WO2011024951A1 - 集積化有機発光装置、有機発光装置の製造方法および有機発光装置 - Google Patents

集積化有機発光装置、有機発光装置の製造方法および有機発光装置 Download PDF

Info

Publication number
WO2011024951A1
WO2011024951A1 PCT/JP2010/064596 JP2010064596W WO2011024951A1 WO 2011024951 A1 WO2011024951 A1 WO 2011024951A1 JP 2010064596 W JP2010064596 W JP 2010064596W WO 2011024951 A1 WO2011024951 A1 WO 2011024951A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
layer
light emitting
conductive electrode
light
Prior art date
Application number
PCT/JP2010/064596
Other languages
English (en)
French (fr)
Inventor
英雄 山岸
明 西川
秀 鮎川
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2011528868A priority Critical patent/JP5575133B2/ja
Priority to CN201080031681.8A priority patent/CN102474934B/zh
Priority to KR1020127000826A priority patent/KR101705201B1/ko
Priority to US13/392,485 priority patent/US8421347B2/en
Priority to EP10812000.7A priority patent/EP2473009B1/en
Publication of WO2011024951A1 publication Critical patent/WO2011024951A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/86Series electrical configurations of multiple OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to a method for manufacturing an organic light-emitting device having an organic layer as a surface light source, that is, an organic electroluminescent (hereinafter sometimes abbreviated as “EL”) device mainly for illumination.
  • EL organic electroluminescent
  • the present invention also relates to the structure of an organic light emitting device.
  • the organic EL element that constitutes the organic EL device is a semiconductor element that converts electrical energy into light energy.
  • research using organic EL elements has been accelerated. Practical use has already begun in some lighting fields, and the issues are becoming clear. Due to improvements in organic materials and the like that constitute the organic EL element, the driving voltage of the element is remarkably lowered and the luminous efficiency is increased.
  • televisions using an organic EL element as a display screen are on the market.
  • the organic EL element has two or more electrodes (first electrode layer and second electrode layer) for applying a voltage, but at least one of the electrodes needs to extract light generated in the element to the outside. Therefore, a translucent conductive material is used.
  • a translucent conductive material is used as the light-transmitting conductive material.
  • a metal ultrathin film such as Ag or Au, or a metal oxide such as tin oxide doped with indium or the like or zinc oxide doped with aluminum or the like is used.
  • the resistance is higher than that of a metal electrode layer that does not require translucency. For this reason, when energized, it causes heat generation and causes deterioration as described above, and causes many problems such as a decrease in luminous efficiency and an increase in luminance distribution.
  • the EL element itself forms a PN junction, and emits light when a voltage is applied in the forward direction to inject electrons and holes and recombine within the element.
  • the driving voltage can be increased and the light emission luminance can be improved without changing the driving current.
  • an electrically insulating charge generation layer having a specific resistance of 1.0 ⁇ 10 5 ⁇ ⁇ cm or more, in which two layers of internal electrodes are not in contact between stacked light emitting units A stacked organic light emitting device containing is described.
  • the electrically insulating thin film When an electric field is applied to the stacked organic light emitting device, the electrically insulating thin film simultaneously generates holes and electrons that can be injected into the hole transport layer and the electron transport layer, respectively, and is connected in series to a plurality of light emitting units. It can be applied to the method (Multi-Photon Emission).
  • this method is effective for increasing the area to some extent, but not only does the layering process increase in man-hours and materials, but if too many layers are stacked, the layer itself absorbs light, resulting in brightness and luminous efficiency.
  • this method is characterized in that high luminance can be obtained with an equivalent drive current, and does not reduce the absolute value of the drive current density, so there is a limit as a means for increasing the area.
  • Patent Document 2 discloses a method for manufacturing an organic EL device in which a patterned lower electrode and a patterned upper electrode are electrically connected in series. This method can be said to have achieved the intended purpose to some extent, but many are premised on the mask process, and there is a limit to increasing the area, and there is a problem that the process is complicated and the loss of the effective area is large. . Furthermore, although the same method using a back surface cover is described in Patent Document 3, it essentially has the same problem as the method of Patent Document 2.
  • An object of the present invention is basically to provide a method for manufacturing a large-area organic EL device intended for high-performance lighting, and an organic EL device.
  • the present invention (A) forming a patterned light-transmitting first conductive electrode layer on the light-transmitting substrate; (B) forming a laminated body layer including a plurality of organic compound layers so as to cover at least part of the patterned light-transmitting first conductive electrode layer; (C) removing a part of the laminated body layer to expose a part of the translucent first conductive electrode layer; (D) forming a layer including at least one second conductive electrode layer on an exposed portion of the laminate layer and the light-transmitting first conductive electrode layer; (E) removing a part of the stacked body layer and the second conductive electrode layer simultaneously by irradiating a laser beam from the translucent substrate side.
  • the present invention relates to a method for manufacturing an organic light emitting device in which a plurality of light emitting units are electrically connected in series.
  • the step (a) of forming the patterned light-transmitting first conductive electrode layer on the light-transmitting substrate includes the step of forming the light-transmitting first conductive material on the light-transmitting substrate. It is related with the manufacturing method of the said organic light-emitting device characterized by including the process of removing the one part by irradiating a laser beam after forming a conductive electrode layer.
  • the organic light-emitting device manufacturing method is characterized in that a layer farthest from the light-transmitting substrate in the laminate layer including the plurality of organic compound layers is a conductive thin film layer. .
  • the step (c) of removing a part of the laminate layer and exposing a part of the light-transmitting first conductive electrode layer irradiates the laminate layer with a laser beam.
  • the present invention relates to a method for manufacturing the organic light-emitting device including a step.
  • a preferred embodiment relates to the method for manufacturing an organic light-emitting device, wherein the laser beam is applied to the laminate layer by making the laser beam incident from the light-transmitting substrate.
  • the laser light source used in the step (e) for simultaneously removing a part of the laminate layer and the second conductive electrode layer is a harmonic of a YAG laser added with neodymium.
  • the present invention relates to a method for manufacturing the organic light emitting device.
  • the laser light source used in the step (c) in which a part of the laminated body layer is removed to expose a part of the translucent first conductive electrode layer is a YAG added with neodymium.
  • the present invention relates to a method for manufacturing the organic light-emitting device, which is a harmonic of a laser.
  • the step (a) of forming the patterned light-transmitting first conductive electrode layer on the light-transmitting substrate includes the step of forming the light-transmitting first electrode on the light-transmitting substrate.
  • each light emission on the substrate is performed after the step of simultaneously removing a part of the laminate layer and the second conductive electrode layer by making a laser beam incident from the side of the translucent substrate.
  • the present invention relates to a method for manufacturing the organic light emitting device, comprising a step of applying a voltage in a reverse direction to a part of the unit to reduce a leakage current of the light emitting unit.
  • At least a part of the removal portion is provided after the step of simultaneously removing a part of the stacked body layer and the second conductive electrode layer by injecting a laser beam from the translucent substrate side.
  • the laser beam used in the step (e) for simultaneously removing a part of the laminate layer and the second conductive electrode layer is irradiated in a pulse shape.
  • the present invention relates to the method for manufacturing the organic light emitting device, wherein the organic light emitting device is incident from the light transmissive substrate and the focal point of the laser beam is in the light transmissive substrate or the first conductive electrode layer.
  • the step (e) of simultaneously removing a part of the laminated body layer and the second conductive electrode layer irradiates a pulsed laser beam from the translucent substrate, and a laser beam.
  • the irradiation position of the laser beam is relatively moved by drawing a linear trajectory at a constant speed.
  • the relationship between the pulse intensity and the speed is determined by the fact that a large number of small holes formed by the pulse of the laser beam have translucent insulation.
  • the diameter increases from the substrate side toward the second conductive electrode layer side, and the small holes overlap each other in the stacked body layer and the second conductive electrode layer so that the stacked body layer and the second conductive electrode
  • Each of the electrode layers is divided, and in the first electrode layer, the small holes do not overlap with each other, and a conductive portion is left between the small holes.
  • the step (c) of removing a part of the laminated body layer to expose a part of the light-transmitting first conductive electrode layer irradiates the laminated body layer with a laser beam.
  • the laser beam is also applied to the step (e) in which the irradiation position of the laser beam is relatively moved while drawing a linear trajectory, and the stacked body layer and a part of the second conductive electrode layer are simultaneously removed.
  • the present invention relates to an organic light emitting device manufactured by the above manufacturing method.
  • the invention related to the organic light emitting device
  • a translucent first electrode layer, a laminate layer including an organic EL light-emitting layer composed of at least one organic compound, and a second electrode layer are laminated on a translucent insulating substrate,
  • a unit light emitting element dividing groove having a depth from the stacked body layer to the second electrode layer
  • the first electrode layer is divided into a plurality of first electrode layers by the first electrode layer separation groove
  • the multilayer body layer and the second electrode layer are divided into a plurality of sections of the multilayer body layer and the second electrode layer by the unit light emitting element dividing groove
  • the first electrode layer separation groove and the unit light emitting element division groove are at different positions and span at least the first electrode layer of the adjacent section
  • a unit light-emitting element is configured by the first electrode layer of one section, the set of stacked layers stacked on the first electrode layer, and the second electrode layer, and a part
  • the unit light-emitting element dividing groove has a large number of small holes continuous, and each small hole has a shape that expands from the translucent insulating substrate side toward the second electrode layer side, and has at least a first shape.
  • the small holes overlap to divide the second electrode layer, and in the first electrode layer, the small holes do not overlap and leave a conductive portion between the small holes.
  • each of the small holes has a shape that expands in diameter toward the second electrode layer side from the inside of the translucent insulating substrate or the first electrode layer, and in the translucent insulating substrate,
  • the present invention relates to an integrated organic light emitting device characterized in that each small hole does not overlap.
  • a preferred embodiment relates to an integrated organic light emitting device, wherein the distance between the centers of each small hole is 10 to 80 micrometers.
  • the unit light emitting element dividing groove and the conduction opening are located close to each other when viewed in plan, and the width of the second light emitting layer side of the unit light emitting element division groove is toward the conduction opening side.
  • the present invention relates to an integrated organic light emitting device characterized by being wide.
  • the conduction opening is a groove
  • a part of the second electrode layer fills the groove serving as the conduction opening
  • the end of the unit light emitting element dividing groove in the width direction is the conduction opening of the second electrode layer.
  • a preferred embodiment relates to an integrated organic light-emitting device characterized in that an end in the width direction of the unit light-emitting element dividing groove reaches a portion that enters the opening for introduction of the back electrode layer.
  • a preferred embodiment relates to an integrated organic light-emitting device, wherein a material of the outermost layer of the laminated body which is a layer in contact with the second electrode layer in the laminated body layer is a metal.
  • heat generation and luminance distribution generated during energization of a high-brightness organic EL element using a light-transmitting conductive material, which is generally a high resistance, as an electrode are greatly suppressed, and a large area with high reliability. It becomes possible to provide a high performance organic EL device.
  • FIG. 1 is a plan view of an organic EL device showing a manufacturing process of Example 1.
  • FIG. 2 is a plan photograph of a portion where an ITO layer is removed by laser irradiation in the manufacturing process of Example 1.
  • FIG. 1 is a cross-sectional view of an organic EL device showing a manufacturing process of Example 1.
  • FIG. 3 is a plan view showing patterning of a light-transmitting first conductive electrode layer, an organic compound laminate layer, and a second electrode layer implemented in Example 1.
  • FIG. 2 is a plan photograph of an integrated portion of an organic EL device manufactured according to the manufacturing process of Example 1.
  • FIG. 2 is a photograph at the time of light emission of the integrated organic EL device produced in Example 1.
  • FIG. 7 is a luminance plane distribution of the integrated organic EL device shown in FIG.
  • FIG. 17 is a related diagram of FIG. 16, and is an explanatory diagram showing a range of pressure when the glass substrate evaporates.
  • FIG. 17 is an explanatory diagram showing a hole formed by a laser pulse, which is a related diagram of FIG. 16.
  • It is explanatory drawing which shows the range which the pressure reaches when a glass substrate evaporates when forming a unit light emitting element division
  • FIG. 22 is a cross-sectional view taken along the line AA in FIG. 21.
  • FIG. 22 is a sectional view taken along line BB in FIG. 21.
  • FIG. 22 is a cross-sectional view taken along the line CC of FIG.
  • It is a section perspective view of a unit light emitting element division slot of an organic EL device of the present invention. It is sectional drawing of the organic electroluminescent apparatus of this invention manufactured through the process shown in FIG. 16, and shows a mode that the organic electroluminescent apparatus of this invention was cut
  • FIG. 16 It is sectional drawing of the organic electroluminescent apparatus of this invention manufactured through the process shown in FIG. 16, and shows a mode that the organic electroluminescent apparatus of this invention was cut
  • FIG. 3 is a cross-sectional perspective view of the organic EL device of the present invention when a part of the back electrode layer is peeled after forming a unit light emitting element dividing groove, which is one stage of the manufacturing process of the present invention.
  • FIG. 8 is a diagram clarified by adding hatching to FIG. 7.
  • the numerical value of brightness is an approximate value. It is the figure which extracted the background color of FIG. It is the figure which extracted the background color of FIG. 10, and was clearer. It is the figure which extracted the background color of FIG. It is the figure which extracted the background color of FIG. 12, and was clearer.
  • the main object of the present invention is a translucent conductive layer (translucent first layer) to be one electrode (first electrode layer) on a translucent substrate represented by, for example, glass or a polymer film.
  • a translucent conductive layer to be one electrode (first electrode layer) on a translucent substrate represented by, for example, glass or a polymer film.
  • bottom emission in which a plurality of organic compound layers (also referred to as a laminate or functional layer) including a light emitting layer and a back electrode layer (second electrode layer) are formed thereon.
  • Type organic EL device is also referred to as a laminate or functional layer.
  • a layer to be one electrode is a translucent conductive layer (translucent first conductive electrode layer), and the other electrode (second electrode)
  • the back electrode layer to be a layer) is a reflective layer such as aluminum.
  • a translucent layer may be used as the back electrode layer from the viewpoint of application to double-sided light extraction or the like.
  • the organic EL device mainly targeted by the present invention is an integrated organic EL device.
  • the integrated organic EL device 100 is a device in which organic EL elements (hereinafter referred to as “unit light emitting elements”) formed in a strip shape are electrically connected in series.
  • the basic layer structure of the integrated organic EL device 100 is as shown in FIG. 13 and FIG. 14. A plurality of grooves are provided, and one planar organic EL element is divided into strip-shaped unit light emitting elements. Yes. That is, in the integrated organic EL device 100, a conductive electrode layer 102 as a first electrode layer, a functional layer 103, and a back electrode layer 104 as a second electrode layer are sequentially stacked on a glass substrate 101.
  • the functional layer 103 is a stacked body layer including a plurality of organic compound layers, for example, a layer in which a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a conductive layer are stacked.
  • grooves 110, 111, 112, and 113 are formed in each layer.
  • a first electrode layer separation groove 110 serving as a first groove is formed in the conductive electrode layer 102, and the conductive electrode layer 102 is divided into a plurality of parts.
  • the functional layer 103 is formed with a light emitting layer separation groove 111 as a second groove, and the functional layer 103 is divided into a plurality of parts.
  • a part of the back electrode layer 104 enters the light emitting layer separation groove 111 and is in contact with the conductive electrode layer 102 at the bottom of the groove.
  • the light emitting layer separation groove 111 is a conduction opening provided in the functional layer (laminated body layer) 103. A part of the back electrode layer 104 enters the conduction opening and the conductive electrode layer 102 is formed at the bottom of the groove.
  • the third groove 112 of the functional layer 103 and the fourth groove 113 provided in the back electrode layer 104 communicate with each other to form a unit light emitting element isolation groove 115 which is a deep common groove as a whole. Therefore, the unit light emitting element isolation groove 115 has a depth that reaches at least the back electrode layer 104 (second electrode layer), and preferably reaches the functional layer 103.
  • the integrated organic EL device 100 includes a first electrode layer separation groove 110 provided in the conductive electrode layer 102 and a functional layer 103 (specifically, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer).
  • each thin layer is partitioned by unit light emitting element separation grooves 115 provided in the back electrode layer 104 and a laminated body layer of conductive layers) to form independent unit light emitting elements 120a, 120b, 120c. That is, as shown in FIG. 15, one of a plurality of conductive electrode layers 102 (first electrode layers) partitioned by the first electrode layer separation grooves 110 and the stacked conductive electrode layers 102 are stacked.
  • the unit light emitting element 120 is configured by the section of the functional layer (laminated body layer) 103 and the section of the back electrode layer (second electrode layer) 104.
  • a part of the back electrode layer 104 enters the light emitting layer separation groove 111, and a part of the back electrode layer 104 is in contact with the conductive electrode layer 102.
  • the light emitting element 120a is electrically connected in series with the adjacent unit light emitting element 120b (FIGS. 13 and 14). That is, since the first electrode layer separation groove 110 and the unit light emitting element dividing groove 115 are in different positions, the functional layer (laminated body layer) 103a belonging to one unit light emitting element 120a and the back electrode layer (second electrode layer). 104a protrudes from the conductive electrode layer 102a and straddles the adjacent unit light emitting element 120b.
  • channel 111 of the back surface electrode layer 104a is in contact with the conductive electrode layer 102b of the adjacent unit light emitting element 120b.
  • the unit light emitting elements 120a on the glass substrate 101 are connected in series via the penetration part 121a of the back electrode layer 104a.
  • a current supplied from the outside flows from the conductive electrode layer 102a side through the functional layer 103a toward the back electrode layer 104a side, but a part of the back electrode layer 104a passes through the intrusion portion 121a in the light emitting layer separation groove 111.
  • a current flows to the conductive electrode layer 102b of the adjacent unit light emitting element 120b.
  • all the unit light emitting elements 120 are all electrically connected in series, and all the unit light emitting elements 120 emit light.
  • the integrated organic EL device 100 is manufactured using a vacuum vapor deposition device (not shown) and a laser scribing device (not shown). That is, when the integrated organic EL device 100 is manufactured, the conductive electrode layer 102 is formed on the glass substrate 101 or the like as the first step.
  • the conductive electrode layer 102 indium tin oxide (ITO), tin oxide (SnO 2 ), zinc oxide (ZnO), or the like is used.
  • the conductive electrode layer 102 is formed on the glass substrate 101 by sputtering or CVD.
  • a first laser scribing process is performed to form a first electrode layer separation groove 110 with respect to the conductive electrode layer 102.
  • the laser scribing device has an XY table, a laser generator, and an optical member.
  • the first laser scribing step is performed by placing the glass substrate 101 on an XY table and linearly moving the glass substrate 101 at a constant speed in the vertical direction while irradiating a laser beam. Then, the X / Y table is moved in the horizontal direction to shift the irradiation position of the laser beam, and the glass substrate 101 is linearly moved again in the vertical direction while irradiating the laser beam.
  • the substrate 101 that has finished the first laser scribing process is cleaned in some cases in order to remove the scattered film.
  • a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, a conductive layer and the like are sequentially deposited on the glass substrate 101 to form a functional layer (laminate layer) 103.
  • a second laser scribing process is performed on the substrate 101 taken out from the vacuum deposition apparatus, and the light emitting layer separation groove 111 is formed in the functional layer 103.
  • the substrate 101 is inserted into a vacuum deposition apparatus, and a back electrode layer 104 made of a metal material such as aluminum (Al) or silver (Ag) is formed on the functional layer 103.
  • a back electrode layer 104 made of a metal material such as aluminum (Al) or silver (Ag) is formed on the functional layer 103.
  • a third laser scribing process is performed to form unit light emitting element isolation grooves 115 in both the back electrode layer 104 and the functional layer 103.
  • the operation of forming the power supply electrode (not shown), forming the separation groove (not shown) on the outside, removing the back electrode layer 104 etc. on the outer portion of the separation groove, and sealing with the sealing portion are performed.
  • the EL device is completed.
  • One aspect of the present invention is a method of manufacturing the organic EL device, (A) forming a patterned light-transmitting first conductive electrode layer 102 on a light-transmitting substrate (such as the glass substrate 101); (B) forming a stacked body layer (functional layer) 103 including a plurality of organic compound layers so as to cover at least part of the patterned light-transmitting first conductive electrode layer 102; (C) a step of removing a part of the laminated body layer (functional layer) 103 to expose a part of the translucent first conductive electrode layer 102; (D) A layer including at least one second conductive electrode layer (back electrode layer 104) in an exposed portion of the laminate layer (functional layer) 103 and the light-transmitting first conductive electrode layer 102.
