WO2011024251A1 - 非水電解液型リチウムイオン二次電池 - Google Patents

非水電解液型リチウムイオン二次電池 Download PDF

Info

Publication number
WO2011024251A1
WO2011024251A1 PCT/JP2009/064718 JP2009064718W WO2011024251A1 WO 2011024251 A1 WO2011024251 A1 WO 2011024251A1 JP 2009064718 W JP2009064718 W JP 2009064718W WO 2011024251 A1 WO2011024251 A1 WO 2011024251A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
lithium ion
secondary battery
additive
battery
Prior art date
Application number
PCT/JP2009/064718
Other languages
English (en)
French (fr)
Inventor
浩二 高畑
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011528534A priority Critical patent/JP5472755B2/ja
Priority to PCT/JP2009/064718 priority patent/WO2011024251A1/ja
Priority to CN200980161098.6A priority patent/CN102484289B/zh
Priority to US13/390,583 priority patent/US8980482B2/en
Publication of WO2011024251A1 publication Critical patent/WO2011024251A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium ion secondary battery excellent in high temperature storage stability.
  • a lithium ion secondary battery includes positive and negative electrodes capable of reversibly occluding and releasing lithium ions, and an electrolyte interposed between the two electrodes, and the lithium ions in the electrolyte travel between the electrodes. To charge and discharge. Because it is lightweight and has high energy density, it is used as a power source for various portable devices. Moreover, utilization is examined also in the field
  • an electrolyte component (non-aqueous solvent, supporting salt, etc.) undergoes a reductive decomposition reaction on the negative electrode surface, thereby deteriorating the battery.
  • an electrolyte component non-aqueous solvent, supporting salt, etc.
  • SEI Solid Electrolyte Interface
  • Patent Document 1 describes that the use of an electrolytic solution containing vinylethylene carbonate can suppress deterioration of the battery due to high-temperature storage.
  • Patent Document 2 describes that high-temperature storage stability can be improved by using an electrolytic solution containing, for example, vinylene carbonate and / or vinyl ethylene carbonate and an acid anhydride.
  • an electrolytic solution containing, for example, vinylene carbonate and / or vinyl ethylene carbonate and an acid anhydride for example, vinylene carbonate and / or vinyl ethylene carbonate and an acid anhydride.
  • An object of the present invention is to provide a lithium ion secondary battery in which excellent high-temperature storage stability is stably realized.
  • the present inventor has found that excellent high-temperature storage stability is stably realized by using predetermined additives, and has completed the present invention.
  • a lithium ion secondary battery comprising positive and negative electrodes capable of occluding and releasing lithium ions and a non-aqueous electrolyte containing a lithium salt as a supporting salt in an organic solvent.
  • the non-aqueous electrolyte includes at least one dicarboxylic acid as additive A; and additive B as vinylene carbonate (VC), vinyl ethylene carbonate (VEC), ethylene sulfite, and At least one selected from fluoroethylene carbonate.
  • dicarboxylic acid does not react with water and decompose, unlike acid anhydrides. Therefore, according to the electrolytic solution having such a composition, even if moisture is mixed in the battery in the assembly process or the like, the concentration ratio of the additives A and B is maintained constant, and excellent high-temperature storage stability is stably realized. Can do.
  • the total amount of the additive A contained in the non-aqueous electrolyte is 0.2 to 3% by mass.
  • the total amount of the additive B contained in the nonaqueous electrolytic solution is 0.1 to 3% by mass.
  • a lithium ion secondary battery having excellent high-temperature storage stability can be realized stably.
  • a battery is suitable as a battery mounted on a product that can be left under high temperature, such as a vehicle that can be left under direct sunlight in summer. Therefore, according to this invention, the vehicle provided with one of the lithium ion secondary batteries disclosed here is provided.
  • a vehicle for example, an automobile
  • a lithium ion secondary battery as a power source (typically, a power source of a hybrid vehicle or an electric vehicle) is preferable.
  • FIG. 1 is a perspective view schematically showing an outer shape of a lithium ion secondary battery according to an embodiment.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a graph showing a capacity retention rate and an increase in internal resistance after high temperature storage of batteries according to some examples.
  • FIG. 4 is a graph showing the correlation between the amount of additive A added, the capacity retention rate after high-temperature storage, and the amount of increase in internal resistance.
  • FIG. 5 is a graph showing the correlation between the amount of additive B added, the capacity retention rate after high-temperature storage, and the amount of increase in internal resistance.
  • FIG. 6 is a side view schematically showing a vehicle (automobile) provided with the lithium ion secondary battery of the present invention.
  • FIG. 7 is a perspective view schematically showing the shape of a 18650 type lithium ion battery.
  • the lithium ion secondary battery disclosed herein includes an electrode body having a positive electrode and a negative electrode capable of occluding and releasing lithium ions, a lithium salt as a supporting salt, an additive A and an additive B in an organic solvent (non- A non-aqueous electrolyte solution contained in an aqueous solvent).
  • a lithium salt used as a supporting salt in a general lithium ion secondary battery can be appropriately selected and used.
  • the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiCF 3 SO 3 and the like.
  • These supporting salts can be used alone or in combination of two or more.
  • a particularly preferred example is LiPF 6 .
  • the nonaqueous electrolytic solution is preferably prepared so that the concentration of the supporting salt is within a range of 0.7 to 1.3 mol / L, for example.
  • an organic solvent used for a general lithium ion secondary battery can be appropriately selected and used.
  • Particularly preferred non-aqueous solvents include carbonates such as ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and propylene carbonate (PC). These organic solvents can be used alone or in combination of two or more. For example, EC, DMC, and EMC mixed at a volume ratio of 2 to 5: 2 to 5: 2 to 5 can be used.
  • dicarboxylic acid can use only 1 type, or 2 or more types.
  • dicarboxylic acid oxalic acid, malonic acid, maleic acid, succinic acid, citraconic acid, glutaric acid, diglycolic acid, cyclohexanedicarboxylic acid, phenylsuccinic acid, 2-phenylglutaric acid and the like are preferably used.
  • An especially preferable dicarboxylic acid is exemplified by oxalic acid.
  • the total amount of additive A contained in the non-aqueous electrolyte is preferably in the range of about 0.2 to 3% by mass.
  • the amount is less than the above range, a stable SEI film is not formed, and the internal resistance may increase remarkably with high temperature storage.
  • the amount is more than the above range, the amount of decomposition products derived from the additive A in the SEI film increases, the film resistance increases, and the internal resistance may remarkably increase due to high temperature storage.
  • the additive B one kind selected from vinylene carbonate (VC), vinyl ethylene carbonate (VEC), ethylene sulfite, and fluoroethylene carbonate can be used alone, or two or more kinds can be used in combination.
  • the amount of the additive B contained in the nonaqueous electrolytic solution is preferably in the range of about 0.1 to 3% by mass. If the amount is less than the above range, a stable SEI film is not formed, and high temperature storage may cause a significant increase in internal resistance and a decrease in capacity retention rate. When it is more than the above range, the internal resistance may be remarkably increased with high temperature storage.
  • the mass ratio (A: B) between the additive A and the additive B contained in the non-aqueous electrolyte is preferably in the range of about 1: 5 to 10: 1. Thereby, the increase rate of the internal resistance accompanying high temperature storage can be suppressed lower than usual. Moreover, a high capacity retention ratio (for example, about 90%) can be obtained even after high-temperature storage.
  • the additive A is oxalic acid and the additive B is VC
  • the above mass ratio (addition amount ratio) can be preferably employed.
  • the non-aqueous electrolyte solution contains other conventionally known components (other additives, etc.) used in lithium ion secondary batteries in addition to the above-described components within a range not impairing the effects of the present invention. May be.
  • a lithium ion secondary battery 100 in an embodiment in which an electrode body and a nonaqueous electrolytic solution are housed in a rectangular battery case with respect to the lithium ion secondary battery according to the present invention will be described with reference to the drawings.
