WO2011033733A9 - ゲート駆動回路 - Google Patents

ゲート駆動回路 Download PDF

Info

Publication number
WO2011033733A9
WO2011033733A9 PCT/JP2010/005399 JP2010005399W WO2011033733A9 WO 2011033733 A9 WO2011033733 A9 WO 2011033733A9 JP 2010005399 W JP2010005399 W JP 2010005399W WO 2011033733 A9 WO2011033733 A9 WO 2011033733A9
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
source
voltage
voltage source
drive circuit
Prior art date
Application number
PCT/JP2010/005399
Other languages
English (en)
French (fr)
Other versions
WO2011033733A1 (ja
Inventor
達也 北村
中武 浩
中山 靖
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112010003761T priority Critical patent/DE112010003761T5/de
Priority to JP2011531777A priority patent/JP5270761B2/ja
Priority to CN2010800407446A priority patent/CN102498668A/zh
Priority to US13/390,721 priority patent/US8519751B2/en
Publication of WO2011033733A1 publication Critical patent/WO2011033733A1/ja
Publication of WO2011033733A9 publication Critical patent/WO2011033733A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/04106Modifications for accelerating switching without feedback from the output circuit to the control circuit in field-effect transistor switches

Definitions

  • the present invention relates to a gate drive circuit for driving a semiconductor switching element, and more particularly to a gate drive circuit capable of switching the semiconductor switching element at high speed.
  • a buffer circuit in which transistors and MOSFETs are connected in series is generally used as a gate driving circuit of a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) that is a semiconductor switching element.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • this circuit by applying a negative bias to the reference potential of the buffer, the gate voltage can be made negative when the MOSFET is off, so that a malfunction of switching of the semiconductor switching element can be prevented (for example, Patent Document 1). reference).
  • Semiconductor switching elements generate conduction loss during the transient state during switching. With the increase in capacity of semiconductor switching elements, conduction loss has also increased. Conventionally, however, the transition period has been shortened by reducing the switching loss by increasing the switching speed of the semiconductor switching element. In recent years, with the practical application of a semiconductor switching element formed of a wide band gap semiconductor, further high-speed switching becomes possible, and reduction of conduction loss is expected. However, there is a problem that the driving capability of the MOSFET driving circuit is insufficient, and the capability of the semiconductor switching element cannot be fully utilized. Moreover, in order to reduce the conduction loss accompanying the increase in capacity of the semiconductor switching element, the conduction loss has been reduced by reducing the on-resistance of the semiconductor switching element.
  • the on-resistance value is in a trade-off relationship with the switching threshold voltage of the semiconductor switching element, and if the on-resistance is reduced, the threshold voltage of the semiconductor switching element also decreases and is more susceptible to noise. There was a problem that the possibility of.
  • the present invention has been made to solve the above-described problems, and provides a gate drive circuit capable of switching a semiconductor switching element at high speed.
  • the gate drive circuit has an ON switching element and an OFF switching element which are complementarily turned on and off, and a positive electrode is connected to the buffer circuit for driving the semiconductor switching element and the source or emitter of the on switching element.
  • a first DC voltage source connected and having a negative electrode connected to the reference potential of the gate drive circuit; and a second DC voltage having a positive electrode connected to the source or emitter of the switching element for off and a negative electrode connected to the reference potential.
  • the gate drive circuit includes an ON switching element and an OFF switching element that are complementarily turned on and off, and a buffer circuit that drives the semiconductor switching element and a source or emitter of the on switching element.
  • a DC voltage source with a positive electrode connected and a negative electrode connected to the reference potential of the gate drive circuit, and a drive logic that outputs a voltage pulse to the gate of the switching element for on and the gate of the switching element for off
  • the logic is at least one of a control for outputting the high potential side of the voltage pulse higher than the source potential of the switching element for switching on and a control for outputting the low potential side of the voltage pulse lower than the potential of the source of the switching element for switching off.
  • One control is performed.
  • the present invention has an ON switching element and an OFF switching element that are complementarily turned on and off, a buffer circuit that drives a semiconductor switching element, and a positive electrode connected to the source or emitter of the on switching element, and gate drive
  • a first DC voltage source having a negative electrode connected to a reference potential of the circuit
  • a second DC voltage source having a positive electrode connected to the source or emitter of the switching element for off and a negative electrode connected to the reference potential. Therefore, the switching element for off can be turned off at high speed, and the semiconductor switching element can be turned on at high speed.
  • FIG. 1 is a schematic configuration diagram of a gate drive circuit according to a first embodiment of the present invention. It is a schematic block diagram of the conventional gate drive circuit. It is a figure which shows an example of the transient response waveform of the gate-source voltage of N channel MOSFET of the conventional gate drive circuit. It is a figure which shows an example of the typical relationship between the drain current of N channel MOSFET, and the gate-source voltage. It is a figure which shows the transient response waveform of the gate-source voltage of N channel MOSFET of the gate drive circuit in Embodiment 1 of this invention. It is a schematic block diagram of the gate drive circuit in Embodiment 2 of this invention. It is a schematic block diagram of the gate drive circuit in Embodiment 3 of this invention.
  • FIG. 1 is a schematic configuration diagram of a gate drive circuit according to Embodiment 1 of the present invention.
  • the gate drive circuit 1 drives a MOSFET 10 that is a semiconductor switching element.
  • the gate drive circuit 1 includes a buffer 4 that is a buffer circuit that drives a MOSFET 10, a first DC voltage source 6, and a second DC voltage source 12.
  • the buffer 4 has a P-channel MOSFET 2 that is an on-switching element that is totem-pole connected and complementarily turns on and off, and an N-channel MOSFET 3 that is an off-switching element.
  • the MOSFET 10 is turned on when the P-channel MOSFET 2 which is the switching element for turning on, and the MOSFET 10 is turned off when the N-channel MOSFET 3 which is the switching element for turning off is turned on.
  • the positive electrode of the first DC voltage source 6 is connected to the source of the P-channel MOSFET 2, and the negative electrode is connected to the reference potential (VS) 5 of the gate drive circuit 1.
  • the positive electrode of the second DC voltage source 12 is connected to the source of the N-channel MOSFET 3, and the negative electrode is connected to the reference potential 5 of the gate drive circuit 1.
  • the second DC voltage source 12 can raise the source potential of the N-channel MOSFET 3 from the reference potential 5.
  • the gate driving circuit 1 takes in a gate resistor 7 when the MOSFET 10 is turned on, a gate resistor 8 when the MOSFET 10 is turned off, and a drive signal (SD) and outputs a gate voltage to the gate of the P-channel MOSFET 2 and the gate of the N-channel MOSFET 3.
  • Logic 9 is provided.
  • the drive logic 9 is also connected to the positive electrode of the first DC voltage source 6 and is supplied with a DC voltage from the first DC voltage source 6.
  • the drive logic 9 is also connected to the reference potential 5.
  • the gate voltage output from the drive logic 9 alternates between a high potential (for example, DC voltage Vout) and a low potential (for example, a reference potential) in order to turn on and off the P-channel MOSFET 2 and the N-channel MOSFET 3 in a complementary manner.
  • the voltage pulse changes to.
  • the gate voltage becomes high, the P-channel MOSFET 2 is turned on and the MOSFET 10 is turned on.
  • the gate voltage becomes low the N-channel MOSFET 3 is turned on and the MOSFET 10 is turned off.
  • FIG. 2 is a schematic configuration diagram showing an example of a conventional gate driving circuit.
  • the positive electrode of the second DC voltage source 12 provided between the N-channel MOSFET 3 and the reference potential 5 is connected to the source of the N-channel MOSFET 3.
  • the negative electrode of the DC voltage source 22 provided between the N-channel MOSFET 3 and the reference potential 5 is connected to the source of the N-channel MOSFET 3. Is the difference.
  • the gate drive circuit 1 in the first embodiment and the conventional gate drive circuit 21 are the same.