  • the bottom emission type organic EL device which is the object of the present invention uses a translucent substrate is to extract generated light to the outside, and the electrode layer formed thereon is also required to be translucent. It has been. However, these need not be translucent over the entire surface, and may be locally translucent depending on the purpose. For example, a signage that emits light in an area having a specific shape and recognizes a signal by a person who sees it needs only to have a light-transmitting portion of a desired shape.
  • the present invention is mainly applied to large-area illumination, but can also be applied to such a large-area display element.
  • a metal grid layer may be disposed under or on the light-transmitting conductive layer. Even when such a partially light-transmitting first conductive electrode layer is used, the present invention is applicable. Can be applied.
  • “translucent” means having the property of transmitting light, and specifically, the transmittance of the light emitting region in the visible light region may be more than 50%.
  • Examples of the light-transmitting first conductive electrode layer include an indium-doped tin oxide layer.
  • this translucent conductive layer needs to be finally patterned in order to apply the present invention (step (a)).
  • Patterning is possible using various techniques. For example, a method of forming a light-transmitting first conductive electrode layer in a patterned state, such as screen printing or vapor deposition using a mask, lift-off after formation, RIE (reactive ion) Etching), photolithography, water jet, laser beam irradiation and the like, and combinations thereof are conceivable.
  • the pattern may be formed by a generally known method although some conditions are necessary, such as being hard to damage, having a certain degree of processing accuracy, and being simple in the process.
  • each conductive portion (102a, 102b%) Has a low resistance, and each conductive portion (102a , 102b%) Is preferably high resistance. In order to emit light efficiently, it is desirable that these conductive portions (102a, 102b%) Are connected in series, so that they are divided into almost the same area.
  • this organic compound layer is uniformly formed on the substrate (such as the glass substrate 101), the highest light emission efficiency can be set when the same current can be applied to each part. This is a case where the areas of the respective parts are the same.
  • the substrate is rectangular, there is a method of dividing the translucent conductive layer 103 into strips by a single or plural straight lines parallel to one side thereof. In this case, the resistance value of the translucent first conductive electrode layer 102 in the direction perpendicular to the side can be reduced as the number of divisions is increased.
  • a laminated body layer (functional layer) 103 including a plurality of organic compound layers formed so as to cover at least part of the patterned light-transmitting first conductive electrode layer 102 is: For example, it is composed of a plurality of organic compound layers, and may include an electron injection layer, an electron transport layer, a hole injection layer, a hole transport layer, and the like in addition to a so-called light emitting layer.
  • many of these layers (functional layer 103) form a PN junction, but these organic compound layers may include a plurality of junctions, and in order to obtain good performance with these multiple junctions, charge generation occurs. Layers and the like may be included.
  • organic compound layers may include a thin alkali metal layer, or may include an inorganic layer.
  • the present invention can be applied to increase the area as long as it is a laminate layer composed of a combination of layers capable of emitting light in a small area.
  • a low molecular organic compound or the like may be formed by a vapor deposition method, and in the case of a high molecular organic compound, it can be formed by printing or the like. It is also possible to form by a method such as sputtering, and an appropriate formation method should be selected for each.
  • at least one second conductive electrode layer (back electrode layer 104) is required. However, it is possible to form a conductive layer separately from the second conductive electrode layer on the outermost surface of the laminate including the plurality of organic compound layers. .
  • step (c) Various techniques are also applied to the “step of removing a part of the laminated body layer and exposing a part of the translucent first conductive electrode layer” (step (c)) performed thereafter.
  • step (c) Various techniques are also applied to the “step of removing a part of the laminated body layer and exposing a part of the translucent first conductive electrode layer” (step (c)) performed thereafter.
  • the above-described lift-off, RIE (reactive ion etching), photolithography, water jet, laser beam irradiation, and the like used to remove the light-transmitting conductive layer are considered possible.
  • RIE reactive ion etching
  • photolithography photolithography
  • water jet water jet
  • laser beam irradiation and the like used to remove the light-transmitting conductive layer
  • the water jet is flow velocity
  • the laser beam is laser power (resulting mainly at the focal position), thereby minimizing damage to the light-transmitting conductive layer.
  • the removal of the stacked body layer 103 finally electrically connects the light-transmitting first conductive electrode layer 102 and the second electrode layer (back electrode layer 104) of the divided element adjacent to the light-transmitting first conductive electrode layer 102. Therefore, it is not always necessary to remove the light-transmitting first conductive electrode layer 102 in a continuous line pattern like the light-transmitting first conductive electrode layer 102 pattern.
  • step (c) Step of forming a layer including one or more second conductive electrode layers on at least a part of the exposed portion of the body layer and the translucent first conductive electrode layer 102 formed by removing the body layer " (D) step).
  • the second conductive electrode layer formed on the stacked layer including the organic compound layer is combined with the light-transmitting first conductive electrode layer 102 formed on the light-transmitting substrate.
  • a pair of electrodes sandwiching the laminate layer including the organic compound layer is formed.
  • the second conductive electrode layer (back electrode layer 104a) formed on the exposed portion of the first light-transmitting conductive electrode layer 102b has a light-transmitting property formed on the adjacent light-transmitting substrate.
  • this is performed by “a step of simultaneously removing a part of the laminate layer and the second conductive electrode layer by making a laser beam incident from the side of the translucent substrate” (step (e)).
  • step (e) the above-described unit light emitting element isolation groove 115 is provided to realize this.
  • the second conductive electrode layer formed on the laminate including the organic compound layer is generally intended for a bottom emission type organic EL device that extracts light from a translucent substrate. It is not necessary to be translucent, but depending on the purpose, it can also be applied to double-sided light extraction, and in that case, a translucent one may be used.
  • the conductive electrode layer 102 is patterned by simultaneously removing a part of the stacked body layer and the second conductive electrode layer by entering a laser beam from the translucent substrate side. It is characterized by that.
  • the second electrode layer is preferably not a light-transmitting conductive electrode in order to reduce the resistance of the entire device.
  • a highly reflective metal thin film having a thickness that does not transmit visible light exemplified by Ag formed by vapor deposition, or a multilayer film including the same is used.
  • the laser beam when the laser beam is irradiated from the second electrode layer side, when the energy density is small, most of the laser beam is reflected and does not work effectively for heating the electrode layer, so that the electrode layer can be removed. Can not.
  • the beam intensity is further increased, the metal layer as the second electrode layer is dissolved, so that the reflectance is reduced and a large amount of energy is absorbed rapidly.
  • the second electrode layer and the light-transmitting first conductive electrode layer are damaged by the energy of the laser beam, and desired patterning cannot be performed. That is, it is difficult to appropriately control the energy density of the incident laser beam, and practically appropriate processing conditions cannot be found.
  • the organic compound layer or the conductive electrode Energy can be absorbed by the layer 102, the temperature around the beam irradiation can be increased, and the organic compound layer and the second electrode layer (conductive electrode layer 102) can be removed. In this case, it is not always necessary to sublimate the second electrode layer, and by removing the organic compound layer and the conductive electrode layer 102, this layer existing thereon can also be removed from the substrate.
  • this removal can be performed at a low energy density, it is possible to avoid damage that causes a problem of the light-transmitting first conductive electrode layer (conductive electrode layer 102).
  • the energy density of the incident laser beam can be appropriately controlled, and appropriate processing conditions can be easily found.
  • the step of forming the light-transmitting first conductive electrode layer (conductive electrode layer 102) on the light-transmitting substrate (step (a)) includes An organic light-emitting method comprising: forming a light-transmitting first conductive electrode layer (conductive electrode layer 102) on a conductive substrate; and removing a part thereof by irradiating a laser beam. It is a manufacturing method of an apparatus. In order to obtain a patterned light-transmitting first conductive electrode layer (conductive electrode layer 102), the first light-transmitting first conductive property such as screen printing or vapor deposition using a mask is used.
  • the present invention is characterized in that the second electrode layer is patterned by laser processing in the step (e) as described above, the first method is used by using a technique having processing accuracy equivalent to that. It is reasonable to pattern the conductive electrode layer (conductive electrode layer 102).
  • the processing accuracy greatly affects the product yield and effective area. Higher accuracy does not reduce performance, but it does not need to be extremely high and it is not preferable to increase costs. Further, using the same method has an advantage that alignment in the process is greatly facilitated.
  • a preferred embodiment of the present invention is a method for manufacturing an organic light-emitting device, wherein a layer that is farthest from the light-transmitting substrate of the laminate layer including the plurality of organic compound layers is a conductive thin film layer. is there.
  • a layer farthest from the translucent substrate of the laminate layer including the plurality of organic compound layers is, in principle, a metal having conductivity in the film surface direction. Whether it is a metal oxide layer or an organic compound semiconductor layer, there is no significant effect on electrically connecting the elements in series. However, if this layer is a metal thin film layer or a metal oxide thin film layer having higher stability than the organic compound layer, a highly reliable organic EL device can be finally obtained.
  • Organic compound layers are susceptible to humidity, oxygen, electron and plasma damage and associated temperature increases. Processing and film formation after covering the surface with a stable layer for the processing and film formation with the organic compound layered layer required as the outermost surface after the formation of the layered body layer including the organic compound layer is after production It is effective to ensure the characteristics and reliability of In particular, when these processing atmospheres cannot be maintained under sufficiently low humidity and low oxygen concentration conditions, the effect becomes remarkable.
  • step (c) A method of manufacturing an organic light-emitting device comprising a step of irradiating a layer with a laser beam.
  • a method for removing such a thin film as exemplified in the method for removing a light-transmitting conductive layer, a method of removing by lift-off, RIE (reactive ion etching), photolithography, water jet, laser beam irradiation, and the like, and these The combination of is considered.
  • RIE reactive ion etching
  • the method of partially removing the laminate layer with a laser beam is the most rational.
  • the present invention is characterized in that the second conductive electrode layer is patterned by laser processing. Therefore, the light-transmitting first conductive electrode layer (conductive electrode layer 102) is also considered in terms of processing accuracy. Similarly to the patterning of (), it is preferable to use the same method, and the advantage that the alignment in the process is greatly facilitated can be obtained as well.
  • a preferred embodiment of the present invention is a method for manufacturing an organic light-emitting device, characterized in that laser beam irradiation for removing a part of the laminate layer is performed by making a laser beam incident from the translucent substrate. is there.
  • the laminate layer including the organic compound layer is composed of a layer having a relatively low reflectance. Therefore, even if a laser beam is incident directly from the laminate layer side, It is possible to remove the laminated body layer by sublimating it due to the temperature rise due to absorption. However, when the laser beam is irradiated from the surface of the laminate layer, it is heated from the surface of the laminate layer. Therefore, the laminate layer near the translucent conductor layer may not be completely removed. The electrical resistance between the translucent conductor layer and the second conductive electrode layer cannot be sufficiently reduced.
  • the laminate layer (functional layer 103) is sandwiched between the translucent conductor layer 102 and the second conductive electrode layer, and the translucent conductor layer 102 is adjacent to one of the laminate layers.
  • the translucent conductor layer 102 and the second conductive electrode layer must be electrically connected. It is desirable that the resistance is small.
  • the electrical connection between the translucent conductor layer 102 and the second conductive electrode layer is made in the groove (light emitting layer separation groove 111) formed by removing the laminated body layer. This is realized by intruding the second conductive electrode layer.
  • the extended portion of the second conductive electrode layer is brought into contact with the transparent conductive layer 102 at the bottom of the groove (the light emitting layer separation groove 111), so that the transparent conductive layer 102 and the second conductive electrode are contacted.
  • the electrical connection with the layer is intended. Therefore, when the laminate layer near the translucent conductor layer 102 cannot be completely removed, a residue of the laminate layer is sandwiched between the translucent conductor layer and the second conductive electrode layer, The electrical resistance between the translucent conductor layer and the second conductive electrode layer increases.
  • the light-transmitting first conductive electrode layer is likely to be damaged, so that the ideal removal condition range tends to be narrowed.
  • the laminated body layer in the vicinity of the translucent conductor layer 102 is heated and sublimated, so that the translucent conductor layer is hardly damaged.
  • the translucent conductor layer and the laminate layer can be peeled at low power. For this reason, ideal removal is possible in a wider range than when the laser beam is irradiated from the surface of the laminate layer.
  • the present invention includes “a step of simultaneously removing a part of the laminate layer and the second conductive electrode layer by making a laser beam incident from the side of the translucent substrate” (step (e)). It is out.
  • This step (e) is common with the recommended method in step (c) in that a groove is formed by irradiating a laser beam. That is, in the step (c), the second conductive electrode is removed by simultaneously removing a part of the laminate layer and the second conductive electrode layer by entering a laser beam from the translucent substrate side.
  • the conditions for “patterning the layer” are substantially the same as the recommended conditions for the step (e).
  • the difference between the steps (c) and (e) The only difference is whether or not there is an electrode layer. Therefore, the output of the laser beam at the time of removing the laminated body layer at the time of carrying out the step (c) is changed to the second conductive electrode layer together with the laminated body layer by the gasified sublimation component as in the step (e).
  • a laser processing machine can be shared. That is, the same conditions can be selected regardless of the presence or absence of the second conductive electrode layer, and the process (c) and the process (e) can be performed. It can be said that it is preferable in terms of the above.
  • a preferred embodiment of the present invention is that the laser light source used in the “step of simultaneously removing a part of the laminate layer and the second conductive electrode layer” (step (e)) is a harmonic of a YAG laser added with neodymium. It is a manufacturing method of the organic light-emitting device characterized by these.
  • Neodymium-added YAG lasers are widely used in the industry and are easy to obtain, and can be obtained in a short time but with a very high power density by pulsed oscillation, and are highly workable lasers. .
  • the wavelength of the fundamental wave is 1064 nm, and the absorption of light with a wavelength of the harmonic (532 nm, 355 nm) by a light-transmitting conductive material such as ITO is small. For this reason, it is suitable for removing the laminated body layer without damaging the translucent conductive layer 102.
  • the second harmonic is relatively widespread as a laser light source, and it can be said that it is preferable to use it in a manufacturing apparatus.
  • a preferred embodiment of the present invention is a laser used in “a step of removing a part of the laminate layer and exposing a part of the translucent first conductive electrode layer 102” (step (c)).
  • the laser beam irradiation conditions for removing a part of the laminated body layer can be realized by setting substantially the same as the removal conditions (step (e)) of the second conductive electrode layer.
  • the laser light source is a harmonic of a neodymium-added YAG laser as described above. This light source is more suitable particularly when the laser beam is irradiated from the translucent substrate side.
  • a step of forming a light-transmitting first conductive electrode layer 102 patterned on a light-transmitting substrate is performed on the light-transmitting substrate. And forming a light-transmitting first conductive electrode layer and then irradiating a laser beam using a fundamental wave of a neodymium-added YAG laser as a light source to remove a part thereof. It is a manufacturing method of an organic light-emitting device. When the light-transmitting conductive layer 102 is patterned, the method using laser beam irradiation is suitable as described above.
  • the laser beam is absorbed by the light-transmitting conductive layer 102 and heat energy is absorbed. Therefore, it is an essential condition that the light-transmitting conductive layer 102 has an absorption wavelength.
  • the fundamental wave of the neodymium-added YAG laser is 1064 nm, and absorption is recognized in many of the light-transmitting conductive layers 102 such as ITO and tin oxide.
  • the fundamental wave is easy to obtain a high energy density and can be used even when the absorption coefficient is relatively small.
  • a step of removing a part of the laminated body layer to expose a part of the light-transmitting first conductive electrode layer (step (c)) or “from the light-transmitting substrate side”
  • a laser processing machine that is the same as or similar to the step ((e)) in which the stacked body layer and a part of the second conductive electrode layer are simultaneously removed by entering a laser beam (a )
  • performing the process is also preferable in terms of optimization of the entire process including processing accuracy.
  • a preferred aspect of the present invention is “a step of simultaneously removing a part of the laminate layer and the second conductive electrode layer by making a laser beam incident from the side of the translucent substrate” (step (e)). And a step of applying a voltage in a reverse direction to at least a part of each light emitting unit on the substrate to reduce a leakage current of the light emitting unit.
  • the second conductive electrode layer is electrically divided for each light emitting region. However, if the electrical division is insufficient, a leakage current is generated between the light-transmitting first conductive electrode layer and the second conductive electrode layer in each region. , Deteriorating the light emission characteristics.
  • the cause of insufficient electrical division is that electrical insulation is caused by poor insulation between adjacent second conductive electrode layers or contact of the second conductive electrode layer with the light-transmitting first conductive electrode.
  • a short circuit, a micro defect existing in the organic compound laminate layer, or the like is conceivable. These defects are caused by applying a large potential difference between the light-transmitting first conductive electrode layer and the second conductive electrode layer of each light-emitting part, and concentrating a large current on the remaining leakage current generation part between the two layers.
  • the purpose is to remove the heat and the like by heat. It is possible to perform the same processing by applying a voltage in the forward direction, but in the case of the forward direction, a certain amount of current flows not only in the defective portion but also in other regions, so local processing is performed. It becomes difficult. Specifically, the degree of performance recovery by processing when the same voltage is applied is reduced.
  • a preferred aspect of the present invention is “a step of simultaneously removing a part of the laminate layer and the second conductive electrode layer by making a laser beam incident from the side of the translucent substrate” (step (e)). And a step of bringing a fluid into contact with at least a part of the removing unit to reduce a leakage current of the light emitting unit.
  • the electrical division becomes insufficient due to the insulation failure between the adjacent second conductive electrode layers described above and the contact of the second conductive electrode layer with the light-transmitting first conductive electrode.
  • One of the causes is a part of the second electrode layer remaining.
  • the light emission characteristics are improved by removing a part of the remaining second electrode as much as possible.
  • a mechanical removing method is effective in addition to the method using the heat generated by the current.
  • a method of sticking and peeling an adhesive object or a method of spraying a high-pressure fluid can be considered, but the latter with less element damage is effective.
  • the reliability of the organic compound semiconductor is lowered in the presence of moisture, and a fluid without moisture is preferable.
  • a dry inert gas such as dry nitrogen or argon, a non-aqueous organic solvent not containing water, or the like can be applied.
  • a method of ultrasonic treatment by immersing in a liquid is also effective.
  • the unit light emitting element separation groove 115 divides the laminate on the glass substrate 101 into independent unit light emitting elements 120a, 120b,..., One unit light emitting element 120a is separated by the unit light emitting element separation groove 115.
  • the second electrode layer and the second electrode layer of the adjacent unit light emitting element 120b must be reliably divided. If the second electrode layer (back electrode layer 104a) of one unit light emitting element 120a and the second electrode layer (back electrode layer 104b) of the adjacent unit light emitting element 120b are even partially connected, the second The current flowing through the electrode layer (back electrode layer 104a) skips the unit light emitting element 120b and further flows to the adjacent unit light emitting element 120c. As a result, no current flows through the unit light emitting element 120b, and the intermediate unit light emitting element 120b does not emit light.
  • the functional layer 103a of one unit light emitting element 120a and the functional layer 103b of the adjacent unit light emitting element 120b are divided by the unit light emitting element separation groove 115. If the division between the two is not reliable and a current flows, the current flowing through the unit light emitting element 120b decreases, and the light emission of the unit light emitting element 120b becomes weaker than the others.
  • the conductive electrode layer 102 as the first electrode layer should not be divided by the unit light emitting element isolation groove 115. That is, as described above, in the integrated organic EL device 100, the functional layer (laminated body layer) 103 and the back electrode layer (second electrode layer) 104 belonging to one unit light emitting element 120a are separated from the conductive electrode layer 102. When the protruding portion extends over the conductive electrode layer 102 of the adjacent unit light emitting element 120b, the back electrode layer (second electrode layer) 104a of the unit light emitting element 120a becomes the conductive electrode layer of the unit light emitting element 120b. 102b is electrically connected.
  • the conductive electrode layer 102 of the unit light emitting element 120a is divided by the unit light emitting element separation groove 115, the back electrode layer (second electrode layer) 104a of the unit light emitting element 120a and the adjacent unit light emitting element 120b are separated.
