JP4014151B2 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
JP4014151B2
JP4014151B2 JP2002285154A JP2002285154A JP4014151B2 JP 4014151 B2 JP4014151 B2 JP 4014151B2 JP 2002285154 A JP2002285154 A JP 2002285154A JP 2002285154 A JP2002285154 A JP 2002285154A JP 4014151 B2 JP4014151 B2 JP 4014151B2
Authority
JP
Japan
Prior art keywords
negative electrode
carbonate
lithium secondary
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002285154A
Other languages
English (en)
Other versions
JP2004119350A (ja
Inventor
彪 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2002285154A priority Critical patent/JP4014151B2/ja
Priority to CNB031544347A priority patent/CN100477369C/zh
Priority to US10/671,737 priority patent/US20050074670A1/en
Publication of JP2004119350A publication Critical patent/JP2004119350A/ja
Priority to US11/704,956 priority patent/US20070141471A1/en
Application granted granted Critical
Publication of JP4014151B2 publication Critical patent/JP4014151B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池に関し、さらに詳しくは、高容量で、かつ充放電サイクル特性が優れたリチウムイオン二次電池に関する。
【0002】
【従来の技術】
近年、携帯電話やノート型パソコンなどのポータブル電子機器の発達や、環境への配慮、省資源などの面から、繰り返し充放電が可能な高容量の二次電池が必要とされるようになってきた。
【0003】
現在、この要求に応える二次電池として、高エネルギー密度で、軽量、かつ小型化が可能なリチウムイオン二次電池が作製されている。このリチウムイオン二次電池では、正極活物質として、LiCoO2 、LiNiO2 、LiMn2 4 などのリチウム含有複合金属酸化物が用いられ、負極活物質として、リチウムのインターカレートやディインターカレートができる炭素材料が用いられている。
【0004】
上記負極活物質の炭素材料としては、さらなる高エネルギー密度化と高電圧化を図るため、非晶質のものではなく、結晶性の高い炭素材料が用いられる傾向にあり、既に結晶性の高い天然黒鉛や人造黒鉛を負極活物質として用いたリチウムイオン二次電池が提案されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平10−284081号公報(第1頁、第3頁)
【0006】
しかし、高結晶性、高容量の炭素材料は比表面積が2〜8m2 /gと大きく、負極の作製にあたって、電極安定性が優れたフッ素樹脂系バインダーを用いた場合には、負極合剤中に5質量%以上添加することが必要であるため、負極合剤中の活物質の充填率が減少し、単位質量当たりのエネルギー密度が低下するという問題があった。
【0007】
しかも、前記のような高容量、高結晶性の炭素材料を負極活物質として用いた電池では、負極表面で電解液溶媒が分解しやすく、炭素材料の結晶性が高いほどその程度が激しく、そのため、電池内にガスが発生し、発生したガスが正極と負極との電極間距離を増加させるため、サイクル特性が悪くなるという問題があった。
【0008】
これに対して、非水電解液自身においても、電解液溶媒の分解を抑制しようとする工夫がなされ、電解液溶媒として、含フッ素エーテル、不飽和エーテルまたは不飽和エステルの少なくとも2つを含有させた非水電解液が提案され、その不飽和エーテルまたは不飽和エステルとして、ビニレンカーボネートまたはその誘導体を用いることが提案されている(例えば、特許文献2参照)。
【0009】
【特許文献2】
特開2001−52737号公報(第2頁)
【0010】
【発明が解決しようとする課題】
しかしながら、ユーザーからは、より高容量で、かつ充放電サイクル特性が優れたリチウム二次電池が求められており、そのため、高結晶性の炭素材料を負極活物質とするリチウム二次電池のサイクル特性向上の検討を行なったところ、前記ビニレンカーボネートおよびその誘導体の電解液への添加効果は、高結晶性炭素材料においては、その表面物性により大きく左右されて、特定の表面物性を有するものに対してのみ、その効果が発揮され、しかも、電解液中での含有量に対する依存性も大きく、電解液に少量添加された場合にのみ、所望する効果が得られることが判明した。
【0011】
