WO2011021704A1 - 薬剤を植物体に取り込ませる方法 - Google Patents

薬剤を植物体に取り込ませる方法 Download PDF

Info

Publication number
WO2011021704A1
WO2011021704A1 PCT/JP2010/064120 JP2010064120W WO2011021704A1 WO 2011021704 A1 WO2011021704 A1 WO 2011021704A1 JP 2010064120 W JP2010064120 W JP 2010064120W WO 2011021704 A1 WO2011021704 A1 WO 2011021704A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
plant body
aggregate
plant
dispersion
Prior art date
Application number
PCT/JP2010/064120
Other languages
English (en)
French (fr)
Inventor
山口 正永
慎也 新居
佐藤 淳
Original Assignee
アース製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アース製薬株式会社 filed Critical アース製薬株式会社
Priority to JP2011527721A priority Critical patent/JP5711125B2/ja
Priority to CN2010800368916A priority patent/CN102480938A/zh
Priority to EP20100810045 priority patent/EP2468092A4/en
Priority to US13/391,459 priority patent/US20120148652A1/en
Publication of WO2011021704A1 publication Critical patent/WO2011021704A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/18Vapour or smoke emitting compositions with delayed or sustained release
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants

Definitions

  • the present invention relates to a method for incorporating a drug into a plant and a drug composition used in the method.
  • a mosquito coil As a means for controlling a pest by volatilizing a chemical, various methods have been conventionally known. For example, a mosquito coil, a mat type, a liquid type and a fan type electric mosquito trap, and a smoke agent can be mentioned. Since these means require a heating device, a blower, and other power sources and heat sources, there are problems such as high manufacturing costs and attention to handling.
  • Patent Document 1 a new means as shown in Patent Document 1 is being studied. That is, a chemical volatilization method is proposed in which a suspension of a chemical is sucked up by a cut flower without using an apparatus and a heat source, and the chemical is volatilized through the cut flower to control pests.
  • Patent Document 1 cannot obtain continuous volatilization of the drug, and is not practical. Moreover, even if it was made into a suspension using a hydrophilic solvent, it was difficult to separate and disperse the oil-soluble drug. In addition, hydrophilic solvents such as ethanol have a problem of causing phytotoxicity to plants. In addition, the technique involves immersing cut flowers in a suspension, and it has not been assumed at all through soil.
  • Patent Document 2 Non-Patent Document 1
  • the structural modification is performed for the purpose of enhancing the lipophilicity of the drug, there is a problem that effects such as insecticide and sterilization cannot be obtained sufficiently.
  • the method of promoting uptake into a plant by modifying the structure of the drug is a method that depends on the structure of the drug itself, which inevitably has a drawback in that the target pests and fungi are limited.
  • the drug is taken in from the roots through the soil, there is a problem that if the particle size of the drug is small, the drug tends to be adsorbed on the soil, and the drug does not reach the plant sufficiently and is not taken up.
  • the aggregate body is brought into contact with the plant body. It was found that by incorporating it into the body, the drug can be incorporated into the plant body with high efficiency, and the present invention was completed.
  • the present invention is as follows. 1. A method for incorporating a drug into a plant, comprising the following steps (1) and (2). (1) A step of obtaining a dispersion in which an aggregate in which the drug is encapsulated in an amphiphile and having a particle size of 100 nm or less is dispersed in an aqueous solvent (2) The dispersion obtained in step (1) is planted 1. Contacting at least a part of the body to incorporate the aggregate into the plant body 2. The method according to item 1 above, wherein in step (2), the dispersion is brought into contact with at least the root of the plant body. 3. 3. The method according to item 1 or 2, wherein step (2) is performed to produce a plant that volatilizes the drug. 4). 4.
  • a pharmaceutical composition for incorporating a drug into a plant body comprising a dispersion in which the drug is encapsulated in an amphiphilic substance and an aggregate having a particle size of 100 nm or less is dispersed in an aqueous solvent. 7). 7. The pharmaceutical composition according to item 6, which is used in the method according to any one of items 1 to 5.
  • the aggregate that encapsulates the drug in the amphiphile used in the method of the present invention is required to pass through the plant root, leaf and stem cuticle layers, root suberinized endothelium and inferior skin. It has lipophilicity and hydrophilicity required to dissolve in an aqueous solvent that is a migration solvent. Therefore, according to the method of the present invention, the drug can be efficiently taken into the plant body regardless of the nature and structure of the drug, and further, the drug can be volatilized continuously from the plant body. .
  • the smaller the particle size of the drug the stronger the adsorption to the soil.
  • the aggregate encapsulating the drug used in the present invention in the amphiphile has a small particle size of 100 nm or less.
  • FIG. 1 is a particle size distribution diagram of aggregates contained in the aggregate dispersion used in Example 1.
  • FIG. FIG. 2 is a diagram showing the results of analysis by gas chromatography of Example 1.
  • FIG. 3 is a diagram showing the results of analysis by gas chromatography of Example 1.
  • FIG. 4 is a diagram showing the results of analysis by gas chromatography of Example 1.
  • FIG. 5 is a diagram showing the results of analysis by gas chromatography of Example 1.
  • 6 is a diagram showing the results of analysis by gas chromatography of Example 2.
  • FIG. 7 is a diagram showing the results of analysis by gas chromatography of Example 2.
  • FIG. 8A is a diagram for explaining each plant used in Examples 4 and 5
  • FIG. 8B is a diagram for explaining each plant used in Examples 3 to 5.
  • FIG. 8 (c) is a diagram for explaining each plant used in Examples 1 and 4, and FIG. 8 (d) shows each plant used in Examples 4 and 5. It is a figure for demonstrating, FIG.8 (e) is a figure for demonstrating each plant body used in Example 5.
  • FIG. 9 is a diagram for explaining the experimental apparatus used in Examples 3-5.
  • 10 is a particle size distribution diagram of aggregates contained in the aggregate dispersion liquid used in Example 10.
  • FIG. 11 is a particle size distribution diagram of aggregates contained in the aggregate dispersion liquid used in Example 10.
  • FIG. 12 is a diagram for explaining the experimental apparatus used in Example 6.
  • FIG. 13 is a diagram showing the results of Example 6.
  • FIG. 14 is a diagram for explaining the experimental apparatus used in Reference Examples 1 to 3.
  • FIG. 15A is a diagram (plan view) for explaining the experimental apparatus used in Reference Examples 4, 6, and 7.
  • FIG. 15B is a diagram (perspective view) for explaining the experimental apparatus used in Reference Examples 4, 6, and 7.
  • FIG. 16 is a graph showing the results of Reference Example 4.
  • FIGS. 17A to 17C are diagrams for explaining each plant used in Reference Example 5.
  • FIG. FIG. 18 is a diagram for explaining the experimental apparatus used in Reference Example 5.
  • the method of the present invention is a method for incorporating a drug into a plant, comprising the following steps (1) and (2).
  • the dispersion obtained in step (1) is planted Step of bringing the aggregate into contact with at least a part of the body and taking it into the plant body
  • each step will be described in detail.
  • the drug is preferably a water-insoluble, slightly soluble or oil-soluble component.
  • active ingredients such as a pest control agent and a disinfectant, are mentioned suitably, for example.
  • the pest control agent include a pest repellent component and an insecticidal component. Pest control agents and fungicides can be mixed and used for pest control.
  • the drug may be the active ingredient itself or a mixture of a solid or liquid active ingredient with an auxiliary such as a solvent.
  • Pest repellent components include, for example, N, N-diethyl-m-toluamide, caran-3,4-diol (1S, 3S, 4S, 6R-caran-3,4-diol and 1S, 3R, 4R, 6R- Karan-3,4-diol, etc.), dimethyl phthalate, 2-ethyl-1,3-hexanediol, 2,3,4,5-bis ( ⁇ 2 -butylene) tetrahydrofurfural, di-n-propylisocinco Melonate, dibutyl succinate, diethyl mandelic acid amide, 2-hydroxyethyl octyl sulfide, 2- (2-hydroxyethyl) -1-piperidinecarboxylate 1-methylpropyl, geraniol, citronellal, eugenol and di-n-butyl succin And the like.
  • insecticidal component examples include allethrin, praretrin, enpentrin, resmethrin, imiprothrin, tetramethrin, tralomethrin, terrareslin, 1-ethynyl-2-fluoro-2-pentenyl 3- (2,2-dichlorovinyl) -2,2-dimethyl
  • examples thereof include cyclopropanecarboxylate, methofluthrin, transfluthrin, profluthrin, pyriproxyfen, fenitrothion, methoxadiazone, insecticidal essential oil and phytoncide.
  • disinfectant examples include triazimephone, metalaxyl, benomyl, carbendazim, fuberidazole, thiophanate, thiophanatemethyl, trialimol, hexaconazole, triflumizole, prochloraz, oxadixyl, dazomet, captan, captahol, quinometiownate And probenazole.
  • the drug is not particularly limited as long as it has the effect of the present invention, but preferably a drug that does not harm the plant body.
  • pest control agents for example, fragrances, deodorants, fragrances, essential oils, medical drugs and the like can be used.
  • a dispersion obtained by dispersing an aggregate in which an agent such as a fragrance and a deodorant is encapsulated in an amphiphilic substance is contacted with a plant body and placed indoors, the plant body Sustained effects are obtained by the chemicals taken up and volatilized.
  • a medical drug for example, when a dispersion liquid in which an aggregate containing menthol as a drug in an amphiphilic substance is dispersed in an aqueous solvent is brought into contact with the plant body and placed near the user, Relief of symptoms such as asthma and bronchitis can be expected by drugs volatilized from the body. Furthermore, by using an essential oil such as lavender as a drug, aromatherapy effects such as mental uplift and sedation can be expected from the similarly volatilized drug.
  • the amount of the drug used may be determined according to the target effect and the particle size of the aggregate, but is preferably 0.0001 to 10% by mass, more preferably 0.01 to 1% by mass with respect to the aqueous solvent. preferable.
  • One kind of a drug may be used alone, or a plurality of kinds may be used in combination.
  • amphiphile examples of the amphiphilic substance that can be used include polyhydric alcohols, various surfactants, clay minerals, gels, polymers, and lecithin.
  • polyhydric alcohol examples include dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-butylene glycol and 3-methyl-1,3-butanediol, trihydric alcohols such as glycerin, sorbit and mannitol, etc.
  • dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-butylene glycol and 3-methyl-1,3-butanediol
  • trihydric alcohols such as glycerin, sorbit and mannitol, etc.
  • Sugar alcohol is mentioned.
  • Nonionic surfactants include, for example, polyoxyethylene alkylphenyl, polyoxyethylene alkyl ether, fatty acid sorbitan ester, polyoxyethylene alkylphenyl ether, polyoxyethylene polyoxypropylene glycol, polyoxyethylene castor oil and polyoxyethylene Examples include hardened castor oil.
  • polyoxyethylene alkyl ether polyoxyethylene fatty acid sorbitan ester, polyoxyethylene alkylphenyl ether and polyoxyethylene hydrogenated castor oil are preferable.
  • anionic activator examples include phosphate, sulfate, sulfosuccinate and sulfonate.
  • Examples of the cationic activator include alkylamine salts and quaternary ammonium salts.
  • amphoteric activators examples include alkylamine oxides and alkylbetaines.
  • polymer examples include carboxymethyl cellulose and gum arabic.
  • amphiphiles are particularly preferred because they are less harmful to plants.
  • Other amphiphiles can also be used as long as they do not affect the plant body.
  • the addition amount of the amphiphile may be appropriately determined according to the particle size of the target aggregate.
  • the amount of amphiphile added may be 0.01 to 10 times the amount of drug.
  • the amount of amphiphile added can be increased in order to stabilize the dispersion and improve the spreading effect of the drug.
  • the amount is preferably 0.1 to 1000 times, more preferably 0.1 to 200 times the amount of the drug.
  • aqueous solvent for example, water and various buffer solutions are preferably used.
  • the buffer is preferably adjusted to pH 5 to 8, and for example, phosphate buffer, HEPES buffer, citrate buffer, and acetate buffer can be used.
  • the “aggregate” is a fine particle in which drug particles of an oily liquid or solid, or a mixture thereof are encapsulated in an amphiphilic substance.
  • the drug may be the active ingredient itself, or may be a mixture of a solid, crystalline, or liquid active ingredient with an auxiliary agent such as a solvent.