  • the functional layer is not connected, resulting in a disconnected state. Therefore, the conductive electrode layer 102 as the first electrode layer must not be divided by the unit light emitting element isolation groove 115.
  • the unit light emitting element isolation groove 115 needs to reliably divide at least the back electrode layer (second electrode layer) 104.
  • the unit light emitting element separation groove 115 should not divide the conductive electrode layer 102 as the first electrode layer.
  • the functional layer (laminated body layer) 103 includes a light emitting layer therein, and has a certain degree of translucency because it is necessary to extract light generated by the light emitting layer to the glass substrate side.
  • a preferable aspect of the present invention is as follows: “The laser beam 25 used in the step (e) of removing part of the stacked body layer and the second conductive electrode layer at the same time is pulsed.
  • the organic light emission is characterized in that the laser beam 25 is incident from the translucent substrate (the glass substrate 101 or the like) and the focal point 26 of the laser beam 25 is in front of the functional layer 103.
  • the focal point 26 of the laser beam 25 is preferably in front of the conductive electrode layer 102, and more preferably in front of the glass substrate 101 as shown in FIG.
  • the step (e) of removing part of the stacked body layer and the second conductive electrode layer at the same time includes the pulsed laser beam 26 as described above. While irradiating from a translucent substrate (glass substrate 101 or the like), the irradiation position of the laser beam 26 is relatively moved by drawing a linear locus at a constant speed, and the relationship between the pulse intensity and the speed is as follows: A large number of small holes 28 formed by the pulse of the laser beam 26 have a shape in which the diameter increases from the translucent insulating substrate side toward the second conductive electrode layer side, and the laminate layer and the second conductive electrode As for the layer, the small holes 28 overlap to divide the laminated body layer and the second conductive electrode layer, respectively. In the first electrode layer (conductive electrode layer 102), the small holes 28 overlap. Without each Is a manufacturing method of an organic light emitting device, characterized in that the relation of leaving the conductive portion 30 between the holes 28 with each other.
  • the laser beam 25 is condensed by the lens 31.
  • the focal point 26 of the laser beam 25 is positioned closer to the light source than the functional layer 103 as shown in FIG.
  • the laser beam 25 is irradiated in a pulse shape.
  • the pulsed laser is focused slightly outside the glass substrate 101 in the direction from the functional layer 103 toward the light source (downward in FIG. 16) as shown in FIG. ing.
  • the conductive electrode layer 102 on the glass substrate 101 and the functional layer 103 close to the conductive electrode layer 102 are in a particularly high temperature state, and the portion is evaporated explosively.
  • the focal point 26 may be set in the glass substrate 101.
  • the light-transmitting conductive material does not absorb much light of the harmonic wavelength of the YAG laser, for example, 532 nm.
  • the material of the layered layer 103 of the organic EL element is basically transparent, and the thickness of the layer is not so thick as about 50 nm to 200 nm, so that light of such a wavelength is not absorbed so much. Therefore, particularly when forming the unit light emitting element dividing groove or when forming the opening for conduction, the conductive electrode layer 102 is heated to a higher temperature than the stacked body layer 103 itself is heated to a high temperature with a laser and evaporated. It is effective to evaporate.
  • laser processing is similarly used.
  • amorphous silicon is 532 nm. Since it absorbs light sufficiently and the thickness of the layer is as thick as about 250 nm to 500 nm, it can be processed sufficiently by heating and evaporating amorphous silicon. This is a major difference between the processing of the organic EL laminate and the processing of amorphous silicon.
  • the number corresponding to the small holes in the first electrode layer according to the present invention is 30% or less at most of the corresponding portion in the element, usually 15
  • the number of organic EL elements corresponding to the small holes in the first electrode layer according to the present invention is at least 70% or more, usually 85% or more of the corresponding portion in the element. It is.
  • the hole 28 formed by explosive evaporation of the portion is a substantially conical hole as shown in FIGS. 18, 21, 22, and 25 due to the effect of explosion pressure due to instantaneous evaporation of the glass substrate 101. 28. That is, the explosion pressure reaches the hatched portion 32 of FIG. 17, and the portion falls off to form a conical hole 18 as shown in FIGS. 18, 21, 22, and 25.
  • the irradiation positions of the laser pulses move one after another.
  • the ranges 40, 41, 42, and 43 in which the explosion pressure in each layer reaches sequentially move, and openings 50, 51, 52 and holes 53 as shown in FIG. 20 are formed in each layer. Is done.
  • discontinuous small holes 53 as shown in FIG. 20 are formed in the glass substrate 101.
  • the conductive electrode layer 102 is formed with holes (openings) 50 larger than the small holes described above, but there is no overlap between the holes 50 and the holes 50 are independent. That is, in the conductive electrode layer 102, there is a residual portion 55 between the holes 50.
  • the hole 51 formed in the functional layer 103 is larger, and the holes 51 overlap and overlap to form a continuous groove 112 as shown in FIG. That is, the hole 51 and the adjacent hole 51 are connected, and there is no residue between the holes 51.
  • the holes 52 formed in the back electrode layer 104 are further large holes 52, and the holes 52 are overlapped by about 40 to 80%. Therefore, a groove 113 is formed in which the large hole 52 overlaps the back electrode layer 104.
  • the conductive electrode layer 102 is connected at a constant interval in the unit light emitting element isolation groove 115 as shown in FIG.
  • each unit light emitting element 120 is connected in series. Therefore, each unit light emitting element 120 emits light with the same amount of light.
  • the step (c) of removing a part of the laminated body layer and exposing a part of the light-transmitting first conductive electrode layer includes a laser beam 25 on the laminated body layer. And a relative movement of the irradiation position of the laser beam 25 along a linear locus, and further, the laminate layer (functional layer 103) and the second conductive electrode layer (back electrode layer 104).
  • the step (e) of removing a part of the laser beam 25 is also performed by forming a groove by relatively moving the irradiation position of the laser beam 25 while drawing a linear trajectory.
  • the distance A between them is 130 micrometers or less, and part of the laminate layer (functional layer 103) and the second conductive electrode layer (back electrode layer 104) is simultaneously removed.
  • the light emitting layer separation groove 111 and the unit light emitting element division groove 115 are formed by laser scribing, respectively, and the integrated organic EL device 100 is prototyped by changing the distance between the two grooves.
  • the distance from the light emitting element dividing groove 115 is narrow, it has been found that the back electrode layer 104 in the meantime peels in a ribbon shape as shown in FIG. Therefore, an interval A between the locus of the laser beam 25 when forming the light emitting layer separation groove 111 and the locus of the laser beam 25 when forming the unit light emitting element dividing groove 115 is set to 130 micrometers or less, and the unit light emitting element dividing groove is formed.
  • the present invention is an organic light emitting device manufactured by the above manufacturing method. Although the organic light-emitting device manufactured by these methods has a large area, the light emission characteristics are not greatly deteriorated as compared with a device having a small area.
  • the organic EL device 60 manufactured by the manufacturing method described with reference to FIGS. 16 to 26 includes the conductive electrode layer 102 as the first electrode layer on the glass substrate 101, similarly to the basic configuration of FIG.
  • a functional layer (laminated body layer) 103 including at least an organic EL light emitting layer and a back electrode layer 104 as a second electrode layer are sequentially laminated.
  • a first electrode layer separation groove 110 as a first groove is formed in the conductive electrode layer 102, and the conductive electrode layer 102 is divided into a plurality of parts.
  • the functional layer 103 is formed with a light emitting layer separation groove 111 as a second groove, and the functional layer 103 is divided into a plurality of parts.
  • the light emitting layer separation groove 111 is a conduction opening provided in the functional layer (laminated body layer) 103.
  • a part of the back electrode layer 104 enters the conduction opening and the conductive electrode layer 102 is formed at the bottom of the groove. Is in contact with.
  • the third groove 112 of the functional layer 103 and the fourth groove 113 provided in the back electrode layer 104 communicate with each other to form a unit light emitting element isolation groove 115 which is a deep common groove as a whole. Accordingly, the unit light emitting element isolation groove 115 has a depth that reaches at least the back electrode layer 104 (second electrode layer), and preferably reaches the functional layer 103.
  • each thin layer is partitioned by a first electrode layer separation groove 110 provided in the conductive electrode layer 102 and a unit light emitting element separation groove 115 provided in the functional layer 103 and the back electrode layer 104.
  • Independent unit light emitting elements 120a, 120b, 120c... are formed.
  • a part of the back electrode layer 104 enters the light emitting layer separation groove 111, and a part of the back electrode layer 104 is in contact with the conductive electrode layer 102, so that one unit light emitting element 120a.
  • 104a protrudes from the conductive electrode layer 102a and straddles the adjacent unit light emitting element 120b.
  • channel 111 of the back surface electrode layer 104a is in contact with the conductive electrode layer 102b of the adjacent unit light emitting element 120b.
  • the unit light emitting element separation groove 115 is formed by laser scribing using a pulsed laser, and a large number of small holes 28 are continuously formed.
  • Each small hole 28 has a shape that expands toward the back electrode layer 104 side, starting from a position near the conductive electrode layer 102 of the glass substrate 101.
  • the center-to-center distance W of each small hole 28 is 10 micrometers to 80 micrometers, preferably 20 micrometers to 50 micrometers.
  • the small holes 28 overlap to divide the functional layer 103 and the back electrode layer 104, respectively.
  • the small holes 28 do not overlap, and the conductive portions 30 remain between the small holes 28.
  • the organic EL device 61 manufactured by the manufacturing method described with reference to FIGS. 27 to 29 includes the unit light emitting element dividing groove 115 and the light emitting layer separating groove 111 serving as a conductive opening.
  • the opening of the unit light emitting element dividing groove 115 is enlarged. That is, the fourth groove 113 constituting the unit light emitting element dividing groove 115 is wider than the third groove 112. More specifically, the edge of the continuous small hole 28 constituting the unit light emitting element dividing groove 115 on the light emitting layer separating groove 111 side is removed in a ribbon shape, and the groove of the unit light emitting element dividing groove 115 is removed.
  • the width of the light emitting layer separating groove 111 is wider than the other.
  • the end portion of the unit light emitting element dividing groove 115 in the width direction reaches a portion that enters the light emitting layer separation groove 111 of the back electrode layer 104. That is, the end in the width direction of the unit light emitting element dividing groove 115 is in contact with the intrusion part 121 that has entered the light emitting layer separation groove 111 of the back electrode layer 104. Therefore, the width of the groove defining the back electrode layer 104 is wide, and the partition of the back electrode layer 104 is not short-circuited.
  • Example 1 A non-alkali glass having a thickness of 0.7 mm in which an entire surface of an indium-doped tin oxide (ITO) film having an average thickness of 150 nm was coated was used as a light-transmitting substrate.
  • This substrate 200 mm x 200 mm
  • a laser beam is irradiated from the upper surface using the fundamental wave of a YAG laser so that the glass is not damaged as much as possible.
  • a part of the ITO film was removed in the form shown in the schematic diagram of FIG. That is, the first laser scribing process was performed to form the first electrode layer separation groove 110 with respect to the conductive electrode layer 102.
  • FIG. 2 shows an enlarged plan view of the laser processed part of the ITO film-coated glass substrate thus patterned.
  • the substrate was washed with a neutral detergent and then dried by heating at 150 ° C. for 20 minutes. Thereafter, it was confirmed that the resistance value between the strip-like ITO portions was approximately 20 M ⁇ or more. Then, the laminated body layer which has a low molecular organic compound as a main component was formed on the anode electrode patterned using the vacuum evaporation system.
  • molybdenum oxide and 4,4′-bis [N- (2-naphthyl) -N-phenyl-amino] biphenyl (hereinafter referred to as the following) And abbreviated as ⁇ -NPD) at a deposition rate of 0.015 nm / second and 0.135 nm / second by a vacuum co-evaporation method with a film thickness of 10 nm.
  • ⁇ -NPD was formed as a hole transport layer with a film thickness of 50 nm (deposition rate: 0.08 nm to 0.12 nm / sec) by vacuum evaporation.
  • the light-emitting layer is [tris (8-hydroxyquinolinato)] aluminum (III) (hereinafter abbreviated as Alq 3 ) shown below, which also serves as an electron transport layer, by a vacuum deposition method to 70 nm (deposition rate 0.25 nm). It was formed with a film thickness of .about.0.30 nm / second).
  • LiF was deposited on the cathode at a film thickness of 1 nm (deposition rate 0.01 nm to 0.05 nm / second) by vacuum deposition, and a cathode electrode Al was deposited thereon by 150 nm (deposition rate 0.30 nm).
  • the film was formed at a film thickness of ⁇ 0.35 nm / sec. The form formed by these vacuum deposition methods is shown in the schematic diagram of FIG.
  • the glass substrate on which the laminate layer including the organic compound layer was laminated was placed on the XY stage so that the laminate layer including the organic compound layer was on the lower surface.
  • the glass substrate was fixed at four end portions, the glass substrate was separated from the XY stage by 7 mm in parallel, and the laminated body layer including the organic compound layer was arranged so as not to contact the XY stage directly.
  • the laminated body layer including the organic compound layer was arranged so as not to contact the XY stage directly.
  • the ITO layer was continuously removed in parallel with the groove from which the ITO layer was removed.
  • the second laser scribing process was performed to form the light emitting layer separation groove 111.
  • the laser oscillation frequency was 5 kHz
  • the output was 0.4 W
  • the beam diameter was about 25 ⁇ m
  • the processing speed was 50 mm / second
  • the distance from the groove from which ITO was removed was 100 ⁇ m.
  • the form after the laser processing is shown in the schematic diagram of FIG.
  • the glass substrate is placed again in a vacuum vapor deposition machine, and Al is further deposited on the outermost Al layer by a vacuum vapor deposition method to 150 nm (deposition rate of 0.30 nm to 0.00 mm).
  • the film was formed at a film thickness of 35 nm / second.
  • the form in which this Al layer is formed is shown in the schematic diagram of FIG.
  • the glass substrate on which the laminate layer including the organic compound layer was laminated was placed on an XY stage so that the Al layer was on the lower surface.
  • the glass substrate is fixed at four end portions, the glass substrate is separated from the XY stage by 7 mm in parallel, and the laminate layer including the organic compound layer is directly It arrange
  • a third laser scribing process was performed to form unit light emitting element dividing grooves 115.
  • the laser oscillation frequency was 5 kHz
  • the output was 0.4 W
  • the beam diameter was about 25 ⁇ m
  • the processing speed was 200 mm / second
  • the distance from the groove from which the laminate including the organic compound layer was removed was 100 ⁇ m.
  • the form after the laser processing is shown in the schematic diagram of FIG. 1E, and a schematic cross-sectional view of the manufacturing process of the series of integrated organic EL light emitting devices is shown in the schematic diagram of FIG.
  • the ITO and organic compound layers are irradiated by irradiating the second harmonic of the YAG laser in a direction perpendicular to the ITO removal line or the like for insulation from the outer periphery.
  • the organic EL device was completed by removing the laminate layer and the second electrode layer.
  • the laser oscillation frequency was 5 kHz
  • the output was 0.4 W
  • the beam diameter was about 25 ⁇ m
  • the processing speed was 50 mm / second.
  • the 170 mm ⁇ 170 mm light emitting section 20 was electrically divided into eight strip-shaped light emitting sections 21 and connected in series. An enlarged plan view of the connecting portion is shown in FIG.
  • the performance of the integrated organic EL device produced in this way was measured according to the following procedure. That is, as shown in FIG. 6, the entire device corresponds to a case where 6 portions (A to F) of 50 mm ⁇ 50 mm including the light emitting portion of the integrated organic EL device are extracted and 5 V is applied to one strip light emitting portion. The luminance when 40V was applied to was measured with a luminance distribution meter. The result of the luminance distribution is shown in FIG. Further, the luminance distribution on the primary line analysis line shown in FIG. 7 is shown in FIG. Further, the average luminance of each of these portions is shown in Table 1 (average luminance at each position in FIG. 6 of the device manufactured in each example).
  • the luminance distribution is extremely good, and a slight luminance distribution remains in the portion sandwiched between the accumulation portions. This is due to the resistance loss of the translucent electrode layer in the divided strip-like light emitting part, but is slightly smaller than the case where the light emitting part is not integrated. It is possible to further improve by increasing the number of divisions and shortening the distance between the stacking parts.
  • the pattern may be determined based on a balance between the increase in man-hours due to the integration and the loss of the effective area.
  • Example 2 A non-alkali glass (200 mm ⁇ 200 mm) having a thickness of 0.7 mm coated with an ITO film having an average film thickness of 150 nm was prepared as a substrate.
  • the ITO film was chemically etched into the shape shown in FIG. 1A, and the average etching width was 50 ⁇ m.
  • the substrate was washed with a neutral detergent and then dried by heating at 150 ° C. for 20 minutes. Thereafter, it was confirmed that the resistance value between the strip-shaped ITO portions was approximately 20 M ⁇ or more. Then, it installed in the vacuum evaporation apparatus and produced the organic EL apparatus by the method similar to Example 1.
  • FIG. The performance of the integrated organic EL device thus produced was measured by the same method as in Example 1, and the average luminance of each part similar to that in Example 1 is shown in Table 1.
  • Example 1 patterning of the translucent conductive layer of Example 1 was performed by chemical etching.
  • the cost increased due to processing, and the area of the light emitting region decreased due to the increase in the removal area of the translucent conductive layer.
  • Example 3 An integrated organic EL device was produced in the same manner as in Example 1. Two strip-shaped adjacent second electrode layers of the manufactured device were selected, a voltage of 0.1 V was applied to the element in the opposite direction, and the resistance value between the electrode layers was measured. The result is indicated by a white circle ( ⁇ ) at the left end of FIG. Thereafter, the operation of increasing the applied voltage by 0.1V and measuring the resistance value each time was repeated until the applied voltage reached 5V. The result is indicated by a white circle ( ⁇ ) other than the left end of FIG. Then, after lowering the applied voltage to 0V, the operation of increasing the applied voltage again by 0.1V and measuring the resistance value was repeated once again to 5V. The results are indicated by black circles ( ⁇ ) in FIG.
  • the first embodiment is added with a means for removing a portion where a leakage current slightly remaining in the manufactured organic EL device is generated. According to the present invention, it was found that a good luminance distribution equal to or higher than that of Example 1 was obtained, and that a high average luminance was obtained when the applied voltage was the same due to a reduction in leakage current, and current efficiency and output efficiency were improved. .
  • Example 4 An integrated organic EL device was produced in the same manner as in Example 1. Thereafter, dry nitrogen reduced in pressure by a pressure reducing valve was sprayed from the cylinder to the accumulation portion of this apparatus to remove the powdered substance around the accumulation portion, and then the luminance was measured according to the procedure shown in Example 1. The average luminance of each part similar to that shown in the table is shown in the table.
  • the first embodiment is added with a means for removing a portion where a leakage current slightly remaining in the manufactured organic EL device is generated.
  • a good luminance distribution equal to or better than that of Example 1 can be obtained, and a high average luminance can be obtained when the applied voltage is the same due to a reduction in leakage current, and current efficiency and output efficiency are improved. It was.
  • Example 1 A non-alkali glass having a thickness of 0.7 mm in which an ITO film having the same average film thickness of 150 nm as that used in Example 1 was coated on one side was used as a substrate. A part of the ITO layer of this substrate (200 mm ⁇ 200 mm) was removed by chemical etching so as to have the shape shown in FIG. 10A, washed with a neutral detergent, and dried by heating at 150 ° C. for 20 minutes.
  • a laminate layer mainly composed of a low molecular weight organic compound was formed on the patterned anode electrode in the same manner as in Example 1.
  • vapor deposition was performed using a stainless steel mask so that the planar shape of the laminate layer was the shape shown in FIG.
  • LiF was laminated as a part of the cathode with a thickness of 1 nm by a vacuum deposition method using a stainless steel mask having a shape shown in FIG.
  • a cathode electrode Al was formed thereon with a film thickness of 150 nm (deposition rate: 0.30 nm to 0.35 nm / second) by the same mask and vacuum deposition method.
  • a schematic cross-sectional view of an organic EL light-emitting device manufactured by this process is shown in the schematic diagram of FIG.
  • the obtained organic EL device is a non-integrated organic EL device having a light emitting area of 170 mm ⁇ 170 mm.
  • the organic EL device was made to emit light by applying 5 V between both electrodes, and the luminance distribution was measured in the same manner as in the example.
  • the luminance distribution in the direction of the ITO electrode is shown in FIG. As shown in FIG. 12, the brightness is high at the end portion of ITO where the resistance loss is small, and the brightness is low at the center portion where the resistance loss is large, and has a large brightness distribution as compared with the organic EL device of the example. Recognize.
  • Example 5 It is a process substantially the same as Example 1 mentioned above, Comprising: Only the 3rd laser scribe process was implemented by the different method. That is, in the first embodiment, the third laser scribing step is performed by irradiating the laser beam from the upper surface using the second harmonic of the YAG laser, but in this embodiment, the focal point 26 of the laser beam 25 is shown in FIG. Was adjusted to the outside of the glass substrate 101. Then, a part of the Al layer was continuously removed while part of the glass substrate 101 was evaporated. When the performance of the integrated organic EL device thus produced was evaluated by the same method as in Example 1 described above, the luminance distribution was extremely good.
  • Example 6 An integrated organic EL device was manufactured under the same conditions as in Example 1 described above, except that only the distance between the first electrode layer separation groove 110 and the unit light emitting element division groove 115 was different. That is, the first electrode layer separation groove 110 and the unit light emitting element division groove 115 were each formed by a laser scribing method. And the space
  • the edge part of the unit light emitting element dividing groove 115 was peeled off in a ribbon shape.
  • the distance A exceeds 140 micrometers, the edge of the unit light emitting element dividing groove 115 could not be removed.
  • the integrated organic EL device in which the edge portion of the unit light emitting element dividing groove 115 can be peeled in a ribbon shape has a very good luminance distribution.