本発明は、前記のような従来技術の問題点を解決し、高容量で、かつ充放電サイクル特性が優れ、しかも高温貯蔵時の電池膨れを抑制したリチウム二次電池を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、正極と負極とをセパレータを介して渦巻状に巻回し、扁平状とした電極体および非水電解液をアルミニウム合金製で角筒形の電池ケース内に収容してなるリチウム二次電池において、負極の活物質として、X線回折法によって求められる002面の面間隔(d002 )がd002 ≦0.3360nmであり、c軸方向の結晶子サイズ(Lc)がLc≧70nmであり、かつ波長514.5nmのアルゴンレーザーで励起させた時のラマンスペクトルのR値〔R=I1350/I1580(1350cm−1付近のラマン強度と1580cm−1付近のラマン強度との比)〕が0.01≦R≦0.3である炭素材料を用い、非水電解液に、溶媒としてエチレンカーボネートおよび鎖状カーボネートのみを、エチレンカーボネートが全溶媒中に10〜33.3体積%となるように含有させ、かつビニレンカーボネートまたはその誘導体を0.5〜5質量%含有させたものを用いることによって、60℃で20日間貯蔵した後の電池厚みの変化量が15%以下となるようにし、高容量で、かつ充放電サイクル特性の優れ、しかも高温貯蔵時の電池膨れを抑制したリチウム二次電池を提供し、前記課題を解決したものである。
【0013】
【発明の実施の形態】
本発明においては、負極の活物質として、前記のように、002面の面間隔(d002 )がd002 ≦0.3360nmであり、c軸方向の結晶子サイズ(Lc)がLc≧70nmであり、かつ波長514.5nmのアルゴンレーザーで励起させた時のラマンスペクトルのR値〔R=I1350/I1580(1350cm-1付近のラマン強度と1580cm-1付近のラマン強度との比)〕が0.01≦R≦0.3の炭素材料を用いるが、この炭素材料としては、天然黒鉛または人造黒鉛が用いられ、人造黒鉛としては、例えば、コークス、好ましくは純度99質量%以上の精製コークス、セルロースなどを焼成してなる有機物焼成体、グラッシーカーボン(ガラス状カーボン)などを熱処理したものを用いることができる。また、上記特定の炭素材料に、それ以外の炭素材料を混合して用いてもよい。
【0014】
本発明において、負極の活物質として用いる炭素材料について、002面の面間隔(d002 )(以下、簡略化して「d002 」のみで示す場合がある)が0.3360nm以下のものを用いるのは、高結晶性のものを用いるという考えに基づくものであり、d002 が0.3360nmより大きくなると、結晶性が低下して、高容量化が達成できなくなるためである。そして、このd002 は、小さいほど結晶性が高くなるので高容量化を達成する観点からは好都合であり、現存するものでは、0.3354nm程度のものまでを用いることができる。
【0015】
また、本発明において、負極の活物質として用いる炭素材料について、そのc軸方向の結晶子(Lc)(以下、簡略化して「Lc」のみで示す場合がある)が70nm以上のものを用いるのは、高結晶性のものを用いるという考えに基づくものであり、Lcが70nmより小さくなると、結晶性が低下して、高容量化が達成できなくなる。そして、このLcは、大きくなればなるほど結晶性が高くなるので高容量化を達成する上で好都合である。そして、d002 が0.3360nm以下でかつLcが70nm以上でないと350mAh/g以上の高容量化が得られない。さらに、本発明においては、負極の活物質として用いる炭素材料は、該炭素材料を波長514.5nmのアルゴンレーザーで励起させた時のラマンスペクトルのR値〔R=I1350/I1580(1350cm-1付近のラマン強度と1580cm-1付近のラマン強度との比)〕(以下、簡略化して「R値」のみで示す場合がある)が0.01≦R≦0.3であることを要するが、これは電池のサイクル充放電特性を向上させるためにはR値が前記範囲内にあることが必要であるということに基づくものである。すなわち、R値が0.3より大きい場合は、炭素材料の粒子内部と粒子表面の結晶性が大きく異なるため、充放電を繰り返すことにより粒子にひび割れが生じ、後述する保護膜が形成されない部位が生じるため、ビニレンカーボネートおよびその誘導体の添加効果が長期にわたり持続しないため、充放電サイクル特性が低下すると考えられる。また、炭素材料のR値が小さいほど、電解液溶媒を分解する能力が高くなるため、R値が0.01より小さい場合は、ビニレンカーボネートおよびその誘導体の添加にもかかわらず、電解液溶媒の分解が進行し、発生したガスが正負極間に介在して電極間距離を広げるため、電池の充放電サイクル特性が低下すると考えられる。従って、R値が0.1〜0.3の場合に、ビニレンカーボネートおよびその誘導体の効果が特に発揮されやすくなる。
【0016】
また、理由は明確ではないが、同じR値を有する天然黒鉛と人造黒鉛とを比較すると、天然黒鉛の方が本発明の効果がより大きくなる。
【0017】
本発明のリチウム二次電池において、負極は、通常、活物質としての前記炭素材料に必要に応じてバインダーを添加し、その炭素材料とバインダーとの混合物を溶剤に分散させて負極合剤含有ぺーストを調製し(バインダーはあらかじめ溶剤などに溶解または分散させておいてから炭素材料などと混合してもよい)、得られた負極合剤含有ぺーストを銅箔などからなる負極集電体に塗布し、乾燥して負極合剤層を形成し、必要に応じて負極合剤層を加圧成形する工程を経由することによって作製される。ただし、負極の作製方法は、前記例示の方法のみに限られることなく、他の方法によってもよい。