  • the drug is encapsulated in an amphiphilic substance, and the particle size is 100 nm or less.
  • the particle size of the aggregate is 100 nm or less, preferably 80 nm or less, and more preferably 60 nm or less. Moreover, usually 5 nm or more is preferable.
  • the particle size of almost the entire aggregate is 100 nm or less.
  • the particle size of the aggregate of 95% or more is preferably 100 nm or less.
  • the particle size of the aggregates within the above range, when the dispersion liquid in which the aggregates are dispersed in the soil is sprayed and the dispersion liquid and the plant body are brought into contact, the adsorption of the aggregates to the soil particles is prevented. In addition, the uptake of the drug from the roots of the plant can be promoted.
  • the particle size of the aggregate is measured with, for example, a particle size distribution measuring device Nanotrac UPA manufactured by Nikkiso Co., Ltd. as described later in the examples.
  • the particle size of the aggregate can be adjusted to a desired particle size by appropriately adjusting the stirring speed, the mixing ratio of the drug and the amphiphile, and the like.
  • the peripheral speed is preferably 5 to 50 m / s when a fill mix is used as the stirring device, and preferably 0.5 to 3 m / s when a stirrer is used.
  • a dispersion in which an association body in which a drug is encapsulated in an amphiphile and having a particle size of 100 nm or less is dispersed in an aqueous solvent can be obtained by known means, for example, a phase inversion emulsification method, a liquid crystal emulsification method, a PIT emulsification method, It can be prepared by a D-phase emulsification method, an ultrafine emulsification method using a solubilized region, a mechanical emulsification method, or the like.
  • a widely commercially available apparatus can be used for the preparation of the dispersion.
  • examples include a stirrer type such as a propeller and a magnetic stirrer, a mill type such as a ball mill, a bead mill and a roll mill, a high-speed shear type such as a homomixer and a fill mix, a collision type such as high-pressure jet, and an ultrasonic irradiation type.
  • the stirring condition is preferably a peripheral speed of 0.5 to 60 m / s, more preferably a peripheral speed of 1 to 50 m / s.
  • the stirring time is preferably 1 to 60 minutes, more preferably 3 to 20 minutes.
  • the temperature during stirring is preferably 20 to 80 ° C.
  • phase inversion emulsification method for example, while stirring an insoluble or hardly soluble drug in water, an amphiphilic substance is added and mixed, and an aqueous solvent is added thereto with stirring, and water droplets in oil (W / O)
  • W / O oil-in-water
  • O / W oil-in-water
  • additives may be added to the dispersion as necessary.
  • additives include plant growth regulators such as preservatives, gibberellins, fertilizer components, gelling agents, extenders, spreading agents, wetting agents, stabilizers, soaps, liquefied petroleum gas, dimethyl ether, fluorocarbon, etc.
  • plant growth regulators such as preservatives, gibberellins, fertilizer components, gelling agents, extenders, spreading agents, wetting agents, stabilizers, soaps, liquefied petroleum gas, dimethyl ether, fluorocarbon, etc.
  • propellant casein, gelatin, alginic acid, and carboxymethylcellulose.
  • silver thiocyanate aminooxyacetic acid, aminoethoxyvinylglycine, aminoisobutyric acid, isopropylideneaminooxyacetic acid ester, allocoronamic acid, cispropenylphosphonic acid, aminotriazole, 1-methylcyclopropene, guanidine chloride, sucrose , 8-hydroxyquinoline, citric acid, succinic acid, tartaric acid, water-soluble quaternary ammonium salt polysaccharide, water-soluble quaternary ammonium salt hydroxyalkyl polysaccharide, quaternary ammonium salt polymer, allyl isothiocyanate, etc. , Nutrients, ethylene scavengers, and the like, and preservatives composed of mixtures thereof.
  • the dispersion liquid in which the association body in which the drug is encapsulated in the amphiphile and having a particle diameter of 100 nm or less is dispersed in an aqueous solvent can be used as a dispersion liquid for incorporating the drug into the plant body.
  • This step is a dispersion of the aggregate obtained in the step (1).
  • the root, stem, and leaf of a plant body are preferable, a root and a leaf are more preferable, and a root is especially preferable.
  • Examples of the method of bringing the dispersion into contact with the plant include a method in which the roots or stems of the plant are brought into contact with the dispersion (for example, immersion), and a dispersion in artificial soil such as natural soil or polymer in which plants are planted. Treatment methods such as spraying, pouring and dropping.
  • an aggregate dispersion liquid to a leaf surface of a plant body by means, such as a spray and a brush.
  • the application amount in this case may be determined as appropriate depending on the type of the drug and the like, and the amount of the drug per 1 cm 2 of the leaf surface is exemplified by 10 to 100 ⁇ g.
  • the contact time between the aggregate dispersion and the plant body is not particularly limited, but is usually preferably 1 to 120 hours.
  • Plants used in the method of the present invention include, for example, gerbera, cineraria, deimorph oseca, dahlia, chrysanthemum, calendula, sunflower, sweet pea, yamafuji, pansy, radish, carnation, gypsophila, morning glory, rose, ume, bokeh, cherry blossom, snowy willow , Stock, habutton, daisy, statice, gentian, turkey, lily, teppo lily, black lily, octopus lily, tulip, alstroemeria, aloe, ornithogalum, hyacinth, gladiolus, freesia, iris, crocus, anizozans, narcissus, neline, amaryllis, , Periwinkle, primrose, cyclamen, primula, cymbidium, dendrobium, denfare, cattleya
  • the volatilization of the drug from the plant body means the volatilization of the drug from a part exposed on the ground other than the root of the plant body.
  • the drug taken into the plant by the method of the present invention is preferably volatilized from the whole plant, and more preferably volatilized from the leaves and stems of the plant.
  • the plant body that has incorporated the drug by the method of the present invention can be used as a plant body that volatilizes the drug in the space, that is, a medium for volatilizing the drug.
  • the plant can be volatilized indoors by, for example, installing the plant body in which the drug is taken up by the method of the present invention indoors. Thereby, for example, an effective pest control effect can be obtained.
  • the agricultural product when applying the method of the present invention to agricultural products, by bringing the dispersion in which the aggregate is dispersed in an aqueous solvent into contact with the plant body, the agricultural product can be made self-defense against harmful insects. Damage can be prevented.
  • d ⁇ dT-cyphenothrin Gokyrat-S (manufactured by Sumitomo Chemical Co., Ltd.) Metofluthrin: Eminence (Sumitomo Chemical Co., Ltd.) Transfluthrin: Biothrin (manufactured by Bayer CropScience) Profluthrin: Fairy Tail (manufactured by Sumitomo Chemical Co., Ltd.) Empentrin: Vaporthrin (Sumitomo Chemical Co., Ltd.) D-limonene: D-limonene (manufactured by Nippon Terpene Chemical Co., Ltd.) POE sorbitan monolaurate: Rheodor TW-L106 (manufactured by Kao Corporation) POE hydrogenated castor oil: Emanon CH-40 (manufactured by Kao Corporation) POE alkyl ether:
  • Example 1 ⁇ Preparation of test sample> According to the formulations 1 and 2 shown in Table 1, a dispersion (samples 1 and 2) was prepared in which an aggregate in which a drug (d ⁇ dT-cyphenothrin) was encapsulated in an amphiphile was dispersed in water. The particle size of the aggregate was adjusted by the mixing ratio of the drug and the amphiphile and the stirring conditions.
  • the dispersion was prepared using a stirrer [Tokyo Rika Co., Ltd., EYELA NZ-1200] under the conditions shown in Table 2.
  • the particle size of the aggregates contained in Samples 1 and 2 was measured with a particle size distribution analyzer Nanotrac UPA manufactured by Nikkiso Co., Ltd. The results are shown in Tables 3 to 5 and FIG. In Tables 3 and 4, the unit of the measured value of the particle diameter is “ ⁇ m”, but it can be converted to “nm” by multiplying the measured value by 1000.
  • specimens 1 and 2 were irrigated into the soil of the test plant.
  • a 20 cm total height of the genus Bleonia genus Sperflorens in a commercially available pot pot was used.
  • the irrigation treatment was performed using a Pasteur pipette so that the dispersion liquid was not directly applied to the plant body.
  • the amount of the aggregate dispersion of each specimen to be irrigated into the soil was 100 ml.
  • ⁇ Preprocessing> Grind the upper part of the plant body with a mixer, add 30 ml of acetonitrile, and stir until uniform with a juicer. (2) Ultrasonic extraction for 30 minutes, followed by paper filtration, acetonitrile is added to the residue, and ultrasonic extraction is performed for 30 minutes. (3) After paper filtration, the filtrate is made up to 100 ml with acetonitrile, 20 ml is taken into a centrifuge tube, and 10 ml of 0.5 M phosphate buffer and 10 g of sodium chloride are added. (4) After centrifugation (3000 rpm, 30 minutes), the oil phase is mounted on an ODS mini column (1000 mg), and the eluate is concentrated to dryness.
  • the analysis chart of Sample 1 having an aggregate particle size of 11.9 to 21.2 nm shows d ⁇ dT-cyphenothrin at the same retention time as the standard sample. The peak was confirmed, and it was found that the drug was incorporated into the plant body.
  • Example 2 ⁇ Preparation of test sample> Dispersions (specimens 3 to 5) in which aggregates in which an agent (transfluthrin or d ⁇ dT-cyphenothrin) is encapsulated in an amphiphile are dispersed in water according to formulations 3 to 5 shown in Table 6 was prepared. The particle size of the aggregate was adjusted by the amount of amphiphile added.
  • the dispersion was prepared using a stirrer [As One Co., Ltd., Magnetic Stirrer REXIM® RS-6D] under the conditions shown in Table 7.
  • the bottle mouth of the sample bottle 20 and the plant body 10 were covered with a tight aluminum foil 30 so that there was no gap. After 24 hours from the start of liquid absorption, the plants were analyzed by gas chromatography. The blank was made to absorb water and perform the same operation.
  • the sample preparation method for analysis and analysis conditions were the same as in Example 1.
  • FIGS. 1-10 An analysis chart by gas chromatography is shown in FIGS.
  • Example 3 ⁇ Preparation of test sample> According to the formulations 6 to 10 shown in Table 9, dispersions (specimens 6 to 10) were prepared in which aggregates in which a drug (at least one of metfurthrin and transfluthrin) was encapsulated in an amphiphile were dispersed in water. The particle size of the aggregate was adjusted by the amount of amphiphile added and the stirring conditions.
  • the dispersion was prepared according to the conditions shown in Table 10 according to Filmmix [Primix Co., Ltd. K. Fill mix].
  • Begonia sempaflorence (total height of about 20 cm in a commercially available pot) was used as a test plant body.
  • 20 female squids were used as test insects.
  • Sample 7 having an aggregate particle size of 167.5 to 972.3 nm and Sample 8 having an aggregate particle size of 121.5 to 308.4 nm have a knockdown rate of 0%. It was found that the coalescence was not taken up by the plant body.
  • Example 4 ⁇ Preparation of test sample> An aggregate dispersion (specimens 11 and 12) was prepared according to formulations 11 and 12 shown in Table 13 below. The particle size of the aggregate was adjusted by the amount of amphiphile added.
  • the particle size of the aggregates contained in the dispersions of the specimens 11 and 12 was measured with a particle size distribution analyzer Nanotrac UPA manufactured by Nikkiso Co., Ltd. The results are shown in Table 14.
  • Begonia sempaflorence (total height of about 20 cm in a commercially available pot) was used as a test plant body.
  • 20 female squids were used as test insects.
  • Root hydroponic treatment As shown in FIG. 8B, a 50 ml glass sample bottle 20 was filled with the aggregate dispersion. Subsequently, the plant body 10 was taken out from the pot pot, and the soil was washed off to expose the roots and inserted into the sample bottle 20. The bottle mouth of the sample bottle 20 and the plant body 10 were covered with a tight aluminum foil 30 so that there was no gap.
  • Irrigation treatment As shown in FIG.
  • the plant body 10 placed in a pot pot is placed in a 150 mm ⁇ 150 mm ⁇ 150 mm PET box 40 having a hole of ⁇ 50 mm on the top surface, The plant body 10 was passed through.
  • the aggregate dispersion liquid is applied with the brush 60 so that the leaf surface in the box 40 is sufficiently wetted, and is tightly sealed with the aluminum foil 30 so that there is no gap between the hole and the plant body 10 to isolate the upper and lower parts of the plant body. did.
  • the test insect was released into a 100 mm ⁇ 200 mm cage made of 16 mesh made of PET.
  • KT50 indicates the time (minutes) required for 50% of the pests to be knocked down
  • KT90 indicates the time (minutes) required for 90% of the pests to be knocked down.
  • test insects should be knocked down in the specimen 12 having an aggregate particle size larger than 100 nm.