  • the gate-source voltage of the MOSFET 10 (hereinafter referred to as Vgs) is negative with respect to the reference potential 5 by the DC voltage source 22 when the MOSFET 10 to be driven is off. Biased. For this reason, malfunction of switching of the MOSFET 10 due to noise can be prevented.
  • Vgs the gate-source voltage of the MOSFET 10
  • the buffer 4 when the MOSFET 10 is turned on.
  • the MOSFET 10 In order for the MOSFET 10 to turn on, it is first necessary to turn on the P-channel MOSFET 2 after the N-channel MOSFET 3 of the buffer 4 is turned off. In order to turn on the MOSFET 10 at high speed, it is desirable to turn off the N-channel MOSFET 3 in as short a time as possible.
  • FIG. 3 shows an example of a transient response waveform of Vgs of the N-channel MOSFET 3 when the N-channel MOSFET 3 is turned off.
  • the vertical axis represents Vgs, and represents the potential difference applied between the gate and source of the N-channel MOSFET 3 as the source potential.
  • the N-channel MOSFET 3 is turned off when Vgs becomes smaller than a certain threshold voltage (hereinafter referred to as Vth), but a fall time (hereinafter referred to as toff) which is a transition time from turning off the N-channel MOSFET 3 to turning off.
  • Vgs voltage change rate (slope) dV / dt differs depending on FIG. 4 shows an example of a typical relationship between the drain current (hereinafter referred to as Id) of the N-channel MOSFET and Vgs. From the relationship between Id and Vgs shown in FIG. 4, it can be seen that the current change rate of Id increases as Vgs increases. That is, since the current change rate is larger when Vth is increased, Id can be cut off earlier.
  • the source potential of the N-channel MOSFET 3 can be raised from the reference potential 5 by Vnbuffer by the voltage (hereinafter referred to as Vnbuffer) applied by the second DC voltage source 12. Since the source potential of the N-channel MOSFET 3 increases by Vnbuffer, the high potential side of the gate voltage output from the drive logic 9 is also set relatively high by Vnbuffer, and the gate voltage of Vout + Vnbuffer is output. Thus, even if the source potential of the N-channel MOSFET 3 is increased by the second DC voltage source 12, the Vgs of the N-channel MOSFET 3 during the on operation is set to the same value.
  • Vout and Vnbuffer can be arbitrarily set according to the specifications of the N-channel MOSFET 3. As an example, Vout can be set to 15V and Vnbuffer can be set to 5V. Of course, the voltage value is not limited to this.
  • FIG. 5 shows a transient response waveform of Vgs of the N-channel MOSFET 3 when the N-channel MOSFET 3 in the gate drive circuit 1 is turned off.
  • the vertical axis represents Vgs and represents the potential difference applied between the gate and source of the N-channel MOSFET 3.
  • the broken line in the figure is the case where the second DC voltage source 12 is not provided (Case 2), and is the same as the transient response waveform shown in FIG.
  • the solid line in the figure is the case where the second DC voltage source 12 is provided (Case 1).
  • the source potential is a constant potential (+ Vnbuffer) regardless of the ON / OFF operation of the N-channel MOSFET 3.
  • the gate potential is set higher by Vout than the source potential when the N-channel MOSFET 3 is on, but is lower by Vnbuffer than the source potential when the N-channel MOSFET 3 is off. For this reason, when the N-channel MOSFET 3 starts a turn-off operation, Vgs changes from + Vout to -Vnbuffer. In other words, it is greatly changed by Vnbuffer as compared with the case where the second DC voltage source 12 is not provided.
  • Vgs can be changed by a voltage difference of Vout + Vnbuffer, but the maximum voltage actually applied between the gate and source of the N-channel MOSFET 3 is Vout. This is the same as the case where the second DC voltage source 12 is not provided. That is, it is not necessary to change the specification of the withstand voltage of Vgs when the N-channel MOSFET 3 is turned on.
  • the time constant of the Vgs change after the turn-off does not change depending on the presence or absence of the second DC voltage source 12, so that the voltage change rate can be increased by increasing the voltage change of Vgs.
  • the Vgs of the N-channel MOSFET 3 reaches Vth earlier, and Vgs is reduced.
  • the time to reach Vth can be shortened by ⁇ toff.
  • the voltage change rate of Vgs when Vth is reached can be increased, and toff can be shortened.
  • the gate potential at the turn-off operation can be greatly changed by the amount corresponding to Vnbuffer without changing the value of Vgs when the N-channel MOSFET 3 is turned on, so that the N-channel MOSFET 3 can be turned off at high speed. For this reason, the time until the P-channel MOSFET 2 is turned on is shortened, and the MOSFET 10 can be turned on at high speed.
  • the source of the N-channel MOSFET 3 is not negatively biased.
  • the Vth of the MOSFET 10 to be driven varies depending on the application and type, and the magnitude of noise applied to the MOSFET 10 varies greatly depending on the use environment. For this reason, when Vth of the MOSFET 10 has a sufficient margin with respect to the noise or the noise is sufficiently small, it is not necessary to make Vgs positively close to 0 [V] or to make it negative bias.
  • the N-channel MOSFET 3 can be turned off at high speed, and the gate drive circuit 1 drives the MOSFET 10 at high speed. can do.
  • FIG. FIG. 6 is a schematic configuration diagram of a gate drive circuit according to the second embodiment of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and this is common throughout the entire specification.
  • the gate drive circuit 11 of the present embodiment is different from that of the first embodiment in that the gate drive circuit 11 includes a third DC voltage source 13 having a positive electrode connected to the source of the MOSFET 10 and a negative electrode connected to the reference potential 5.
  • the third DC voltage source 13 can raise the source potential of the MOSFET 10 by Voffset from the reference potential 5 and can adjust the Vgs of the MOSFET 10. .
  • the Vgs when the MOSFET 10 is off can be set to a negative bias. By setting the negative bias, malfunction of the MOSFET 10 due to noise can be prevented.
  • the gate drive circuit 11 By connecting the positive electrode of the second DC voltage source 12 to the source of the N-channel MOSFET 3 and connecting the positive electrode of the third DC voltage source 13 to the source of the MOSFET 10, the gate drive circuit 11 The function of turning off the MOSFET 3 at high speed to drive the MOSFET 10 at high speed and the function of preventing the malfunction of the MOSFET 10 due to noise can be made compatible. Needless to say, the relationship between Vnbuffer and Voffset is not limited to Vnbuffer ⁇ Voffset and can be arbitrarily set in consideration of noise tolerance.
  • FIG. 7 is a schematic configuration diagram of a gate drive circuit according to Embodiment 3 of the present invention.
  • the fourth DC voltage source 16 whose positive electrode is connected to the positive electrode of the first DC voltage source 17 and whose negative electrode is connected to the source of the P channel MOSFET 2 is connected to the P channel MOSFET 2 and the second DC voltage source 16.
  • the difference from the second embodiment is that it is inserted between the first DC voltage source 17 and the first DC voltage source 17.
  • the gate drive circuits in the first and second embodiments increase the turn-on speed of the MOSFET 10. However, if the turn-off speed of the MOSFET 10 can be increased, there are advantages such as a reduction in switching loss of the MOSFET 10. You can also enjoy it.
  • the gate drive circuit of the present embodiment increases the turn-off speed of the P-channel MOSFET 2 of the buffer 4 in order to increase the turn-off of the MOSFET 10.
  • the negative electrode of the first DC voltage source 17 is connected to the reference potential 5, and the positive electrode of the fourth DC voltage source 16 and the positive electrode of the first DC voltage source 17 are connected to each other.
  • the DC voltage generated from the fourth DC voltage source 16 (hereinafter referred to as Vpbuffer) is set lower than the DC voltage Vout generated from the first DC voltage source 17.
  • Vpbuffer the source potential of the P-channel MOSFET 2 is changed to the connection point between the first DC voltage source 17 and the fourth DC voltage source 16 by the voltage Vpbuffer applied by the fourth DC voltage source 16. Vpbuffer can be lowered from this potential.
  • the voltage of the first DC voltage source 17 is set to be relatively high by Vpbuffer.
  • the high potential side of the gate voltage output from the drive logic 9 is also set relatively high by Vpbuffer, and the gate voltage of Vout + Vpbuffer is output. Since the voltage of the first DC voltage source 17 is set relatively high by Vpbuffer, even if the source potential is lowered by Vpbuffer by the fourth DC voltage source 16, the Vgs of the P-channel MOSFET 2 during the ON operation is the same value.
  • Set to Vout and Vpbuffer can be arbitrarily set according to the specifications of the P-channel MOSFET 2. Since the operations of the second DC voltage source 12 and the third DC voltage source 13 are the same as those in the second embodiment, the description thereof is omitted.