【0018】
前記負極の作製にあたって用いるバインダーとしては、例えば、セルロースエーテル化合物やゴム系バインダーなどが挙げられる。セルロースエーテル化合物の具体例としては、例えば、カルボキシメチルセルロース、カルボキシエチルセルロース、ヒドロキシエチルセルロース、それらのリチウム塩、ナトリウム塩、カリウム塩などのアルカリ金属塩、アンモニウム塩などが挙げられる。ゴム系バインダーの具体例としては、例えば、スチレン・ブタジエン共重合体ゴム(SBR)などのスチレン・共役ジエン共重合体、ニトリル・ブタジエン共重合体ゴム(NBR)などのニトリル・共役ジエン共重合体ゴム、ポリオルガノシロキサンなどのシリコーンゴム、アクリル酸アルキルエステルの重合体、アクリル酸アルキルエステルとエチレン性不飽和カルボン酸および/またはその他のエチレン性不飽和単量体との共重合により得られるアクリルゴム、ビニリデンフルオライド共重合体ゴムなどのフッ素ゴムなどが挙げられる。
【0019】
そして、この負極用のバインダーとしては、特にセルロースエーテル化合物とゴム系バインダーとを併用することが好ましく、とりわけ、カルボキシメチルセルロースとスチレン・ブタジエン共重合体ゴム、ニトリル・ブタジエン共重合体ゴムなどのブタジエン共重合体系ゴムとを併用することが好ましい。これは、カルボキシメチルセルロースなどのセルロースエーテル化合物が、主としてぺーストに対して増粘作用を発揮し、スチレン・ブタジエン共重合体ゴムなどのゴム系バインダーが、負極合剤に対して結着作用を発揮するからである。このように、カルボキシメチルセルロースなどのセルロースエーテル化合物とスチレン・ブタジエン共重合体ゴムなどのゴム系バインダーとを併用する場合、両者の比率としては質量比で1:1〜1:15が好ましい。
【0020】
本発明における非水電解液は、ビニレンカーボネートまたはその誘導体を0.5〜5質量%含有するものであるが、そのベースとなる非水電解液は有機溶媒などの非水溶媒にリチウム塩などの電解質塩を溶解させることによって調製される。その電解液溶媒としては、特に限定されることはないが、例えば、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)やメチルエチルカーボネート(MEC)などの鎖状カーボネートとの混合溶媒が好適に用いられる。また、充放電サイクル寿命を長くするためには、エチレンカーボネートを全溶媒中で10体積%以上用いることが好ましい。そして、電解質塩としては、例えば、LiPF、LiClO、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)などが挙げられ、それらは単独でまたは2種以上混合して用いられる。非水電解液中における電解質塩の濃度は、特に限定されるものではないが、0.3mol/l〜1.7mol/lが好ましい。
【0021】
本発明において、この非水電解液にビニレンカーボネートまたはその誘導体を含有させるのは、ビニレンカーボネートまたはその誘導体が負極の炭素材料表面で安定な保護膜の形成に寄与すると考えられ、その保護膜が電解液溶媒の分解を抑制すると考えられるからである。すなわち、このビニレンカーボネートまたはその誘導体に由来する保護膜は、電池の充放電サイクル中も亀裂が生じない安定な膜であり、負極の合剤表面がこの保護膜によって被覆されることにより、天然黒鉛や人造黒鉛などの高結晶性で高活性な炭素材料を負極活物質に使用した場合でも充放電の繰り返しによる電解液溶媒の分解が抑制され、ガスの発生が抑制されるものと推定される。しかも、このビニレンカーボネートまたはその誘導体に由来する保護膜は、電池の充放電の正常な反応を妨げることがないので、良好な充放電サイクル特性が得られる。そして、本発明において、このビニレンカーボネートまたはその誘導体の非水電解液中の含有量を0.5〜5質量%にするのは、ビニレンカーボネートまたはその誘導体の含有量が0.5質量%より少ない場合は、前記のような効果が充分に発現せず、また、ビニレンカーボネートまたはその誘導体の含有量が5質量%より多い場合は、前記保護膜の形成に寄与しない過剰のビニレンカーボネートまたはその誘導体が分解して、電池内でガスを発生する副作用が生じ、高温貯蔵により電池に膨れを生じさせるからであり、このビニレンカーボネートまたはその誘導体の非水電解液中の含有量としては、1.2質量%以上にすることが好ましく、また4質量%以下にすることが好ましい。
【0022】
前記ビニレンカーボネートの誘導体としては、例えば、ジメチル−1,3−ジオキソル−2−オンが好適なものとして挙げられ、このビニレンカーボネートまたはその誘導体の非水電解液への含有は、既に調製済みの非水電解液にビニレンカーボネートまたはその誘導体を添加することによって非水電解液中に含有させてもよいし、また、非水電解液の調製時に加えることによって、非水電解液をビニレンカーボネートまたはその誘導体を含有した状態で調製してもよい。
【0023】
そして、このビニレンカーボネートまたはその誘導体を含有する非水電解液は、通常、液状のまま用いられるが、ゲル化剤を用いてゲル化させ、ゲル状で用いてもよい。
【0024】
また、上記非水電解液には、前記保護膜をより好適なものとするために、ブチルベンゼンなどのアルキル基を有するベンゼン類化合物、アニソールなどのアルコキシ基を有するベンゼン類化合物、フルオロベンゼンなどフッ素置換されたベンゼン類化合物、ジフェニルジスルフィドなどの芳香族ジスルフィド、プロパンスルトンなどの環状スルトン、ビフェニルなどの添加剤を含有させてもよい。
