposited by repeated charge and discharge cycles, the resistance of the battery is increased and the capacity is considered to be deteriorated.
  • Graphite M of Comparative Example 8 has ⁇ G within the range of the first aspect according to the present application, while L (112) is as large as 32.4 nm, which exceeds the upper limit range of the invention according to the present application. Since L (112) of graphite M is the largest among graphites A to M, the charge / discharge capacity as the negative electrode (corresponding to the lithium dedoping capacity of the negative electrode material evaluation cell) was found to be the highest. However, since L (112) is too large, the capacity maintenance rate of the charge / discharge cycle of the battery was as low as 69%, and the cycle deterioration was large. This cause is considered to be the same as that of the graphite E of Comparative Example 2.
  • the initial reversible capacity as a negative electrode (corresponding to the lithium dedoping capacity of the negative electrode material evaluation cell) is 221 to 365 mAh.
  • the capacity retention rate after 1000 cycles of charge and discharge of the battery used as the negative electrode was 62 to 78. It was clarified that the life characteristics were lower than when the graphite material of the example was used.
  • the raw material oil composition for obtaining the graphite material of the examples is within the range of the second aspect according to the present application, that is, the normal paraffin content is 5 to 20 wt%, and It became clear that the aromatic index fa is desirably 0.3 to 0.65. Therefore, as a production method for completing the graphite material defined in the first aspect of the present application, when a heavy oil composition is obtained by coking by a delayed coking process and then heat-treated, its raw oil composition It is clear that the product preferably has a normal paraffin content of 5 to 20 wt% and an aromatic index fa of 0.3 to 0.65, as defined in the second aspect of the present application. It became.
  • the graphitization temperature and the pulverization treatment are performed even when the normal paraffin content and the aromatic index of the raw material oil composition are within the range of the second aspect according to the present application.
  • the graphite material defined in the first aspect of the application may not necessarily be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 充放電サイクルの繰り返し、充電状態での保存、及びフローティング充電などに伴う容量劣化が抑制可能となる負極炭素材料を提供する。 X線広角回折法によって得られた(112)回折線から算出されるc軸方向の結晶子の大きさL(112)が2.0~4.2nmであって、且つ、波長5145オングストロームのアルゴンイオンレーザー光を用いたラマンスペクトル分析において、1580cm-1±100cm-1の波長領域に存在するピークの半価幅ΔνGが15~19cm-1であるリチウム二次電池負極用人造黒鉛。