  • the shape of the lithium ion secondary battery according to the present invention is not particularly limited, and the battery case, electrode body, and the like can be appropriately selected in terms of material, shape, size, and the like according to the application and capacity.
  • the battery case may have a rectangular parallelepiped shape, a flat shape, a cylindrical shape, or the like.
  • the battery 100 includes a wound electrode body 20 and a flat box-shaped battery case 10 corresponding to the shape of the electrode body 20 together with an electrolyte solution (not shown). It can be constructed by being housed inside the opening 12 and closing the opening 12 of the case 10 with a lid 14.
  • the lid body 14 is provided with a positive terminal 38 and a negative terminal 48 for external connection so that a part of the terminals protrudes to the surface side of the lid body 14.
  • the electrode body 20 includes a positive electrode sheet 30 in which a positive electrode active material layer 34 is formed on the surface of a long sheet-like positive electrode current collector 32, and a negative electrode active material layer on the surface of a long sheet-like negative electrode current collector 42.
  • the negative electrode sheet 40 on which the electrode 44 is formed is rolled up with two long sheet-like separators 50, and the obtained wound body is crushed from the side surface and ablated to form a flat shape. ing.
  • the positive electrode sheet 30 is formed so that the positive electrode active material layer 34 is not provided (or removed) at one end portion along the longitudinal direction, and the positive electrode current collector 32 is exposed.
  • the negative electrode sheet 40 to be wound is not provided with (or removed from) the negative electrode active material layer 44 at one end along the longitudinal direction so that the negative electrode current collector 42 is exposed. Is formed.
  • the positive electrode terminal 38 is joined to the exposed end portion of the positive electrode current collector 32, and the negative electrode terminal 48 is joined to the exposed end portion of the negative electrode current collector 42, respectively.
  • the positive electrode sheet 30 or the negative electrode sheet 40 is electrically connected.
  • the positive and negative terminals 38 and 48 and the positive and negative current collectors 32 and 42 can be joined by, for example, ultrasonic welding, resistance welding, or the like.
  • the positive electrode active material layer 34 includes, for example, a paste or slurry composition (positive electrode mixture) in which a positive electrode active material is dispersed in an appropriate solvent together with a conductive material, a binder (binder), and the like as necessary. It can preferably be produced by applying to the positive electrode current collector 32 and drying the composition.
  • a paste or slurry composition positive electrode mixture
  • a positive electrode active material is dispersed in an appropriate solvent together with a conductive material, a binder (binder), and the like as necessary. It can preferably be produced by applying to the positive electrode current collector 32 and drying the composition.
  • the positive electrode active material a material capable of inserting and extracting lithium is used, and one or more of materials conventionally used in lithium ion secondary batteries (for example, an oxide having a layered structure or an oxide having a spinel structure) are used. It can be used without any particular limitation. Examples thereof include lithium-containing composite oxides such as lithium nickel composite oxides, lithium cobalt composite oxides, lithium manganese composite oxides, and lithium magnesium composite oxides.
  • the lithium nickel-based composite oxide is an oxide having lithium (Li) and nickel (Ni) as constituent metal elements, and at least one other metal element (that is, Li and nickel) in addition to lithium and nickel.
  • the metal element other than Li and Ni include, for example, cobalt (Co), aluminum (Al), manganese (Mn), chromium (Cr), iron (Fe), vanadium (V), magnesium (Mg), and titanium (Ti ), Zirconium (Zr), niobium (Nb), molybdenum (Mo), tungsten (W), copper (Cu), zinc (Zn), gallium (Ga), indium (In), tin (Sn), lanthanum (La) And one or more metal elements selected from the group consisting of cerium (Ce).
  • an olivine type lithium phosphate represented by the general formula LiMPO 4 (M is at least one element of Co, Ni, Mn, and Fe; for example, LiFePO 4 , LiMnPO 4 ) is used as the positive electrode active material. Also good.
  • the amount of the positive electrode active material contained in the positive electrode mixture can be, for example, about 80 to 95% by mass.
  • a conductive powder material such as carbon powder or carbon fiber is preferably used.
  • carbon powder various carbon blacks such as acetylene black, furnace black, ketjen black, and graphite powder are preferable.
  • a conductive material can be used alone or in combination of two or more.
  • the amount of the conductive material contained in the positive electrode mixture may be appropriately selected according to the type and amount of the positive electrode active material, and may be, for example, about 4 to 15% by mass.
  • a water-soluble polymer that dissolves in water for example, a water-soluble polymer that dissolves in water, a polymer that disperses in water, a polymer that dissolves in a non-aqueous solvent (organic solvent), and the like can be selected as appropriate. Moreover, only 1 type may be used independently and 2 or more types may be used in combination.
  • the water-soluble polymer include carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), hydroxypropylmethylcellulose phthalate (HPMCP), and polyvinyl alcohol (PVA). It is done.
  • water-dispersible polymer examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetra Fluorine resins such as fluoroethylene copolymer (ETFE), vinyl acetate copolymer, styrene butadiene block copolymer (SBR), acrylic acid-modified SBR resin (SBR latex), rubbers such as gum arabic, etc. It is done.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • EFE ethylene-tetra Fluorine resins
  • ETFE fluoroethylene copolymer
  • SBR s
  • Examples of the polymer dissolved in the non-aqueous solvent (organic solvent) include, for example, polyvinylidene fluoride (PVDF), polyvinylidene chloride (PVDC), polyethylene oxide (PEO), polypropylene oxide (PPO), and polyethylene oxide-propylene oxide copolymer. (PEO-PPO) and the like.
  • the addition amount of the binder may be appropriately selected according to the type and amount of the positive electrode active material, and can be, for example, about 1 to 5% by mass of the positive electrode mixture.
  • a conductive member made of a metal having good conductivity is preferably used.
  • aluminum or an alloy containing aluminum as a main component can be used.
  • the shape of the positive electrode current collector 32 may vary depending on the shape of the lithium ion secondary battery, and is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape.
  • a sheet-like aluminum positive electrode current collector 32 is used, and can be preferably used for the lithium ion secondary battery 100 including the wound electrode body 20.
  • an aluminum sheet having a thickness of about 10 ⁇ m to 30 ⁇ m can be preferably used.
  • the negative electrode active material layer 44 includes, for example, a negative electrode current collector 42 made of a paste or slurry composition (negative electrode mixture) in which a negative electrode active material is dispersed in an appropriate solvent together with a binder (binder) and the like. And the composition can be preferably prepared by drying.
  • a carbon particle is mentioned as a suitable negative electrode active material.
  • a particulate carbon material (carbon particles) containing a graphite structure (layered structure) at least partially is preferably used. Any carbon material of a so-called graphitic material (graphite), non-graphitizable carbon material (hard carbon), easily graphitized carbon material (soft carbon), or a combination of these materials is preferably used. obtain.
  • graphite particles such as natural graphite can be preferably used. Since the graphite particles can suitably occlude lithium ions as charge carriers, they are excellent in conductivity.
  • the particle size is small and the surface area per unit volume is large, it can be a negative electrode active material more suitable for rapid charge / discharge (for example, high output discharge).
  • the amount of the negative electrode active material contained in the negative electrode mixture is not particularly limited, but is preferably about 90 to 99% by mass, more preferably about 95 to 99% by mass.
  • the same positive electrode as that described above can be used alone or in combination of two or more.
  • the addition amount of the binder may be appropriately selected according to the type and amount of the negative electrode active material, and can be, for example, about 1 to 5% by mass of the negative electrode mixture.