【0025】
本発明において、正極の活物質としては、高容量化に適するという観点から、リチウム含有複合金属酸化物が好ましい。このようなリチウム含有複合金属酸化物としては、例えば、LiCoO2 などのリチウムコバルト酸化物、LiMnO2 、LiMn2 4 などのリチウムマンガン酸化物、LiNiO2 などのリチウムニッケル酸化物、Lix MO2 (MはNi、Mn、CoおよびAlのうちの2種以上の元素を表し、0.9<x<1.2)で表されるリチウム含有複合金属酸化物などが好適に用いられる。
【0026】
正極は、例えば、前記正極活物質に必要に応じて導電助剤やバインダーを加えて混合して調製した正極合剤を溶剤に分散させて正極合剤含有ぺーストを調製し(ただし、バインダーはあらかじめ溶剤などに分散または溶解させておいてから、正極活物質などと混合してもよい)、得られた正極合剤含有ぺーストをアルミニウム箔などからなる正極集電体に塗布し、乾燥して正極合剤層を形成し、必要に応じて正極合剤層を加圧成形する工程を経由することによって作製される。ただし、正極の作製方法は、前記例示の方法のみに限られることなく、他の方法によってもよい。
【0027】
前記導電助剤としては、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、鱗片状黒鉛などが用いられる。そして、バインダーとしては、前記負極に用いたものと同様のものを用いることができる。
【0028】
そして、前記正極集電体や負極集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼などの箔、網などが用いられる。
【0029】
セパレータとしては、例えば、微孔性樹脂フィルムが用いられるが、その微孔性樹脂フィルムとしては、例えば、微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、微孔性エチレン−プロピレンコポリマーフィルム、微孔性ポリプロピレン/ポリエチレン2層フィルム、微孔性ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルムなどが挙げられ、厚さが10〜30μmで開孔率が30〜60%のものが好適に用いられる。
【0030】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではなく、本発明の思想を逸脱しない範囲内で適宜変更可能である。
【0031】
実施例1
負極の活物質としてX線回折法によって測定されるd002 〔(002)面の面間隔(d002 )〕が0.3356nmで、Lc〔c軸方向の結晶子サイズ(Lc)〕が100nmで、波長514.5nmのアルゴンレーザーで励起させた時のラマンスペクトルのR値〔R=I1350/I1580(1350cm-1付近のラマン強度と1580cm-1付近のラマン強度との比)〕が0.2の天然黒鉛を用い、バインダーとしてカルボキシメチルセルロースとスチレン・ブタジエン共重合体ゴムとを質量比1:1の割合で用い、前記天然黒鉛98質量部とカルボキシメチルセルロース1質量部とスチレン・ブタジエン共重合体ゴム1質量部の割合で水の存在下で混合してスラリー状の負極合剤含有ぺーストを調製し、得られた負極合剤含有ぺーストを厚さ10μmの銅箔からなる負極集電体の両面に塗布し、乾燥して負極合剤層を形成し、ローラーで負極合剤層の密度が1.5g/cm3 になるまで加圧成形した後、所定の幅および長さになるようにして切断して負極を作製した。
【0032】
また、正極の作製にあたっては、活物質としてLiCoO2 を用い、バインダーとしてポリフッ化ビニリデンを用い、LiCoO2 90質量部と導電助剤としてのカーボンブラック5質量部とポリフッ化ビニリデン5質量部との割合で溶剤としてのN−メチル−2−ピロリドンの存在下で混合してスラリー状の正極合剤含有ぺーストを調製し、得られた正極合剤含有ぺーストを厚さ15μmのアルミニウム箔からなる正極集電体の両面に塗布し、乾燥して正極合剤層を形成し、ローラーで正極合剤層を所定の厚みになるまで加圧成形した後、所定の幅および長さになるように切断して正極を作製した。
【0033】
非水電解液は、エチレンカーボネートとメチルエチルカーボネートとの体積比1:2の混合溶媒に、LiPF6 を1.2mol/lの濃度になるように溶解させ、そこにビニレンカーボネートを0.5質量%となるように加えて、ビニレンカーボネートを含有した状態で調製した。
【0034】
前記正極と負極とを厚さ25μmで開孔率42%の微孔性ポリエチレンフィルムからなるセパレータを介して渦巻状に巻回し、渦巻状巻回構造の電極体とした後、角形の電池ケース内に挿入するのに適するように押圧して扁平状巻回構造の電極体にし、それをアルミニウム合金製で角形の電池ケース内に挿入し、リード体の溶接と封口用蓋板の電池ケースの開口端部へのレーザー溶接を行い、封口用蓋板に設けた注入口から前記のビニレンカーボネートを含有する非水電解液を電池ケース内に注入し、非水電解液がセパレータなどに充分に浸透した後、前記注入口を封止して密閉状態にした後、予備充電、エイジングを行い、図1に示すような構造で図2に示すような外観を有し、幅が34.0mmで、厚みが4.0mmで、高さが50.0mmの角形のリチウム二次電池を作製した。
【0035】