Description

リチウム二次電池の負極用炭素材料及びその製造方法
 本発明は、リチウム二次電池の負極として使用される炭素材料及びその製造方法に関する。
 リチウム二次電池は、従来の二次電池であるニッケルカドミウム電池、ニッケル水素電池、鉛電池に比較し、軽量であり且つ高い入出力特性を有することから、近年、電気自動車やハイブリッド車用の電源として期待されている。通常、この種の電池は、リチウムの可逆的なインターカレーションが可能なリチウムを含んだ正極と、炭素材料から成る負極とが、非水電解質を介して対向することにより構成されている。従って、この種の電池は放電状態で組み立てられ、充電しなければ放電可能状態とはならない。以下、正極としてコバルト酸リチウム(LiCoO)、負極として炭素材料、電解質としてリチウム塩を含んだ非水電解液が使用された場合を例に取り、その充放電反応について説明する。
 先ず、第一サイクル目の充電を行うと、正極に含まれたリチウムが電解液に放出され(下式2)、その正極電位は貴な方向へ移行する。負極では、正極から放出されたリチウムが炭素材料に吸蔵され(下式2)、その負極電位が卑な方向へ移行する。通常は、正・負極電位の差、即ち電池電圧が、所定の値に到達した時点で充電終止となる。この値は、充電終止電圧と呼称されている。そして放電させると、負極に吸蔵されたリチウムが放出され、負極電位は貴な方向へ移行し、そのリチウムは再び正極に吸蔵され、正極電位は卑な方向へ移行する。放電も、充電の場合と同様に、正・負極電位の差、即ち電池電圧が、所定の値に到達した時点で終止とされる。その値は、放電終止電圧と呼称されている。以上のような充電及び放電の全反応式は、下式3のように示される。その後に続く第二サイクル以降は、リチウムが正極と負極との間を行き来することで充放電反応(サイクル)が進行する。
Figure JPOXMLDOC01-appb-C000001
 リチウム二次電池の負極材料として使用される炭素材料は、一般に黒鉛系と非晶質系に大別される。黒鉛系炭素材料は、非晶質系炭素材料と比較し、単位体積あたりのエネルギー密度が高いという利点がある。従って、コンパクトでありながら大きい充電放電容量が要求される携帯電話やノート型パソコン用のリチウムイオン二次電池においては、負極材料として黒鉛系炭素材料が一般に用いられている。黒鉛は炭素原子の六角網面が規則正しく積層した構造を有しており、充放電の際には六角網面のエッジ部でリチウムイオンの挿入離脱反応が進行する。
 前述の通り、この種の電池は、近年、自動車用、産業用、電力供給インフラ用の蓄電装置としても盛んに検討されているが、これら用途に利用される場合には、携帯電話やノート型パソコン用として利用される場合より、極めて高度な信頼性が要求される。ここで信頼性とは寿命に関する特性であり、充放電サイクルが繰り返された場合でも、又は所定の電圧に充電された状態で保存された場合でも、あるいは一定の電圧で充電され続けた場合(フローティング充電された場合)でも、充放電容量や内部抵抗が変化し難い(劣化し難い)特性を指す。
 一方、従来の携帯電話やノート型パソコンに利用されてきたリチウムイオン二次電池の寿命特性は、負極材料にも大きく依存することが一般的に知られている。その理由は、正極反応(式2)と負極反応(式3)の充放電効率を全く同じにすることが原理的に不可能で、その充放電効率は負極の方が低いからである。ここで充放電効率とは、充電に消費された電気容量に対する、放電が可能な電気容量の割合である。以下に、負極反応の充放電効率の方が低いことに起因して寿命特性が劣化する反応機構について詳述する。
 充電過程では、前述の通り、正極の中のリチウムが放出され(式2)、負極に吸蔵される(式3)が、その充電に消費される電気容量は、正・負極反応とも同一である。しかしながら、充放電効率は負極の方が低いので、その後に続く放電反応では、正極側に吸蔵可能なリチウム量、即ち充電する前の正極側に吸蔵されていたリチウム量よりも、負極から放出されるリチウム量の方が少ない状態で放電が終止する事態が生ずることとなる。その理由は、負極で充電に消費された電気容量のうちの一部が副反応及び競争反応に消費され、リチウムが吸蔵される反応、即ち放電可能な容量として吸蔵される反応に消費されなかったからである。
 このような充放電反応が生ずる結果、放電終止状態の正極電位は、充放電前の元の電位よりも貴な方向へ移行する一方、負極電位も充放電前の元の電位よりも貴な方向へ移行することとなる。この原因は、正極の充電過程で放出されたリチウムの全てが放電のときに吸蔵されない(戻らない)ため、充電過程で貴な方向へ移行した電位が、放電過程で卑な方向へ移行するときも、正・負極の充放電効率の差に相当する分だけ、元の正極電位に戻ることが不可能となり、元の正極電位より貴な電位で放電が終止することとなる。前述の通りリチウム二次電池の放電は、電池電圧(即ち、正極電位と負極電位との差)が所定の値(放電終止電圧)に達した時点で完了するため、放電終止時点での正極の電位が貴になれば、その分負極電位も同様に貴な方向へ移行することになるからである。
 以上の通り、この種の電池は充放電サイクルを繰り返すと、正・負極の容量の作動領域が変化することで、所定の電圧範囲内(放電終止電圧と充電終止電圧の範囲内)で得られる容量が低下する問題が生じていた。このような容量劣化の反応機構は学会等でも報告されている(例えば、非特許文献1及び非特許文献2)。また、いったん作動領域が変化した正・負極電位は不可逆であり、原理的に元に戻ることはあり得ず、容量回復の手段が無いことも、この問題を深刻化させている。
 なお、前述の充放電サイクルが繰り返されたときに生ずる容量劣化の反応機構は、充電状態で電池が保存されたときの容量劣化、又はフローティング充電されたときの容量劣化の各々の反応機構と基本的には同様である。先ず電池が充電状態で保存された場合であるが、充電状態で生ずる副反応・競争反応によって失われる容量、即ち自己放電量は、正極よりも負極の方が大きいため、正・負極の容量の作動領域は、保存前後で変化することにより、保存後の電池容量は劣化することが知られている(例えば、非特許文献3)。充電状態における正・負極の自己放電速度の差も、前述の正・負極の充放電効率の差と同様に、充電状態の負極で生ずる副反応・競争反応の速度が、同じく充電状態の正極で生ずる副反応・競争反応の速度よりも高いことに起因している。
 次にフローティング充電された場合であるが、充電初期には正・負極電位とも各々所定の電位で充電され続けることとなる。しかし、正極電位を、その電位に保持させておくために必要な電流値(正極側の漏れ電流)と、負極電位を、その電位に保持させておくために必要な電流値(負極側の漏れ電流)は異なるのが実情である。その原因は、前述の通り、充電状態での正極及び負極の自己放電速度が異なり、負極の自己放電速度の方が大きいからである。従ってフローティング充電時は、負極側の漏れ電流の方が、正極側の漏れ電流よりも大きくなることにより、負極電位は漏れ電流が小さくなる方向、即ち貴な方向へ移行し、正極電位は漏れ電流が大きくなる方向、即ち貴な方向へ移行する。このようにフローティング充電された場合も、正・負極の容量の作動領域は不可逆的に変化し、電池容量が劣化する問題が生じていた。
特開2009-87871号公報
第48回電池討論会要旨集1A11(2007年11月13日) 第76回電気化学会大会要旨集1P29(2009年3月26日) 第71回電気化学会大会要旨集2I07(2004年3月24日) 第23回炭素材料学会要旨集1C14(1996年12月3日) 第29回炭素材料学会要旨集2C08(2002年12月4日) 中溝実,炭素,90,105(1977) J. O. Besenhard, M. Winter, J. Yang, W. Biberacher, J. Power Sources, 54, 228(1995) 第35回電池討論会要旨集2B04(1994年11月14日)
 本発明は、以上のようなリチウム二次電池の容量劣化を改良するためのものであって、その目的は、充放電サイクルの繰り返し、充電状態での保存、及びフローティング充電などに伴う容量劣化が抑制可能となる負極炭素材料を開発することにより、高度な信頼性が要求される自動車用、産業用、電力貯蔵インフラ用のリチウム二次電池の負極材料を提供しようとするものである。
 上記の課題を解決するために、本出願に係る発明の第一の態様は、X線広角回折法によって得られた(112)回折線から算出されるc軸方向の結晶子の大きさL(112)が2.0~4.2nmであって、且つ、波長5145オングストロームのアルゴンイオンレーザー光を用いたラマンスペクトル分析において、1580cm-1±100cm-1の波長領域に存在するピークの半価幅Δνが15~19cm-1であるリチウム二次電池負極用人造黒鉛である。
 また本出願に係る発明の第二の態様は、重質油組成物をディレードコーキングプロセスによってコーキング処理した後、熱処理する工程を経て得られたリチウム二次電池負極用人造黒鉛であって、前記重質油組成物は、ノルマルパラフィン含有率が5~20wt%、Knight法により求められた芳香族指数faが0.3~0.65であるリチウム二次電池負極用人造黒鉛である。
  また本出願に係る発明の第三の態様は、前記熱処理する工程が、1500℃以下で炭素化し粉砕することにより炭素微粒子材料を得るステップと、該炭素微粒子材料を不活性ガス雰囲気下最高到達温度が2200から2600℃になるまで加熱して前記人造黒鉛を得るステップとを含む前記リチウム二次電池負極用人造黒鉛である。
 また本出願に係る発明の第四の態様は、重質油組成物をディレードコーキングプロセスによってコーキング処理した後、熱処理する工程を含むリチウム二次電池負極用黒鉛の製造方法であって、前記重質油組成物は、ノルマルパラフィン含有率が5~20wt%、Knight法により求められた芳香族指数faが0.3~0.65であるリチウム二次電池負極用人造黒鉛の製造方法である。
 また本出願に係る発明の第五の態様は、前記製造方法により得られたリチウム二次電池負極用人造黒鉛である。
 また本出願に係る発明の第六の態様は、リチウムの可逆的なインターカレーションが可能なリチウムを含んだ正極と、請求項1、請求項2、3または請求項5に記載のリチウム二次電池負極用人造黒鉛を含む負極と、非水電解質とを備えたリチウム二次電池である。
 本発明の人造黒鉛の製造方法により、充放電サイクルの繰り返し、充電状態での保存、及びフローティング充電などに伴う容量劣化が抑制可能となる負極炭素材料を得ることができる。
本願実施例の負極材料評価試験で使用したセルの模式的断面図である。 本願実施例の電池評価試験で使用したセルの模式的断面図である。
 本出願に係る発明の第一の態様に記載されたような物性、即ち、X線広角回折法によって得られた(112)回折線から算出されるc軸方向の結晶子の大きさL(112)が2.0~4.2nmであって、且つ、波長5145オングストロームのアルゴンイオンレーザー光を用いたラマンスペクトル分析において、1580cm-1±100cm-1の波長領域に存在するピークの半価幅ΔνGが15~19cm-1である炭素材料の特徴は、炭素材料の表層の結晶化度が極めて高いにも拘わらず、内部バルクの結晶化度が低い点にある。一般的に、ある種の有機高分子化合物を炭素化・黒鉛化した炭素材料は、表層の黒鉛化度とバルク内部の黒鉛化度が異なり、表層のほど結晶の発達が早い(例えば、非特許文献4及び非特許文献5)。本出願の第一、及び第二の態様に係る炭素材料も、この性質を利用している。
 一般的に、リチウム二次電池用負極炭素材料の製造方法としては、所定の重質油組成物をコーキング処理し、得られた生コークスを1400℃程度でか焼した後、所定の粒度となるように粉砕・分級し、2400℃程度で黒鉛化処理する工程が知られている(例えば、特許文献1)。このような生コークスやか焼コークスを粉砕・分級した後に黒鉛化された黒鉛粉末も、粒子表面(表層)の結晶化度と粒子内部(バルク)の結晶化度は異なり、粒子表面の結晶化度の方が高いのが一般的である。粒子表面の結晶化度は、波長5145オングストロームのアルゴンイオンレーザー光を用いたラマンスペクトル分析における、1580cm-1±100cm-1の波長領域に存在するピークの半価幅ΔνGで、粒子内部の結晶化度は、X線広角回折法によって得られた(112)回折線から算出される結晶子の大きさL(112)で各々評価可能である。なおΔνGは、粒子表面のローカルな黒鉛結晶の完全性が高いほど、その半価幅は小さくなることが一般的に知られている(例えば、非特許文献6)。
 表層の黒鉛化度が高いことは、表層における結晶子エッヂの露出領域が小さいことを意味する。一般的に結晶子エッヂには、多数のダングリングボンド、即ち価電子結合が飽和せず結合の相手無しに存在する局在電子の状態が多く存在する。本発明者らは、充電過程での負極炭素材料の表面、即ち電解質と炭素材料が接触している界面では、リチウムが黒鉛結晶にインターカレーションする本来の充電反応の他に、この局在電子が触媒的に作用し、電解質が還元分解されることに起因した副反応・競争反応が生じることによって、負極の充放電効率が低下することを見出した。また本発明者等は、粒子表面の結晶化度を高度に発達させること、即ちラマンスペクトル分析のΔνが所定の値より小さくなった場合に、この充放電効率を大幅に向上させることが可能であることを見出した。Δνが19cm-1を超えた場合、粒子表面で電解質の還元分解に起因した副反応・競争反応が急速に生じ易くなり好ましくない。このようにΔνは可能な限り小さいほど好ましいが、本発明者等が後述の通り、合成法について種々検討した結果、15cm-1未満のものを得ることが不可能であったため、本出願に係る発明の第一の態様では、Δνを15~19cm-1と規定した。
 また発明に係る負極炭素材料は、X線広角回折法によって得られた(112)回折線から算出される結晶子の大きさL(112)が2.0~4.2nmである点も併せて規定されている。以下、この理由について詳述する。
 リチウム二次電池用の負極炭素材料は、充電過程においてリチウムが、黒鉛の結晶層間にインターカレーションするとき、電解質の溶媒分子も一緒に取り込まれてコインターカレーションし、結晶層間で還元分解される現象が一般的に知られている(例えば、非特許文献7)。このときコインターカレーションされた溶媒は、黒鉛の結晶層間で容易に還元分解されるので、必然的に充放電効率は著しく低下する。
 一方、特許文献1に記載された製法、即ち、生コークスやか焼コークスを粉砕・分級した後に黒鉛化するような製法により合成された黒鉛粉末は、粒子内部(バルク)の結晶化度が大きくなり過ぎると、即ちL(112)が4.2nmを超えた場合、充電過程において、前述のコインターカレーション現象が生じ易くなり、コインターカレーションされた溶媒等が、前述の通り結晶層間で還元分解される結果、その充放電効率が著しく低下するため好ましくない。
  また負極炭素材料の充放電可能容量は、X線広角回折法により算出された結晶子の大きさが小さいほど小さいことが一般的に知られている(例えば、非特許文献8)。この傾向は、本出願に係る発明の第一の態様で規定された炭素材料についても同様に認められる。即ち、L(112)が2.0nmよりも小さい場合、充放電可能な容量が小さくなるため好ましくない。
 以上の理由から本出願に係る発明の第一の態様では、X線広角回折法によって得られた(112)回折線から算出される結晶子の大きさL(112)として、2.0~4.2nmである点も規定されている。L(112)が、2.0~4.2nmであって、且つ前述の通り規定されたΔνが15~19cm-1であるような黒鉛粉末の負極としての電気化学的な特性は、可逆的に充放電が可能な容量が大きく、且つ充電過程でも溶媒分子のコインターカレーションや、粒子表面のダングリングボンドに起因した副反応・競争反応が抑制される。この結果、リチウム二次電池の負極として、このような物性を有した黒鉛粉末を適用することにより、充放電サイクルが繰り返された場合や、充電状態で保存された場合、及びフローティング充電された場合も負極に起因した容量劣化が抑制され、信頼性が向上する。