  • the particle size of the aggregate is 100 nm or less, when the aggregate is incorporated into the plant body, the drug incorporated into the plant body volatilizes from the plant body and exhibits a repellent effect. .
  • Example 5 ⁇ Preparation of test sample> According to the formulations 13 to 23 shown in Tables 16 to 17 below, aggregate dispersions (specimens 13 to 23) were prepared. The particle size of the aggregate was adjusted by the amount of amphiphile added.
  • the particle size of the aggregate contained in the aggregate dispersion liquid of Samples 13 to 23 was measured with a particle size distribution analyzer Nanotrac UPA manufactured by Nikkiso Co., Ltd. The results are shown in Tables 18 to 20 and FIGS. In Tables 18 and 19, the unit of the measured value of the particle size is “ ⁇ m”, but it can be converted to “nm” by multiplying the measured value by 1000.
  • the plant bodies shown in Tables 21 to 23 were used as test plant bodies. In addition, 20 female squids were used as test insects.
  • the aggregate dispersion was contacted by the methods shown in Tables 21-23.
  • the methods shown in Tables 21 to 23 are as follows: i) to vi).
  • i) Cut flower hydroponics As shown in FIG. 8A, a 50 ml glass sample bottle 20 was filled with the aggregate dispersion. The plant body 10 was taken out from the pot, cut at the lower end of the stem, and inserted into the sample bottle 20. The bottle mouth of the sample bottle 20 and the plant body 10 were covered with a tight aluminum foil 30 so that there was no gap.
  • Root hydroponic treatment As shown in FIG. 8B, a 50 ml glass sample bottle 20 was filled with the aggregate dispersion.
  • the plant body 10 in a pot pot is placed in a 150 mm ⁇ 150 mm ⁇ 150 mm PET box 40 having a hole of ⁇ 50 mm on the top surface, The plant body 10 was passed through.
  • the aggregate dispersion liquid is applied with the brush 60 so that the leaf surface in the box 40 is sufficiently wetted, and is tightly sealed with the aluminum foil 30 so that there is no gap between the hole and the plant body 10 to isolate the upper and lower parts of the plant body. did.
  • the test insect was released into a 100 mm ⁇ 200 mm cage made of 16 mesh made of PET.
  • KT50 indicates the time (minutes) required for 50% of the pests to knock down.
  • the drug is taken into the plant body and the drug is volatilized from the plant body by any of the root hydroponic treatment, soil treatment, and foliar treatment. . Moreover, the tendency for it to be hard to be absorbed when the aggregate particle size is large was confirmed in both soil treatment and foliar treatment.
  • Example 6 ⁇ Preparation of test sample> An aggregate dispersion (specimens 24 and 25) having the composition shown in Table 24 below was prepared. The particle size of the aggregate was adjusted by the amount of amphiphile added.
  • the particle size of the aggregates contained in the aggregate dispersion liquid of Samples 24 and 25 was measured with a particle size distribution measuring device Nanotrac UPA manufactured by Nikkiso Co., Ltd. The results are shown in Tables 25 to 26 and FIGS. In Table 25, the unit of the measured value of the particle size is “ ⁇ m”, but can be converted to “nm” by multiplying the measured value by 1000.
  • Dropping treatment The aggregate dispersion liquid was dropped into the stock of the test plant body in a shower.
  • Leaf surface treatment The aggregate dispersion was sprayed onto the leaf surface of the test plant body by spraying.
  • Irrigation treatment A bottle (ampule type 2 g ⁇ 4) filled with an aggregate dispersion was inserted in the vicinity of the root of the plant.
  • test insects 50 females of Aedes albopictus were used and ventilated 13 times per hour. The test was carried out at 27 to 29 ° C., and the test was completed because the test plant body had withered 3 days after the treatment.
  • Repellent rate (Number of landings without processing-Number of landings with sample processing) / Number of landings with no processing x 100
  • both specimens 24 and 25 showed high repellent effect by foliar treatment.
  • the repellent effect was sustained in the specimen 24 in which the drug was metfurthrin.
  • the aggregate dispersion liquid was dropped into the stock of the test plant body with a shower, the sample 25 in which the drug was transfluthrin had higher repellent efficacy.
  • Example 7 ⁇ Preparation of test sample> An aggregate dispersion (specimen 26) was prepared according to the formulation 26 shown in Table 31 below. The particle size of the aggregate was adjusted by the amount of amphiphile added.
  • the particle size of the aggregate contained in the aggregate dispersion of the specimen 26 was measured with a particle size distribution measuring device Nanotrac UPA manufactured by Nikkiso Co., Ltd. The results are shown in Table 32.
  • Begonia sempaflorence (total height of about 20 cm in a commercially available pot) was used as a test plant body.
  • a 50 ml glass sample bottle 20 was filled with the aggregate dispersion.
  • the plant body 10 was taken out from the pot, and the soil was washed off to expose the roots and inserted into the sample bottle 20.
  • the bottle mouth of the sample bottle 20 and the plant body 10 were covered with a tight aluminum foil 30 so that there was no gap.
  • the plant created in (1) above and a blower for space agitation (made by Earth Pharmaceutical Co., Ltd., roughly matted in a 150 mm x 150 mm x 150 mm PET box with a 50 mm hole in the top surface Instrument, 2.2 liters / second) was installed.
  • the following items were subjected to sensory evaluation by 25 panelists on the plant body that was immediately sealed and appeared at the top from the top hole.
  • the following blank is an example in which the above experiment was repeated except that only water was put into the sample bottle without using the aggregate dispersion of the specimen 26.
  • Example 3 was “fresher” and “citrus-based scent” compared to the blank. Therefore, it was found that when the aggregate dispersion of specimen 26 was brought into contact with the test plant body, the scent of D-limonene was recognized at a high rate.
  • ⁇ Efficacy test> As a test plant body, mugwort and giant peony were used, and the root part was cut off. A test plant body (100 g or 200 g) was immersed in each aggregate dispersion of specimens 27 to 29. Only the stem portion of the test plant was immersed in the aggregate dispersion.
  • a glass chamber measuring 70 cm long x 70 cm wide x 70 cm high was prepared, and the plant body was placed in a container as shown in FIG. 14 (no ventilation).
  • the container was filled with an aggregate dispersion of specimens 27-29.
  • a lid was formed with a food wrap (film) in order to prevent volatilization of the drug from the aggregate dispersion liquid over the entire opening of the container except for the portion where the test plant was placed in the container.
  • test plant was exposed to wind (2.2 liters / second) with a no-mat device using Earth Pharmaceutical Co., Ltd., and 17 female squids were released into the glass chamber, and the values of KT50 and KT90 were calculated. .
  • Table 34 The results are shown in Table 34.
  • KT50 indicates the time (minutes) required for 50% of the pests to be knocked down
  • KT90 indicates the time (minutes) required for 90% of the pests to be knocked down.
  • mosquito coils were used as a control.
  • the drug in the mosquito coil was dl ⁇ d-T80-alleslin (0.25%).
  • KT50 and KT90 of mosquitoes were confirmed under any conditions.
  • the result was highly effective.
  • medical agent from a plant body has volatilized more chemical
  • test plant treated by any one of the methods (1) to (3) was placed in the glass chamber used in Reference Example 1, and the same test as in Reference Example 1 was performed.
  • test plant body processed by the method of said (1) is the same as the reference example 1, except for the arrangement
  • a lid was formed on the entire pot opening with food wrap, except for the part of the plant placed in the pot.
  • test plant was exposed to wind (2.2 liters / second) with a no-mat device using Earth Pharmaceutical Co., Ltd., and 17 female squids were released into the glass chamber. After one day, KT50 and KT90. The value of was calculated. The results are shown in Table 35.
  • Reference Example 3 In Reference Example 2, the test plant subjected to soil and foliar treatment with the aggregate dispersion of specimen 28 was placed in a glass chamber, and after 5, 7, 10, 11, 14, 20, 25, 31 days, Then, 17 female squids were released, and KT50 and KT90 were calculated. The results are shown in Table 36 (note that KT50 and KT90 after one day are also shown in the same manner as in Reference Example 2).
  • the glass chamber was stored in a 25 ° C. draft.
  • Mugwort and Giant peony were used as test plant bodies.
  • the mass of the plant per pot was about 100 g.
  • 200 g of artificial soil (Horokoro Co., Ltd., horticultural soil) is put as soil, and 100 g of the test plant is planted, 2 pot tests (2 pots of 100 g of test plant per pot) Used).
  • this is referred to as a sample.
  • Test group 1 Spray the aggregate dispersion of specimen 30 on the leaves and soil of the sample by spraying, and leave it for one day.
  • Test group 2 50 ml of the aggregate dispersion of the specimen 31 is sprayed on the leaves and soil of the sample by spraying and left for one day.
  • Test group 3 50 ml of the aggregate dispersion of the specimen 32 is sprayed on the leaves and soil of the sample by spraying and left for one day.
  • Test group 4 Spray the aggregate dispersion of the specimen 33 on the leaves and soil of the sample by spraying, and leave it for one day.
  • Test group 5 50 ml of the aggregate dispersion of the specimen 31 is sprayed only on the soil of the sample by spraying and left for one day.
  • Test group 6 Spray the aggregate dispersion of the specimen 30 on the leaves and soil of the sample by spraying and leave it for 25 days.
  • Test group 7 Further, the aggregate dispersion of the specimen 31 is sprayed on the treated sample in the test group 5 only on the soil by spraying 50 ml (total 100 ml).
  • test group 6 the sample 30 was treated with 50 milliliters of the sample 30 and the sample was left for 25 days, but after 20 minutes, a high repellent effect was observed. Further, even when the aggregate dispersion was treated only on the soil as in the test sections 5 and 7, a sufficient effect was exhibited after about 30 minutes. Therefore, it turned out that the chemical
  • the aggregate dispersion As the aggregate dispersion, the aggregate dispersion (specimen 31) having the formulation 31 shown in Table 37 was used. In order to prevent chemical volatilization as shown in FIG. 17 (C), wrap and aluminum foil are used to spray 50 ml of the treatment liquid on the part indicated by the dotted line in FIG. 17 (B). The lower plant body surface and the pot part were covered, and only the part which the chemical
  • a glass chamber measuring 70 cm in length ⁇ 70 cm in width ⁇ 70 cm in height was prepared, and a specimen (plant) was placed in the approximate center of the glass chamber (no ventilation) as shown in FIG.
  • the sample was exposed to wind (1.4 liters / second) with an instrument made of Earth Pharmaceutical Co., Ltd. and no mat, and 17 female squids were released into the glass chamber, and the values of KT50 and KT90 were calculated. The results are shown in Table 39.
  • Reference Example 6 The same specimen (plant) as in Reference Example 5 was used. As shown in FIGS. 15A and 15B, a 12 tatami room with a ventilator was partitioned, and a blower (174 liters / second), the specimen (plant) produced in Reference Example 5, and a person were arranged. Fifty females of Aedes albopictus were released at the positions shown in FIGS. 15 (a) and (b).
  • the repellent effect at the start-up was slightly slow, but a high repellent effect was confirmed from about 30 minutes after the start of the test. It was thought that the repellent effect against mosquitoes was confirmed because the chemicals treated on the body surface of the plant body migrated to the other body surface of the plant body and volatilized.
  • the fragrance used in Formulation 35 is a mixture of 5.26 g of dl-camphor, 4.68 g of turpentine, 2.82 g of l-menthol, and 1.33 g of eucalyptus oil.
  • test plant bodies mini roses (Rosaceae) and rubinas (Leguminosae) were used.
  • a No. 5 pot 200 g of artificial soil (manufactured by Hanagokoro Co., Ltd., gardening soil) was added as soil, and the plant bodies were planted from the roots.
  • the specimen (plant body) treated with the aggregate dispersion liquid and the control were placed in a 20 cm long x 20 cm wide x 20 cm high box, respectively, and the odor was filled. The presence or absence of a difference in scent between the body) and the control was confirmed.
  • the three panelists evaluated that the smell was stronger than the control, and the three panelists evaluated that the smell of camphor was.
  • the fragrance of the plant body was clearly changed by treating the ground surface with the dispersion in which the aggregate containing the fragrance as a drug was dispersed, and the fragrance contained the component of the fragrance. It was thought that. Therefore, it turned out that a plant body takes in a fragrance

