WO2011024511A1 - エンジン始動装置 - Google Patents

エンジン始動装置 Download PDF

Info

Publication number
WO2011024511A1
WO2011024511A1 PCT/JP2010/056746 JP2010056746W WO2011024511A1 WO 2011024511 A1 WO2011024511 A1 WO 2011024511A1 JP 2010056746 W JP2010056746 W JP 2010056746W WO 2011024511 A1 WO2011024511 A1 WO 2011024511A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
ring gear
gear
crank angle
pinion gear
Prior art date
Application number
PCT/JP2010/056746
Other languages
English (en)
French (fr)
Inventor
弘明 北野
栗重 正彦
水野 大輔
亀井 光一郎
史郎 米澤
小田原 一浩
金田 直人
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011528677A priority Critical patent/JP5188627B2/ja
Priority to DE112010003384.6T priority patent/DE112010003384B4/de
Priority to US13/380,525 priority patent/US8757120B2/en
Priority to CN2010800325588A priority patent/CN102472232B/zh
Publication of WO2011024511A1 publication Critical patent/WO2011024511A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • F02N11/0855Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear during engine shutdown or after engine stop before start command, e.g. pre-engagement of pinion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • F02N15/067Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement the starter comprising an electro-magnetically actuated lever
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine starter for an automatic idle stop system that performs engine idle stop when a predetermined idle stop condition is satisfied and restarts the engine when a restart condition is satisfied.
  • an automatic idle stop system for the purpose of improving the fuel consumption of automobiles and reducing the environmental load, an automatic idle stop system has been developed that automatically performs an idle stop when a predetermined condition is satisfied.
  • a starter control device for meshing a starter pinion described in Patent Document 1 below with a ring gear the pinion gear is ringed when the rotation speed of the ring gear is within a predetermined range and the rotation direction is the forward direction.
  • the gear meshes with the gear, realizing an early meshing state between the pinion gear and the ring gear.
  • Patent Document 1 it cannot be said that the torque fluctuation due to the compression / expansion of the piston is taken into account. For example, if there is a cylinder that has entered the expansion stroke immediately after falling below the maximum rotation speed within a predetermined range, When the rotational speed of the gear increases and the pinion gear comes into contact with the ring gear, the predetermined rotational speed range is exceeded, and the meshing property may be lowered. In Patent Document 2, when a restart request is received from the driver during reverse rotation, it is necessary to wait until the reversely rotating ring gear becomes normal rotation, and the driver feels uncomfortable at the time of restart. There was a possibility.
  • the present invention has been made to solve such a problem, and meshing the pinion gear and the ring gear during inertial rotation of the engine in the automatic idle stop system smoothly (with good meshing property) and quickly. It is possible to provide an engine starter that makes it possible.
  • the present invention is an engine starter for an automatic idle stop system that performs an idle stop when a predetermined idle stop condition is satisfied and restarts the engine when a restart condition is satisfied, and detects a crank angle of the engine.
  • a sensor a ring gear connected to the crankshaft of the engine for transmitting the rotation of the engine, a ring gear rotation speed detecting means for detecting the rotation speed of the ring gear, a starter motor for starting the engine, and the starter motor
  • a pinion gear that transmits the rotation of the ring gear to the ring gear, a pinion gear pushing means that pushes out the pinion gear and meshes with the ring gear, and the ring gear rotation speed of the ring gear rotation speed detection means falls below a predetermined threshold value.
  • the pinion pushing means is driven to the pinion
  • An engine starter characterized in that the predetermined threshold is determined by at least one of a crank angle, a gear range, and a restart condition. .
  • the engagement of the pinion gear and the ring gear is smoothly and promptly performed, so that the driver does not feel uncomfortable and the life of the parts can be further increased.
  • Embodiment 1 of this invention It is a block diagram which shows schematic structure of the engine starting apparatus by Embodiment 1 of this invention. It is a flowchart which shows the flow of the idle stop control in Embodiment 1 of this invention. It is a flowchart which shows the flow of the pinion gear extrusion control in Embodiment 1 of this invention. It is an image figure which shows the crank angle in Embodiment 1 of this invention, and the intake / exhaust stroke of each cylinder in a 4-cylinder engine. It is an image figure which shows a ring gear rotation speed and a crank angle when an engine speed falls by the inertial rotation from the idle stop start in Embodiment 1 of this invention.
  • Embodiment 1 It is an image figure which shows each time change at the time of setting it as the ring gear rotation speed during an engine inertia rotation, a crank angle, and a fixed threshold value. It is an image figure which shows each time change at the time of setting it as the threshold value set for every ring gear rotation speed, crank angle, and crank angle during engine inertia rotation in Embodiment 1 of this invention. It is a block diagram which shows schematic structure of the engine starting apparatus by Embodiment 2 of this invention. It is a figure which shows the difference of the ring gear rotation speed fall characteristic for every gear range during engine inertia rotation by idle stop. It is a figure which shows the time change of the pulse of a crank angle, and a ring gear rotation speed.
  • the threshold value is determined based on a threshold value that is set in consideration of conditions, and further, a threshold value that is determined by combining a plurality of desired values.
  • FIG. 1 is a block diagram showing a schematic configuration of an engine starter according to Embodiment 1 of the present invention.
  • the engine ECU 10 determines whether or not an idle stop condition (for example, 5 km / h or less and the driver is stepping on a brake) is satisfied, and inputs this to the controller 13 of the engine starter 19.
  • the engine starter 19 is connected to an engine crankshaft (not shown) to transmit the rotation of the engine, a ring gear 11, a crank angle sensor 12 that detects the crank angle of the engine, a starter 18, a starter motor 17, and a solenoid 16.
  • a controller 13 for controlling energization of the power supply.
  • the starter 18 includes a pinion gear 14 that transmits the rotation of the starter motor 17, a plunger 15 that pushes the pinion gear 14 into mesh with the ring gear 11, and a solenoid 16 that can move the plunger 15 when energized.
  • the energization control by the controller 13 can control energization to the starter motor 17 and energization to the solenoid 16.