 本出願に係る発明の第二の態様は、第一の態様で規定された炭素材料を得るための原料油組成物を規定している。即ち、本出願に係る発明の第二の態様は、重質油組成物をディレードコーキングプロセスによってコーキング処理した後、熱処理する工程を経て得られたリチウム二次電池負極用人造黒鉛であって、前記重質油組成物は、ノルマルパラフィン含有率が5~20wt%、Knight法により求められた芳香族指数faが0.3~0.65であるリチウム二次電池負極用人造黒鉛である。
 リチウム二次電池の負極炭素材料を製造するためのプロセスとして、「重質油組成物をディレードコーキングプロセスによってコーキング処理した後、熱処理する」方法は、一般的に知られている(前述の特許文献1)。この製造方法は、品質が高い炭素材料を大量生産するために大変適しており、多品種のコークス製品がこのプロセスで量産されている。本発明者等は、重質油組成物の物性、及び組成と、コーキング条件を適切な範囲とすることにより、このプロセスを利用して本出願に係る発明の第一の態様に規定された炭素材料を製造できることを見出し、本出願に係る発明の第二の態様を完成するに至った。
 本出願に係る発明の第一の態様で規定された炭素材料の特徴は、前述の通り、粒子表面(表層)の黒鉛化度が、粒子内部(バルク)の黒鉛化度よりも極めて高い点である。粒子表面(表層)の黒鉛化度が、粒子内部(バルク)の黒鉛化度よりも高いという物性的特徴を有した黒鉛粉末を製造するためには、前述の通り、生コークス又はか焼コークスを粉砕・分級し、粒度調整した後、黒鉛化して製造する方法が一般的である。粉砕した後に黒鉛化することで、得られた黒鉛粉末の粒子表面(表層)の黒鉛化度を、粒子内部(バルク)の黒鉛化度より高めることが可能だからである。ここで、生コークスとは、重質油をディレードコーカーで熱分解したものを指し、か焼コークスとは、生コークスを工業炉で炭素化し、水分や揮発分を除去して結晶構造を発達させたものを指すこととする。逆に、黒鉛化した後に粉砕することで得られた黒鉛粉末は、粉砕による力学的なエネルギーが粒子表面に付与される結果、粒子表面の黒鉛化度が粒子内部の黒鉛化度よりも低下するため、本出願に係る発明の第一の態様に規定された物性が達成された黒鉛粉末を得ることはできず、好ましくない。
 しかし、単に、生コークス又はか焼コークスを粉砕・分級した後に黒鉛化しただけでは、粒子表面の黒鉛化度が粒子内部の黒鉛化度よりも高い黒鉛粉末を得ることができるに過ぎず、本出願に係る発明の第一の態様に規定された物性的特徴、即ち、粒子表面(表層)の黒鉛化度が、粒子内部(バルク)の黒鉛化度よりも極めて高い物性的特徴を有した黒鉛粉末を得ることはできない。粉砕したときに、粒子表層の結晶子へ導入される格子欠陥や未組織炭素が、表層の結晶子の発達を阻害するからである。ここで未組織炭素とは、炭素六角網平面に組み込まれない炭素を指し、その特徴は、隣接する炭素結晶子の成長や選択的な配向を妨害しながら、処理温度の上昇と共に徐々に炭素六角網平面中に取り込まれる炭素原子のことである。
 そこで本発明者等は、黒鉛粉末の製造方法を検討した結果、粉砕される生コークス又はか焼コークスの結晶組織を、粉砕による力学的エネルギーが付与された場合であっても、その表層に格子欠陥や未組織炭素が導入され難い構造に制御することで、表層の結晶組織が高度に発達した黒鉛粉末が得られることを見出した。また、この構造は、生コークスやか焼コークスの製造方法を制御することにより実現可能である点を見出した。
 その構造とは、比較的小さなサイズの六角網平面が積層された結晶子で構成された選択的な配向性を有する結晶組織である。結晶組織が、このような構造であれば、粉砕による力学的エネルギーが加わった場合であっても、積層する六角網平面のサイズが小さいため、隣接する結晶子間で割れる確率が高まり、六角網平面が割断的に割れる確率や、六角網平面に亀裂が入る確率を大幅に低減させることが可能となる。粉砕される生コークスやか焼コークスの結晶組織の構造が、比較的大きなサイズの六角網平面が積層された結晶子から構成される場合、粉砕による力学的エネルギーは、比較的大きなサイズの六角網平面に加わり易くなり、隣接する結晶子間へ加わる確率が低下するため、結晶子を構成する六角網平面が割断的に割れるか、あるいは結晶子に亀裂が入る確率が高まる。このため格子欠陥や未組織炭素が導入される確率が高まり、黒鉛化後に得られる黒鉛粉末の表層の黒鉛化度を高めることができなくなるため好ましくない。
 従って本出願に係る発明の第二の態様は、前述の通り、粉砕される生コークスやか焼コークスの結晶組織が、比較的小さなサイズの六角網平面から成る結晶子で構成された組織となるための製造方法が具体的に規定されているとも換言することができる。発明者らは、このような組織を有した生コークス、か焼コークスを、量産に適したディレードコーキングプロセスによって製造するためには、原料となる重質油組成物の物性、コーキング条件を制御すれば可能となることを見出し、本出願に係る発明の第二の態様を完成するに至った。
 先ず、原料となる重質油組成物の物性であるが、その特徴は、ノルマルパラフィン含有率が5~20wt%であって、特定の方法で算出される芳香族指数faが0.3~0.65であることにある。重質油は高温処理されることによって、熱分解及び重縮合反応が起こり、メソフェーズと呼ばれる大きな液晶が中間生成物として生成する過程を経て生コークスが製造される。このとき、良好なバルクメソフェーズを生成する重質油成分と、このバルクメソフェーズが重縮合して炭化及び固化する際に、メソフェーズを構成する六角網平面積層体の大きさを小さく制限する機能を有したガスを生じ得る重質油成分とが、両方とも含有された原料油組成物を用いることが有効である。良好なバルクメソフェーズを生成する重質油成分が、芳香族指数faとして0.3~0.65を与える成分であり、ガスを生じ得る重質油成分が、ノルマルパラフィン含有率の5~20wt%に相当する成分である。
 ここでfaとは、Knight法により求めた芳香族炭素分率(fa)である。Knight法では、炭素の分布を13C-NMR法による芳香族炭素のスペクトルとして3つの成分(A1,A2,A3)に分割する。ここで、A1は芳香族環内部炭素数、置換されている芳香族炭素と置換していない芳香族炭素の半分(13C-NMRの約40~60ppmのピークに相当)、A2は置換していない残りの半分の芳香族炭素(13C-NMRの約60~80ppmのピークに相当)、A3は脂肪族炭素数(13C-NMRの約130~190ppmのピークに相当)であり、これらから、faはfa=(A1+A2)/(A1+A2+A3)により求められる。13C-NMR法が、ピッチ類の化学構造パラメータの最も基本的な量であるfaを定量的に求められる最良の方法であることは、文献(「ピッチのキャラクタリゼーションII.化学構造」横野、真田、(炭素、1981(No.105)、p73-81))に示されている。
 また原料油組成物のノルマルパラフィンの含有率は、キャピラリーカラムが装着されたガスクロマトグラフによって測定した値を意味する。具体的には、ノルマルパラフィンの標準物質によって検定した後、上記溶出クロマトグラフィー法によって分離された非芳香族成分の試料をキャピラリーカラムに通して測定する。この測定値から原料油組成物の全質量を基準とした含有率が算出可能である。
 芳香族指数faが0.3未満となった場合は、重質油組成物からのコークスの収率が極端に低くなるほか、良好なバルクメソフェーズを形成することができず、黒鉛化しても結晶組織が発達し難いため好ましくない。また0.65を超える場合には、生コークスの製造過程においてマトリックス中に急激にメソフェーズが多数発生し、主としてメソフェーズのシングル成長よりも、メソフェーズどうしの急激な合体が繰り返される。このためノルマルパラフィン含有成分によるガスの発生速度よりも、メソフェーズどうしの合体速度の方が速くなるため、バルクメソフェーズの六角網平面を小さなサイズに制限することが不可能となり好ましくない。
 以上の通り、重質油組成物の芳香族指数faは0.3~0.65が好ましい。このような芳香族指数faは、重質油組成物の密度Dが0.91~1.02g/cm、粘度Vが10~220mm/sec.の範囲の重質油組成物で、faが0.3~0.65となるようなものが特に好ましい。
 一方、重質油組成物の中に適度に含まれるノルマルパラフィン成分は、前述の通り、コーキング処理時にガスを発生することで、バルクメソフェーズの大きさを、小さなサイズに制限する重要な役割を演じている。また、このガス発生は、小さなサイズに制限された隣接するメソフェーズどうしを一軸配向させ、系全体を選択的に配向させる機能も有している。このためメソフェーズのサイズは小さく制限されているにも拘らず、粉砕された粒子を炭化・黒鉛化した場合、特に粒子表層の結晶組織が発達し易くなるため、ノルマルパラフィン含有成分は、本発明の効果を得るための必須の成分である。
 ノルマルパラフィン含有成分の含有率が5wt%未満になると、メソフェーズが必要以上に成長し、巨大な炭素六角網平面が形成されてしまうため好ましくない。また20wt%を超えると、ノルマルパラフィンからのガス発生が過多となり、バルクメソフェーズの配向を逆に乱す方向に働く傾向があるため、炭素化・黒鉛化しても結晶組織が発達し難いため好ましくない。以上の通り、ノルマルパラフィン含有率は5~20wt%が好ましい。
 以上のような物性を有する重質油としては、単独の重質油を上記の条件を満たすように各種の処理を施したもの、あるいは、上記の条件を満たすように二種類以上の原料油をブレンドすることによっても得ることができる。この原料油としては、流動接触分解油のボトム油(FCC DO)、高度な水添脱硫処理を施した重質油、減圧残油(VR)、石炭液化油、石炭の溶剤抽出油、常圧残渣油、シェルオイル、タールサンドビチューメン、ナフサタールピッチ、コールタールピッチ、エチレンボトム油及びこれらを水素化精製した重質油等が挙げられる。なかでも固化時のガス発生源として、適度な飽和成分とその成分中に適度なノルマルパラフィンを含む高度な水添脱硫処理を施した重質油は好ましく用いることができる。二種類以上の原料油をブレンドして原料油組成物を調製する場合、使用する原料油の性状に応じて配合比率を適宜調整すればよい。なお、原料油の性状は、原油の種類、原油から原料油が得られるまでの処理条件等によって変化する。
 本実施形態に係る重質油組成物は、コークス化され、ついで必要に応じて、炭素化・黒鉛化され、リチウム二次電池の負極用の炭素材料として使用される。所定の条件を満たす重質油組成物をコークス化する方法としては、ディレードコーキング法が好ましい。より具体的には、加圧条件下、ディレードコーカーによって原料油組成物を熱処理して生コークスを得る。このとき、本発明の効果を得るためには、ディレードコーカーの条件として、圧力が0.1~0.8MPa、温度が400~600℃の範囲が好ましい。
 前記圧力に好ましい範囲が規定されている理由は、ノルマルパラフィン含有成分より発生するガスの系外への放出速度を、圧力で制限することができるからである。前述の通り、メソフェーズを構成する炭素六角網平面のサイズは、発生するガスで制御するため、発生ガスの系内への滞留時間は、前記六角網平面の大きさを決定するための重要な制御パラメータとなる。
 また、前記温度に好ましい範囲が規定されている理由は、本発明の効果を得るために調整された重質油から、メソフェーズを成長させるために重要な温度だからである。前記温度が400~600℃の範囲外である条件、あるいは前記圧力が0.1~0.8MPaの範囲外である条件でコーキングされた場合には、その後所定の方法で製造された黒鉛粉末であっても、表層の黒鉛化度が低いものしか得られないか、又は結晶子の大きさL(112)が4.2nmを超えるまで黒鉛化しなければ、表層の黒鉛化度が発達しなくなるため好ましくない。
 以上の通り、本出願に係る発明の第二の態様は、重質油組成物をディレードコーキングプロセスによってコーキング処理した後、熱処理する工程を経て得られたリチウム二次電池負極用人造黒鉛であって、前記重質油組成物は、ノルマルパラフィン含有率が5~20wt%、Knight法により求められた芳香族指数faが0.3~0.65の範囲にあるものである。
 ここで熱処理とは、原料粉体を加熱して揮発成分を除き、脱水、熱分解、固相黒鉛化反応により、安定な品質の黒鉛材料を得るための熱処理であり、1500℃以下、好ましくは、500~1500℃で炭素化され、次いで黒鉛化開始温度となる2000℃以上、好ましくは最高到達温度が2200~2600℃の温度で黒鉛化される一連の熱処理過程を指す。本発明に係る第一態様で示されたような黒鉛材料を得るための好ましい熱処理過程としては、コーキング処理された重質油組成物を、窒素、アルゴン等の不活性ガス雰囲気下、500~1500℃で炭素化し、平均粒子径として50μm以下に粉砕・分級した後、これらを更に不活性ガス雰囲気中で最高到達温度が2200~2600℃の温度で黒鉛化する熱処理過程を挙げることができる。
 特に、黒鉛化処理前の出発原料の段階で粉砕・分級処理を施し、黒鉛化を行った後では、結晶構造に歪が導入される程度の粉砕を行わないことが望ましい。このような方法で製造された黒鉛粉末は、黒鉛化処理を行った後に粉砕・粒度調整された黒鉛粉末と比較して、粒子表面の結晶領域に格子歪が導入され難く、ラマン分光分析で測定されるΔνを小さく抑制することが可能だからである。また粒子径を50μm以下とした理由は、この種の黒鉛材料に求められている一般的な粒子径だからである。
 次に、本発明に係る原料炭組成物から得られるリチウムイオン二次電池負極用炭素材料を用いたリチウム二次電池について説明する。
 リチウム二次電池用負極の製造方法としては特に限定されず、例えば、本出願に係る発明が適用された炭素材料、バインダー(結着剤)、必要に応じて導電助剤、有機溶媒を含む混合物(負極合剤)を、所定寸法に加圧成形する方法が挙げられる。また他の方法としては、本出願に係る発明が適用された炭素材料、バインダー(結着剤)、導電助剤等を有機溶媒中で混練・スラリー化し、当該スラリーを銅箔等の集電体上に塗布・乾燥したもの(負極合剤)を圧延し、所定の寸法に裁断する方法も挙げることができる。
 前記バインダー(結着剤)としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、SBR(スチレンーブタジエンラバー)等を挙げることができる。負極合剤の中のバインダーの含有率は、炭素材料100質量部に対して1~30質量部程度を、電池の設計上、必要に応じて適宜設定すればよい。
 前記導電助剤としては、カーボンブラック、グラファイト、アセチレンブラック、又は導電性を示すインジウム-錫酸化物、又は、ポリアニリン、ポリチオフェン、ポリフェニレンビニレン等の導電性高分子を挙げることができる。導電助剤の使用量は、炭素材料100質量部に対して1~15質量部が好ましい。
 前記有機溶媒としては、ジメチルホルムアミド、N-メチルピロリドン、イソプロパノール、トルエン等を挙げることができる。
 炭素材料、バインダー、必要に応じて導電助剤、有機溶媒を混合する方法としては、スクリュー型ニーダー、リボンミキサー、万能ミキサー、プラネタリーミキサー等の公知の装置を用いることができる。該混合物は、ロール加圧、プレス加圧することにより成形されるが、このときの圧力は100~300MPa程度が好ましい。
