WO2011024909A1 - スパッタリングターゲット用銅材料およびその製造方法 - Google Patents
スパッタリングターゲット用銅材料およびその製造方法 Download PDFInfo
- Publication number
- WO2011024909A1 WO2011024909A1 PCT/JP2010/064509 JP2010064509W WO2011024909A1 WO 2011024909 A1 WO2011024909 A1 WO 2011024909A1 JP 2010064509 W JP2010064509 W JP 2010064509W WO 2011024909 A1 WO2011024909 A1 WO 2011024909A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- purity
- hot
- sputtering target
- copper material
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
Definitions
- the present invention relates to a copper material used as a sputtering target and a manufacturing method thereof.
- TFTs thin film transistors
- FIG. 1 shows a cross-sectional view of an example of the structure of a TFT element in a liquid crystal display.
- the TFT element 1 includes a scanning electrode 3 on a glass substrate 2 and a gate electrode 4 in which a part of the scanning line functions as a TFT ON / OFF control.
- the gate electrode is formed so as to be covered with an insulating film 5 of silicon nitride, and an amorphous silicon (hereinafter abbreviated as a-Si) layer 6 and an a-Si layer 7 doped with P (phosphorus) are sequentially formed on the insulating film 5.
- Source-drain electrodes 8 and 9 are formed.
- a silicon nitride protective film 10 is formed so as to cover them.
- a tin-doped indium oxide (hereinafter referred to as ITO) film 11 is disposed in the pixel region.
- ITO tin-doped indium oxide
- the problem with using a copper wiring film for TFT element wiring is that when a Cu film is formed directly on a glass substrate, the Cu wiring film peels off from the glass due to poor adhesion at the Cu / glass interface. It is done.
- Patent Documents 1 to 3 and the like As an invention for solving the problem of peeling, techniques described in Patent Documents 1 to 3 and the like have been proposed.
- Patent Document 1 peeling is suppressed by interposing a refractory metal such as molybdenum between a copper wiring and a glass substrate to form a barrier layer having excellent adhesion to the glass substrate.
- a refractory metal such as molybdenum
- Patent Documents 2 and 3 by using a target obtained by alloying copper, an oxide is formed at the interface between the copper wiring and the glass substrate, and an alloy element is concentrated at the interface between the copper wiring and the glass substrate. Peeling is suppressed.
- One of the important characteristics required in the process of forming the gate electrode of the TFT element is the uniformity of the wiring film within the substrate surface. Due to the uniformity of the film, that is, the difference in film thickness and the presence of irregularities, the electric capacity in the TFT becomes non-uniform, which adversely affects the display. In addition, in the TFT element manufacturing process, if there is a difference in film thickness or coarse clusters (particles, splashes, etc.), wiring defects such as disconnection and short circuit may occur when wiring electrodes are created by etching. Is done.
- Patent Documents 4 to 8 disclose the invention of a sputtering target that can form a uniform wiring film when a pure copper film to be a semiconductor wiring or the like is formed by a sputtering process, and can suppress coarse clusters and disconnection defects. Technology has been proposed.
- Patent Document 4 discloses that a defective disconnection is produced by melting and solidifying copper having a purity of 99.9999% or more excluding oxygen, nitrogen, carbon and hydrogen gas components at an oxygen concentration of 0.1 ppm or less. A sputtering target capable of obtaining wiring for VLSI with a low rate is described. By reducing the amount of impurities in the copper material, disconnection defects and the like are reduced.
- Patent Document 5 uses a sputtering target in which the average crystal grain size of the recrystallized structure is 80 microns or less and the Vickers hardness is 100 or less in copper having a purity of 99.995% or more. It is described that the expansion of protrusions and the generation of coarse clusters are suppressed.
- Patent Document 6 in copper having a purity of 99.999% or more excluding gas components, the X-ray diffraction peak intensity I ⁇ 111 ⁇ of the ⁇ 111 ⁇ plane in the sputtering surface is increased, and the average particle size is set to 250 ⁇ m or less. In addition, it is described that the uniformity of the film thickness is improved by setting the variation of the particle diameter depending on the location within 20%.
- Patent Document 7 the volume of crystals facing the ⁇ 110 ⁇ plane on the surface is set to 80% or more, and the crystals are uniformly distributed from the surface to the center, so that the jumping out of copper atoms is perpendicular to the surface, It describes that it is possible to form a film up to a deep part of a groove having a large aspect ratio.
- the average crystal grain size is controlled to 10 to 30 ⁇ m, and each has orientations of ⁇ 111 ⁇ , ⁇ 200 ⁇ , ⁇ 220 ⁇ , and ⁇ 311 ⁇ . It is described that uniformity and minimal particle generation can be achieved by having a random orientation with less than 50% of the particles.