Abstract

 透光性の導電性電極層の抵抗値が主要因となって発生する発熱による劣化や発光効率の低下、輝度分布の拡大等の問題を低減することを課題とする。 透光性基板上にパターン化された透光性の第1の導電性電極層を形成し、パターン化された透光性の第1の導電性電極層の少なくとも一部を覆うように複数の有機化合物層を含む積層体層を形成し、積層体層の一部を除去して前記透光性の第1の導電性電極層の一部を露出し、積層体層と透光性の第1の導電性電極層の露出部分に少なくとも1層以上の第2の導電性電極層を含む層を形成し、透光性基板側からレーザービームを入射することにより積層体層と第2の導電性電極層の一部を同時に除去し、基板上に複数の発光部が電気的に直列に接続された有機発光装置を製造する。

Description

集積化有機発光装置、有機発光装置の製造方法および有機発光装置
 本発明は、面光源として有機層を備えた有機発光装置、すなわち、主として照明を対象とした有機エレクトロルミネッセント(以下、「EL」と略することがある。)装置の製造方法に関する。
 また本発明は、有機発光装置の構造に関するものである。
 有機EL装置を構成する有機EL素子は、電気エネルギーを光エネルギーに変換する半導体素子である。近年、有機EL素子を用いた研究が加速的に行われるようになった。すでに一部の照明分野では実用化が始まっており、その課題が明確になりつつある。有機EL素子を構成する有機材料等の改良により、素子の駆動電圧が格段に下げられると共に、発光効率が高められている。画像市場でも有機EL素子を表示画面に用いたテレビが発売されている。
 さらに、高い輝度を得るために高い電界を加えて電流密度を高めることも行われている。通常電流密度を高めることは熱を発生させ、その影響により、有機薄膜そのものの劣化を促進することが知られている。
 有機EL素子は、電圧を印加するために2つ以上の電極(第1電極層と第2電極層)を備えているが、少なくとも一方の電極は素子内で発生する光を外部に取り出す必要があるため透光性の導電材料が用いられる。透光性の導電材料には、例えば、AgやAu等の金属の極薄膜や、インジウム等をドープした酸化錫やアルミニウム等をドープした酸化亜鉛等の金属酸化物が用いられるが、これらは一般的に透光性を求められない金属電極層と比較して高抵抗である。このため通電時には、熱発生の原因となり、前述したような劣化の原因となるばかりか、発光効率の低下や、輝度分布の拡大等、多くの問題を発生させる。
 特に、大面積の照明に面発光の有機EL装置を適用する場合には、これらの問題は深刻になり、満足な性能を得るためには何らかの工夫が必要となる。この問題を解決するための有効な手段として、単位面積当たりの駆動電流を変えることなく駆動電圧を高めることが考えられる。
 EL素子はそれ自体PN接合を形成しており、順方向に電圧を印加することで電子と正孔を注入し素子内で再結合させることにより発光する。このような接合を膜厚方向に複数積層することにより直列に接続した多接合を形成すると、駆動電流を変えずに、駆動電圧を高め、発光輝度も向上させることができる。下記の特許文献1には、積層された発光ユニットの間に2層の内部電極が接触されておらず、1.0×105Ω・cm以上の比抵抗を有する電気絶縁性の電荷発生層を含む積層型有機発光素子が記載されている。前記電気絶縁性薄膜は、積層型有機発光素子に電界が加えられると、それぞれ正孔輸送層と電子輸送層に注入可能な正孔と電子を同時に生じさせ、複数の発光ユニットに直列に接続する手法(Multi-Photon Emission)に適用できる。
 しかし、この手法はある程度の面積拡大にはそれなりに有効であるが、積層には工数や材料の増加が伴うばかりか、あまり多く積層しすぎるとそれ自体が光を吸収することにより輝度や発光効率の低下を招くという問題を抱えている。基本的には、この方法は、高輝度を同等の駆動電流で得られるところに特徴があり、駆動電流密度の絶対値を低減するものではないため、大面積化の手段としては限度がある。
 単位面積当たりの駆動電流を変えることなく駆動電圧を高めるもう一つの手段は、膜面方向に素子を分割し、分割した素子を電気的に直列に接続することである。このことについても、いくつかの手法が検討されている。特許文献2には、パターン化された下部電極とパターン化された上部電極を電気的に直列に接続させる有機EL装置の製造方法が示されている。この方法は、所期目的をある程度達成しているといえるが、多くはマスクプロセスが前提となっており、大面積化にも限界があり、工程が複雑で有効面積のロスも大きい課題がある。さらに、裏面カバーを利用した同様の手法が特許文献3に記載されているが、本質的には特許文献2の手法と同様の問題を抱えている。
特許3933591号公報 特表2006-511073号公報 特表2008-508673号公報
 有機EL装置の面積を拡大すると透光性の導電性電極層の抵抗値が問題となって、発熱による発光効率低下や、素子劣化、輝度分布拡大等の問題が顕在化する。本発明が解決しようとする課題は、上記の透光性の導電性電極層の抵抗値が主要因となって発生する発熱による劣化や発光効率の低下、輝度分布の拡大等の問題を低減することにある。本発明は、基本的には高性能の照明を対象とした大面積の有機EL装置の製造方法、並びに有機EL装置を提供することを目的とする。
 本発明者らは上記課題に鑑み鋭意検討した結果、以下の構成により上記課題を解決できることを見出し、本発明を完成するに至った。
 即ち、本発明は、
(a)透光性基板上にパターン化された透光性の第1の導電性電極層を形成する工程、
(b)前記パターン化された透光性の第1の導電性電極層の少なくとも一部を覆うように複数の有機化合物層を含む積層体層を形成する工程、
(c)前記積層体層の一部を除去して前記透光性の第1の導電性電極層の一部を露出する工程、
(d)前記積層体層と透光性の第1の導電性電極層の露出部分に少なくとも1層以上の第2の導電性電極層を含む層を形成する工程、
(e)前記透光性基板側からレーザービームを入射することにより前記積層体層と前記第2の導電性電極層の一部を同時に除去する工程、を含むことを特徴とする、基板上に複数の発光部が電気的に直列に接続された有機発光装置の製造方法に関する。
 好ましい実施態様は、前記(a)透光性基板上にパターン化された透光性の第1の導電性電極層を形成する工程が、透光性基板上に透光性の第1の導電性電極層を形成した後、レーザービームを照射することによりその一部を除去する工程を含むことを特徴とする前記の有機発光装置の製造方法に関する。
 好ましい実施態様は、前記の複数の有機化合物層を含む積層体層における前記透光性基板と最も離れた層が導電性の薄膜層であることを特徴とする前記の有機発光装置の製造方法に関する。
 好ましい実施態様は、前記(c)積層体層の一部を除去して前記透光性の第1の導電性電極層の一部を露出する工程が、前記積層体層にレーザービームを照射する工程を含むことを特徴とする前記の有機発光装置の製造方法に関する。
 好ましい実施態様は、前記積層体層へのレーザービームの照射がレーザービームを前記透光性基板から入射することにより行われることを特徴とする前記の有機発光装置の製造方法に関する。
 好ましい実施態様は、前記積層体層と前記第2の導電性電極層の一部を同時に除去する前記(e)工程に用いられるレーザー光源が、ネオジウム添加のYAGレーザーの高調波であることを特徴とする前記の有機発光装置の製造方法に関する。
 好ましい実施態様は、前記積層体層の一部を除去して前記透光性の第1の導電性電極層の一部を露出する前記(c)工程に用いられるレーザー光源が、ネオジウム添加のYAGレーザーの高調波であることを特徴とする前記の有機発光装置の製造方法に関する。
 好ましい実施態様は、前記(a)透光性基板上にパターン化された透光性の第1の導電性電極層を形成する工程が、前記透光性基板上に透光性の第1の導電性電極層を形成した後、ネオジウム添加のYAGレーザーの基本波を光源とするレーザービームを照射することによりその一部を除去する工程を含むことを特徴とする前記の有機発光装置の製造方法に関する。
 好ましい実施態様は、前記透光性基板側からレーザービームを入射することにより前記積層体層と前記第2の導電性電極層の一部を同時に除去する工程の後に、前記基板上の少なくとも各発光部の一部に逆方向に電圧を印加し前記発光部の漏れ電流を低減させる工程を含むことを特徴とする前記の有機発光装置の製造方法に関する。
 好ましい実施態様は、前記透光性基板側からレーザービームを入射することにより前記積層体層と前記第2の導電性電極層の一部を同時に除去する工程の後に、少なくとも前記除去部の一部に流体を接触させて、前記発光部の漏れ電流を低減させる工程を含むことを特徴とする前記の有機発光装置の製造方法に関する。
 好ましい実施態様は、前記積層体層と前記第2の導電性電極層の一部を同時に除去する前記(e)工程に用いられるレーザービームは、パルス状に照射されるものであり、レーザービームは前記透光性基板から入射され、前記レーザービームの焦点が前記透光性基板内或いは第1の導電性電極層にあることを特徴とする前記有機発光装置の製造方法に関する。
 好ましい実施態様は、前記積層体層と前記第2の導電性電極層の一部を同時に除去する前記(e)工程は、パルス状のレーザービームを前記透光性基板から照射すると共に、レーザービームの照射位置を一定の速度で直線軌跡を描いて相対移動させることによって行われ、パルスの強さと前記速度との関係は、レーザービームのパルスによって形成される多数の小孔が、透光性絶縁基板側から第2の導電性電極層側に向かって拡径する形状となり、積層体層及び第2の導電性電極層については各小孔がオーバーラップして積層体層及び第2の導電性電極層をそれぞれ分断し、第1電極層においては前記各小孔がオーバーラップせずに各小孔同士の間に導通部分を残すこととなる関係であることを特徴とする前記有機発光装置の製造方法に関する。
 好ましい実施態様は、前記(c)積層体層の一部を除去して前記透光性の第1の導電性電極層の一部を露出する工程は、前記積層体層にレーザービームを照射すると共に、レーザービームの照射位置を直線軌跡を描いて相対移動させることによって行われ、さらに前記積層体層と前記第2の導電性電極層の一部を同時に除去する前記(e)工程についてもレーザービームの照射位置を直線軌跡を描いて相対移動させることによって溝を形成することによって行われ、両者のレーザービームの直線軌跡の中心間の間隔が130マイクロメートル以下であり、さらに前記積層体層と前記第2の導電性電極層の一部を同時に除去する前記(e)工程の後に、当該工程で形成された溝の縁の第2の導電性電極層を剥離する工程を有することを特徴とする前記有機発光装置の製造方法に関する。
 本発明は、前記の製造方法によって製造された有機発光装置に関する。
 また有機発光装置に関する発明は、
透光性絶縁基板に透光性の第1電極層と、少なくとも1層以上の有機化合物からなる有機EL発光層を含む積層体層と、第2電極層とが積層され、
第1電極層に設けられた第1電極層分離溝と、
積層体層に設けられた導通用開口と、
積層体層から第2電極層に至る深さを有する単位発光素子分割溝とを有し、
第1電極層分離溝によって第1電極層が複数の区画の第一電極層に区切られ、
単位発光素子分割溝によって積層体層と第2電極層が複数区画の積層体層と第2電極層の組に区切られ、
第1電極層分離溝と単位発光素子分割溝とは異なる位置にあって少なくとも第2電極層が隣接する区画の第1電極層に跨がり、
一つの区画の第1電極層と当該第1電極層に積層された一組の積層体層と第2電極層とによって単位発光素子が構成され、前記組に属する第2電極層の一部が導通用開口に侵入していて前記組に属する第2電極層が隣接する区画の第1電極層と導通し、隣接する単位発光素子が電気的に直列に接続された集積化有機発光装置であって、
前記単位発光素子分割溝は、多数の小孔が連続して成るものであり、各小孔は透光性絶縁基板側から第2電極層側に向かって拡径する形状であって、少なくとも第2電極層については各小孔がオーバーラップして第2電極層を分断し、第1電極層においては前記各小孔がオーバーラップせずに各小孔同士の間に導通部分を残すことを特徴とする集積化有機発光装置である。
 好ましい実施態様は、前記各小孔は、透光性絶縁基板の内部又は第1電極層を始端として第2電極層側に向かって拡径する形状であって、透光性絶縁基板においては前記各小孔はオーバーラップしないことを特徴とする集積化有機発光装置に関する。
 好ましい実施態様は、各小孔の中心間距離は、10マイクロメートルから80マイクロメートルであることを特徴とする集積化有機発光装置に関する。
 好ましい実施態様は、単位発光素子分割溝と導通用開口とは平面視した際に近接した位置にあり、単位発光素子分割溝の第2電極層側はその溝幅が導通用開口側に向かって広いことを特徴とする集積化有機発光装置に関する。
 好ましい実施態様は、導通用開口は溝であり、第2電極層の一部は導通用開口たる溝を埋め、単位発光素子分割溝の幅方向の端部は、第2電極層の導通用開口に侵入する部位に至っていることを特徴とする集積化有機発光装置に関する。
 好ましい実施態様は、単位発光素子分割溝の幅方向の端部は、裏面電極層の導入用開口に侵入する部位に至っていることを特徴とする集積化有機発光装置に関する。
 好ましい実施態様は、前記積層体層の内の、第2電極層と接する層である積層体最外層の材料が金属であることを特徴とする集積化有機発光装置に関する。
 本発明により、一般的に高抵抗である透光性の導電材料を電極とした高輝度有機EL素子の通電時に発生する熱発生と輝度分布を大幅に抑制し、大面積で信頼性の高い高性能の有機EL装置を提供することが可能となる。
実施例1の製造プロセスを示す有機EL装置の平面図である。 実施例1の製造プロセスでITO層をレーザー照射により除去した部分の平面写真である。 実施例1の製造プロセスを示す有機EL装置の断面図である。 実施例1で実施した透光性の第1の導電性電極層、有機化合物積層体層、および、第2の電極層のパターニングを示す平面図である。 実施例1の製造プロセスに従って作製した有機EL装置の集積部分の平面写真である。 実施例1で作製した集積化有機EL装置の発光時の写真である。 図6に示した集積化有機EL装置の輝度平面分布である。 図7の一次線分析ライン上の輝度分布である。 実施例3で実施した集積化有機EL装置の電極層間の抵抗値である。 比較例で実施した有機EL装置のパターニングを示す平面図である。 比較例で実施した有機EL装置のパターニングを示す断面図である。 比較例で実施した有機EL装置のITO電極方向の輝度分布である。 本発明の有機EL装置の各層及び溝の基本的構成を示す断面図である。 本発明の有機EL装置の各層及び溝の基本的構成を示す断面斜視図である。 本発明の有機EL装置の1個の単位発光素子を抜き出して図示した断面図である。 本発明の有機EL装置を製造する際のレーザービームの焦点の位置を示す説明図である。 図16の関連図であってガラス基板が蒸発したときの圧力の及ぶ範囲を示す説明図である。 図16の関連図であってレーザパルスによって形成された穴を示す説明図である。 単位発光素子分割溝を形成する際においてガラス基板が蒸発したときの圧力の及ぶ範囲を各層ごとに示す説明図である。 単位発光素子分割溝を各層ごとに分離した説明図である。 本発明の有機EL装置の単位発光素子分割溝の拡大平面図である。 図21のA-A断面図である。 図21のB-B断面図である。 図21のC-C断面図である。 本発明の有機EL装置の単位発光素子分割溝の断面斜視図である。 図16に示す工程を経て製造された本発明の有機EL装置の断面図であり、図22と同一のラインで本発明の有機EL装置を切断した様子を示す。 図16に示す工程を経て製造された本発明の有機EL装置の断面図であり、図23と同一のラインで本発明の有機EL装置を切断した様子を示す。 本発明の製造プロセスの一段階であって、単位発光素子分割溝を形成した直後における本発明の有機EL装置の断面斜視図である。 本発明の製造プロセスの一段階であって、単位発光素子分割溝を形成した後に裏面電極層の一部を剥離する際の本発明の有機EL装置の断面斜視図である。 図29に示す製造プロセスを経て製造された本発明の有機EL装置の断面図である。 図1の背景色を抜いてより明確にした図である。 図2の写真をスケッチした図である。 図3の背景色を抜いてより明確にした図である。 図5の写真をスケッチした図である。 図6の写真をスケッチした図である。 図7にハッチングを加えて明確にした図である。輝度の数値は概ねの値である。 図8の背景色を抜いてより明確にした図である。 図10の背景色を抜いてより明確にした図である。 図11の背景色を抜いてより明確にした図である。 図12の背景色を抜いてより明確にした図である。
 本発明が主として対象としているのは、例えばガラスや高分子フィルム等に代表される透光性基板上に一方の電極(第1電極層)となる透光性導電層(透光性の第1の導電性電極層)が形成され、その上に発光層を含む複数の各種有機化合物層(積層体層又は機能層とも称する)と裏面電極層(第2電極層)が形成されたいわゆるボトムエミッション型の有機EL装置である。
 ボトムエミッション型の有機EL装置は、一方の電極となる層(第1電極層)が透光性導電層(透光性の第1の導電性電極層)であり、他方の電極(第2電極層)となる裏面電極層は、アルミニウム等の反射層である。ただし、目的によっては、両面光取出し等へ適用する観点から、裏面電極層として透光性のものが用いられてもよい。
 また本発明が主として対象としている有機EL装置は、集積型の有機EL装置である。集積型有機EL装置100は、短冊状に形成された有機EL素子(以下、「単位発光素子」と称する)を電気的に直列に接続したものである。
 集積型有機EL装置100の基本的な層構成は図13、図14の通りであり、複数の溝が設けられていて一つの平面状の有機EL素子が短冊状の単位発光素子に分割されている。
 即ち、集積型の有機EL装置100は、ガラス基板101に第1電極層たる導電性電極層102と、機能層103と、第2電極層たる裏面電極層104が順次積層されたものである。ここで機能層103は、複数の有機化合物層を含む積層体層であり、例えば正孔注入層と、正孔輸送層と、発光層、電子輸送層及び導電層が積層されたものである。
 そして集積型の有機EL装置100では、各層に溝110,111,112,113が形成されている。
 具体的に説明すると、導電性電極層102に第一溝たる第1電極層分離溝110が形成され、導電性電極層102が複数に分割されている。また機能層103には第二溝たる発光層分離溝111が形成され、機能層103が複数に分割されている。さらに当該発光層分離溝111の中に裏面電極層104の一部が侵入して溝底部で導電性電極層102と接している。発光層分離溝111は機能層(積層体層)103に設けられた導通用開口であり、この導通用開口の中に裏面電極層104の一部が侵入して溝底部で導電性電極層102と接している。