  • the controller 13 and the engine ECU 10 are shown as separate components, but the engine ECU 10 may perform processing instead of including the controller 13. Accordingly, the engine starter 19 can include the engine ECU 10. Further, the controller 13 and the engine ECU 10 constitute ring gear rotation speed detection means and pinion gear push-out control means, and the plunger 15 and solenoid 16 constitute pinion gear push-out means.
  • step S110 the idle stop control is started (S111), and the fuel supply to the engine is stopped under the control of the engine ECU 10.
  • step S113 it is determined whether the ring gear rotation speed Nr is equal to or higher than the engine self-recoverable rotation speed (for example, 500 rpm).
  • the ring gear rotation speed Nr is calculated by the controller 13 based on the sensor input cycle from the crank angle sensor 12, but instead, it is different depending on FV (frequency-voltage) conversion of the signal from the encoder or pulse generator.
  • the ring gear rotation speed Nr may be detected using the means described above.
  • the engine self-recoverable rotation speed is a rotation speed that can be restarted by simply injecting and igniting fuel without performing cranking by the starter 18. For example, by injecting more fuel, There are controls such as facilitating combustion, but the details of the control of engine self-return are not within the scope of the present invention.
  • step S113 If it is determined in step S113 that the rotational speed of the ring gear is equal to or higher than the engine self-recovery speed, the process proceeds to step S114 to perform engine self-recovery control and restart the engine. If there is no restart request from the driver in step S112, and if the ring gear rotational speed is smaller than the engine self-recoverable rotational speed in step S113, the process proceeds to step S115, and the pinion gear 14 is moved to the ring gear 11. Control to mesh with.
  • step S120 it is determined whether or not there is a restart request (S120). If it is determined that there is no restart request, the process proceeds to step S122, and compares the ring gear rotation speed Nr with the threshold value Tr 1. If the ring gear rotation speed Nr is smaller, the process proceeds to step S123. In step S123, energization of the solenoid 16 is started, the plunger 15 is driven, and the pinion gear 14 and the ring gear 11 are engaged (S124). If the ring gear rotation speed Nr is greater than or equal to the threshold Tr 1 in step S122, the process returns to step S120, and steps S120 to S122 are repeated until the ring gear rotation speed Nr becomes smaller than the threshold Tr 1 .
  • Tr 1 will be briefly described.
  • Tr 1 there is a time delay from the start of energization to the solenoid 16 until the ring gear 11 and the pinion gear 14 actually come into contact with each other, and the ring gear rotation speed Nr also changes during the time delay. Therefore, by setting the amount of change in the ring gear rotation speed Nr during this time delay as a threshold Tr 1 in advance from the engine characteristics, the ring gear rotation speed at the time of gear contact is reduced and meshed quietly. It becomes possible.
  • step S120 If the ring gear rotation speed Nr is restart request in step S120 until below the threshold Tr 1 proceeds to step S121, and compares with the ring gear rotation speed Nr with the threshold value Tr 2, the ring gear rotation speed Nr If is smaller, the process proceeds to step S123.
  • step S123 energization of the solenoid 16 is started, the plunger 15 is driven, and the pinion gear 14 and the ring gear 11 are engaged (S124). If the ring gear rotation speed Nr is greater than or equal to the threshold Tr 2 in step S121, the process waits until the ring gear rotation speed Nr decreases and becomes smaller than the threshold Tr 2 .
  • FIG. 4 shows the stroke of each cylinder during one cycle in a four-cylinder engine as an example.
  • Each cylinder has two revolutions (720 deg) and one cycle (compression, expansion, exhaust, and intake four strokes), but as shown by the hatched portion, only one cylinder is near the top dead center of each cylinder.
  • the intake and exhaust valves are closed.
  • the period during which both valves are closed is the period in which the torque fluctuation due to expansion and compression when passing through the top dead center is the largest, and the pulsation of the ring gear rotation speed is large at the crank angle near this top dead center. Become.
  • the threshold values Tr 1 and Tr 2 are set for each crank angle C ang detected by the crank angle sensor 12, and the threshold values Tr 1 and Tr 2 are ring-based due to the expansion stroke when the engine has a plurality of cylinders. From the crank angle at which the torque to increase the gear rotation speed is larger than the torque to decrease the ring gear rotation speed due to friction, etc., the friction is greater than the torque to increase the ring gear rotation speed due to the expansion stroke.
  • a period (angle region) until the crank angle at which the torque to decrease the ring gear rotation speed due to the above becomes larger for example, BTDC (before top dead center) 10 deg of cylinder 1 in FIG. ATDC (after top dead center) 30 deg (up to BTDC 150 deg of cylinder 2) is greater than the threshold at other crank angles than the ring gear speed threshold Tr (Tr 1 , Tr 2 may also be reduced).
  • crank angle region near the top dead center described above may be a crank angle region in which the angular acceleration of engine rotation tends to increase.
  • FIG. 6 is a conceptual diagram showing temporal changes of the ring gear rotation speed, crank angle, and constant threshold value during engine inertia rotation. (a) shows the crank angle, and (b) shows the ring gear rotation speed and a constant threshold value (see “constant rotation speed threshold value” and “engageable rotation speed”).
  • the pinion gear 14 is actually pushed out to engage the pinion gear 14 and the ring gear 11 as shown in FIG.
  • torque is generated to increase the rotational speed due to the expansion stroke, and the ring gear rotational speed Nr (see FIG. 6B) becomes larger than the meshable rotational speed.
  • the gears do not mesh smoothly, shortening the service life of the parts, or generating a collision sound between gears.
  • FIG. 7 is a conceptual diagram showing respective temporal changes when the ring gear rotation speed, the crank angle, and the threshold value set for each crank angle are set during engine inertia rotation in the first embodiment of the present invention.
  • (a) shows the crank angle
  • (b) shows the ring gear rotational speed and variable threshold value (see “the rotational speed threshold value in the present invention” and “the meshable rotational speed”).
  • the rotation speed threshold for each crank angle C ang after pushing out the pinion gear 14, the rotation speed increases, and when the pinion gear 14 and the ring gear 11 actually come into contact with each other, the meshing occurs. It can be prevented from going out of the possible range.