Abstract

 薬剤が両親媒性物質に内包された、粒径が100nm以下である会合体を水系溶媒に分散させた分散液を得る工程および得られた分散液を植物体の少なくとも一部と接触させて、会合体を植物体に取り込ませる工程を含む、薬剤を植物体に取り込ませる方法。

Description

薬剤を植物体に取り込ませる方法
 本発明は、植物体に薬剤を取り込ませる方法および該方法に用いる薬剤組成物に関する。
 薬剤を揮散させて害虫を防除する手段としては、従来から種々のものが知られている。例えば、蚊取り線香、マット式、液体式およびファン式電気蚊取器並びに燻煙剤などが挙げられる。これらの手段は、加熱装置や送風装置、その他の電源や熱源を必要とすることから製造コストがかかり、取り扱いに注意が必要になるなどの問題点があった。
 このような状況の中、特許文献1に示されたような新たな手段が検討されている。即ち、装置および熱源などを用いることなく、薬剤の懸濁液を切花に吸い上げさせ、切花を通して薬剤を揮散させて害虫を防除する薬剤の揮散方法が提案されている。
 しかしながら、特許文献1の技術は薬剤の持続的な揮散を得ることはできず、実用性に乏しいものであった。また、親水性溶媒を用いて懸濁液としても、油溶性薬剤が分離してしまい分散させることは困難であった。また、エタノール等の親水性溶媒は植物体に薬害を与えるという問題もあった。さらに、当該技術は切花を懸濁液に浸漬させるもので、土壌を介することは全く想定していないものであった。
 一方、農業や園芸分野において、植物体に薬剤を取り込ませる技術について検討がなされている。例えば、浸透移行性薬剤は、根、葉および茎などを経て植物体に取り込まれてその効果を発現するが、植物体のクチクラ層、根のスベリン化した内皮および下皮などによって、薬剤の植物体への侵入が阻害されることが知られている。また、植物体に薬剤を取り込ませるためには、用いる薬剤の親油性が高く、また植物体内での移行に適した水に溶解可能であることが必要である。そのため、薬剤の分配係数(Log P)を考慮して、親油性および親水性のバランスを調整し、薬剤の構造設計を行うことで、薬剤に浸透移行性を発揮させるための研究開発がなされている(特許文献2、非特許文献1)。
日本国特開平10-182305号公報 日本国特表2007-534716号公報
農薬の生有機化学と分子設計:江藤守聡(1985)
 しかしながら、薬剤の親油性を高めることを目的として構造改変を行うと、殺虫、殺菌等の効果が充分に得られなくなるという問題がある。また、薬剤の構造改変により植物体への取り込みを促進する方法は、薬剤自体の構造に依存した方法であるため、必然的に対象となる害虫および菌などが限られるという欠点があった。さらに、土壌を介して根から薬剤を取り込ませる場合、薬剤の粒径が小さいと土壌に吸着される傾向が強く、薬剤が植物体に充分に到達せず、取り込まれないという問題がある。
 上記課題を鑑みて検討した結果、薬剤が両親媒性物質に内包された、粒径が100nm以下である会合体を水系溶媒に分散させた分散液を植物体に接触させて当該会合体を植物体に取り込ませることにより、高い効率で薬剤を植物体に取り込ませることができることを見出し、本発明を完成させた。
 すなわち、本発明は、以下のとおりである。
1.以下の工程(1)および(2)を含む、薬剤を植物体に取り込ませる方法。
(1)薬剤が両親媒性物質に内包された、粒径が100nm以下である会合体を水系溶媒に分散させた分散液を得る工程
(2)工程(1)で得られた分散液を植物体の少なくとも一部と接触させて、会合体を植物体に取り込ませる工程
2.工程(2)において、分散液を植物体の少なくとも根と接触させる前項1に記載の方法。
3.工程(2)が薬剤を揮散する植物体を製造するために行われる、前項1または2に記載の方法。
4.工程(2)が薬剤を植物体から揮散させるために行われる、前項1~3のいずれか1項に記載の方法。
5.薬剤が害虫防除剤である前項1~4のいずれか1項に記載の方法。
6.薬剤が両親媒性物質に内包され、粒径が100nm以下である会合体を水系溶媒に分散させた分散液を含有する、植物体に薬剤を取り込ませるための薬剤組成物。
7.前項1~5のいずれか1項に記載の方法に用いる、前項6に記載の薬剤組成物。
 本発明の方法に用いる、薬剤を両親媒性物質に内包する会合体は、植物体の根、葉および茎のクチクラ層、根のスベリン化した内皮および下皮を通過するために必要とされる親油性、および移行溶媒である水系溶媒に溶解するために必要とされる親水性を有している。そのため本発明の方法によれば、薬剤の性質や構造に依らず、効率的に薬剤を植物体に取り込ませることができ、さらには植物体から当該薬剤を持続して揮散させることが可能となる。
 また、薬剤の粒径が小さいほど土壌への吸着が強まる傾向があるが、本発明に用いる薬剤を両親媒性物質に内包する会合体は、粒径が100nm以下と小さいにもかかわらず、会合体を水系溶媒に分散させた分散液の状態で植物体と接触させることで、土壌に吸着されることなく薬剤が植物体(特に根)に到達し、取り込ませることができる。
図1は、実施例1で用いた会合体分散液に含有される会合体の粒度分布図である。 図2は、実施例1のガスクロマトグラフィーによる分析の結果を示す図である。 図3は、実施例1のガスクロマトグラフィーによる分析の結果を示す図である。 図4は、実施例1のガスクロマトグラフィーによる分析の結果を示す図である。 図5は、実施例1のガスクロマトグラフィーによる分析の結果を示す図である。 図6は、実施例2のガスクロマトグラフィーによる分析の結果を示す図である。 図7は、実施例2のガスクロマトグラフィーによる分析の結果を示す図である。 図8(a)は、実施例4、5で使用した各植物体を説明するための図であり、図8(b)は、実施例3~5で使用した各植物体を説明するための図であり、図8(c)は、実施例1、4で使用した各植物体を説明するための図であり、図8(d)は、実施例4、5で使用した各植物体を説明するための図であり、図8(e)は、実施例5で使用した各植物体を説明するための図である。 図9は、実施例3~5で使用した実験装置を説明するための図である。 図10は、実施例10で用いた会合体分散液に含有される会合体の粒度分布図である。 図11は、実施例10で用いた会合体分散液に含有される会合体の粒度分布図である。 図12は、実施例6で使用した実験装置を説明するための図である。 図13は、実施例6の結果を示す図である。 図14は、参考例1~3で使用した実験装置を説明するための図である。 図15(a)は、参考例4、6、7で使用した実験装置を説明するための図(平面図)である。図15(b)は、参考例4、6、7で使用した実験装置を説明するための図(斜視図)である。 図16は、参考例4の結果を示すグラフである。 図17(A)~(C)は、参考例5で使用した各植物体を説明するための図である。 図18は、参考例5で使用した実験装置を説明するための図である。
 以下、本発明をさらに詳細に説明する。本発明の方法は、以下の工程(1)および(2)を含む、薬剤を植物体に取り込ませる方法である。
(1)薬剤が両親媒性物質に内包された、粒径が100nm以下である会合体を水系溶媒に分散させた分散液を得る工程
(2)工程(1)で得られた分散液を植物体の少なくとも一部と接触させて、会合体を植物体に取り込ませる工程
 以下、各工程に分けて詳述する。
(1)薬剤が両親媒性物質に内包された、粒径が100nm以下である会合体を水系溶媒に分散させた分散液を得る工程
 この工程は、薬剤、両親媒性物質および水系溶媒を含む混合液を、攪拌等の方法で処理し、薬剤が両親媒性物質に内包された、粒径が100nm以下である会合体を水系溶媒に分散させた分散液を得る工程である。
(薬剤)
 薬剤としては、水溶性ではない、微溶性及び油溶性の成分が好ましい。薬剤としては、例えば、害虫防除剤、殺菌剤などの活性成分が好適に挙げられる。害虫防除剤としては、例えば、害虫忌避成分および殺虫成分が挙げられる。害虫防除剤と殺菌剤を混合し、病害虫防除に用いることもできる。薬剤は、活性成分自体であってもよいし、固体や液状の活性成分を溶剤などの助剤と混合したものであってもよい。
 害虫忌避成分としては、例えば、N,N-ジエチル-m-トルアミド、カラン-3,4-ジオール(1S,3S,4S,6R-カラン-3,4-ジオールおよび1S,3R,4R,6R-カラン-3,4-ジオール等)、フタル酸ジメチル、2-エチル-1,3-ヘキサンジオール、2,3,4,5-ビス(Δ-ブチレン)テトラヒドロフルフラール、ジ-n-プロピルイソシンコメロネート、コハク酸ジブチル、ジエチルマンデル酸アミド、2-ヒドロキシエチルオクチルスルフィド、2-(2-ヒドロキシエチル)-1-ピペリジンカルボン酸1-メチルプロピル、ゲラニオール、シトロネラール、オイゲノールおよびジ-n-ブチルサクシネート等が挙げられる。
 殺虫成分としては、例えば、アレスリン、プラレトリン、エンペントリン、レスメトリン、イミプロトリン、テトラメトリン、トラロメトリン、テラレスリン、1-エチニル-2-フルオロ-2-ペンテニル 3-(2,2-ジクロロビニル)-2,2-ジメチルシクロプロパンカルボキシラート、メトフルトリン、トランスフルトリン、プロフルトリン、ピリプロキシフェン、フェニトロチオン、メトキサジアゾン、殺虫性精油およびフィトンチッド等が挙げられる。
 殺菌剤としては、例えば、トリアジメホン、メタラキシル、ベノミル、カルベンダジム、フベリダゾール、チオファネート、チオファネートメチル、トリアリモール、ヘキサコナゾール、トリフルミゾール、プロクロラズ、オキサディキシル、ダゾメット、キャプタン、カプタホール、キノメチオーナート、プロベナゾール等が挙げられる。
 薬剤としては、本発明の効果を奏するものであれば特に制限されないが、植物体に害を及ぼさないものが好ましい。また上述した病害虫防除剤の他に、例えば、芳香剤、消臭剤、香料、精油および医療用薬剤等を用いることができる。
 例えば、芳香剤および消臭剤などの薬剤を両親媒性物質に内包する会合体を水系溶媒に分散させた分散液を植物体に接触させて、屋内等に設置しておくと、植物体に取り込まれて揮散した薬剤により、持続的な効果が得られる。
 また、医療用薬剤として、例えば薬剤であるメントールを両親媒性物質に内包する会合体を水系溶媒に分散させた分散液を植物体に接触させて、使用者の近くに置いておくと、植物体から揮散した薬剤により喘息および気管支炎等の症状の緩和が期待できる。さらに薬剤としてラベンダー等の精油を用いることで、同様に揮散した薬剤により精神高揚や鎮静等のアロマテラピー効果が期待できる。
 薬剤の使用量は、目的とする効果および会合体の粒径に応じて決定すればよいが、水系溶媒に対して、0.0001~10質量%が好ましく、0.01~1質量%がより好ましい。薬剤は一種を単独で用いてもよく、複数種を組み合わせて用いてもよい。
(両親媒性物質)
 両親媒性物質としては、例えば、多価アルコール、各種界面活性剤、粘土鉱物、ゲル、ポリマー、レシチン等を用いることができる。
 多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-ブチレングリコールおよび3-メチル-1,3-ブタンジオール等の2価アルコール、グリセリン等の3価アルコール、ソルビットおよびマンニット等の糖アルコールが挙げられる。
 ノニオン系界面活性剤としては、例えば、ポリオキシエチレンアルキルフェニル、ポリオキシエチレンアルキルエーテル、脂肪酸ソルビタンエステル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンヒマシ油およびポリオキシエチレン硬化ヒマシ油などが挙げられる。
 これらの中でも、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸ソルビタンエステル、ポリオキシエチレンアルキルフェニルエーテルおよびポリオキシエチレン硬化ヒマシ油が好ましい。
 アニオン系活性剤としては、例えば、リン酸塩、硫酸塩、スルホコハク酸塩およびスルホン酸塩などが挙げられる。
 カチオン系活性剤としては、例えば、アルキルアミン塩および第4級アンモニウム塩などが挙げられる。
 両性活性剤としては、例えば、アルキルアミンオキシドおよびアルキルベタインなどが挙げられる。
 ポリマーとしては、例えば、カルボキシメチルセルロースおよびアラビアガムなどが挙げられる。
 上記両親媒性物質のうち植物体への害が少ないため、ノニオン系活性剤が特に好ましい。その他の両親媒性物質についても植物体への影響が起こらない範囲で用いることができる。
 両親媒性物質の添加量は、目的とする会合体の粒径に応じて適宜決定すればよい。両親媒性物質の添加量は薬剤量の0.01~10倍量であればよい。実際の使用時においては、分散液の安定化や薬剤の展着作用を向上させるために両親媒性物質の添加量を増量することができる。その場合には、薬剤に対して0.1~1000倍量が好ましく、0.1~200倍量がより好ましい。
(水系溶媒)
 水系溶媒としては、例えば、水および各種の緩衝液等が好ましく用いられる。緩衝液としては、pH5~8に調整されたものが好ましく、例えばリン酸緩衝液、HEPES緩衝液、クエン酸緩衝液および酢酸緩衝液等を使用できる。
(会合体)
 本明細書において、「会合体」とは、油性液体もしくは固体、またはその混合物の薬剤粒子が両親媒性物質に内包された微粒子である。
(薬剤)
 薬剤は、活性成分自体であってもよく、固体や結晶状、液状の活性成分を溶剤などの助剤と混合したものであってもよい。
 本発明の方法に用いる会合体は、薬剤が両親媒性物質に内包されており、粒径が100nm以下である。会合体の粒径は、100nm以下であり、80nm以下が好ましく、60nm以下がより好ましい。また、通常5nm以上が好ましい。
 本発明の目的とする効果を得るためには、ほぼ全体の会合体の粒径が100nm以下であることが好ましい。具体的には、95%以上の会合体の粒径が100nm以下であることが好ましい。
 会合体の粒径を前記範囲とすることで、土壌に会合体を分散させた分散液を散布して、分散液と植物体とを接触させる場合、土壌粒子への会合体の吸着を防ぐことができるとともに、薬剤の植物の根からの取り込みを促進することができる。
 会合体の粒径は、実施例で後述するように、例えば、日機装(株)製の粒度分布測定装置ナノトラックUPAなどで測定される。
 会合体の粒径は、攪拌速度、および薬剤と両親媒性物質の配合比等を適宜調整することにより、所望の粒径とすることができる。
 例えば、薬剤に対して1~3倍量の両親媒性物質を混合し、周速0.5~50m/sで撹拌しながら水系溶媒を添加することで目的とする粒径の会合体分散液を得ることができる。例えば、撹拌装置として、フィルミックスを用いた場合には周速5~50m/sとすることが好ましく、スターラーを用いた場合には0.5~3m/sとすることが好ましい。
(分散液)