  • a conductive member made of a highly conductive metal is preferably used.
  • copper or an alloy containing copper as a main component can be used.
  • the shape of the negative electrode current collector 42 may vary depending on the shape of the lithium ion secondary battery and the like, so there is no particular limitation, and various shapes such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape possible.
  • a sheet-like copper negative electrode current collector 42 is used, and can be preferably used for the lithium ion secondary battery 100 including the wound electrode body 20.
  • a copper sheet having a thickness of about 6 ⁇ m to 30 ⁇ m can be preferably used.
  • the separator 50 is a sheet interposed between the positive electrode sheet 30 and the negative electrode sheet 40, and is disposed so as to be in contact with the positive electrode active material layer 34 of the positive electrode sheet 30 and the negative electrode active material layer 44 of the negative electrode sheet 40. Is done. Then, prevention of short circuit due to the contact between the electrode active material layers 34 and 44 in the positive electrode sheet 30 and the negative electrode sheet 40, and the conduction path between the electrodes (conductive path) by impregnating the electrolyte in the pores of the separator 50. ).
  • a porous sheet microporous resin sheet made of a resin can be preferably used.
  • Porous polyolefin resins such as polyethylene (PE), polypropylene (PP), and polystyrene are preferred.
  • PE polyethylene
  • PP polypropylene
  • polystyrene polystyrene
  • a PE sheet, a PP sheet, a two-layer structure sheet in which a PE layer and a PP layer are laminated, and the like can be suitably used.
  • the thickness of the separator is preferably set within a range of about 10 ⁇ m to 40 ⁇ m, for example.
  • the battery 100 assembled as described above can be subjected to various treatments as necessary.
  • an external power source is connected between the positive electrode (positive electrode terminal 38) and the negative electrode (negative electrode terminal 48) of the battery, and at normal temperature (typically about 25 ° C.), The battery is charged until the voltage between the terminals reaches a predetermined value.
  • the predetermined inter-terminal voltage value is preferably in the range of 2.5V to 4.2V, and more preferably in the range of 3.0V to 4.1V.
  • charging is performed at a constant current of about 0.1 C to 10 C from the start of charging until the voltage between terminals reaches a predetermined value, and then SOC (State of Charge) is about 60% to 100%.
  • CC-CV charging constant-current constant-voltage charging
  • the charging rate is 1 / 3C or less (typically 1 / 20C to 1 / 3C) from the start of charging to at least SOC 20%, and then the voltage between terminals reaches a predetermined value.
  • the battery may be charged with a constant current of about 0.1 C to 10 C until it reaches, and further charged with a constant voltage until the SOC reaches about 60% to 100%.
  • a voltmeter is connected between the positive electrode terminal 38 and the negative electrode terminal 48 in the lithium ion secondary battery 100, the measured voltage value is monitored by the voltmeter, and a predetermined predetermined value is set. It may be terminated when the voltage value is reached.
  • a discharging process may be performed at a current value approximately equal to the charging rate during the constant current charging, and then charging is performed at a rate approximately equal to the current value.
  • the discharge cycle may be repeated several times. Alternatively, the charge / discharge cycle may be repeated several times at a rate different from the charge / discharge rate of the charge / discharge cycle.
  • Example 1 As the positive electrode mixture, positive electrode active material powder, acetylene black (conductive material), and PVDF (binder) are mixed so that the mass ratio is 85: 10: 5 and the solid content concentration (NV) is about 50%. -Mix-2-pyrrolidone (NMP) was mixed to prepare a slurry composition.
  • the positive electrode active material powdered lithium manganese oxide (LiMn 2 O 4 ) having an average particle diameter of 7 ⁇ m, a specific surface area of 1 m 2 / g, and a theoretical discharge capacity of 90 mA / g was used.
  • This positive electrode mixture was applied to both sides of a 15 ⁇ m-thick long aluminum foil (positive electrode current collector) so that the total application amount on both surfaces was 240 g / m 2 (NV standard). After drying this, it was pressed to a total thickness of about 110 ⁇ m to obtain a positive electrode sheet.
  • a negative electrode mixture natural graphite, SBR, and CMC were mixed with ion-exchanged water so that the mass ratio was 98: 1: 1 and NV was about 45% to prepare a slurry composition.
  • This negative electrode mixture was applied to both surfaces of a long copper foil (negative electrode current collector) having a thickness of 10 ⁇ m so that the total coating amount on both surfaces was 80 g / m 2 (NV standard). This was dried and then pressed so that the total thickness was about 65 ⁇ m to obtain a negative electrode sheet.
  • a LiPF 6 solution having a concentration of 1 mol / L was prepared using a mixed solvent of EC, DMC, and EMC in a volume ratio of 1: 1: 1.
  • a separator two long porous polyethylene sheets having a thickness of 20 ⁇ m were prepared.
  • a 18650 type (cylindrical type having a diameter of 18 mm and a height of 65 mm) lithium ion secondary battery 200 was manufactured by the following procedure. That is, the positive electrode sheet and the negative electrode sheet were laminated together with the two separators, and the laminate was wound in the longitudinal direction to produce a wound electrode body. This electrode body was housed in a cylindrical container together with the non-aqueous electrolyte, and the container was sealed to obtain a battery according to Example 1.
  • Examples 2 to 15 The batteries according to Examples 2 to 15 were the same as Example 1 except that a predetermined amount of oxalic acid (Additive A) and / or a predetermined amount of VC (Additive B) was added to the nonaqueous electrolytic solution of Example 1. Got. The amounts of additive A and additive B added to the non-aqueous electrolyte of each battery were as shown in Table 1, respectively.
  • FIG. 3 shows a graph comparing the capacity retention rate (left Y-axis) and IV resistance increase (right Y-axis) of the batteries of Examples 1, 2, 6, and 9 after storage. Further, the measurement according to the batteries of Examples 2 to 8 in which the addition amount of VC (additive B) was fixed to 1% by mass and the addition amount of oxalic acid (additive A) was varied between 0 to 5% by mass.
  • FIG. 4 shows a graph in which the capacity retention rate after storage (left Y-axis) and the IV resistance increase amount (right Y-axis) are plotted against the oxalic acid addition amount (X-axis) based on the values.
  • the amount of oxalic acid (additive A) was fixed at 1% by mass, and the amount of VC (additive B) was varied between 0 and 4% by mass in Examples 6 and 9-15.
  • FIG. 5 shows a graph in which the capacity retention rate after storage (left Y-axis) and the IV resistance increase amount (right Y-axis) are plotted against the VC addition amount (X-axis) based on the measured values for the battery. .
  • the battery of Example 6 using the non-aqueous electrolyte having a composition containing both additive A (here, oxalic acid) and B (here, VC) was stored at 60 ° C. for 30 days.
  • the increase in internal resistance was kept as low as 7 m ⁇ , and a high capacity retention rate of 89% was shown.
  • both the battery of Example 1 using a non-aqueous electrolyte containing neither additive A nor B and the battery of Example 9 using a non-aqueous electrolyte containing only additive A have increased internal resistance.
  • the battery of Example 6 was twice as high as that of the battery of Example 6, and the capacity retention rate was 6% or more lower than that of the battery of Example 6.
  • the battery of Example 2 using the non-aqueous electrolyte containing only additive B has a capacity retention rate 2% lower than that of the battery of Example 6, and the increase in internal resistance is nearly three times that of the battery of Example 6. It was.
  • the batteries of Examples 4 to 7 and 11 to 14 containing 0.2 to 3% by weight of additive A and 0.1 to 3% by weight of additive B
  • the resistance increase after storage at 60 ° C. for 30 days was suppressed to a low value of 11 m ⁇ or less, and both exhibited high capacity retention rates of 88 to 90%. That is, the batteries of Examples 4 to 7 and 11 to 14 contain the additive A and the additive B, but the concentration of either one is out of the above range, compared to the batteries of Examples 3, 8, 10, and 15. A lower resistance increase and a higher capacity retention rate were exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】高温保存性に優れたリチウムイオン二次電池を提供すること。 【解決手段】本発明により提供されるリチウムイオン二次電池は、リチウムイオンを吸蔵および放出可能な正負の電極と、支持塩としてのリチウム塩を有機溶媒中に含む非水電解液と、を備える。前記非水電解液は、前記リチウム塩の他に、添加剤Aとして、少なくとも一種のジカルボン酸;および、添加剤Bとして、ビニレンカーボネート、ビニルエチレンカーボネート、エチレンサルファイト、およびフルオロエチレンカーボネートから選択される少なくとも一種;を含む。