  • Tr 2 when there is a restart request, the pinion gear 14 and the ring gear 11 can be engaged more quickly, and there is no restart request. By meshing with a smaller number of rotations, it becomes possible to mesh gently.
  • the ring gear rotation speed Nr starts to increase after the start of the pinion extrusion, and the pinion
  • the ring gear rotation speed Nr is prevented from being out of a meshable range.
  • the engine starter 19 includes the ring gear 11 that transmits the rotation of the engine, the crank angle sensor 12 that detects the crank angle of the engine, and the starter 18. And a starter 18 and a controller 13 that controls energization of the solenoid 16.
  • the starter 18 transmits a rotation of the starter motor 17, and a plunger 15 that pushes the pinion gear 14 and meshes with the ring gear 11.
  • the solenoid 15 that can move the plunger 15 when energized is provided, and the energization control by the controller 13 can control energization to the starter motor 17 and energization to the solenoid 16.
  • the controller 13 and the engine ECU 10 have a threshold value for each crank angle detected by the crank angle sensor 12 according to the flowcharts of FIGS. 2 and 3, and the ring gear rotation speed obtained from the crank angle is lower than the threshold value. At that time, the solenoid 16 is energized to start pushing out the pinion.
  • the threshold is set for each crank angle, By setting the threshold value low at the crank angle near the top dead center, the ring gear rotation speed starts to increase after the start of pushing out the pinion gear, and when the pinion gear 14 and the ring gear 11 actually contact each other, the ring gear By preventing the rotational speed from being out of the meshable range, the meshing sound between the ring gear 11 and the pinion gear 14 can be reduced, and further, the life of the parts can be extended by reducing the impact.
  • the threshold value Tr is set to be low at the crank angle C ang corresponding to the vicinity of the top dead center.
  • pinion extrusion may be prohibited instead.
  • the controller 13 and the engine ECU 10 are separate, but the engine ECU 10 may perform processing instead of including the controller 13.
  • the angle in the vicinity of the top dead center in this embodiment may be a crank angle in which only one cylinder has both the intake valve and the exhaust valve of the piston closed.
  • FIG. FIG. 8 is a block diagram showing a schematic configuration of an engine starting device according to Embodiment 2 of the present invention.
  • the engine starter of FIG. 8 further includes a gear range sensor 20 (which constitutes a gear range detection means) that detects where the gear range of the transmission is set, and each threshold value Tr (Tr 1 , Tr 2 is set for each gear range. Including, the same shall apply hereinafter).
  • the controller is the controller 13A.
  • Fig. 9 shows the ring gear rotation speed drop characteristics for each gear range during engine inertia due to idle stop.
  • the gear range sensor 20 detects the D range, the threshold Tr is set higher than that in the N range.
  • the pulse detected by the crank angle sensor 12 has an angle region where a pulse is not output in order to find a reference position of the crank angle or cam angle, that is, a so-called tooth missing angle.
  • FIG. 10A shows a temporal change of the crank angle pulse including the tooth missing angle region
  • FIG. 10B shows a temporal change of the rotational speed of the ring gear at that time.
  • the pulse by the crank angle is not detected by the usual double or triple angle, and during that time, the ring gear rotation speed Nr changes, and in some cases, the pulse until the engine is completely stopped. May not be input and the ring gear speed may not be updated.
  • a threshold value Tr (including Tr 1 and Tr 2 , the same applies hereinafter) in an angle range immediately before the angle range where the tooth is missing may be set high, and the pinion gear may be pushed out early.
  • Tr including Tr 1 and Tr 2 , the same applies hereinafter
  • the above-described threshold values may be changed according to the battery voltage and the vehicle speed. For example, when the battery voltage is low, the current flowing through the solenoid 16 becomes small, so the force for moving the pinion gear 14 becomes weak, and the solenoid 16 The time from the start of energization to the ring gear and the pinion gear becomes longer. Therefore, by setting the threshold value high when the battery voltage is low, it is possible to reduce the ring gear rotation speed at the time of gear contact.
  • the controller 13 and the engine ECU 10 constituting the pinion gear push-out control means also constitute the power supply voltage detection means, and the power supply input to the engine ECU 10 from an external battery voltage sensor or the like (not shown) for normal engine control.
  • a battery voltage is obtained from the voltage signal, and each threshold is set as described above according to the battery voltage.
  • the vehicle speed when the vehicle speed is high, for example, when the gear range is set to the D range, the torque in the forward rotation direction is transmitted to the engine from the rotation of the tire or the like, and the change amount of the ring gear rotation speed may be small. . Therefore, when the vehicle speed is high, by setting each of the above threshold values to be small, it is possible to reduce the ring gear rotation speed at the time of gear contact.
  • the controller 13 and the engine ECU 10 constituting the pinion gear push-out control means also constitute a vehicle speed detection means, and from a vehicle speed signal inputted to the engine ECU 10 from an external vehicle speed sensor or the like (not shown) for normal engine control.
  • a gear range signal is obtained from the vehicle speed or the gear range sensor 20, and each threshold value is set as described above according to the vehicle speed or the gear range.
  • the threshold value that determines the timing for meshing the pinion gear and the ring gear is set for each crank angle, considering the gear range of the transmission, considering the presence or absence of the restart condition, and the tooth missing angle range of the crank angle sensor
  • the threshold value is set in consideration of a desired plurality of the above. For example, when all of them are considered, the threshold is set for each crank angle and for each transmission gear range, and is set according to the presence / absence of the restart condition, and the tooth missing angle range of the crank angle sensor is considered. Will be set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 自動アイドルストップシステムにおけるエンジンの惰性回転中のピニオンギアとリングギアとの噛み合わせを、スムーズかつ速やかに行うエンジン始動装置であって、エンジンのクランク角を検出するクランク角センサ12、エンジンのクランク軸に連結しエンジンの回転を伝達するリングギア11、リングギア11の回転数を検出するリングギア回転数検出手段13、10、エンジンを始動するためのスタータモータ17、スタータモータの回転をリングギアに伝達するピニオンギア14、ピニオンギアを押し出しリングギアと噛み合わせるピニオンギア押し出し手段15、16、リングギア回転数検出手段のリングギア回転数が、クランク角、ギアレンジ、再始動条件のうち少なくとも一つにより決定される閾値を下回ったときにピニオン押し出し手段を駆動してピニオンギアとリングギアとを噛み合わせるピニオンギア押し出し制御手段13、10を含む。