 薬剤が両親媒性物質に内包された、粒径が100nm以下である会合体を水系溶媒に分散させた分散液は、公知の手段、例えば、転相乳化法、液晶乳化法、PIT乳化法、D相乳化法、可溶化領域を利用した超微細乳化法および機械乳化法等により調製することができる。
 分散液の調製には、広く市販されている装置を用いることができる。例えば、プロペラおよび磁石撹拌子などのスターラー型、ボールミル、ビーズミルおよびロールミルなどのミル型、ホモミキサーおよびフィルミックスなどの高速せん断型、高圧噴射などの衝突型、並びに超音波照射型などが挙げられる。
 攪拌の条件としては、周速0.5~60m/sが好ましく、周速1~50m/sがより好ましい。また、攪拌時間は、1~60分が好ましく、3~20分がより好ましい。攪拌時の温度は、20~80℃が好ましい。
 撹拌装置としてフィルミックスを使用することで、両親媒性物質の配合量が少ない場合でも、粒径分布の範囲の狭い安定した分散液を得ることができる。
 転相乳化法としては、例えば、水に不溶または難溶性の薬剤を攪拌しながら、両親媒性物質を加え混合し、そこに撹拌下で水系溶媒を添加し、油中水滴(W/O)型から水中油滴(O/W)型へと転相させることにより、薬剤が両親媒性物質に内包された、粒径が100nm以下である会合体を水系溶媒に分散させた分散液を得ることができる。
(添加剤)
 分散液には、必要に応じて各種添加剤を添加してもよい。添加剤としては、例えば、防腐剤、ジベレリン等の植物生長調節剤、肥料成分、ゲル化剤、増量剤、展着剤、湿潤剤、安定剤、石けん類、液化石油ガス、ジメチルエーテル、フルオロカーボン等の噴射剤、カゼイン、ゼラチン、アルギン酸及びカルボキシメチルセルロース等が挙げられる。
 また、例えば、チオシアン酸銀、アミノオキシ酢酸、アミノエトキシビニルグリシン、アミノイソ酪酸、イソプロピリデンアミノオキシ酢酸エステル、アロコロナミン酸、シスプロペニルホスホン酸、アミノトリアゾール、1-メチルシクロプロペン、グアニジン塩化物、ショ糖、8-ヒドロキシキノリン、クエン酸、コハク酸、酒石酸、水溶性第4級アンモニウム化多糖類、水溶性第4級アンモニウム化ヒドロキシアルキル多糖類、第4級アンモニウム塩ポリマー、イソチオシアン酸アリル等の防腐剤、栄養剤およびエチレン捕捉剤等並びにこれらの混合物からなる保存剤等が挙げられる。
 薬剤が両親媒性物質に内包された、粒径が100nm以下である会合体を水系溶媒に分散させた分散液は、植物体に薬剤を取り込ませるための分散液として用いることができる。
(2)工程(1)で得られた分散液を植物体の少なくとも一部と接触させて、会合体を植物体に取り込ませる工程
 この工程は、工程(1)で得られた会合体の分散液(以下、会合体分散液ともいう)と植物体との接触させる部位としては、植物体の根、茎、葉が好ましく、根および葉がより好ましく、根が特に好ましい。
 分散液と植物体とを接触させる方法としては、例えば、植物体の根または茎を分散液に接触させる(例えば、浸漬)方法、植物を植えた天然土壌やポリマーなどの人工の土壌に分散液を散布、注入および滴下するなどの処理方法が挙げられる。
 また、植物体の葉面に会合体分散液をスプレーや刷毛等の手段によって塗布してもよい。この場合の塗布量は、薬剤の種類等により適宜決定すればよいが、葉面1cmあたりの薬剤量として、例えば、10~100μgが例示される。
 会合体分散液と植物体との接触時間は、特に制限されないが、通常1~120時間が好ましい。
 本発明の方法に用いる植物体としては、例えば、ガーベラ、サイネリア、デイモルフオセカ、ダリア、クリサンセマム、キンセンカ、ヒマワリ、スイートピー、ヤマフジ、パンジー、ナデシコ、カーネーション、カスミソウ、アサガオ、バラ、ウメ、ボケ、サクラ、ユキヤナギ、ストック、ハボタン、デージー、スターチス、リンドウ、トルコキキョウ、ユリ、テッポウユリ、スカシユリ、カノコユリ、チューリップ、アルストロメリア、アロエ、オーニソガラム、ヒヤシンス、グラジオラス、フリージア、アイリス、クロッカス、アニゴザンザス、スイセン、ネリネ、アマリリス、アリアケカズラ、ニチニチソウ、サクラソウ、シクラメン、プリムラ、シンビジウム、デンドロビウム、デンファレ、カトレア、パフィオペディルム、コチョウラン、オンシジウム、カランコエ、セントポーリア、グロキシニア、ホウセンカ、アネモネ、ラナンキュラス、ボタン、シャクヤク、ブライダルベール、カラー、ポトス、ディフェンバキア、アンスリウム、ゼラニウム、フクシア、ギョウリュウバイ、クチナシ、シダレヤナギ、ネコヤナギ、ハイビスカス、ポインセチア、ブーゲンビリア、ホンコンカポック、ゴム、ベゴニア、リュウゼツラン、ナンテン、ヒイラギナンテン、ツツジ、サツキ、アザレア、シャクナゲ、アジサイ、ツバキ、キク、スプレーギク、コギク、ルビナス、スズメノテッポウ、ヒメムカシヨモギ、オオアレチノギク、ヨモギ、セイタカアワダチソウ、ハマスゲ、ハルジオン、ヒメジョオン、ノゲシ、ナズナ、オオバコ、ギシギシ、ブタクサ、スギナ、スイバ、イヌタデおよびツメクサ等の花卉、観葉植物、雑草類および各種用園芸用植物や農作物が挙げられる。植物体としては、本発明の効果を奏するものであれば特に制限されない。
 本明細書における植物体からの薬剤の揮散とは、植物体の根以外の地上に露出している部位からの薬剤の揮散を意味する。
 本発明の方法により植物体に取り込まれた薬剤は、植物体の全体から揮散されることが好ましく、植物体の葉、茎から揮散されることがより好ましい。
 本発明の方法により薬剤を取り込んだ植物体は、空間に薬剤を揮散する植物体、すなわち、薬剤を揮散させるための媒体として用いることができる。
 本発明の方法により薬剤を取り込んだ植物体を、例えば屋内に設置することにより、屋内に薬剤を揮散させることができる。このことにより、例えば、有効な害虫防除効果を得ることができる。
 また、農作物に本発明の方法を適用する場合は、上記会合体を水系溶媒に分散させた分散液を植物体に接触させることにより、害虫に対して自衛し得る農作物とすることができ、害虫被害を防ぐことができる。
 以下、本発明を実施例によりさらに説明するが、本発明は下記例に制限されるものではない。
(試薬)
 以下に実施例で用いた試薬の商品名を記す。
 d・d-T-シフェノトリン:ゴキラート-S(住友化学(株)製)
 メトフルトリン:エミネンス(住友化学(株)製)
 トランスフルトリン:バイオスリン(バイエルクロップサイエンス(株)製)
 プロフルトリン:フェアリーテール(住友化学(株)製)
 エムペントリン:ベーパースリン(住友化学(株)製)
 D-リモネン:D-リモネン(日本テルペン化学(株)製)
 POEソルビタンモノラウレート:レオドールTW-L106(花王(株)製)
 POE硬化ヒマシ油:エマノーンCH-40(花王(株)製)
 POEアルキルエーテル:アクチノールF-7(松本油脂製薬(株)製)
 POEノニルフェニルエーテル:ブラウノンN510(青木油脂工業(株)製)
 POEスチリルフェノールエーテル:ソルポールT-20,T-15(東邦化学工業(株)製)
 ラウリン酸ヘキシル:セチオールA(コグニスジャパン(株)製)
 プロピレングリコールモノメチルエーテル:ハイソルブMP(東邦化学工業(株)製)
 なお、水はイオン交換水を用いた。
[実施例1]
〈試験検体の調製〉
 表1に示す処方1および2に従い、薬剤(d・d-T-シフェノトリン)が両親媒性物質に内包された会合体を水に分散させた分散液(検体1および2)を調製した。なお、会合体の粒径は、薬剤と両親媒性物質との配合比、および撹拌条件により調整した。
 分散液の調製は、表2に示す条件により、スターラー[東京理化機(株)、EYELA NZ-1200]を用いて行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 検体1および2に含まれる会合体の粒径を、日機装(株)製の粒度分布測定装置ナノトラックUPAで測定した。その結果を表3~5および図1に示す。なお、表3および4において、粒径の実測値の単位は「μm」となっているが、1000を実測値に乗じることで、「nm」に換算することができる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
〈会合体分散液と植物体との接触〉
 図8(c)に示すように、検体1および2を供試植物体の土壌に灌注処理した。供試植物体としては、市販のポット鉢に入った、全高20cm程度のシュウカイドウ科シュウカイドウ属ベゴニア・センパフローレンス(Begonia Semperflorens)を用いた。
 灌注処理は、パスツールピペットを用いて、植物体に分散液が直接かからないように行った。土壌に灌注処理する各検体の会合体分散液の量は、100mlとした。
〈植物体に取り込まれた薬剤量の測定〉
 前記潅注処理から6日後に、植物体の根より上部(検体の会合体分散液が直接接触していない部位)を、下記(1)~(6)の工程を順次行い、前処理したものをガスクロマトグラフィーにて下記分析条件にて分析した。
〈前処理〉
(1)植物体の根より上部をミキサーで粉砕し、アセトニトリルを30ml加えてジューサーで均一になるまで撹拌する。
(2)30分間超音波抽出後、ペーパーろ過し、残渣にアセトニトリルを加えて、超音波をかけて30分間再抽出する。
(3)ペーパーろ過後、ろ液をアセトニトリルで100mlに定容し、20mlを遠沈管に分取して、0.5M リン酸緩衝液 10ml、塩化ナトリウム 10gを添加する。
(4)遠心分離(3000rpm、30分間)後、油相をODSミニカラム(1000mg)にマウントし、溶出液を濃縮乾固する。
(5)30%アセトン/ヘキサンに溶解し、SAX/PSAミニカラム(500mg/500mg)にマウントする。
(6)溶出液を濃縮乾固し、全量を特級アセトン約1.5mlで溶解して、分析試料とする。
〈ガスクロマトグラフィー分析条件〉
機器:島津製作所ガスクロマトグラフGC-2014カラム:J&WキャピラリーカラムDB-1(30m×φ0.25mm、膜厚0.25μm)
キャリアガス:He気化室温度
280℃カラム温度:50℃(2min)→10℃/min→280℃(10min)
検出器温度:300℃注入モード 
スプリット比:-1(オート)制御モード 
線速度:40cm/sec
 ガスクロマトグラフィーによる分析チャートを図2~5に示す。なお、ブランクは水を吸液させて同じ操作をしたものとした。
 図2~5に示す結果からわかるように、会合体の粒径が11.9~21.2nmである検体1の分析チャートには、標準検体と同じ保持時間にd・d-T-シフェノトリンのピークが確認され、薬剤が植物体に取り込まれたことが分かった。
 一方、会合体の粒径が476.6~1710.0nmである検体2の分析チャートには、d・d-T-シフェノトリンのピークが確認されず、薬剤が植物体に取り込まれていないことが分かった。
[実施例2]
〈試験検体の調製〉
 表6に示す処方3~5に従い、薬剤(トランスフルトリンまたはd・d-T-シフェノトリン)が両親媒性物質に内包された会合体を水に分散させた分散液(検体3~5)を調製した。なお、会合体の粒径は、両親媒性物質の添加量により調整した。
 分散液の調製は、表7に示す条件により、スターラー[アズワン(株)、マグネティックスターラーREXIM RS-6D]を用いて行った。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 検体3~5の分散液に含まれる会合体の粒径を、日機装(株)製の粒度分布測定装置ナノトラックUPAで測定した。その結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
〈会合体分散液と植物体との接触〉
 図8(b)に示すように、50mlガラス製サンプル瓶20に検体3~5の会合体分散液を充填した。続いて、ポット鉢から植物体10を取り出し、土を洗い落として根をむき出しにしたものをサンプル瓶20に挿入した。
 サンプル瓶20の瓶口と植物体10を隙間が無いようにきつくアルミホイル30で覆った。吸液開始から24時間後、植物体をガスクロマトグラフィーにて分析した。ブランクは水を吸液させて同じ操作をしたものとした。
 分析用試料調製方法、分析条件は実施例1と同様とした。
 ガスクロマトグラフィーによる分析チャートを図6および7に示す。
 図6に示すように、会合体の粒径が12.8~51.1nmである検体3の分析チャートには、保持時間17.5分付近に標準と同じトランスフルトリンのピークが確認された。なお、ブランクからはトランスフルトリンのピークは検出されなかった。この結果から、検体3の会合体分散液を植物体の根に接触させることによって薬剤が植物体へ取り込まれたことが分かった。
 また、図7に示すように、会合体の粒径が12.8~51.1nmである検体4の分析チャートでは、保持時間24分付近に標準と同じd・d-T-シフェノトリンのピークが確認された。なお、ブランクからはd・d-T-シフェノトリンのピークは検出されなかった。この結果から、検体4の会合体分散液を植物体の根に接触させることによって薬剤が植物体へ取り込まれたことが分かった。
 一方、図7に示すように、会合体の粒径が818.0~6540.0nmである検体5の分析チャートには、d・d-T-シフェノトリンのピークが確認されなかった。この結果から、薬剤が植物体に取り込まれていないことが分かった。
 これらの結果から、本発明の方法によれば、d・d-T-シフェノトリンのように揮散性が低い薬剤でも、揮散性物質のトランスフルトリンと同様に植物体に取り込まれることが分かった。なお、参考値(蒸気圧)として、トランスフルトリン4.0×10-6hPa(20℃)、d・d-T-シフェノトリン<1.33×10-7hPa(20℃)であった。
[実施例3]
〈試験検体の調製〉
 表9に示す処方6~10に従い、薬剤(メトフルトリンおよびトランスフルトリンの少なくとも一方)が両親媒性物質に内包された会合体を水に分散させた分散液(検体6~10)を調製した。なお、会合体の粒径は、両親媒性物質の添加量および撹拌条件により調整した。
 分散液の調製は、表10に示す条件により、フィルミックス[プライミクス(株)、T.K.フィルミックス]を用いて行った。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 検体6~10の分散液に含まれる会合体の粒径を、日機装(株)製の粒度分布測定装置ナノトラックUPAで測定した。その結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
〈効力試験〉
 以下の(1)~(5)の手順により、検体6~10の会合体分散液を植物体に接触させて、植物体に薬剤を取り込ませ、植物体から薬剤が揮散されるか否かを調べた。
 供試植物体として、ベゴニア・センパフローレンス(市販のポット鉢に入った全高20cm程度のもの)を用いた。また、供試虫として、アカイエカの雌20頭を用いた。