 前記集電体の材質については、リチウムと合金を形成しないものであれば、特に制限なく使用することができる。例えば、銅、ニッケル、チタン、ステンレス鋼等を挙げることができる。また前記集電体の形状についても特に制限なく利用可能であるが、例示するとすれば、箔状、穴開け箔状、メッシュ状等にした帯状のものを挙げることができる。また、多孔性材料、例えばポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。
 前記スラリーを集電体に塗布する方法としては、特に限定されないが、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法、ダイコーター法など公知の方法を挙げることができる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行うのが一般的である。
 また、シート状、ペレット状等の形状に成形された負極材スラリーと集電体との一体化は、例えば、ロール、プレス、もしくはこれらの組み合わせ等、公知の方法により行うことができる。
 本実施形態に係るリチウムイオン二次電池負極用炭素材料を用いたリチウム二次電池は、例えば、以上のようにして製造した負極と正極とが、セパレータを介して対向するように配置し、電解液を注入することにより得ることができる。
 正極に用いる活物質としては、特に制限はなく、例えば、リチウムイオンをドーピング又はインターカレーション可能な金属化合物、金属酸化物、金属硫化物、又は導電性高分子材料を用いればよく、例示するのであれば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、及び複酸化物(LiCoNiMn、X+Y+Z=1)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等及びこれらの混合物を挙げることができる。
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微多孔性フィルム又はそれらを組み合わせたものを使用することができる。なお、作製するリチウムイオン二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。
 リチウム二次電池に使用する電解液及び電解質としては公知の有機電解液、無機固体電解質、高分子固体電解質が使用できる。好ましくは、電気伝導性の観点から有機電解液が好ましい。
 有機電解液としては、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールフェニルエーテル等のエーテル、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド等のアミド、ジメチルスルホキシド、スルホラン等の含硫黄化合物、メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン、テトラヒドロフラン、2-メトキシテトラヒドロフラン等の環状エーテル、エチレンカーボネート、ブチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート等の環状カーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート等の鎖状カーボネート、γ-ブチロラクトン、γ-バレロラクトン等の環状炭酸エステル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル等の鎖状炭酸エステル、N-メチル2-ピロリジノン、アセトニトリル、ニトロメタン等の有機溶媒を挙げることができる。これらの溶媒は、単独で又は2種以上を混合して使用することができる。
 これらの溶媒の溶質としては、各種リチウム塩を使用することができる。一般的に知られているリチウム塩にはLiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCl、LiCFSO、LiCFCO、LiN(CFSO2、LiN(CSO等がある。
 高分子固体電解質としては、ポリエチレンオキサイド誘導体及び該誘導体を含む重合体、ポリプロピレンオキサイド誘導体及び該誘導体を含む重合体、リン酸エステル重合体、ポリカーボネート誘導体及び該誘導体を含む重合体等が挙げられる。
 なお、上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。
 リチウムイオン二次電池の構造は、特に限定されないが、帯状に成型された正極と負極とが、セパレータを介して渦巻状に巻回された巻回電極群を、電池ケースに挿入し、封口した構造や、平板状に成型された正極と負極とが、セパレータを介して順次積層された積層式極板群を外装体中に封入した構造とするのが一般的である。リチウム二次電池は、例えば、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角形電池などとして使用される。
 本出願の発明に係る炭素材料を用いたリチウム二次電池は、従来の炭素材料を用いたリチウム二次電池と比較して、高度な信頼性を確保することが可能となるため、自動車用、具体的にはハイブリッド自動車用、プラグインハイブリッド自動車用、電気自動車用や、系統インフラの電力貯蔵用など産業用として利用することができる。
 以下、実施例及び比較例に基づき本出願に係る発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
<物性の測定>
(1)黒鉛粉末の結晶子の大きさL(112)の算出
 黒鉛粉末に、内部標準としてSi標準試料を10wt%混合し、ガラス製回転試料ホルダー(25mmφ×0.2mmt)に詰め、JIS R7651(2007)に基づき、広角X線回折法で測定を行い、黒鉛粉末の結晶子の大きさL(112)を算出した。X線回折装置は、Bruker-AXS社製 D8 ADVANCE(封入管型)、X線源はCuKα線(KβフィルターNiを使用)、X線管球への印可電圧及び電流は40kV及び40mAとした。
 得られた回折図形についても、JIS R7651(2007)に準拠した方法で解析を行った。具体的には、測定データにスムージング処理、バックグラウンド除去の後、吸収補正、偏光補正、Lorentz 補正を施し、Si標準試料の(422)回折線のピーク位置、及び値幅を用いて、黒鉛粉末の(112)回折線に対して補正を行い、結晶子サイズを算出した。なお、結晶子サイズは、補正ピークの半値幅から以下のScherrerの式を用いて計算した。測定・解析は3 回ずつ実施し、その平均値をL(112)とした。
   L=K×λ/(β×cosθ)- - - - - -Scherrerの式
   ここで、L :結晶サイズ(nm)
       K:形状因子定数(=1.0)
       λ :X線の波長(=0.15406nm)
       θ:ブラッグ角
       β:半値幅(補正値)
 実施例及び比較例に記載された黒鉛粉末のL(112)が測定された結果は、表1に示された通りである。
(2)黒鉛粉末のラマンスペクトル分析
 光源をArレーザー(励起波長514.5 nm)としたラマン分光分析を行った。測定はマクロモードで、レーザーのスポット径は約100μmであり、レーザー照射範囲全体からの平均的な情報が得られるように設定した。測定装置はRamanor T-64000 (Jobin Yvon/愛宕物産)、測定配置は60°、レーザーパワーは10mWである。
 得られたラマンスペクトル図において、1580cm-1±100cm-1の波長領域に存在するピークの半価幅ΔνGを、最小二乗法による直接読み取りにより算出した。なお測定・解析は3回ずつ実施し、その平均値をΔνGとした。
 実施例及び比較例に記載された黒鉛粉末のΔνGが測定された結果は、表1に示された通りである。
(3)重質油組成物の物性
 原料油組成物のノルマルパラフィンの含有率は、キャピラリーカラムが装着されたガスクロマトグラフによって測定した。具体的には、ノルマルパラフィンの標準物質によって検定した後、溶出クロマトグラフィー法によって分離された非芳香族成分の試料をキャピラリーカラムに通して測定した。この測定値から原料油組成物の全質量を基準とした含有率を算出した。
 また芳香族炭素分率(fa)は、Knight法により算出した。すなわち、重質油組成物の13C-NMR法による芳香族炭素のスペクトルとして3つの成分(A1,A2,A3)に分割する。ここで、A1は芳香族環内部炭素数、置換されている芳香族炭素と置換していない芳香族炭素の半分(13C-NMRの約40~60ppmのピークに相当)、A2は置換していない残りの半分の芳香族炭素(13C-NMRの約60~80ppmのピークに相当)、A3は脂肪族炭素数(13C-NMRの約130~190ppmのピークに相当)であり、これらからfaは、fa=(A1+A2)/(A1+A2+A3)により算出した。比較例8以外の全ての実施例及び比較例に記載された黒鉛粉末の原料油のノルマルパラフィン含有率、及び芳香族指数faは、表1に示された通りである。
<負極材料評価用セルの作製と特性の評価方法>
(1)負極材料評価用セルの作製方法
 負極材料として、下記実施例又は比較例で得られた黒鉛粉末と結着剤のポリフッ化ビニリデン(クレハ社製KF#9310)、アセチレンブラック(デンカ社製のデンカブラック)を重量比で90:2:8に混合し、N-メチル-2-ピロリジノンを加えて混練した後、ペースト状にして、厚さ18μmの銅箔の片面に塗布し、乾燥及び圧延した。得られたシート状の電極を直径φ15mmに打ち抜き作用極とした。この作用極及びその他の必要部材を十分に乾燥させ、露点-100℃のアルゴンガスが満たされたグローブボックス内に導入し、負極材料評価用セルを組み立てた。乾燥条件は、作用極が減圧状態の下150℃で12時間以上、その他部材が減圧状態の下70℃で12時間以上である。
 図1に負極材料評価用セル1の断面図を示す。評価用セル1は、四弗化エチレン製パッキング4により内部の気密が保持可能な中空金属体2を容器としている。当該中空金属体2にはまず、参照極15と上記工程により得られた作用極7とを離間して配置した。次に、これらの電極上に直径φ24mmのポリプロピレン製のマイクロポーラスフィルム(セルガード社製#2400)からなるセパレータ9と、厚さ0.7mm、直径φ17mmの円盤状リチウム金属箔からなる対極5とを順に積層した。なおリチウム金属箔と作用極との積層位置関係は、リチウム金属箔を作用極側に投影したときにその外周部が作用極7の外周を包囲するように押さえ治具3によって保持した。さらに、対極5、作用極7および参照極15から各々金属枠2の外部に延びる端子8、10、12を設けた。
 次いで、前記中空金属体3に電解液6を注入すると共に、この積層体が、厚さ1mm、直径φ20mmのステンレス(SUS304)製円盤11を介してステンレス製のバネ13で加圧され、帯状のニッケル製リード板(厚さ50μm,幅3mm)にリチウム金属が巻きつけられた参照極15が作用極7近傍で固定されるように前記中空金属体3を封止し、負極材料評価用セル1を作製した。使用した電解液6は、エチレンカーボネートとエチルエチルメチルカーボネートとを体積比で3:7に混合した溶媒にヘキサフルオロリン酸リチウム(LiPF6)を1mol/Lの濃度となるように溶解したものである。
(2)負極材料評価用セルの充放電試験方法
 負極材料評価用セルを25℃の恒温室内に設置し、以下に示す充放電試験を行った。先ず作用極の面積を基準とし、電流密度が0.1mA/cmとなるような電流値で対極及び作用極の間を通電(放電)し、参照極に対する作用極の電位が0.01Vになるまで作用極にリチウムをドープした。10分間の休止の後、同じ電流値で参照極に対する作用極の電位が1.2Vになるまで通電(充電)し、作用極に吸蔵されたリチウムを脱ドープした。得られたリチウムドープ容量(mAh/g)とリチウム脱ドープ容量(mAh/g)を確認し、これらの値から初期充放電サイクルの充放電効率(%)を以下の式から算出した。
Figure JPOXMLDOC01-appb-M000002
 実施例及び比較例に記載された黒鉛粉末のリチウム脱ドープ容量、及び充放電効率は、表1に示された通りである。
<電池の作製と特性の評価方法>
(1)電池の作製方法
 図2に作製した電池20の断面図を示す。正極21は、正極材料である平均粒子径6μmのニッケル酸リチウム(戸田工業社製LiNi0.8Co0.15Al0.05)と結着剤のポリフッ化ビニリデン(クレハ社製KF#1320)、アセチレンブラック(デンカ社製のデンカブラック)を重量比で89:6:5に混合し、N-メチル-2-ピロリジノンを加えて混練した後、ペースト状にして、厚さ30μmのアルミニウム箔の片面に塗布し、乾燥及び圧延操作を行い、塗布部のサイズが、幅30mm、長さ50mmとなるように切断されたシート電極である。このシート電極の一部はシートの長手方向に対して垂直に正極合剤が掻き取られ、その露出したアルミニウム箔が塗布部の集電体22(アルミニウム箔)と一体化して繋がっており、正極リード板としての役割を担っている。
 負極23は、負極材料である下記実施例又は比較例で得られた黒鉛粉末と結着剤のポリフッ化ビニリデン(クレハ社製KF#9310)と、アセチレンブラック(デンカ社製のデンカブラック)とを重量比で90:2:8に混合し、N-メチル-2-ピロリジノンを加えて混練した後、ペースト状にして、厚さ18μmの銅箔の片面に塗布し、乾燥及び圧延操作を行い、塗布部のサイズが、幅32mm、長さ52mmとなるように切断されたシート電極である。このシート電極の一部はシートの長手方向に対して垂直に負極合剤が掻き取られ、その露出した銅箔が塗布部の集電体24(銅箔)と一体化して繋がっており、負極リード板としての役割を担っている。
 電池20の作製は、正極21、負極23、セパレータ25、外装27及びその他部品を十分に乾燥させ、露点-100℃のアルゴンガスが満たされたグローブボックス内に導入して組み立てた。乾燥条件は、正極21及び負極23が減圧状態の下150℃で12時間以上、セパレータ25及びその他部材が減圧状態の下70℃で12時間以上である。
 このようにして乾燥された正極21及び負極23を、正極の塗布部と負極の塗布部とが、ポリポロピレン製のマイクロポーラスフィルム(セルガード社製#2400)を介して対向させる状態で積層し、ポリイミドテープで固定した。なお、正極及び負極の積層位置関係は、負極の塗布部に投影される正極塗布部の周縁部が、負極塗布部の周縁部の内側で囲まれるように対向させた。得られた単層電極体を、アルミラミネートフィルムで包埋させ、電解液を注入し、前述の正・負極リード板がはみ出した状態で、ラミネートフィルムを熱融着することにより、密閉型の単層ラミネート電池を作製した。使用した電解液は、エチレンカーボネートとエチルメチルカーボネートが体積比で3:7に混合された溶媒にヘキサフルオロリン酸リチウム(LiPF)が1mol/Lの濃度となるように溶解されたものである。
(2)電池の評価方法
 得られた電池を25℃の恒温室内に設置し、以下に示す充放電試験を行った。先ず1.5mAの電流で、電池電圧が4.2Vとなるまで定電流で充電した。10分間休止の後、同じ電流で電池電圧が3.0Vとなるまで定電流で放電する充放電サイクルを10回繰り返した。この充放電サイクルは、電池の異常を検地するためのものであるため、充放電サイクル試験のサイクル数には含まなかった。本実施例で作製された電池は、全て異常がないことを確認した。
 次の充放電サイクルを第1サイクル(初期サイクル)とする。75mAの電流で、電池電圧が4.2Vとなるまで定電流で充電し、1分間休止の後、同じ電流で電池電圧が3.0Vとなるまで定電流で放電する充放電サイクルを設定し、このサイクルを1000回繰り返した。充放電サイクルの容量維持率として、初期放電容量に対する1000サイクル目の放電容量の割合(%)を算出した。実施例及び比較例で作製した黒鉛粉末を負極として使用した電池の充放電サイクルの容量維持率を表1中に示す。