Description

エンジン始動装置
 この発明は、所定のアイドルストップ条件が成立するとエンジンのアイドルストップを行い、再始動条件が成立するとエンジンを再始動させる自動アイドルストップシステムのためのエンジン始動装置に関するものである。
 従来、自動車の燃費改善・環境負荷低減等を目的として、所定の条件が満たされると自動でアイドルストップを行う自動アイドルストップシステムが開発されてきた。例えば、下記特許文献1に記載のスタータピニオンをリングギアに噛み合わせるための方法およびスタータ制御装置では、リングギアの回転数が所定の範囲内かつ回転方向が順方向である場合にピニオンギアをリングギアに噛み合わせており、早期のピニオンギアとリングギアとの噛み合い状態を実現している。
 また、下記特許文献2においては、一度逆転したリングギアがまた正転方向に移行するときにピニオンギアを噛み合わせている。
特開2007-107527号公報 特開2005-315197号公報
 しかしながら、上記特許文献1においてはピストンの圧縮・膨張によるトルク変動を考慮しているとは言えず、例えば所定範囲の最大回転数を下回った直後に、膨張行程に入った気筒が存在すればリングギア回転数が上昇し、ピニオンギアがリングギアに当接する時点になると、所定の回転数範囲を超えており、噛み合い性が低下する場合があった。
 また上記特許文献2においては、逆回転中にドライバからの再始動要求が来た場合に、逆回転しているリングギアが正回転となるまで待つ必要があり、ドライバが再始動時に違和感を感じる可能性があった。
 この発明は係る問題を解決するためになされたものであり、自動アイドルストップシステムにおけるエンジンの惰性回転中のピニオンギアとリングギアとの噛み合わせを、スムーズ(噛み合い性良く)にかつ速やかに行うことを可能にしたエンジン始動装置を提供することを可能にする。
 この発明は、所定のアイドルストップ条件が成立するとアイドルストップを行い再始動条件が成立するとエンジンを再始動させる自動アイドルストップシステムのためのエンジン始動装置であって、エンジンのクランク角を検出するクランク角センサと、エンジンのクランク軸に連結しエンジンの回転を伝達するリングギアと、前記リングギアの回転数を検出するリングギア回転数検出手段と、エンジンを始動するためのスタータモータと、前記スタータモータの回転を前記リングギアに伝達するピニオンギアと、前記ピニオンギアを押し出し前記リングギアと噛み合わせるピニオンギア押し出し手段と、前記リングギア回転数検出手段のリングギア回転数が所定の閾値を下回ったときに前記ピニオン押し出し手段を駆動して前記ピニオンギアとリングギアとを噛み合わせるピニオンギア押し出し制御手段を備え、前記所定の閾値は、クランク角、ギアレンジ、再始動条件のうち少なくとも一つにより、決定されることを特徴とするエンジン始動装置にある。
 この発明では、ピニオンギアとリングギアとの噛み合わせをスムーズかつ速やかに行うことで、ドライバに違和感を与えず、さらに部品の長寿命化を達成できる。
この発明の実施の形態1によるエンジン始動装置の概略構成を示すブロック図である。 この発明の実施の形態1におけるアイドルストップ制御の流れを示すフローチャートである。 この発明の実施の形態1におけるピニオンギア押し出し制御の流れを示すフローチャートである。 この発明の実施の形態1におけるクランク角と4気筒エンジンにおける各気筒の吸排気行程を示すイメージ図である。 この発明の実施の形態1におけるアイドルストップ開始からエンジンが惰性回転により回転数が降下していく際の、リングギア回転数およびクランク角を示すイメージ図である。 エンジン惰性回転中のリングギア回転数、クランク角および一定の閾値とした場合のそれぞれの時間的変化を示すイメージ図である。 この発明の実施の形態1におけるエンジン惰性回転中のリングギア回転数、クランク角およびクランク角毎に設定した閾値とした場合のそれぞれの時間的変化を示すイメージ図である。 この発明の実施の形態2によるエンジン始動装置の概略構成を示すブロック図である。 アイドルストップによるエンジン惰性回転中のギアレンジ毎のリングギア回転数降下特性の違いを示す図である。 クランク角のパルスとリングギア回転数の時間的変化を示す図である。
 この発明では、ピニオンギアとリングギアとを噛み合わせるタイミングを、エンジンのピストンの圧縮、膨張動作が反映されているクランク角毎に設定された閾値、トランスミッションのギアレンジ毎に設定された閾値、再始動条件を考慮して設定された閾値、さらにはこれらのうちの所望の複数を組み合わせて考慮した閾値に基づきを決めている。これにより、例えばクランク角毎に発生するピストンの圧縮・膨張によるトルク変動を予測することができ、それに合わせてピニオンギア押し出し制御手段によりピニオンギア押し出し手段を駆動することにより、ピニオンギア押し出し開始後に、リングギア回転数が上昇に転じ、ピニオンギアとリングギアとが実際に当接する時点において、リングギア回転数が噛み合い可能な範囲外となることを防ぎ、ピニオンギアとリングギアをスムーズに噛み合わせることが可能となる。
 以下この発明によるエンジン始動装置を各実施の形態に従って図を用いて説明する。なお各図において、同一もしくは相当部分は同一符号で示し重複する説明は省略する。
 実施の形態1.
 図1はこの発明の実施の形態1によるエンジン始動装置の概略構成を示すブロック図である。図1において、エンジンECU10はアイドルストップ条件(例えば時速5km/h以下かつドライバがブレーキを踏んでいる等)が成り立つか否かを判定し、これをエンジン始動装置19のコントローラ13へと入力する。エンジン始動装置19は、エンジンのクランク軸(図示省略)に連結しエンジンの回転を伝えるリングギア11と、エンジンのクランク角を検出するクランク角センサ12と、スタータ18と、スタータモータ17とソレノイド16への通電を制御するコントローラ13とを備える。スタータ18は、スタータモータ17の回転を伝えるピニオンギア14と、ピニオンギア14を押し出しリングギア11と噛み合わせるためのプランジャ15と、通電することによりプランジャ15を可動させることができるソレノイド16を備える。コントローラ13による通電の制御は、スタータモータ17への通電とソレノイド16への通電を制御することができる。
 なお、図1ではコントローラ13とエンジンECU10を別々のものとして示しているが、コントローラ13を備える代わりに、エンジンECU10が処理を行っても良い。従ってエンジン始動装置19はエンジンECU10を含み得る。また、コントローラ13およびエンジンECU10がリングギア回転数検出手段とピニオンギア押し出し制御手段を構成し、プランジャ15とソレノイド16がピニオンギア押し出し手段を構成する。