(1)図8(b)に示すように、50mlガラス製サンプル瓶に会合体分散液を充填した。ポット鉢から植物体10を取り出し、土を洗い落として根をむき出しにしたものをサンプル瓶20に挿入した。サンプル瓶20の瓶口と植物体10を隙間が無いようにきつくアルミホイル30で覆った。
(2)供試虫をポリエチレンテレフタレート(PET)製16メッシュで作製した100mm×200mmのケージに放った。
(3)図9に示すように、500mm×500mm×500mmのPET製チャンバーに上記(1)で作成した植物体および供試虫を放ったケージを置いた。
(4)アース製薬(株)製おそとでノーマットの器具のみを空間撹拌用の送風機(2.2リットル/秒)として、チャンバー内に設置した。
(5)送風機を起動した後、直ぐにチャンバーを密閉し、4時間後のノックダウン率(%)を測定した。その結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 また、会合体の粒径が15.2~121.5nmである検体6、会合体の粒径が18.1~72.3nmである検体9、および会合体の粒径が12.8~51.1nmである検体10はノックダウン率が100%であり、会合体が植物体に取り込まれ、植物体に取り込まれた薬剤が植物体から揮散して忌避効果を発揮することが分かった。
 一方、会合体の粒径が167.5~972.3nmである検体7および会合体の粒径が121.5~308.4nmである検体8は、ノックダウン率が0%であり、該会合体は植物体に取り込まれないことが分かった。
 会合体の最大粒径が121.5nmである検体6は、ノックダウン率が100%であるのに対し、会合体の最小粒径が121.5nmである検体8はノックダウン率が0%であった。この結果から、植物体に薬剤が取り込まれて揮散させるための会合体の最大粒径の臨界点は、121.5nm付近であると予測された。また、検体6に含まれる会合体のうち、98%は100nm以下であった。このことから、全体の95%以上の会合体の粒径が100nm以下であれば、本発明の目的とする効果が発揮されると考えられる。
[実施例4]
〈試験検体の調製〉
 以下の表13に示す処方11および12に従い会合体分散液(検体11および12)を調製した。なお、会合体の粒径は、両親媒性物質の添加量により調整した。
Figure JPOXMLDOC01-appb-T000013
 検体11および12の分散液に含まれる会合体の粒径を、日機装(株)製の粒度分布測定装置ナノトラックUPAで測定した。その結果を表14に示す。
Figure JPOXMLDOC01-appb-T000014
〈効力試験〉
 以下の(1)~(5)の手順により、検体11または12の会合体分散液を植物体に接触させて、植物体に薬剤を取り込ませ、植物体から薬剤が揮散されるか否かを調べた。
 供試植物体として、ベゴニア・センパフローレンス(市販のポット鉢に入った全高20cm程度のもの)を用いた。また、供試虫として、アカイエカの雌20頭を用いた。
(1)検体11または12の会合体分散液を植物体と接触させる方法として、下記のように、a)切花の状態で水耕処理(切花水耕処理)、b)根の状態で水耕処理(根水耕処理)、c)土壌処理(灌注処理)、d)葉面処理の4通りを行なった。
 a)切花水耕処理:図8(a)に示すように、50mlガラス製サンプル瓶20に会合体分散液を充填した。ポット鉢から植物体10を取り出し、茎部下端で植物体を切断し、サンプル瓶20に挿入した。サンプル瓶20の瓶口と植物体10を隙間が無いようにきつくアルミホイル30で覆った。
 b)根水耕処理:図8(b)に示すように、50mlガラス製サンプル瓶20に会合体分散液を充填した。続いて、ポット鉢から植物体10を取り出し、土を洗い落として根をむき出しにしたものをサンプル瓶20に挿入した。サンプル瓶20の瓶口と植物体10を隙間が無いようにきつくアルミホイル30で覆った。
 c)灌注処理:図8(c)に示すように、天面にφ50mmの穴を開けた150mm×150mm×150mmのPET製ボックス40内にポット鉢に入った植物体10を設置し、穴に植物体10を通した。植物体10にかからないようポット鉢の土に30mLの会合体分散液をピペット50で撒き、穴と植物体10に隙間が無いようしっかりとアルミホイル30で密閉して植物体上部と下部を隔離した。
 d)葉面処理:図8(d)に示すように、天面にφ50mmの穴を開けた150mm×150mm×150mmのPET製ボックス40内にポット鉢に入った植物体10を設置し、穴に植物体10を通した。ボックス40内の葉面が十分に濡れる程度に会合体分散液を刷毛60で塗付し、穴と植物体10に隙間が無いようしっかりとアルミホイル30で密閉して植物体上部と下部を隔離した。
(2)供試虫をPET製16メッシュで作製した100mm×200mmのケージに放った。
(3)図9に示すように、500mm×500mm×500mmのPET製チャンバーに上記(1)で作成した植物体のいずれか、および供試虫を放ったケージを置いた。
(4)アース製薬(株)製おそとでノーマットの器具のみを空間撹拌用の送風機(2.2リットル/秒)として、チャンバー内に設置した。
(5)送風機を起動した後、直ぐにチャンバーを密閉し、一定時間ごとにノックダウンした供試虫数を確認した。その結果を表15に示す。
 表15において、KT50とは50%の害虫がノックダウンするのに要する時間(分)を示し、KT90とは90%の害虫がノックダウンするのに要する時間(分)を示す。
Figure JPOXMLDOC01-appb-T000015
 表15に示すように、a)切花水耕処理した場合、検体11および12のいずれにおいても供試虫のノックダウンを確認したことから、切花水耕処理の場合、会合体の粒径によらずに薬剤が植物体に取り込まれ、植物体から薬剤が揮散されることが分かった。
 また、切花水耕処理以外の、b)根水耕処理、c)土壌処理およびd)葉面処理の場合、いずれも会合体の粒径が100nmより大きい検体12では供試虫はノックダウンせず、会合体の粒径が100nm以下である検体11では、植物体に会合体が取り込まれることにより、植物体に取り込まれた薬剤が植物体から揮散して忌避効果を発揮することが分かった。
[実施例5]
〈試験検体の調製〉
 以下の表16~17に示す処方13~23に従い、会合体分散液(検体13~23)を調製した。なお、会合体の粒径は、両親媒性物質の添加量により調整した。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 検体13~23の会合体分散液に含まれる会合体の粒径を、日機装(株)製の粒度分布測定装置ナノトラックUPAで測定した。その結果を表18~20および図10~11に示す。なお、表18および19において、粒径の実測値の単位は「μm」となっているが、1000を実測値に乗じることで、「nm」に換算することができる。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
〈効力試験〉
 以下の(1)~(5)の手順により、検体13~22の会合体分散液を植物体に接触させて、植物体に薬剤を取り込ませ、植物体から薬剤が揮散されるか否かを調べた。
 供試植物体として、表21~23に示す植物体を用いた。また、供試虫として、アカイエカの雌20頭を用いた。
(1)表21~23に示す方法により、会合体分散液を接触させた。表21~23に示す方法は、下記のi)~vi)の通りである。
 i)切花水耕処理:図8(a)に示すように、50mlガラス製サンプル瓶20に会合体分散液を充填した。ポット鉢から植物体10を取り出し、茎部下端で植物体を切断し、サンプル瓶20に挿入した。サンプル瓶20の瓶口と植物体10を隙間が無いようにきつくアルミホイル30で覆った。
 ii)根水耕処理:図8(b)に示すように、50mlガラス製サンプル瓶20に会合体分散液を充填した。続いて、ポット鉢から植物体10を取り出し、土を洗い落として根をむき出しにしたものをサンプル瓶20に挿入した。サンプル瓶20の瓶口と植物体10を隙間が無いようにきつくアルミホイル30で覆った。
 iii)土壌および草に処理:植物体および土壌の両方に会合体分散液を散布した。
 iv)土壌処理:図8(e)に示すように、植物体10にかからないようポット鉢の土に会合体分散液をピペットで撒き、土壌と植物体10に隙間が無いようしっかりとアルミホイル30で密閉して植物体と土壌とを隔離した。園芸土壌としては、自然応用科学(株)製「花と野菜の培養土」を用い、赤玉土としては、自然応用科学(株)製赤玉土小粒を用いた。
 v)吸水ポリマー処理:図8(e)に示すように、植物体10にかからないようポット鉢の土に会合体分散液をピペットで撒き、吸水ポリマーと植物体10に隙間が無いようしっかりとアルミホイル30で密閉して植物体と土壌とを隔離した。吸水ポリマーとしては、住友精化(株)製アクアコークTWBを用いた。
 vi)葉面処理:図8(d)に示すように、天面にφ50mmの穴を開けた150mm×150mm×150mmのPET製ボックス40内にポット鉢に入った植物体10を設置し、穴に植物体10を通した。ボックス40内の葉面が十分に濡れる程度に会合体分散液を刷毛60で塗付し、穴と植物体10に隙間が無いようしっかりとアルミホイル30で密閉して植物体上部と下部を隔離した。
(2)供試虫をPET製16メッシュで作製した100mm×200mmのケージに放った。
(3)図9に示すように、500mm×500mm×500mmのPET製チャンバーに上記(1)で作成した植物体のいずれか、および供試虫を放ったケージを置いた。
(4)アース製薬(株)製おそとでノーマットの器具のみを空間撹拌用の送風機(2.2リットル/秒)として、チャンバー内に設置した。
(5)送風機を起動した後、直ぐにチャンバーを密閉し、一定時間ごとにノックダウンした供試虫数を確認した。その結果を表21に示す。
 表21~23において、KT50とは50%の害虫がノックダウンするのに要する時間(分)を示す。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 表21~23に示す結果から、粒径が100nm以下であり、薬剤を両親媒性物質に内包した会合体を分散させた会合体分散液を植物体に接触させることにより、薬剤が植物体に取り込まれ、植物体から薬剤が揮散されることが分かった。一方、会合体の粒径が100nmを超えると、植物体に薬剤が取り込まれにくいことが分かった。
 植物体の処理方法としては、根水耕処理、吸水ポリマー処理および土壌処理のいずれも効力があり、特に、吸水ポリマーに処理した場合には高い害虫防除効力が得られた。
 会合体分散液を接触させる植物体の部位としては、根水耕処理、土壌処理および葉面処理のいずれによっても、薬剤が植物体に取り込まれ、植物体から薬剤が揮散されることが分かった。また、会合体の粒径が大きいと吸収されにくい傾向が、土壌処理および葉面処理のいずれにおいても確認された。
 なお、植物体の種類により、効力の違いが見られたが、各植物体の吸水量の違いなど固体差があるためだと考えられる。
[実施例6]
〈試験検体の調製〉
 以下の表24に示す組成の会合体分散液(検体24および25)を調製した。なお、会合体の粒径は、両親媒性物質の添加量により調整した。
Figure JPOXMLDOC01-appb-T000024
 検体24および25の会合体分散液に含まれる会合体の粒径を、日機装(株)製の粒度分布測定装置ナノトラックUPAで測定した。その結果を表25~26および図10および11に示す。なお、表25において、粒径の実測値の単位は「μm」となっているが、1000を実測値に乗じることで、「nm」に換算することができる。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
〈効力試験〉
 図12に示すように、4畳空間に、マウスケージに入れたマウス一匹を誘引源として設置し、検体24または25の会合体分散液8g(100g/m相当)を下記i)~iv)の処理方法で処理した、354mm×234mmバットの土壌に供試植物体4株植え、マウスケージに入れたマウス一匹を誘引源として設置し、4畳空間にて試験した。
 i)土壌処理(対照):供試植物体の株元に植物体にかからないよう土に会合体分散液をピペットで撒いた。
 ii)滴下処理:供試植物体の株元に会合体分散液をシャワーにて滴下した。
 iii)葉面処理:供試植物体の葉面に、会合体分散液をスプレーにて噴霧した。
 iv)灌注処理:植物の根近傍に会合体分散液を充填したボトル(アンプルタイプ2g×4本)を挿入した。
 供試虫として、ヒトスジシマカの雌50頭を用い、1時間につき13回換気した。試験は27~29℃にて実施し、処理3日後で供試植物体が枯れてきたため、試験を終了した。
 供試虫のマウスへのランディング数を計測し、次式にて忌避率を算出した。その結果を表28~32および図13に示す。
  忌避率=
(無処理時のランディング数-検体処理時のランディング数)/無処理時のランディング数×100
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 表27~30および図13に示すように、灌注処理の場合、薬剤がメトフルトリンである検体24、および薬剤がトランスフルトリンである検体25のいずれも、忌避効果は処理3時間後から低下し、効果の持続も処理後3日間程度であった。
 また、検体24および25のいずれにおいても、葉面処理により、高い忌避効力を示した。
 供試植物体を用いずに土壌処理した場合は、薬剤がメトフルトリンである検体24の方が、忌避効果が持続した。また、供試植物体の株元に会合体分散液をシャワーにて滴下処理した場合、薬剤がトランスフルトリンである検体25の方が、忌避効力が高くなった。
[実施例7]
〈試験検体の調製〉
 以下の表31に示す処方26に従って、会合体分散液(検体26)を調製した。なお、会合体の粒径は、両親媒性物質の添加量により調整した。
Figure JPOXMLDOC01-appb-T000031
 検体26の会合体分散液に含まれる会合体の粒径を、日機装(株)製の粒度分布測定装置ナノトラックUPAで測定した。その結果を表32に示す。
Figure JPOXMLDOC01-appb-T000032
〈効力試験〉
 以下の(1)~(5)の手順により、検体26の会合体分散液を植物体に接触させて、植物体に薬剤を取り込ませ、植物体から薬剤が揮散されるか否かを調べた。
 供試植物体として、ベゴニア・センパフローレンス(市販のポット鉢に入った全高20cm程度のもの)を用いた。
(1)図8(b)に示すように、50mlガラス製サンプル瓶20に会合体分散液を充填した。ポット鉢から植物体10を取り出し、土を洗い落として根をむき出しにしたものをサンプル瓶20に挿入した。サンプル瓶20の瓶口と植物体10を隙間が無いようにきつくアルミホイル30で覆った。