ここで図1〜2に示す電池について説明すると、正極1と負極2は前記のようにセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の電極積層体6として、角形の電池ケース4に前記非水電解液とともに収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した導電性基体としての金属箔や非水電解液などは図示していない。
【0036】
電池ケース4はアルミニウム合金製で電池の外装材の主要部分を構成するものであり、この電池ケース4は正極端子を兼ねている。そして、電池ケース4の底部にはポリテトラフルオロエチレンシートからなる絶縁体5が配置され、前記正極1、負極2およびセパレータ3からなる扁平状巻回構造の電極積層体6からは正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム製の蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。
【0037】
そして、この蓋板9は上記電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。
【0038】
この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。
【0039】
図2は上記図1に示す電池の外観を模式的に示す斜視図であり、この図2は上記電池が角形電池であることを示すことを目的として図示されたものであって、この図2では電池を概略的に示しており、電池の構成部材のうち特定のもののみを示している。また、図1においても、電極体の内周側の部分は断面にしていない。なお、この電池において、前記の幅とは図1の(b)における横幅Wに相当するものを意味し、この電池ではこの幅が34.0mmであり、厚みとは図1の(a)における厚みtに相当するものを意味し、この電池ではこの厚みが4.0mmである。
【0040】
そして、この電池は、前記のように、正極を正極リード体を介して正極端子に接続し、負極を負極リード体を介して負極端子に接続しているので、電池内部で生じた化学エネルギーを電気エネルギーとして外部へ取り出し得るようになっている。
【0041】
実施例2
非水電解液中のビニレンカーボネートの含有量を1質量%にした以外は、実施例1と同様にリチウム二次電池を作製した。
【0042】
実施例3
非水電解液中のビニレンカーボネートの含有量を3質量%にした以外は、実施例1と同様にリチウム二次電池を作製した。
【0043】
実施例4
非水電解液中のビニレンカーボネートの含有量を5質量%にした以外は、実施例1と同様にリチウム二次電池を作製した。
【0044】
実施例5
負極の活物質としてラマンスペクトルのR値が0.3の天然黒鉛を用いた以外は、実施例3と同様にリチウム二次電池を作製した。
【0045】
実施例6
負極の活物質として、ラマンスペクトルのR値が0.01の天然黒鉛を用いた以外は、実施例3と同様にリチウム二次電池を作製した。
【0046】
実施例7
負極の活物質として用いる炭素材料を以下に示すようにして製造した。まず、石油系コークスから、d002 が0.3365nmで、Lcが70nmで、平均粒子径が19μmの人造黒鉛を得た。この石油系コークス由来人造黒鉛を3000℃で20分間以上焼成して、d002 が0.3356nmで、Lcが70nmで、ラマンスペクトルのR値が0.2の人造黒鉛を得た。このようにして得られた人造黒鉛を負極の活物質として用いた以外は、実施例3と同様にリチウム二次電池を作製した。
【0047】
比較例1
非水電解液中にビニレンカーボネートを含有させなかった以外は、実施例1と同様にリチウム二次電池を作製した。
【0048】
比較例2
非水電解液中のビニレンカーボネートの含有量を0.3質量%にした以外は、実施例1と同様にリチウム二次電池を作製した。
【0049】
比較例3
非水電解液中のビニレンカーボネートの含有量を6質量%にした以外は、実施例1と同様にリチウム二次電池を作製した。
【0050】
比較例4
負極の活物質として、ラマンスペクトルのR値が0.35の天然黒鉛を用いた以外は、実施例3と同様にリチウム二次電池を作製した。
【0051】
比較例5
負極の活物質として、ラマンスペクトルのR値が0.008の天然黒鉛を用いた以外は、実施例3と同様にリチウム二次電池を作製した。
【0052】
比較例6
負極の活物質として用いる炭素材料を以下に示すようにして製造した。まず、石油系コークスから、d002 が0.3365nmで、Lcが60nmで、平均粒子径が19μmの人造黒鉛を得た。この石油系コークス由来人造黒鉛を3000℃で20分間以上焼成して、d002 が0.3356nmで、c軸方向の結晶子サイズがLc=60nmで、ラマンスペクトルのR値が0.2の人造黒鉛を得た。このようにして得られた人造黒鉛を負極の活物質として用いた以外は、実施例3と同様にリチウム二次電池を作製した。
【0053】
比較例7
負極の活物質として架橋石油ピッチから製造されたd002 が0.3652nmで、Lcが1.9nmで、ラマンスペクトルのR値が0.8の人造黒鉛を用いた以外は、実施例3と同様にリチウム二次電池を作製した。
【0054】
前記実施例1〜7の電池および比較例1〜7の電池について、放電容量、500サイクル後の容量保持率および60℃で20日間貯蔵後の電池の厚みを測定した。その結果を表2に示す。また、表1には、前記実施例1〜7の電池および比較例1〜7の電池の負極活物質として用いた炭素材料のd002 、Lc、ラマンスペクトルのR値と非水電解液中のビニレンカーボネートの含有量について示す。なお、放電容量、500サイクル後の容量保持率、60℃で20日間貯蔵後の電池の厚みの測定方法は、次に示す通りである。
