WO2011024765A1 - 電解二酸化マンガン及びその製造方法並びにその用途 - Google Patents

電解二酸化マンガン及びその製造方法並びにその用途 Download PDF

Info

Publication number
WO2011024765A1
WO2011024765A1 PCT/JP2010/064202 JP2010064202W WO2011024765A1 WO 2011024765 A1 WO2011024765 A1 WO 2011024765A1 JP 2010064202 W JP2010064202 W JP 2010064202W WO 2011024765 A1 WO2011024765 A1 WO 2011024765A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese dioxide
electrolytic manganese
electrolysis
less
electrolytic
Prior art date
Application number
PCT/JP2010/064202
Other languages
English (en)
French (fr)
Inventor
和正 末次
高橋 健一
明徳 江下
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to CN201080037738.5A priority Critical patent/CN102482787B/zh
Priority to ES10811815T priority patent/ES2751355T3/es
Priority to US13/390,406 priority patent/US9103044B2/en
Priority to EP10811815.9A priority patent/EP2471976B1/en
Publication of WO2011024765A1 publication Critical patent/WO2011024765A1/ja
Priority to ZA2012/01262A priority patent/ZA201201262B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/21Manganese oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to electrolytic manganese dioxide used as a positive electrode active material in, for example, a manganese dry battery, particularly an alkaline manganese dry battery, a manufacturing method thereof, and an application thereof.
  • Manganese dioxide is known as a positive electrode active material of, for example, a manganese dry battery or an alkaline manganese dry battery, and has an advantage of being excellent in storage stability and inexpensive.
  • alkaline manganese batteries using manganese dioxide as the positive electrode active material have excellent discharge characteristics under heavy loads, so they are widely used in electronic cameras, portable tape recorders, portable information devices, game machines, and toys. In recent years, the demand has been increasing rapidly.
  • the alkaline manganese battery has a problem that the substantial discharge capacity is greatly impaired because the utilization rate of manganese dioxide, which is a positive electrode active material, decreases as the discharge current increases and cannot be used in a state where the discharge voltage decreases. was there.
  • the utilization rate of manganese dioxide which is a positive electrode active material
  • the charged positive electrode active material manganese dioxide is not fully utilized, and the usable time is short. It was.
  • Electrolytic manganese dioxide that is superior not only in high rate discharge characteristics but also in middle rate discharge characteristics It has been demanded.
  • the high-rate discharge characteristics have been improved by controlling the amount of sulfuric acid, and a method for producing electrolytic manganese dioxide in which the amount of surface sulfuric acid is controlled to 0.10% by weight or more (see Patent Document 5).
  • a method for producing manganese dioxide in an amount of 3% to 1.6% by weight (see Patent Document 6) has been proposed.
  • electrolytic manganese dioxide obtained by these production methods contains a large amount of sulfuric acid, it not only causes storage deterioration of the dry battery and instability of the battery voltage, but also corrodes the metal material in the production apparatus and the dry battery. Has occurred.
  • the JIS-pH and sulfate radical content of electrolytic manganese dioxide are controlled, and the particle size and sodium content of electrolytic manganese dioxide are also controlled.
  • a manufacturing method has been proposed (see Patent Document 7).
  • the electrolytic manganese dioxide obtained by this production method is excellent in the high rate discharge characteristics by suppressing the corrosion of the metal material, but the middle rate discharge characteristics are still insufficient.
  • electrolytic manganese dioxide (refer patent document 3) excellent in the high-rate discharge characteristic obtained by the electrolysis method which changes the sulfuric acid density
  • electrolytic manganese dioxide (see Patent Document 8) excellent in characteristics has been proposed, the middle rate discharge characteristics are not sufficient in any case.
  • An object of the present invention is manganese dioxide used as a positive electrode active material of an alkaline manganese dry battery particularly excellent in middle rate discharge characteristics, which has a moderately high potential in an alkaline electrolyte, and has high reactivity and filling.
  • Electrolytic manganese dioxide having both properties and its production method and use thereof, and in particular, electrolytic manganese dioxide having excellent battery characteristics such as high rate discharge characteristics and middle rate discharge characteristics, and without corroding metallic materials, and its It is to provide a manufacturing method.
  • Electrolytic manganese dioxide in which the full width at half maximum (hereinafter referred to as FWHM) of the diffraction line on the (110) plane where 2 ⁇ appears in the vicinity of 22 ⁇ 1 ° is 2.2 ° or more and 2.9 ° or less is particularly middle rate discharge.
  • FWHM full width at half maximum
  • the gist of the present invention resides in the following (1) to (12).
  • (1) The full width at half maximum of the (110) plane in XRD measurement using a CuK ⁇ ray as a light source when the potential is 280 mV or more and less than 310 mV in a 40 wt% KOH aqueous solution based on a mercury / mercury oxide reference electrode ( FWHM) is 2.2 ° or more and 2.9 ° or less, and the peak intensity ratio of (110) / (021) in the X-ray diffraction peak is 0.50 or more and 0.80 or less.
  • manganese manganese.
  • the electrolytic manganese dioxide according to (1) above wherein the BET specific surface area is 20 m 2 / g or more and 50 m 2 / g or less.
  • the sulfuric acid concentration in the electrolytic solution at the end of electrolysis is higher than the sulfuric acid concentration in the electrolytic solution at the start of electrolysis, and electrolysis is started.
  • a method for producing electrolytic manganese dioxide wherein the sulfuric acid concentration at the time is 20 g / L or more and 35 g / L or less, and the sulfuric acid concentration at the end of electrolysis is more than 35 g / L and 40 g / L or less.
  • the obtained electrolytic manganese dioxide is pulverized to obtain a slurry, the slurry is neutralized to a pH of 2.0 or more and 5.0 or less, washed and dried (the above characterized in that The manufacturing method of the electrolytic manganese dioxide as described in 7).
  • the method for producing electrolytic manganese dioxide as described in (8) above wherein the alkali metal content in the electrolytic manganese dioxide is washed to 0.02 wt% or more and less than 0.10 wt%.
  • a positive electrode active material for a battery comprising the electrolytic manganese dioxide described in (1) above.
  • (12) A battery comprising the battery positive electrode active material according to (11) above.
  • the electrolytic manganese dioxide of the present invention is excellent in middle rate discharge characteristics when used as a positive electrode material for alkaline batteries, and further has excellent battery characteristics of both high rate discharge characteristics and middle rate discharge characteristics, and corrodes metal materials. Is small, and is useful as a positive electrode active material for batteries.
  • Discharge characteristic evaluation cell Schematic diagram of corrosion test vessel made of all PVC used in metal corrosion test
  • the electrolytic manganese dioxide of the present invention has an alkali potential of 280 mV or more and less than 310 mV, and a full width at half maximum (FWHM) of a diffraction line of (110) plane of 2 ⁇ around 22 ⁇ 1 ° is 2.2 ° or more and 2.9 ° or less.
  • FWHM full width at half maximum
  • the alkali potential is 280 mV or more and less than 310 mV
  • the open circuit voltage of the battery rises, and the discharge time to the usable discharge voltage lower limit can be extended.
  • the alkali potential is preferably 285 mV or more and less than 310 mV, more preferably 290 mV or more and less than 310 mV.
  • the alkali potential needs to be high to some extent to improve the middle rate discharge characteristics.
  • the alkaline potential exceeds a certain value, the cause is not clear, but the middle rate discharge characteristics are deteriorated again. Even at the same alkaline potential, the middle rate discharge characteristics differ depending on the physical properties.
  • the electrolytic manganese dioxide of the present invention has a full width at half maximum (FWHM) of a diffraction line on the (110) plane of 2 ⁇ of around 22 ⁇ 1 ° in a normal XRD measurement pattern using CuK ⁇ rays as a light source. Although it is .9 ° or less, it is preferably 2.4 ° or more and 2.8 ° or less, and more preferably 2.5 ° or more and 2.8 ° or less. In such FWHM, the filling properties of electrolytic manganese dioxide are improved, and the discharge capacity is increased.
  • FWHM full width at half maximum
  • the FWHM is larger than 2.9 °
  • the packing density is lowered, and the discharge capacity is lowered accordingly.
  • the FWHM is smaller than 2.2 °, the crystal grows too much, the reactivity of the electrolytic manganese dioxide becomes worse, and the discharge capacity as the positive electrode active material for the battery decreases.
  • the lower limit of FWHM is as small as 2.2 ° is that the electrolytic manganese dioxide of the present invention is electrolyzed using, for example, electrolysis with an electrolyte containing low-concentration sulfuric acid, which will be described later, and subsequently using an electrolyte containing high-concentration sulfuric acid. This is because, particularly when the ratio of electrolysis time in an electrolytic solution containing a low concentration of sulfuric acid is large, the FWHM is small and the manganese dioxide discharge characteristics are excellent.
  • the crystallite diameter of the electrolytic manganese dioxide of the present invention is obtained by conversion according to Scherrer's formula from the FWHM and the (110) peak position, and the average crystallite diameter corresponds to 29 to 37 mm.
  • Electrolytic manganese dioxide having an average crystallite size larger than 37 mm has low reactivity as described above, and has a low discharge capacity. If it is smaller than 29 mm, the packing property is poor and the capacity energy density is low.
  • the electrolytic manganese dioxide of the present invention preferably has a (110) / (021) peak intensity ratio of X-ray diffraction of 0.50 or more and 0.80 or less, more preferably 0.53 or more and 0.80 or less. Preferably they are 0.6 or more and 0.75 or less.
  • the intensity ratio of each diffraction surface of the X-ray diffraction pattern of electrolytic manganese dioxide varies depending on the electrolysis conditions, and as a result, varies depending on the physical properties of the obtained manganese dioxide.
  • Manganese dioxide obtained by electrolyzing only an electrolyte solution having a high sulfuric acid concentration has a (110) / (021) peak intensity ratio of less than 0.50, while high alkaline potential products electrolyzed at a low current density have a value of 0.8. It is different from the manganese dioxide of the present invention.
  • the (110) plane appears near 22 ⁇ 1 ° as described above, and the (021) plane appears near 37 ⁇ 1 °, which are the main X-ray diffraction of manganese dioxide crystals. It is a peak.
  • the interplanar spacing of the (110) plane of X-ray diffraction is 4.00 mm or more and 4.06 mm or less in order to satisfy the above-described conditions.
  • the (110) plane interval is an index representing the interval between (110) crystal planes of manganese dioxide belonging to orthorhombic crystals.
  • the electrolytic manganese dioxide of the present invention is characterized by alkali potential, (110) plane FWHM, (110) plane spacing, (110) / (021) peak intensity ratio, and the like. It is different from the one in which only the alkaline potential is adjusted by mixing the obtained electrolytic manganese dioxide and the one in which the filling property is adjusted, and can be easily distinguished.
  • the pore volume of the electrolytic manganese dioxide of the present invention is not significantly different from that of conventional electrolytic manganese dioxide.
  • the pore volume of 3 to 5 nm is 0.012 cm 3 / g or more, more preferably 0.013 cm 3 / g or more. It is what has. Since there is no great difference in the pore structure, the same filling property as that of the conventional electrolytic manganese dioxide can be obtained, and the capacity energy density does not decrease.
  • the JIS-pH (hereinafter simply referred to as “JIS-pH”) of electrolytic manganese dioxide based on JISK1467 is 1.5 or more. It is less than 6, and more preferably 1.8 or more and 2.4 or less.
  • JIS-pH is 2.6 or more
  • the battery discharge characteristics are not sufficient.
  • JIS-pH is 2.6 or more and less than 3.5
  • the high-rate discharge characteristics are relatively high, but the middle-rate discharge characteristics are different from the conventional manganese dioxide. Only the same level can be obtained.
  • JIS-pH is less than 1.5, metal materials such as positive electrode material processing equipment and battery cans are easily corroded.
  • the electrolytic manganese dioxide that is particularly excellent in high rate discharge characteristics and middle rate discharge characteristics of the present invention has an alkali metal content of 0.02% by weight or more and less than 0.10% by weight, more preferably 0.02% by weight or more and 0%. 0.09% by weight or less, more preferably 0.03% by weight or more and 0.08% by weight or less.
  • Alkaline metals contained in electrolytic manganese dioxide are mainly derived from the neutralizing agent, so most of them are adsorbed on the particle surface. Therefore, when the alkali metal content is 0.10% by weight or more, the battery discharge reaction accompanied by proton diffusion from the surface to the inside of the particles is hindered, and the discharge characteristics are likely to deteriorate. On the other hand, when the alkali metal content is less than 0.02% by weight, the corrosiveness to the metal material tends to be high.
  • Sodium hydroxide is used as an industrial neutralizer, and sodium is an example of the main alkali metal contained in manganese dioxide.
  • the reason why the electrolytic manganese dioxide of the present invention has excellent battery performance is considered to be because alkali metals and sulfate radicals present at sites that inhibit battery performance are removed. However, even the electrolytic manganese dioxide that has been washed after the neutralization treatment may not exhibit the battery characteristics of the present invention depending on the electrolysis conditions.
  • the electrolytic manganese dioxide of the present invention is characteristic of electrolytic manganese dioxide obtained by electrolysis using a sulfuric acid-manganese sulfate bath in which the sulfuric acid concentration in the electrolytic solution at the end of electrolysis is higher than the sulfuric acid concentration in the electrolytic solution at the start of electrolysis. Those having the following physical properties are particularly preferred.
  • the electrolytic manganese dioxide having particularly excellent high rate discharge characteristics and middle rate discharge characteristics of the present invention preferably has a sulfate radical content of less than 1.30% by weight, and more preferably 1.25% by weight or less. If the sulfate radical is 1.30% by weight or more, storage deterioration of the dry battery and instability of the battery voltage are likely to occur, and metal materials such as an apparatus for producing the positive electrode material and the can material inside the dry battery are easily corroded.
  • the sulfate radical contained in the electrolytic manganese dioxide is one in which sulfate ions in the electrolytic solution are mainly taken into the electrolytic manganese dioxide particles that are electrolytically deposited.
  • the electrolytic manganese dioxide after electrolytic deposition is 2% by weight.
  • This sulfate radical can be removed by washing or neutralization operation (hereinafter referred to as “surface sulfuric acid”), and cannot be removed from electrolytic manganese dioxide by sufficient washing or neutralization operation (hereinafter referred to as “internal sulfuric acid”). ”)" Is known.
  • surface sulfuric acid washing or neutralization operation
  • internal sulfuric acid internal sulfuric acid
  • the amount of internal sulfuric acid of electrolytic manganese dioxide varies depending on the electrolysis conditions, it is at least 0.90 wt% or more and 1.25 wt% or less.
  • the electrolytic manganese dioxide having particularly high rate discharge characteristics and middle rate discharge characteristics according to the present invention can highly remove surface sulfuric acid by neutralization before washing.
  • the electrolytic manganese dioxide preferably contains less than 1.30% by weight of sulfate radicals as a whole.
  • Electrolytic manganese dioxide having particularly excellent high-rate discharge characteristics and middle-rate discharge characteristics preferably has a median diameter (median) of 30 ⁇ m or more and 50 ⁇ m or less, and more preferably 35 ⁇ m or more and 45 ⁇ m or less.
  • median diameter exceeds 50 ⁇ m, the reaction surface area of the powder decreases and the battery reactivity tends to decrease, and with the electrolytic manganese dioxide powder having a median diameter of less than 30 ⁇ m, the packing property decreases and the capacity energy density of the battery decreases.