  • FIG. 8 shows a transient response waveform of Vgs when the P-channel MOSFET 2 in the gate drive circuit 14 is turned off.
  • the vertical axis represents Vgs and represents the potential difference applied between the gate and source of the P-channel MOSFET 2.
  • the broken line in the figure is the case where the fourth DC voltage source 16 is not provided (Case 4), and is the same as the transient response waveform shown in FIG.
  • the solid line in the figure is the case where the fourth DC voltage source 16 is provided (Case 3).
  • the source potential is a constant potential regardless of the on / off operation of the P-channel MOSFET 2.
  • the gate potential is set lower by Vout than the source potential when the P-channel MOSFET 2 is on, but is higher by Vpbuffer than the source potential when the P-channel MOSFET 2 is off. For this reason, when the P-channel MOSFET 2 starts the turn-off operation, Vgs changes from ⁇ Vout to + Vpbuffer. That is, it changes greatly by Vpbuffer as compared with the case where the fourth DC voltage source 16 is not provided.
  • Vgs can be changed by the voltage difference of Vout + Vpbuffer, but the maximum voltage actually applied between the gate and the source of the P-channel MOSFET 2 is Vout. This is the same as the case where the fourth DC voltage source 16 is not provided. That is, it is not necessary to change the specifications of the withstand voltage of Vgs when the P-channel MOSFET 2 is turned on.
  • the voltage change rate can be increased by increasing the voltage change of Vgs. For this reason, when the fourth DC voltage source 16 is provided and the source voltage is increased by Vpbuffer as compared with the case where the fourth DC voltage source 16 is not provided, the Vgs of the P-channel MOSFET 2 reaches Vth earlier, and Vgs The time to reach Vth can be shortened by ⁇ toff. Further, compared with the case where the fourth DC voltage source 16 is not provided, the voltage change rate of Vgs when Vth is reached can be increased, and toff can be shortened.
  • the gate potential during the turn-off operation can be greatly changed by Vpbuffer without changing the value of Vgs when the P-channel MOSFET 2 is turned on, so that the P-channel MOSFET 2 can be turned off at high speed. For this reason, the time until the N-channel MOSFET 3 is turned on is shortened, and the MOSFET 10 can be turned off at high speed.
  • the time until the N-channel MOSFET 3 is turned off is shortened by raising the source potential of the N-channel MOSFET 3 from the reference potential 5 by the second DC voltage source 12. Can do. Furthermore, as described in the second embodiment, Vgs of the MOSFET 10 to be driven can be adjusted by the third DC voltage source 13, and malfunction of the MOSFET 10 can be prevented. As in the first embodiment, when the Vth of the MOSFET 10 has a sufficient margin for noise or the noise is sufficiently small, the third DC voltage source 13 is provided to make Vgs negative bias. There is no need. Further, when the purpose is to turn off the MOSFET 10 at high speed, the second DC voltage source 12 may not be provided like the gate drive circuit 15 as shown in FIG.
  • the P channel The MOSFET 2 and the N-channel MOSFET 3 can each be turned off at high speed, and the gate drive circuit 14 can drive the MOSFET 10 at high speed. Further, by connecting the positive electrode of the third DC voltage source 13 to the source of the MOSFET 10 to be driven, malfunction of the MOSFET 10 due to noise can be prevented.
  • Embodiment 4 In the first to third embodiments, in order to improve the switching speed of the buffer, the source potential of the MOSFET in the buffer is offset by a DC voltage source, and the gate potential is changed without changing the value of Vgs at the time of ON. A method of greatly changing the value was used. As a method of greatly changing the gate potential without changing the value of Vgs at the time of ON, there is a method of adjusting the gate voltage output from the drive logic to the buffer, and the same operation can be performed.
  • FIG. 10 is a schematic configuration diagram of a gate drive circuit according to Embodiment 4 of the present invention.
  • the gate drive circuit 18 of the present embodiment is different from the second embodiment in that the gate drive circuit 18 does not include a DC voltage source that connects the positive electrode to the source of the P-channel MOSFET, and includes a drive logic 19 instead of the drive logic 9.
  • the gate voltage output from the drive logic 19 is designed so that the switching of the buffer 4 is speeded up.
  • the source potential of the P-channel MOSFET 2 is the same as the output voltage of the first DC voltage source 6 (hereinafter referred to as Vdc).
  • the source potential of the N-channel MOSFET 3 is the same as the reference potential 5.
  • FIG. 11 shows a first example of the output waveform of the gate voltage output from the drive logic 19.
  • the gate voltage output from the drive logic 19 is a voltage pulse, and the high potential side of the voltage pulse is offset voltage Vdc (hereinafter referred to as Vpod) with respect to Vdc which is the source potential of the P-channel MOSFET 2. (Notation) is controlled to be higher.
  • Vdc offset voltage
  • the source potential of the P-channel MOSFET 2 is fixed at Vdc, and the gate potential is repeatedly changed from Vdc + Vpod to the reference potential 5, whereby the P-channel MOSFET 2 is turned on / off.
  • Vgs at the time of turn-off can be changed in a range from the reference potential to Vdc + Vpod without making Vgs at the time of the ON operation of the P-channel MOSFET 2 higher than Vdc.
  • the P-channel MOSFET 2 can be turned off at high speed, the time until the N-channel MOSFET 3 is turned on is shortened, and the MOSFET 10 can be turned off at high speed.
  • FIG. 12 shows a second example of the output waveform of the gate voltage output from the drive logic 19.
  • the gate voltage output from the drive logic 19 is a voltage pulse, and the low potential side of the voltage pulse is an offset voltage ((hereinafter referred to as “reference potential 5” which is the source potential of the N-channel MOSFET 3).
  • reference potential 5 which is the source potential of the N-channel MOSFET 3.
  • the source potential of the N-channel MOSFET 3 is fixed at the reference potential 5 and the gate potential repeatedly changes from ⁇ Vnod to Vdc, and the N-channel MOSFET 3 is turned on / off.
  • the Vgs at the turn-off time can be changed in the range of Vdc + Vnod without increasing the Vgs during the ON operation of the N-channel MOSFET 3 above Vdc.
  • the N-channel MOSFET 3 can be turned off at high speed, The time to turn on the channel MOSFET2 shortened, it is possible to turn on the MOSFET10 fast.
  • FIG. 13 shows a third example of the output waveform of the gate voltage output from the drive logic 19.
  • FIG. 13 is a combination of the output waveforms shown in FIGS. 11 and 12.
  • the high potential side of the gate voltage output from the drive logic 19 is set to be higher by Vpod than Vdc, and the low potential side is set to be lower by Vnode than the reference potential 5.
  • the drive logic 19 outputs such a gate voltage
  • the P-channel MOSFET 2 can be turned off at high speed
  • the MOSFET 10 can be turned off at high speed
  • the N-channel MOSFET 3 can be turned off at high speed
  • the MOSFET 10 can be turned on at high speed. be able to.
  • the gate drive circuit 18 can drive the MOSFET 10 at a high speed by adjusting the gate voltage of the drive logic 19.
  • the third DC voltage source 13 may be omitted in consideration of noise tolerance.
  • the configuration of the drive logic 19 of the present embodiment may be applied to the conventional gate drive circuit shown in FIG. 2, or added to the gate drive circuit shown in the first to third embodiments. May be applied.
  • the present invention is not limited to this and is applied to a switching element such as a transistor. it can.
  • the semiconductor switching element is not limited to the MOSFET, but can be applied to a bipolar transistor such as an IGBT (Insulated Gate Bipolar Transistor).
  • the present invention can also be applied to a J-FET (Junction Field Effect Transistor). When a bipolar transistor is applied, the emitter corresponding to the source of the MOSFET is the emitter.
  • the switching element may be formed of a wide band gap semiconductor having a wider band gap than silicon.
  • the wide band gap semiconductor include silicon carbide, a gallium nitride-based material, and diamond.
  • Switching elements formed of wide bandgap semiconductors have high voltage resistance and high allowable current density, so that the switching elements can be downsized. By using these downsized switching elements, these elements can be used. It is possible to reduce the size of a semiconductor module in which is incorporated.
  • the heat resistance is high, the heat dissipating fins of the heat sink can be downsized and the water cooling section can be air cooled, so that the semiconductor module can be further downsized.
  • the power loss is low, it is possible to increase the efficiency of the switching element, and further increase the efficiency of the semiconductor module.
  • Gate drive circuit 2 P channel MOSFET, 3 N channel MOSFET, 4 buffer, 5 reference potential, 6, 12, 13, 16, 17, 22 DC voltage source, 7 on Gate resistance, 8 OFF gate resistance, 9, 19 drive logic, 10 MOSFET.

Landscapes

  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

半導体スイッチング素子を高速にターンオンさせることができるゲート駆動回路を得るために、相補的にオン・オフするオン用スイッチング素子2およびオフ用スイッチング素子3を有し、半導体スイッチング素子10を駆動するバッファ回路4と、オン用スイッチング素子2のソースまたはエミッタに正極が接続され、基準電位5に負極が接続された第1の直流電圧源6と、オフ用スイッチング素子3のソースまたはエミッタに正極が接続され、基準電位5に負極が接続された第2の直流電圧源12とを備える。

Description

ゲート駆動回路
 この発明は、半導体スイッチング素子を駆動するゲート駆動回路に関するものであり、特に半導体スイッチング素子を高速にスイッチングできるゲート駆動回路に関する。
 従来のゲート駆動回路においては、半導体スイッチング素子であるMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)のゲート駆動回路として、トランジスタやMOSFETを直列接続したバッファ回路を用いることが一般的である。この回路ではバッファの基準電位に負バイアスを印加することによって、MOSFETがオフ時にはゲート電圧を負にすることができるので、半導体スイッチング素子のスイッチングの誤動作を防止することができる(例えば、特許文献1参照)。
特開平7-245557号公報(第3頁、第1図)
 半導体スイッチング素子は、スイッチング時の過渡状態期間で導通損失を発生する。半導体スイッチング素子の大容量化に伴い、導通損失も増加してきたが、従来は、半導体スイッチング素子の高速スイッチング化によって過渡状態期間を短縮し、導通損失の低減を図ってきた。近年、ワイドバンドギャップ半導体によって形成した半導体スイッチング素子の実用化に伴い、更なる高速スイッチングが可能となり、導通損失の低減が期待される。しかしながら、MOSFETの駆動回路の駆動能力が不足して、半導体スイッチング素子の能力を充分に引き出せないという問題があった。また、半導体スイッチング素子の大容量化に伴う導通損失を低減するために、半導体スイッチング素子のオン抵抗を小さくすることで導通損失の低減を図ってきた。しかしながら、一般的にオン抵抗値は半導体スイッチング素子のスイッチング閾値電圧とトレードオフ関係にあり、オン抵抗を小さくすれば半導体スイッチング素子の閾値電圧も低下してノイズの影響を受けやすくなり、スイッチングの誤動作の可能性が高くなるという問題があった。
 この発明は、上述のような課題を解決するためになされたもので、半導体スイッチング素子を高速にスイッチングできるゲート駆動回路を得るものである。
 この発明に係るゲート駆動回路は、相補的にオン・オフするオン用スイッチング素子およびオフ用スイッチング素子を有し、半導体スイッチング素子を駆動するバッファ回路と、オン用スイッチング素子のソースまたはエミッタに正極が接続され、ゲート駆動回路の基準電位に負極が接続された第1の直流電圧源と、オフ用スイッチング素子のソースまたはエミッタに正極が接続され、基準電位に負極が接続された第2の直流電圧源とを備えたものである。
 また、この発明に係るゲート駆動回路は、相補的にオン・オフするオン用スイッチング素子およびオフ用スイッチング素子を有し、半導体スイッチング素子を駆動するバッファ回路と、オン用スイッチング素子のソースまたはエミッタに正極が接続され、ゲート駆動回路の基準電位に負極が接続された直流電圧源と、オン用スイッチング素子のゲートおよびオフ用スイッチング素子のゲートに対して電圧パルスを出力する駆動ロジックとを備え、駆動ロジックは、電圧パルスの高電位側をオン用スイッチング素子のソースの電位より高く出力する制御および電圧パルスの低電位側をオフ用スイッチング素子のソースの電位より低く出力する制御のうちの少なくともいずれか一方の制御を行うものである。
 この発明は、相補的にオン・オフするオン用スイッチング素子およびオフ用スイッチング素子を有し、半導体スイッチング素子を駆動するバッファ回路と、オン用スイッチング素子のソースまたはエミッタに正極が接続され、ゲート駆動回路の基準電位に負極が接続された第1の直流電圧源と、オフ用スイッチング素子のソースまたはエミッタに正極が接続され、基準電位に負極が接続された第2の直流電圧源とを備えたので、オフ用スイッチング素子を高速にターンオフさせることができ、半導体スイッチング素子を高速にターンオンさせることができる。
本発明の実施の形態1におけるゲート駆動回路の概略の構成図である。 従来のゲート駆動回路の概略の構成図である。 従来のゲート駆動回路のNチャネルMOSFETのゲート-ソース間電圧の過渡応答波形の一例を示す図である。 NチャネルMOSFETのドレイン電流とゲート-ソース間電圧との代表的な関係の一例を示す図である。 本発明の実施の形態1におけるゲート駆動回路のNチャネルMOSFETのゲート-ソース間電圧の過渡応答波形を示す図である。 本発明の実施の形態2におけるゲート駆動回路の概略の構成図である。 本発明の実施の形態3におけるゲート駆動回路の概略の構成図である。 本発明の実施の形態3におけるゲート駆動回路のPチャネルMOSFETのゲート-ソース間電圧の過渡応答波形を示す図である。 本発明の実施の形態3における別のゲート駆動回路の概略の構成図である。 本発明の実施の形態4におけるゲート駆動回路の概略の構成図である。 本発明の実施の形態4における駆動ロジックから出力されるゲート電圧の出力波形の第一例を示す図である。 本発明の実施の形態4における駆動ロジックから出力されるゲート電圧の出力波形の第二例を示す図である。 本発明の実施の形態4における駆動ロジックから出力されるゲート電圧の出力波形の第三例を示す図である。
実施の形態1.
 図1は、この発明の実施の形態1におけるゲート駆動回路の概略の構成図である。ゲート駆動回路1は、半導体スイッチング素子であるMOSFET10を駆動するものである。図1において、ゲート駆動回路1は、MOSFET10を駆動するバッファ回路であるバッファ4と、第1の直流電圧源6と、第2の直流電圧源12とよって構成されている。
 バッファ4は、トーテムポール接続されて相補的にオン・オフするオン用スイッチング素子であるPチャネルMOSFET2およびオフ用スイッチング素子であるNチャネルMOSFET3を有している。オン用スイッチング素子であるPチャネルMOSFET2がターンオンすることによってMOSFET10がオンし、オフ用スイッチング素子であるNチャネルMOSFET3がターンオンすることによってMOSFET10がオフする。第1の直流電圧源6の正極はPチャネルMOSFET2のソースに接続され、負極はゲート駆動回路1の基準電位(VS)5に接続されている。また、第2の直流電圧源12の正極はNチャネルMOSFET3のソースに接続され、負極はゲート駆動回路1の基準電位5に接続されている。第2の直流電圧源12は、NチャネルMOSFET3のソース電位を基準電位5より上昇させることができる。
 また、ゲート駆動回路1は、MOSFET10のオン時ゲート抵抗7と、オフ時ゲート抵抗8と、駆動信号(SD)を取り込んでPチャネルMOSFET2のゲートおよびNチャネルMOSFET3のゲートへゲート電圧を出力する駆動ロジック9を備えている。駆動ロジック9は、第1の直流電圧源6の正極にも接続されており、第1の直流電圧源6から直流電圧の供給を受けている。また、駆動ロジック9は、基準電位5にも接続されている。駆動ロジック9から出力されるゲート電圧は、PチャネルMOSFET2およびNチャネルMOSFET3を相補的にオン・オフさせるために、高電位(例えば、直流電圧Vout)と低電位(例えば、基準電位)とを交互に変化する電圧パルスとなる。ゲート電圧が高電位になるとPチャネルMOSFET2がオン状態になり、MOSFET10がオン状態になる。ゲート電圧が低電位になるとNチャネルMOSFET3がオン状態になり、MOSFET10がオフ状態になる。
 実施の形態1の説明に先立ち、本発明を良く理解するために、従来の一般的なゲート駆動回路について説明する。図2は、従来のゲート駆動回路の一例を示した概略の構成図である。実施の形態1におけるゲート駆動回路1では、NチャネルMOSFET3と基準電位5との間に設けられた第2の直流電圧源12の正極がNチャネルMOSFET3のソースに接続されている。一方、従来のゲート駆動回路21では、NチャネルMOSFET3と基準電位5との間に設けられた直流電圧源22の負極がNチャネルMOSFET3のソースに接続されており、この点が実施の形態1との相違点である。その他の構成については、実施の形態1におけるゲート駆動回路1と従来のゲート駆動回路21は同じである。
 このような従来のゲート駆動回路21において、駆動対象であるMOSFET10がオフ状態のときに、直流電圧源22によってMOSFET10のゲート-ソース間電圧(以下、Vgsと表記)は基準電位5に対して負バイアス状態となる。このため、ノイズによるMOSFET10のスイッチングの誤動作を防止することができる。ここで、MOSFET10がターンオンするときのバッファ4の動作に注目する。MOSFET10がターンオンするためには、まず、バッファ4のNチャネルMOSFET3がターンオフした後にPチャネルMOSFET2をオンする必要がある。MOSFET10を高速にターンオンするためには、できるだけ短時間でNチャネルMOSFET3をターンオフすることが望ましい。