【0055】
放電容量:
各電池を25℃、電流密度750mAで3.0Vまで連続放電させて放電容量を測定する。
【0056】
500サイクル後の容量保持率:
各電池に対して、25℃、750mAで4.2Vまで充電した後、4.2Vの定電圧で充電開始から2.5時間充電を行い、その充電後、750mAで3.0Vまで放電する充放電を500サイクル繰り返し、500サイクル後の放電容量の初回(第1サイクル時)放電容量に対する比率を下記の式により求め、それを500サイクル後の容量保持率とする。
【0057】
Figure 0004014151
【0058】
貯蔵後の電池の厚み:
各電池に対して、25℃、電流750mAで4.2Vまで充電し、その充電後の電池を60℃で20日間貯蔵した後、25℃で電池の厚みを測定する。
【0059】
【表1】
Figure 0004014151
【0060】
【表2】
Figure 0004014151
【0061】
表1および表2に示す結果から明かなように、負極の活物質として、d002 〔002面の面間隔(d002 )〕が0.03360nm以下で、Lc〔c軸方向の結晶子サイズ(Lc)〕が70nm以上で、ラマンスペクトルのR値が0.01〜0.3の範囲にある炭素材料を用い、かつビニレンカーボネートを非水電解液中に0.5〜5質量%の範囲で含有させた実施例1〜7の電池は、放電容量が大きく、高容量で、かつ500サイクル後の容量保持率が75%以上と高く、充放電サイクル特性が優れ、また、高温で貯蔵した時の電池の膨れも小さかった。
【0062】
これに対して、非水電解液中にビニレンカーボネートを含有させなかった比較例1の電池やビニレンカーボネートの含有量が0.3質量%であって本発明で規定する0.5〜5質量%の下限より少ない比較例2の電池は、充放電サイクル特性が悪く、また、高温で貯蔵したときの電池の膨れが大きかった。また、非水電解液中のビニレンカーボネートの含有量が6質量%であって本発明で規定する0.5〜5質量%の上限より多い比較例3の電池は、充放電サイクル特性が悪く、ラマンスペクトルのR値が0.35であって本発明で規定する0.1〜0.3の上限より大きい比較例4の電池やラマンスペクトルのR値が0.008であって本発明で規定する0.1〜0.3の下限より小さい比較例5の電池は、いずれも、充放電サイクル特性が悪かった。そして、Lcが60nmであって本発明で規定する70nm以上より小さい比較例6の電池は、容量が実施例1〜7の電池のものに比べて低く、また、充放電サイクル特性も悪く、d002 が0.3652nmであって本発明で規定する3365nm以下より大きい比較例7の電池は、容量が実施例1〜7の電池に比べて小さかった。また、d002 およびR値が同じ天然黒鉛と人造黒鉛を用いた実施例3と実施例7との比較では、実施例3の方が効果が顕著となっており、天然黒鉛を負極に用いた場合に本発明の効果が得られやすいことがわかった。
【0063】
【発明の効果】
以上説明したように、本発明によれば、高容量で、かつ充放電サイクル特性が優れ、しかも高温貯蔵時の電池膨れを抑制し得たリチウム二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係るリチウム二次電池の一例を模式的に示す図で、(a)はその平面図、(b)はその部分縦断面図である。
【図2】図1に示すリチウム二次電池の斜視図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 電池ケース
5 絶縁体
6 電極積層体
7 正極リード体
8 負極リード体
9 蓋板
10 絶縁パッキング
11 端子
12 絶縁体
13 リード板

Claims (5)

  1. 正極と負極とをセパレータを介して渦巻状に巻回し、扁平状とした電極体、および非水電解液をアルミニウム合金製で角筒形の電池ケース内に収容してなるリチウム二次電池であって、
    前記負極の活物質として、002面の面間隔(d002)がd002≦0.3360nmであり、c軸方向の結晶子サイズ(Lc)がLc≧70nmであり、かつ波長514.5nmのアルゴンレーザーで励起させた時のラマンスペクトルのR値〔R=I1350/I1580(1350cm−1付近のラマン強度と1580cm−1付近のラマン強度との比)〕が0.01≦R≦0.3である炭素材料を用い、
    前記非水電解液に、溶媒としてエチレンカーボネートおよび鎖状カーボネートのみを、エチレンカーボネートが全溶媒中に10〜33.3体積%となるように含有させ、かつビニレンカーボネートまたはその誘導体を0.5〜5質量%含有させたものを用い、
    60℃で20日間貯蔵した後の電池厚みの変化量が15%以下であることを特徴とするリチウム二次電池。
  2. 炭素材料が天然黒鉛であることを特徴とする請求項1記載のリチウム二次電池。
  3. 負極のバインダーとしてセルロースエーテル化合物とブタジエン共重合体系ゴムとを併用したことを特徴とする請求項1または2に記載のリチウム二次電池。
  4. 非水電解液における鎖状カーボネートがメチルエチルカーボネートであることを特徴とする請求項1〜3のいずれかに記載のリチウム二次電池。