 ここで図2、図3のフローチャートを参照しながら、この発明におけるコントローラ13およびエンジンECU10での処理を説明する。まず図2を用いてピニオンギア14とリングギア11を噛み合せる前までのアイドルストップ制御の動作を説明する。エンジンECU10へ入力される信号でアイドルストップ条件が成立しているか否かを判定する(S110)。成立していなければ次の制御周期へと進む。ステップS110でアイドルストップ条件が成立していたならば、アイドルストップ制御を開始し(S111)、エンジンECU10の制御によりエンジンへの燃料供給をストップさせる。そして、エンジンの惰性回転によりリングギア回転数が降下する間に、エンジンECU10への信号でドライバからのエンジン再始動要求(例えばブレーキペダルから足を離す等)があるかを判定する(S112)。再始動要求があった場合には、ステップS113に進み、リングギア回転数Nrがエンジン自己復帰可能回転数(例えば500rpm)以上か判定を行う。
 ここでリングギア回転数Nrは、クランク角センサ12からのセンサ入力周期よりコントローラ13で演算しているが、代わりにエンコーダやパルス発生器からの信号のFV(周波数-電圧)変換等による、別の手段を用いてリングギア回転数Nrを検出してもよい。
 なお、エンジン自己復帰可能回転数とは、スタータ18によるクランキングを行わずに、燃料を噴射し着火するだけで再始動可能な回転数のことであり、例えば燃料を多めに噴射することで、燃焼させやすくする等の制御があるが、エンジン自己復帰の制御の詳細に関しては、この発明の範囲ではない。
 ステップS113においてリングギア回転数がエンジン自己復帰回転数以上と判定されたならば、ステップS114に進みエンジンをエンジン自己復帰制御を行い、エンジンを再始動させる。また、ステップS112においてドライバからの再始動要求がなかった場合、およびステップS113においてリングギア回転数がエンジン自己復帰可能回転数より小さかった場合は、ステップS115へと進み、ピニオンギア14をリングギア11と噛み合わせる制御を行う。
 次に図3を用いて、ピニオンギアを押し出してピニオンギア14とリングギア11とを噛み合わせる制御の説明を行う。アイドルストップ条件が成立してアイドルストップによりエンジンの回転が降下していく。そしてまず再始動要求があるか否かを判定する(S120)。再始動要求がないと判定された場合は、ステップS122へと進み、リングギア回転数Nrと閾値Tr1との比較を行う。リングギア回転数Nrの方が小さいならば、ステップS123へと進む。ステップS123では、ソレノイド16へと通電を開始して、プランジャ15を駆動させ、ピニオンギア14とリングギア11とを噛み合せる(S124)。また、ステップS122においてリングギア回転数Nrが閾値Tr1以上であった場合には、ステップS120へと戻り、リングギア回転数Nrが閾値Tr1より小さくなるまでステップS120~ステップS122を繰り返す。
 ここでTr1について簡単に説明する。一般的にソレノイド16へと通電を開始してから、実際にリングギア11とピニオンギア14が当接するまでには時間遅れがあり、その時間遅れの間にもリングギア回転数Nrは変化する。そこで、この時間遅れの間のリングギア回転数Nrの変化量を閾値Tr1として、エンジン特性より予め設定しておくことにより、ギア当接時のリングギア回転数を小さくし、静粛に噛み合わせることが可能となる。
 リングギア回転数Nrが閾値Tr1を下回るまでの間にステップS120で再始動要求があるならばステップS121に進み、リングギア回転数Nrと閾値Tr2との比較を行い、リングギア回転数Nrの方が小さいならば、ステップS123へと進む。ステップS123では、ソレノイド16へと通電を開始して、プランジャ15を駆動して、ピニオンギア14とリングギア11とを噛み合せる(S124)。また、ステップS121においてリングギア回転数Nrが閾値Tr2以上であった場合には、リングギア回転数Nrが低下し、閾値Tr2より小さくなるまで待機する。
 ここで、閾値Tr1、Tr2について4気筒のエンジンを例に説明する。図4に例として4気筒エンジンにおける1サイクル中の各気筒の行程を示す。各気筒ともに2回転(720deg)で1サイクル(圧縮、膨張、排気、吸気の4行程)となっているが、ハッチングの部分で示したように、各気筒の上死点付近では1つの気筒のみ吸気弁と排気弁が閉じている。さらに、この両弁とも閉じている期間は、上死点を通過する際の膨張、圧縮によるトルク変動が最も大きい期間であり、この上死点近傍のクランク角ではリングギア回転数の脈動が大きくなる。
 そこで閾値Tr1、Tr2は、クランク角センサ12により検出されたクランク角Cang毎に設定されており、この閾値Tr1、Tr2はエンジンが複数の気筒を有する場合は、膨張行程によるリングギア回転数を上昇させようとするトルクが摩擦等に起因するリングギア回転数を下降させようとするトルクより大きくなるクランク角から、膨張行程によるリングギア回転数を上昇させようとするトルクより摩擦等に起因するリングギア回転数を下降させようとするトルクの方が大きくなるクランク角までの期間(角度領域)(例えば、図4において気筒1のBTDC(上死点前)10degから気筒1のATDC(上死点後)30deg(気筒2のBTDC150deg)まで)はその他のクランク角での閾値よりもリングギア回転数閾値Tr(Tr1,Tr2も含む、以下同様)を低くしてもよい。
 また、上述の上死点近傍のクランク角度領域は、エンジン回転の角加速度が増加傾向であるクランク角度領域としてもよい。
 アイドルストップによる惰性回転中のリングギア回転数Nrは、吸排気行程等のトルク変動により、図5に示すようにクランク角毎に周期的に脈動を起こしながら降下する。図5の(a)はクランク角、(b)はその時のリングギア回転数を示す。図6はエンジン惰性回転中のリングギア回転数、クランク角および一定の閾値とした場合のそれぞれの時間的変化を示すイメージ図である。(a)にはクランク角、(b)にはリングギア回転数および一定閾値(”一定回転数閾値”および”噛み合い可能回転数”参照)を示す。クランク角度毎に閾値Trを決めず、閾値Trを一定としていたとすると、図6に示すようにピニオンギア14とリングギア11とを噛み合わせるためにピニオンギア14を押し出した後、実際にピニオンギア14とリングギア11とが当接する時点で、膨張行程による回転数を上昇させるトルクが発生し、リングギア回転数Nr(図6の(b)参照)が噛み合い可能な回転数より大きくなってしまう場合があり、スムーズに噛み合わず部品の寿命を縮めたり、ギア同士の衝突音が発生することがある。
 図7はこの発明の実施の形態1におけるエンジン惰性回転中のリングギア回転数、クランク角およびクランク角毎に設定した閾値とした場合のそれぞれの時間的変化を示すイメージ図である。(a)にクランク角、(b)にリングギア回転数および可変閾値(”本発明における回転数閾値”および”噛み合い可能回転数”参照)を示す。図7に示すようにクランク角Cang毎に回転数閾値を変化させることで、ピニオンギア14を押し出した後、回転数が上昇し、実際にピニオンギア14とリングギア11が当接する時に、噛み合い可能な範囲外となることを防ぐことができる。
 また、閾値Tr2をTr1より高い回転数に設定することにより、再始動要求があった場合にはより早くピニオンギア14とリングギア11とを噛み合わせることができ、再始動要求がない場合にはより小さい回転数で噛み合わせることにより、静かに噛み合わせることが可能となる。