 図3に、NチャネルMOSFET3がターンオフする際のNチャネルMOSFET3のVgsの過渡応答波形の一例を示す。図3において、縦軸はVgsであり、ソース電位をNチャネルMOSFET3のゲート-ソース間に印加される電位差を表している。ここで、図2に示したゲート駆動回路21の場合、Vgs=0Vに相当する電位は基準電位5に対して直流電圧源22による直流電圧Vbuffer分だけマイナスの電位となる。NチャネルMOSFET3はVgsが一定の閾値電圧(以下、Vthと表記)より小さくなったときにターンオフするが、NチャネルMOSFET3をオフしてからターンオフするまでの遷移時間である立ち下がり時間(以下、toffと表記)によってVgsの電圧変化率(傾き)dV/dtは異なる。図4に、NチャネルMOSFETのドレイン電流(以下、Idと表記)とVgsとの代表的な関係の一例を示す。図4に示したIdとVgsとの関係から、Vgsが大きくなるとIdの電流変化率が大きくなることがわかる。つまり、Vthを大きくした方が電流変化率も大きいので、Idを早く遮断することができる。このため、NチャネルMOSFET3のtoffの短縮につながる。toffは駆動対象であるMOSFET10の立ち上がり時間の一部であるので、MOSFET10を高速駆動するために、NチャネルMOSFET3のtoffを短縮する必要がある。
 次に、本実施の形態のゲート駆動回路の動作について説明する。本実施の形態のゲート駆動回路1では、第2の直流電圧源12が印加する電圧(以下、Vnbufferと表記)によってNチャネルMOSFET3のソース電位を基準電位5よりVnbufferだけ上昇させることができる。なお、NチャネルMOSFET3のソース電位がVnbufferだけ上昇するので、駆動ロジック9から出力されるゲート電圧の高電位側も相対的にVnbufferだけ高く設定し、Vout+Vnbufferのゲート電圧を出力する。これにより、第2の直流電圧源12によってNチャネルMOSFET3のソース電位が上昇しても、オン動作時のNチャネルMOSFET3のVgsは同じ値に設定される。なお、VoutやVnbufferはNチャネルMOSFET3のスペックに合せて任意に設定することができる。一例を示すと、Voutを15V、Vnbufferを5Vに設定することができる。もちろん、この電圧値に限られるわけではない。
 図5に、ゲート駆動回路1におけるNチャネルMOSFET3がターンオフする際のNチャネルMOSFET3のVgsの過渡応答波形を示す。図5において、縦軸はVgsであり、NチャネルMOSFET3のゲート-ソース間に印加される電位差を表している。図中の破線は第2の直流電圧源12を備えていない場合(Case2)であり、図3に示した過渡応答波形と同じである。また、図中の実線は第2の直流電圧源12を備えた場合(Case1)である。ソース電位は、NチャネルMOSFET3のオン・オフ動作に関係なく一定の電位(+Vnbuffer)である。ゲート電位は、NチャネルMOSFET3のオン動作時にはソース電位に対してVoutだけ高く設定されているが、オフ動作時にはソース電位に対してVnbufferだけ低くなる。このため、NチャネルMOSFET3がターンオフ動作を始める場合、Vgsは+Voutから-Vnbufferまで変化する。つまり、第2の直流電圧源12を備えない場合に比べてVnbuffer分だけ大きく変化する。このように、第2の直流電圧源12を備えることによって、VgsをVout+Vnbufferの電圧差で変化させることができるが、実際にNチャネルMOSFET3のゲート-ソース間に印加される最大電圧はVoutであり、第2の直流電圧源12を備えない場合と同じである。つまり、NチャネルMOSFET3のオン動作時のVgsの耐電圧のスペックを変える必要がない。
 図5に示すように、第2の直流電圧源12の有無によってターンオフ後のVgs変化の時定数は変わらないので、Vgsの電圧変化を大きくする方が電圧変化率を高くすることができる。このため、第2の直流電圧源12を備えない場合に比べて第2の直流電圧源12を備えてソース電圧をVnbufferだけ高くした方が、NチャネルMOSFET3のVgsが早くVthに達し、VgsがVthに至るまでの時間をΔtoffだけ短くすることができる。また、第2の直流電圧源12を備えない場合に比べて、Vth到達時のVgsの電圧変化率も高くすることができ、toffを短縮することができる。このように、NチャネルMOSFET3のオン時のVgsの値を変えずに、ターンオフ動作時のゲート電位をVnbuffer分だけ大きく変化させることができるので、NチャネルMOSFET3を高速にターンオフすることができる。このため、PチャネルMOSFET2をオンするまでの時間が短くなり、MOSFET10を高速にターンオンさせることができる。
 なお、本実施の形態では、NチャネルMOSFET3のソースを負バイアスとしていないが、駆動対象となるMOSFET10のVthは用途や種類によって異なり、MOSFET10に印加されるノイズの大きさも使用環境によって大きく異なる。このため、MOSFET10のVthがノイズに対して充分に余裕があったり、ノイズが充分に小さい場合には、Vgsを積極的に0[V]に近づけたり、負バイアスにしたりする必要はない。
 以上のように、第2の直流電圧源12の正極をNチャネルMOSFET3のソースに接続する構成にすることによって、NチャネルMOSFET3を高速にターンオフさせることができ、ゲート駆動回路1はMOSFET10を高速駆動することができる。
実施の形態2.
 図6は、この発明の実施の形態2におけるゲート駆動回路の概略の構成図である。図6において、図1と同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通することである。本実施の形態のゲート駆動回路11は、正極をMOSFET10のソースに接続し、負極を基準電位5に接続する第3の直流電圧源13を備えた点が実施の形態1と異なる。
 第3の直流電圧源13が印加する電圧をVoffsetとすると、第3の直流電圧源13は、MOSFET10のソース電位を基準電位5よりVoffset上昇させることができ、MOSFET10のVgsを調節することができる。例えば、Vnbuffer<Voffsetの関係となるようにMOSFET10のVgsを調節することによって、MOSFET10のオフ時のVgsを負バイアスとすることができる。負バイアスとすることによって、ノイズによるMOSFET10の誤動作を防止することができる。
 このように、第2の直流電圧源12の正極をNチャネルMOSFET3のソースに接続し、第3の直流電圧源13の正極をMOSFET10のソースに接続することによって、ゲート駆動回路11は、NチャネルMOSFET3を高速にターンオフさせてMOSFET10を高速駆動する機能と、ノイズによるMOSFET10の誤動作を防止する機能とを両立させることができる。なお、VnbufferとVoffsetの関係はノイズ耐量などを勘案してVnbuffer<Voffsetに限らず任意に設定可能であることは言うまでもない。
実施の形態3.
 図7は、この発明の実施の形態3におけるゲート駆動回路の概略の構成図である。本実施の形態のゲート駆動回路14は、正極を第1の直流電圧源17の正極に接続し、負極をPチャネルMOSFET2のソースに接続する第4の直流電圧源16を、PチャネルMOSFET2と第1の直流電圧源17との間に挿入した点が実施の形態2と異なる。実施の形態1および実施の形態2におけるゲート駆動回路は、MOSFET10のターンオンの速度を速くするものであるが、MOSFET10のターンオフの速度も速くすることができれば、MOSFET10のスイッチング損失の低減などのメリットをさらに享受することができる。本実施の形態のゲート駆動回路は、MOSFET10のターンオフを速くするために、バッファ4のPチャネルMOSFET2のターンオフの速度を速くするものである。
 図7において、第1の直流電圧源17の負極は基準電位5に接続され、第4の直流電圧源16の正極と第1の直流電圧源17の正極同士が接続されている。第4の直流電圧源16から発生される直流電圧(以下、Vpbufferと表記)は、第1の直流電圧源17から発生される直流電圧Voutよりも低く設定されている。このようなゲート駆動回路14の構成では、第4の直流電圧源16が印加する電圧VpbufferによってPチャネルMOSFET2のソース電位を第1の直流電圧源17と第4の直流電圧源16との接続点の電位よりVpbufferだけ下降させることができる。PチャネルMOSFET2のソース電位がVpbufferだけ下降するので、第1の直流電圧源17の電圧を相対的にVpbuffer高く設定する。駆動ロジック9から出力されるゲート電圧の高電位側も相対的にVpbufferだけ高く設定し、Vout+Vpbufferのゲート電圧を出力する。第1の直流電圧源17の電圧を相対的にVpbuffer高く設定しているので、第4の直流電圧源16によってソース電位がVpbuffer下降しても、オン動作時のPチャネルMOSFET2のVgsは同じ値に設定される。VoutやVpbufferはPチャネルMOSFET2のスペックに合せて任意に設定することができる。なお、第2の直流電圧源12および第3の直流電圧源13の動作については実施の形態2と同様であるため説明を省略する。
 図8に、ゲート駆動回路14におけるPチャネルMOSFET2がターンオフする際のVgsの過渡応答波形を示す。図8において、縦軸はVgsであり、PチャネルMOSFET2のゲート-ソース間に印加される電位差を表している。図中の破線は第4の直流電圧源16を備えていない場合(Case4)であり、図3に示した過渡応答波形と同じである。また、図中の実線は第4の直流電圧源16を備えた場合(Case3)である。ソース電位は、PチャネルMOSFET2のオン・オフ動作に関係なく一定の電位である。本実施の形態では、ゲート電位は、PチャネルMOSFET2のオン動作時にはソース電位に対してVoutだけ低く設定されているが、オフ動作時にはソース電位に対してVpbufferだけ高くなる。このため、PチャネルMOSFET2がターンオフ動作を始める場合、Vgsは-Voutから+Vpbufferまで変化する。つまり、第4の直流電圧源16を備えない場合に比べてVpbuffer分だけ大きく変化する。このように、第4の直流電圧源16を備えることによって、VgsをVout+Vpbufferの電圧差で変化させることができるが、実際にPチャネルMOSFET2のゲート-ソース間に印加される最大電圧はVoutであり、第4の直流電圧源16を備えない場合と同じである。つまり、PチャネルMOSFET2のオン動作時のVgsの耐電圧のスペックを変える必要がない。
 図8に示すように、第4の直流電圧源16の有無によってターンオフ後のVgs変化の時定数は変わらないので、Vgsの電圧変化を大きくする方が電圧変化率を高くすることができる。このため、第4の直流電圧源16を備えない場合に比べて第4の直流電圧源16を備え、ソース電圧をVpbufferだけ高くした方が、PチャネルMOSFET2のVgsが早くVthに達し、VgsがVthに至るまでの時間をΔtoffだけ短くすることができる。また、第4の直流電圧源16を備えない場合に比べて、Vth到達時のVgsの電圧変化率も高くすることができ、toffを短縮することができる。このように、PチャネルMOSFET2のオン時のVgsの値を変えずに、ターンオフ動作時のゲート電位をVpbuffer分だけ大きく変化させることができるので、PチャネルMOSFET2を高速にターンオフすることができる。このため、NチャネルMOSFET3をオンするまでの時間が短くなり、MOSFET10を高速にターンオフさせることができる。
 また、実施の形態1、2において説明したように、第2の直流電圧源12によってNチャネルMOSFET3のソース電位が基準電位5より上昇することによってNチャネルMOSFET3がターンオフするまでの時間を短縮することができる。さらに、実施の形態2において説明したように、第3の直流電圧源13によって駆動対象であるMOSFET10のVgsを調節することができ、MOSFET10の誤動作を防止することができる。なお、実施の形態1と同様に、MOSFET10のVthがノイズに対して充分に余裕があったり、ノイズが充分に小さい場合には、第3の直流電圧源13を備えてVgsを負バイアスにする必要はない。また、MOSFET10を高速にターンオフさせることだけを目的とする場合は、図9に示すようなゲート駆動回路15のように第2の直流電圧源12を備えない構成にしてもよい。
 以上のように、第4の直流電圧源16の負極をPチャネルMOSFET2のソースに接続し、第2の直流電圧源12の正極をNチャネルMOSFET3のソースに接続する構成にすることによって、PチャネルMOSFET2およびNチャネルMOSFET3をそれぞれ高速にターンオフさせることができ、ゲート駆動回路14はMOSFET10を高速駆動することができる。また、第3の直流電圧源13の正極を駆動対象であるMOSFET10のソースに接続することによって、ノイズによるMOSFET10の誤動作を防止することができる。
実施の形態4.
 実施の形態1~実施の形態3においては、バッファのスイッチング速度を向上させるために、バッファ内部のMOSFETのソース電位を直流電圧源でオフセットして、オン時のVgsの値を変えずにゲート電位を大きく変化させる方法を用いた。オン時のVgsの値を変えずにゲート電位を大きく変化させる方法としては、駆動ロジックからバッファへ出力されるゲート電圧を調節する方法があり、同様の動作を行うことができる。図10は、この発明の実施の形態4におけるゲート駆動回路の概略の構成図である。本実施の形態のゲート駆動回路18は、PチャネルMOSFETのソースに正極を接続する直流電圧源を備えず、駆動ロジック9の代わりに駆動ロジック19を備えた点が実施の形態2と異なる。
 図10において、バッファ4のスイッチングが高速化されるように、駆動ロジック19から出力されるゲート電圧が設計されている。なお、PチャネルMOSFET2のソース電位は、第1の直流電圧源6の出力電圧(以下、Vdcと表記)と同じになる。また、NチャネルMOSFET3のソース電位は、基準電位5と同じになる。
 図11に、駆動ロジック19から出力されるゲート電圧の出力波形の第一例を示す。図11に示すように、駆動ロジック19から出力されるゲート電圧は電圧パルスであり、電圧パルスの高電位側を、PチャネルMOSFET2のソース電位であるVdcに対してオフセット電圧分(以下、Vpodと表記)だけ高くなるように制御している。PチャネルMOSFET2のソース電位はVdcに固定され、ゲート電位はVdc+Vpodから基準電位5までの変化を繰り返し、PチャネルMOSFET2のオン・オフ動作が行われる。つまり、PチャネルMOSFET2のオン動作時のVgsをVdcより高くすることなく、ターンオフの際のVgsを基準電位からVdc+Vpodまで範囲で変化させることができる。このため、実施の形態3において説明したように、PチャネルMOSFET2を高速にターンオフすることができ、NチャネルMOSFET3をオンするまでの時間が短くなり、MOSFET10を高速にターンオフさせることができる。
 また、図12に、駆動ロジック19から出力されるゲート電圧の出力波形の第二例を示す。図12に示すように、駆動ロジック19から出力されるゲート電圧は電圧パルスであり、電圧パルスの低電位側を、NチャネルMOSFET3のソース電位である基準電位5に対してオフセット電圧分((以下、Vnodと表記)だけ低くなるように制御している。NチャネルMOSFET3のソース電位は基準電位5に固定され、ゲート電位は-VnodからVdcまでの変化を繰り返し、NチャネルMOSFET3のオン・オフ動作が行われる。つまり、NチャネルMOSFET3のオン動作時のVgsをVdcより高くすることなく、ターンオフの際のVgsをVdc+Vnodの範囲で変化させることができる。このため、実施の形態1において説明したように、NチャネルMOSFET3を高速にターンオフすることができ、PチャネルMOSFET2をオンするまでの時間が短くなり、MOSFET10を高速にターンオンさせることができる。
 また、図13に、駆動ロジック19から出力されるゲート電圧の出力波形の第三例を示す。図13は、図11および図12に示した出力波形を組み合わせたものである。図13において、駆動ロジック19から出力されるゲート電圧の高電位側をVdcに対してVpodだけ高くなるように設定し、低電位側を基準電位5に対してVnodだけ低くなるように設定する。駆動ロジック19がこのようなゲート電圧を出力することによって、PチャネルMOSFET2を高速にターンオフし、MOSFET10を高速にターンオフさせることができるともに、NチャネルMOSFET3を高速にターンオフし、MOSFET10を高速にターンオンさせることができる。
 以上のように、駆動ロジック19のゲート電圧を調整することによって、ゲート駆動回路18は、MOSFET10を高速駆動することができる。なお、ノイズ耐量などを勘案して第3の直流電圧源13を省いた構成としてもよい。また、本実施の形態の駆動ロジック19の構成を、図2に示した従来のゲート駆動回路に適用してもよいし、実施の形態1~実施の形態3に示したゲート駆動回路に付加して適用してもよい。
 なお、実施の形態1~実施の形態4において、半導体スイッチング素子としてMOSFETに対して適用した例を説明したが、本発明はこれに限定するものではなく、トランジスタなどのスイッチング素子などに対して適用できる。また、半導体スイッチング素子もMOSFETに限定せずIGBT(Insulated Gate Bipolar Transistor)などのバイポーラトランジスタに対しても適用できる。さらに、J-FET(Junction Field Effect Transistor)に対しても適用できる。なお、バイポーラトランジスタを適用した場合、MOSFETのソースに相当するものは、エミッタとなる。
 また、すべての実施の形態において、珪素よりバンドギャップが広いワイドバンドギャップ半導体によってスイッチング素子を形成してもよい。ワイドバンドギャップ半導体としては、例えば、炭化珪素、窒化ガリウム系材料又はダイヤモンドがある。ワイドバンドギャップ半導体によって形成されたスイッチング素子は、耐電圧性が高く、許容電流密度も高いため、スイッチング素子の小型化が可能であり、これら小型化されたスイッチング素子を用いることにより、これらの素子を組み込んだ半導体モジュールの小型化が可能となる。また、耐熱性も高いため、ヒートシンクの放熱フィンの小型化や、水冷部の空冷化が可能であるので、半導体モジュールの一層の小型化が可能になる。更に、電力損失が低いため、スイッチング素子の高効率化が可能であり、延いては半導体モジュールの高効率化が可能になる。
 1,11,14,15,18,21 ゲート駆動回路、2 PチャネルMOSFET、3 NチャネルMOSFET、4 バッファ、5 基準電位、6,12,13,16,17,22 直流電圧源、7 オン時ゲート抵抗、8 オフ時ゲート抵抗、9,19 駆動ロジック、10 MOSFET。