 さらに機能層103の第三溝112と裏面電極層104に設けられた第四溝113が連通し、全体として深い共通溝たる単位発光素子分離溝115が形成されている。
 従って単位発光素子分離溝115は、少なくとも裏面電極層104(第2電極層)に至る深さを有し、好ましくは機能層103に至る。
 集積型有機EL装置100は、導電性電極層102に設けられた第1電極層分離溝110と、機能層103(具体的には正孔注入層、正孔輸送層、発光層、電子輸送層及び導電層の積層体層)及び裏面電極層104に設けられた単位発光素子分離溝115によって各薄層が区画され、独立した単位発光素子120a,120b,120c・・・が形成されている。
 即ち図15の様に、第1電極層分離溝110によって区画された複数の導電性電極層102(第1電極層)の内の一つと、この区画された導電性電極層102に積層された機能層(積層体層)103の区画と、裏面電極層(第2電極層)104の区画とによって単位発光素子120が構成されている。
 そして図13,図14の様に、発光層分離溝111の中に裏面電極層104の一部が進入し、裏面電極層104の一部が導電性電極層102と接しており、一つの単位発光素子120aは隣接する単位発光素子120bと電気的に直列に接続されている(図13、図14)。
 即ち第1電極層分離溝110と単位発光素子分割溝115とが異なる位置にあるために一つの単位発光素子120aに属する機能層(積層体層)103aと、裏面電極層(第2電極層)104aが導電性電極層102aからはみ出し、隣接する単位発光素子120bに跨がっている。そして裏面電極層104aの発光層分離溝111内に侵入した侵入部121aが、隣接する単位発光素子120bの導電性電極層102bに接している。
 その結果、ガラス基板101上の単位発光素子120aが、裏面電極層104aの侵入部121aを介して直列に接続されている。
 外部から供給される電流は、導電性電極層102a側から機能層103aを経て裏面電極層104a側に向かって流れるが、裏面電極層104aの一部が発光層分離溝111内の侵入部121aを介して隣の導電性電極層102bと接しており、最初の単位発光素子120aを経て隣の単位発光素子120bの導電性電極層102bに電流が流れる。この様に集積型の有機EL装置100では、各単位発光素子120が全て直列に電気接続され、全ての単位発光素子120が発光する。
 また前記した集積型有機EL装置100は、図示しない真空蒸着装置と、図示しないレーザスクライブ装置を使用して製造される。
 即ち集積型の有機EL装置100を製造する際には、最初の工程としてガラス基板101等の上に、導電性電極層102を成膜する。
 導電性電極層102には、酸化インジウム錫(ITO)、酸化錫(SnO2)酸化亜鉛(ZnO)等が用いられる。導電性電極層102は、スパッタ法やCVD法によってガラス基板101に形成される。
 そして続いて、第一レーザスクライブ工程を行い、導電性電極層102に対して第1電極層分離溝110を形成する。
 なおレーザスクライブ装置は、X・Yテーブルと、レーザー発生装置及び光学係部材を有するものである。第一レーザスクライブ工程は、ガラス基板101をX・Yテーブル上に設置し、レーザー光線を照射しつつ、ガラス基板101を縦方向に一定の速度で直線移動させることによって行う。そしてX・Yテーブルを横方向に移動してレーザー光線の照射位置をずらし、レーザー光線を照射しつつガラス基板101を再度縦方向に直線移動させることによって行う。
 第一レーザスクライブ工程を終えた基板101は、飛散した皮膜を除去するために、場合によっては、表面を洗浄する。
 次に、このガラス基板101に、正孔注入層、正孔輸送層、発光層、電子輸送層、導電層等を順次堆積し、機能層(積層体層)103を形成する。
 そして真空蒸着装置から取り出した基板101に対して第二レーザスクライブ工程を行い、機能層103に発光層分離溝111を形成する。
 続いて、真空蒸着装置に前記基板101を挿入し、機能層103の上に、アルミニウム(Al)や銀(Ag)などの金属材料からなる裏面電極層104を形成する。
 さらに続いて第三レーザスクライブ工程を行い、裏面電極層104と機能層103の双方に単位発光素子分離溝115を形成する。
 そしてさらに図示しない給電電極の成形や、その外側における分離溝(図示せず)の成形、分離溝の外側部分の裏面電極層104等の除去及び封止部による封止の作業が行われて有機EL装置が完成する。
 本発明の一つは、前記有機EL装置の製造方法であって、
(a)透光性基板上(ガラス基板101等)にパターン化された透光性の第1の導電性電極層102を形成する工程、
(b)前記パターン化された透光性の第1の導電性電極層102の少なくとも一部を覆うように複数の有機化合物層を含む積層体層(機能層)103を形成する工程、
(c)前記積層体層(機能層)103の一部を除去して前記透光性の第1の導電性電極層102の一部を露出する工程、
(d)前記積層体層(機能層)103と透光性の第1の導電性電極層102の露出部分に少なくとも1層以上の第2の導電性電極層(裏面電極層104)を含む層を形成する工程、
(e)前記透光性基板側(ガラス基板101等)からレーザービームを入射することにより前記積層体層(機能層)103と前記第2の導電性電極層(裏面電極層104)の一部を同時に除去する工程、
を含むことを特徴とする、基板上に複数の発光部が電気的に直列に接続された有機発光装置の製造方法である。
 本発明の対象となるボトムエミッション型有機EL装置が透光性基板を用いる理由は、発生した光を外部に取り出すためであり、その上に形成される電極層も透光性であることが求められている。ただし、これらは全面にわたって透光性である必要はなく、目的によっては局部的に透光性であればよい。たとえば、特定の形状の領域を発光させて、それを見る人に信号を認識させるサイネージは、所望の形状の部分だけが透光性であればよい。本発明は、大面積の照明に適用することを主な目的としてなされたものであるが、このような大面積の表示素子に適用することも可能である。また、導電性を補うために透光性導電層の下または上に金属グリッド層を配することもあるが、このような部分透光性の第1の導電性電極層を用いる場合でも本発明を適用することができる。
 なお、本発明において「透光性」とは光を透過する性質を有することを意味し、具体的には、発光領域の可視光域における透過率がおおむね50%を超えていればよい。透光性の第1の導電性電極層(以下、透光性導電層ともいう)としては、例えば、インジウムドープの酸化錫層が例示される。
 また、この透光性導電層は、本発明を適用するために最終的にはパターン化されていることが必要となる((a)工程)。様々な手法を用いてパターン化することが可能である。例を挙げれば、スクリーン印刷や、マスクを使った蒸着等のように透光性の第1の導電性電極層をパターン化された状態で形成する方法と、形成後リフトオフ、RIE(リアクティブイオンエッチング)、フォトリソグラフィー、ウォータージェット、レーザービーム照射等によって除去する方法、およびこれらの組み合わせが考えられる。損傷を与えにくい、ある程度の加工精度がある、プロセスが簡易である等、いくつかの条件は必要であるが一般的に知られている方法でパターンを形成すればよい。
 ここで重要なのは、これらの手法によって形成された複数のパターン化された透光性導電層部分が、有機化合物層を含む積層体層(機能層)103の形成前に、電気的にそれぞれ分離分割されていることである。これらは、最終的には電気的に直列接続される発光部分となるため、パターン化終了時点では、各導電部分(102a,102b・・・)内は低抵抗であり、互いの導電部分(102a,102b・・・)間は高抵抗であることが望ましい。また、効率的に発光させるためにはこれらの各導電部分(102a,102b・・・)が直列に接続されることからほぼ同じ面積に分割されていることが望ましい。この有機化合物層が基板(ガラス基板101等)に均一に形成されていることを前提に考えると、最も発光効率を高く設定できるのは、各部分に同じ電流が投入できる場合であり、パターン化された各部分の面積が同じ場合である。このことを最も単純に実現するための例として、基板が長方形の場合には、その一辺に平行な単数または複数の直線によって短冊状に透光性導電層103を分割する方法が挙げられる。この場合は、その辺に垂直な方向の透光性の第1の導電性電極層102の抵抗値を、分割数を増加させるほど低減できることになる。
 (b)工程において、このパターン化された透光性の第1の導電性電極層102の少なくとも一部を覆うように形成される複数の有機化合物層を含む積層体層(機能層)103は、例えば、複数の有機化合物層から構成されており、いわゆる発光層のほかに、電子注入層、電子輸送層、正孔注入層、正孔輸送層等が含まれうる。また、これらの層(機能層103)は多くはPN接合を成すが、これら有機化合物層には複数の接合が含まれていてもよいし、これら多接合で良好な性能を得るために電荷発生層等を含んでいてもよい。これらの有機化合物層の中に一部薄膜のアルカリ金属層を含む場合もあるし、無機層を含むこともできる。小面積で発光が可能な層の組み合わせで構成される積層体層であれば、その大面積化のために本発明が適用できる。また、本発明においては、低分子有機化合物等を蒸着法で形成してもよいし、高分子有機化合物の場合は印刷等で形成することも可能であるし、金属層や金属酸化物層はスパッタ等の方法で形成することも可能であり、それぞれに適切な形成法を選択すべきである。さらに、本発明を実現するためには、前記透光性の第1の導電性電極層102の他に、少なくとも1層以上の第2の導電性電極層(裏面電極層104)が必要であり、後の構成で形成することになるが、本複数の有機化合物層を含む積層体層の最表面にこの第2の導電性電極層とは別に導電性の層を形成することも可能である。
 その後実施される「前記積層体層の一部を除去して前記透光性の第1の導電性電極層の一部を露出する工程」((c)工程)にも、様々な手法を適用することが可能である。前述の、透光性導電層を除去するために用いるリフトオフ、RIE(リアクティブイオンエッチング)、フォトリソグラフィー、ウォータージェット、レーザービーム照射等が可能と考えられるが、有機化合物層を含む積層体層(機能層)103を除去したあと、透光性導電層(導電性電極層102)を残存させることが必要であり、条件範囲が狭くなる場合がある。このため、主としてRIEは、エッチング時間で制御させるが、例えば、ウォータージェットは流速で、レーザービームはレーザーパワー(結果的には主として焦点位置で)でそれぞれ透光性導電層に対する損傷を極小化する必要がある。なお、この積層体層103の除去は、最終的には透光性の第1の導電性電極層102と隣接する分割された素子の第2電極層(裏面電極層104)を電気的に接続させることを目的としているため、必ずしも透光性の第1の導電性電極層102のパターンのように連続した線のパターンで除去する必要はない。
 本発明においては、「前記積層体層の一部を除去して前記透光性の第1の導電性電極層102の一部を露出する工程」((c)工程)の後に、「前記積層体層およびそれを除去してできた透光性の第1の導電性電極層102の露出部分の少なくとも一部に1層以上の第2の導電性電極層を含む層を形成する工程」((d)工程)を有する。ここで前記の有機化合物層を含む積層体層の上に形成される第2の導電性電極層は、透光性基板上に形成された透光性の第1の導電性電極層102と合わせて有機化合物層を含む積層体層を挟む一対の電極となる。さらに透光性の第1の導電性電極層102bの露出部分に形成される第2の導電性電極層(裏面電極層104a)は、隣接する透光性基板上に形成された透光性の第1の導電性電極層102bと当該有機化合物層を含む積層体層(機能層103a)の上に形成される第2の導電性電極層(裏面電極層104a)を電気的に接続する導電部として機能する。ただし、この第2の導電性電極層の形成直後には、基板上全面に形成されているため、電気的な直列接続を成すためには、この層のパターン化が必要である。本発明では、「前記透光性基板側からレーザービームを入射することにより前記積層体層と前記第2の導電性電極層の一部を同時に除去する工程」((e)工程)によってこれを実現する。即ち前記した単位発光素子分離溝115を設けてこれを実現する。
 なお、この有機化合物層を含む積層体層の上に形成される第2の導電性電極層は、一般的には透光性基板から光を取り出すボトムエミッション型の有機EL装置を対象とする場合は透光性である必要はないが、目的によっては両面光取出し等へ適用することもでき、その場合は透光性のものが用いられることもある。
 本発明では、前記透光性基板側からレーザービームを入射することにより前記積層体層と前記第2の導電性電極層の一部を同時に除去することによって前記導電性電極層102のパターニングを行うことを特徴としている。前述したような両面光取り出しの場合を除いて素子全体の低抵抗化のためには第2の電極層は透光性の導電性電極でないほうが望ましい。特に基板側からの光取り出し強度を高めるためには、反射率の高い第2の電極層を用いることが有効である。一般には、例えば、蒸着法によって形成されるAgにより例示される、可視光が透過しない程度の厚みを持つ反射率の高い金属薄膜またはそれを含む多層膜が用いられる。このため、レーザービームを第2の電極層側から照射した場合、エネルギー密度が小さい場合は大部分のレーザービームは反射されてしまい電極層の加熱に有効に働かないため電極層を除去することができない。さらにビーム強度を高めていくと第2の電極層である金属層が溶解することによって反射率が小さくなり大きなエネルギーを急激に吸収することになる。この場合には、第2の電極層や透光性の第1の導電性電極層までレーザービームのエネルギーによって損傷を受け、所望のパターニングができなくなる。すなわち、入射するレーザービームのエネルギー密度を適切に制御することが難しく、事実上適切な加工条件が見出せなくなる。
 これに対して、透光性基板(ガラス基板101等)側からレーザービームを照射した場合は、透光性基板での吸収がほとんどないため、エネルギー密度が低い場合でも有機化合物層や導電性電極層102でエネルギー吸収ができ、ビーム照射周辺の温度を上昇させ、有機化合物層や第2の電極層(導電性電極層102)を除去することができる。この場合、第2の電極層は必ずしも昇華させる必要はなく、有機化合物層や導電性電極層102を除去することでその上に存在するこの層も基板から除去することができる。また、低エネルギー密度でこの除去ができるため、透光性の第1の導電性電極層(導電性電極層102)の問題となる損傷を回避することができる。すなわち、入射するレーザービームのエネルギー密度を適切に制御することが可能で、適切な加工条件を容易に見出すことができる。
 本発明の好ましい態様は、透光性基板上にパターン化された透光性の第1の導電性電極層(導電性電極層102)を形成する工程((a)工程)が、前記透光性基板上に透光性の第1の導電性電極層(導電性電極層102)を形成した後、レーザービームを照射することによりその一部を除去する工程を含むことを特徴とする有機発光装置の製造方法である。パターン化された透光性の第1の導電性電極層(導電性電極層102)を得るためには、スクリーン印刷や、マスクを使った蒸着等のように透光性の第1の導電性電極層をパターン化された状態で形成する方法と、形成後リフトオフ、RIE(リアクティブイオンエッチング)、フォトリソグラフィー、ウォータージェット、レーザービーム照射等によって除去する方法、およびこれらの組み合わせがあることを前述したが、その多くは、加工精度や、大面積化、生産性、コストに課題を抱えている場合がある。これらの中で、レーザービームで透光性の第1の導電性電極層をパターン化する方法は、最も合理的といえる。本発明では、前述したように(e)工程において、第2の電極層をレーザー加工でパターン化することを特徴としているため、それと同等の加工精度を有している手法を用いて第1の導電性電極層(導電性電極層102)をパターン化することが合理的である。加工精度は、製品の歩留まりや、有効面積等に大きく影響する。それより高い精度は性能を低下させることにはならないが、極端に高精度である必要はなく、コストを高めることは好ましくない。また、同じ手法を用いることにより、工程上のアライメントが大幅に容易になるという利点がある。
 本発明の好ましい態様は、前記の複数の有機化合物層を含む積層体層の前記透光性基板と最も離れた層が導電性の薄膜層であることを特徴とする有機発光装置の製造方法である。
 要するに、第2の導電性電極層に隣接して、これとは異なる導電性の薄膜層が設けられていることが望ましい。
 前記の複数の有機化合物層を含む積層体層の前記透光性基板と最も離れた層、すなわち積層体層形成後の最表面層は、原理的には膜面方向に導電性がある金属や金属酸化物層であっても、有機化合物半導体層であっても各素子を電気的に直列に接続することに大きな影響はない。しかし、この層を有機化合物層と比較して安定性の高い金属薄膜層や、金属酸化物薄膜層にしておくと最終的に信頼性の高い有機EL装置を得ることができる。
 この差は必ずしも明らかでないが、水分の浸入、有機化合物層と金属層や金属酸化物層の信頼性の問題に起因しているものと思われる。有機化合物層は、湿度や酸素、電子やプラズマの損傷やそれに伴う温度上昇によって影響を受けやすい。有機化合物層を含む積層体層の形成後に必要な有機化合物積層体層を最表面としたままの加工や製膜に対して、表面を安定な層で覆った後の加工や製膜は製造後の特性や信頼性を確保するのに有効である。特に、これらの加工雰囲気を十分な低湿度・低酸素濃度条件に維持できない場合はその効果は顕著となる。
 本発明の好ましい態様は、「前記積層体層の一部を除去して前記透光性の第1の導電性電極層の一部を露出する工程」((c)工程)が、前記積層体層にレーザービームを照射する工程を含むことを特徴とする有機発光装置の製造方法である。このような薄膜の除去方法として、透光性導電層の除去方法で例示したように、リフトオフ、RIE(リアクティブイオンエッチング)、フォトリソグラフィー、ウォータージェット、レーザービーム照射等によって除去する方法、およびこれらの組み合わせが考えられる。しかし、その多くは、加工精度や、大面積化、生産性、コストに課題を抱えていることも同様である。さらに、この有機化合物を含む積層体層の除去の際には、露出させる透光性の第1の導電性電極層に対する損傷を極小化することが求められる。したがって、これらの除去方法の中で、やはりレーザービームで積層体層を部分的に除去する方法が最も合理的といえる。本発明では、第2の導電性電極層をレーザー加工でパターン化することを特徴としているため、加工精度の面で考えても透光性の第1の導電性電極層(導電性電極層102)のパターニングと同様に、同じ手法を用いることが好適であり、工程上のアライメントが大幅に容易になるという利点も同様に得られる。