Description

非水電解液型リチウムイオン二次電池
 本発明は、高温保存性に優れたリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、リチウムイオンを可逆的に吸蔵および放出可能な正負の電極と、それら両電極間に介在された電解質とを備え、該電解質中のリチウムイオンが両電極間を行き来することにより充放電を行う。軽量でエネルギー密度が高いため、各種携帯機器の電源として利用されている。また、ハイブリッド車両や電気自動車等のように大容量の電源を要する分野においても利用が検討されており、電池性能の更なる向上が求められている。特に、車両用その他、使用環境や保存環境が高温になり得る用途向けのリチウムイオン二次電池では、優れた高温保存性が重要である。
日本国特許出願公開2001-6729号公報 日本国特許出願公開2002-352852号公報
 ところで、リチウムイオン二次電池は、充放電を行うと負極表面において電解質成分(非水溶媒、支持塩等)が還元分解反応を起こし、これにより電池が劣化してしまう。かかる電池の劣化を防ぐ手段として、例えば、初期充電の際、意図的に電解質成分の一部を還元分解させ、負極表面をその分解生成物からなるSEI(Solid Electrolyte Interphase)膜で被覆する方法が挙げられる。これにより、電池の通常使用時において、負極表面における更なる電解質成分の還元分解を防ぐことができる。一方、かかる態様の電池は、高温下に放置すると、SEI膜上に分解生成物が更に堆積するなどして内部抵抗が増加し、そのことによって電池が劣化してしまうという課題があった。特許文献1には、ビニルエチレンカーボネートを含む電解液を用いることにより、高温保存による電池の劣化を抑制し得ることが記載されている。また、特許文献2には、例えば、ビニレンカーボネートおよび/またはビニルエチレンカーボネートと、酸無水物とを含む電解液を用いることにより、高温保存性を向上させ得ることが記載されている。
 しかし、本発明者の検討によれば、かかる添加剤を用いても、高温保存性の向上効果が不十分または不安定となる場合があった。
 本発明は、優れた高温保存性が安定的に実現されたリチウムイオン二次電池を提供することを一つの目的とする。
 本発明者は、所定の添加剤を使用することにより、優れた高温保存性が安定して実現されることを見出して、本発明を完成させた。
 本発明によると、リチウムイオンを吸蔵および放出可能な正負の電極と、支持塩としてのリチウム塩を有機溶媒中に含む非水電解液と、を備えたリチウムイオン二次電池が提供される。上記非水電解液は、上記リチウム塩の他に、添加剤Aとして、少なくとも一種のジカルボン酸;および、添加剤Bとして、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、エチレンサルファイト、およびフルオロエチレンカーボネートから選択される少なくとも一種;を含む。
 上記添加剤A、Bを含む組成の電解液を用いてなる電池では、電池内の水分量に拘わらず、高温保存性の向上効果を安定して得ることができる。これは、ジカルボン酸が、酸無水物とは異なり、水と反応して分解することがないためである。したがって、かかる組成の電解液によると、組み立て工程等で電池内に水分が混入しても、添加剤A、Bの濃度比が一定に維持され、優れた高温保存性を安定して実現することができる。
 ここに開示されるリチウムイオン二次電池の好ましい一態様では、上記非水電解液中に含まれる上記添加剤Aの総量が、0.2~3質量%である。これにより、SEI膜の安定性がより高まり、高温保存性により優れたリチウムイオン二次電池が形成され得る。
 他の好ましい一態様では、上記非水電解液中に含まれる上記添加剤Bの総量が、0.1~3質量%である。これにより、SEI膜の安定性がより高まり、高温保存性により優れたリチウムイオン二次電池が形成され得る。
 ここに開示される技術によると、上述のように、高温保存性に優れたリチウムイオン二次電池が安定して実現され得る。かかる電池は、例えば、夏場の直射日光下に放置され得る車両等のように、高温下に放置され得る製品に搭載する電池として好適である。したがって、本発明によると、ここに開示されるいずれかのリチウムイオン二次電池を備えた車両が提供される。特に、かかるリチウムイオン二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が好ましい。
図1は、一実施形態に係るリチウムイオン二次電池の外形を模式的に示す斜視図である。 図2は、図1におけるII-II線断面図である。 図3は、いくつかの実施例に係る電池の高温保存後の容量維持率および内部抵抗増加量を示すグラフである。 図4は、添加剤Aの添加量と、高温保存後の容量維持率および内部抵抗増加量との相関性を示すグラフである。 図5は、添加剤Bの添加量と、高温保存後の容量維持率および内部抵抗増加量との相関性を示すグラフである。 図6は、本発明のリチウムイオン二次電池を備えた車両(自動車)を模式的に示す側面図である。 図7は、18650型リチウムイオン電池の形状を模式的に示す斜視図である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 ここに開示されるリチウムイオン二次電池は、リチウムイオンを吸蔵および放出可能な正極および負極を有する電極体と、支持塩としてのリチウム塩に加えて添加剤Aおよび添加剤Bを有機溶媒(非水溶媒)中に含む非水電解液と、を備える。
 上記非水電解液に含まれる支持塩としては、一般的なリチウムイオン二次電池に支持塩として用いられるリチウム塩を、適宜選択して使用することができる。かかるリチウム塩として、LiPF、LiBF、LiClO、LiAsF、Li(CFSON、LiCFSO等が例示される。かかる支持塩は、一種のみを単独で、または二種以上を組み合わせて用いることができる。特に好ましい例として、LiPFが挙げられる。上記非水電解液は、例えば、上記支持塩の濃度が0.7~1.3mol/Lの範囲内となるように調製することが好ましい。
 上記非水溶媒としては、一般的なリチウムイオン二次電池に用いられる有機溶媒を適宜選択して使用することができる。特に好ましい非水溶媒として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)等のカーボネート類が例示される。これら有機溶媒は、一種のみを単独で、または二種以上を組み合わせて用いることができる。例えば、ECとDMCとEMCとを体積比2~5:2~5:2~5程度で混合したものを用いることができる。
 上記添加剤Aとしては、ジカルボン酸を、一種のみ、あるいは二種以上用いることができる。
 ジカルボン酸としては、シュウ酸、マロン酸、マレイン酸、コハク酸、シトラコン酸、グルタル酸、ジグリコール酸、シクロヘキサンジカルボン酸、フェニルコハク酸、2-フェニルグルタル酸等が好ましく使用される。特に好ましいジカルボン酸として、シュウ酸が例示される。
 上記非水電解液に含まれる添加剤Aの総量は、凡そ0.2~3質量%の範囲にあることが好ましい。上記範囲よりも少なすぎると、安定したSEI膜が形成されず、高温保存に伴い内部抵抗が著しく増加することがある。また、上記範囲よりも多すぎると、SEI膜に占める添加剤A由来の分解生成物量が多くなり、膜抵抗が上昇して、高温保存により内部抵抗が著しく増加することがある。
 上記添加剤Bとしては、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、エチレンサルファイト、およびフルオロエチレンカーボネートから選択される一種を単独で、あるいは二種以上を組み合わせて用いることができる。
 上記非水電解液に含まれる添加剤Bの量は、凡そ0.1~3質量%の範囲にあることが好ましい。上記範囲よりも少なすぎると、安定したSEI膜が形成されず、高温保存により内部抵抗の著しい増加や容量維持率の低下を招く場合がある。上記範囲よりも多すぎると、高温保存に伴い内部抵抗が著しく上昇することがある。
 上記非水電解液に含まれる添加剤Aと添加剤Bとの質量比(A:B)は、凡そ1:5~10:1の範囲にあることが好ましい。これにより、高温保存にともなう内部抵抗の増加率を通常よりも低く抑えることができる。また、高温保存後も高い容量維持率(例えば、90%程度)を得ることができる。例えば、添加剤Aがシュウ酸、添加剤BがVCの場合に、上記質量比(添加量比)を好ましく採用することができる。
 なお、上記非水電解液は、本発明による効果を損なわない範囲において、上述した成分に加えて、リチウムイオン二次電池に用いられる従来公知の他の成分(他の添加剤等)を含有してもよい。