<実施例及び比較例の黒鉛粉末の製造方法>
(比較例1)
 硫黄分3.1質量%の常圧蒸留残油を、触媒存在下、水素化分解率が25%以下となるように水素化脱硫し、水素化脱硫油を得た。水素化脱硫条件は、全圧180MPa、水素分圧160MPa、温度380℃である。また、常圧蒸留残渣油を減圧蒸留し、更に水素化脱硫したもの(硫黄分380質量ppm、15℃における密度0.83g/cm)を、反応温度530℃、全圧2.3kgf/cm、触媒/油比13、接触時間7秒で流動接触分解し、流動接触分解残油を得た。触媒としては、シリカ・アルミナ触媒に白金が担持されたものを使用した。次に、前述の水素化脱硫油と流動接触分解残油及びエチレンボトム油とを、質量比1:3:1で混合し、コークスの原料となる重質油組成物(以下、特に原料油組成物と略記)を得た。この原料油組成物のノルマルパラフィン含有率、及び芳香族指数faを表1に示す。
 この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物を得た。次いで、当該原料炭組成物をロータリーキルンに導入して1400℃でか焼し、炭素材料を得た。得られた炭素材料を機械式粉砕機(スーパーローターミル/日清エンジニアリング製)で粉砕し、精密空気分級機(ターボクラシファイヤー/日清エンジニアリング製)で分級することにより、平均粒子径12μmの炭素微粒子材料を得た。この炭素微粒子材料をるつぼに投入し、電気炉に設置して、80L/分の窒素ガス気流中、最高到達温度2100℃で熱処理した。このとき昇温速度は200℃/時間、最高到達温度の保持時間は16時間、降温速度は1000℃までが100℃/時間とし、その後窒素気流を保持させた状態で室温まで放冷させた。炭素微粒子材料を得た後の熱処理を、以下「黒鉛化」と呼称する。得られた黒鉛粉末を、黒鉛Aとする。
(実施例1)
 比較例1と同様にして得た炭素微粒子材料に対し、最高到達温度を2200℃とした以外は比較例1と同様な方法で黒鉛化した。得られた黒鉛粉末を、黒鉛Bとする。
(実施例2)
 比較例1と同様にして得た炭素微粒子材料に対し、最高到達温度を2400℃とした以外は比較例1と同様な方法で黒鉛化した。得られた黒鉛粉末を、黒鉛Cとする。
(実施例3)
 比較例1と同様にして得た炭素微粒子材料に対し、最高到達温度を2600℃とした以外は比較例1と同様な方法で黒鉛化した。得られた黒鉛粉末を、黒鉛Dとする。
(比較例2)
 比較例1と同様にして得た炭素微粒子材料に対し、最高到達温度を2700℃とした以外は比較例1と同様な方法で黒鉛化した。得られた黒鉛粉末を、黒鉛Eとする。
(比較例3)
 比較例1と同様にして得た原料炭組成物をるつぼに投入し、最高到達温度を2400℃とした以外は比較例1と同様な方法で黒鉛化した。この黒鉛を機械式粉砕機(スーパーローターミル/日清エンジニアリング製)で粉砕し、精密空気分級機(ターボクラシファイヤー/日清エンジニアリング製)で分級することにより、平均粒子径12μmの炭素微粒子材料を得た。得られた黒鉛粉末を黒鉛Fとする。
(比較例4)
 比較例1記載の流動接触分解残油のノルマルパラフィン含有率、及び芳香族指数faを表1に示す。この流動接触分解残油を原料油組成物とし、比較例1に記載された方法と同様にして原料炭組成物及び炭素微粒子を得た。この炭素微粒子材料に対し、最高到達温度を2400℃とした以外は比較例1と同様な方法で黒鉛化した。得られた黒鉛粉末を、黒鉛Gとする。
(実施例4)
 比較例1記載の流動接触分解残油を、同体積のn-ヘプタンを加え混合した後、ジメチルホルムアミドで選択抽出し、芳香族分と飽和分に分離させた。このうちの芳香族分と比較例1記載の水素化脱硫油とを質量比4:1で混合し、コークスの原料油組成物を得た。この原料油組成物のノルマルパラフィン含有率、及び芳香族指数faを表1に示す。この原料油を、比較例1に記載された方法と同様に処理し、原料炭組成物及び炭素微粒子を得た。この炭素微粒子材料に対し、最高到達温度を2400℃とした以外は比較例1と同様な方法で黒鉛化した。得られた黒鉛粉末を、黒鉛Hとする。
(比較例5)
 比較例1記載の水素化脱硫油と流動接触分解残油とを質量比3:1で混合し、コークスの原料油組成物を得た。この原料油組成物のノルマルパラフィン含有率、及び芳香族指数faを表1に示す。この原料油組成物を、比較例1に記載された方法と同様に処理し、原料炭組成物及び炭素微粒子を得た。この炭素微粒子材料に対し、最高到達温度を2400℃とした以外は比較例1と同様な方法で黒鉛化した。得られた黒鉛粉末を、黒鉛Iとする。
(実施例5)
 比較例1記載の流動接触分解残油に、同体積のn-ヘプタンを加え混合した後、ジメチルホルムアミドで選択抽出し、芳香族分と飽和分に分離させた。このうちの飽和分と比較例1記載の流動接触分解残油とを質量比1:1で混合し、コークスの原料油組成物を得た。この原料油組成物のノルマルパラフィン含有率、及び芳香族指数faを表1に示す。この原料油組成物を、比較例1に記載された方法と同様に処理し、原料炭組成物及び炭素微粒子を得た。この炭素微粒子材料に対し、最高到達温度を2400℃とした以外は比較例1と同様な方法で黒鉛化した。得られた黒鉛粉末を、黒鉛Jとする。
(比較例6)
 比較例1記載の水素化脱硫油と流動接触分解残油とを質量比4:1で混合し、コークスの原料油組成物を得た。この原料油組成物のノルマルパラフィン含有率、及び芳香族指数faを表1に示す。この原料油組成物を、比較例1に記載された方法と同様に処理し、原料炭組成物及び炭素微粒子を得た。この炭素微粒子材料に対し、最高到達温度を2400℃とした以外は比較例1と同様な方法で黒鉛化した。得られた黒鉛粉末を、黒鉛Kとする。
(比較例7)
 比較例1記載の流動接触分解残油を、ジメチルホルムアミドで選択抽出し、芳香族分と飽和分に分離させた。このようにして得られた芳香族分と飽和分を質量比4:1で混合し、コークスの原料油組成物を得た。この原料油組成物のノルマルパラフィン含有率、及び芳香族指数faを表1に示す。この原料油を、比較例1に記載された方法と同様に処理し、原料炭組成物及び炭素微粒子を得た。この炭素微粒子材料に対し、最高到達温度を2400℃とした以外は比較例1と同様な方法で黒鉛化した。得られた黒鉛粉末を、黒鉛Lとする。
(比較例8)
 高純度化処理された市販のブラジル産鱗片状天然黒鉛(固定炭素=99.6%,灰分=0.1%,揮発分=0.3%)を機械式粉砕機(スーパーローターミル/日清エンジニアリング製)で粉砕し、精密空気分級機(ターボクラシファイヤー/日清エンジニアリング製)で分級することにより、平均粒子径12μmの炭素微粒子材料を得た。得られた黒鉛粉末を黒鉛Mとする。
Figure JPOXMLDOC01-appb-T000003
<実施例及び比較例の試験結果に関する考察>
 比較例1、実施例1~3及び比較例2は同一の原料油組成物から得られた黒鉛粉末で、黒鉛化温度のみが異なっている。比較例1の黒鉛Aは、L(112)が1.5nm、Δνが22.3cm-1で、本出願に係る第一の態様の範囲であるL(112)が2~4.2nm、Δνが15~19cm-1の2つの範囲から共に外れている。
 本発明の技術的範囲を以下の考察が何ら制約するものではないが、L(112)が2nm以下と相対的に小さくなった要因は、黒鉛化温度が2100℃と低かったからであると考えられる。このため負極としての容量(負極材料評価用セルのリチウム脱ドープ容量)が低くなった。
 また黒鉛Aを負極に使用した電池の1000サイクル後の容量維持率は75%であり、相対的に低い値を示した。この理由は、本発明の技術的範囲を以下の考察が何ら制約するものではないが、Δνが低く粒子表面の結晶子の露出部分、即ち未組織炭素やダングリングボンドが多く存在するため、この領域で電解液溶媒が還元分解され易く、充放電サイクルの進行と共に抵抗分極が増大するからであると考えられる。以上の通り、負極に使用される黒鉛粉末のΔνが本出願に係る第一の態様で規定された上限範囲19cm-1を超えると、その電池のサイクル劣化が大きくなるため好ましくない。
 一方、実施例1~3の黒鉛B,C及びDは、比較例1と同一の原料油から製造された黒鉛粉末であるが、黒鉛化温度が高く、2200~2600℃である点のみが異なっており、L(112)、ΔνGが共に本出願の発明の範囲内に含まれている。このため負極としての容量(負極材料評価用セルのリチウム脱ドープ容量)は290mAh/g以上が確保され、且つこれら黒鉛粉末を負極に使用した電池の1000サイクル後の容量維持率は90%以上が確保されているため好ましい。
 比較例2の黒鉛Eも実施例1~3と同一の原料油から製造された黒鉛粉末であるが、黒鉛化温度が更に高く、2700℃である点のみが異なっている。比較例2の黒鉛EはΔνが小さく、粒子表面に存在する結晶子のエッヂ面の露出領域は少ないが、結晶子の大きさL(112)が相対的に大きく、リチウムが黒鉛結晶にインターカレーションするとき、電解液の溶媒も共挿入され易い。このため、この溶媒分子が結晶層間で還元分解され易くなり、初期の充放電効率(負極材料評価用セルの充放電効率)が62%と大幅に低下した。また黒鉛Eを負極に使用した電池の1000サイクル後の容量維持率は72%であり、実施例1~3の電池のそれ(90~93%)と比較しても大幅に低下していた。本発明の技術的範囲を以下の考察が何ら制約するものではないが、この原因は、黒鉛結晶に共挿入された溶媒の還元分解反応が、充放電サイクルを繰り返しているときも継続していることを示唆する。即ち、各サイクルにおける充電過程では、この種の副反応が発生し、その結果生じる反応生成物が堆積し続け、サイクルを繰り返す毎に抵抗分極が増大する。以上の通り、負極黒鉛粉末のL(112)が本出願に係る第一の態様の上限範囲である4.2nmを越えると、それを使用した電池のサイクル劣化が大きくなるため好ましくない。
 比較例3の黒鉛Fも実施例1~3及び比較例1~2と同一の原料油から製造された黒鉛粉末であるが、黒鉛化した後に粉砕されている点のみが異なっている。同じ黒鉛化温度である実施例2の黒鉛Cの物性値と比較すれば明らかなように、黒鉛FのL(112)は黒鉛Cの場合と同様で、本出願に係る発明の範囲内にあるが、そのΔνは21.3cm-1となり、黒鉛Cのそれ(17.4cm-1)と比較して大きな値となった。この原因は、黒鉛化後に粉砕しているため、黒鉛粉末の粒子表面に多量のダングリングボンドや未組織炭素が導入されてしまうからである。これに対して黒鉛Cは、1400℃で炭素化した後に黒鉛化処理されているため、炭素化段階で導入された粒子表面のダングリングボンドや未組織炭素は、黒鉛化の過程で修復され、Δνは小さくなっている。
 黒鉛Fの負極としての可逆容量、即ち負極材料評価用セルのリチウム脱ドープ容量は、L(112)が同様な黒鉛Cの場合と同様であるが、負極として使用した電池の1000サイクル後の容量維持率は68%となり、黒鉛Cの場合より大幅に低下している。この理由は、ΔνGが低いことからも明らかな通り、粒子表面に存在する未組織炭素やダングリングボンドが多く存在するため、この領域で電解液溶媒が還元分解され易く、充放電サイクルの進行と共に抵抗分極が増大するからで、黒鉛Aの場合と同じである。
 比較例4の黒鉛Gは、Δνが13.6cm-1と小さく、粒子表面の結晶子エッヂが露出している領域や未組織炭素の量も小さいと考えられる。このため充放電サイクルを繰り返したときに溶媒が還元分解される領域は小さく、サイクル劣化を抑制できると考えられるが、L(112)は4.7nmと大きく、本出願に係る第一の態様の上限範囲を超えている。このため電池の充放電サイクルの容量維持率が62%と低く、サイクル劣化は大きかったが、この原因は比較例2の黒鉛Eと同様であると考えられる。
 比較例5の黒鉛Iは、L(112)が本出願に係る第一の態様の範囲内である一方、Δνが19.8cm-1と大きく、本出願に係る発明の上限範囲を超えている。このため電池の充放電サイクルの容量維持率が78%と低く、サイクル劣化は大きかったが、この原因は比較例1の黒鉛Aと同様であると考えられる。
 比較例6の黒鉛Kは、熱処理温度が2400℃で実施例2の黒鉛C、実施例4の黒鉛H及び実施例5の黒鉛Jと同じであるが、L(112)が本出願に係る第一の態様の下限以下で、且つΔνが21.4と大きく、本出願に係る発明の上限範囲を超えている。このため電池の充放電サイクルの容量維持率が64%と低く、サイクル劣化は大きかったが、この原因は比較例1の黒鉛Aと全く同様であると考えられる。
  比較例7の黒鉛Lは、熱処理温度が2400℃で実施例2の黒鉛C、実施例4の黒鉛H及び実施例5の黒鉛Jと同じであるが、L(112)が本出願に係る第一の発明の態様の上限より大きくなった。一方Δνは本出願に係る第一の発明の態様で規定された範囲内であるが、比較例2及び4の電池の挙動と同様に大きなサイクル劣化が認められた。この原因はL(112)が大き過ぎるからであり、Δνが本出願に係る第一の発明の態様で規定された範囲内の黒鉛材料であっても、溶媒の共挿入反応が抑制できず、黒鉛結晶の層間で還元分解され、その反応生成物が充放電サイクルの繰り返しにより継続して堆積した結果、電池の抵抗が大きくなって容量が劣化したと考えられる。
 比較例8の黒鉛Mは、Δνが本出願に係る第一の態様の範囲内である一方、L(112)が32.4nmと大きく、本出願に係る発明の上限範囲を超えている。黒鉛MのL(112)は黒鉛A~Mの中で最も大きいため、負極としての充放電容量(負極材料評価用セルのリチウム脱ドープ容量に相当)が最も高い特徴が認められた。しかしながらL(112)が大き過ぎるため、電池の充放電サイクルの容量維持率が69%と低く、サイクル劣化が大きかった。この原因は比較例2の黒鉛Eと同様であると考えられる。
 以上の通り、リチウム二次電池の負極としての黒鉛粉末として、L(112)が2~4.2nm及びΔνが15~19である実施例1~5(本出願に係る第一の態様に規定された範囲内)は、負極としての容量、即ち負極材料評価用セルのリチウム脱ドープ容量として290mAh/g以上が確保され、且つ負極として使用した電池の充放電1000サイクル後の容量維持率が88%以上であった。
 L(112)及びΔνが本出願に係る発明の範囲外である比較例1~8は、負極としての初期の可逆容量(負極材料評価用セルのリチウム脱ドープ容量に相当)が221~365mAh/gであり、特に比較例2及び7のように実施例の黒鉛材料より高い容量が認められる場合もあったが、負極として使用した電池の1000サイクル充放電後の容量維持率が62~78%と低く、寿命特性に関しては、実施例の黒鉛材料を使用した場合より低下することが明確となった。
 また表1に記載された通り、実施例の黒鉛材料を得るための原料油組成物は、本出願に係る第二の態様の範囲内、即ちノルマルパラフィン含有量が5~20wt%であり、且つ芳香族指数faが0.3~0.65であることが望ましいことが明確となった。従って、本出願に係る第一の態様に規定された黒鉛材料を完成させるための製造方法として、重質油組成物をディレードコーキングプロセスによってコーキング処理した後、熱処理して得る場合、その原料油組成物は、本出願に係る第二の態様で規定された通り、ノルマルパラフィン含有量が5~20wt%であり、且つ芳香族指数faが0.3~0.65であることが望ましいことが明確となった。
 ただし比較例1~3で示された通り、原料油組成物のノルマルパラフィン含有量及び芳香族指数が、本出願に係る第二の態様の範囲内であっても、黒鉛化温度や粉砕処理する工程の順序に依存して、必ずしも本出願の第一の態様で規定された黒鉛材料が得られない場合もあり得る。
1 負極材料評価用セル
2 中空金属体
3 押さえ治具
4 パッキン
5、21 対極(正極)
6 電解液
7、23 作用極(負極)
8、10、12 端子
9、25 セパレータ
11 対極押さえ板
13 ばね
15 参照極
20 電池
22 正極集電体
24 負極集電体
27 外装