 このように、クランク角Cang毎に閾値Trを設定し、上死点近傍のクランク角においては閾値Trを低く設定することにより、ピニオン押し出し開始後に、リングギア回転数Nrが上昇に転じ、ピニオンギア14とリングギア11とが実際に当接する時点において、リングギア回転数Nrが噛み合い可能な範囲外となることを防ぐ。
 以上のように、この発明の実施の形態1に係るエンジン始動装置は、エンジン始動装置19は、エンジンの回転を伝えるリングギア11と、エンジンのクランク角を検出するクランク角センサ12と、スタータ18と、スタータ18とソレノイド16への通電を制御するコントローラ13とを備え、スタータ18はスタータモータ17の回転を伝えるピニオンギア14と、ピニオンギア14を押し出しリングギア11と噛み合わせるためのプランジャ15と、通電することによりプランジャ15を可動させることができるソレノイド16を備えており、コントローラ13による通電の制御は、スタータモータ17への通電とソレノイド16への通電を制御することができる。
 コントローラ13およびエンジンECU10は、図2、図3のフローチャートに従い、クランク角センサ12により検出されるクランク角毎に閾値を有し、上記クランク角から求められるリングギア回転速度が上記閾値より低くなった時点でソレノイド16への通電を行い、ピニオンの押し出しを開始する。
 このようにこの実施の形態によれば、エンジンECU10によりアイドルストップ条件の成立がコントローラ13に入力され、エンジンが惰性回転により回転数が降下していく際に、クランク角毎に閾値を設定し、上死点近傍のクランク角においては閾値を低く設定することにより、ピニオンギア押し出し開始後に、リングギア回転数が上昇に転じ、ピニオンギア14とリングギア11とが実際に当接する時点において、リングギア回転数が噛み合い可能な範囲外となることを防ぐことにより、リングギア11とピニオンギア14の噛み合い音を小さくし、さらに衝撃を低減することにより部品の寿命をも伸ばすことができる。
 また、この実施の形態では上死点近傍に相当するクランク角Cangにおいて、閾値Trを低く設定するとしたが、代わりにピニオンの押し出しを禁止してもよい。また、図1ではコントローラ13とエンジンECU10を別々のものとしているが、コントローラ13を備える代わりに、エンジンECU10が処理を行っても良い。また、この実施の形態における上死点近傍の角度とは、ピストンの吸気弁および排気弁が両方とも閉まっている気筒が1つだけとなっているクランク角度としてもよい。
 実施の形態2.
 図8はこの発明の実施の形態2によるエンジン始動装置の概略構成を示すブロック図である。図8のエンジン始動装置では、さらにトランスミッションのギアレンジがどこに設定されているかを検出するギアレンジセンサ20(ギアレンジ検出手段を構成する)を備え、このギアレンジ毎に各閾値Tr(Tr1,Tr2を含む、以下同様)を設定してもよい。これによりコントローラはコントローラ13Aとなっている。
 図9はアイドルストップによるエンジン惰性回転中のギアレンジ毎のリングギア回転数降下特性を示している。図9に示すように、D(ドライブ)レンジにギアを入れている場合には、N(ニュートラル)レンジに入れている場合に比べて、Dレンジ選択によりエンジンと駆動系への接続がなされているため、タイヤや変速機等からの摩擦トルクや粘性トルクが伝達され、惰性回転中のエンジン回転数の降下が早くなる場合がある。そのためギアレンジセンサ20によりDレンジであると検出された場合には、Nレンジにある場合に比して閾値Trを高く設定する。
 これにより、Dレンジにおいてアイドルストップする場合においても、目標とするリングギア回転数の範囲内で噛み合いを行うことが可能となり、よりスムーズにピニオンギア14とリングギア11を噛み合わせることが可能となる。
 実施の形態3.
 また、上記クランク角センサ12で検出するパルスは、クランク角やカム角の基準位置を見つけるためにパルスが出力されない角度域、いわゆる歯欠けの角度がある。図10の(a)に歯欠け角度域を含むクランク角パルスの時間的変化、(b)その際のリングギア回転数の時間的変化を示す。図10に示すように、通常の2倍あるいは3倍の角度分だけクランク角によるパルスが検出されず、その間リングギア回転数Nrが変化してしまい、場合によってはエンジンが完全に停止するまでパルスが入力されず、リングギア回転数が更新されないことが起こりうる。
 そこで、上記歯欠けとなる角度域の直前の角度域における閾値Tr(Tr1,Tr2を含む、以下同様)を高く設定し、ピニオンギアを早期に押し出しても良い。これにより、歯欠けの角度域でクランク角からのパルス信号が入力されず待ち状態にある時に、実際のリングギア回転数Nrが大きく変化しているもしくは完全に停止することを防ぐことができる。
 また、バッテリ電圧や車速に応じて上述の各閾値を変更してもよく、例えばバッテリ電圧が低い場合にはソレノイド16に流れる電流が小さくなるためピニオンギア14を移動させる力が弱くなり、ソレノイド16への通電開始からリングギアとピニオンギアが当接するまでの時間が長くなる。よって、バッテリ電圧が低い場合に閾値を高く設定することにより、ギア当接時のリングギア回転数を小さくすることができる。
 これは例えばピニオンギア押し出し制御手段を構成するコントローラ13およびエンジンECU10が電源電圧検出手段も構成し、通常のエンジン制御のために外部のバッテリ電圧センサ等(図示省略)からエンジンECU10に入力される電源電圧信号からバッテリ電圧を得て、バッテリ電圧に従って上述のように各閾値を設定する。
 一方、車速が高い場合には、例えばギアレンジがDレンジに設定されている場合に、タイヤの回転等から順回転方向のトルクがエンジンに伝わり、リングギア回転数の変化量が小さくなる場合がある。よって、車速が高い場合に上述の各閾値を小さく設定することにより、ギア当接時のリングギア回転数を小さくすることができる。
 これは例えばピニオンギア押し出し制御手段を構成するコントローラ13およびエンジンECU10が車速検出手段も構成し、通常のエンジン制御のために外部の車速センサ等(図示省略)からエンジンECU10に入力される車速信号から車速、またはさらにギアレンジセンサ20からギアレンジ信号を得て、車速またはさらにギアレンジに従って上述のように各閾値を設定する。
 なお、この発明は上記個々の実施の形態に限定されるものではなく、これらの可能な組み合わせを全て含むことは云うまでもない。従ってピニオンギアとリングギアとを噛み合わせるタイミングを決める閾値は、クランク角毎に設定するものとする、トランスミッションのギアレンジを考慮する、再始動条件の有無を考慮する、クランク角センサの歯欠け角度域を考慮する、のうちの所望の複数を考慮して設定された閾値とする。例えば全てを考慮した場合、閾値は、クランク角毎に設定し、かつトランスミッションのギアレンジ毎に設定し、さらにそれぞれ再始動条件の有無に従ってそれぞれ設定し、かつクランク角センサの歯欠け角度域を考慮して設定したものとなる。
 10 エンジンECU、11 リングギア、12 クランク角センサ、13,13A コントローラ、14 ピニオンギア、15 プランジャ、16 ソレノイド、17 スタータモータ、18 スタータ、19 エンジン始動装置、20 ギアレンジセンサ。