 以下、図面を参照しつつ、本発明に係るリチウムイオン二次電池について、電極体および非水電解液が角型形状の電池ケースに収容された態様のリチウムイオン二次電池100(図1)を例にして更に詳しく説明するが、本発明をかかる実施形態に限定することを意図したものではない。すなわち、本発明に係るリチウムイオン二次電池の形状は特に限定されず、その電池ケース、電極体等は、用途や容量に応じて、素材、形状、大きさ等を適宜選択することができる。例えば、電池ケースは、直方体状、扁平形状、円筒形状等であり得る。なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略又は簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
 本実施形態に係る電池100は、図1および図2に示されるように、捲回電極体20を、図示しない電解液とともに、該電極体20の形状に対応した扁平な箱状の電池ケース10の開口部12より内部に収容し、該ケース10の開口部12を蓋体14で塞ぐことによって構築することができる。また、蓋体14には、外部接続用の正極端子38および負極端子48が、それら端子の一部が蓋体14の表面側に突出するように設けられている。
 上記電極体20は、長尺シート状の正極集電体32の表面に正極活物質層34が形成された正極シート30と、長尺シート状の負極集電体42の表面に負極活物質層44が形成された負極シート40とを、2枚の長尺シート状のセパレータ50と共に重ね合わせて捲回し、得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平形状に成形されている。
 また、正極シート30は、その長手方向に沿う一方の端部において、正極活物質層34が設けられておらず(あるいは除去されて)、正極集電体32が露出するよう形成されている。同様に、捲回される負極シート40は、その長手方向に沿う一方の端部において、負極活物質層44が設けられておらず(あるいは除去されて)、負極集電体42が露出するように形成されている。そして、正極集電体32の該露出端部に正極端子38が、負極集電体42の該露出端部には負極端子48がそれぞれ接合され、上記扁平形状に形成された捲回電極体20の正極シート30または負極シート40と電気的に接続されている。正負極端子38,48と正負極集電体32,42とは、例えば超音波溶接、抵抗溶接等によりそれぞれ接合することができる。
 上記正極活物質層34は、例えば、正極活物質を、必要に応じて導電材、結着剤(バインダ)等とともに適当な溶媒に分散させたペーストまたはスラリー状の組成物(正極合材)を正極集電体32に付与し、該組成物を乾燥させることにより好ましく作製することができる。
 正極活物質としては、リチウムを吸蔵および放出可能な材料が用いられ、従来からリチウムイオン二次電池に用いられる物質(例えば層状構造の酸化物やスピネル構造の酸化物)の一種または二種以上を特に限定することなく使用することができる。例えば、リチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムマグネシウム系複合酸化物等のリチウム含有複合酸化物が挙げられる。
 ここで、リチウムニッケル系複合酸化物とは、リチウム(Li)とニッケル(Ni)とを構成金属元素とする酸化物のほか、リチウムおよびニッケル以外に他の少なくとも一種の金属元素(すなわち、LiとNi以外の遷移金属元素および/または典型金属元素)を、原子数換算でニッケルと同程度またはニッケルよりも少ない割合(典型的にはニッケルよりも少ない割合)で構成金属元素として含む酸化物をも包含する意味である。上記LiおよびNi以外の金属元素は、例えば、コバルト(Co),アルミニウム(Al),マンガン(Mn),クロム(Cr),鉄(Fe),バナジウム(V),マグネシウム(Mg),チタン(Ti),ジルコニウム(Zr),ニオブ(Nb),モリブデン(Mo),タングステン(W),銅(Cu),亜鉛(Zn),ガリウム(Ga),インジウム(In),スズ(Sn),ランタン(La)およびセリウム(Ce)からなる群から選択される一種または二種以上の金属元素であり得る。なお、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物およびリチウムマグネシウム系複合酸化物についても同様の意味である。
 また、一般式がLiMPO(MはCo、Ni、Mn、Feのうちの少なくとも一種以上の元素;例えばLiFePO、LiMnPO)で表記されるオリビン型リン酸リチウムを上記正極活物質として用いてもよい。
 正極合材に含まれる正極活物質の量は、例えば、80~95質量%程度とすることができる。
 導電材としては、カーボン粉末やカーボンファイバー等の導電性粉末材料が好ましく用いられる。カーボン粉末としては、種々のカーボンブラック、例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック、グラファイト粉末等が好ましい。導電材は、一種のみを単独で、または二種以上を組み合わせて用いることができる。
 正極合材に含まれる導電材の量は、正極活物質の種類や量に応じて適宜選択すればよく、例えば、4~15質量%程度とすることができる。
 結着剤としては、例えば、水に溶解する水溶性ポリマーや、水に分散するポリマー、非水溶媒(有機溶媒)に溶解するポリマー等から適宜選択して用いることができる。また、一種のみを単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 水溶性ポリマーとしては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)、ポリビニルアルコール(PVA)等が挙げられる。
 水分散性ポリマーとしては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重含体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)等のフッ素系樹脂、酢酸ビニル共重合体、スチレンブタジエンブロック共重合体(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)、アラビアゴム等のゴム類等が挙げられる。
 非水溶媒(有機溶媒)に溶解するポリマーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリエチレンオキサイド-プロピレンオキサイド共重合体(PEO-PPO)等が挙げられる。
 結着剤の添加量は、正極活物質の種類や量に応じて適宜選択すればよく、例えば、上記正極合材の1~5質量%程度とすることができる。
 正極集電体32には、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、アルミニウムまたはアルミニウムを主成分とする合金を用いることができる。正極集電体32の形状は、リチウムイオン二次電池の形状等に応じて異なり得るため、特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。本実施形態ではシート状のアルミニウム製の正極集電体32が用いられ、捲回電極体20を備えるリチウムイオン二次電池100に好ましく使用され得る。かかる実施形態では、例えば、厚みが10μm~30μm程度のアルミニウムシートが好ましく使用され得る。
 また、上記負極活物質層44は、例えば、負極活物質を、結着剤(バインダ)等ともに適当な溶媒に分散させたペーストまたはスラリー状の組成物(負極合材)を負極集電体42に付与し、該組成物を乾燥させることにより好ましく作製することができる。
 負極活物質としては、従来からリチウムイオン二次電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。例えば、好適な負極活物質としてカーボン粒子が挙げられる。少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が好ましく用いられる。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も好適に使用され得る。中でも特に、天然黒鉛等の黒鉛粒子を好ましく使用することができる。黒鉛粒子は、電荷担体としてのリチウムイオンを好適に吸蔵することができるため導電性に優れる。また、粒径が小さく単位体積当たりの表面積が大きいことからより急速充放電(例えば高出力放電)に適した負極活物質となり得る。
 負極合材に含まれる負極活物質の量は特に限定されないが、好ましくは90~99質量%程度、より好ましくは95~99質量%程度である。
 結着剤には、上述の正極と同様のものを、一種のみを単独で、または二種以上を組み合わせて用いることができる。結着剤の添加量は、負極活物質の種類や量に応じて適宜選択すればよく、例えば、負極合材の1~5質量%程度とすることができる。
 負極集電体42としては、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅または銅を主成分とする合金を用いることができる。また、負極集電体42の形状は、リチウムイオン二次電池の形状等に応じて異なり得るため、特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。本実施形態ではシート状の銅製の負極集電体42が用いられ、捲回電極体20を備えるリチウムイオン二次電池100に好ましく使用され得る。かかる実施形態では、例えば、厚みが6μm~30μm程度の銅製シートが好ましく使用され得る。