Claims (7)

  1.  X線広角回折法によって得られた(112)回折線から算出されるc軸方向の結晶子の大きさL(112)が2.0~4.2nmであって、且つ、波長5145オングストロームのアルゴンイオンレーザー光を用いたラマンスペクトル分析において、1580cm-1±100cm-1の波長領域に存在するピークの半価幅Δνが15~19cm-1であるリチウム二次電池負極用人造黒鉛。
  2.  重質油組成物をディレードコーキングプロセスによってコーキング処理した後、熱処理する工程を経て得られたリチウム二次電池負極用人造黒鉛であって、前記重質油組成物は、ノルマルパラフィン含有率が5~20wt%、Knight法により求められた芳香族指数faが0.3~0.65である請求項1に記載のリチウム二次電池負極用人造黒鉛。
  3.  前記熱処理する工程が、1500℃以下で炭素化し粉砕することにより炭素微粒子材料を得るステップと、該炭素微粒子材料を不活性ガス雰囲気下最高到達温度が2200から2600℃になるまで加熱して前記人造黒鉛を得るステップとを含む請求項2に記載のリチウム二次電池負極用人造黒鉛。
  4.  重質油組成物をディレードコーキングプロセスによってコーキング処理した後、熱処理する工程を含むリチウム二次電池負極用黒鉛の製造方法であって、前記重質油組成物は、ノルマルパラフィン含有率が5~20wt%、Knight法により求められた芳香族指数faが0.3~0.65であるリチウム二次電池負極用人造黒鉛の製造方法。
  5.  請求項4に記載の製造方法により得られたリチウム二次電池負極用人造黒鉛。
  6.  リチウムの可逆的なインターカレーションが可能なリチウムを含んだ正極と、請求項1に記載のリチウム二次電池負極用人造黒鉛を含む負極と、非水電解質とを備えたリチウム二次電池。
  7.  リチウムの可逆的なインターカレーションが可能なリチウムを含んだ正極と、請求項5に記載のリチウム二次電池負極用人造黒鉛を含む負極と、非水電解質とを備えたリチウム二次電池。
     