Claims (7)

  1. 半導体スイッチング素子を駆動するゲート駆動回路であって、
    相補的にオン・オフするオン用スイッチング素子およびオフ用スイッチング素子を有し、前記半導体スイッチング素子を駆動するバッファ回路と、
    前記オン用スイッチング素子のソースまたはエミッタに正極が接続され、前記ゲート駆動回路の基準電位に負極が接続された第1の直流電圧源と、
    前記オフ用スイッチング素子のソースまたはエミッタに正極が接続され、前記基準電位に負極が接続された第2の直流電圧源とを備えたことを特徴とするゲート駆動回路。
  2. 前記半導体スイッチング素子のソースに正極が接続され、前記基準電位に負極が接続された第3の直流電圧源を備え、
    前記第2の直流電圧源から発生される直流電圧は、前記第3の直流電圧源から発生される直流電圧よりも低いことを特徴とする請求項1に記載のゲート駆動回路。
  3. 前記オン用スイッチング素子と前記第1の直流電圧源との間に挿入された第4の直流電圧源を備え、
    前記第4の直流電圧源の正極は、前記第1の直流電圧源の正極に接続され、
    前記第4の直流電圧源の負極は、前記オン用スイッチング素子のソースまたはエミッタに接続され、
    前記第4の直流電圧源から発生される直流電圧は、前記第1の直流電圧源から発生される直流電圧よりも低いことを特徴とする請求項1または2に記載のゲート駆動回路。
  4. 半導体スイッチング素子を駆動するゲート駆動回路であって、
    相補的にオン・オフするオン用スイッチング素子およびオフ用スイッチング素子を有し、前記半導体スイッチング素子を駆動するバッファ回路と、
    前記ゲート駆動回路の基準電位に負極が接続された第1の直流電圧源と、
    前記オン用スイッチング素子と前記第1の直流電圧源との間に挿入された第4の直流電圧源とを備え、
    前記第4の直流電圧源の正極は、前記第1の直流電圧源の正極に接続され、
    前記第4の直流電圧源の負極は、前記オン用スイッチング素子のソースまたはエミッタに接続され、
    前記第4の直流電圧源から発生される直流電圧は、前記第1の直流電圧源から発生される直流電圧よりも低いことを特徴とするゲート駆動回路。
  5. 半導体スイッチング素子を駆動するゲート駆動回路であって、
    相補的にオン・オフするオン用スイッチング素子およびオフ用スイッチング素子を有し、前記半導体スイッチング素子を駆動するバッファ回路と、
    前記オン用スイッチング素子のソースまたはエミッタに正極が接続され、前記ゲート駆動回路の基準電位に負極が接続された直流電圧源と、
    前記オン用スイッチング素子のゲートおよび前記オフ用スイッチング素子のゲートに対して電圧パルスを出力する駆動ロジックとを備え、
    前記駆動ロジックは、前記電圧パルスの高電位側を前記オン用スイッチング素子のソースの電位より高く出力する制御および前記電圧パルスの低電位側を前記オフ用スイッチング素子のソースの電位より低く出力する制御のうちの少なくともいずれか一方の制御を行うことを特徴とするゲート駆動回路。
  6. 前記半導体スイッチング素子は、ワイドバンドギャップ半導体によって形成されていることを特徴とする請求項1~5のいずれか1項に記載のゲート駆動回路。
  7. 前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料又はダイヤモンドであることを特徴とする請求項6に記載のゲート駆動回路。
PCT/JP2010/005399 2009-09-15 2010-09-02 ゲート駆動回路 WO2011033733A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112010003761T DE112010003761T5 (de) 2009-09-15 2010-09-02 Gate-Ansteuerschaltung
JP2011531777A JP5270761B2 (ja) 2009-09-15 2010-09-02 ゲート駆動回路
CN2010800407446A CN102498668A (zh) 2009-09-15 2010-09-02 栅极驱动电路
US13/390,721 US8519751B2 (en) 2009-09-15 2010-09-02 Gate drive circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009213124 2009-09-15
JP2009-213124 2009-09-15