- the size of the substrate such as a liquid crystal display for a large television has been increased, and the substrate size exceeding 2 m, such as 1870 mm ⁇ 2200 mm, has been achieved in the seventh generation. Accordingly, it is necessary to form a film on a large substrate also in a sputtering process for creating wiring, and even if the method described in the above-mentioned patent document is used, the thickness of the generated wiring film is different for each part of the substrate.
- the problems such as non-uniformity and the generation of coarse clusters become more obvious. Further, since the sputtering target itself used is also increased in size, the metal structure tends to be non-uniform for each portion of the sputtering target material, and the influence on film thickness accuracy and coarse cluster formation is increased.
- the present invention generates particles more uniformly than in the past when creating a wiring in a sputtering process for a large substrate used in a TFT liquid crystal panel or the like, and It is an object of the present invention to provide a copper material for a sputtering target that is less likely to change the generation frequency of the particles even during use.
- the inventors of the present invention have conducted a hot extrusion method that can control the crystal orientation and crystal grains within a predetermined range by conducting earnest research on the above-described problems, and can more uniformly control the structure of the manufacturing method. It has been found that a copper material suitable for a sputtering target capable of producing a uniform wiring film can be provided by application. The present invention has been made based on this finding.
- the present invention (1) It is made of high-purity copper having a purity of 99.99% or more, and X-ray diffraction of each of the ⁇ 111 ⁇ plane, ⁇ 200 ⁇ plane, ⁇ 220 ⁇ plane, and ⁇ 311 ⁇ plane on the sputtering surface.
- Sputtering characterized in that peak intensity, I ⁇ 111 ⁇ , I ⁇ 200 ⁇ , I ⁇ 220 ⁇ , and I ⁇ 311 ⁇ satisfy the following formula (1), and the grain size of the crystal grains is 100 to 200 ⁇ m Copper material for target,
- a high purity copper ingot having a purity of 99.99% or more is hot-extruded, and the extruded material is produced by cooling immediately after the hot extrusion, (1) Copper material for sputtering target according to (3) A high purity copper ingot having a purity of 99.99% or more is hot-extruded, and the extruded material is cooled immediately after the hot extrusion and then cold-rolled and manufactured.
- the copper material for sputtering targets according to item (1), (4) A high-purity copper ingot having a purity of 99.99% or more is hot-extruded at 700 to 1050 ° C., and the extruded material is cooled at a cooling rate of 50 ° C./second or more immediately after the hot-extrusion.
- the copper material for sputtering target according to item (1) characterized in that (5) A method for producing a copper material for a sputtering target as described in (1), wherein high-purity copper having a purity of 99.99% or more is hot-extruded at 700 to 1050 ° C., and the extruded material is heated.
- the present invention provides a method for producing a copper material for a sputtering target, comprising a step of cooling at a cooling rate of 50 ° C./second or more immediately after inter-extrusion.
- a copper material suitable for a sputtering target capable of producing a uniform wiring film can be provided.
- the copper material for sputtering target of the present invention generates particles more uniformly than before when creating wiring in a sputtering process on a large substrate used for a TFT liquid crystal panel or the like, and even during use Changes in the frequency of the particles are unlikely to occur.
- the copper material for sputtering target of the present invention is a copper material made of high-purity copper (hereinafter, simply referred to as “pure copper”) having a purity of 99.99% or more. A specific range.
- ⁇ 111 ⁇ plane, ⁇ 200 ⁇ plane, ⁇ 220 ⁇ plane, and ⁇ 311 ⁇ plane are likely to occur. Usually, these are randomly oriented, but the present inventors have particularly excellent sputtering characteristics of ⁇ 200 ⁇ planes among them, ⁇ 111 ⁇ plane, ⁇ 200 ⁇ plane, ⁇ 220 ⁇ plane, ⁇ 311 ⁇ plane.
- the ratio of I ⁇ 200 ⁇ is 40% or more, that is, the following formula (1 ).
- the sputtering characteristics, for example, the film thickness uniformity during film formation and the film quality uniformity were found to be excellent.
- Is less than 0.4 since the effect of I ⁇ 200 ⁇ is not sufficiently exhibited when the value is less than 0.4, it is 0.4 or more, preferably 0.5 or more, more preferably Is 0.7 to 0.9.
- the peak intensity of X-ray diffraction on each surface is the intensity peak of each diffraction surface measured by making X-rays incident from the surface used as the target of the copper material.
- the crystal grain size affects the sputtering characteristics as well as the crystal orientation.
- the crystal grain size of the copper material for sputtering target of the present invention is 100 to 200 ⁇ m, preferably 110 to 190 ⁇ m, more preferably 120 to 180 ⁇ m.
- the crystal grain size is small, there are relatively many crystal grain boundaries.
- the crystal grain boundaries are disordered in the atomic arrangement, and the easiness of element jumping during sputtering is different from that in the grains, so that the film to be formed is not suitable. It tends to be uniform.
- the grain size of the crystal grain means an average grain size (grain size) measured based on JIS H 0501 (cutting method).
- the reason why the sputtering characteristics of the ⁇ 200 ⁇ plane are excellent is that when considering the atomic density on each plane in the FCC metal, the ⁇ 111 ⁇ plane is the most, followed by the ⁇ 200 ⁇ plane, but the ⁇ 111 ⁇ plane is It is presumed that the ⁇ 200 ⁇ plane is the most balanced because it is the most dense and requires a large amount of energy to make one atom take off.
- the method for producing the copper material for a sputtering target of the present invention is not particularly limited, but it is preferable to use hot extrusion as a production process for enhancing the orientation of the ⁇ 200 ⁇ plane.
- the heating temperature of the material is preferably set to 700 ° C. or higher. When the temperature is lower than 700 ° C., sufficient dynamic recrystallization does not occur during extrusion, and the relationship of formula (1) is difficult to obtain.
- the upper limit of the heating temperature is not particularly limited, but since the melting point of pure copper is about 1080 ° C., if it is too high, the billet partially dissolves and extrusion cannot be performed.
- the temperature of hot extrusion is more preferably 750 to 900 ° C. Hot extrusion can be performed at any pressure using a normal extruder.
- the hot-extruded material has a very high temperature, and the crystal grains are generally coarsened and grown in a short time to become 200 ⁇ m or more.
- the material is cooled at a cooling rate of 50 ° C./second or more by water cooling or the like immediately after extrusion (usually within 5 seconds after being extruded from the die). It is preferable.
- the cooling rate is more preferably 100 ° C./second or more.
- the upper limit of the cooling rate is not particularly limited, but in practice, it is usually about 300 ° C./second or less. Moreover, it is preferable to perform cooling until a material becomes 200 degrees C or less.
- the crystal orientation that is, the degree of crystal orientation represented by the above formula (1) is the direction of processing during hot working (the direction of metal changes depending on forging, rolling, and extrusion, and the direction changes), and the processing rate (quantity) Varies depending on the temperature.
- the crystal orientation is generally determined at the stage from the dynamic recrystallization to the grain growth.
- the purity of pure copper is important for obtaining the above-mentioned crystal orientation and crystal grain size.
- Electrolytic copper which is a raw material for producing a pure copper ingot, contains a certain amount of impurities, and they also appear in the pure copper ingot. When there are many impurities, the heat resistance of the material is improved, recrystallization hardly occurs, and crystal orientation becomes difficult to obtain.
- the purity of pure copper needs to be 99.99% or more, preferably 99.995% or more. Note that there is no substantial change in the purity of pure copper before and after the above-described hot extrusion and cooling immediately thereafter.
- the crystal grain size control by the crystal orientation and the cooling rate can be performed with small variations in the front end to the rear end and the width direction of the extruded material.
- copper target materials have been manufactured by hot rolling, but since hot rolling gradually thins the heated cake over several passes to several dozen passes, a temperature drop occurs during rolling. Differences are likely to occur at the leading and trailing edges of the material. Further, the temperature tends to decrease due to heat radiation on both sides in the width direction. Furthermore, since the water cooling performed at the end generally enters the water cooling zone gradually from one side of the rolled material, a difference between the leading and trailing ends is likely to occur here.
- the extruded material is immediately cooled to form an extruded material, so that a temperature difference in the cooling process does not occur in the longitudinal direction and the width direction.
- the temperature difference that occurs is the temperature drop of the billet at the beginning and end of pressing, but since the processing time is shorter compared to hot rolling, the amount of decrease is small, and heat build-up is accumulated, so the temperature difference is almost a problem.
- the material produced by hot extrusion in this way has small variations in characteristics in the longitudinal direction and the width direction, when used as a target material for a large display such as a combination of strip-shaped plates, There is an effect of facilitating uniform formation of the sputtering film.
- Cold rolling can be performed under the same conditions as in the prior art.
- the distortion inherent in the copper material affects the pop-out of the target substance, it is preferable to control it.
- the strain inside the copper material can be evaluated by measuring the hardness.
- the hardness is preferably in the range of 51 to 100 Hv (Vickers hardness). If the strain is too large, a large number of target atoms will harden and fly out, the formation of coarse clusters will increase, and the formed film will tend to be non-uniform, and it is desirable that the hardness be 100 Hv or less.
- the processing rate is 0%, that is, the hardness in a completely annealed state (O material) is 51 to 59 Hv.
- the processing rate is increased, the hardness is gradually improved, and the processing rate is increased to 100 Hv at a processing rate of 30%. To reach. If the processing rate is too high, it exceeds 100 Hv, and the above-mentioned problem occurs.
- Example 1 Material No. having the purity shown in Table 1 An ingot having a diameter of 1 to 8 and a diameter of 300 mm ⁇ length of 800 mm was produced and used as a billet for hot extrusion. The billet was heated to about 1000 ° C. and then extruded, and then the extruded material was immediately water-cooled at a cooling rate of about 100 ° C./second for 20 seconds to obtain a base plate having a thickness of 22 mm ⁇ width of 200 mm. Next, the base plate was cold-rolled, and a flat plate (extruded) sputtering target copper material No. 1-1 to 1-8 were produced. In addition, No. 1-1 to 1-5 are examples of the present invention, No.
- 1-6 to 1-8 are comparative examples in which the purity of copper is lower than that of the present invention.
- a copper material No. 1 for a flat sputtering target using hot rolling in the manufacturing process. 1-9 to 1-11 were produced. That is, the material No. An ingot having a thickness of 150 mm, a width of 220 mm, and a length of 1800 mm having a purity of 1, 3, and 5 was prepared and used as a cake for hot rolling. The cake was heated to about 1000 ° C. and then hot-rolled to prepare a base plate having a thickness of 23 mm ⁇ a width of 220 mm. Material cooling during hot rolling was performed by passing the material through a water cooling zone after the final pass.
- Crystal Orientation Distribution The crystal orientation in the copper material plate was measured by measuring the intensity from each diffraction plane by making X-rays incident from the surface used as a target in each of the above-mentioned parts.
- Crystal grain size The crystal grain size in the copper material plate was measured based on JIS H 0501 (cutting method) by observing the microstructure on the surface used as a target in each of the above-mentioned parts.
- the sputtering conditions were an Ar gas pressure of 0.4 Pa and a discharge power of 12 W / cm 2 . Thereafter, heat treatment was performed in a vacuum at 300 ° C. for 30 minutes. The film thickness of the copper wiring after heat treatment was measured at 10 points, and when the maximum film thickness and minimum film thickness range was ⁇ 7%, “good”, and when there was more variation, “bad” did.
- Example 2 In the pure copper No. 1 in Example 1.
- a billet consisting of 1 was prepared and extruded under the hot extrusion conditions A to I shown in Table 4.
- Conditions A to F are examples of the present invention, and conditions G to I are comparative examples.
- adjustment of heating temperature was performed by the furnace temperature setting of a heating furnace.
- the cooling rate was changed by changing the shower amount in the water cooling zone.
- the obtained hot extruded material was cold-rolled in the same manner as in Example 1 to produce a flat sputtering target copper material having a thickness of 20 mm, a width of 200 mm, and a length of about 12 m.
- the crystal orientation distribution, crystal grain size, hardness, and sputtering characteristics were investigated.
- the results are shown in Tables 5 and 6. All the copper materials manufactured in the examples of the present invention satisfy the characteristics.
- the copper material produced in Comparative Example G had a degree of crystal orientation within the specified range of the present invention, but the crystal grain size was less than 100 ⁇ m, and the sputtering characteristics were partially poor.
- the copper material produced in Comparative Example H had a degree of crystal orientation within the specified range of the present invention, but the crystal grain size exceeded 200 ⁇ m, and the sputtering characteristics were partially poor.
- the heating temperature was high, and local melting occurred in the heating furnace, and extrusion was not possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
特許文献7には、表面に{110}面を向いた結晶の体積を80%以上にし、それらの結晶が表面から中心に均一に分布させることにより、銅原子の飛び出しを表面から垂直にさせ、アスペクト比の大きな溝の深奥部まで製膜可能にすることが記載されている。
特許文献8には、99.999%以上の純度の銅において、平均結晶粒径を10~30μmに制御し、{111}、{200}、{220}及び{311}の各々の配向を有する粒子の量を50%よりも少なくして、ランダムな配向を有することで、均一性及び最小の粒子発生を達成できることが記載されている。
本発明は、この知見に基づきなされたものである。
(1)純度が99.99%以上である高純度銅からなり、スパッタリングを行う面における{111}面、{200}面、{220}面、および{311}面の各々のX線回折のピーク強度、I{111}、I{200}、I{220}、およびI{311}が下記式(1)を満たし、結晶粒の粒径が100~200μmであることを特徴とする、スパッタリングターゲット用銅材料、
(3)純度が99.99%以上である高純度銅の鋳塊を熱間押出し、押し出された材料を該熱間押出直後に冷却した後に、冷間圧延して製造されたこと特徴とする、(1)項に記載のスパッタリングターゲット用銅材料、
(4)純度が99.99%以上である高純度銅の鋳塊を700~1050℃で熱間押出し、押し出された材料を該熱間押出直後に50℃/秒以上の冷却速度で冷却して製造されたことを特徴とする、(1)項に記載のスパッタリングターゲット用銅材料、
(5)(1)項記載のスパッタリングターゲット用銅材料を製造する方法であって、純度が99.99%以上である高純度銅を700~1050℃で熱間押出し、押し出された材料を熱間押出直後に50℃/秒以上の冷却速度で冷却する工程を含むことを特徴とする、スパッタリングターゲット用銅材料の製造方法
を提供するものである。
本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
結晶粒径が小さい場合は、相対的に結晶粒界が多くなるが、結晶粒界は原子配列が乱れておりスパッタリング時の元素の飛び易さが粒内とは異なるため、形成する膜が不均一になり易い。また結晶粒径が大きい場合は、ターゲット物質を飛び立たせるために高いエネルギーが必要であり、同時に複数のターゲット原子が飛び出すなど粗大クラスタの形成が増え、形成する膜が不均一になり易い。
また、本発明において、結晶粒の粒径は、JIS H 0501(切断法)に基づき測定した平均粒径(粒度)を意味する。
結晶の配向、つまり前記式(1)で表される結晶配向度は、熱間加工時の加工の向き(鍛造、圧延、押出によってメタルフローが異なるのでそれぞれ向きが変わる)、加工率(量)、温度などにより種々変化する。熱間押出で行なうことで、本発明で規定する前記式(1)で表される条件を満たすように制御しやすい。また、前述の動的再結晶から粒成長への段階で、結晶配向は概ね決まる。加えて、熱間押し出し組織を固定する為に前述の押出直後に冷却することが好ましい。これらの2点を達成することにより、本発明の銅材料を得ることができる。
また熱間鍛造では近年のターゲットの大型化要請に対応するサイズでは、鍛造後の冷却の不均一を解消することは難しく、均一な結晶粒組織を得ることができない。
これまで銅ターゲット材は熱間圧延で製造されているが、熱間圧延は加熱されたケークを数パス~10数パス掛けて徐々に薄くするため圧延中に温度低下が生じ、その温度低下は材料の先後端で差が生じ易い。また、幅方向の両サイド側は放熱により温度が低下しやすい。さらに最後に実施する水冷は、一般には水冷帯に圧延材の片側から徐々に進入するため、ここでも先後端の差が生じ易い。
一方、熱間押出は、押し出された材料がすぐに冷却されて押出材を形成するため、冷却過程の温度差は長手方向および幅方向で生じない。生じる温度差は押し始めと押し終わりのビレットの温度低下であるが、熱間圧延に比べて加工時間が短時間であるため低下量は少なく、加工発熱の蓄積も生じるため、温度差はほとんど問題とならない。この様に熱間押出で製造した材料は、長手方向、幅方向で特性ばらつきが小さいことから、ターゲット製造を短冊状の板を組み合わせて行う様な大型のディスプレイ用のターゲット材として使用する時、スパッタリング膜を均一に形成しやすくする効果がある。
なお、硬さの調節は、圧延などの冷間加工により行い、冷間加工の加工率は30%以下程度に抑えることで、硬さの好ましい範囲の上限値を100Hv以下とすることができ、硬さが51~100Hvの銅材料が簡便に得られる。
前述の通り、冷間加工は硬さの調節のために実施する。加工率0%、すなわち完全に焼きなまされた状態(O材)での硬さが51~59Hvであり、加工率を高くすると徐々に硬さが向上して、加工率30%で100Hvに到達する。加工率が高すぎると100Hvを超え、前述の問題が生じる。
表1に示す純度を有する材料No.1~8の直径300mm×長さ800mmの鋳塊を作製し、熱間押出用のビレットとした。前記ビレットを約1000℃に加熱した後押出を行い、続いて押出材を直ちに冷却速度約100℃/秒で20秒間水冷して厚さ22mm×幅200mmの素板を得た。次いで前記素板を冷間にて圧延し、厚さ20mm×幅200mm×長さ約12mの平板(押出)のスパッタリングターゲット用銅材料No.1-1~1-8を製造した。なお、No.1-1~1-5は本発明例、No.1-6~1-8は銅の純度が本発明例より低い比較例である。
また、従来例として、製造プロセスに熱間圧延を用いて平板のスパッタリングターゲット用銅材料No.1-9~1-11を作製した。すなわち、材料No.1、3、5の純度の厚さ150mm×幅220mm×長さ1800mmの鋳塊を作製し、熱間圧延用のケークとした。前記ケークを約1000℃に加熱後に熱間圧延を行って厚さ23mm×幅220mmの素板を作製した。熱間圧延時の材料冷却は最終パス後に、材料を水冷ゾーンを通過させることで行った。次いで得られた素板の表面を面削した後、冷間圧延で厚さ20mm×幅220mmとし、さらにエッジ部分を切断除去することで厚さ20mm×幅200mm×長さ約12mの平板(圧延)のスパッタリングターゲット用銅材料No.1-9~1-11を製造した。
[1]結晶方位分布
銅材料板における結晶方位は上述の各部位において、ターゲットとして使用される表面からX線を入射させ、各回折面からの強度を測定した。その中から主要の{111}、{200}、{220}及び{311}面各々の回折強度を比較し、上記式(1)の強度比(結晶配向度)を算出した。なお、X線照射の条件は、X線の種類CuKα1、管電圧40kV、管電流20mAとした。
[2]結晶粒径
銅材料板における結晶粒径は上述の各部位において、ターゲットとして使用される表面にてミクロ組織観察を行い、JIS H 0501(切断法)に基づき測定した。
[3]硬さ
銅材料板における硬さは、ターゲットとして使用される表面にてJIS Z 2244に準拠してマイクロビッカース硬さ試験機にて測定を行った。
[4]スパッタリング特性
得られた銅材料板から、図3に示す位置31、32、33にて直径φ6インチ(15.24cm)、厚さ8mmに切り出し、研磨を行ってスパッタリングターゲットを作成した。ターゲット面の粗さの影響を除外するため、粗さは全て最大粗さRaを0.5~0.8μmに研磨して揃えた。上述のように作成したスパッタリングターゲットを用いて、DCマグネトロンスパッタリング装置にて、膜厚0.7mmの日本電気硝子社製OA-10ガラス基板にスパッタリングを実施し0.3μm膜厚の銅配線を作成した。スパッタリング条件はArガス圧力を0.4Pa、放電電力を12W/cm2とした。その後真空中にて300℃、30minの熱処理を行った。熱処理後の銅配線の膜厚を10点測定して、最大膜厚および最小膜厚のレンジが±7%になったものを「良」、それ以上のバラつきが存在したものを「不良」とした。
実施例1における純銅No.1からなるビレットを作製し、表4に示す熱間押出条件A~Iで押出を行った。条件A~Fは本発明例、条件G~Iは比較例である。なお、加熱温度の調整は加熱炉の炉温設定により行った。また冷却速度は、水冷帯のシャワー量の変更により行った。得られた熱間押出材は、実施例1と同様に冷間圧延を行って厚さ20mm×幅200mm×長さ約12mの平板のスパッタリングターゲット用銅材料を製造した。また実施例1と同様、結晶方位分布、結晶粒径、硬さおよびスパッタリング特性を調査した。
2 ガラス基板
3 走査線
4 ゲート電極
5 絶縁膜
6 アモルファスシリコン層
7 リンをドープしたアモルファスシリコン層
8、9 ソース-ドレイン電極
10 窒化シリコンの保護膜
11 スズドープ酸化インジウム膜
12 バリア層
21 平板の銅材料
22 長手先端の幅方向の中央部
23、24 長手先端の幅方向の両サイド部
25 長手中央の幅方向の中央部
26、27 長手中央の幅方向の両サイド部
28 長手後端の幅方向の中央部
29、30 長手後端の幅方向の両サイド部
31 長手先端部
32 長手中央部
33 長手後端部
Claims (5)
- 純度が99.99%以上である高純度銅の鋳塊を熱間押出し、押し出された材料を該熱間押出直後に冷却して製造されたことを特徴とする、請求項1記載のスパッタリングターゲット用銅材料。
- 純度が99.99%以上である高純度銅の鋳塊を熱間押出し、押し出された材料を該熱間押出直後に冷却した後に、冷間圧延して製造されたこと特徴とする、請求項1記載のスパッタリングターゲット用銅材料。
- 純度が99.99%以上である高純度銅の鋳塊を700~1050℃で熱間押出し、押し出された材料を該熱間押出直後に50℃/秒以上の冷却速度で冷却して製造されたことを特徴とする、請求項1に記載のスパッタリングターゲット用銅材料。
- 請求項1記載のスパッタリングターゲット用銅材料を製造する方法であって、純度が99.99%以上である高純度銅を700~1050℃で熱間押出し、押し出された材料を熱間押出直後に50℃/秒以上の冷却速度で冷却する工程を含むことを特徴とする、スパッタリングターゲット用銅材料の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080038093.7A CN102482767B (zh) | 2009-08-28 | 2010-08-26 | 溅射靶用铜材料及其制造方法 |
KR1020147034044A KR101515340B1 (ko) | 2009-08-28 | 2010-08-26 | 스퍼터링 타겟용 구리재료의 제조방법 |
JP2011502972A JP4974197B2 (ja) | 2009-08-28 | 2010-08-26 | スパッタリングターゲット用銅材料およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009198982 | 2009-08-28 | ||
JP2009-198982 | 2009-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011024909A1 true WO2011024909A1 (ja) | 2011-03-03 |
Family
ID=43628009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/064509 WO2011024909A1 (ja) | 2009-08-28 | 2010-08-26 | スパッタリングターゲット用銅材料およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP4974197B2 (ja) |
KR (2) | KR101515340B1 (ja) |
CN (1) | CN102482767B (ja) |
TW (1) | TWI504769B (ja) |
WO (1) | WO2011024909A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013133491A (ja) * | 2011-12-26 | 2013-07-08 | Hitachi Cable Ltd | スパッタリング用銅ターゲット材及びスパッタリング用銅ターゲット材の製造方法 |
JP2013185238A (ja) * | 2012-03-09 | 2013-09-19 | Furukawa Electric Co Ltd:The | スパッタリングターゲット |
JP2013185237A (ja) * | 2012-03-09 | 2013-09-19 | Furukawa Electric Co Ltd:The | スパッタリングターゲット、及び、その製造方法 |
CN104080943A (zh) * | 2012-03-09 | 2014-10-01 | 古河电气工业株式会社 | 溅镀靶 |
JP2014189817A (ja) * | 2013-03-26 | 2014-10-06 | Mitsubishi Materials Corp | 純銅板及び放熱基板 |
JP2016156097A (ja) * | 2016-05-25 | 2016-09-01 | 古河電気工業株式会社 | スパッタリングターゲット |
US10294547B2 (en) | 2013-07-31 | 2019-05-21 | Mitsubishi Materials Corporation | Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment |
CN111989421A (zh) * | 2018-05-21 | 2020-11-24 | 株式会社爱发科 | 溅射靶材及其制造方法 |
US11081326B2 (en) | 2016-07-11 | 2021-08-03 | Semiconductor Energy Laboratory Co., Ltd. | Sputtering target and method for manufacturing the same |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5778636B2 (ja) * | 2012-07-30 | 2015-09-16 | 株式会社Shカッパープロダクツ | スパッタリング用銅ターゲット材及びスパッタリング用銅ターゲット材の製造方法 |
JP2014043643A (ja) * | 2012-08-03 | 2014-03-13 | Kobelco Kaken:Kk | Cu合金薄膜形成用スパッタリングターゲットおよびその製造方法 |
CN104694888B (zh) * | 2013-12-09 | 2017-05-10 | 有研亿金新材料股份有限公司 | 一种高纯铜靶材的制备方法 |
CN108231598A (zh) * | 2017-12-29 | 2018-06-29 | 深圳市华星光电技术有限公司 | 金属氧化物薄膜晶体管的制备方法、阵列基板的制备方法 |
KR102249087B1 (ko) * | 2019-11-13 | 2021-05-07 | (주)하나금속 | 판형 구리 스퍼터링 타겟 및 그 제조 방법 |
JP7309217B2 (ja) * | 2020-06-26 | 2023-07-18 | オリエンタル コッパー シーオー.エルティーディー. | スパッタリング法を使用した薄膜コーティングのための銅円筒型ターゲットを熱間押出技術から製造する方法 |
TWI824162B (zh) * | 2020-06-29 | 2023-12-01 | 泰商東方銅業股份有限公司 | 從熱擠壓程序生產用於藉由濺射法的薄膜塗覆技術之銅靶之方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10195609A (ja) * | 1996-12-27 | 1998-07-28 | Dowa Mining Co Ltd | 結晶方位の制御されたfcc金属及びその製造方法 |
JPH10195611A (ja) * | 1996-12-27 | 1998-07-28 | Dowa Mining Co Ltd | 結晶方位の制御されたfcc金属及びその製造方法 |
JPH10195610A (ja) * | 1996-12-27 | 1998-07-28 | Dowa Mining Co Ltd | 結晶方位の制御されたfcc金属及びその製造方法 |
JPH11158614A (ja) * | 1997-11-28 | 1999-06-15 | Hitachi Metals Ltd | スパッタリング用銅ターゲットおよびその製造方法 |
JP2005533187A (ja) * | 2002-07-16 | 2005-11-04 | ハネウェル・インターナショナル・インコーポレーテッド | 銅スパッタリングターゲット及び銅スパッタリングターゲットの形成方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6749699B2 (en) * | 2000-08-09 | 2004-06-15 | Olin Corporation | Silver containing copper alloy |
US7871727B2 (en) * | 2005-07-25 | 2011-01-18 | 3M Innovative Properties Company | Alloy composition for lithium ion batteries |
CN101215685B (zh) * | 2007-12-27 | 2011-06-22 | 重庆跃进机械厂有限公司 | 制备减摩层内锡含量阶升pvd轴瓦的方法 |
-
2010
- 2010-08-26 WO PCT/JP2010/064509 patent/WO2011024909A1/ja active Application Filing
- 2010-08-26 KR KR1020147034044A patent/KR101515340B1/ko not_active IP Right Cessation
- 2010-08-26 JP JP2011502972A patent/JP4974197B2/ja active Active
- 2010-08-26 CN CN201080038093.7A patent/CN102482767B/zh not_active Expired - Fee Related
- 2010-08-26 KR KR1020127007190A patent/KR20120062802A/ko active Application Filing
- 2010-08-27 TW TW099128733A patent/TWI504769B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10195609A (ja) * | 1996-12-27 | 1998-07-28 | Dowa Mining Co Ltd | 結晶方位の制御されたfcc金属及びその製造方法 |
JPH10195611A (ja) * | 1996-12-27 | 1998-07-28 | Dowa Mining Co Ltd | 結晶方位の制御されたfcc金属及びその製造方法 |
JPH10195610A (ja) * | 1996-12-27 | 1998-07-28 | Dowa Mining Co Ltd | 結晶方位の制御されたfcc金属及びその製造方法 |
JPH11158614A (ja) * | 1997-11-28 | 1999-06-15 | Hitachi Metals Ltd | スパッタリング用銅ターゲットおよびその製造方法 |
JP2005533187A (ja) * | 2002-07-16 | 2005-11-04 | ハネウェル・インターナショナル・インコーポレーテッド | 銅スパッタリングターゲット及び銅スパッタリングターゲットの形成方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013133491A (ja) * | 2011-12-26 | 2013-07-08 | Hitachi Cable Ltd | スパッタリング用銅ターゲット材及びスパッタリング用銅ターゲット材の製造方法 |
JP2013185238A (ja) * | 2012-03-09 | 2013-09-19 | Furukawa Electric Co Ltd:The | スパッタリングターゲット |
JP2013185237A (ja) * | 2012-03-09 | 2013-09-19 | Furukawa Electric Co Ltd:The | スパッタリングターゲット、及び、その製造方法 |
CN104080943A (zh) * | 2012-03-09 | 2014-10-01 | 古河电气工业株式会社 | 溅镀靶 |
CN104080943B (zh) * | 2012-03-09 | 2016-02-17 | 古河电气工业株式会社 | 溅镀靶 |
JP2014189817A (ja) * | 2013-03-26 | 2014-10-06 | Mitsubishi Materials Corp | 純銅板及び放熱基板 |
US10294547B2 (en) | 2013-07-31 | 2019-05-21 | Mitsubishi Materials Corporation | Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment |
JP2016156097A (ja) * | 2016-05-25 | 2016-09-01 | 古河電気工業株式会社 | スパッタリングターゲット |
US11081326B2 (en) | 2016-07-11 | 2021-08-03 | Semiconductor Energy Laboratory Co., Ltd. | Sputtering target and method for manufacturing the same |
US11735403B2 (en) | 2016-07-11 | 2023-08-22 | Semiconductor Energy Laboratory Co., Ltd. | Sputtering target and method for manufacturing the same |
CN111989421A (zh) * | 2018-05-21 | 2020-11-24 | 株式会社爱发科 | 溅射靶材及其制造方法 |
CN111989421B (zh) * | 2018-05-21 | 2022-12-06 | 株式会社爱发科 | 溅射靶材及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20120062802A (ko) | 2012-06-14 |
JPWO2011024909A1 (ja) | 2013-01-31 |
KR20150004922A (ko) | 2015-01-13 |
CN102482767B (zh) | 2014-05-07 |
CN102482767A (zh) | 2012-05-30 |
TW201111536A (en) | 2011-04-01 |
JP4974197B2 (ja) | 2012-07-11 |
TWI504769B (zh) | 2015-10-21 |
KR101515340B1 (ko) | 2015-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4974197B2 (ja) | スパッタリングターゲット用銅材料およびその製造方法 | |
JP4869415B2 (ja) | 純銅板の製造方法及び純銅板 | |
JP4974198B2 (ja) | スパッタリングターゲットに用いられる銅材料およびその製造方法 | |
TWI518197B (zh) | 熱軋銅板 | |
JP5787647B2 (ja) | スパッタリングターゲット用銅材料の製造方法 | |
JP4792116B2 (ja) | 純銅板の製造方法及び純銅板 | |
JP5520746B2 (ja) | スパッタリングターゲット用銅材料及びその製造方法 | |
TWI485272B (zh) | Pure copper plate manufacturing methods and pure copper plate | |
JP4869398B2 (ja) | 純銅板の製造方法及び純銅板 | |
KR20140138111A (ko) | 스퍼터링 타켓 | |
JP6182296B2 (ja) | スパッタリングターゲット、及び、その製造方法 | |
JP4792115B2 (ja) | 純銅板の製造方法及び純銅板 | |
JP2017048446A (ja) | ターゲット材及び配線膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080038093.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011502972 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10811958 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127007190 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10811958 Country of ref document: EP Kind code of ref document: A1 |