Claims (10)

  1.  所定のアイドルストップ条件が成立するとアイドルストップを行い再始動条件が成立するとエンジンを再始動させる自動アイドルストップシステムのためのエンジン始動装置であって、
     エンジンのクランク角を検出するクランク角センサと、
     エンジンのクランク軸に連結しているリングギアと、
     前記リングギアの回転数を検出するリングギア回転数検出手段と、
     エンジンを始動するためのスタータモータと、
     前記スタータモータの回転を前記リングギアに伝達するピニオンギアと、
     前記ピニオンギアを押し出し前記リングギアと噛み合わせるピニオンギア押し出し手段と、
     前記リングギア回転数検出手段のリングギア回転数が所定の閾値を下回ったときに前記ピニオン押し出し手段を駆動して前記ピニオンギアとリングギアとを噛み合わせるピニオンギア押し出し制御手段を備え、
     前記所定の閾値は、クランク角、ギアレンジ、再始動条件のうち少なくとも一つにより、決定されることを特徴とするエンジン始動装置。
  2.  前記ピニオンギア押し出し制御手段が、アイドルストップ条件が成立してアイドルストップによりエンジンの回転が降下していき、前記リングギア回転数が第1の閾値を下回った時に前記ピニオン押し出し手段を駆動して前記ピニオンギアとリングギアとを噛み合わせ、リングギア回転数が前記第1の閾値を下回るまでの間に、前記再始動条件が成立した時に、リングギア回転数が前記第1の閾値より高い第2の閾値より下回る時に再始動のために前記ピニオン押し出し手段を駆動して前記ピニオンギアとリングギアとを噛み合わせることを特徴とする請求項1記載のエンジン始動装置。
  3.  エンジンのためのトランスミッションのギアレンジの現在設定位置を検出するギアレンジ検出手段をさらに備え、前記ピニオンギア押し出し制御手段の前記閾値又は前記第1及び第2の閾値が、前記ギアレンジ検出手段により検出されたギアレンジ毎に設定されていることを特徴とする請求項1または2に記載のエンジン始動装置。
  4.  前記ピニオンギア押し出し制御手段の前記閾値又は前記第1及び第2の閾値が、エンジンの各気筒の上死点近傍の所定のクランク角度領域では、値を下げて設定されていることを特徴とする請求項1から3までのいずれか1項に記載のエンジン始動装置。
  5.  前記ピニオンギア押し出し制御手段が、エンジンの各気筒の上死点近傍の所定のクランク角度領域では、前記ピニオンギア押し出し手段を駆動しないことを特徴とする請求項1から4までのいずれか1項に記載のエンジン始動装置。
  6.  前記上死点近傍の所定のクランク角度領域が、エンジン回転の角加速度が増加傾向であるクランク角度領域であることを特徴とする請求項4または5に記載のエンジン始動装置。
  7.  前記上死点近傍の所定のクランク角度領域が、エンジンのピストンの吸気弁および排気弁が両方とも閉まっている気筒に対応するクランク角度領域であることを特徴とする請求項4または5に記載のエンジン始動装置。
  8.  クランク角の基準のためのクランク角センサのパルスが検出されない角度域が存在する場合に、前記パルスが検出されない角度域の直前の角度域での前記閾値又は前記第1及び第2の閾値がより高く設定されていることを特徴とする請求項1から7までのいずれか1項に記載のエンジン始動装置。
  9.  電源電圧を検出する電源電圧検出手段を備え、前記ピニオンギア押し出し制御手段が、前記電源電圧検出手段により検出された電源電圧が所定の電圧よりも低い場合に、前記閾値又は前記第1及び第2の閾値を高く設定することを特徴とする請求項1から8までのいずれか1項に記載のエンジン始動装置。
  10.  車速を検出する車速検出手段を備え、前記ピニオンギア押し出し制御手段が、前記車速検出手段により検出された車速により、前記閾値又は前記第1及び第2の閾値を変更することを特徴とする請求項1から9までのいずれか1項に記載のエンジン始動装置。
PCT/JP2010/056746 2009-08-27 2010-04-15 エンジン始動装置 WO2011024511A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011528677A JP5188627B2 (ja) 2009-08-27 2010-04-15 エンジン始動装置
DE112010003384.6T DE112010003384B4 (de) 2009-08-27 2010-04-15 Motorstartvorrichtung
US13/380,525 US8757120B2 (en) 2009-08-27 2010-04-15 Engine start device
CN2010800325588A CN102472232B (zh) 2009-08-27 2010-04-15 发动机起动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-196695 2009-08-27
JP2009196695 2009-08-27

Publications (1)

Publication Number Publication Date
WO2011024511A1 true WO2011024511A1 (ja) 2011-03-03

Family

ID=43627625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056746 WO2011024511A1 (ja) 2009-08-27 2010-04-15 エンジン始動装置

Country Status (5)