 本発明の好ましい態様は、前記積層体層を一部除去するためのレーザービームの照射がレーザービームを前記透光性基板から入射することにより行われることを特徴とする有機発光装置の製造方法である。この有機化合物層を含む積層体層は第2の導電層と異なり反射率の比較的小さな層から構成されているため、レーザービームを直接積層体層の側から入射しても、積層体層の吸収による温度上昇によって同積層体層を昇華させることにより除去することは可能である。しかし、積層体層表面からレーザービームを照射した場合は積層体層表面から加熱されるため、前記透光性導電体層付近の積層体層が完全に除去できない場合があり、この場合は隣接する透光性導電体層と第2の導電性電極層との電気的な抵抗を十分小さくできないことになる。
 すなわち積層体層(機能層103)は、透光性導電体層102と第2の導電性電極層とに挟まれており、積層体層の一方に隣接して透光性導電体層102があり、積層体層の一方に隣接して第2の導電性電極層がある。そして有機EL装置100では、単位発光素子を直列に接続するために、透光性導電体層102と第2の導電性電極層とを電気的に接続しなければならず、当然当該接続部分の抵抗は小さいことが望ましい。
 ここで本発明では、前記した透光性導電体層102と第2の導電性電極層との電気的接続を、積層体層を除去することによって形成された溝(発光層分離溝111)に第2の導電性電極層を侵入させることによって実現している。即ち第2の導電性電極層の延長部分を前記溝(発光層分離溝111)の底部分で透光性導電体層102と接触させて透光性導電体層102と第2の導電性電極層との電気的接続を図っている。そのため透光性導電体層102付近の積層体層が完全に除去できない場合には、透光性導電体層と第2の導電性電極層の間に、積層体層の残渣が挟まってしまい、透光性導電体層と第2の導電性電極層の間の電気抵抗が増大してしまう。
 また積層体層を完全に除去しようとしてレーザーのパワーを上げると透光性の第1の導電性電極層が損傷を受けやすくなるため、理想的な除去の条件範囲は狭くなる傾向がある。
 これに対して、レーザービームを透光性基板から入射した場合、まず透光性導電体層102近傍の積層体層が加熱昇華するため比較的透光性導電体層に損傷を与えることが少ない低パワーで透光性導電体層と積層体層の剥離が起こりうる。このため、積層体層表面からレーザービームを照射した場合より広い範囲で理想的な除去が可能となる。
 さらに都合がよいのは、この条件が、推奨される(e)工程で採用するレーザービームの条件と近似しているので、レーザー加工機等を共用できる点である。
 即ち本発明では、「前記透光性基板側からレーザービームを入射することにより前記積層体層と前記第2の導電性電極層の一部を同時に除去する工程」((e)工程)を含んでいる。この(e)工程は、レーザービームを照射して溝を形成する点で、(c)工程の推奨方法と共通する。
 即ち(c)工程たる「前記透光性基板側からレーザービームを入射することにより前記積層体層と前記第2の導電性電極層の一部を同時に除去することによって前記第2の導電性電極層のパターニングを行う」際の条件は、推奨される(e)工程の条件とほぼ同じであり、(c)工程と(e)工程の違いは、レーザスクライブの際に、第2の導電性電極層が有るか無いかの相違に過ぎない。
 そのため(c)工程を実施する際の積層体層を除去する際のレーザービームの出力等を、(e)工程の様にガス化した昇華成分によって積層体層と共に第2の導電性電極層まで剥離されうる出力とすることにより、レーザー加工機等を共用できる。
 すなわち第2の導電性電極層の存在の有無にかかわらず同じ条件を選択して(c)工程の加工と(e)工程の加工ができるため、条件設定のしやすさや、レーザー加工機の選択等の面で好適といえる。
 本発明の好ましい態様は、「前記積層体層と前記第2の導電性電極層の一部を同時に除去する工程」((e)工程)に用いられるレーザー光源がネオジウム添加のYAGレーザーの高調波であることを特徴とする有機発光装置の製造方法である。本発明では、前記積層体層と前記第2の導電性電極層の一部を同時に除去する際には、なるべく透光性導電層102に損傷を与えないことが望ましい。このため、照射するレーザー光は、前記積層体層に大きな吸収をもち、透光性導電層102での吸収は小さいことが求められる。ネオジウム添加のYAGレーザーは、広く産業界に普及しており入手が容易であるばかりか、パルス状発振によって短時間ではあるが非常に大きなパワー密度を得ることができ、加工性の高いレーザーである。基本波の波長は1064nmであり、その高調波(532nm、355nm)の波長の光では、ITO等の透光性導電材料での吸収は小さい。このため、透光性導電層102に損傷を与えることなく積層体層を除去することに適している。とくに第2高調波は、比較的レーザー光源として広く普及しており製造装置に用いることは好適といえる。
 本発明の好ましい態様は、「前記積層体層の一部を除去して前記透光性の第1の導電性電極層102の一部を露出する工程」((c)工程)に用いられるレーザー光源がネオジウム添加のYAGレーザーの高調波であることを特徴とする有機発光装置の製造方法である。前述したとおり、前記積層体層を一部除去するためのレーザービーム照射条件は、第2の導電性電極層の除去条件((e)工程)とほぼ同様に設定することで実現可能である。このため、前記と同様にレーザー光源がネオジウム添加のYAGレーザーの高調波であることが好適である。特にレーザービームを透光性基板側から照射する場合にこの光源はさらに好適となる。
 本発明の好ましい態様は、「記透光性基板上にパターン化された透光性の第1の導電性電極層102を形成する工程」((a)工程)が、前記透光性基板上に透光性の第1の導電性電極層を形成した後、ネオジウム添加のYAGレーザーの基本波を光源とするレーザービームを照射することによりその一部を除去する工程を含むことを特徴とする有機発光装置の製造方法である。
 透光性導電層102をパターン化する場合、レーザービームの照射による方法が好適であるのはすでに述べたとおりであるが、その際にレーザービームは透光性導電層102に吸収されて熱エネルギーに変換される必要があるため、透光性導電層102に吸収波長を有することが必須条件となる。前述したとおり、ネオジウム添加のYAGレーザーの基本波は1064nmで、ITOや、酸化錫等の透光性導電層102の多くに吸収が認められる。また、高調波と異なり基本波は、高いエネルギー密度を得ることが容易であり比較的吸収係数が小さい場合でも利用することが可能である。さらに、「前記積層体層の一部を除去して前記透光性の第1の導電性電極層の一部を露出する工程」((c)工程)や、「前記透光性基板側からレーザービームを入射することにより前記積層体層と前記第2の導電性電極層の一部を同時に除去する工程」((e)工程)と同じ、または、類似のレーザー加工機を用いて(a)工程を行うことは、加工精度を含むプロセス全体の適正化という点でも好適といえる。場合によっては高調波ユニットを工夫することでまったく同じ光源を利用して、(a)工程と、(c)工程と、(e)工程とを実施することも可能である。
 本発明の好ましい態様は、「前記透光性基板側からレーザービームを入射することにより前記積層体層と前記第2の導電性電極層の一部を同時に除去する工程」((e)工程)の後に、前記基板上の前記少なくとも各発光部の一部に逆方向に電圧を印加し前記発光部の漏れ電流を低減させる工程を含むことを特徴とする有機発光装置の製造方法である。「前記積層体層と前記第2の導電性電極層の一部を同時に除去する工程」((e)工程)は、第2の導電性電極層を各発光領域毎に電気的に分割することを目的としているが、その際、電気的な分割が不十分な場合は、各領域の透光性の第1の導電性電極層と第2の導電性電極層の間に漏れ電流が発生し、発光特性を低下させる。電気的な分割が不十分になる原因は、隣接する第2の導電性電極層間の絶縁不良や、透光性の第1の導電性電極への第2の導電性電極層の接触による電気的短絡、有機化合物積層体層に存在する微小欠陥等が考えられる。これらは、各発光部の透光性の第1の導電性電極層と第2の導電性電極層間に大きな電位差を与え、残留する両層間の漏れ電流発生部に大電流を集中させることにより欠陥等を熱により除去することを目的としている。電圧を、順方向に印加することによっても同処理を実施することは可能ではあるが、順方向の場合には欠陥部だけではなくその他の領域でもある程度の電流が流れるために局部的な処理が困難となる。具体的には同じ電圧を加えた場合の処理による性能回復の度合いが小さくなる。
 本発明の好ましい態様は、「前記透光性基板側からレーザービームを入射することにより前記積層体層と前記第2の導電性電極層の一部を同時に除去する工程」((e)工程)の後に、少なくとも前記除去部の一部に流体を接触させて、前記発光部の漏れ電流を低減させる工程を含むことを特徴とする有機発光装置の製造方法である。
 前に述べた隣接する第2の導電性電極層間の絶縁不良や、透光性の第1の導電性電極への第2の導電性電極層の接触によって電気的な分割が不十分になる主な原因のひとつは、第2の電極層の一部残留によるものである。このように残留している第2の電極の一部を少しでも除去することにより発光特性の向上が認められる。除去する手段としては、前記の電流による発熱を利用する方法のほかに、機械的な除去法が効果的である。具体的には、粘着性の物体を張り合わせて引き剥がす方法や、高圧の流体を吹き付ける方法が考えられるが、素子の損傷が少ない後者が効果的である。さらに有機化合物半導体は水分の存在下で信頼性が低下すると考えられており、水分のない流体が好ましい。具体的には乾燥窒素やアルゴン等の乾燥不活性気体や、水を含まない非水性の有機溶剤等を適用することができる。液体の場合は、流体を吹き付ける方法のほかに液体に浸漬させて超音波処理する方法も効果的である。
 単位発光素子分離溝115は、ガラス基板101上の積層体を独立した単位発光素子120a,120b・・・に分断するものであるから、単位発光素子分離溝115によって、一つの単位発光素子120aの第2電極層と、隣接する単位発光素子120bの第2電極層とが確実に分割されていなければならない。
 もし、一つの単位発光素子120aの第2電極層(裏面電極層104a)と、隣接する単位発光素子120bの第2電極層(裏面電極層104b)とが一部でも繋がっていれば、第2電極層(裏面電極層104a)を流れる電流は単位発光素子120bを飛ばしてさらに隣の単位発光素子120cに流れてしまう。その結果、単位発光素子120bには電流が流れず、中間の単位発光素子120bは発光しない。
 単位発光素子分離溝115によって、一つの単位発光素子120aの機能層103aと、隣接する単位発光素子120bの機能層103bとが分割されていることが好ましい。もし両者の分割が確実でなく、かつ電流が流れる場合には、単位発光素子120bに流れる電流が減少し、単位発光素子120bの発光が他に比べて弱いものとなってしまう。
 これに対して、第1電極層たる導電性電極層102は、単位発光素子分離溝115によって分断されてはならない。
 即ち前記した様に、集積型の有機EL装置100では、一つの単位発光素子120aに属する機能層(積層体層)103と、裏面電極層(第2電極層)104が導電性電極層102からはみ出し、このはみ出し部分が隣接する単位発光素子120bの導電性電極層102に跨がることによって、単位発光素子120aの裏面電極層(第2電極層)104aが単位発光素子120bの導電性電極層102bに電気接続されている。
 そのため単位発光素子分離溝115によって、単位発光素子120aの導電性電極層102が分断されてしまうと、単位発光素子120aの裏面電極層(第2電極層)104aと、隣接する単位発光素子120bの機能層が繋がらず、断線状態となってしまう。
 そのため第1電極層たる導電性電極層102は、単位発光素子分離溝115によって分断されてはならない。
 この様に、単位発光素子分離溝115は、少なくとも裏面電極層(第2電極層)104を確実に分断する必要がある。またその一方で、単位発光素子分離溝115は、第1電極層たる導電性電極層102を分断してはならないという問題がある。
 一方、機能層(積層体層)103は、内部に発光層を含み、発光層が発生する光をガラス基板側に取り出すことが必要であるから、ある程度の透光性を備えている。
 そのため機能層(積層体層)103にレーザービームの焦点を合わせてレーザスクライブを行うと、レーザービームが機能層(積層体層)103を通過して裏面電極層(第2電極層)104aに抜けてしまい、蒸発する成分が少ないので裏面電極層104を完全に分断することができない場合があった。
 この問題を解決する為の、本発明の好ましい態様は、「前記積層体層と前記第2の導電性電極層の一部を同時に除去する前記(e)工程に用いられるレーザービーム25は、パルス状に照射されるものであり、レーザービーム25は前記透光性基板(ガラス基板101等)から入射され、前記レーザービーム25の焦点26が機能層103より手前にあることを特徴とする有機発光装置の製造方法である。
 なお、良好な加工状態とする観点から、レーザービーム25の焦点26は導電性電極層102より手前とすることが好ましく、図16のようにガラス基板101より手前とすることがより好ましい。
 また同様の問題を解決する為のもう一つの態様は、前記積層体層と前記第2の導電性電極層の一部を同時に除去する前記(e)工程は、パルス状のレーザービーム26を前記透光性基板(ガラス基板101等)から照射すると共に、レーザービーム26の照射位置を一定の速度で直線軌跡を描いて相対移動させることによって行われ、パルスの強さと前記速度との関係は、レーザービーム26のパルスによって形成される多数の小孔28が、透光性絶縁基板側から第2の導電性電極層側に向かって拡径する形状となり、積層体層及び第2の導電性電極層については各小孔28がオーバーラップして積層体層及び第2の導電性電極層をそれぞれ分断し、第1電極層(導電性電極層102)においては前記各小孔28がオーバーラップせずに各小孔28同士の間に導通部分30を残すこととなる関係であることを特徴とする有機発光装置の製造方法である。
 以下、これらの態様について説明する。
 即ち単位発光素子分離溝115をレーザスクライブ法によって形成する際、レンズ31でレーザービーム25を集光するが、例えば図16の様にレーザービーム25の焦点26を機能層103より光源に近い位置に合わせ、さらにレーザービーム25をパルス状に照射する。
 ここでレーザービーム25のワンパルスに注目すると、パルス状のレーザーは、図16の様に、機能層103から光源に向かう方向(図16の下方向)におけるガラス基板101の少し外側に焦点26が合わされている。これにより、ガラス基板101の一部と、これに重なる導電性電極層102、機能層103及び裏面電極層104が蒸発して図18、図21の様に孔28が形成される。そして、ガラス基板101上の導電性電極層102及びそれに近い機能層103が特に高温状態となり、当該部位が爆発的に蒸発する。
 なお、焦点26はガラス基板101内に合わされてもよい。
 前述したように、透光性導電材料は、YAGレーザーの高調波の波長、例えば532nmの光をあまり吸収しない。また、有機EL素子の積層体層103の材料も基本的に透明であり、また、その層の厚みが50nm~200nm程度とそれ程厚くないため、このような波長の光をあまり吸収しない。したがって、特に単位発光素子分割溝を形成する場合や、導通用開口を形成する場合に、積層体層103そのものをレーザーで高温に加熱して蒸発するよりも、導電性電極層102を高温にして蒸発することが有効である。この考え方の実現が本発明の特徴の1つである。
 一方、同様にレーザーによる加工が使用される、例えば、光電変換層として非晶質シリコンを含む薄膜光電変換素子の非晶質シリコン層や裏面電極層のレーザー加工では、非晶質シリコンが532nmの光を十分に吸収し、かつ、その層の厚みが250nm~500nm程度とある程度厚いので、非晶質シリコンを加熱し蒸発させることで十分加工できる。この点が、有機ELの積層体の加工と非晶質シリコンの加工との大きな相違点である。
 即ち、非晶質シリコンを含む薄膜光電変換素子で、本発明に係る第1電極層における小孔に相当するものの存在個数は、素子中の相当する部分の多くても30%以下、通常は15%以下であるのに対して、有機EL素子で、本発明に係る第1電極層における小孔に相当するものの存在個数は、素子中の相当する部分の少なくとも70%以上、通常は85%以上である。
 前記部位が爆発的に蒸発することにより形成される孔28は、ガラス基板101の瞬間蒸発による爆発圧の影響で、図18、図21,図22、図25に示すように略円錐形の孔28となる。
 即ち爆発の圧力は図17のハッチング部分32に及び、当該部分が脱落して図18、図21,図22、図25の様な円錐形の穴18が形成される。
 そしてレーザービームの照射位置を直線的に移動させることによって、レーザパルスの照射位置が次々に移動する。
 その結果、図19に示すように、各層における爆発の圧力が及ぶ範囲40,41,42,43が、順次移動し、各層に図20に示す様な開口50,51,52また穴53が形成される。
 即ちガラス基板101には、図20に示す様な不連続の小穴53が形成される。
 また導電性電極層102には、前記した小穴よりも大きい孔(開口)50が形成されるが、孔50同士のオーバーラップは無く、各孔50は独立している。即ち導電性電極層102においては、孔50と孔50との間に残留部55がある。
 これに対して、機能層103に形成される孔51はさらに大きく、図20の様に孔51同士がオーバーラップして重なり、連続する溝112が形成される。即ち孔51と隣接する孔51が繋がってしまい、孔51同士の間に残留物はない。
 そして裏面電極層104に形成される孔52は、さらに大孔52であり、孔52は、その40~80パーセント程度が重なる。そのため裏面電極層104に大孔52がオーバーラップして構成された溝113が形成される。
 そのため図22の様に、孔28の中心で単位発光素子分離溝115を横切る方向に切断した断面を見ると、導電性電極層102が分断されている様に見えるが、孔28同士の中間部分で単位発光素子分離溝115を横切る方向に切断した断面を見ると、図23の様に導電性電極層102が繋がっている。
 また単位発光素子分離溝115の中心に沿った線での断面を見ると、図25の様に導電性電極層102は、単位発光素子分離溝115内で一定の間隔で繋がっている。
 そのためガラス基板101をより広い範囲で観察すると、図26の様に、孔28の中心では、導電性電極層102が分断されているものの、孔28同士の中間部分においては、図27の様に各単位発光素子120が直列に接続されている。
 そのため各単位発光素子120はいずれも同等の光量で発光する。
 また単位発光素子分離溝115によって裏面電極層(第2電極層)104をより確実に分断する方策としては、次の態様が推奨される。なお以下に説明する方法は、前述した方法に反するものでなく、以下の方法と前述した方法とを併用することが望ましい。