(2)天面にφ50mmの穴を開けた150mm×150mm×150mmのPET製ボックス内に上記(1)で作成した植物体および空間撹拌用の送風機(アース製薬(株)製、おそとでノーマット器具、2.2リットル/秒)を設置した。
(3)送風機を起動した後、直ぐに密閉し、天面の穴から上部に出ている植物体について、パネラー25名により下記項目の官能評価を行った。
 なお、以下のブランクとは、検体26の会合体分散液を用いずにサンプル瓶に水のみを入れたこと以外は、上記実験を繰り返した例である。
 その結果、検体26の会合体分散液を供試植物体に接触させた結果とブランクで違いはあると回答したパネラーは24名(96%)であった。
 また、その違いについてパネラーに質問したところ、21名(84%)のパネラーが、実施例3のほうがブランクに比べて「爽やか」「柑橘系の香りがする」と回答した。したがって、検体26の会合体分散液を供試植物体に接触させた場合、高い割合でD-リモネンの香りが認識されることが分かった。
 この結果から、本発明の方法によれば、薬剤がD-リモネンのような精油成分である場合にも、薬剤が植物体に取り込まれて、植物体から薬剤が揮散されることが分かった。
[参考例1]
〈試験検体の調製〉
 以下の表33に示す処方27~29に従い、会合体分散液(検体27~29)を調製した。なお、会合体の粒径は、両親媒性物質の添加量により調整した。
Figure JPOXMLDOC01-appb-T000033
〈効力試験〉
 供試植物体として、ヨモギ、オオアレチノギクを用い、根の部分を切り取った。検体27~29の各会合体分散液に、供試植物体(100gまたは200g)を浸漬した。なお、供試植物体の茎部分のみを会合体分散液に浸漬した。
 一日放置後、縦70cm×横70cm×高さ70cmのガラスチャンバーを用意し、図14のように植物体を容器の中に配置した(換気無し)。なお、容器には、検体27~29の会合体分散液を充填した。
 供試植物体の容器への配置部分を除き、容器の開口部全体に、会合体分散液からの薬剤の揮散を防ぐため、食品用ラップ(フィルム)にて蓋を形成した。
 供試植物体にアース製薬(株)製おそとでノーマットの器具により風(2.2リットル/秒)を当て、ガラスチャンバー内にアカイエカのメス17頭を放ち、KT50、KT90の値を算出した。その結果を表34に示す。
 ここで、KT50とは50%の害虫がノックダウンするのに要する時間(分)、KT90とは90%の害虫がノックダウンするのに要する時間(分)を示す。
 なお、対照としては、蚊取線香を用いた。蚊取線香中の薬剤はdl・d-T80-アレスリン(0.25%)であった。
Figure JPOXMLDOC01-appb-T000034
 表34に示すように、いずれの条件でも蚊のKT50、KT90が確認された。検体28の会合体分散液を用いた場合に効力が高い結果となった。さらに、植物体の質量に応じて効力に差が出たことより、植物体からの薬剤の揮散面積の多い方が、より多くの薬剤を揮散していると考えられた。
[参考例2]
 参考例1と同様の200gの供試植物体を用いた。ただし、根の除去は行なわなかった。参考例1における検体28の会合体分散液を用い、植物体200gに対し、次の(1)~(3)の処理を行った。
(1)根水耕処理:根のみを検体に浸漬する。
(2)土壌および葉面処理:植物体を鉢(5号、直径15cm)に植え替え、土(人工土壌200g;花ごころ社製、園芸の土)と葉に検体100ミリリットルを全体にスプレーで散布する。
(3)土壌処理:植物体を鉢(5号、直径15cm)に植え替え、土(人工土壌200g;花ごころ社製、園芸の土)のみに検体100ミリリットルを全体にスプレーで散布する。
 前記(1)~(3)のいずれかの方法で処理した供試植物体を参考例1で使用したガラスチャンバーに入れ、参考例1と同様の試験を行なった。
 なお、前記(1)の方法で処理した供試植物体は、参考例1と同様に、植物体の容器への配置部分を除き、容器の開口部全体に、会合体分散液からの薬剤の揮散を防ぐために、食品用ラップにて蓋を形成した。
 また、前記(2)および(3)の方法で処理した供試植物体についても、植物体の鉢への配置部分を除き、鉢開口部全体に、食品用ラップにて蓋を形成した。
 供試植物体にアース製薬(株)製おそとでノーマットの器具により風(2.2リットル/秒)を当て、ガラスチャンバー内にアカイエカのメス17頭を放ち、一日間経過後、KT50、KT90の値を算出した。その結果を表35に示す。
Figure JPOXMLDOC01-appb-T000035
 表35に示すように、根水耕処理、土壌および葉面処理、並びに土壌処理のいずれにおいても、植物体に薬剤が取り込まれ、薬剤が植物体から揮散して、忌避効果を発揮していることが確認された。
[参考例3]
 参考例2において、検体28の会合体分散液で土壌および葉面処理した供試植物体をガラスチャンバーに入れ、5、7、10、11、14、20、25、31日後に、ガラスチャンバー内にアカイエカのメス17頭を放ち、KT50、KT90を算出した。その結果を表36に示す(なお参考例2と同様に1日後のKT50、KT90も併せて示した)。
 なお、ガラスチャンバーは、25℃ドラフト内に保存した。
Figure JPOXMLDOC01-appb-T000036
 表36に示すように、処理後10日目から効力が落ち始め、31日後ではKT値がかなり低下したが、蚊に対する効力は失われていなかった。また、屋内においては、少なくとも1ヶ月程度は蚊に対する忌避効果が持続することが分かった。
[参考例4]
 表37に示す処方30~33に従い会合体分散液(検体30~33)を調製した。
Figure JPOXMLDOC01-appb-T000037
 供試植物体として、ヨモギ、オオアレチノギクを用いた。1鉢あたりの植物体の質量は約100gであった。5号の鉢に、土壌として人工土壌(花ごころ社製、園芸の土)を200g入れ、供試植物体を100g分植え、それを2鉢試験(1鉢当り供試植物体100gを2鉢使用)で使用した。以下、これをサンプルという。
 効力試験は、下記のような試験区1~7により行った。
 試験区1:検体30の会合体分散液をサンプルの葉と土に50ミリリットルをスプレーで散布し、一日放置する。
 試験区2:検体31の会合体分散液をサンプルの葉と土に50ミリリットルをスプレーで散布し、一日放置する。
 試験区3:検体32の会合体分散液をサンプルの葉と土に50ミリリットルをスプレーで散布し、一日放置する。
 試験区4:検体33の会合体分散液をサンプルの葉と土に50ミリリットルをスプレーで散布し、一日放置する。
 試験区5:検体31の会合体分散液をサンプルの土のみに50ミリリットルをスプレーで散布し、一日放置する。
 試験区6:検体30の会合体分散液をサンプルの葉と土に50ミリリットルをスプレーで散布し、25日間放置する。
 試験区7:試験区5の処理済サンプルに、さらに検体31の会合体分散液を土にのみ50ミリリットル(計100ミリリットル)スプレーで散布する。
 図15(a)および(b)に示すように、換気装置つきの12畳の部屋を仕切り、送風装置(174リットル/秒)、各試験区のいずれかのサンプル、人を配置した。ヒトスジシマカのメス50頭を図15の位置で放した。人の両手、両足にランディングした蚊の数をカウントした(服は着たまま)。コントロール(各試験区のサンプルを使用しない試験)を基準(忌避率0%)にし、ヒトスジシマカの忌避率[忌避率(%)=(1-サンプルを設置した場合の蚊のランディング数/コントロールの蚊のランディング数)×100]を経過時間ごとに算出した。結果を表38および図16に示す。
Figure JPOXMLDOC01-appb-T000038
 表38および図16に示すように、試験区1~4は、検体30~33の会合体分散液をサンプルの葉と土に処理したものであり、即効性が認められた。また、薬剤としてプロフルトリンを用いた例が、立ち上がりの忌避率が高い結果となった。プロフルトリンの方がメトフルトリンと比べ、揮散性が高い為、このような結果となったと考えられた。
 試験区6は検体30の会合体分散液をサンプルの葉と土に50ミリリットル処理し、25日間放置したサンプルを使用したものであるが、20分間後には、高い忌避効果が見られた。また試験区5および7のように土だけに会合体分散液を処理した場合でも、30分程度時間が経てば、十分な効果を発揮した。したがって、土壌に処理した薬剤が植物体に取り込まれ、放出されていることが分かった。
[参考例5]
 植物体として、ヨモギ、オオアレチノギクを用いた。1本あたりの植物体の質量は約100gであった。図17(A)に示すように、5号の鉢に、土壌として人工土壌(花ごころ社製、園芸の土)を200g入れ、該植物体2本を根から植えた。
 会合体分散液としては、表37に示す処方31の会合体分散液(検体31)を用いた。図17(B)の点線部で示した部位に処理液50ミリリットルをスプレーで散布し、一日放置し、図17(C)に示すように、薬剤の揮散を防ぐために、ラップとアルミホイルで下部の植物体表面および鉢部分を覆い、植物体において薬剤が触れていない部分のみを露出させ、検体(植物体)とした。
 縦70cm×横70cm×高さ70cmのガラスチャンバーを用意し、図18のように検体(植物体)をガラスチャンバー内の略中央に配置した(換気無し)。
 検体にアース製薬(株)製おそとでノーマットの器具により風(1.4リットル/秒)を当て、ガラスチャンバー内にアカイエカのメス17頭を放ち、KT50、KT90の値を算出した。結果を表39に示す。
Figure JPOXMLDOC01-appb-T000039
 表39に示すように、蚊のKT50、KT90が確認された。参考例5では、図17(B)に示すように植物体の下部のみにしか薬剤を処理しておらず、試験時には、図17(C)に示すように薬剤の触れていない植物体の上部しか空間内に露出させなかった。よって、植物体の体表面に処理した薬剤が他の体表面へ移行して揮散したことにより、蚊に対するノックダウンが確認されたと考えられた。
[参考例6]
 参考例5と同じ検体(植物体)を用いた。図15(a)および(b)に示すように、換気装置つきの12畳の部屋を仕切り、送風装置(174リットル/秒)、参考例5で作製した検体(植物体)、人を配置した。ヒトスジシマカのメス50頭を図15(a)および(b)に示す位置で放した。
 人の両手、両足にランディングした蚊の数をカウントした(服は着たまま)。コントロール(未処理の検体で試験)を基準(忌避率0%)にし、ヒトスジシマカの忌避率[忌避率(%)=(1-検体を設置した場合の蚊のランディング数/コントロールの蚊のランディング数)×100]を経過時間ごとに算出した。結果を表40に示す。
Figure JPOXMLDOC01-appb-T000040
 表40に示すように、立ち上がりの忌避効果は若干遅かったが、試験開始後30分前後から高い忌避効果が確認された。植物体の体表面に処理した薬剤が、植物体の他の体表面へ移行して揮散した為、蚊に対する忌避効果が確認されたと考えられた。
[参考例7]
〈試験検体の調製〉
 表41に示す組成の処方34の会合体分散液(検体34)10gを固体担体であるパーライト50gに含浸させた。当該処理したパーライトを40℃で8時間乾燥させた後、50gを人工土壌(花ごころ社製、園芸の土)150gと混合した。
当該固体担体を配合した人工土壌200gを5号の鉢に入れ、オオアレチノギク、ヨモギ(各2本、100g)を植え、水50ミリリットルを処理したものを検体(植物体)とした。
Figure JPOXMLDOC01-appb-T000041
 図15(a)および(b)に示すように、換気装置つきの12畳の部屋を仕切り、送風装置(174リットル/秒)、上記作製した検体(植物体)、人を配置した。ヒトスジシマカのメス50頭を図15(a)および(b)に示す位置で放した。人の両手、両足にランディングした蚊の数をカウントした(服は着たまま)。コントロール〔未処理の検体(植物体)で試験〕を基準(忌避率0%)にし、ヒトスジシマカの忌避率[忌避率(%)=〔1-検体(植物体)を設置した場合の蚊のランディング数/コントロールの蚊のランディング数〕×100]を経過時間ごとに算出した。結果を表42に示す。
Figure JPOXMLDOC01-appb-T000042
 表42に示すように、立ち上がりの蚊に対する忌避効果は若干低かったが、試験開始後30分前後から忌避効果は高くなり、1時間後にはほぼ100%忌避した。
 このことから、固体担体に薬剤を処理したものを土に配合した場合でも、薬剤を根から吸い上げ、植物体表面から揮散し、蚊を忌避できることが分かった。
[参考例8]
〈試験検体の調製〉
 以下の表43に示す組成の会合体分散液(検体35)を調製した。
Figure JPOXMLDOC01-appb-T000043
 処方35に使用した香料は、dl-カンフル5.26g、テレビン油4.68g、l-メントール2.82g、ユーカリ油1.33gを混合したものである。
 供試植物体として、ミニバラ(バラ科)およびルビナス(マメ科)を用いた。5号の鉢に、土壌として人工土壌(花ごころ社製、園芸の土)を200g入れ、該植物体をそれぞれ根から植えた。
 土面全体に100ミリリットルの検体35の会合体分散液をスプレーで散布した。尚、植物体の鉢への配置部分を除き、土面および鉢全体を食品用ラップとアルミホイルで覆い、布テープで隙間を完全に塞いだ。
 表43に記載の処方のうち、香料を除いた処方で作製した溶液を用いて同様に植物体に散布したものをコントロールとした。
 一日放置後、縦20cm×横20cm×高さ20cmのボックスに会合体分散液で処理した検体(植物体)およびコントロールをそれぞれ置き、においを充満させた後、パネラー8人により、検体(植物体)とコントロールとの香りの違いの有無を確認した。
 パネラー8人全てが、検体35の会合体分散液を接触させたミニバラおよびルビナスのいずれも、コントロールと比較して明らかに香質、香気の違いを感じると評価した。
 具体的には、検体35の会合体分散液を接触させたミニバラに関しては、3人のパネラーがコントロールと比べてにおいが強くなったと評価し、3人のパネラーがカンフルの香りがすると評価した。
 そして、検体35の会合体分散液を接触させたルビナスに関しては、3人のパネラーがコントロールと比べて強いにおいを感じると評価した。
 以上の結果から、薬剤として香料を内包する会合体を分散させた分散液を土面に処理することにより、植物体の香質が明らかに変わっており、香質の中に香料の成分が含まれていると考えられた。したがって、植物体が香料成分を根から取り込み、葉や茎から揮散させることがわかった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年8月21日出願の日本特許出願2009-192409に基づくものであり、その内容はここに参照として取り込まれる。
 10 植物体
 20 サンプル瓶
 30 アルミホイル
 40 ボックス
 50 ピペット
 60 刷毛