     
PCT/JP2010/066096 2009-09-18 2010-09-16 リチウム二次電池の負極用炭素材料及びその製造方法 WO2011034152A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127008412A KR101820071B1 (ko) 2009-09-18 2010-09-16 리튬 이차 전지의 음극용 탄소 재료 및 그 제조 방법
EP10817265.1A EP2479823A4 (en) 2009-09-18 2010-09-16 NEGATIVE ELECTRODE CARBON MATERIAL FOR LITHIUM RECHARGEABLE BATTERY AND METHOD FOR MANUFACTURING THE SAME
CN201080041837.0A CN102511096B (zh) 2009-09-18 2010-09-16 锂二次电池的负极用碳材料及其制造方法
US13/422,513 US8617508B2 (en) 2009-09-18 2012-03-16 Carbon material for negative electrode of lithium secondary battery and method for producing the same
US14/089,392 US20140079622A1 (en) 2009-09-18 2013-11-25 Carbon material for negative electrode of lithium secondary battery and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-217842 2009-09-18
JP2009217842A JP5367521B2 (ja) 2009-09-18 2009-09-18 リチウム二次電池の負極用炭素材料及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/422,513 Continuation US8617508B2 (en) 2009-09-18 2012-03-16 Carbon material for negative electrode of lithium secondary battery and method for producing the same

Publications (1)

Publication Number Publication Date
WO2011034152A1 true WO2011034152A1 (ja) 2011-03-24

Family

ID=43758752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066096 WO2011034152A1 (ja) 2009-09-18 2010-09-16 リチウム二次電池の負極用炭素材料及びその製造方法

Country Status (6)