Country Link
US (1) US8757120B2 (ja)
JP (1) JP5188627B2 (ja)
CN (1) CN102472232B (ja)
DE (1) DE112010003384B4 (ja)
WO (1) WO2011024511A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012131942A1 (ja) * 2011-03-30 2012-10-04 トヨタ自動車株式会社 スタータの制御装置および制御方法、ならびに車両
WO2012132120A1 (ja) * 2011-03-29 2012-10-04 三菱電機株式会社 エンジン始動装置
JP2013002333A (ja) * 2011-06-15 2013-01-07 Mitsubishi Electric Corp 車載エンジンの始動制御装置
JP2013072305A (ja) * 2011-09-27 2013-04-22 Mitsubishi Electric Corp エンジン自動停止再始動装置およびエンジン自動停止再始動方法
JP2014015081A (ja) * 2012-07-06 2014-01-30 Hitachi Automotive Systems Ltd エンジン再始動制御装置
CN103696893A (zh) * 2013-12-05 2014-04-02 郑州宇通客车股份有限公司 汽车及其怠速起停系统起动机的布置结构
JP5566530B2 (ja) * 2011-08-30 2014-08-06 三菱電機株式会社 エンジン始動装置およびエンジン始動方法
JP2017089503A (ja) * 2015-11-10 2017-05-25 株式会社デンソー 車両制御装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5235757B2 (ja) * 2009-04-03 2013-07-10 三菱電機株式会社 アイドリングストップ車両のためのエンジン始動装置
JP5316369B2 (ja) 2009-10-27 2013-10-16 三菱電機株式会社 エンジン始動装置
CN104595082B (zh) * 2010-01-26 2016-07-13 三菱电机株式会社 发动机起动装置
JP5221711B2 (ja) * 2011-06-10 2013-06-26 三菱電機株式会社 内燃機関自動停止再始動制御装置
BE1021133B1 (nl) * 2013-02-21 2016-01-05 Cnh Industrial Belgium Nv Landbouwbalenpers met vliegwielremsturing
US9376104B2 (en) * 2014-02-05 2016-06-28 GM Global Technology Operations LLC Engine autostart source selection
JP6350058B2 (ja) 2014-07-17 2018-07-04 スズキ株式会社 モータの制御装置
JP6319148B2 (ja) * 2015-03-17 2018-05-09 トヨタ自動車株式会社 多気筒内燃機関の制御装置
GB2580096B (en) * 2018-12-21 2021-10-27 Jaguar Land Rover Ltd Controller and method for operating starter motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330813A (ja) * 2004-05-18 2005-12-02 Denso Corp エンジン自動停止再始動装置
JP2007107527A (ja) * 2005-10-13 2007-04-26 Robert Bosch Gmbh 内燃機関の惰性回転時にスタータのスタータピニオンを内燃機関のリングギヤに噛み合わせるための方法および内燃機関のスタータ制御装置
JP2008106720A (ja) * 2006-10-27 2008-05-08 Toyota Motor Corp エンジンシステム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065191A (ja) 2001-08-28 2003-03-05 Toyota Motor Corp 内燃機関の始動制御装置
JP3800226B2 (ja) 2004-04-30 2006-07-26 マツダ株式会社 エンジンの始動装置
JP2008163818A (ja) * 2006-12-28 2008-07-17 Hitachi Ltd スタータ
JP5007839B2 (ja) 2008-09-02 2012-08-22 株式会社デンソー エンジン自動停止始動制御装置
JP5235757B2 (ja) 2009-04-03 2013-07-10 三菱電機株式会社 アイドリングストップ車両のためのエンジン始動装置
JP4926272B1 (ja) * 2010-10-29 2012-05-09 三菱電機株式会社 エンジン自動停止再始動装置
JP5052684B1 (ja) * 2011-05-17 2012-10-17 三菱電機株式会社 エンジン自動停止再始動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330813A (ja) * 2004-05-18 2005-12-02 Denso Corp エンジン自動停止再始動装置
JP2007107527A (ja) * 2005-10-13 2007-04-26 Robert Bosch Gmbh 内燃機関の惰性回転時にスタータのスタータピニオンを内燃機関のリングギヤに噛み合わせるための方法および内燃機関のスタータ制御装置
JP2008106720A (ja) * 2006-10-27 2008-05-08 Toyota Motor Corp エンジンシステム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132120A1 (ja) * 2011-03-29 2012-10-04 三菱電機株式会社 エンジン始動装置
CN103443443A (zh) * 2011-03-29 2013-12-11 三菱电机株式会社 发动机启动装置
JP5638690B2 (ja) * 2011-03-29 2014-12-10 三菱電機株式会社 エンジン始動装置
US9255561B2 (en) 2011-03-29 2016-02-09 Mitsubishi Electric Corporation Engine starting device
WO2012131942A1 (ja) * 2011-03-30 2012-10-04 トヨタ自動車株式会社 スタータの制御装置および制御方法、ならびに車両
JP2013002333A (ja) * 2011-06-15 2013-01-07 Mitsubishi Electric Corp 車載エンジンの始動制御装置
JP5566530B2 (ja) * 2011-08-30 2014-08-06 三菱電機株式会社 エンジン始動装置およびエンジン始動方法
US9267479B2 (en) 2011-08-30 2016-02-23 Mitsubishi Electric Corporation Engine starting device and engine starting method
JP2013072305A (ja) * 2011-09-27 2013-04-22 Mitsubishi Electric Corp エンジン自動停止再始動装置およびエンジン自動停止再始動方法
JP2014015081A (ja) * 2012-07-06 2014-01-30 Hitachi Automotive Systems Ltd エンジン再始動制御装置
CN103696893A (zh) * 2013-12-05 2014-04-02 郑州宇通客车股份有限公司 汽车及其怠速起停系统起动机的布置结构
JP2017089503A (ja) * 2015-11-10 2017-05-25 株式会社デンソー 車両制御装置

Also Published As

Publication number Publication date
DE112010003384B4 (de) 2018-01-04
US20120103294A1 (en) 2012-05-03
CN102472232A (zh) 2012-05-23
DE112010003384T5 (de) 2012-06-14
JPWO2011024511A1 (ja) 2013-01-24
CN102472232B (zh) 2013-06-26
JP5188627B2 (ja) 2013-04-24
US8757120B2 (en) 2014-06-24

Similar Documents

Publication Publication Date Title
JP5188627B2 (ja) エンジン始動装置
JP5251751B2 (ja) 内燃機関の始動装置
US9115683B2 (en) Engine starting device
US8494758B2 (en) Engine automatic-stop/restart system
JP5566530B2 (ja) エンジン始動装置およびエンジン始動方法
JP5901763B2 (ja) エンジン始動装置およびエンジン始動方法
JP5214006B2 (ja) エンジン制御装置およびエンジン制御方法
WO2011052174A1 (ja) エンジン始動装置
JP5624065B2 (ja) 内燃機関の回転速度予測制御装置及びアイドルストップ制御装置
JP5413325B2 (ja) エンジン停止始動制御装置
JP5056836B2 (ja) エンジン自動停止始動制御装置
WO2013021812A1 (ja) エンジン始動装置およびエンジン始動方法
US10082120B2 (en) Engine automatic stop and start device, and engine automatic stop and start control method
JP5548102B2 (ja) 車両の制御装置
JP5777542B2 (ja) 内燃機関のアイドルストップ制御装置
JP5534088B2 (ja) エンジン始動装置
JP5554436B1 (ja) エンジン始動装置
JP6071736B2 (ja) エンジン始動装置
JP6203653B2 (ja) アイドルストップシステムの制御装置
JP6070491B2 (ja) アイドリングストップ制御装置
JP2013060887A (ja) 内燃機関のアイドリングストップの制御方法及びアイドリングストップシステム
JP2015190462A (ja) 車載用始動制御装置
JP2015055217A (ja) アイドリングストップ制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032558.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811564

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528677

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13380525

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 9829/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 112010003384

Country of ref document: DE

Ref document number: 1120100033846

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811564

Country of ref document: EP

Kind code of ref document: A1