 また、上記セパレータ50は、正極シート30および負極シート40の間に介在するシートであって、正極シート30の正極活物質層34と、負極シート40の負極活物質層44にそれぞれ接するように配置される。そして、正極シート30と負極シート40における両電極活物質層34,44の接触に伴う短絡防止や、該セパレータ50の空孔内に上記電解液を含浸させることにより電極間の伝導パス(導電経路)を形成する役割を担っている。かかるセパレータ50の構成材料としては、樹脂からなる多孔性シート(微多孔質樹脂シート)を好ましく用いることができる。ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン等の多孔質ポリオレフィン系樹脂が好ましい。特に、PEシート、PPシート、PE層とPP層とが積層された二層構造シート等を好適に使用し得る。セパレータの厚みは、例えば、凡そ10μm~40μmの範囲内で設定することが好ましい。
 上述のようにして組み立てた電池100は、必要に応じて種々の処理に付すことができる。典型的には、例えば、初期充電処理として、該電池の正極(正極端子38)と負極(負極端子48)との間に外部電源を接続し、常温(典型的には25℃程度)で、端子間の電圧が所定値となるまで充電する。
 上記所定の端子間電圧値は、2.5V~4.2Vの範囲内であることが好ましく、特に3.0V~4.1Vの範囲内にあることが好ましい。上記初期充電工程は、例えば、充電開始から端子間電圧が所定値に到達するまで0.1C~10C程度の定電流で充電し、次いでSOC(State of Charge)が60%~100%程度となるまで定電圧で充電する定電流定電圧充電(CC-CV充電)により行うことができる。あるいは、充電開始から少なくともSOC20%に至るまでの間は1/3C以下(典型的には、1/20C~1/3C)の充電レート(電流値)で行い、次いで端子間電圧が所定値に到達するまで0.1C~10C程度の定電流で充電し、さらにSOCが60%~100%程度となるまで定電圧で充電してもよい。
 なお、上記初期充電処理は、例えば上記リチウムイオン二次電池100における正極端子38と負極端子48との間に電圧計を接続し、この電圧計により測定電圧値をモニタリングし、予め設定された所定の電圧値に到達した時点で終了すればよい。また、かかる初期充電工程の終了後、コンディショニング処理として、上記定電流充電時の充電レートと同程度の電流値で放電処理を実施してもよく、次いでさらに上記電流値と同程度のレートで充放電サイクルを数回繰り返してもよい。あるいは、該充放電サイクルの充放電レートとは異なるレートで充放電サイクルを数回繰り返してもよい。
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り質量基準である。
  [電池の作製]
  <例1>
 正極合材として、正極活物質粉末と、アセチレンブラック(導電材)と、PVDF(バインダ)とを、質量比が85:10:5、固形分濃度(NV)が約50%となるようにN-メチル-2-ピロリドン(NMP)と混合して、スラリー状の組成物を調製した。ここで、正極活物質としては、平均粒径7μm、比表面積1m/g、理論放電容量90mA/gの粉末状のリチウムマンガン酸化物(LiMn)を使用した。
 この正極合材を、厚さ15μmの長尺状アルミニウム箔(正極集電体)の両面に、それら両面の合計塗布量が240g/m(NV基準)となるように塗布した。これを乾燥後、全体の厚みが約110μmとなるようにプレスして正極シートを得た。
 負極合材として、天然黒鉛とSBRとCMCとを、質量比が98:1:1、NVが約45%となるようにイオン交換水と混合して、スラリー状の組成物を調製した。この負極合材を、厚さ10μmの長尺状銅箔(負極集電体)の両面に、それら両面の合計塗布量が80g/m(NV基準)となるように塗布した。これを乾燥後、全体の厚みが約65μmとなるようにプレスして負極シートを得た。
 非水電解液として、ECとDMCとEMCとの体積比1:1:1の混合溶媒を用いて、濃度が1mol/LのLiPF溶液を調製した。
 セパレータとして、厚さ20μmの長尺状の多孔質ポリエチレンシートを二枚用意した。
 これら電池部材を用いて、以下に示す手順で、18650型(直径18mm、高さ65mmの円筒型)リチウムイオン二次電池200を作製した。すなわち、上記正極シートと上記負極シートとを上記二枚のセパレータとともに積層し、その積層体を長手方向に捲回して捲回電極体を作製した。この電極体を、上記非水電解液とともに円筒型容器に収容し、該容器を封止して例1に係る電池を得た。
  <例2~15>
 例1の非水電解液に所定量のシュウ酸(添加剤A)および/または所定量のVC(添加剤B)を加えた他は例1と同様にして、例2~15に係る各電池を得た。なお、各電池の非水電解液に加えた添加剤Aおよび添加剤Bの量は、それぞれ表1に示すとおりとした。
  [初期充電処理]
 得られた例1から5の各電池に対して、1/10Cのレートで3時間の定電流充電を行い、次いで、1/3Cのレートで4.1Vまで充電する操作と、1/3Cのレートで3.0Vまで放電させる操作とを3回繰り返して、初期充電処理およびコンディショニング処理を行った。
  [初期内部抵抗の測定]
 初期充電後の各電池を、SOC(State of Charge)60%に調整し、25℃にて、0.2A、0.4A、0.6A、1.2Aの各電流(I)を流して10秒後の電池電圧(V)を測定した。各電池に流した電流値I(X軸)と電圧値V(Y軸)とを直線回帰し、その傾きから初期IV抵抗(mΩ)を求めた。
  [容量維持率の測定]
 各電池を、SOC80%に調整し、室温(23℃)にて、SOCが0%となるまで1/3CでCC放電させ、このときの放電容量を測定し、初期容量値とした。
 各電池につき、60℃で30日間保存した後、初期容量の測定と同様にして保存後の放電容量を測定した。容量維持率(%)を、初期容量に対する保存後の放電容量の百分率として求めた。
  [内部抵抗増加量の測定]
 上記保存後の各電池につき、初期内部抵抗の測定と同様にして保存後のIV抵抗値(mΩ)を測定した。内部抵抗増加量(mΩ)を、初期IV抵抗値と保存後のIV抵抗値との差として求めた。
 例1~15の電池について、これらの測定結果を、添加剤AおよびBの添加量と併せて表1に示す。
 例1、2、6、9の電池の保存後の容量維持率(左Y軸)およびIV抵抗増加量(右Y軸)を比較したグラフを図3に示す。
 また、VC(添加剤B)の添加量を1質量%に固定し、シュウ酸(添加剤A)の添加量を0~5質量%の間で異ならせた例2~8の電池に係る測定値を基に、保存後の容量維持率(左Y軸)およびIV抵抗増加量(右Y軸)を、シュウ酸添加量(X軸)に対してプロットしたグラフを図4に示す。
 同様に、シュウ酸(添加剤A)の添加量を1質量%に固定し、VC(添加剤B)の添加量を0~4質量%の間で異ならせた例6および例9~15の電池に係る測定値を基に、保存後の容量維持率(左Y軸)およびIV抵抗増加量(右Y軸)を、VC添加量(X軸)に対してプロットしたグラフを図5に示す。
Figure JPOXMLDOC01-appb-T000001
 図3から明らかなように、添加剤A(ここではシュウ酸)、B(ここではVC)を共に含む組成の非水電解液を用いた例6の電池は、60℃30日間保存後において、内部抵抗の増加量が7mΩと低く抑えられ、かつ89%という高い容量維持率を示した。一方、添加剤A、Bのいずれも含まない非水電解液を用いた例1の電池および添加剤Aのみを含む非水電解液を用いた例9の電池は、いずれも内部抵抗増加量が例6の電池の2倍以上と高くなり、また容量維持率も例6の電池より6%以上低かった。また、添加剤Bのみを含む非水電解液を用いた例2の電池は、容量維持率が例6の電池より2%低く、内部抵抗の増加量は例6の電池の3倍近くとなった。
 また、表1および図4~5に示されるように、0.2~3質量%の添加剤Aおよび0.1~3質量%の添加剤Bを含む例4~7および11~14の電池は、60℃30日保存後の抵抗増加量が11mΩ以下と低く抑えられ、かついずれも88~90%という高い容量維持率を示した。すなわち、これら例4~7および11~14の電池は、添加剤Aおよび添加剤Bを含むがいずれかの濃度が上記範囲から外れている例3、8、10および15の電池に比べて、より低い抵抗増加量およびより高い容量維持率を示すものであった。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
1  車両
20 捲回電極体
30 正極シート
32 正極集電体
34 正極活物質層
38 正極端子
40 負極シート
42 負極集電体
44 負極活物質層
48 負極端子
50 セパレータ
100,200 リチウムイオン二次電池