  5. 活物質として、002面の面間隔(d002)がd002≦0.3360nmであり、c軸方向の結晶子サイズ(Lc)がLc≧70nmであり、かつ波長514.5nmのアルゴンレーザーで励起させた時のラマンスペクトルのR値〔R=I1350/I1580(1350cm−1付近のラマン強度と1580cm−1付近のラマン強度との比)〕が0.01≦R≦0.3である炭素材料を用いた負極と、正極とを、セパレータを介して渦巻状に巻回し、扁平状とした電極体を、アルミニウム合金製で角筒形の電池ケース内に挿入する工程と、溶媒としてエチレンカーボネートおよび鎖状カーボネートのみを、エチレンカーボネートが全溶媒中に10〜33.3体積%となるように含有し、かつビニレンカーボネートまたはその誘導体を0.5〜5質量%含有する非水電解液を前記電池ケース内に注入する工程とを有することを特徴とするリチウム二次電池の製造方法。
JP2002285154A 2002-09-30 2002-09-30 リチウム二次電池 Expired - Lifetime JP4014151B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002285154A JP4014151B2 (ja) 2002-09-30 2002-09-30 リチウム二次電池
CNB031544347A CN100477369C (zh) 2002-09-30 2003-09-28 锂离子二次电池
US10/671,737 US20050074670A1 (en) 2002-09-30 2003-09-29 Lithium ion secondary cell
US11/704,956 US20070141471A1 (en) 2002-09-30 2007-02-12 Lithium ion secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285154A JP4014151B2 (ja) 2002-09-30 2002-09-30 リチウム二次電池

Publications (2)

Publication Number Publication Date
JP2004119350A JP2004119350A (ja) 2004-04-15
JP4014151B2 true JP4014151B2 (ja) 2007-11-28

Family

ID=32278535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285154A Expired - Lifetime JP4014151B2 (ja) 2002-09-30 2002-09-30 リチウム二次電池

Country Status (3)

Country Link
US (2) US20050074670A1 (ja)
JP (1) JP4014151B2 (ja)
CN (1) CN100477369C (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560546B1 (ko) * 2003-11-27 2006-03-15 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
JP5046352B2 (ja) * 2005-04-06 2012-10-10 日立マクセルエナジー株式会社 リチウムイオン二次電池の製造方法
JP2007090370A (ja) * 2005-09-27 2007-04-12 Pioneer Electronic Corp レーザ溶接装置、及びレーザ溶接方法
JP2007095402A (ja) * 2005-09-28 2007-04-12 Hitachi Maxell Ltd リチウム二次電池
JP5127706B2 (ja) 2006-05-31 2013-01-23 三洋電機株式会社 高電圧充電型非水電解質二次電池
JP4943242B2 (ja) * 2007-06-20 2012-05-30 ソニー株式会社 リチウムイオン二次電池
WO2010100764A1 (en) * 2009-03-02 2010-09-10 Showa Denko K.K. Composite graphite particles and lithium secondary battery using the same
JP5367521B2 (ja) * 2009-09-18 2013-12-11 Jx日鉱日石エネルギー株式会社 リチウム二次電池の負極用炭素材料及びその製造方法
DE102015202611A1 (de) * 2014-02-13 2015-08-13 Rockwood Lithium GmbH Galvanische Zellen und (teil)lithiierte Lithiumbatterieanoden mit erhöhter Kapazität und Verfahren zur Herstellung von Synthesegraphit-Interkalationsverbindungen
HUE052866T2 (hu) 2014-02-13 2021-05-28 Albemarle Germany Gmbh Stabilizált (részlegesen) lítiumozott grafitanyagok, eljárás azok elõállítására és azok alkalmazása lítiumos telepekhez
JP6194826B2 (ja) * 2014-03-19 2017-09-13 ソニー株式会社 リチウムイオン二次電池
WO2017169684A1 (ja) * 2016-03-30 2017-10-05 日立マクセル株式会社 非水電解液一次電池およびその製造方法