Publications (2)

Publication Number Publication Date
WO2011033733A1 WO2011033733A1 (ja) 2011-03-24
WO2011033733A9 true WO2011033733A9 (ja) 2012-04-26

Family

ID=43758348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005399 WO2011033733A1 (ja) 2009-09-15 2010-09-02 ゲート駆動回路

Country Status (5)

Country Link
US (1) US8519751B2 (ja)
JP (1) JP5270761B2 (ja)
CN (1) CN102498668A (ja)
DE (1) DE112010003761T5 (ja)
WO (1) WO2011033733A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633468B2 (ja) * 2011-05-11 2014-12-03 三菱電機株式会社 半導体装置
JP5452546B2 (ja) * 2011-05-26 2014-03-26 三菱電機株式会社 半導体デバイス駆動回路及び半導体装置
JP5734120B2 (ja) * 2011-07-11 2015-06-10 三菱電機株式会社 電力変換装置
JP5939947B2 (ja) * 2012-09-27 2016-06-22 トランスフォーム・ジャパン株式会社 ショットキー型トランジスタの駆動回路
CN105324939B (zh) * 2013-04-05 2018-04-24 Abb技术有限公司 Rc-igbt开关脉冲控制
DE112015003069B4 (de) * 2014-06-30 2019-12-24 Mitsubishi Electric Corporation Treiberschaltung für Leistungs-Halbleiterelement
JP6223938B2 (ja) * 2014-09-19 2017-11-01 株式会社東芝 ゲート制御装置、半導体装置、及び半導体装置の制御方法
JP6477442B2 (ja) * 2015-11-24 2019-03-06 トヨタ自動車株式会社 スイッチング回路及び電力変換回路
CN107218176B (zh) 2016-03-21 2020-05-19 通用电气公司 风力节距调整系统
CN107493095B (zh) * 2017-08-09 2020-06-16 东南大学 硅基igbt和碳化硅肖特基二极管混合的栅驱动系统
JP6380698B1 (ja) * 2018-03-05 2018-08-29 富士電機株式会社 ゲート駆動回路
JP6988764B2 (ja) * 2018-10-26 2022-01-05 オムロン株式会社 スイッチング素子の駆動回路及びスイッチング回路
US11206016B2 (en) * 2019-09-27 2021-12-21 Analog Devices International Unlimited Company Gate driver with pulsed gate slew control

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027714A (ja) 1988-06-27 1990-01-11 Hitachi Ltd 異常電流時の素子の保護装置
US5055721A (en) * 1989-04-13 1991-10-08 Mitsubishi Denki Kabushiki Kaisha Drive circuit for igbt device
JPH04119722A (ja) 1990-09-10 1992-04-21 Fujitsu Ltd 半導体集積回路
JP3139223B2 (ja) * 1992-11-26 2001-02-26 富士電機株式会社 半導体装置及びその製造方法
JPH07245557A (ja) 1994-03-02 1995-09-19 Toyota Autom Loom Works Ltd パワーmosトランジスタの駆動回路
JP3448944B2 (ja) 1994-03-25 2003-09-22 松下電工株式会社 Siサイリスタの駆動回路
JP3373704B2 (ja) 1995-08-25 2003-02-04 三菱電機株式会社 絶縁ゲートトランジスタ駆動回路
JP3770008B2 (ja) * 1999-11-05 2006-04-26 株式会社日立製作所 半導体電力変換装置
US6687106B1 (en) 2000-02-25 2004-02-03 Mitsubishi Denki Kabushiki Kaisha Power module
US6655192B2 (en) 2001-10-10 2003-12-02 Borgwarner Inc. Permeameter-porosimeter
JP5138287B2 (ja) * 2007-06-27 2013-02-06 三菱電機株式会社 ゲート駆動装置
EP2434627A4 (en) * 2009-05-19 2014-07-02 Mitsubishi Electric Corp GATE DRIVE CIRCUIT

Also Published As

Publication number Publication date
CN102498668A (zh) 2012-06-13
DE112010003761T5 (de) 2012-10-04
WO2011033733A1 (ja) 2011-03-24
JP5270761B2 (ja) 2013-08-21
US8519751B2 (en) 2013-08-27
JPWO2011033733A1 (ja) 2013-02-07
US20120153998A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5270761B2 (ja) ゲート駆動回路
JP4216299B2 (ja) 非対称のcmosを介した、ノーマリーオン、ノーマリーオフカスコード接続構成デバイスのアクティブ駆動
US9362903B2 (en) Gate drivers for circuits based on semiconductor devices
JP4935294B2 (ja) 絶縁ゲート型デバイスの駆動回路
JP5934925B2 (ja) ゲートドライバおよびこれを備えたパワーモジュール
US9024558B2 (en) Bridge output circuit, motor driving device using the same, and electronic apparatus
KR101329614B1 (ko) 반도체장치
CN103141028B (zh) 电平移动电路
JP2011211836A (ja) スイッチングデバイス駆動装置および半導体装置
EP3590189B1 (en) Hybrid switch control
US11543846B2 (en) Gate driver circuit for reducing deadtime inefficiencies
TWI439841B (zh) 電流限制電路裝置
KR102028388B1 (ko) 게이트 구동회로 및 이를 포함하는 전력 스위치 제어장치
KR101329610B1 (ko) 반도체장치
US10707870B2 (en) High-side driver circuit
KR20190011494A (ko) SiC MOSFET용 게이트 구동회로
JP2010166301A (ja) スイッチ回路
JP7391481B2 (ja) 駆動回路
JP4888199B2 (ja) 負荷駆動装置
JP7493883B2 (ja) 逆起電圧抑制回路
CN214228225U (zh) 一种GaN晶体管驱动电路
JP6265849B2 (ja) 制御回路
JP2024065314A (ja) 窒化物半導体モジュール
KR20210059621A (ko) Wbg 전력 반도체 시스템 및 이의 구동 방법
CN118100906A (zh) 一种具有混合上拉结构的SiC栅极驱动电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040744.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531777

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13390721

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010003761

Country of ref document: DE

Ref document number: 1120100037612

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10816848

Country of ref document: EP

Kind code of ref document: A1