 本発明の好ましい態様は、前記(c)積層体層の一部を除去して前記透光性の第1の導電性電極層の一部を露出する工程は、前記積層体層にレーザービーム25を照射すると共に、レーザービーム25の照射位置を直線軌跡を描いて相対移動させることによって行われ、さらに前記積層体層(機能層103)と前記第2の導電性電極層(裏面電極層104)の一部を同時に除去する前記(e)工程についてもレーザービーム25の照射位置を直線軌跡を描いて相対移動させることによって溝を形成することによって行われ、両者のレーザービーム25の直線軌跡の中心間の間隔Aが130マイクロメートル以下であり、さらに前記積層体層(機能層103)と前記第2の導電性電極層(裏面電極層104)の一部を同時に除去する前記(e)工程の後に、当該工程で形成された溝の縁の第2の導電性電極層56を剥離する工程を有することを特徴とする有機発光装置の製造方法である。
 この態様は、本発明者らの研究により発見された事実に基づく。
 即ち発光層分離溝111と単位発光素子分割溝115をそれぞれレーザスクライブ法によって形成し、両溝同士の間隔を変化させて集積型の有機EL装置100を試作したところ、発光層分離溝111と単位発光素子分割溝115との間隔が狭い場合には、この間の裏面電極層104が図29の様にリボン状に剥離することが判明した。
 そこで発光層分離溝111を形成する際のレーザービーム25の軌跡と、単位発光素子分割溝115を形成する際のレーザービーム25の軌跡との間隔Aを130マイクロメートル以下とし、単位発光素子分割溝115を形成した後に軌跡の間の部位57を吸引することによって剥離することとした。好ましくは、静電気での除去も付加される。
 その結果、裏面電極層(第2電極層)104に形成される第四溝113の幅が増大し、単位発光素子120間の短絡が減少した。
 本発明は、前記の製造方法によって製造された有機発光装置である。これらの方法で製造した有機発光装置は、大面積であるにもかかわらず発光特性が小面積の装置と比較して大きく低下することはない。
 また図16から図26を参照して説明した製造方法によって作られた有機EL装置60は、前述した図13の基本構成と同様に、ガラス基板101に第1電極層たる導電性電極層102と、少なくとも有機EL発光層を備えた機能層(積層体層)103と、第2電極層たる裏面電極層104が順次積層されたものである。
 そして導電性電極層102に第一溝たる第1電極層分離溝110が形成され、導電性電極層102が複数に分割されている。また機能層103には第二溝たる発光層分離溝111が形成され、機能層103が複数に分割されている。さらに当該発光層分離溝111の中に裏面電極層104の一部が侵入して溝底部で導電性電極層102と接している。発光層分離溝111は機能層(積層体層)103に設けられた導通用開口であり、この導通用開口の中に裏面電極層104の一部が侵入して溝底部で導電性電極層102と接している。
 さらに機能層103の第三溝112と裏面電極層104に設けられた第四溝113が連通し、全体として深い共通溝たる単位発光素子分離溝115が形成されている。
 従って単位発光素子分離溝115は、少なくとも裏面電極層104(第2電極層)に至る深さを有し、好ましくは、機能層103に至る。
 集積型有機EL装置100は、導電性電極層102に設けられた第1電極層分離溝110と、機能層103及び裏面電極層104に設けられた単位発光素子分離溝115によって各薄層が区画され、独立した単位発光素子120a,120b,120c・・・が形成されている。
 そして図13の様に、発光層分離溝111の中に裏面電極層104の一部が進入し、裏面電極層104の一部が導電性電極層102と接しており、一つの単位発光素子120aは隣接する単位発光素子120bと電気的に直列に接続されている。
 即ち第1電極層分離溝110と単位発光素子分割溝115とが異なる位置にあるために一つの単位発光素子120aに属する機能層(積層体層)103aと、裏面電極層(第2電極層)104aが導電性電極層102aからはみ出し、隣接する単位発光素子120bに跨がっている。そして裏面電極層104aの発光層分離溝111内に侵入した侵入部121aが、隣接する単位発光素子120bの導電性電極層102bに接している。
 そして単位発光素子分離溝115は、パルス状レーザーを使用するよるレーザスクライブによって形成され、多数の小孔28が連続して形成されたものである。
 各小孔28は、ガラス基板101の導電性電極層102寄りに位置を始端として裏面電極層104側に向かって拡径する形状である。
 また各小孔28の中心間距離Wは、10マイクロメートルから80マイクロメートルであり、好ましくは20マイクロメートルから50マイクロメートルである。
 機能層103及び裏面電極層104については各小孔28がオーバーラップして機能層103と裏面電極層104をそれぞれ分断している。これに対して導電性電極層102では、各小孔28がオーバーラップせずに各小孔28同士の間に導通部分30を残している。
 また図27から図29を参照して説明した製造方法によって作られた有機EL装置61(図30)は、単位発光素子分割溝115と導通用開口たる発光層分離溝111が有機EL装置61を平面視した際に近接した位置にあり、単位発光素子分割溝115の開口は拡径している。即ち単位発光素子分割溝115を構成する第四溝113は、第三溝112よりも幅が広い。より具体的には、単位発光素子分割溝115を構成する連続する小孔28の、発光層分離溝111側の縁がリボン状に剥離して除去されており、単位発光素子分割溝115の溝幅は、発光層分離溝111側が他方に比べて広がっている。
 そして単位発光素子分割溝115の幅方向の端部は、裏面電極層104の発光層分離溝111に侵入する部位に至っている。即ち単位発光素子分割溝115の幅方向の端部は、裏面電極層104の発光層分離溝111内に侵入した侵入部121と接している。
 そのため、裏面電極層104を区画する溝幅が広く、裏面電極層104の区画が短絡することはない。
 次に、本発明の具体的な実施例およびこれらの実施例に対する比較例の有機EL装置の詳細な製造方法と、これらの評価結果を説明する。
 (実施例1)
 平均膜厚150nmのインジウムドープされた酸化錫(ITO)膜を片面全体にコーティングした厚さ0.7mmの無アルカリガラスを透光性基板として用いた。この基板(200mm×200mm)をITO膜が上になるようにXYステージ上に設置し、YAGレーザーの基本波を用いて上面からレーザービームを照射することにより、極力ガラスに損傷がないようにしてITO膜の一部を図1(A)の模式図に示す形態で除去した。即ち第一レーザスクライブ工程を行い、導電性電極層102に対して第1電極層分離溝110を形成した。レーザーの発振周波数は15kHz、出力14W、ビーム径は約25μm、加工速度は50mm/秒であった。このようにしてパターニングを行ったITO膜付きガラス基板のレーザー加工部の平面拡大写真を図2に示す。
 この基板を中性洗剤で洗浄した後150℃で20分加熱乾燥させ、その後、短冊状の各ITO部分間の抵抗値が概ね20MΩ以上であることを確認した。その後、真空蒸着装置を用いてパターニングされた陽極電極上に低分子有機化合物を主成分とする積層体層を形成した。すなわち、ITO上の一層目には発光ユニットを形成するホール注入層として、酸化モリブデンと下記で示される4,4'-ビス[N-(2-ナフチル)-N-フェニル-アミノ]ビフェニル(以下、α-NPDと略す)を各蒸着速度0.015nm/秒と0.135nm/秒で真空共蒸着法により、10nmの膜厚で形成した。
Figure JPOXMLDOC01-appb-C000001
 次いでホール輸送層として、α-NPDを真空蒸着法により50nm(蒸着速度0.08nm~0.12nm/秒)の膜厚で形成した。
 次いで、発光層は電子輸送層を兼ねた下記で示される[トリス(8-ハイドロキシキノリナート)]アルミニウム(III)(以下、Alq3と略す)を真空蒸着法により70nm(蒸着速度0.25nm~0.30nm/秒)の膜厚で形成した。
Figure JPOXMLDOC01-appb-C000002
 次に、陰極にLiFを真空蒸着法により1nm(蒸着速度0.01nm~0.05nm/秒)の膜厚で積層し、その上に陰極電極Alを真空蒸着法により150nm(蒸着速度0.30nm~0.35nm/秒)の膜厚で製膜した。これら真空蒸着法で製膜された形態を図1(B)の模式図に示した。
 その後、この有機化合物層を含む積層体層が積層されたガラス基板を、有機化合物層を含む積層体層が下面になるようにXYステージに設置した。その際、端部4個所でガラス基板を固定し、ガラス基板がXYステージから平行に7mm隔離され、有機化合物層を含む積層体層が直接XYステージに接触することのないように配置した。この状態で、YAGレーザーの第2高調波を用いて上面からレーザービームを照射することにより、極力ガラス基板およびITO層に損傷がないようにして有機化合物層を含む積層体層の一部を、ITO層を除去した溝に平行に連続して除去した。即ち第二レーザスクライブ工程を行い、発光層分離溝111を形成した。
 レーザーの発振周波数は5kHz、出力0.4W、ビーム径は約25μm、加工速度は50mm/秒であり、ITOを除去した溝との距離は100μmであった。このレーザー加工後の形態を図1(C)の模式図に示した。
 有機化合物層を含む積層体層の一部除去後に、再度ガラス基板を真空蒸着機に設置して、最表面のAl層上にAlを真空蒸着法によりさらに150nm(蒸着速度0.30nm~0.35nm/秒)の膜厚で製膜した。このAl層を製膜した形態を図1(D)の模式図に示した。
 この有機化合物層を含む積層体層が積層されたガラス基板を、Al層が下面になるようにXYステージに設置した。前記有機化合物層を含む積層体層の除去の場合と同様に、端部4個所でガラス基板を固定し、ガラス基板がXYステージから平行に7mm隔離され、有機化合物層を含む積層体層が直接XYステージに接触することのないように配置した。YAGレーザーの第2高調波を用いて上面からレーザービームを照射することにより、極力ガラス基板およびITO層に損傷がないようにしてAl層の一部を、有機化合物層を含む積層体層を除去した溝に平行に連続して除去した。即ち第三レーザスクライブ工程を行い、単位発光素子分割溝115を形成した。
 レーザーの発振周波数は5kHz、出力0.4W、ビーム径は約25μm、加工速度は200mm/秒であり、有機化合物層を含む積層体層を除去した溝との距離は100μmであった。このレーザー加工後の形態を図1(E)の模式図に示し、これら一連の集積化有機EL発光装置の製造プロセスの断面模式図を図3の模式図に示した。
 さらに、外周部との絶縁のために図1(F)の模式図に示すように、ITOの除去線等と垂直方向にYAGレーザーの第2高調波を照射することにより、ITOと有機化合物層を含む積層体層、第2の電極層を除去して有機EL装置を完成した。レーザーの発振周波数は5kHz、出力0.4W、ビーム径は約25μm、加工速度は50mm/秒であった。結果的には、図4に示したように170mm×170mmの発光部20を電気的に8つの短冊状の発光部21に分割し、直列に接続したこととなった。接続部の平面拡大写真を図5に示した。
 最後に、このようにして作製した集積化有機EL装置の性能を以下の手順に従って計測した。すなわち図6に示すように集積化有機EL装置の発光部を含む50mm×50mmの部分を6ヶ所(A~F)を抜き出し、1つの短冊状発光部に5V印加した場合に相当する、装置全体に40V印加した時の輝度を、輝度分布計で測定した。輝度分布の結果を図7に示した。さらに、図7に示した一次線分析ライン上の輝度分布を図8に示した。さらに、これらの各部分の平均輝度を表1(各実施例で作製した装置の図6の各位置の平均輝度)に示した。
Figure JPOXMLDOC01-appb-T000003
 図8からわかるように輝度分布は極めて良好で、集積部に挟まれた部分で若干の輝度分布が残る程度である。これは分割された短冊状の発光部内の透光性電極層の抵抗損失によるものであるが、集積しないものと比較するとわずかである。分割数を増やし集積部間の距離を短くすることによりさらに改善していくことが可能である。集積による工数増大と、有効面積の損失とのバランスでパターンを決めればよい。
 このように、200mm×200mmの大面積照明用の有機EL装置においても、透光性導電層の抵抗値の影響を極小化することにより、ほぼ均一に発光できる装置が本発明により簡易な工程で提供できることがわかる。
 (実施例2)
 平均膜厚150nmのITO膜がコーティングされた厚さ0.7mmの無アルカリガラス(200mm×200mm)を基板として用意した。ITO膜は、図1(A)にしめす形状に化学エッチングされており、平均エッチング幅は、50μmであった。この基板を中性洗剤で洗浄した後150℃で20分加熱乾燥させ、その後、短冊状の各ITO部分間の抵抗値が概ね20MΩ以上であることを確認した。その後、真空蒸着装置に設置し、実施例1と同様の方法で有機EL装置を作製した。このようにして作製した集積化有機EL装置の性能を実施例1と同様の方法で測定し、実施例1と同様の各部分の平均輝度を表1に示した。
 本実施例は、実施例1の透光性導電層のパターニングを化学エッチングで実施したものであるが、加工によるコストの上昇と、透光性導電層の除去面積の増加による発光領域面積の減少はあるものの、実施例1と同様に輝度分布が小さい均一な発光ができる大面積照明用の有機EL装置を提供することができる。
 (実施例3)
 実施例1と同様の方法で集積化有機EL装置を作製した。作製した装置の短冊状の隣接する2つの第2の電極層を選別し、その間に素子に逆方向になるように0.1Vの電圧を印加し、電極層間の抵抗値を測定した。その結果を図9の左端の白丸(○)で示す。その後、印加電圧をさらに0.1Vずつ増加してそのつど抵抗値を測定する作業を印加電圧が5Vになるまで繰り返した。その結果を図9の左端以外の白丸(○)で示す。その後、印加電圧を0Vまで低下させた後、再度0.1Vずつ印加電圧を増加させて抵抗値を測定する作業を、5Vまでもう一度繰り返した。その結果を図9の黒丸(●)で示す。この結果は、ある電圧以上の電圧を印加することにより微小欠陥が消滅し、漏れ電流が低減されていることを裏付けていると思われる。この操作をすべての隣接する第2の電極層間について実施した。その後実施例1に示した手順に従って輝度を測定し、実施例1と同様の各部について平均輝度を表1に示した。
 本実施例は、実施例1に、作製した有機EL装置に若干残留する漏れ電流の発生箇所を除去する手段を加えたものである。本発明により、実施例1と同等以上の良好な輝度分布が得られるほか、漏れ電流の低減により印加電圧が同じ場合に高い平均輝度が得られ、電流効率や出力効率も向上したことがわかった。
 (実施例4)
 実施例1と同様の方法で集積化有機EL装置を作製した。その後、この装置の集積部分に、ボンベから減圧弁で減圧した乾燥窒素を噴きつけ、集積部周辺の粉上物質を除去した後、実施例1に示した手順に従って輝度を測定し、実施例1と同様の各部について平均輝度を表に示した。
 本実施例は、実施例3と同様に、実施例1に、作製した有機EL装置に若干残留する漏れ電流の発生箇所を除去する手段を加えたものである。本発明によっても、実施例1と同等以上の良好な輝度分布が得られるほか、漏れ電流の低減により印加電圧が同じ場合に高い平均輝度が得られ、電流効率や出力効率も向上したことがわかった。
 (比較例1)
 実施例1で用いたのと同じ平均膜厚150nmのITO膜を片面全体にコーティングした厚さ0.7mmの無アルカリガラスを基板として用いた。この基板(200mm×200mm)のITO層を化学エッチングにより図10(A)に示した形状になるように一部を除去した後、中性洗剤で洗浄し150℃で20分加熱乾燥させた。
 その後、真空蒸着装置を用いて、パターニングされた陽極電極上に実施例1と同様にして低分子有機化合物を主成分とする積層体層を形成した。ただし、この積層体層の平面形状が図10(B)に示した形状になるようにステンレススチールのマスクを用いて蒸着を行った。
 次に、陰極の一部としてLiFを真空蒸着法により図10(C)に示す形状のステンレスマスクを用いて1nmの膜厚で積層した。その上に陰極電極Alを同様のマスクと真空蒸着法により150nm(蒸着速度0.30nm~0.35nm/秒)の膜厚で製膜した。このプロセスで製造した有機EL発光装置の断面模式図を図11の模式図に示した。
 得られた有機EL装置は、発光面積が170mm×170mmの集積していない有機EL装置である。この有機EL装置に両極間に5Vを印加して発光させ、実施例と同様に輝度分布測定を行い、ITO電極方向の輝度分布を図12に示した。図12が示すとおり、ITOの抵抗損の小さい端部で輝度が高く、抵抗損の大きな中央部で輝度が低くなっており、実施例の有機EL装置と比較して大きな輝度分布をもっていることがわかる。
(実施例5)
 前記した実施例1と略同様の工程であって、第三レーザスクライブ工程だけを異なる方法で実施した。即ち実施例1ではYAGレーザーの第2高調波を用いて上面からレーザービームを照射することにより、第三レーザスクライブ工程を実施したが、本実施例では図16の様にレーザービーム25の焦点26をガラス基板101の外側に合わせた。
 そしてガラス基板101の一部が蒸発させつつ、Al層の一部を連続して除去した。
 こうして作られた集積化有機EL装置の性能を前記した実施例1と同様の方法で評価したところ、輝度分布が極めて良好であった。
(実施例6)
 前記した実施例1と同一の条件下であって、第1電極層分離溝110と単位発光素子分割溝115の間隔だけが異なる集積化有機EL装置を作製した。即ち第1電極層分離溝110と単位発光素子分割溝115をそれぞれレーザスクライブ法によって形成した。そして両溝同士の間隔を変化させた。
 そして単位発光素子分割溝115を形成した後、裏面電極層104を真空で吸引し、単位発光素子分割溝115の周囲を清掃した。その結果は、表2の通りであった。
 即ち単位発光素子分割溝115を形成する際のレーザービーム25の軌跡の間隔Aが130マイクロメートル以下である場合には、単位発光素子分割溝115の縁の部分がリボン状に剥離した。これに対して同間隔Aが140マイクロメートルを越えると、単位発光素子分割溝115の縁を除去することができなかった。
 また単位発光素子分割溝115の縁の部分をリボン状に剥離することができた集積化有機EL装置は、輝度分布が極めて良好であった。
Figure JPOXMLDOC01-appb-T000004
  1 透光性基板
  2 透光性の第1の導電性電極層
  3 有機化合物層を含む積層体層
  4 第2の導電性電極層
 28 小孔
 30 導通部分
 55 導通部分
 60 有機EL装置(有機発光装置)
100 集積型有機EL装置(集積化有機発光装置)
101 ガラス基板(透光性基板、透光性絶縁基板)
102 導電性電極層、第1電極層
103 機能層、積層体層
104 裏面電極層、第2電極層
110 第1電極分離溝
111 発光層分離溝、導通用開口
115 単位発光素子分割溝
120 単位発光素子