  • the maximum particle diameter of the electrolytic manganese dioxide that is particularly excellent in high rate discharge characteristics and middle rate discharge characteristics of the present invention is not particularly limited, but is preferably 250 ⁇ m or less, and more preferably 200 ⁇ m or less. If there is an electrolytic manganese dioxide powder having a maximum particle size exceeding 250 ⁇ m, the inside of the battery can is damaged. As a result, the plating applied to the battery can breaks and reacts with the exposed iron to easily generate gas. Furthermore, the separator that insulates the negative electrode from the positive electrode in the battery is likely to be damaged, and self-discharge occurs during storage of the battery, leading to a decrease in capacity.
  • the number ratio of particles having a particle diameter of 1 ⁇ m or less is preferably 3% or more and 25% or less.
  • the number ratio of particles having a particle diameter of 1 ⁇ m or less contained in electrolytic manganese dioxide is less than 3%, a powder molded body formed by pressure-molding electrolytic manganese dioxide becomes brittle and easily collapses. The amount of electrolytic manganese dioxide that can be effectively used tends to decrease.
  • the electrolytic manganese dioxide having particularly high rate discharge characteristics and middle rate discharge characteristics of the present invention has a corrosion rate of 0.01 mm / year or less with respect to a metal material. If the corrosion rate exceeds 0.01 mm / year, the metal part of the apparatus for producing the positive electrode material and the metal material such as the can material inside the dry battery are likely to be corroded.
  • the BET specific surface area in the electrolytic manganese dioxide of the present invention is preferably 20 m 2 / g or more and 50 m 2 / g or less, more preferably 20 m 2 / g or more and 40 m 2 / g or less, further 22 m 2 / g or more and 32 m 2 or less. / G or less is preferable.
  • the BET specific surface area is lower than 20 m 2 / g, the reaction area of electrolytic manganese dioxide is reduced, so that the discharge capacity is reduced.
  • the BET specific surface area is larger than 50 m 2 / g, the filling property of electrolytic manganese dioxide is lowered, and the discharge capacity when the battery is configured is likely to be lowered.
  • the manufacturing method of the electrolytic manganese dioxide of this invention is demonstrated.
  • the conventional method for producing electrolytic manganese dioxide is performed in such a manner that the sulfuric acid concentration of the electrolytic solution is kept constant during electrolysis, so that there is almost no change in the sulfuric acid concentration of the electrolytic solution during electrolysis. It was.
  • the method of the present invention is an electrolytic method in which the sulfuric acid concentration at the start and end of electrolysis is changed and electrolysis manganese dioxide having particularly excellent middle rate discharge characteristics is obtained in a specific range. It is said that
  • electrolytic manganese dioxide deposited by electrolysis using an electrolyte solution having a constant sulfuric acid concentration during the entire electrolysis is peeled off from the electrode, pulverized, In order to remove water, it was washed with water, neutralized with alkali to neutralize the acidity of the surface and remaining surface sulfuric acid, and then dried.
  • the electrolytic manganese dioxide obtained by this method had a low potential, and alkali metal ions adsorbed on the surface of the electrolytic manganese dioxide by the neutralization treatment after washing with water inhibited the cell reaction. For this reason, the battery characteristics of the obtained electrolytic manganese dioxide are low, and additional treatments such as acid cleaning and heat treatment are required to improve the battery characteristics. Furthermore, the water washing treatment is extremely inefficient because it requires repeated water washing operations to remove the sulfate radicals to a level that does not affect the storage characteristics and battery voltage.
  • high-rate discharge characteristics and middle-rate discharge are obtained by neutralizing electrolytic manganese dioxide electrolytically deposited in a sulfuric acid-manganese sulfate bath controlled at different sulfuric acid concentrations during the electrolysis period at a specific pH before washing. It has been found that electrolytic manganese dioxide excellent in both characteristics can be obtained.
  • manganese dioxide with a high alkali potential can be obtained under the electrolysis conditions with a high sulfuric acid concentration from the beginning, but it peels off during electrodeposition, and stable high-potential manganese dioxide cannot be obtained, resulting in a small crystallite size and high BET. Only those with a low surface area and low fillability can be obtained.
  • manganese dioxide having a large crystallite size and a low BET surface area and a high filling property is obtained by electrolysis with a sulfuric acid concentration of 20 g / L or more and 35 g / L or less in the first half, and further exceeds 35 g / L to 40 g / L.
  • electrolysis at the following sulfuric acid concentration electrolytic manganese dioxide having excellent middle rate discharge characteristics is obtained.
  • the sulfuric acid concentration in the electrolytic solution at the start of electrolysis is 25 g / L or more and 35 g / L or less, and in the latter half, the sulfuric acid concentration is increased to 37 g / L or more and 40 g / L or less at the end of electrolysis.
  • the sulfuric acid concentration mentioned here excludes the divalent anion of manganese sulfate.
  • the manganese concentration in the electrolytic replenisher in the present invention is not limited, for example, 35 g / L or more and 60 g / L or less can be exemplified.
  • the electrolysis temperature There is no particular limitation on the electrolysis temperature, and for example, a temperature range of 94 ° C. to 98 ° C. can be applied.
  • As the current density for example, 0.4 A / dm 2 or more and 0.6 A / dm 2 or less can be applied.
  • the ratio of the electrolysis in the first half to the electrolysis in the second half is in the range of 1: 9 to 9: 1, especially 3: 7 to 7: 3. preferable.
  • the electrode material during electrolysis and for example, a metal such as a titanium material or a graphite material can be applied.
  • the method for producing electrolytic manganese dioxide of the present invention is particularly suitable for obtaining electrolytic manganese dioxide having high high-rate discharge characteristics and high middle-rate discharge characteristics, before pulverizing and washing electrolytic manganese dioxide electrolytically deposited by the above-described electrolytic method. It is preferable to add.
  • the alkali metal and the sulfate radical first change to the alkali metal sulfate, so that the sulfate radical and the alkali metal are easily removed.
  • Both the alkali metal ions and sulfate radicals are washed away by washing with water after neutralization. Therefore, it is thought that the alkali metal which exists especially in the site
  • electrolysis was performed using a sulfuric acid-manganese sulfate bath in which the sulfuric acid concentration in the electrolytic solution at the end of electrolysis was higher than the sulfuric acid concentration in the electrolytic solution at the start of electrolysis.
  • electrolytic manganese dioxide that is, electrolytic manganese dioxide having a particularly high filling property and high potential, it is considered that alkali metals present particularly at sites that impede battery performance are highly removed as alkali metal sulfates.
  • Neutralization in the present invention is performed by dispersing pulverized electrolytic manganese dioxide in water to make a slurry, and neutralizing the slurry.
  • the pH of the slurry is 2.0 or more and 5.0 or less, preferably 2.2. It is 4.8 or less, more preferably 2.6 or more and 4.8 or less, and further preferably 2.8 or more and 4.5 or less.
  • the electrolytic manganese dioxide When the pH of the slurry is lower than 2.0, the electrolytic manganese dioxide is not sufficiently neutralized, and the obtained electrolytic manganese dioxide corrodes the metal material of the battery cathode material processing and manufacturing apparatus. On the other hand, when the pH of the slurry is higher than 5.0, a phenomenon in which the fine particles of electrolytic manganese dioxide are dispersed and do not settle (powder phenomenon) occurs, and it is difficult to obtain a cleaning effect.
  • the pH of the slurry is a pH obtained by directly measuring water in the slurry when electrolytic manganese dioxide is dispersed in water, and is measured by adding ammonium chloride to the slurry (JIS K1467). Is different.
  • the pH of the slurry can be measured using a common pH standard electrode.
  • the method for pulverizing electrolytic manganese dioxide is not particularly limited as long as it can be adjusted to have a predetermined particle size, for example, a median diameter of 30 ⁇ m to 50 ⁇ m, preferably 35 ⁇ m to 45 ⁇ m. Examples thereof include pulverization using a jet mill or a ball mill.
  • an alkaline solution can be used for neutralizing the electrolytic manganese dioxide, and the alkaline solution is an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide or lithium hydroxide.
  • An aqueous solution, aqueous ammonia, or the like can be used, and it is particularly preferable to use an industrially inexpensive aqueous solution of sodium hydroxide.
  • the concentration of the alkaline solution used for neutralization varies depending on the alkaline solution used.
  • the alkaline solution is an aqueous solution of sodium hydroxide, it is 1 to 48% by weight, and may be 5 to 20% by weight. preferable.
  • An alkaline solution can be added so as to be 5 or more and less than 2.6. Therefore, the addition amount of the alkaline solution can be appropriately adjusted according to the type and concentration of the alkaline solution to be used, the concentration and the usage amount of the electrolytic manganese dioxide slurry, and the like.
  • the neutralization method is not particularly limited, and both batch neutralization and continuous neutralization can be applied.
  • the concentration of the electrolytic manganese dioxide slurry during neutralization is not particularly limited, but from the viewpoint of neutralization efficiency, the concentration of electrolytic manganese dioxide is preferably 150 g / L or more and 450 g / L or less, and 150 g / L or more and 300 g / L. A range of L or less is particularly preferred.
  • the water washing method in the method for producing electrolytic manganese dioxide of the present invention is not particularly limited, and either batch washing or continuous washing can be applied.
  • the slurry concentration at the time of washing with water is not particularly limited, but is preferably 200 g / L or more and 900 g / L or less. When the slurry concentration is less than 200 g / L or more than 900 g / L, the washing efficiency tends to decrease.
  • the alkali metal content in electrolytic manganese dioxide is preferably 0.02 wt% or more and less than 0.10 wt% by the above-described neutralization and washing, and 0.02 wt% % Or more and 0.05% by weight or less is more preferable. Furthermore, it is preferable that the sulfate group content in electrolytic manganese dioxide is less than 1.30% by weight by the above-described neutralization and washing.
  • the electrolytic manganese dioxide powder after washing with water is used after being dried. Drying can be performed under general conditions, for example, 200 ° C. or lower, and it is particularly preferable to dry at 80 ° C. to 150 ° C. In the treatment at a temperature higher than 200 ° C., the hydroxyl group on the surface of the electrolytic manganese dioxide is desorbed, the hydrophilicity of the surface of the electrolytic manganese dioxide and the liquid retention in the powder particles are lowered, and the metal material is easily corroded. In particular, when the drying is performed at 250 ° C. or higher, the crystal phase is changed from the gamma type to the beta type, and the battery activity as a positive electrode material for an alkaline dry battery tends to be lowered.
  • the electrolytic manganese dioxide of the present invention has excellent performance as a positive electrode material for batteries, particularly alkaline primary batteries.
  • other compositions contained in the battery positive electrode material are not particularly limited, but examples of the conductive material include graphite and acetylene black.
  • a potassium hydroxide aqueous solution etc. can be illustrated.
  • JIS-pH of electrolytic manganese dioxide JIS-pH was measured by JIS K1467 (ammonium chloride method). That is, a method was used in which a certain amount of manganese dioxide was placed in a certain amount of ammonium chloride buffer solution and the pH of the supernatant was determined.
  • the sulfate radical and sodium content of the electrolytic manganese dioxide powder particles were quantified by dissolving the electrolytic manganese dioxide powder in hydrochloric acid and aqueous hydrogen peroxide, and measuring this dissolved solution by atomic absorption spectrometry.
  • the BET specific surface area of electrolytic manganese dioxide was measured by nitrogen adsorption according to the BET one-point method.
  • the electrolytic manganese dioxide used for the measurement of the BET specific surface area was deaerated by heating at 150 ° C. for 40 minutes prior to the measurement of the BET specific surface area.
  • the particle size and number of electrolytic manganese dioxide are measured using a light scattering method (trade name: Microtrac, manufactured by Nikkiso Co., Ltd.) that measures the scattered light by irradiating laser light to a solution in which electrolytic manganese dioxide is dispersed and suspended. The median diameter was measured.
  • a positive electrode mixture was prepared by weighing and mixing electrolytic manganese dioxide at 80 wt%, conductive material at 5 wt%, and 40 wt% KOH aqueous solution at 15 wt%.
  • the positive electrode mixture was weighed and molded to 0.09 g in terms of manganese dioxide, and the discharge characteristics were evaluated by the evaluation cell shown in FIG. 1 using zinc wire for the negative electrode.
  • the cell for evaluation was allowed to stand at room temperature for 1 hour and then subjected to a discharge test.
  • the discharge condition was a current of 10 mA / g, and the relative discharge capacity when the final voltage was 0.9 V was evaluated as the middle rate discharge characteristic.
  • Example 1 and Comparative Example 3 were obtained as relative values with the measurement result of the discharge capacity of Comparative Example 1 being 100%. Further, the discharge capacities of Examples 11 to 19 and Comparative Examples 4 to 6 were obtained as relative values with the measurement result of the discharge capacity of Example 20 as 100%.
  • Example 1 The current density is 0.55 A / dm 2 , the electrolysis temperature is 96 ° C., the electrolytic replenisher is a manganese sulfate solution having a manganese concentration of 40.0 g / l, and the sulfuric acid concentrations in the initial and second half of the electrolysis are 25.0 g / l and 40 g / l. Electrolysis was carried out for 17 days to obtain l. Electrolysis was performed for 12 days at the first concentration and for 5 days at the second concentration. The electrolytic manganese dioxide after electrolysis was pulverized and washed, and then neutralized so that the pH of the slurry was 5.3 to 5.7.
  • the obtained electrolytic manganese dioxide had an alkali potential of 295 mV, FWHM of 2.6 °, (110) / (021) of 0.65, and a BET specific surface area of 31.4 m 2 / g. Further, the middle rate discharge characteristic of this electrolytic manganese dioxide was 104% with respect to the middle rate discharge characteristic of Comparative Example 1.
  • the production conditions are shown in Table 1, and the results are shown in Table 2. Further, the pore volume of 3 to 5 nm of the obtained electrolytic manganese dioxide was measured and found to be 0.013 cm 3 / g.
  • Example 2 The current density is 0.5 A / dm 2 , the electrolysis temperature is 96 ° C., the electrolytic replenisher is a manganese sulfate solution having a manganese concentration of 40.0 g / l, and the sulfuric acid concentrations in the early and late electrolysis are 31.5 g / l and 40 g / l. Electrolysis was performed for 15 days so as to be 1. Electrolysis was performed for 13 days at the first concentration and for 2 days at the second concentration. The electrolytic manganese dioxide after electrolysis was treated in the same manner as in Example 1. The production conditions are shown in Table 1, and the results are shown in Table 2.
  • the obtained electrolytic manganese dioxide had an alkaline potential of 292 mV, a FWHM of 2.4 °, (110) / (021) of 0.72, and a BET specific surface area of 30.3 m 2 / g.
  • the production conditions are shown in Table 1, and the results are shown in Table 2.
  • Example 3 The current density is 0.5 A / dm 2 , the electrolysis temperature is 96 ° C., the electrolytic replenisher is a manganese sulfate solution having a manganese concentration of 40.0 g / l, and the sulfuric acid concentration in the initial and second half of the electrolysis is 31.5 g / l, 38. Electrolysis was performed for 17 days so as to be 5 g / l. Electrolysis was performed for 12 days at the first concentration and for 5 days at the second concentration. The electrolytic manganese dioxide after electrolysis was treated in the same manner as in Example 1. The production conditions are shown in Table 1, and the results are shown in Table 2.
  • the obtained electrolytic manganese dioxide had an alkali potential of 307 mV, a FWHM of 2.3 °, a (110) / (021) of 0.66, and a BET specific surface area of 30.3 m 2 / g.
  • Example 4 Electrolytic dioxide dioxide was produced in the same manner as in Example 1 except that the current density was 0.5 A / dm 2 , the sulfuric acid concentration at the beginning of electrolysis was 35.0 g / l, and the sulfuric acid concentration at the latter half of electrolysis was 37.0 g / l. Manganese was obtained. The production conditions are shown in Table 1, and the results are shown in Table 2.
  • Example 5 Electrolytic dioxide was obtained in the same manner as in Example 1 except that the current density was 0.5 A / dm 2 , the sulfuric acid concentration at the initial stage of electrolysis was 34.6 g / l, and the sulfuric acid concentration at the latter half of electrolysis was 37.0 g / l. Manganese was obtained. The production conditions are shown in Table 1, and the results are shown in Table 2.
  • Example 6 Electrolytic manganese dioxide was obtained in the same manner as in Example 1 except that the sulfuric acid concentration at the initial stage of electrolysis was 24.8 g / l. The production conditions are shown in Table 1, and the results are shown in Table 2.
  • Example 7 Electrolytic manganese dioxide was obtained in the same manner as in Example 1 except that the sulfuric acid concentration in the latter half of the electrolysis was 39.5 g / l. The production conditions are shown in Table 1, and the results are shown in Table 2.
  • Example 8 Electrolytic manganese dioxide was obtained in the same manner as in Example 1 except that the sulfuric acid concentration in the initial stage of electrolysis was 24.8 g / l and the sulfuric acid concentration in the latter half of the electrolysis was 39.7 g / l.
  • the production conditions are shown in Table 1, and the results are shown in Table 2.
  • Example 9 Electrolytic manganese dioxide was obtained in the same manner as in Example 1 except that the sulfuric acid concentration at the initial stage of electrolysis was 25.4 g / l. The production conditions are shown in Table 1, and the results are shown in Table 2.
  • Example 10 Electrolytic manganese dioxide was obtained in the same manner as in Example 1 except that the sulfuric acid concentration at the initial stage of electrolysis was 24.7 g / l. The production conditions are shown in Table 1, and the results are shown in Table 2.
  • Comparative Example 1 The current density was 0.5 A / dm 2 , the electrolysis temperature was 96 ° C., the manganese concentration of the electrolytic replenisher was 40.0 g / l, and the sulfuric acid concentration in the electrolyte was a constant 32.9 g / l throughout the electrolysis. Electrolysis manganese dioxide was obtained by electrolysis for 14 days by a conventional general electrolysis method. The production conditions are shown in Table 1, and the results are shown in Table 2.
  • the obtained electrolytic manganese dioxide has an alkaline potential of 274 mV, a FWHM of 2.3 °, a crystallite diameter calculated from FWHM of 37.3 mm, (110) / (021) of 0.66, BET
  • the specific surface area was 28.5 m 2 / g.
  • Manganese dioxide obtained by electrolysis at a constant low sulfuric acid concentration had a large crystallite size and a low alkali potential.
  • this electrolytic manganese dioxide was subjected to the above-described middle rate discharge test in the same manner as in Example 1, and the discharge capacity was set to 100%.
  • the pore volume of 3 to 5 nm of the obtained electrolytic manganese dioxide was measured and found to be 0.015 cm 3 / g.
  • Comparative Example 2 The current density is 0.5 A / dm 2 , the electrolysis temperature is 96 ° C., the electrolytic replenisher is a manganese sulfate solution having a manganese concentration of 40.0 g / l, and the sulfuric acid concentrations in the early and late electrolysis are 30 g / l and 50 g / l. Electrolysis was performed for 15 days. Electrolysis was carried out for 10 days at the former concentration and for 5 days at the latter concentration. The production conditions are shown in Table 1, and the results are shown in Table 2. The obtained electrolytic manganese dioxide had an alkali potential of 323 mV, a FWHM of 2.5 °, (110) / (021) of 0.61, and a BET specific surface area of 29.9 m 2 / g.
  • Comparative Example 3 The current density is 0.5 A / dm 2 , the electrolysis temperature is 96 ° C., the electrolytic replenisher is a manganese sulfate solution having a manganese concentration of 40.0 g / l, and the sulfuric acid concentrations in the initial and second half of the electrolysis are 33 g / l and 65 g / l. Electrolysis was performed for 17 days. Electrolysis was performed for 12 days at the first concentration and for 5 days at the second concentration. The obtained electrolytic manganese dioxide had an alkali potential of 317 mV, FWHM of 2.9 °, (110) / (021) of 0.53, and a BET specific surface area of 29.0 m 2 / g.
  • Example 11 Electrolysis was carried out using an electrolytic cell having an internal volume of 12 liters, which had a heating device, and suspended a titanium plate as an anode and a graphite plate as a cathode so as to face each other.
  • a manganese sulfate solution having a manganese ion concentration of 40 g / l is used as an electrolytic supply solution, and the current density is 0.55 A / dm 2 , and the sulfuric acid concentrations in the early and late electrolysis are 25.0 g / l and 40 g / l.
  • electrolysis was carried out for 17 days in total, 12 days at the sulfuric acid concentration in the first half and 5 days at the sulfuric acid concentration in the second half.
  • electrolytic manganese dioxide pulverized product After electrolysis, the electrodeposited plate-like electrolytic manganese dioxide was washed with pure water and then peeled off by impact. The resulting mass was pulverized with a ball mill to obtain an electrolytic manganese dioxide pulverized product. Next, as a neutralization treatment, this electrolytic manganese dioxide pulverized product is put in a water bath to form a slurry of 200 g / l, and while stirring, a 20 wt% aqueous sodium hydroxide solution is used so that the pH of the slurry becomes 4.5. And stirred for 60 minutes. Next, after stirring was stopped and the mixture was allowed to stand for 15 minutes, the supernatant was removed by decantation, and washing was performed by newly adding water to perform washing treatment twice. Subsequently, filtration separation and drying were performed to obtain electrolytic manganese dioxide powder. The production conditions of the obtained electrolytic manganese dioxide are shown in Table 3, and the results are shown in Table 4.
  • Example 12 A manganese sulfate solution having a manganese ion concentration of 40.3 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 23.4 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 40.0 g / l.
  • the electrolysis was performed under the same conditions as in Example 11 except that electrolysis was performed for a total of 10 days at a sulfuric acid concentration of 5 days and a sulfuric acid concentration of the latter half for 5 days.
  • an electrolytic manganese dioxide powder was obtained by the same method as in Example 11 except that the slurry was neutralized so that the pH of the slurry was 2.8.
  • the production conditions of the obtained electrolytic manganese dioxide are shown in Table 3, and the results are shown in Table 4.
  • Example 13 A manganese sulfate solution having a manganese ion concentration of 40.1 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 23.2 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 39.6 g / l.
  • the electrolysis was performed under the same conditions as in Example 11 except that electrolysis was performed for a total of 10 days at a sulfuric acid concentration of 5 days and a sulfuric acid concentration of the latter half for 5 days.
  • an electrolytic manganese dioxide powder was obtained by the same method as in Example 11 except that the slurry was neutralized so that the pH of the slurry was 2.8.
  • the production conditions of the obtained electrolytic manganese dioxide are shown in Table 3, and the results are shown in Table 4.
  • Example 14 A manganese sulfate solution having a manganese ion concentration of 40.1 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 24.9 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 36.2 g / l.
  • the electrolysis was performed under the same conditions as in Example 11 except that electrolysis was performed for a total of 10 days at a sulfuric acid concentration of 5 days and a sulfuric acid concentration of the latter half for 5 days.
  • an electrolytic manganese dioxide powder was obtained in the same manner as in Example 11 except that the slurry was neutralized so that the pH of the slurry was 2.79.
  • the production conditions of the obtained electrolytic manganese dioxide are shown in Table 3, and the results are shown in Table 4.
  • Example 15 A manganese sulfate solution having a manganese ion concentration of 39.4 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 28.6 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 36.5 g / l.
  • the electrolysis was performed under the same conditions as in Example 11 except that electrolysis was performed for a total of 10 days at a sulfuric acid concentration of 5 days and a sulfuric acid concentration of the latter half for 5 days.
  • an electrolytic manganese dioxide powder was obtained in the same manner as in Example 11 except that the slurry was neutralized so that the pH of the slurry was 2.79.
  • the production conditions of the obtained electrolytic manganese dioxide are shown in Table 3, and the results are shown in Table 4.
  • Example 16 A manganese sulfate solution having a manganese ion concentration of 40.0 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 25.0 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 40.0 g / l. Electrolysis was carried out under the same conditions as in Example 11 except that electrolysis was carried out for 17 days in total at 12 days at a sulfuric acid concentration of 5 days and 5 days at a sulfuric acid concentration in the latter half. After electrolysis, an electrolytic manganese dioxide powder was obtained by the same method as in Example 11 except that the slurry was neutralized so that the pH of the slurry was 2.6. The production conditions of the obtained electrolytic manganese dioxide are shown in Table 3, and the results are shown in Table 4.
  • Example 17 A manganese sulfate solution having a manganese ion concentration of 40.0 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 25.2 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 40.0 g / l. Electrolysis was carried out under the same conditions as in Example 11 except that electrolysis was carried out for 17 days in total at 12 days at a sulfuric acid concentration of 5 days and 5 days at a sulfuric acid concentration in the latter half. After electrolysis, an electrolytic manganese dioxide powder was obtained by the same method as in Example 11 except that the slurry was neutralized so that the pH of the slurry was 2.6. The production conditions of the obtained electrolytic manganese dioxide are shown in Table 3, and the results are shown in Table 4.
  • Example 18 A manganese sulfate solution having a manganese ion concentration of 40.0 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 24.6 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 39.5 g / l. Electrolysis was carried out under the same conditions as in Example 11 except that electrolysis was carried out for 17 days in total at 12 days at a sulfuric acid concentration of 5 days and 5 days at a sulfuric acid concentration in the latter half. After electrolysis, an electrolytic manganese dioxide powder was obtained by the same method as in Example 11 except that the slurry was neutralized so that the pH of the slurry was 2.6. The production conditions of the obtained electrolytic manganese dioxide are shown in Table 3, and the results are shown in Table 4.
  • Example 19 A manganese sulfate solution having a manganese ion concentration of 40.0 g / l was used as the electrolytic supply solution, and the sulfuric acid concentration in the initial stage of electrolysis was adjusted to 25.0 g / l, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 39.6 g / l. Electrolysis was carried out under the same conditions as in Example 11 except that electrolysis was carried out for 17 days in total at 12 days at a sulfuric acid concentration of 5 days and 5 days at a sulfuric acid concentration in the latter half. After electrolysis, an electrolytic manganese dioxide powder was obtained by the same method as in Example 11 except that the slurry was neutralized so that the pH of the slurry was 2.6. The production conditions of the obtained electrolytic manganese dioxide are shown in Table 3, and the results are shown in Table 4.
  • Example 20 The process from electrolysis to pulverization was performed under the same conditions as in Example 11 to obtain a pulverized product of electrolytic manganese dioxide.
  • this electrolytic manganese dioxide pulverized product is put in a water tank to form a slurry of 500 g / l, and is left for 15 minutes while stirring for 20 minutes. Then, the supernatant is removed by decantation, and water is newly added. The washing operation was performed three times.
  • a neutralization treatment a 20 wt% aqueous sodium hydroxide solution is added to the same solution so that the slurry has a pH of 5.6, and the mixture is stirred for 60 minutes, followed by filtration and drying.
  • Electrolytic manganese dioxide powder was obtained.
  • the production conditions of the obtained electrolytic manganese dioxide are shown in Table 3, and the results are shown in Table 4.
  • Comparative Example 4 The sulfuric acid concentration in the initial stage of electrolysis was the same as in Example 11, and the sulfuric acid concentration in the latter half of the electrolysis was adjusted to 65 g / l. The current density was 0.57 A / dm 2 , the first half concentration was 12 days, and the latter half concentration. Electrolysis was carried out in the same manner as in Example 11 except that electrolysis was performed for 4 days for a total of 16 days to obtain a ground product of electrolytic manganese dioxide. Next, electrolytic manganese dioxide powder was obtained by the same treatment as in Example 20. The production conditions of the obtained electrolytic manganese dioxide are shown in Table 3, and the results are shown in Table 4. In Comparative Example 4, the alkali potential was high, but both the high rate discharge characteristics and the middle rate discharge characteristics were low.
  • Comparative Example 5 A manganese sulfate solution having a manganese ion concentration of 40 g / l was used as the electrolyte supply solution, and the composition of the electrolyte solution from the start of electrolysis to the end of electrolysis was adjusted to a manganese ion concentration of 26 g / l and a sulfuric acid concentration of 33 g / l for 14 days.
  • An electrolytic manganese dioxide powder was obtained by the same treatment as in Example 20 except that electrolysis was performed in the same manner as in Example 11 except that electrolysis was performed.
  • the production conditions of the obtained electrolytic manganese dioxide are shown in Table 3, and the results are shown in Table 4.
  • This comparative example was an electrolytic manganese dioxide produced under general production conditions, and both high rate discharge characteristics and middle rate discharge characteristics were low.
  • Comparative Example 6 The electrolytic conditions were the same as in Comparative Example 5, and the treatment was performed in the same manner as in Example 11 except that the pH of the slurry for neutralization treatment was changed to 4.2 in the treatment after electrolysis to obtain electrolytic manganese dioxide powder.
  • the production conditions of the obtained electrolytic manganese dioxide are shown in Table 3, and the results are shown in Table 4.
  • Comparative Example 7 An electrolytic manganese dioxide powder was obtained in the same manner as in Comparative Example 5 except that the neutralization treatment was not performed. The production conditions of the obtained electrolytic manganese dioxide are shown in Table 3, and the results are shown in Table 4.
  • the electrolytic manganese dioxide of the present invention has a high potential and a high filling property, and has a positive electrode active material for alkaline manganese dry batteries excellent in discharge characteristics, in particular, middle rate discharge characteristics, and also has both high rate discharge characteristics and middle rate discharge characteristics.
  • a positive electrode active material having excellent discharge characteristics and low corrosivity it can be used in alkaline manganese dry batteries. Therefore, the industrial value of the present invention is remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 本発明の課題は、アルカリマンガン乾電池の正極用活物質として使用される電解二酸化マンガンにおいて、高アルカリ電位を有し、且つ電池の正極として高い反応性と充填性を兼ね備えるミドルレート放電特性に優れた電解二酸化マンガン、及び、金属材料を腐食することなく、ハイレート放電特性及びミドルレート放電特性に優れた電解二酸化マンガン及びその製造方法に係る。 本発明は、アルカリ電位が280mV以上310mV未満、FWHMが2.2°以上2.9°以下の電解二酸化マンガンを用いる。電解二酸化マンガンのX線回折ピークにおける(110)/(021)のピーク強度比が0.50以上0.80以下、(110)面の面間隔が4.00Å以上4.06Å以下であることが好ましい。更に、JIS-pH(JISK1467)が1.5以上2.6未満、ナトリウム含有量が0.02重量%以上0.10重量%未満であり、硫酸根含有量を1.30重量%未満、メジアン径が30μm以上50μm以下、BET比表面積が20m/g以上50m/g以下である電解二酸化マンガンが好ましい。

Description

電解二酸化マンガン及びその製造方法並びにその用途
 本発明は、たとえばマンガン乾電池、特にアルカリマンガン乾電池において、正極活物質として使用される電解二酸化マンガン及びその製造方法並びにその用途に関する。
 二酸化マンガンは、たとえばマンガン乾電池又はアルカリマンガン乾電池の正極活物質として知られており、保存性に優れ、且つ安価であるという利点を有する。特に、二酸化マンガンを正極活物質として用いるアルカリマンガン乾電池は、重負荷での放電特性に優れていることから電子カメラ、携帯用テープレコーダー、携帯情報機器、さらにはゲーム機や玩具にまで幅広く使用され、近年急速にその需要が伸びてきている。
 しかし、アルカリマンガン乾電池は、放電電流が大きくなるに従い正極活物質である二酸化マンガンの利用率が低下し、また放電電圧が低下した状態では使用できないため、実質的な放電容量が大きく損なわれるという課題があった。すなわち、大電流を使用(ハイレート放電)する機器にアルカリマンガン乾電池を用いると、充填されている正極活物質である二酸化マンガンが十分に活用されず、使用可能な時間が短いという欠点を有していた。
 そこで短時間に大電流を取り出すハイレート間欠放電条件においても、高容量、長寿命を発現できる優れた二酸化マンガン、所謂ハイレート放電特性に優れた二酸化マンガンが望まれていた。
 これまで、ハイレート放電特性改善のため、40重量%KOH水溶液中で水銀/酸化水銀参照電極を基準として測定したときの電位(以下、アルカリ電位)が高い電解二酸化マンガンを製造することが検討されてきた(特許文献1乃至3、及び非特許文献1参照)。
 さらに、最近のデジタル機器の省電力化に伴い、ハイレート放電より低い放電電流(ミドルレート放電)における特性が求められており、ハイレート放電特性だけでなくミドルレート放電特性にも優れた電解二酸化マンガンが求められている。
 ハイレート放電特性を改善した電解二酸化マンガンの製造方法として、電解二酸化マンガンを中和前に加熱し、ナトリウム使用量を低減する電解二酸化マンガンの製造方法が提案されている(特許文献4参照)。しかしながら、加熱により電解二酸化マンガンの結晶構造が変化しているため、得られる電解二酸化マンガンのハイレート放電特性は十分ではなかった。さらに、この製造方法による電解二酸化マンガンはナトリウム使用量を下げたために中和が不十分となり、乾電池内部の金属材料を腐食するものであった。
 また、硫酸量の制御によるハイレート放電特性の改善がなされており、表面硫酸量を0.10重量%以上に制御する電解二酸化マンガンの製造方法(特許文献5参照)、硫酸根含有量を1.3重量%から1.6重量%にする二酸化マンガンの製造方法(特許文献6参照)が提案されている。しかしながら、これらの製造方法で得られた電解二酸化マンガンは硫酸を多く含むため、乾電池の保存劣化や電池電圧の不安定化を招くだけでなく、製造装置や乾電池内部の金属材料を腐食するという問題が生じていた。
 一方、金属材料腐食の問題を生じさせずにハイレート放電特性を向上させるため、電解二酸化マンガンのJIS-pH、硫酸根含有量を制御し、更に電解二酸化マンガンの粒径とナトリウム含有量を制御する製造方法が提案されている(特許文献7参照)。しかしながら、この製造方法により得られる電解二酸化マンガンは、金属材料の腐食を抑制してハイレート放電特性に優れていたが、ミドルレート放電特性はまだ十分ではなかった。
 また、電解期間中の硫酸濃度を変える電解方法により得られたハイレート放電特性に優れた電解二酸化マンガン(特許文献3参照)及び電解後の電解二酸化マンガンを硫酸で処理することにより得られたハイレート放電特性に優れた電解二酸化マンガン(特許文献8参照)が提案されているが、いずれもミドルレート放電特性は十分ではなかった。
 このように、これまでは金属材料に対する腐食を起こさずにハイレート放電特性及びミドルレート放電特性の両方に優れた電解二酸化マンガンはなかった。
日本国特開2007-141643号公報 米国特許6,527,941号公報 日本国特開2009-135067号公報 日本国特開2001-026425号公報 日本国特開2002-304990号公報 日本国特開2004-047445号公報 日本国特開2008-013427号公報 日本国特開2009-117246号公報
古河電工時報、第43号、P.91~102(1967年5月)
 本発明の目的は、特にミドルレート放電特性に優れるアルカリマンガン乾電池の正極活物質として使用される二酸化マンガンであって、特にアルカリ電解液中で適度に高い電位を有し、且つ高い反応性と充填性を兼ね備えた電解二酸化マンガン及びその製造方法並びにその用途、更には、特にハイレート放電特性とミドルレート放電特性の両方の電池特性に優れ、かつ、金属材料を腐食することのない電解二酸化マンガン及びその製造方法を提供することである。
 本発明者らは、特にアルカリマンガン乾電池の正極活物質として使用される二酸化マンガンについて鋭意検討を重ねた結果、アルカリ電位が280mV以上310mV未満、CuKα線を光源とするXRD(X線回折)測定において、2θが22±1°付近に現れる(110)面の回折線の半価全幅(以下、FWHMと称す)が2.2°以上2.9°以下である電解二酸化マンガンが、特にミドルレート放電特性に優れた正極材料となることを見出し、本発明を完成するに至った。
 すなわち、本発明の要旨は、以下の(1)~(12)に存する。
(1)40重量%KOH水溶液中で水銀/酸化水銀参照電極を基準として測定したときの電位が280mV以上310mV未満であり、CuKα線を光源とするXRD測定における(110)面の半価全幅(FWHM)が2.2°以上2.9°以下であり、X線回折ピークにおける(110)/(021)のピーク強度比が0.50以上0.80以下であることを特徴とする電解二酸化マンガン。
(2)好ましくは、X線回折ピークにおける(110)面の面間隔が4.00Å以上4.06Å以下であることを特徴とする上記(1)に記載の電解二酸化マンガン。
(3)好ましくは、JIS-pH(JISK1467)が1.5以上2.6未満、ナトリウム含有量が0.02重量%以上0.10重量%未満であることを特徴とする上記(1)に記載の電解二酸化マンガン。
(4)好ましくは、硫酸根含有量が1.30重量%未満であることを特徴とする上記(1)に記載の電解二酸化マンガン。
(5)好ましくは、メジアン径が30μm以上50μm以下であることを特徴とする上記(1)に記載の電解二酸化マンガン。
(6)好ましくは、BET比表面積が20m2/g以上50m2/g以下であることを特徴とする上記(1)に記載の電解二酸化マンガン。
(7)硫酸-硫酸マンガン混合水溶液中の電解により二酸化マンガンを製造する方法において、電解終了時の電解液中の硫酸濃度が、電解開始時の電解液中の硫酸濃度より高く、かつ、電解開始時の硫酸濃度が20g/L以上35g/L以下、電解終了時の硫酸濃度が35g/Lを超え40g/L以下であることを特徴とする電解二酸化マンガンの製造方法。
(8)好ましくは、得られた電解二酸化マンガンを粉砕してスラリーを得、該スラリーをpHを2.0以上5.0以下に中和した後に洗浄し、乾燥することを特徴とする上記(7)に記載の電解二酸化マンガンの製造方法。
(9)好ましくは、電解二酸化マンガン中のアルカリ金属含有量を0.02重量%以上0.10重量%未満まで洗浄することを特徴とする上記(8)に記載の電解二酸化マンガンの製造方法。
(10)好ましくは、電解二酸化マンガン中の硫酸根含有量を1.30重量%未満まで洗浄することを特徴とする上記(8)に記載の電解二酸化マンガンの製造方法。
(11)上記(1)に記載の電解二酸化マンガンを含むことを特徴とする電池用正極活物質。
(12)上記(11)の電池用正極活物質を含むことを特徴とする電池。
 本発明の電解二酸化マンガンは、アルカリ電池の正極材料として用いた場合にミドルレート放電特性に優れ、更には、ハイレート放電特性とミドルレート放電特性の両方の電池特性に優れており、金属材料に対する腐食が小さいものであり、電池用正極活物質として有用である。
放電特性評価用セル 金属腐食試験で使用した全塩ビ製腐食試験容器の模式図
 以下、本発明について更に詳細に説明する。
 本発明の電解二酸化マンガンは、アルカリ電位が280mV以上310mV未満、2θが22±1°付近の(110)面の回折線の半価全幅(FWHM)が2.2°以上2.9°以下の二酸化マンガンである。
 アルカリ電位が280mV以上310mV未満では、アルカリマンガン乾電池の正極材料に用いた場合、電池の開回路電圧が上昇し、使用可能な放電電圧下限までの放電時間を長くすることができる。アルカリ電位は285mV以上310mV未満が好ましく、さらには290mV以上310mV未満であることが特に好ましい。
 アルカリ電位とミドルレート放電特性の関係は明確ではないが、ミドルレート放電特性の向上にはアルカリ電位はある程度高いことが必要である。一方、アルカリ電位が一定の値を超えると、その原因は明らかでないが、ミドルレート放電特性は再び低下してしまう。また、同じアルカリ電位であっても、その物性によってミドルレート放電特性は異なる。
 本発明の電解二酸化マンガンは、CuKα線を光源とする通常のXRD測定パターンにおいて、2θが22±1°付近の(110)面の回折線の半価全幅(FWHM)が2.2°以上2.9°以下であるが、2.4°以上2.8°以下が好ましく、さらには2.5°以上2.8°以下であることが特に好ましい。この様なFWHMでは、電解二酸化マンガンの充填性が向上して放電容量が高まる。
 一方、FWHMが2.9°より大きいものでは、正極物質として電池を構成した場合に充填密度が低下し、それに伴い放電容量が低下する。FWHMが2.2°より小さいものは、結晶が成長しすぎており、電解二酸化マンガンの反応性が悪くなり、電池用の正極活物質としての放電容量が低下する。
 FWHMの下限が2.2°と小さい理由は、本発明の電解二酸化マンガンは、例えば後述する低濃度の硫酸を含む電解液での電解と、引き続き高濃度の硫酸を含む電解液を用いて電解によって得られるため、特に低濃度の硫酸を含む電解液での電解時間の比率が大きい場合、FWHMが小さくミドルレート放電特性に優れた二酸化マンガンとなるからである。
 本発明の電解二酸化マンガンの結晶子径は、FWHM及び(110)ピーク位置からシェラーの式で換算によって得られ、平均結晶子径が29Å以上37Å以下に相当する。平均結晶子径が37Åより大きい電解二酸化マンガンでは、前述したとおり反応性が低下し、放電容量が低く、29Åより小さいものでは充填性が悪く、容量エネルギー密度が低いものとなる。
 本発明の電解二酸化マンガンは、X線回折の(110)/(021)ピーク強度比が0.50以上0.80以下であることが好ましく、より好ましくは0.53以上0.80以下、さらに好ましくは0.6以上0.75以下である。
 電解二酸化マンガンのX線回折パターンの各回折面の強度比は、電解条件により異なり、結果的には、得られる二酸化マンガンの物性によって異なる。高い硫酸濃度の電解液のみを電解して得られる二酸化マンガンでは(110)/(021)ピーク強度比が0.50未満となり、一方、低電流密度で電解した高アルカリ電位品では0.8を超え、本発明の二酸化マンガンと異なる。
 電解二酸化マンガンのX線回折における(110)面は前述したとおり22±1°付近に、また、(021)面は37±1°付近に現れるが、これらは二酸化マンガン結晶の主要なX線回折ピークである。
 本発明の電解二酸化マンガンは、上述の条件を満足する上で、さらにX線回折の(110)面の面間隔が、4.00Å以上4.06Å以下であることが好ましい。
 ここでいう(110)面間隔とは、斜方晶の結晶に属する二酸化マンガンの(110)結晶面同士の間隔を表す指標である。
 本発明の電解二酸化マンガンは、アルカリ電位、(110)面のFWHM、(110)面の面間隔、(110)/(021)のピーク強度比等に特徴があるため、従来の異なる条件で得られた電解二酸化マンガンを混合することによってアルカリ電位だけを調整したものや、充填性を調整したものとは異なるものであり、容易に区別できる。
 本発明の電解二酸化マンガンの細孔容積は、従来の電解二酸化マンガンと大きな差異はなく、例えば3~5nmの細孔容積が0.012cm/g以上、さらに好ましくは0.013cm/g以上を有するものである。細孔構造に大きな差異がないため、従来の電解二酸化マンガンと同様の充填性が得られ、容量エネルギー密度の低下がない。
 本発明の特にハイレート放電特性及びミドルレート放電特性に優れた電解二酸化マンガンの場合、電解二酸化マンガンのJISK1467に基づくJIS-pH(以下、単に「JIS-pH」と称す)は1.5以上2.6未満であり、1.8以上2.4以下がより好ましい。JIS-pHが2.6以上では電池放電特性が十分ではなく、特にJIS-pHが2.6以上3.5未満ではハイレート放電特性は比較的高いが、ミドルレート放電特性が従来の二酸化マンガンと同程度しか得られない。JIS-pHが1.5未満では正極材の加工設備や電池缶などの金属材料を腐食しやすい。
 本発明の特にハイレート放電特性及びミドルレート放電特性に優れた電解二酸化マンガンは、アルカリ金属含有量が0.02重量%以上0.10重量%未満であり、より好ましくは0.02重量%以上0.09重量%以下、さらには0.03重量%以上0.08重量%以下が好ましい。
 電解二酸化マンガンに含まれるアルカリ金属は主に中和剤に由来するため、そのほとんどが粒子表面に吸着されて存在する。そのため、アルカリ金属含有量が0.10重量%以上であると、粒子の表面から内部へのプロトン拡散を伴う電池放電反応が阻害され、放電特性が低下しやすい。一方、アルカリ金属含有量が0.02重量%未満であると、金属材料に対する腐食性が高くなりやすい。工業的な中和剤としては水酸化ナトリウムが使用されており、二酸化マンガンが含有する主なアルカリ金属としてはナトリウムが挙げられる。
 本発明の電解二酸化マンガンが優れた電池性能を有する理由は、特に電池性能を阻害する部位に存在するアルカリ金属及び硫酸根が除去されるためと考えられる。しかしながら、中和処理後の洗浄を施した電解二酸化マンガンであっても、電解条件によっては本発明の電池特性を発揮しない場合がある。本発明の電解二酸化マンガンは、電解終了時の電解液中の硫酸濃度が電解開始時の電解液中の硫酸濃度より高い濃度の硫酸-硫酸マンガン浴により電解を行うことによって得られる電解二酸化マンガン特有の物性を有するものが特に好ましい。
 本発明の特にハイレート放電特性及びミドルレート放電特性に優れた電解二酸化マンガンは、硫酸根含有量が1.30重量%未満であることが好ましく、1.25重量%以下であることがより好ましい。硫酸根が1.30重量%以上では、乾電池の保存劣化や電池電圧の不安定化が生じやすくなり、正極材を製造する装置や乾電池内部の缶材などの金属材料を腐食しやすくなる。
 電解二酸化マンガンに含まれる硫酸根は、主に電解析出する電解二酸化マンガン粒子内部に電解液中の硫酸イオンが取り込まれるものであり、通常、電解析出後の電解二酸化マンガンには2重量%から3重量%の硫酸根が含まれている。この硫酸根は、水洗あるいは中和操作によって脱離できるもの(以下、「表面硫酸」と称す)と、十分な水洗あるいは中和操作によっても電解二酸化マンガンから脱離できないもの(以下、「内部硫酸」と称す)の存在が知られている。電解二酸化マンガンの内部硫酸量は、電解条件によって異なるが、少なくとも0.90重量%以上1.25重量%以下である。
 本発明の特にハイレート放電特性及びミドルレート放電特性に優れた電解二酸化マンガンは、洗浄前に中和することにより、表面硫酸を高度に除去することができる。電解二酸化マンガンは全体として含有する硫酸根が1.30重量%未満であることが好ましい。
 本発明の特にハイレート放電特性及びミドルレート放電特性に優れた電解二酸化マンガンは、メジアン径(中央値)が30μm以上50μm以下であることが好ましく、35μm以上45μm以下であることがより好ましい。メジアン径が50μmを超えると粉末の反応表面積が低下して電池反応性が低下し易く、また、メジアン径が30μm未満の電解二酸化マンガン粉末では充填性が低下し、電池の容量エネルギー密度が低下する。
 本発明の特にハイレート放電特性及びミドルレート放電特性に優れた電解二酸化マンガンの最大粒子径は、特に制限はないが、250μm以下であることが好ましく、200μm以下であることがより好ましい。最大粒子径が250μmを超えるサイズの電解二酸化マンガンの粉末が存在すると、電池缶内を傷つける結果、電池缶に施した鍍金を破損し露出した鉄と反応してガス発生などを起こしやすい。さらに、電池内で負極と正極を絶縁するセパレータを破損しやすく、電池の保存中に自己放電を生じ容量低下を招きやすい。
 本発明の特にハイレート放電特性及びミドルレート放電特性に優れた電解二酸化マンガンは、粒子径1μm以下の粒子の個数割合が3%以上25%以下であることが好ましい。電解二酸化マンガン中に含まれる粒子径1μm以下の粒子の個数割合が3%未満では、電解二酸化マンガンを加圧成形してなる粉末成形体が脆く崩れやすくなり、25%を超えるものでは、導電材との接触が不十分となり、有効に利用できる電解二酸化マンガンの量が少なくなりやすい。
 本発明の特にハイレート放電特性及びミドルレート放電特性に優れた電解二酸化マンガンは、金属材料に対する腐食速度が0.01mm/年以下であることが好ましい。腐食速度が0.01mm/年を越えると、正極材を製造する装置の金属部分や、乾電池内部の缶材などの金属材料を腐食しやすくなる。
 本発明の電解二酸化マンガンにおけるBET比表面積は20m/g以上50m/g以下であることが好ましく、より好ましくは20m/g以上40m/g以下、さらには22m/g以上32m/g以下であることが好ましい。BET比表面積が20m/gより低いと、電解二酸化マンガンの反応面積が低下するため、放電容量が低下する。一方、BET比表面積が50m/gより大きいと、電解二酸化マンガンの充填性が低下し、電池を構成した場合の放電容量が低下しやすい。
 次に本発明の電解二酸化マンガンの製造法について説明する。
 従来の電解二酸化マンガンの製造法は、電解中に電解液の硫酸濃度を一定に保つように行われているため、電解中の電解液の硫酸濃度の変化がほとんどない中で行われるものであった。それに対して本発明の方法は、電解中の開始時と終了時の硫酸濃度を変化させて電解する方法において、それらの濃度が特定の範囲では特にミドルレート放電特性に優れた電解二酸化マンガンが得られるというものである。
 更に、従来のアルカリマンガン電池用の二酸化マンガンの電解法による製造では、電解全期間において一定の硫酸濃度の電解液を使用した電解によって析出した電解二酸化マンガンを電極から剥離、粉砕した後、硫酸根を除去するために水洗処理した後、表面の酸性度や残存した表面硫酸を中和するためにアルカリで中和処理をし、その後、乾燥していた。
 この方法により得られる電解二酸化マンガンは電位が低く、かつ、水洗後の中和処理により電解二酸化マンガン表面に吸着したアルカリ金属イオンが電池反応を阻害していた。そのため、得られる電解二酸化マンガンの電池特性は低く、電池特性の改善のためには酸洗浄、加熱処理等の追加の処理が必要であった。さらに、水洗処理では、硫酸根を保存特性や電池電圧に影響を及ぼさないレベルまで除去するために繰り返しの水洗操作が必要であり、極めて非効率であった。
 また、電解期間中に電解液中の硫酸濃度を変化させる電解方法においては、ハイレート放電特性が向上した二酸化マンガンが得られていたが、ハイレート放電特性と伴にミドルレート放電特性の高い二酸化マンガンは得られていなかった。
 本発明は電解期間中に異なる硫酸濃度で制御した硫酸-硫酸マンガン浴で電解析出した電解二酸化マンガンを、洗浄する前に特定のpHで中和処理することにより、ハイレート放電特性とミドルレート放電特性の両方に優れた電解二酸化マンガンが得られることを見出したものである。
 本発明の詳細な方法を以下に説明する。
 電解による二酸化マンガンの製造では、電解液中の硫酸濃度を低くすると陽極上に強固に電解二酸化マンガンが電析して剥離の問題はないが、それだけではアルカリ電位が低い電解二酸化マンガンしか得られない。
 また、最初から硫酸濃度が高い電解条件では、アルカリ電位が高い二酸化マンガンが得られるが、電着時に剥離し、安定的に高電位の二酸化マンガンが得られず、結晶子径が小さくなり高BET表面積で充填性の低いものしか得られない。
 本発明では、前半で20g/L以上35g/L以下の硫酸濃度の電解により結晶子径が大きく、BET表面積が低い充填性が高い二酸化マンガンを得、さらに引き続き35g/Lを越えて40g/L以下の硫酸濃度で電解することで、ミドルレート放電特性に優れた電解二酸化マンガンとなるというものである。さらには、電解開始時の電解液中の硫酸濃度を25g/L以上35g/L以下、後半、硫酸濃度を高くし、電解終了時に37g/L以上40g/L以下とすることが好ましい。
 ここでいう硫酸濃度は、硫酸マンガンの二価の陰イオンは除くものである。
 本発明における電解補給液中のマンガン濃度に限定はないが、例えば35g/L以上60g/L以下が例示できる。
 電解の温度には特に限定はなく、例えば温度は94℃以上98℃以下の範囲が適用できる。また、電流密度としては、例えば0.4A/dm以上0.6A/dm以下が適用できる。
 本発明では、電解開始から電解終了まで電解中の硫酸濃度を徐々に変化させるのではなく、前半の電解、後半の電解とで硫酸濃度を切替えることが好ましい。
 前期の電解と、後半の電解の比率に制限はないが、例えば低硫酸濃度と高硫酸濃度での電解時間の比が1:9から9:1、特に3:7から7:3の範囲が好ましい。
 電解時の電極材質については特に制限はなく、例えばチタン材などの金属や、グラファイト材などが適用できる。
 本発明の電解二酸化マンガンの製造方法は、特にハイレート放電特性及びミドルレート放電特性が高い電解二酸化マンガンを得る場合、上記の電解方法によって電解析出した電解二酸化マンガンを粉砕後、洗浄する前に中和することが好ましい。
 上記の電解方法で電解をして中和後に洗浄をする方法で製造された電解二酸化マンガンが、ハイレート放電特性及びミドルレート放電特性に優れる理由は必ずしもは明らかではないが、以下のような機構が考えられる。
 従来の電解二酸化マンガンの製造方法では、水洗後に中和が行われていたため、水洗時に、まず硫酸根がHSOとして除去されるが、その後の中和に使用される中和剤中のアルカリ金属が電解二酸化マンガンの表面に残存していた。この様なアルカリ金属は、電池反応におけるプロトン移動を阻害して電池活性が低くなると考えられる。
 一方、本発明の電解二酸化マンガンの製造方法では、洗浄の前に中和を行うことにより、アルカリ金属と硫酸根が、まずアルカリ金属硫酸塩に変化するために硫酸根及びアルカリ金属が除去され易い状態になり、中和処理後に水洗することによりアルカリ金属イオンと硫酸根とがともに洗浄除去される。そのため、特に電池性能を阻害する部位に存在するアルカリ金属がアルカリ金属流酸塩として除去され、優れた放電反応を示す電解二酸化マンガンとなるものと考えられる。
 この場合において、本発明の電解二酸化マンガンの製造方法では、電解終了時の電解液中の硫酸濃度が電解開始時の電解液中の硫酸濃度より高い濃度の硫酸-硫酸マンガン浴により電解を行った電解二酸化マンガン、即ち、特に充填性及び電位が高い電解二酸化マンガンを用いることにより、特に電池性能を阻害する部位に存在するアルカリ金属がアルカリ金属硫酸塩として高度に除去されると考えられる。
 本発明における中和は、粉砕した電解二酸化マンガンを水に分散してスラリーとし、当該スラリーを中和することによって行うが、スラリーのpHは2.0以上5.0以下、好ましくは2.2以上4.8以下、より好ましくは2.6以上4.8以下、さらに好ましくは2.8以上4・5以下である。スラリーのpHをこの様な範囲となる様に中和することにより、最終的に得られる電解二酸化マンガン中に残存するアルカリ金属を極めて少なくでき、優れたハイレート放電特性及びミドルレート放電特性を有し、なおかつ金属材料に対する腐食のない電解二酸化マンガンが得られる。
 スラリーのpHが2.0よりも低い場合、電解二酸化マンガンが十分に中和されず、得られる電解二酸化マンガンは電池正極材の加工製造装置の金属材料を腐食する。一方、スラリーのpHが5.0よりも高い場合、電解二酸化マンガンの微粒子が分散して沈降しない現象(解こう現象)が起こり、洗浄効果が得られ難い。
 ここでのスラリーのpHとは、電解二酸化マンガンを水に分散した際のスラリー中の水を直接測定したpHのことであり、スラリーに塩化アンモニウムを添加して測定されるJIS-pH(JISK1467)とは異なる。スラリーのpHは一般的なpH標準電極を使用して測定できる。
 本発明の電解二酸化マンガンの製造方法において、電解二酸化マンガンの粉砕方法は、所定の粒径、例えば、メジアン径が30μm以上50μm以下、好ましくは35μm以上45μm以下になるように調整できれば特に制限はなく、例えばジェットミルやボールミルなどによる粉砕を挙げることができる。
 本発明の電解二酸化マンガンの製造方法において、電解二酸化マンガンの中和にはアルカリ溶液を用いることができ、アルカリ溶液としては水酸化ナトリウム、水酸化カリウムあるいは水酸化リチウムなどのアルカリ金属水酸化物の水溶液やアンモニア水などを用いることができ、特に工業的に安価な水酸化ナトリウムの水溶液を用いることが好ましい。
 中和に用いるアルカリ溶液の濃度は使用するアルカリ溶液によって異なるが、例えば、アルカリ溶液が水酸化ナトリウムの水溶液である場合には、1~48重量%であり、5~20重量%であることが好ましい。
 また、電解二酸化マンガンスラリーを中和するときのアルカリ溶液の添加は、電解二酸化マンガンスラリーのpHが目的とする値となる様に添加することが好ましく、例えば、電解二酸化マンガンスラリーのpHが1.5以上2.6未満となるようにアルカリ溶液を添加することができる。そのため、アルカリ溶液の添加量は、使用するアルカリ溶液の種類及び濃度、並びに電解二酸化マンガンスラリーの濃度及び使用量等に合わせて適宜調整することができる。
 本発明の電解二酸化マンガンの製造方法において、中和の方式は特に制限なく、バッチ式中和、連続中和いずれも適用できる。また中和時の電解二酸化マンガンスラリーの濃度も特に限定はないが、中和の効率の観点から、電解二酸化マンガンの濃度は、150g/L以上450g/L以下が好ましく、150g/L以上300g/L以下の範囲が特に好ましい。
 本発明の電解二酸化マンガンの製造方法における水洗の方式は特に制限はなく、バッチ洗浄、連続洗浄のどちらでも適用できる。水洗時のスラリー濃度も特に限定はないが、200g/L以上900g/L以下であることが好ましい。スラリー濃度が200g/L未満、或いは900g/Lを超える場合にはいずれも水洗の効率が低下しやすい。
 本発明の電解二酸化マンガンの製造方法では、上述した中和、洗浄により電解二酸化マンガン中のアルカリ金属含有量を0.02重量%以上0.10重量%未満とすることが好ましく、0.02重量%以上0.05重量%以下とすることがより好ましい。
 さらに、上述した中和、洗浄により電解二酸化マンガン中の硫酸根含有量を1.30重量%未満とすることが好ましい。
 本発明の電解二酸化マンガンの製造方法では、水洗後の電解二酸化マンガン粉末は乾燥して用いられる。乾燥条件は一般的な条件、例えば200℃以下で乾燥することができ、特に80℃から150℃で乾燥することが好ましい。200℃より高い温度の処理では、電解二酸化マンガン表面の水酸基が脱離されて、電解二酸化マンガン表面の親水性や粉末粒子内への保液性が低下し、金属材料を腐食しやすくなる。特に250℃以上での乾燥では、結晶相がガンマ型からベータ型に変化し、アルカリ乾電池用正極材としての電池活性が低下しやすくなる。
 本発明の電解二酸化マンガンは、電池、特にアルカリ一次電池の正極材料として優れた性能を有するものである。
 本発明の電解二酸化マンガンを正極材料として用いる電池の作製において、電池正極材料に含まれる他の組成物には特に限定はないが、導電材としてグラファイト、アセチレンブラックなどが例示でき、さらに電解液として水酸化カリウム水溶液などが例示できる。
 以下、本発明を実施例及び比較例により詳細に説明するが、本発明はこれら実施例に限定されるものではない。
(中和処理のスラリーpH)
 スラリーのpHは、中和処理中の電解二酸化マンガンスラリーにpH標準電極を使用して測定した。
 (電解二酸化マンガンのJIS-pH)
 JIS-pHはJIS K1467(塩化アンモニウム法)によって測定した。すなわち、一定量の塩化アンモニウム緩衝溶液に一定量の二酸化マンガンを入れ、上澄み液のpHを求める方法を用いた。
 (硫酸根及びナトリウム含有量)
 電解二酸化マンガン粉末粒子の硫酸根及びナトリウム含有量は、電解二酸化マンガン粉末を塩酸と過酸化水素水に溶解し、この溶解液を原子吸光法で測定して定量した。
 (電解二酸化マンガンの電位の測定)
 電解二酸化マンガンの電位は、40重量%KOH水溶液中で次のように測定した。
 電解二酸化マンガン3gに導電剤としてカーボンを0.9g加えて混合粉体とし、この混合粉体に40重量%KOH水溶液4mlを加え、電解二酸化マンガンとカーボンとKOH水溶液の混合物スラリーとした。この混合物スラリーの電位を水銀/酸化水銀参照電極を基準として、電解二酸化マンガンのアルカリ電位を測定した。
 (XRD測定における半価全幅(FWHM)の測定)
 電解二酸化マンガンの2θが22±1°付近の回折線の半価全幅(FWHM)を、一般的なX線回折装置(マックサイエンス社製MXP-3)を使用して測定した。線源にはCuKα線(λ=1.5405Å)を用い、測定モードはステップスキャンとし、スキャン条件は毎秒0.04°、計測時間は3秒、及び測定範囲は2θとして5°から80°の範囲で測定した。
 (XRD測定による(110)面間隔の算出)
 電解二酸化マンガンの2θが22±1°付近の回折線をガウス処理して、ピークトップの2θを求めた。求めた2θ値からブラッグの式(nλ=2dsinθ,n=1)におけるdを算出して(110)面の面間隔とした。
 (XRD測定による(110)/(021)強度比の算出)
 2θが22±1°付近の回折線を(110)、37±1°付近の回折線を(021)として、(110)のピーク強度を(021)のピーク強度で除することにより(110)/(021)のピーク強度比(以降、(110)/(021)で表わす)を求めた。
 (電解二酸化マンガンのBET比表面積の測定)
 電解二酸化マンガンのBET比表面積は、BET1点法の窒素吸着により測定した。なお、BET比表面積の測定に使用した電解二酸化マンガンは、BET比表面積の測定に先立ち、150℃で40分間加熱して脱気処理を行った。
 (細孔容積の測定)
 電解二酸化マンガンの3~5nm細孔容積を測定した。電解二酸化マンガンを120℃で1時間乾燥した後、BJH法(Barrett Jouner and Halenda法)によって、3~5nmの細孔容積を測定し、単位重量当たりの細孔容積を求めた。
 (メジアン径)
 電解二酸化マンガンを分散懸濁した溶液にレーザー光を照射し、その散乱光により測定する光散乱法(日機装社製、商品名:マイクロトラック)を用いて電解二酸化マンガンの粒子径と個数を測定し、メジアン径を測定した。
 (ミドルレート放電特性評価)
 電解二酸化マンガンが80重量%、導電材が5重量%及び40重量%KOH水溶液が15重量%となるよう秤量し、混合して正極合剤を作製した。当該正極合剤を二酸化マンガン換算で0.09gとなるように秤量し、成形し、負極に亜鉛ワイヤーを使用して、図1に示した評価用セルにより放電特性を評価した。評価用セルは室温で1時間静置後、放電試験を行った。放電条件は10mA/gの電流で、終止電圧0.9Vとしたときの相対放電容量を評価したものをミドルレート放電特性とした。なお、実施例1及び比較例3の放電容量は、比較例1の放電容量の測定結果を100%とし、それに対する相対値で求めた。また、実施例11~実施例19及び比較例4~6の放電容量については、実施例20の放電容量の測定結果を100%とした相対値で求めた。
 (ハイレート放電特性評価)
 電解二酸化マンガン粉末90.0重量%、グラファイト6.0重量%及び40重量%水酸化カリウム電解液4.0重量%で構成される混合粉5gを2トンの成形圧でリング状に成形した成形体2個を組み合わせて正極とし、亜鉛を含む負極材を負極にして、単三型の電池を組み立てた。この単三型電池を常温で24時間放置後、放電試験を行った。放電条件は1000mAで10秒放電の後50秒休止するサイクルを1パルスとして、終止電圧0.9Vに達するまでのパルス回数を測定し、実施例20の電解二酸化マンガンを用いた際のパルス回数を100としたときの相対値で示した。
 (金属腐食試験)
 電解二酸化マンガン粉末10g、グラファイト0.7g及び40重量%水酸化カリウム電解液0.3gで構成される混合粉を2.5トンの成形圧でペレット状の成形体(Φ20mm)を作製した。続いて、このペレット成形体を全塩ビ製腐食試験容器(図2)の底部に挿入し、その上に電池正極材成形用の金型材料として一般的なSKD-11板(厚さ3mm、直径20mm、円板形)を研磨した後に乗せた。次に、塩ビ製の押え板をSKD-11板の上に乗せ、スクリュー式のコックをトルクレンチ5N・mで押圧してから、60℃、湿度95%の恒温恒湿装置に2日間静置した。
 2日後に、SKD-11板を取り出し、重曹処理してペレット成形体を十分除去した後、水洗、アセトン洗浄し、1時間乾燥した。腐食速度は、この腐食試験前後のSKD-11板の重量変化から、年あたりの減少厚みとして算出して腐食速度とした。
 実施例1
 電流密度を0.55A/dm、電解温度を96℃、電解補給液をマンガン濃度40.0g/lの硫酸マンガン液とし、電解初期と電解後半の硫酸濃度を25.0g/l、40g/lとなるように17日間電解した。前半の濃度で12日、後半の濃度で5日電解を行った。電解後の電解二酸化マンガンは、粉砕、洗浄後、スラリーのpHが5.3~5.7となるように中和した。
 得られた電解二酸化マンガンは、アルカリ電位が295mV、FWHMが2.6°であり、(110)/(021)が0.65、且つBET比表面積が31.4m/gであった。また、この電解二酸化マンガンのミドルレート放電特性は、比較例1のミドルレート放電特性に対して104%であった。製造条件を表1に、結果を表2に示した。
 また、得られた電解二酸化マンガンの3~5nmの細孔容積を測定した結果、0.013cm/gであった。
 実施例2
 電流密度を0.5A/dm、電解温度を96℃、電解補給液をマンガン濃度40.0g/lの硫酸マンガン液とし、電解初期と電解後半の硫酸濃度を31.5g/l、40g/lとなるように15日間電解した。前半の濃度で13日、後半の濃度で2日電解を行った。電解後の電解二酸化マンガンは実施例1と同様に処理した。製造条件を表1に、結果を表2に示した。
 得られた電解二酸化マンガンは、アルカリ電位が292mV、FWHMが2.4°であり、(110)/(021)が0.72、且つBET比表面積が30.3m/gであった。製造条件を表1に、結果を表2に示した。
 実施例3
 電流密度を0.5A/dm、電解温度を96℃、電解補給液をマンガン濃度40.0g/lの硫酸マンガン液とし、電解初期と電解後半の硫酸濃度を31.5g/l、38.5g/lとなるように17日間電解した。前半の濃度で12日、後半の濃度で5日電解を行った。電解後の電解二酸化マンガンは実施例1と同様に処理した。製造条件を表1に、結果を表2に示した。
 得られた電解二酸化マンガンは、アルカリ電位が307mV、FWHMが2.3°であり、(110)/(021)が0.66、且つBET比表面積が30.3m/gであった。
 実施例4
 電流密度を0.5A/dm、電解初期の硫酸濃度を35.0g/l、電解後半の硫酸濃度を37.0g/lとなるようにした以外は実施例1と同様な方法で電解二酸化マンガンを得た。
 製造条件を表1に、結果を表2に示した。
 実施例5
 電流密度を0.5A/dm、電解初期の硫酸濃度を34.6g/l、電解後半の硫酸濃度を37.0g/lとなるようにした以外は実施例1と同様な方法で電解二酸化マンガンを得た。
 製造条件を表1に、結果を表2に示した。
 実施例6
 電解初期の硫酸濃度を24.8g/lとなるようにした以外は実施例1と同様な方法で電解二酸化マンガンを得た。
 製造条件を表1に、結果を表2に示した。
 実施例7
 電解後半の硫酸濃度を39.5g/lとなるようにした以外は実施例1と同様な方法で電解二酸化マンガンを得た。
 製造条件を表1に、結果を表2に示した。
 実施例8
 電解初期の硫酸濃度を24.8g/l、電解後半の硫酸濃度を39.7g/lとなるようにした以外は実施例1と同様な方法で電解二酸化マンガンを得た。
 製造条件を表1に、結果を表2に示した。
 実施例9
 電解初期の硫酸濃度を25.4g/lとなるようにした以外は実施例1と同様な方法で電解二酸化マンガンを得た。
 製造条件を表1に結果を表2に示した。
 実施例10
 電解初期の硫酸濃度を24.7g/lとなるようにした以外は実施例1と同様な方法で電解二酸化マンガンを得た。
 製造条件を表1に、結果を表2に示した。
 比較例1
 電流密度を0.5A/dm、電解温度を96℃、電解補給液のマンガン濃度を40.0g/lとし、電解中全期間を通して電解液中の硫酸濃度を32.9g/lの一定の条件とする従来の一般的な電解法で14日間電解して電解二酸化マンガンを得た。製造条件を表1に結果を表2に示した。
 得られた電解二酸化マンガンは、アルカリ電位が274mVであり、FWHMが2.3°であり、FWHMから換算される結晶子径は37.3Å、(110)/(021)が0.66、BET比表面積が28.5m/gであった。
 低硫酸濃度一定での電解によって得られた二酸化マンガンは、結晶子径が大きく、アルカリ電位が低いものであった。
 つぎに、この電解二酸化マンガンを実施例1と同様の方法で、前述したミドルレート放電試験を行い、その放電容量を100%とした。
 また、得られた電解二酸化マンガンの3~5nmの細孔容積を測定した結果、0.015cm/gであった。
 比較例2
 電流密度を0.5A/dm、電解温度を96℃、電解補給液をマンガン濃度40.0g/lの硫酸マンガン液とし、電解初期と電解後半の硫酸濃度を30g/l、50g/lとなるように15日間電解した。前半の濃度で10日、後半の濃度で5日電解を行った。製造条件を表1に、結果を表2に示した。
 得られた電解二酸化マンガンは、アルカリ電位が323mV、FWHMが2.5°であり、(110)/(021)が0.61、且つBET比表面積が29.9m/gであった。
 比較例3
 電流密度を0.5A/dm、電解温度を96℃、電解補給液をマンガン濃度40.0g/lの硫酸マンガン液とし、電解初期と電解後半の硫酸濃度を33g/l、65g/lとなるように17日間電解した。前半の濃度で12日、後半の濃度で5日電解を行った。
 得られた電解二酸化マンガンは、アルカリ電位が317mV、FWHMが2.9°であり、(110)/(021)が0.53、且つBET比表面積が29.0m/gであった。
 つぎに、この電解二酸化マンガンのミドルレート放電特性を測定した結果、比較例1に対して102%であった。製造条件を表1に、結果を表2に示した。
 また、得られた電解二酸化マンガンの3~5nmの細孔容積を測定した結果、0.015cm/gであった。
 得られた電解二酸化マンガンはアルカリ電位が高いが、実施例の電解二酸化マンガンに比べてミドルレート放電特性が低かった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例11
 加温装置を有し、陽極としてチタン板、陰極として黒鉛板をそれぞれ向かい合うように懸垂せしめた内容積12リットルの電解槽を用いて電解を行った。
 電解では、電解供給液にはマンガンイオン濃度40g/lの硫酸マンガン溶液を用い、電流密度0.55A/dm、電解初期と電解後半の硫酸濃度を25.0g/l、40g/lとなるように調整し、前半の硫酸濃度で12日、後半の硫酸濃度で5日の計17日電解を行った。
 電解後、電着した板状の電解二酸化マンガンを純水にて洗浄後、打撃により剥離し、得られた塊状物をボールミルで粉砕して、電解二酸化マンガンの粉砕物を得た。
 次に、中和処理として、この電解二酸化マンガン粉砕物を水槽に入れて200g/lのスラリー状とし、撹拌しながら、そのスラリーのpHが4.5になるように20重量%水酸化ナトリウム水溶液を添加し、60分間撹拌を行った。
 次に、撹拌を止めて、15分間静定した後、上澄み部分をデカンテーションで取り除き、新たに水を加えて洗浄を行う操作を2回行ない洗浄処理とした。続いて、ろ過分離、乾燥を行い、電解二酸化マンガン粉末を得た。
 得られた電解二酸化マンガンの製造条件を表3に、結果を表4に示した。
 実施例12
 電解供給液にマンガンイオン濃度40.3g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を23.4g/l、電解後半の硫酸濃度を40.0g/lとなるように調整し、前半の硫酸濃度で5日、後半の硫酸濃度で5日の計10日電解を行った以外は実施例11と同様な条件で電解を行った。
 電解後、スラリーのpHが2.8になるように中和処理をした以外は実施例11と同様な方法によって電解二酸化マンガン粉末を得た。
 得られた電解二酸化マンガンの製造条件を表3に、結果を表4に示した。
 実施例13
 電解供給液にマンガンイオン濃度40.1g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を23.2g/l、電解後半の硫酸濃度を39.6g/lとなるように調整し、前半の硫酸濃度で5日、後半の硫酸濃度で5日の計10日電解を行った以外は実施例11と同様な条件で電解を行った。
 電解後、スラリーのpHが2.8になるように中和処理をした以外は実施例11と同様な方法によって電解二酸化マンガン粉末を得た。
 得られた電解二酸化マンガンの製造条件を表3に、結果を表4に示した。
 実施例14
 電解供給液にマンガンイオン濃度40.1g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を24.9g/l、電解後半の硫酸濃度を36.2g/lとなるように調整し、前半の硫酸濃度で5日、後半の硫酸濃度で5日の計10日電解を行った以外は実施例11と同様な条件で電解を行った。
 電解後、スラリーのpHが2.79になるように中和処理をした以外は実施例11と同様な方法によって電解二酸化マンガン粉末を得た。
 得られた電解二酸化マンガンの製造条件を表3に、結果を表4に示した。
 実施例15
 電解供給液にマンガンイオン濃度39.4g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を28.6g/l、電解後半の硫酸濃度を36.5g/lとなるように調整し、前半の硫酸濃度で5日、後半の硫酸濃度で5日の計10日電解を行った以外は実施例11と同様な条件で電解を行った。
 電解後、スラリーのpHが2.79になるように中和処理をした以外は実施例11と同様な方法によって電解二酸化マンガン粉末を得た。
 得られた電解二酸化マンガンの製造条件を表3に、結果を表4に示した。
 実施例16
 電解供給液にマンガンイオン濃度40.0g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を25.0g/l、電解後半の硫酸濃度を40.0g/lとなるように調整し、前半の硫酸濃度で12日、後半の硫酸濃度で5日の計17日電解を行った以外は実施例11と同様な条件で電解を行った。
 電解後、スラリーのpHが2.6になるように中和処理をした以外は実施例11と同様な方法によって電解二酸化マンガン粉末を得た。
 得られた電解二酸化マンガンの製造条件を表3に、結果を表4に示した。
 実施例17
 電解供給液にマンガンイオン濃度40.0g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を25.2g/l、電解後半の硫酸濃度を40.0g/lとなるように調整し、前半の硫酸濃度で12日、後半の硫酸濃度で5日の計17日電解を行った以外は実施例11と同様な条件で電解を行った。
 電解後、スラリーのpHが2.6になるように中和処理をした以外は実施例11と同様な方法によって電解二酸化マンガン粉末を得た。
 得られた電解二酸化マンガンの製造条件を表3に、結果を表4に示した。
 実施例18
 電解供給液にマンガンイオン濃度40.0g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を24.6g/l、電解後半の硫酸濃度を39.5g/lとなるように調整し、前半の硫酸濃度で12日、後半の硫酸濃度で5日の計17日電解を行った以外は実施例11と同様な条件で電解を行った。
 電解後、スラリーのpHが2.6になるように中和処理をした以外は実施例11と同様な方法によって電解二酸化マンガン粉末を得た。
 得られた電解二酸化マンガンの製造条件を表3に、結果を表4に示した。
 実施例19
 電解供給液にマンガンイオン濃度40.0g/lの硫酸マンガン溶液を用い、電解初期の硫酸濃度を25.0g/l、電解後半の硫酸濃度を39.6g/lとなるように調整し、前半の硫酸濃度で12日、後半の硫酸濃度で5日の計17日電解を行った以外は実施例11と同様な条件で電解を行った。
 電解後、スラリーのpHが2.6になるように中和処理をした以外は実施例11と同様な方法によって電解二酸化マンガン粉末を得た。
 得られた電解二酸化マンガンの製造条件を表3に、結果を表4に示した。
 実施例20
 電解から粉砕までを実施例11と同様な条件で行い、電解二酸化マンガンの粉砕物を得た。
 次に、水洗処理として、この電解二酸化マンガン粉砕物を水槽に入れて500g/lのスラリー状とし、20分間撹拌しながら、15分間静定した後、上澄み部分をデカンテーションで取り除き、新たに水を加えて洗浄を行う操作を3回行った。続いて、中和処理として、スラリーのpHが5.6になるように、同液に20重量%水酸化ナトリウム水溶液を加え、60分間撹拌を行い、続いて、ろ過分離、乾燥を行って、電解二酸化マンガン粉末を得た。
 得られた電解二酸化マンガンの製造条件を表3に、結果を表4に示した。
 比較例4
 電解初期の硫酸濃度は実施例11と同様で、電解後半の硫酸濃度を65g/lとなるように調整し、電流密度0.57A/dmで、前半の濃度で12日、後半の濃度で4日の計16日間電解を行った以外は実施例11と同様な方法で電解を行い、電解二酸化マンガンの粉砕物を得た。
 次に、実施例20と同様な処理により電解二酸化マンガン粉末を得た。
 得られた電解二酸化マンガンの製造条件を表3に、結果を表4に示した。
 比較例4はアルカリ電位が高かったが、ハイレート放電特性及びミドルレート放電特性が共に低かった。
 比較例5
 電解供給液にマンガンイオン濃度40g/lの硫酸マンガン溶液を用い、電解開始から電解終了までの電解液の組成がマンガンイオン濃度26g/l、硫酸濃度33g/lとなるように調整して14日間電解した以外は実施例11と同様に電解を行なった以外は実施例20と同様な処理によって電解二酸化マンガン粉末を得た。
 得られた電解二酸化マンガンの製造条件を表3に、結果を表4に示した。
 本比較例は一般的な製造条件で製造された電解二酸化マンガンであり、ハイレート放電特性、ミドルレート放電特性がともに低かった。
 比較例6
 電解条件を比較例5と同様にし、電解後の処理において中和処理のスラリーのpHを4.2とした以外は実施例11と同様に処理を行って電解二酸化マンガン粉末を得た。
 得られた電解二酸化マンガンの製造条件を表3に、結果を表4に示した。
 比較例7
 中和処理を行わなかった以外は比較例5と同様の方法で電解二酸化マンガン粉末を得た。
 得られた電解二酸化マンガンの製造条件を表3に、結果を表4に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 なお、2009年8月24日に出願された日本特許出願2009-193160号及び2009年12月8日に出願された日本特許出願2009-278237号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 本発明の電解二酸化マンガンは、高い電位と高い充填性を合せもち、放電特性、特にミドルレート放電特性に優れたアルカリマンガン乾電池の正極活物質、更には、ハイレート放電特性及びミドルレート放電特性の両方の放電特性に優れ、かつ、腐食性が低い正極活物質として、アルカリマンガン乾電池に使用することができる。よって、本発明の工業的価値は顕著である。
1  上部固定具
2  KOH水溶液
3  多孔板
4  セパレーター
5  Niリード
6  Ni板
7  正極合剤
8  亜鉛負極
9  シリコンゴム栓
10 塩ビ製スクリュー式コック
11 塩ビ製押え板
12 金属材料板(SKD-11板)
13 ペレット成形体
14 塩ビ製腐食試験用器(本体)

Claims (12)

  1.  40重量%KOH水溶液中で水銀/酸化水銀参照電極を基準として測定したときの電位が280mV以上310mV未満であり、CuKα線を光源とするXRD測定における(110)面の半価全幅(FWHM)が2.2°以上2.9°以下であり、X線回折ピークにおける(110)/(021)のピーク強度比が0.50以上0.80以下であることを特徴とする電解二酸化マンガン。
  2.  X線回折ピークにおける(110)面の面間隔が4.00Å以上4.06Å以下であることを特徴とする請求項1に記載の電解二酸化マンガン。
  3.  JIS-pH(JISK1467)が1.5以上2.6未満、ナトリウム含有量が0.02重量%以上0.10重量%未満であることを特徴とする請求項1に記載の電解二酸化マンガン。
  4.  硫酸根含有量が1.30重量%未満であることを特徴とする請求項1に記載の電解二酸化マンガン。
  5.  メジアン径が30μm以上50μm以下であることを特徴とする請求項1に記載の電解二酸化マンガン。
  6.  BET比表面積が20m2/g以上50m2/g以下であることを特徴とする請求項1に記載の電解二酸化マンガン。
  7.  硫酸-硫酸マンガン混合水溶液中の電解により二酸化マンガンを製造する方法において、電解終了時の電解液中の硫酸濃度が、電解開始時の電解液中の硫酸濃度より高く、かつ、電解開始時の硫酸濃度が20g/L以上35g/L以下、電解終了時の硫酸濃度が35g/Lを超え40g/L以下であることを特徴とする電解二酸化マンガンの製造方法。
  8.  電解終了時の電解液中の硫酸濃度が電解開始時の電解液中の硫酸濃度より高い濃度の硫酸-硫酸マンガン浴において二酸化マンガンを電解析出し、得られた電解二酸化マンガンを粉砕してスラリーを得、該スラリーをpHを2.0以上5.0以下に中和した後に洗浄し、乾燥することを特徴とする請求項7に記載の電解二酸化マンガンの製造方法。
  9.  電解二酸化マンガン中のアルカリ金属含有量を0.02重量%以上0.10重量%未満まで洗浄することを特徴とする請求項8に記載の電解二酸化マンガンの製造方法。
  10.  電解二酸化マンガン中の硫酸根含有量を1.30重量%未満まで洗浄することを特徴とする請求項8に記載の電解二酸化マンガンの製造方法。
  11.  請求項1に記載の電解二酸化マンガンを含むことを特徴とする電池用正極活物質。
  12.  請求項11の電池用正極活物質を含むことを特徴とする電池。
PCT/JP2010/064202 2009-08-24 2010-08-23 電解二酸化マンガン及びその製造方法並びにその用途 WO2011024765A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080037738.5A CN102482787B (zh) 2009-08-24 2010-08-23 电解二氧化锰及其制造方法以及其用途
ES10811815T ES2751355T3 (es) 2009-08-24 2010-08-23 Dióxido de manganeso electrolítico, método de producción del mismo, y uso del mismo
US13/390,406 US9103044B2 (en) 2009-08-24 2010-08-23 Electrolytic manganese dioxide, and method for its production and its application
EP10811815.9A EP2471976B1 (en) 2009-08-24 2010-08-23 Electrolytic manganese dioxide, method for producing same, and use of same
ZA2012/01262A ZA201201262B (en) 2009-08-24 2012-02-20 Electrolytic manganese dioxide,method for producing same,and use of same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-193160 2009-08-24
JP2009193160 2009-08-24
JP2009278237 2009-12-08
JP2009-278237 2009-12-08

Publications (1)

Publication Number Publication Date
WO2011024765A1 true WO2011024765A1 (ja) 2011-03-03

Family

ID=43627870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064202 WO2011024765A1 (ja) 2009-08-24 2010-08-23 電解二酸化マンガン及びその製造方法並びにその用途

Country Status (6)

Country Link
US (1) US9103044B2 (ja)
EP (1) EP2471976B1 (ja)
CN (1) CN102482787B (ja)
ES (1) ES2751355T3 (ja)
WO (1) WO2011024765A1 (ja)
ZA (1) ZA201201262B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199422A (ja) * 2012-02-21 2013-10-03 Tosoh Corp 電解二酸化マンガン及びその製造方法並びにその用途
CN103718359A (zh) * 2011-10-21 2014-04-09 松下电器产业株式会社 碱性电池
WO2015093578A1 (ja) * 2013-12-20 2015-06-25 東ソー株式会社 電解二酸化マンガン及びその製造方法並びにその用途

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734992B2 (en) 2007-02-14 2014-05-27 Tosoh Corporation Electrolytic manganese dioxide, and method for its production and its application
WO2013157181A1 (ja) 2012-04-16 2013-10-24 パナソニック株式会社 アルカリ電池
EP2713424B1 (en) 2012-06-25 2016-09-21 Panasonic Intellectual Property Management Co., Ltd. Alkaline battery
CN102760894B (zh) * 2012-07-29 2014-09-03 宁波倍特瑞能源科技有限公司 碱性干电池及碱性干电池用正极合剂粒料
CN102832371B (zh) * 2012-08-26 2015-07-29 宁波倍特瑞能源科技有限公司 碱性干电池及碱性干电池用正极合剂粒料
US20140377608A1 (en) * 2013-02-19 2014-12-25 Panasonic Corporation Manganese dioxide and alkaline dry battery
CN104310540B (zh) * 2014-10-13 2016-06-22 苏州科技学院 一种二氧化锰电极的制备方法
CN108884577B (zh) * 2016-03-29 2022-02-11 东曹株式会社 电解二氧化锰和其制造方法以及其用途
JP6862766B2 (ja) * 2016-03-29 2021-04-21 東ソー株式会社 電解二酸化マンガン及びその製造方法並びにその用途
CN106410130A (zh) * 2016-07-27 2017-02-15 中信大锰矿业有限责任公司大新锰矿分公司 一种提升天然放电锰粉抗锌片腐蚀性能的方法
JP2021502493A (ja) * 2017-11-09 2021-01-28 オクトパス テクノロジーズ インコーポレイテッドOctopus Technologies Inc. 電解二酸化マンガン及びその調製方法
CN113166951A (zh) * 2018-11-29 2021-07-23 东曹株式会社 电解二氧化锰及其制造方法及其用途
CN110257852B (zh) * 2019-06-19 2021-11-19 贵州红星发展大龙锰业有限责任公司 母液二次电解制备高电位emd的方法及高电位emd
CN116605909B (zh) * 2023-04-25 2024-03-15 湖南青冲新材料股份有限公司 一种电解二氧化锰的提纯装置及其提纯方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036304A (ja) * 1998-07-17 2000-02-02 Tosoh Corp 電解二酸化マンガンの製造方法
JP2001163622A (ja) * 1999-10-01 2001-06-19 Tosoh Corp リチウムマンガン酸化物およびその製造方法、並びにこれを用いた二次電池
JP2002348693A (ja) * 2000-09-01 2002-12-04 Tosoh Corp 電解二酸化マンガン粉末及びその製造法
JP2003234107A (ja) * 2002-02-07 2003-08-22 Matsushita Electric Ind Co Ltd アルカリ電池
JP2008013427A (ja) * 2006-06-07 2008-01-24 Tosoh Corp 電解二酸化マンガン
JP2009135067A (ja) * 2007-02-14 2009-06-18 Tosoh Corp 電解二酸化マンガン及びその製造方法並びにその用途
JP2009193160A (ja) 2008-02-12 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> ファイル転送システムおよびアプリケーションサーバ
JP2009278237A (ja) 2008-05-13 2009-11-26 Fuji Xerox Co Ltd 中継装置、画像形成装置、及びジョブ中継方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08175818A (ja) * 1994-12-26 1996-07-09 Japan Metals & Chem Co Ltd 電解二酸化マンガン及びその製造方法
US6527941B2 (en) * 1998-12-21 2003-03-04 Kerr-Mcgee Chemical, Llc High discharge capacity electrolytic manganese dioxide and methods of producing the same
JP2001026425A (ja) 1999-07-16 2001-01-30 Mitsui Mining & Smelting Co Ltd 二酸化マンガン及びその製造方法
EP1089365B1 (en) 1999-10-01 2016-07-20 Tosoh Corporation Lithium manganese oxide, and process for its production and secondary cell employing it
JP2001236957A (ja) 2000-02-25 2001-08-31 Mitsui Mining & Smelting Co Ltd リチウム一次電池用二酸化マンガン及びその製造方法
EP1184919B1 (en) * 2000-09-01 2010-12-22 Tosoh Corporation Powder of electrolytic manganese dioxide and process for producing the same
JP2002304990A (ja) 2001-04-06 2002-10-18 Mitsui Mining & Smelting Co Ltd 二酸化マンガンおよびそれを用いたアルカリマンガン電池
JP3712259B2 (ja) 2002-05-15 2005-11-02 三井金属鉱業株式会社 アルカリマンガン電池用正極活物質及び電池
JP4827501B2 (ja) 2005-11-18 2011-11-30 日立マクセルエナジー株式会社 アルカリ電池
JP5136004B2 (ja) 2007-11-08 2013-02-06 東ソー株式会社 電解二酸化マンガン及びその製造方法並びにその用途
US8734992B2 (en) * 2007-02-14 2014-05-27 Tosoh Corporation Electrolytic manganese dioxide, and method for its production and its application
ZA200801281B (en) * 2007-02-14 2009-01-28 Tosoh Corp Electrolytic manganese dioxide, and method for its production and its application
JP4260217B1 (ja) * 2007-12-28 2009-04-30 パナソニック株式会社 アルカリ電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036304A (ja) * 1998-07-17 2000-02-02 Tosoh Corp 電解二酸化マンガンの製造方法
JP2001163622A (ja) * 1999-10-01 2001-06-19 Tosoh Corp リチウムマンガン酸化物およびその製造方法、並びにこれを用いた二次電池
JP2002348693A (ja) * 2000-09-01 2002-12-04 Tosoh Corp 電解二酸化マンガン粉末及びその製造法
JP2003234107A (ja) * 2002-02-07 2003-08-22 Matsushita Electric Ind Co Ltd アルカリ電池
JP2008013427A (ja) * 2006-06-07 2008-01-24 Tosoh Corp 電解二酸化マンガン
JP2009135067A (ja) * 2007-02-14 2009-06-18 Tosoh Corp 電解二酸化マンガン及びその製造方法並びにその用途
JP2009193160A (ja) 2008-02-12 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> ファイル転送システムおよびアプリケーションサーバ
JP2009278237A (ja) 2008-05-13 2009-11-26 Fuji Xerox Co Ltd 中継装置、画像形成装置、及びジョブ中継方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FURUKAWA DENKO REPORT, NO. 43, May 1967 (1967-05-01), pages 91 - 102

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718359A (zh) * 2011-10-21 2014-04-09 松下电器产业株式会社 碱性电池
JP2013199422A (ja) * 2012-02-21 2013-10-03 Tosoh Corp 電解二酸化マンガン及びその製造方法並びにその用途
CN104136662A (zh) * 2012-02-21 2014-11-05 东曹株式会社 电解二氧化锰及其制造方法以及其用途
EP2818583A1 (en) * 2012-02-21 2014-12-31 Tosoh Corporation Electrolytic manganese dioxide, method for producing same, and use of same
EP2818583A4 (en) * 2012-02-21 2015-11-11 Tosoh Corp ELECTROLYTIC MANGANIC DIOXIDE, METHOD FOR THE PRODUCTION THEREOF AND USE THEREOF
US10033038B2 (en) 2012-02-21 2018-07-24 Tosoh Corporation Electrolytic manganese dioxide, method for producing same, and use of same
WO2015093578A1 (ja) * 2013-12-20 2015-06-25 東ソー株式会社 電解二酸化マンガン及びその製造方法並びにその用途

Also Published As

Publication number Publication date
ES2751355T3 (es) 2020-03-31
US20120141361A1 (en) 2012-06-07
US9103044B2 (en) 2015-08-11
EP2471976B1 (en) 2019-10-02
EP2471976A1 (en) 2012-07-04
CN102482787A (zh) 2012-05-30
EP2471976A4 (en) 2015-05-27
CN102482787B (zh) 2016-01-20
ZA201201262B (en) 2012-10-31

Similar Documents

Publication Publication Date Title
WO2011024765A1 (ja) 電解二酸化マンガン及びその製造方法並びにその用途
JP5998510B2 (ja) 電解二酸化マンガン及びその製造方法、並びにリチウムマンガン系複合酸化物の製造方法
JP5909845B2 (ja) 電解二酸化マンガン及びその製造方法並びにその用途
JP4888088B2 (ja) 電解二酸化マンガン
US10033038B2 (en) Electrolytic manganese dioxide, method for producing same, and use of same
JP5633301B2 (ja) 電解二酸化マンガン及びその製造方法並びにその用途
JP5428163B2 (ja) アルカリマンガン乾電池用電解二酸化マンガン及びその製造方法並びにその用途
JP2011251862A (ja) マンガン酸化物及びその製造方法
WO2015093578A1 (ja) 電解二酸化マンガン及びその製造方法並びにその用途
JP6862766B2 (ja) 電解二酸化マンガン及びその製造方法並びにその用途
JP7063007B2 (ja) 電解二酸化マンガン及びその製造方法並びにその用途
WO2017170240A1 (ja) 電解二酸化マンガン及びその製造方法並びにその用途
JP6550729B2 (ja) 電解二酸化マンガン及びその製造方法並びにその用途
JP7039927B2 (ja) 電解二酸化マンガン及びその用途
JP2014205617A (ja) マンガン酸化物及びそれを用いたマンガン酸リチウムの製造方法
JP5544798B2 (ja) マンガン酸リチウムの製造方法及びそれに用いる二酸化マンガン
WO2024106304A1 (ja) 電解二酸化マンガン及びその製造方法並びにその用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037738.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811815

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13390406

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010811815

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201000674

Country of ref document: TH