Claims (4)

  1.  リチウムイオンを吸蔵および放出可能な正負の電極と、支持塩としてのリチウム塩を有機溶媒中に含む非水電解液と、を備えたリチウムイオン二次電池であって、
     前記非水電解液は:
     添加剤Aとして、少なくとも一種のジカルボン酸;および、
     添加剤Bとして、ビニレンカーボネート、ビニルエチレンカーボネート、エチレンサルファイト、およびフルオロエチレンカーボネートから選択される少なくとも一種;
    を含む、リチウムイオン二次電池。
  2.  前記非水電解液が、前記添加剤Aを0.2~3質量%含む、請求項1記載のリチウムイオン二次電池。
  3.  前記非水電解液が、前記添加剤Bを0.1~3質量%含む、請求項1または2に記載のリチウムイオン二次電池。
  4.  請求項1から3のいずれか一項に記載のリチウムイオン二次電池を備える、車両。
PCT/JP2009/064718 2009-08-24 2009-08-24 非水電解液型リチウムイオン二次電池 WO2011024251A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011528534A JP5472755B2 (ja) 2009-08-24 2009-08-24 非水電解液型リチウムイオン二次電池
PCT/JP2009/064718 WO2011024251A1 (ja) 2009-08-24 2009-08-24 非水電解液型リチウムイオン二次電池
CN200980161098.6A CN102484289B (zh) 2009-08-24 2009-08-24 非水电解液型锂离子二次电池
US13/390,583 US8980482B2 (en) 2009-08-24 2009-08-24 Nonaqueous electrolyte lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/064718 WO2011024251A1 (ja) 2009-08-24 2009-08-24 非水電解液型リチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2011024251A1 true WO2011024251A1 (ja) 2011-03-03