Claims (7)

  1.  以下の工程(1)および(2)を含む、薬剤を植物体に取り込ませる方法。
    (1)薬剤が両親媒性物質に内包された、粒径が100nm以下である会合体を水系溶媒に分散させた分散液を得る工程
    (2)工程(1)で得られた分散液を植物体の少なくとも一部と接触させて、会合体を植物体に取り込ませる工程
  2.  工程(2)において、分散液を植物体の少なくとも根と接触させる請求項1に記載の方法。
  3.  工程(2)が薬剤を揮散する植物体を製造するために行われる、請求項1または2に記載の方法。
  4.  工程(2)が薬剤を植物体から揮散させるために行われる、請求項1~3のいずれか1項に記載の方法。
  5.  薬剤が害虫防除剤である請求項1~4のいずれか1項に記載の方法。
  6.  薬剤が両親媒性物質に内包され、粒径が100nm以下である会合体を水系溶媒に分散させた分散液を含有する、植物体に薬剤を取り込ませるための薬剤組成物。
  7.  請求項1~5のいずれか1項に記載の方法に用いる、請求項6に記載の薬剤組成物。
PCT/JP2010/064120 2009-08-21 2010-08-20 薬剤を植物体に取り込ませる方法 WO2011021704A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011527721A JP5711125B2 (ja) 2009-08-21 2010-08-20 薬剤を植物体に取り込ませる方法
CN2010800368916A CN102480938A (zh) 2009-08-21 2010-08-20 将药剂引入植物体的方法
EP20100810045 EP2468092A4 (en) 2009-08-21 2010-08-20 METHOD FOR INTRODUCING A MEDICINE INTO A PLANT
US13/391,459 US20120148652A1 (en) 2009-08-21 2010-08-20 Method for incorporating medicine into a plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009192409 2009-08-21
JP2009-192409 2009-08-21

Publications (1)

Publication Number Publication Date
WO2011021704A1 true WO2011021704A1 (ja) 2011-02-24

Family

ID=43607152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064120 WO2011021704A1 (ja) 2009-08-21 2010-08-20 薬剤を植物体に取り込ませる方法

Country Status (5)

Country Link
US (1) US20120148652A1 (ja)
EP (1) EP2468092A4 (ja)
JP (1) JP5711125B2 (ja)
CN (1) CN102480938A (ja)
WO (1) WO2011021704A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059198A (ja) * 2009-11-20 2010-03-18 Sumitomo Chemical Co Ltd 害虫防除用組成物及び害虫の防除方法
JP2016017061A (ja) * 2014-07-10 2016-02-01 アース製薬株式会社 ピレスロイド系化合物を水に溶解させる方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017177211A1 (en) * 2016-04-08 2017-10-12 Battelle Memorial Institute Encapsulation compositions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502042A (ja) * 1990-08-24 1993-04-15 イーデーエーアー イノヴァティヴェ デルマーレ アプリカティオーネン ゲーエムベーハー 作用物質投与用超微小滴状調剤
JPH10182305A (ja) * 1996-12-25 1998-07-07 Sumitomo Chem Co Ltd 薬剤の揮散方法
JP2007534716A (ja) * 2004-04-27 2007-11-29 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト アルキルカルボキサミドの浸透剤としての使用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954967A (en) * 1971-08-05 1976-05-04 Vanguard Chemical Company, Inc. Method of producing microcolloidal aqueous emulsions of unsaturated organic insecticidal compounds
GB8822936D0 (en) * 1988-09-30 1988-11-09 Nc Dev Inc Pesticidal control
US6165500A (en) * 1990-08-24 2000-12-26 Idea Ag Preparation for the application of agents in mini-droplets
US5466458A (en) * 1992-03-09 1995-11-14 Roussel Uclaf Emulsified spray formulations
JP2711999B2 (ja) * 1994-12-19 1998-02-10 長谷川香料株式会社 切り花の芳香増強法
JPH08209125A (ja) * 1995-02-08 1996-08-13 Kanebo Ltd 園芸用芳香剤
JP3540924B2 (ja) * 1996-12-24 2004-07-07 大日精化工業株式会社 芝生育成剤
JP2000139319A (ja) * 1998-11-09 2000-05-23 Fumakilla Ltd 薬剤蒸散体
JP2004231515A (ja) * 2002-06-08 2004-08-19 International Floral Design Kyokai:Kk 生花風の加工物及びその製造方法
JP2004298176A (ja) * 2003-03-17 2004-10-28 Dainichiseika Color & Chem Mfg Co Ltd 植物成長調節剤およびその製造方法
JP4577756B2 (ja) * 2003-12-11 2010-11-10 Tdoグラフィックス株式会社 蛍光染色植物および該植物を用いる装飾方法
JP2007153699A (ja) * 2005-12-07 2007-06-21 Taiyo Kagaku Co Ltd 植物の鉄含量向上用組成物
CN105284792A (zh) * 2006-02-27 2016-02-03 西北大学 含有游离脂肪酸和/或游离脂肪酸衍生物的微乳液形式组合物
ITVA20070047A1 (it) * 2007-05-24 2008-11-25 Lamberti Spa Microemulsioni e loro uso per migliorare l'efficacia biologica dei pesticidi
KR100912267B1 (ko) * 2007-12-05 2009-08-17 윤의식 기능성 농산물의 재배 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502042A (ja) * 1990-08-24 1993-04-15 イーデーエーアー イノヴァティヴェ デルマーレ アプリカティオーネン ゲーエムベーハー 作用物質投与用超微小滴状調剤
JPH10182305A (ja) * 1996-12-25 1998-07-07 Sumitomo Chem Co Ltd 薬剤の揮散方法
JP2007534716A (ja) * 2004-04-27 2007-11-29 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト アルキルカルボキサミドの浸透剤としての使用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2468092A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059198A (ja) * 2009-11-20 2010-03-18 Sumitomo Chemical Co Ltd 害虫防除用組成物及び害虫の防除方法
JP2016017061A (ja) * 2014-07-10 2016-02-01 アース製薬株式会社 ピレスロイド系化合物を水に溶解させる方法

Also Published As

Publication number Publication date
JPWO2011021704A1 (ja) 2013-01-24
EP2468092A4 (en) 2013-08-07
CN102480938A (zh) 2012-05-30
US20120148652A1 (en) 2012-06-14
EP2468092A1 (en) 2012-06-27
JP5711125B2 (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5818860B2 (ja) 匍匐害虫忌避剤並びに匍匐害虫の忌避方法
US20050214337A1 (en) Pesticidal compositions
JPS62500935A (ja) 長時間作用する除虫菊/ピレトロイドを基剤とするシリコ−ン安定剤を加えた殺虫剤
CN102470335A (zh) 组合物及其制备方法
WO2008062804A1 (en) Pest repellent
Mursiti et al. The activity of d-limonene from sweet orange peel (Citrus Sinensis L.) exctract as a natural insecticide controller of bedbugs (Cimex cimicidae)
JP2011236136A (ja) 衣料害虫の食害防止剤
JP5711125B2 (ja) 薬剤を植物体に取り込ませる方法
JP6576643B2 (ja) 揮発性閉鎖空間防害虫剤
JP2013177342A (ja) 昆虫防除剤
WO2009104770A1 (ja) 薬剤揮散用植物体
JP5680949B2 (ja) 害虫防除剤を用いた薬剤処理方法
CN1953659A (zh) 害虫防治剂、粉体状杀虫制剂和等足类行为搅乱剂
US4292322A (en) Method for killing insects with electro-mechanical ultrasonic nebulizer
JP2005350469A (ja) 害虫等の忌避剤
JPH11343209A (ja) 病害虫の防除剤および農薬
JP2009119335A (ja) 環境改善方法
JP2004250331A (ja) 防虫性、防ダニ性および静菌性のある消臭性組成物
JPH05255007A (ja) アリ、シロアリ及び類縁昆虫を駆除するための天然の又は天然物と同等の無毒性剤
JP4183790B2 (ja) 殺虫線香及び殺虫成分の移行及び散逸防止方法
JP2001163715A (ja) 腹足類駆除剤
CN105899075A (zh) 臭虫驱除剂、臭虫驱除用组合物以及臭虫驱除方法
JP5735335B2 (ja) 殺虫剤の殺虫効力増強剤
JP4278654B2 (ja) 害虫防除剤
JP6778594B2 (ja) ゴキブリの臭気抑制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036891.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10810045

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527721

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010810045

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13391459

Country of ref document: US

Ref document number: 1579/CHENP/2012

Country of ref document: IN