JP6874777B2 (ja) * 2017-01-31 2021-05-19 株式会社村田製作所 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2021107094A1 (ja) * 2019-11-29 2021-06-03 日本黒鉛工業株式会社 リチウムイオン電池の電極用導電剤、電極用組成物及び電極

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3059832B2 (ja) * 1992-07-27 2000-07-04 三洋電機株式会社 リチウム二次電池
DE4326944A1 (de) * 1993-08-11 1995-02-16 Varta Batterie Negative Elektrode für gasdichte alkalische Akkumulatoren, die eine Ruß enthaltende Gasverzehrschicht besitzt
FR2719161B1 (fr) * 1994-04-22 1996-08-02 Accumulateurs Fixes Générateur électrochimique rechargeable au lithium à anode de carbone.
JP3015667B2 (ja) * 1994-05-31 2000-03-06 三洋電機株式会社 密閉形の角形電池
EP0917223A4 (en) * 1997-02-04 2006-10-04 Mitsubishi Chem Corp LITHIUM-ION SECONDARY BATTERY
EP0903799B1 (en) * 1997-09-19 2003-03-12 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery and its anode
US6322923B1 (en) * 1998-01-30 2001-11-27 Celgard Inc. Separator for gel electrolyte battery
US6632569B1 (en) * 1998-11-27 2003-10-14 Mitsubishi Chemical Corporation Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP4608735B2 (ja) * 2000-05-16 2011-01-12 ソニー株式会社 非水電解質二次電池の充電方法
JP3709134B2 (ja) * 2000-11-22 2005-10-19 松下電器産業株式会社 角形電池

Also Published As

Publication number Publication date
US20070141471A1 (en) 2007-06-21
JP2004119350A (ja) 2004-04-15
CN1497763A (zh) 2004-05-19
US20050074670A1 (en) 2005-04-07
CN100477369C (zh) 2009-04-08

Similar Documents

Publication Publication Date Title
JP3797197B2 (ja) 非水電解質二次電池
JP4794180B2 (ja) 非水電解質二次電池
US7736807B2 (en) Non-aqueous electrolytic solution secondary battery
JP5070753B2 (ja) 電池
JP5046352B2 (ja) リチウムイオン二次電池の製造方法
JP4837614B2 (ja) リチウム二次電池
JP4012174B2 (ja) 効率的な性能を有するリチウム電池
US20070141471A1 (en) Lithium ion secondary cell
JP5094084B2 (ja) 非水電解質二次電池
JP2019530955A (ja) 非水電解液およびそれを含むリチウム二次電池
JP4711639B2 (ja) 非水電解液およびそれを用いたリチウム二次電池
JP2009105069A (ja) リチウム二次電池用電解液及びこれを含むリチウム二次電池
JP4386666B2 (ja) リチウム二次電池
JP2009129721A (ja) 非水電解質二次電池
CN1233060C (zh) 非水性二次电池以及利用该非水性二次电池的便携式设备
KR20110023820A (ko) 비수 전해질 이차 전지용 정극 및 그것을 사용한 비수 전해질 이차 전지
JP4715848B2 (ja) 電池
JP2006260864A (ja) リチウム二次電池の製造方法
JP2010086722A (ja) 非水電解質電池
JP2003229172A (ja) 非水電解質電池
JP2001126765A (ja) 非水電解質二次電池
JP2001222995A (ja) リチウムイオン二次電池
JP2007123156A (ja) リチウムイオン電池
JP4176435B2 (ja) 非水電解質電池
JP2007095402A (ja) リチウム二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4014151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term