Family

ID=43627378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064718 WO2011024251A1 (ja) 2009-08-24 2009-08-24 非水電解液型リチウムイオン二次電池

Country Status (4)

Country Link
US (1) US8980482B2 (ja)
JP (1) JP5472755B2 (ja)
CN (1) CN102484289B (ja)
WO (1) WO2011024251A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150850A1 (ja) * 2012-04-02 2013-10-10 日産自動車株式会社 リチウムイオン二次電池用電解液及びリチウムイオン二次電池
CN103460502A (zh) * 2011-04-19 2013-12-18 本田技研工业株式会社 锂离子氧电池
WO2020036222A1 (ja) 2018-08-16 2020-02-20 セントラル硝子株式会社 非水系電解液、及び非水系電解液二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US11817561B2 (en) * 2018-05-21 2023-11-14 Panasonic Intellectual Property Management Co., Ltd. Electrolyte and secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057236A (ja) * 1999-08-19 2001-02-27 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2001229964A (ja) * 2000-02-15 2001-08-24 Asahi Kasei Corp 非水系二次電池
JP2002008717A (ja) * 2000-06-27 2002-01-11 Mitsui Chemicals Inc 非水電解液とそれを用いた二次電池
JP2003151623A (ja) * 2001-11-14 2003-05-23 Japan Storage Battery Co Ltd 非水系二次電池
JP2004006188A (ja) * 2002-04-10 2004-01-08 Sony Corp 非水電解質電池
JP2004335379A (ja) * 2003-05-09 2004-11-25 Sony Corp 電池用負極、非水電解質電池
JP2007172947A (ja) * 2005-12-20 2007-07-05 Sony Corp 非水電解質二次電池
JP2007227235A (ja) * 2006-02-24 2007-09-06 Matsushita Electric Ind Co Ltd 非水電解液およびこれを含む非水電解液二次電池
JP2007287518A (ja) * 2006-04-18 2007-11-01 Sanyo Electric Co Ltd 非水系二次電池
JP2008053212A (ja) * 2006-07-24 2008-03-06 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012079A (ja) * 1998-06-24 2000-01-14 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2001006729A (ja) 1999-06-18 2001-01-12 Mitsubishi Chemicals Corp 非水系電解液二次電池
JP3717783B2 (ja) * 2000-12-01 2005-11-16 三洋電機株式会社 リチウム二次電池
JP5239106B2 (ja) 2001-05-23 2013-07-17 三菱化学株式会社 非水系電解液二次電池
JP4934914B2 (ja) * 2001-06-11 2012-05-23 三菱化学株式会社 電解液及び二次電池
CN1282272C (zh) 2001-07-12 2006-10-25 株式会社杰士汤浅 非水系二次电池
KR100882387B1 (ko) * 2004-09-03 2009-02-05 파나소닉 주식회사 비수전해액 및 이것을 포함하는 2차전지
KR100695108B1 (ko) 2004-12-30 2007-03-14 삼성에스디아이 주식회사 유기전해액 및 이를 채용한 리튬 전지
US7923148B2 (en) * 2005-03-31 2011-04-12 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery including a negative electrode containing silicon and an additive which retards oxidation of silicon during battery operation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057236A (ja) * 1999-08-19 2001-02-27 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2001229964A (ja) * 2000-02-15 2001-08-24 Asahi Kasei Corp 非水系二次電池
JP2002008717A (ja) * 2000-06-27 2002-01-11 Mitsui Chemicals Inc 非水電解液とそれを用いた二次電池
JP2003151623A (ja) * 2001-11-14 2003-05-23 Japan Storage Battery Co Ltd 非水系二次電池
JP2004006188A (ja) * 2002-04-10 2004-01-08 Sony Corp 非水電解質電池
JP2004335379A (ja) * 2003-05-09 2004-11-25 Sony Corp 電池用負極、非水電解質電池
JP2007172947A (ja) * 2005-12-20 2007-07-05 Sony Corp 非水電解質二次電池
JP2007227235A (ja) * 2006-02-24 2007-09-06 Matsushita Electric Ind Co Ltd 非水電解液およびこれを含む非水電解液二次電池
JP2007287518A (ja) * 2006-04-18 2007-11-01 Sanyo Electric Co Ltd 非水系二次電池
JP2008053212A (ja) * 2006-07-24 2008-03-06 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460502A (zh) * 2011-04-19 2013-12-18 本田技研工业株式会社 锂离子氧电池
WO2013150850A1 (ja) * 2012-04-02 2013-10-10 日産自動車株式会社 リチウムイオン二次電池用電解液及びリチウムイオン二次電池
JP2013232402A (ja) * 2012-04-02 2013-11-14 Nissan Motor Co Ltd リチウムイオン二次電池用電解液及びリチウムイオン二次電池
US9825332B2 (en) 2012-04-02 2017-11-21 Nissan Motor Co., Ltd. Electrolytic solution for lithium ion secondary battery, and lithium ion secondary battery
WO2020036222A1 (ja) 2018-08-16 2020-02-20 セントラル硝子株式会社 非水系電解液、及び非水系電解液二次電池
KR20210033040A (ko) 2018-08-16 2021-03-25 샌트랄 글래스 컴퍼니 리미티드 비수계 전해액, 및 비수계 전해액 이차 전지

Also Published As

Publication number Publication date
JP5472755B2 (ja) 2014-04-16
CN102484289A (zh) 2012-05-30
CN102484289B (zh) 2014-12-31
JPWO2011024251A1 (ja) 2013-01-24
US8980482B2 (en) 2015-03-17
US20120141884A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5408509B2 (ja) 非水電解液型リチウムイオン二次電池の製造方法
JP4487220B1 (ja) リチウム二次電池用正極およびその製造方法
JP5229598B2 (ja) リチウム二次電池及びその製造方法
US10199689B2 (en) Nonaqueous electrolyte secondary battery
JP2011090876A (ja) リチウム二次電池および該電池の製造方法
JP5590381B2 (ja) リチウムイオン二次電池
JP2010287512A (ja) リチウムイオン二次電池の製造方法
JP5392585B2 (ja) 非水電解液型リチウムイオン二次電池
JP5448001B2 (ja) 非水電解液型リチウムイオン二次電池
JP5448002B2 (ja) 非水電解液型リチウムイオン二次電池
JP5472755B2 (ja) 非水電解液型リチウムイオン二次電池
WO2011108119A1 (ja) リチウム二次電池および該電池に用いられるセパレータ
JP5517009B2 (ja) リチウムイオン二次電池製造方法
WO2020017580A1 (ja) 蓄電素子
JP6783717B2 (ja) 非水系二次電池
JP7096981B2 (ja) リチウムイオン二次電池
JP2014232707A (ja) 非水電解液二次電池の製造方法
JP2019075273A (ja) 非水電解液二次電池の製造方法
JP2011181234A (ja) 非水電解液型リチウムイオン二次電池
JP2023105638A (ja) 正極およびこれを備える二次電池
JP6331099B2 (ja) 非水電解質二次電池
JP2018181577A (ja) 非水電解液二次電池の製造方法
JP2018092769A (ja) 非水電解液二次電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161098.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848699

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13390583

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011528534

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848699

Country of ref document: EP

Kind code of ref document: A1