Country Link
US (2) US8617508B2 (ja)
EP (1) EP2479823A4 (ja)
JP (1) JP5367521B2 (ja)
KR (1) KR101820071B1 (ja)
CN (1) CN102511096B (ja)
WO (1) WO2011034152A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133510A1 (ja) * 2011-03-30 2012-10-04 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池の負極用炭素材料の原料炭組成物およびその製造方法
WO2012133511A1 (ja) * 2011-03-30 2012-10-04 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池の負極用炭素材料およびその製造方法
EP2869370A4 (en) * 2012-06-29 2016-08-31 Mt Carbon Co Ltd GRAPHITE MATERIAL FOR NEGATIVE ELECTRODE OF LITHIUM ION RECHARGEABLE BATTERY, LITHIUM ION RECHARGEABLE BATTERY COMPRISING SAME, AND METHOD FOR PRODUCING GRAPHITE MATERIAL FOR LITHIUM ION RECHARGEABLE BATTERY
WO2021256558A1 (ja) * 2020-06-18 2021-12-23 Eneos株式会社 リチウムイオン二次電池負極用人造黒鉛材料、及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2579368B1 (en) * 2010-05-31 2015-04-22 JX Nippon Oil & Energy Corporation Coking coal compound for anode material of lithium ion secondary battery
JP5528923B2 (ja) * 2010-06-25 2014-06-25 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池負極材料用の原料炭組成物
JP5490636B2 (ja) * 2010-06-30 2014-05-14 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池負極炭素材料用の原料油組成物
JP5498279B2 (ja) * 2010-06-30 2014-05-21 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池負極炭素材料用の原料油組成物
JP5623262B2 (ja) * 2010-12-13 2014-11-12 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池負極用黒鉛材料およびその製造方法、リチウムイオン二次電池
JP6242716B2 (ja) 2014-03-04 2017-12-06 Jxtgエネルギー株式会社 リチウムイオン二次電池負極用人造黒鉛材料およびその製造方法
JP7178269B2 (ja) * 2019-01-15 2022-11-25 Eneos株式会社 人造黒鉛材料、人造黒鉛材料の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP7178270B2 (ja) * 2019-01-15 2022-11-25 Eneos株式会社 人造黒鉛材料、人造黒鉛材料の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP7178271B2 (ja) 2019-01-15 2022-11-25 Eneos株式会社 人造黒鉛材料、人造黒鉛材料の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN111211315B (zh) * 2020-02-26 2023-02-28 中国科学院山西煤炭化学研究所 一种沥青基片层碳材料及其制备方法和应用
TWI756928B (zh) * 2020-11-19 2022-03-01 台灣中油股份有限公司 人工石墨的製備方法
CN113644257B (zh) * 2021-07-27 2024-07-16 江苏正力新能电池技术有限公司 一种负极材料及其制备方法、负极片以及电化学装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955209A (ja) * 1995-08-10 1997-02-25 Fuji Elelctrochem Co Ltd リチウム二次電池用負極炭素質材料およびその製造方法
JPH10284081A (ja) * 1997-02-04 1998-10-23 Mitsubishi Chem Corp リチウムイオン二次電池
JP2000243398A (ja) * 1999-02-23 2000-09-08 Osaka Gas Co Ltd リチウム二次電池用負極材料およびその製造方法、リチウム二次電池用負極並びにリチウム二次電池
JP2000306582A (ja) * 1999-04-22 2000-11-02 Mitsubishi Chemicals Corp 電極用黒鉛材料およびそれを用いたリチウムイオン二次電池
JP2000348727A (ja) * 1999-06-01 2000-12-15 Fuji Elelctrochem Co Ltd 非水電解液2次電池
WO2004034491A1 (ja) * 2002-10-11 2004-04-22 Fdk Corporation 非水電解質二次電池、及びこの非水電解二次電池に用いる正極の製造方法
JP2004273444A (ja) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp リチウム二次電池用負極活物質、リチウム二次電池負極及びリチウム二次電池
WO2006109497A1 (ja) * 2005-03-30 2006-10-19 Osaka Gas Co., Ltd. メソカーボンマイクロビーズの製造方法
JP2009087871A (ja) 2007-10-02 2009-04-23 Nippon Oil Corp リチウムイオン二次電池負極用人造黒鉛及びその製造方法
JP2009117256A (ja) * 2007-11-08 2009-05-28 Nippon Oil Corp リチウムイオン二次電池負極材料用原料炭組成物及びその製造方法
WO2010050595A1 (ja) * 2008-10-31 2010-05-06 三菱化学株式会社 非水系二次電池用負極材料
WO2010074247A1 (ja) * 2008-12-26 2010-07-01 新日本石油株式会社 リチウムイオン二次電池負極材料用の原料油組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0917223A4 (en) 1997-02-04 2006-10-04 Mitsubishi Chem Corp LITHIUM-ION SECONDARY BATTERY
JP2001313032A (ja) * 2000-04-27 2001-11-09 Mitsubishi Chemicals Corp 非水系二次電池
CA2364651A1 (en) * 2001-12-07 2003-06-07 Hydro-Quebec Carbon-carbon composite as negative electrode for li-ion batteries
JP4014151B2 (ja) * 2002-09-30 2007-11-28 日立マクセル株式会社 リチウム二次電池
JP4729716B2 (ja) 2003-02-20 2011-07-20 三菱化学株式会社 リチウム二次電池負極及びリチウム二次電池
CN1751405B (zh) * 2003-02-20 2010-12-08 三菱化学株式会社 锂二次电池的负极和锂二次电池
JP5916268B2 (ja) * 2005-12-07 2016-05-11 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
WO2008078679A1 (ja) * 2006-12-22 2008-07-03 Toyo Tanso Co., Ltd. 黒鉛材料及びその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955209A (ja) * 1995-08-10 1997-02-25 Fuji Elelctrochem Co Ltd リチウム二次電池用負極炭素質材料およびその製造方法
JPH10284081A (ja) * 1997-02-04 1998-10-23 Mitsubishi Chem Corp リチウムイオン二次電池
JP2000243398A (ja) * 1999-02-23 2000-09-08 Osaka Gas Co Ltd リチウム二次電池用負極材料およびその製造方法、リチウム二次電池用負極並びにリチウム二次電池
JP2000306582A (ja) * 1999-04-22 2000-11-02 Mitsubishi Chemicals Corp 電極用黒鉛材料およびそれを用いたリチウムイオン二次電池
JP2000348727A (ja) * 1999-06-01 2000-12-15 Fuji Elelctrochem Co Ltd 非水電解液2次電池
WO2004034491A1 (ja) * 2002-10-11 2004-04-22 Fdk Corporation 非水電解質二次電池、及びこの非水電解二次電池に用いる正極の製造方法
JP2004273444A (ja) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp リチウム二次電池用負極活物質、リチウム二次電池負極及びリチウム二次電池
WO2006109497A1 (ja) * 2005-03-30 2006-10-19 Osaka Gas Co., Ltd. メソカーボンマイクロビーズの製造方法
JP2009087871A (ja) 2007-10-02 2009-04-23 Nippon Oil Corp リチウムイオン二次電池負極用人造黒鉛及びその製造方法
JP2009117256A (ja) * 2007-11-08 2009-05-28 Nippon Oil Corp リチウムイオン二次電池負極材料用原料炭組成物及びその製造方法
WO2010050595A1 (ja) * 2008-10-31 2010-05-06 三菱化学株式会社 非水系二次電池用負極材料
WO2010074247A1 (ja) * 2008-12-26 2010-07-01 新日本石油株式会社 リチウムイオン二次電池負極材料用の原料油組成物

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
J. O. BESENHARD; M. WINTER; J. YANG; W. BIBERACHER, J. POWER SOURCES, vol. 54, 1955, pages 228
JIS R7651, 2007
MINORU NAKAJO, TANSO, vol. 90, 1977, pages 105
PROCEEDINGS OF THE 23RD ANNUAL MEETING OF THE CARBON SOCIETY OF JAPAN, 3 December 1996 (1996-12-03)
PROCEEDINGS OF THE 29TH ANNUAL MEETING OF THE CARBON SOCIETY OF JAPAN, 4 December 2002 (2002-12-04)
PROCEEDINGS OF THE 35TH BATTERY SYMPOSIUM IN JAPAN, 14 November 1994 (1994-11-14)
PROCEEDINGS OF THE 48TH BATTERY SYMPOSIUM IN JAPAN, 13 November 2007 (2007-11-13)
PROCEEDINGS OF THE 71ST MEETING OF THE ELECTROCHEMICAL SOCIETY OF JAPAN, 24 March 2004 (2004-03-24)
PROCEEDINGS OF THE 76TH MEETING OF THE ELECTROCHEMICAL SOCIETY OF JAPAN, 26 March 2009 (2009-03-26)
See also references of EP2479823A4 *
YOKONO; SANADA; TANSO, CHARACTERIZATION OF PITCH II. CHEMICAL STRUCTURE, 1981, pages 73 - 81

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133510A1 (ja) * 2011-03-30 2012-10-04 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池の負極用炭素材料の原料炭組成物およびその製造方法
WO2012133511A1 (ja) * 2011-03-30 2012-10-04 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池の負極用炭素材料およびその製造方法
KR20140024300A (ko) * 2011-03-30 2014-02-28 제이엑스 닛코 닛세키 에네루기 가부시키가이샤 리튬이온 이차전지의 음극용 탄소 재료 및 그 제조 방법
KR20140046410A (ko) * 2011-03-30 2014-04-18 제이엑스 닛코 닛세키 에네루기 가부시키가이샤 리튬이온 이차전지의 음극용 탄소재료의 원료탄 조성물 및 그 제조방법
JP5914460B2 (ja) * 2011-03-30 2016-05-11 Jxエネルギー株式会社 リチウムイオン二次電池の負極用炭素材料の製造方法
JP5952807B2 (ja) * 2011-03-30 2016-07-13 Jxエネルギー株式会社 リチウムイオン二次電池の負極用炭素材料の原料炭組成物の製造方法
KR102008534B1 (ko) * 2011-03-30 2019-08-07 제이엑스티지 에네루기 가부시키가이샤 리튬이온 이차전지의 음극용 탄소재료의 원료탄 조성물 및 그 제조방법
KR102016181B1 (ko) * 2011-03-30 2019-08-29 제이엑스티지 에네루기 가부시키가이샤 리튬이온 이차전지의 음극용 탄소 재료 및 그 제조 방법
EP2869370A4 (en) * 2012-06-29 2016-08-31 Mt Carbon Co Ltd GRAPHITE MATERIAL FOR NEGATIVE ELECTRODE OF LITHIUM ION RECHARGEABLE BATTERY, LITHIUM ION RECHARGEABLE BATTERY COMPRISING SAME, AND METHOD FOR PRODUCING GRAPHITE MATERIAL FOR LITHIUM ION RECHARGEABLE BATTERY
US9831490B2 (en) 2012-06-29 2017-11-28 Mt Carbon Co., Ltd. Graphite material for negative electrode of lithium-ion secondary battery, lithium-ion secondary battery including the graphite material, and method of manufacturing graphite material for lithium-ion secondary battery
WO2021256558A1 (ja) * 2020-06-18 2021-12-23 Eneos株式会社 リチウムイオン二次電池負極用人造黒鉛材料、及びその製造方法

Also Published As

Publication number Publication date
EP2479823A4 (en) 2016-03-02
KR20120081114A (ko) 2012-07-18
CN102511096B (zh) 2014-11-26
US20140079622A1 (en) 2014-03-20
KR101820071B1 (ko) 2018-01-18
JP2011065961A (ja) 2011-03-31
US20120171572A1 (en) 2012-07-05
JP5367521B2 (ja) 2013-12-11
US8617508B2 (en) 2013-12-31
CN102511096A (zh) 2012-06-20
EP2479823A1 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5367521B2 (ja) リチウム二次電池の負極用炭素材料及びその製造方法
JP5612428B2 (ja) 格子歪を有するリチウムイオン二次電池負極用黒鉛材料及びリチウムイオン二次電池
US10035707B2 (en) Artificial graphite material for negative electrode of lithium ion secondary battery, and method for producing same
JP5728475B2 (ja) リチウムイオン二次電池負極材料用原料炭組成物
WO2012081439A1 (ja) リチウムイオン二次電池負極用黒鉛材料およびその製造方法、リチウムイオン二次電池
JP5931727B2 (ja) リチウム二次電池負極用黒鉛材料およびその製造方法、およびそれを用いたリチウム二次電池
US8802296B2 (en) Amorphous carbon material for negative electrode of lithium ion secondary battery and nonaqueous secondary battery comprising same
JP5615673B2 (ja) リチウムイオン二次電池負極用非晶質系炭素材料の製造方法及びリチウムイオン二次電池
JP6030958B2 (ja) リチウムイオン二次電池負極炭素材料用石油生コークスの製造方法及び同炭素材料の製造方法
WO2021256558A1 (ja) リチウムイオン二次電池負極用人造黒鉛材料、及びその製造方法
CN113302152B (zh) 人造石墨材料、人造石墨材料的制造方法、锂离子二次电池用负极以及锂离子二次电池
WO2012133511A1 (ja) リチウムイオン二次電池の負極用炭素材料およびその製造方法
JP2012012488A (ja) 石油生コークス及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080041837.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010817265

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127008412

Country of ref document: KR

Kind code of ref document: A