Claims (21)

  1.  透光性絶縁基板に透光性の第1電極層と、少なくとも1層以上の有機化合物からなる有機EL発光層を含む積層体層と、第2電極層とが積層され、
    第1電極層に設けられた第1電極層分離溝と、
    積層体層に設けられた導通用開口と、
    積層体層から第2電極層に至る深さを有する単位発光素子分割溝とを有し、
    第1電極層分離溝によって第1電極層が複数の区画の第一電極層に区切られ、
    単位発光素子分割溝によって積層体層と第2電極層が複数区画の積層体層と第2電極層の組に区切られ、
    第1電極層分離溝と単位発光素子分割溝とは異なる位置にあって少なくとも第2電極層が隣接する区画の第1電極層に跨がり、
    一つの区画の第1電極層と当該第1電極層に積層された一組の積層体層と第2電極層とによって単位発光素子が構成され、前記組に属する第2電極層の一部が導通用開口に侵入していて前記組に属する第2電極層が隣接する区画の第1電極層と導通し、隣接する単位発光素子が電気的に直列に接続された集積化有機発光装置であって、
    前記単位発光素子分割溝は、多数の小孔が連続して成るものであり、各小孔は透光性絶縁基板側から第2電極層側に向かって拡径する形状であって、少なくとも第2電極層については各小孔がオーバーラップして第2電極層を分断し、第1電極層においては前記各小孔がオーバーラップせずに各小孔同士の間に導通部分を残すことを特徴とする集積化有機発光装置。
  2.  前記各小孔は、透光性絶縁基板の内部又は第1電極層を始端として第2電極層側に向かって拡径する形状であって、透光性絶縁基板においては前記各小孔はオーバーラップしないことを特徴とする請求項1に記載の集積化有機発光装置。
  3.  各小孔の中心間距離は、10マイクロメートルから80マイクロメートルであることを特徴とする請求項1又は2に記載の集積化有機発光装置。
  4.  単位発光素子分割溝と導通用開口とは平面視した際に近接した位置にあり、単位発光素子分割溝の第2電極層側はその溝幅が導通用開口側に向かって広いことを特徴とする請求項1乃至3のいずれかに記載の集積化有機発光装置。
  5.  導通用開口は溝であり、第2電極層の一部は導通用開口たる溝を埋め、単位発光素子分割溝の幅方向の端部は、第2電極層の導通用開口に侵入する部位に至っていることを特徴とする請求項1乃至4のいずれかに記載の集積化有機発光装置。
  6.  単位発光素子分割溝の幅方向の端部は、裏面電極層の導入用開口に侵入する部位に至っていることを特徴とする請求項1乃至5のいずれかに記載の集積化有機発光装置。
  7.  前記積層体層の内の、第2電極層と接する層である積層体最外層の材料が金属であることを特徴とする1乃至6のいずれかに記載の集積化有機発光装置。
  8. (a)透光性基板上にパターン化された透光性の第1の導電性電極層を形成する工程、
    (b)前記パターン化された透光性の第1の導電性電極層の少なくとも一部を覆うように複数の有機化合物層を含む積層体層を形成する工程、
    (c)前記積層体層の一部を除去して前記透光性の第1の導電性電極層の一部を露出する工程、
    (d)前記積層体層と透光性の第1の導電性電極層の露出部分に少なくとも1層以上の第2の導電性電極層を含む層を形成する工程、
    (e)前記透光性基板側からレーザービームを入射することにより前記積層体層と前記第2の導電性電極層の一部を同時に除去する工程、
    を含むことを特徴とする、基板上に複数の発光部が電気的に直列に接続された有機発光装置の製造方法。
  9.  前記(a)透光性基板上にパターン化された透光性の第1の導電性電極層を形成する工程が、透光性基板上に透光性の第1の導電性電極層を形成した後、レーザービームを照射することによりその一部を除去する工程を含むことを特徴とする請求項8に記載の有機発光装置の製造方法。
  10.  前記の複数の有機化合物層を含む積層体層における前記透光性基板と最も離れた層が導電性の薄膜層であることを特徴とする請求項8又は9に記載の有機発光装置の製造方法。
  11.  前記(c)積層体層の一部を除去して前記透光性の第1の導電性電極層の一部を露出する工程が、前記積層体層にレーザービームを照射する工程を含むことを特徴とする請求項8乃至10のいずれかに記載の有機発光装置の製造方法。
  12.  前記積層体層へのレーザービームの照射がレーザービームを前記透光性基板から入射することにより行われることを特徴とする請求項11に記載の有機発光装置の製造方法。
  13.  前記積層体層と前記第2の導電性電極層の一部を同時に除去する前記(e)工程に用いられるレーザー光源が、ネオジウム添加のYAGレーザーの高調波であることを特徴とする請求項8乃至12のいずれかに記載の有機発光装置の製造方法。
  14.  前記積層体層の一部を除去して前記透光性の第1の導電性電極層の一部を露出する前記(c)工程に用いられるレーザー光源が、ネオジウム添加のYAGレーザーの高調波であることを特徴とする請求項11乃至13のいずれかに記載の有機発光装置の製造方法。
  15.  前記(a)透光性基板上にパターン化された透光性の第1の導電性電極層を形成する工程が、前記透光性基板上に透光性の第1の導電性電極層を形成した後、ネオジウム添加のYAGレーザーの基本波を光源とするレーザービームを照射することによりその一部を除去する工程を含むことを特徴とする請求項9乃至14のいずれかに記載の有機発光装置の製造方法。
  16.  前記透光性基板側からレーザービームを入射することにより前記積層体層と前記第2の導電性電極層の一部を同時に除去する工程の後に、前記基板上の少なくとも各発光部の一部に逆方向に電圧を印加し前記発光部の漏れ電流を低減させる工程を含むことを特徴とする請求項8乃至15のいずれかに記載の有機発光装置の製造方法。
  17.  前記透光性基板側からレーザービームを入射することにより前記積層体層と前記第2の導電性電極層の一部を同時に除去する工程の後に、少なくとも前記除去部の一部に流体を接触させて、前記発光部の漏れ電流を低減させる工程を含むことを特徴とする請求項8乃至16のいずれかに記載の有機発光装置の製造方法。
  18.  前記積層体層と前記第2の導電性電極層の一部を同時に除去する前記(e)工程に用いられるレーザービームは、パルス状に照射されるものであり、レーザービームは前記透光性基板から入射され、前記レーザービームの焦点が積層体層より手前にあることを特徴とする請求項8乃至17のいずれかに記載の有機発光装置の製造方法。
  19. 前記積層体層と前記第2の導電性電極層の一部を同時に除去する前記(e)工程は、パルス状のレーザービームを前記透光性基板から照射すると共に、レーザービームの照射位置を一定の速度で直線軌跡を描いて相対移動させることによって行われ、パルスの強さと前記速度との関係は、レーザービームのパルスによって形成される多数の小孔が、透光性絶縁基板側から第2の導電性電極層側に向かって拡径する形状となり、積層体層及び第2の導電性電極層については各小孔がオーバーラップして積層体層及び第2の導電性電極層をそれぞれ分断し、第1電極層においては前記各小孔がオーバーラップせずに各小孔同士の間に導通部分を残すこととなる関係であることを特徴とする請求項8乃至18のいずれかに記載の有機発光装置の製造方法。
  20.  前記(c)積層体層の一部を除去して前記透光性の第1の導電性電極層の一部を露出する工程は、前記積層体層にレーザービームを照射すると共に、レーザービームの照射位置を直線軌跡を描いて相対移動させることによって行われ、さらに前記積層体層と前記第2の導電性電極層の一部を同時に除去する前記(e)工程についてもレーザービームの照射位置を直線軌跡を描いて相対移動させることによって溝を形成することによって行われ、両者のレーザービームの直線軌跡の中心間の間隔が130マイクロメートル以下であり、さらに前記積層体層と前記第2の導電性電極層の一部を同時に除去する前記(e)工程の後に、当該工程で形成された溝の縁の第2の導電性電極層を剥離する工程を有することを特徴とする請求項8乃至19のいずれかに記載の有機発光装置の製造方法。
  21.  請求項8乃至20のいずれかに記載の製造方法によって製造された有機発光装置。
PCT/JP2010/064596 2009-08-27 2010-08-27 集積化有機発光装置、有機発光装置の製造方法および有機発光装置 WO2011024951A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011528868A JP5575133B2 (ja) 2009-08-27 2010-08-27 集積化有機発光装置、有機発光装置の製造方法および有機発光装置
CN201080031681.8A CN102474934B (zh) 2009-08-27 2010-08-27 集成化有机发光装置、有机发光装置的制造方法及有机发光装置
KR1020127000826A KR101705201B1 (ko) 2009-08-27 2010-08-27 집적화 유기 발광 장치, 유기 발광 장치의 제조 방법 및 유기 발광 장치
US13/392,485 US8421347B2 (en) 2009-08-27 2010-08-27 Integrated organic light-emitting device, method for producing organic light-emitting device and organic light-emitting device produced by the method
EP10812000.7A EP2473009B1 (en) 2009-08-27 2010-08-27 Integrated organic light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-196669 2009-08-27
JP2009196669 2009-08-27

Publications (1)

Publication Number Publication Date
WO2011024951A1 true WO2011024951A1 (ja) 2011-03-03

Family

ID=43628049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064596 WO2011024951A1 (ja) 2009-08-27 2010-08-27 集積化有機発光装置、有機発光装置の製造方法および有機発光装置

Country Status (6)

Country Link
US (1) US8421347B2 (ja)
EP (1) EP2473009B1 (ja)
JP (1) JP5575133B2 (ja)
KR (1) KR101705201B1 (ja)
CN (1) CN102474934B (ja)
WO (1) WO2011024951A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073650A1 (ja) * 2010-11-30 2012-06-07 株式会社カネカ 有機el装置
WO2012081625A1 (ja) * 2010-12-18 2012-06-21 株式会社カネカ 有機el装置の製造方法、有機el装置の製造装置、光電変換装置の製造方法及び光電変換装置の製造装置
WO2013103093A1 (ja) * 2012-01-05 2013-07-11 株式会社カネカ 有機el装置及びその製造方法
US20130285037A1 (en) * 2011-01-13 2013-10-31 Kaneka Corporation Organic el light emitting element and method for manufacturing same
JP2013235973A (ja) * 2012-05-09 2013-11-21 Kaneka Corp 有機el装置、及び有機elモジュール
JP2013239355A (ja) * 2012-05-16 2013-11-28 Lumiotec Kk 有機elパネル及び有機el素子の製造装置
EP2712276A1 (en) * 2011-05-19 2014-03-26 Showa Denko K.K. Organic light-emitting element, method for making organic light-emitting element, display device and illumination device
WO2016027415A1 (ja) * 2014-08-19 2016-02-25 パナソニックIpマネジメント株式会社 有機エレクトロルミネッセンス素子及び透明電極板の製造方法
CN106062621A (zh) * 2014-03-06 2016-10-26 赛智电致变色公司 使用非水性流体从电致变色膜的颗粒去除

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6190803B2 (ja) * 2012-02-20 2017-08-30 株式会社カネカ 有機el装置
US9117785B2 (en) 2013-11-22 2015-08-25 Samsung Display Co., Ltd. Display device and method of manufacturing the same
KR101954821B1 (ko) * 2014-05-12 2019-05-31 엘지디스플레이 주식회사 유기발광소자
KR101946905B1 (ko) * 2014-05-13 2019-04-22 엘지디스플레이 주식회사 유기발광소자
KR102290785B1 (ko) 2014-11-18 2021-08-19 삼성디스플레이 주식회사 유기 발광 표시 장치
US10205111B2 (en) 2014-11-27 2019-02-12 Lg Display Co., Ltd. Organic light emitting diode, method for manufacturing organic light emitting diode, and method for repairing organic light emitting diode
KR20180062107A (ko) 2016-11-30 2018-06-08 엘지디스플레이 주식회사 유기발광소자를 이용한 조명장치 및 그 제조방법
JP2018186066A (ja) * 2017-04-25 2018-11-22 OLED Material Solutions株式会社 有機elデバイス用基板、有機elデバイスおよび有機elデバイス用基板の製造方法
CN108511492B (zh) 2018-04-02 2021-06-04 上海天马微电子有限公司 有机发光显示面板及其制作方法、有机发光显示装置
CN108428808B (zh) 2018-04-16 2019-11-05 京东方科技集团股份有限公司 有机电致发光基板的制作方法
JP7320851B2 (ja) * 2018-05-07 2023-08-04 オーティーアイ ルミオニクス インコーポレーテッド 補助電極を提供するための方法および補助電極を含むデバイス
EP3855242B1 (en) * 2018-09-19 2023-10-11 Toppan Printing Co., Ltd. Light modulation sheet, and method of manufacturing light modulation sheet
KR20210121372A (ko) 2020-03-27 2021-10-08 삼성디스플레이 주식회사 표시 패널, 이의 제조 방법 및 이를 포함하는 표시 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314592A (ja) * 1993-04-30 1994-11-08 Komatsu Ltd 透明電極薄膜のエッチング方法
JP2003297568A (ja) * 2002-04-05 2003-10-17 Rohm Co Ltd 有機エレクトロルミネセンス表示装置の製造方法
JP2004031102A (ja) * 2002-06-25 2004-01-29 Fuji Electric Holdings Co Ltd 有機el発光素子およびその製造方法
JP2006511073A (ja) 2002-12-20 2006-03-30 ケンブリッジ ディスプレイ テクノロジー リミテッド 光学装置の電気接続
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
JP2008508673A (ja) 2004-07-27 2008-03-21 ケンブリッジ ディスプレイ テクノロジー リミテッド 有機光−電子装置用積層相互接続
JP2008311096A (ja) * 2007-06-15 2008-12-25 Nippon Seiki Co Ltd 有機elパネル
JP2009181752A (ja) * 2008-01-29 2009-08-13 Fuji Electric Holdings Co Ltd 有機elデバイス

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065776B2 (ja) * 1984-03-26 1994-01-19 株式会社半導体エネルギー研究所 光電変換装置の作製方法
US6796867B2 (en) * 2000-10-27 2004-09-28 Science Applications International Corporation Use of printing and other technology for micro-component placement
JP4030758B2 (ja) * 2001-12-28 2008-01-09 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7034470B2 (en) * 2002-08-07 2006-04-25 Eastman Kodak Company Serially connecting OLED devices for area illumination
US20040259279A1 (en) * 2003-04-15 2004-12-23 Erchak Alexei A. Light emitting device methods
JP4648105B2 (ja) * 2005-06-21 2011-03-09 三菱重工業株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2007227232A (ja) * 2006-02-24 2007-09-06 Semiconductor Energy Lab Co Ltd 照明装置
JP2007273858A (ja) * 2006-03-31 2007-10-18 Kaneka Corp 集積型光電変換装置及び集積型光電変換装置の製造方法
EP2061089A1 (en) * 2006-09-08 2009-05-20 Mitsubishi Heavy Industries, Ltd. Solar battery panel and method for manufacturing solar battery panel
JP4485506B2 (ja) * 2006-10-27 2010-06-23 シャープ株式会社 薄膜太陽電池および薄膜太陽電池の製造方法
US8053260B2 (en) * 2006-11-17 2011-11-08 General Electric Company Large-area lighting systems and methods of making the same
JP4725577B2 (ja) * 2007-12-28 2011-07-13 カシオ計算機株式会社 表示装置の製造方法
JP5172402B2 (ja) * 2008-03-13 2013-03-27 シャープ株式会社 有機elデバイス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314592A (ja) * 1993-04-30 1994-11-08 Komatsu Ltd 透明電極薄膜のエッチング方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
JP2003297568A (ja) * 2002-04-05 2003-10-17 Rohm Co Ltd 有機エレクトロルミネセンス表示装置の製造方法
JP2004031102A (ja) * 2002-06-25 2004-01-29 Fuji Electric Holdings Co Ltd 有機el発光素子およびその製造方法
JP2006511073A (ja) 2002-12-20 2006-03-30 ケンブリッジ ディスプレイ テクノロジー リミテッド 光学装置の電気接続
JP2008508673A (ja) 2004-07-27 2008-03-21 ケンブリッジ ディスプレイ テクノロジー リミテッド 有機光−電子装置用積層相互接続
JP2008311096A (ja) * 2007-06-15 2008-12-25 Nippon Seiki Co Ltd 有機elパネル
JP2009181752A (ja) * 2008-01-29 2009-08-13 Fuji Electric Holdings Co Ltd 有機elデバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2473009A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073650A1 (ja) * 2010-11-30 2012-06-07 株式会社カネカ 有機el装置
JP5894932B2 (ja) * 2010-11-30 2016-03-30 株式会社カネカ 有機el装置
US9281498B2 (en) 2010-11-30 2016-03-08 Kaneka Corporation Organic EL device
JPWO2012073650A1 (ja) * 2010-11-30 2014-05-19 株式会社カネカ 有機el装置
WO2012081625A1 (ja) * 2010-12-18 2012-06-21 株式会社カネカ 有機el装置の製造方法、有機el装置の製造装置、光電変換装置の製造方法及び光電変換装置の製造装置
JP5940460B2 (ja) * 2010-12-18 2016-06-29 株式会社カネカ 有機el装置の製造方法、有機el装置の製造装置、光電変換装置の製造方法及び光電変換装置の製造装置
US20130285037A1 (en) * 2011-01-13 2013-10-31 Kaneka Corporation Organic el light emitting element and method for manufacturing same
US9287527B2 (en) * 2011-01-13 2016-03-15 Kaneka Corporation Organic EL light emitting element and method for manufacturing same
EP2712276A4 (en) * 2011-05-19 2014-11-12 Showa Denko Kk ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR MANUFACTURING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, AND LIGHTING DEVICE
EP2712276A1 (en) * 2011-05-19 2014-03-26 Showa Denko K.K. Organic light-emitting element, method for making organic light-emitting element, display device and illumination device
JPWO2013103093A1 (ja) * 2012-01-05 2015-05-11 株式会社カネカ 有機el装置及びその製造方法
US9263690B2 (en) 2012-01-05 2016-02-16 Kaneka Corporation Organic el device and manufacturing method thereof
WO2013103093A1 (ja) * 2012-01-05 2013-07-11 株式会社カネカ 有機el装置及びその製造方法
JP2013235973A (ja) * 2012-05-09 2013-11-21 Kaneka Corp 有機el装置、及び有機elモジュール
JP2013239355A (ja) * 2012-05-16 2013-11-28 Lumiotec Kk 有機elパネル及び有機el素子の製造装置
CN106062621A (zh) * 2014-03-06 2016-10-26 赛智电致变色公司 使用非水性流体从电致变色膜的颗粒去除
JP2017515648A (ja) * 2014-03-06 2017-06-15 セイジ・エレクトロクロミクス,インコーポレイテッド 非水性流体を用いたエレクトロクロミックフィルムからの粒子除去
US10767143B2 (en) 2014-03-06 2020-09-08 Sage Electrochromics, Inc. Particle removal from electrochromic films using non-aqueous fluids
WO2016027415A1 (ja) * 2014-08-19 2016-02-25 パナソニックIpマネジメント株式会社 有機エレクトロルミネッセンス素子及び透明電極板の製造方法

Also Published As

Publication number Publication date
US8421347B2 (en) 2013-04-16
CN102474934B (zh) 2014-12-31
US20120161616A1 (en) 2012-06-28
CN102474934A (zh) 2012-05-23
JPWO2011024951A1 (ja) 2013-01-31
KR101705201B1 (ko) 2017-02-09
EP2473009A4 (en) 2017-01-18
KR20120055534A (ko) 2012-05-31
JP5575133B2 (ja) 2014-08-20
EP2473009A1 (en) 2012-07-04
EP2473009B1 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP5575133B2 (ja) 集積化有機発光装置、有機発光装置の製造方法および有機発光装置
JP6941915B2 (ja) 有機薄膜太陽電池モジュールおよび電子機器
US20120056181A1 (en) Method of manufacturing electronic element and electronic element
US9287527B2 (en) Organic EL light emitting element and method for manufacturing same
JP2007103098A (ja) 有機el装置の製造方法、有機el装置及び電子機器
US9263690B2 (en) Organic el device and manufacturing method thereof
KR101726731B1 (ko) 광전자 컴포넌트를 생성하기 위한 방법 및 유기 광전자 컴포넌트를 패터닝하기 위한 방법
WO2015030125A1 (ja) トップエミッション型有機エレクトロルミネッセンス表示装置およびその製造方法
KR20020025917A (ko) 유기 전계발광 소자 제조 방법
CN102696125A (zh) 无掩模制造oled器件的方法
WO2015030123A1 (ja) トップエミッション型有機エレクトロルミネッセンス表示装置の製造方法、およびトップエミッション型有機エレクトロルミネッセンス表示装置形成用蓋材
TWI624092B (zh) 製造具有空間隔離之發光區域之有機發光二極體裝置之方法
US8258505B2 (en) Organic electroluminescence display apparatus and manufacturing method therefor
JP5460291B2 (ja) 有機発光装置の製造方法および有機発光装置
JP2015050051A (ja) トップエミッション型有機エレクトロルミネッセンス表示装置
JP2010003629A (ja) 有機el表示装置の製造方法
JP5730547B2 (ja) シースルー有機el装置およびその製造方法
JP5698921B2 (ja) 有機el発光装置およびその製造方法
JP6102419B2 (ja) トップエミッション型有機エレクトロルミネッセンス表示装置の製造方法、およびトップエミッション型有機エレクトロルミネッセンス表示装置
JP2015049962A (ja) トップエミッション型有機エレクトロルミネッセンス表示装置の製造方法
JP2015050046A (ja) トップエミッション型有機エレクトロルミネッセンス表示装置
JP2001196169A (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2002208482A (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP2002083678A (ja) 有機エレクトロルミネッセンス素子の電極形成方法
JP2017182877A (ja) 有機エレクトロルミネッセンス素子及び透明電極板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080031681.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528868

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127000826

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010812000

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010812000

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13392485

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE