WO2011016221A1 - ヒートシンク - Google Patents

ヒートシンク Download PDF

Info

Publication number
WO2011016221A1
WO2011016221A1 PCT/JP2010/004876 JP2010004876W WO2011016221A1 WO 2011016221 A1 WO2011016221 A1 WO 2011016221A1 JP 2010004876 W JP2010004876 W JP 2010004876W WO 2011016221 A1 WO2011016221 A1 WO 2011016221A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin unit
heat sink
louvers
louver
fin
Prior art date
Application number
PCT/JP2010/004876
Other languages
English (en)
French (fr)
Inventor
俊之 細川
誠三 上野
Original Assignee
古河スカイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河スカイ株式会社 filed Critical 古河スカイ株式会社
Priority to CN201080034790.5A priority Critical patent/CN102473693B/zh
Priority to KR1020127004347A priority patent/KR101729254B1/ko
Priority to EP10806221.7A priority patent/EP2463903A4/en
Priority to US13/389,117 priority patent/US20120132400A1/en
Priority to JP2011525783A priority patent/JP5718814B2/ja
Publication of WO2011016221A1 publication Critical patent/WO2011016221A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat sink used for heat dissipation of a CPU, integrated circuits, various electronic components such as semiconductor elements, electronic devices, and various other electric devices.
  • the present invention relates to a heat sink which has thin plate fins manufactured by processing a thin plate material and is excellent in heat dissipation efficiency.
  • a heat sink is provided to dissipate heat.
  • the heat generation amount and the heat generation density of these elements or devices increase, so that a high-performance heat sink having excellent heat dissipation efficiency is required.
  • the fin unit 20 of the heat sink 200 disclosed in Patent Document 1 includes two adjacent wedge-shaped sides and / or a notch formed of three adjacent U-shaped three sides as one metal.
  • a plurality of fin rows are formed by forming a plate and cutting and raising the portion.
  • a portion which has not been cut and raised remains between the plurality of fin rows and is referred to as a "connection portion".
  • an L shape generally form an L shape.
  • base plate portion one surface (bottom) of the L-shaped fin and the connection portion described above are referred to as a base plate or a heating element (hereinafter simply referred to as “base plate portion”). It shall be in contact with “base plate or heating element”.
  • An object of the present invention is to provide a heat sink that can realize more efficient heat exchange. That is, the present invention is a heat sink in which both of the L-shaped fin surfaces (vertical and bottom portions) are separated from the base plate portion.
  • the heat sink of the first aspect is a heat sink that transfers the heat of the heat-generating component to the cooling fluid.
  • the heat sink further includes a flat base plate portion thermally connected to the heat generating component, and a fin unit having a plurality of louvers and a frame portion connected to the plurality of louvers and surrounding the plurality of louvers. Further, one end of each of the plurality of louvers is thermally connected to the base plate portion, and the frame portion is separated from the surface of the base plate portion.
  • the frame can cause turbulence in the cooling fluid when the frame is away from the surface of the base plate and in the flow of the cooling fluid. Therefore, the heat sink in this aspect has high cooling efficiency.
  • At least a portion of the plurality of louvers of the heat sink of the second aspect is formed by cutting and raising from a single metal plate, and the frame portion is formed without being cut and raised.
  • the plurality of louvers of the heat sink according to the third aspect has a length extending parallel to the flow direction of the cooling fluid, a width in the cutting and raising direction, and a cutting and raising angle, and one or more louvers of the plurality of louvers Have different lengths, different widths, and / or different cutting angles from the other louvers.
  • the fin unit of the heat sink according to the fourth aspect has a first fin unit formed by pressing a single metal plate and a second fin unit formed by pressing another single metal plate.
  • the louvers of the first fin unit have at least one of a length different from that of the louvers of the second fin unit, a different width, and a different cutting and raising angle.
  • the fin unit of the heat sink according to the fifth aspect has a first fin unit formed by pressing a metal plate and a second fin unit formed by pressing another metal plate.
  • the one end of the louver of the first fin unit is thermally connected to the base plate portion, and the end of the louver of the second fin unit is thermally connected to the other end of the louver of the first fin unit .
  • the frame of the first fin unit and the frame of the second fin unit are separated.
  • the frame portion of the first fin unit and the frame portion of the second fin unit are joined.
  • the fin unit of the heat sink according to the eighth aspect has a first fin unit formed by pressing a single metal plate and a second fin unit formed by pressing another single metal plate.
  • the plurality of louvers of the second fin unit are disposed between the plurality of louvers of the first fin unit.
  • the frame portion of the heat sink of the ninth aspect has a flow passage changing portion that changes the flow direction of the cooling fluid.
  • the cooling fluid is a liquid
  • a cover plate connected to the other ends of the plurality of louvers is provided such that a flow path of the liquid cooling fluid CF is configured.
  • the fin unit of the heat sink according to the eleventh aspect is formed by pressing a single metal plate, and the fin unit is brazed to the base plate portion.
  • the metal plate of the heat sink according to the twelfth aspect is made of a base material of aluminum, and at least one surface of which is clad with a brazing material.
  • the heat sink of the thirteenth aspect transfers the heat of the heat-generating component to the cooling fluid.
  • the heat sink comprises a flat base plate portion thermally connected to the heat generating component, and a fin unit having a plurality of louvers and a frame portion connected to the plurality of louvers and surrounding the plurality of louvers.
  • a flow path wall is provided so as to form a flow path for a cooling fluid at a position where one end of a plurality of louvers is thermally connected to the base plate portion and is opposed to the base plate portion across the fin unit
  • the frame portion is in close contact with the flow path wall.
  • the cooling fluid of the heat sink according to the fourteenth aspect is a liquid, and a cover plate which is connected to the other end of the plurality of louvers to become a flow path wall so that a flow path of the cooling fluid CF is constituted. Equipped with
  • the heat sink of the present invention has high cooling efficiency and is easy to manufacture.
  • FIG. 1st heat sink 100A of a 1st embodiment It is a perspective view of the 1st heat sink 100A of a 1st embodiment. It is a side view of the 1st heat sink 100A of a 1st embodiment seen from-X-axis direction. It is a top view of the 1st heat sink 100A of a 1st embodiment.
  • A) is a side view of the 2nd heat sink 100B of 2nd Embodiment seen from-Y-axis direction.
  • B) is a side view of the 3rd heat sink 100C of a 3rd embodiment seen from-Y-axis direction.
  • C is a side view of 4th heat sink 100D of 4th Embodiment seen from-Y-axis direction.
  • FIG. 32A is a perspective view of a thirteenth heat sink 100N of the thirteenth embodiment.
  • B is a side view of the thirteenth heat sink 100N according to the thirteenth embodiment, viewed from the -X-axis direction.
  • A is a side view of the fourteenth heat sink 100P of the fourteenth embodiment as seen from the -Y-axis direction.
  • B is a side view of a fourteenth heat sink 100P ', which is a modification of the fourteenth embodiment, as viewed from the -Y-axis direction.
  • C is a perspective view of the 15th heat sink 100Q of 15th Embodiment.
  • 16th heat sink 100R of 16th Embodiment It is a disassembled perspective view of 16th heat sink 100R of 16th Embodiment. It is a perspective view of the 16th heat sink 100R of 16th Embodiment. It is a side view of the 16th heat sink 100R of 16th Embodiment seen from-X-axis direction. It is a disassembled perspective view of 17th heat sink 100S of 17th Embodiment. It is a perspective view of the seventeenth heat sink 100S of the seventeenth embodiment. It is a side view of the seventeenth heat sink 100S of the seventeenth embodiment as viewed from the -X-axis direction. It is a perspective view of the eighteenth heat sink 100T of the eighteenth embodiment.
  • FIG. 10 is a perspective view showing a conventional heat sink 200.
  • FIG. 1 is a perspective view of a first heat sink 100A of the first embodiment.
  • the surface of the base plate portion 11 is taken as an XY plane, and the direction perpendicular to the base plate portion 11 is taken as the + Z-axis direction.
  • the first heat sink 100A is attached to a heat generating component 12 such as a semiconductor device, an integrated circuit or a CPU. Although a heat generating component 12 is drawn to aid understanding, it is not included with the first heat sink 100A.
  • the first heat sink 100A includes a base plate portion 11 mounted in close contact with the XY plane of the heat generating component 12, and a first fin unit 10A thermally connected to the base plate portion 11.
  • the first fin unit 10A is formed of one metal plate, and a plurality of louvers 13 formed by cutting and raising the metal plate obliquely in the ⁇ Z-axis direction, and a plurality of the louvers 13 It comprises a frame 14 connected to the louver 13 and left unraised.
  • the first fin unit 10A is thermally connected to the base plate portion 11 by brazing or the like to one end portion of the louver 13 to the base plate portion 11.
  • the frame portion 14 is constituted by the Y-axis frame portion 14 a and the X-axis frame portion 14 b and is connected to a substantially central portion in the Z-axis direction of the louver 13 so as not to be connected to the surface of the base plate portion 11.
  • the first heat sink 100A has one first fin unit 10A composed of 18 louvers 13 arranged in six rows in the X-axis direction and in three rows in the Y-axis direction. Ten to hundreds of first fin units 10A may be provided.
  • the first fin unit 10A is formed by pressing a metal plate having a good thermal conductivity such as aluminum, copper, or an alloy thereof, and the thickness of the metal plate T 1 is a 2mm order of 0.4mm. Further, the width D of the louver 13 is about 2 mm to 20 mm, and the distance between the louver 13 and the louver 13 in the X-axis direction also substantially matches the width D.
  • the thickness T 2 are for example 0.5 ⁇ 15 mm about aluminum base plate 11, copper, or a thermally conductive alloys thereof it is constituted good material, for example a square plate shape in accordance with the heating component 12 It is made in
  • the cut-and-raised angle ⁇ of the frame portion 14 to the louver 13 can be arbitrarily set from 10 degrees to 90 degrees.
  • the louver 13 is cut and raised from the frame 14 at a position of about D / 2 of the width D of the louver 13, but may be cut and raised at any position.
  • an X-axis frame portion 14 b is provided between the louver 13 rows arranged in the Y direction.
  • the X axis frame portion 14 b is separated from the base plate portion 11 in the Z axis direction. That is, the X-axis frame portion 14 b is not in direct contact with the base plate portion 11.
  • the louver 13 rows adjacent to each other are formed, for example, shifted by D / 2 from each other in the X-axis direction.
  • the louvers 13 belonging to the first row are positioned between the louvers 13 and the louvers 13 of the second row of louvers 13. This improves the cooling performance of the first heat sink 100A, as described below.
  • FIG. 2 is a side view of the first heat sink 100A of the first embodiment as viewed from the ⁇ X axis direction.
  • thick arrows indicate the flow of the cooling fluid CF, and the cooling fluid CF flows along the + Y axis direction.
  • the cooling fluid CF is described on the premise that a gas such as air is used, but a liquid such as water or an antifreeze liquid may be used.
  • the cooling fluid CF flowing in the first heat sink 100A is its X-axis It collides with the frame portion 14b to generate turbulent flow. As a result, the cooling fluid CF easily removes heat from the surface of the louver 13 downstream, and also removes heat from the base plate portion 11. Therefore, the cooling performance of the first heat sink 100A is improved.
  • the cooling fluid CF becomes a stable laminar flow from the turbulent flow between the louvers 13, but the turbulent flow again occurs in the portion surrounded by the dotted line B2 by the X-axis frame portion 14b.
  • the stable laminar flow flowing between the louvers 13 collides with the X-axis frame portion 14b provided at the central portion of the louver 13 in the Z-axis direction, and the divided flows are made on both sides of the Z axis of the X-axis frame portion 14b. And flows on both sides of the Z axis of the X axis frame portion 14b as a turbulent flow.
  • the cooling fluid CF forms a turbulent flow by the X-axis frame portion 14b in the same manner as the portion surrounded by the dotted line B2 in the portion surrounded by the dotted line B3. Finally, the cooling fluid CF is divided again on both sides of the Z-axis by the X-axis frame portion 14b at a portion surrounded by the dotted line B4, and becomes turbulent in the X-axis frame portion 14b. Thereafter, the cooling fluid CF flows out from the + Y side of the first heat sink 100A.
  • the cooling fluid CF that has flowed into the first heat sink 100A from the -Y side becomes turbulent many times in the first heat sink 100A and promotes heat exchange with the louver 13 or the base plate portion 11. Therefore, the heat transfer between the heat-generating component 12 and the cooling fluid CF is improved, and the heat dissipation characteristic is improved.
  • FIG. 3 is a plan view of the first heat sink 100A of the first embodiment. Also in FIG. 3, the arrows indicate the flow of the cooling fluid CF, and the cooling fluid CF flows along the + Y axis direction.
  • the cooling fluid CF flows from the ⁇ Y side between the louver 13 and the louver 13 of the first heat sink 100A. Then, since the adjacent louvers 13 rows are formed so as to be offset from each other by the distance D / 2 in the X-axis direction, the cooling fluid CF which has passed through the louvers 13 rows on the -Y side collides with the louvers 13 of the central louver 13 rows. Be done. Therefore, the cooling fluid CF is divided on both sides in the X-axis direction of the louver 13 to form turbulent turbulence. Then, it flows along the + Y axis direction along the louvers 13 in the center louver 13 row.
  • the cooling fluid CF forms a turbulent flow in the portion surrounded by the dotted line C2 as well as the portion surrounded by the dotted line C1 by the louver 13 row on the + Y side. Thereafter, the first heat sink 100A flows out from the + Y side.
  • the cooling fluid CF which has flowed into the first heat sink 100A from the -Y side, becomes turbulent many times within the first heat sink 100A to promote heat exchange. Therefore, the heat transfer between the heat generating component 12 and the cooling fluid CF is improved by the promoting effect of the turbulent flow, and the heat dissipation characteristic is improved.
  • the first fin unit 10A is integrally formed by press molding, it can be manufactured at low cost. Moreover, since they are connected and integrated by the frame portion 14 which is not cut and raised, handling is easy and assembling work is simple.
  • the distance D and the width D in the X-axis direction of each louver 13 are constant, but the change of the distance and the width is a metal plate which is not cut and raised by changing the shape of the mold at the time of press molding. Because you only need to change the position of, there is no need for significant cost increases.
  • FIG. 4 is a view showing the heat sinks of the second to fourth embodiments in which the distance D and the width in the X-axis direction of each louver are changed.
  • FIG. 4A is a side view of the second heat sink 100B of the second embodiment as viewed from the ⁇ Y-axis direction.
  • a heat generating component 22 is drawn to aid understanding, it is not included with the second heat sink 100B.
  • the heat generating component 22 has a step 22a (which may be convex or concave) and a flat portion 22b at the center.
  • the base plate portion 21 also has a step portion 21a and a flat portion 21b at the center of the heat-generating component 22 having such a step. This is because it is necessary to take away heat by increasing the contact area between the base plate portion 21 and the heat generating component 22. It is preferable to match the louvers in accordance with the step 21 a and the flat portion 21 b of the base plate 21.
  • the second fin unit 10B of the second embodiment is composed of two types of louvers 13A and louvers 13B.
  • the louver 13A has the same shape as the louver 13 of the first fin unit 10A of the first embodiment.
  • the louver 13A is fixed to the flat portion 21b of the base plate portion 21 by brazing or the like in a state in which the louver 13A is inclined at the same angle ⁇ .
  • the louver 13B is fixed to the stepped portion 21a of the base plate 21 by brazing or the like at the same angle ⁇ as the louver 13A.
  • the width of the louver 13B is shorter than the width of the louver 13A.
  • the louver 13B is formed to have a width D / 2. Thereby, all the louvers 13A and louvers 13B are thermally connected to the base plate portion 21 at the same angle ⁇ .
  • the second fin unit 10B does not have a significant cost increase.
  • FIG. 4B is a side view of the third heat sink 100C of the third embodiment as viewed from the -Y-axis direction.
  • the heat-generating component 22 has a projecting stepped portion 22a and a flat portion 22b at the center.
  • the base plate portion 21 also has a projecting stepped portion 21a and a flat portion 21b at the center of the heat generating component 22 having such a level difference.
  • the third fin unit 10C of the third embodiment includes two types of louvers 13C and louvers 13D.
  • the louvers 13C have the same width D as the louvers 13 of the first fin unit 10A of the first embodiment.
  • the louver 13C is fixed to the flat portion 21b of the base plate portion 21 by brazing or the like in a state of being inclined at a right angle.
  • the louver 13D also has the same width D as the louver 13 of the first fin unit 10A of the first embodiment.
  • the angle ⁇ of the louver 13D is smaller than the angle ⁇ , and is fixed to the stepped portion 21a of the base plate portion 21 by brazing or the like.
  • louvers 13C and louvers 13D are thermally connected to the base plate portion 21.
  • the louver 13C and the louver 13D may be adjusted at an appropriate angle.
  • the 3-fin unit 10C does not have a significant cost increase.
  • FIG. 4C is a side view of the fourth heat sink 100D of the fourth embodiment as viewed from the -Y-axis direction.
  • the heat-generating component 22 has a projecting step portion 22a and a flat portion 22b at the center.
  • the base plate portion 21 also has a projecting stepped portion 21a and a flat portion 21b at the center of the heat generating component 22 having such a level difference.
  • the fourth fin unit 10D of the fourth embodiment includes two types of louvers 13E and louvers 13F.
  • the louver 13E is the same as the louver 13A of the second fin unit 10B of the second embodiment, and is fixed to the recess of the base plate portion 21 at an angle ⁇ .
  • the louver 13F is vertical, and is fixed to the step 21a of the base plate 21 by brazing or the like.
  • the width DN of the louver 13F is considerably smaller than the width D of the louver 13E. Thereby, all the louvers 13E and 13F are thermally connected to the convex base plate portion 21.
  • the example in which the distance between the louvers 13 and the angle of the louvers 13 are changed in accordance with the step portions 21a and the flat portions 21b of the base plate portion 21 is shown.
  • the distance between the louvers 13 and the angle of the louvers 13 can be changed as appropriate.
  • FIG. 5 is a perspective view of a fifth heat sink 100E of the fifth embodiment.
  • the fifth fin unit 10E is different from the first embodiment, so the fifth fin unit 10E will be described, and the other descriptions will be omitted.
  • the fifth fin unit 10E is provided with a louver 13, a louver 23 and a frame portion 14 configured by pressing one metal plate.
  • the fifth fin unit 10E is thermally connected to the base plate 11 by brazing one end of the louver 13 and one end of the louver 23 to the base plate 11.
  • the frame portion 14 is not connected to the surface of the base plate portion 11.
  • the frame portion 14 is composed of a Y-axis frame portion 14a and an X-axis frame portion 14b, and the X-axis frame portion 14b is connected to a substantially central portion in the Z-axis direction of the louvers 13 and 23.
  • the fifth heat sink 100E includes a row of louvers 13 composed of six short louvers 13 in the X-axis direction and a row of louvers 23 composed of six long louvers 23.
  • tens to hundreds of fifth fin units 10E may be provided in the base plate portion 11.
  • the material and thickness of the fifth fin unit 10E are the same as in the first embodiment, and the angle ⁇ between the frame 14 and the louvers 13, 23 is also the same as in the first embodiment. Further, the louver 13 rows and the louvers 23 rows are formed so as to be D / 2 shifted from each other in the X-axis direction.
  • the length L2 of the louver 23 in the Y-axis direction is about twice the length L1 of the louver 13. Therefore, by adjusting the position in the Y-axis direction of the X-axis frame portion 14b where turbulent flow of the cooling fluid CF occurs, the partial cooling performance for the heat-generating component 12 and the fluid resistance of the cooling fluid CF are adjusted. be able to. That is, partial cooling efficiency can be adjusted by providing louvers 13 and louvers 23 having different lengths.
  • the fifth fin unit 10E has the louver 13 row and the louver 23 row, but the fin unit having the louver 13 row and the fin unit having the louver 23 row are separate metals. It may be formed from a plate, and each may be disposed on one base plate portion 11.
  • FIG. 6 is an exploded perspective view of a sixth heat sink 100F according to the sixth embodiment.
  • FIG. 7 is a perspective view of the sixth fin unit 10F after assembly.
  • the sixth fin unit 10F is a dual fin unit configured by the first fin portion 10Fa and the second fin portion 10Fb.
  • the first fin portion 10Fa of the sixth fin unit 10F is formed of one metal plate, and a plurality of louvers 33a formed by cutting and raising obliquely with respect to the metal plate, and a frame which is connected to the plurality of louvers 33a and which is not cut and raised. It is constituted by the part 24. Further, the frame portion 24 is constituted by the Y-axis frame portion 24 a and the X-axis frame portion 24 b. The frame X axis frame portion 24b is connected to one end of the louver 33a in the Z axis direction. In FIG.
  • the first fin portion 10Fa has 18 louvers 33a arranged in six rows in the X-axis direction and in three rows in the Y-axis direction. Furthermore, the material and thickness of the first fin portion 10Fa are the same as those of the first fin unit 10A of the first embodiment, and the angle ⁇ between the frame portion 24 and the louver 33a is also the same as that of the first embodiment. However, the width of the louver 33a of the sixth embodiment is D / 2.
  • the second fin portion 10Fb of the sixth fin unit 10F is formed of one metal plate, and is connected to a plurality of louvers 33b formed obliquely by cutting and raising the metal plate in the -Z-axis direction, and the plurality of louvers 33b. It comprises a frame portion 34 which is left uncut and raised. Further, the frame portion 34 is composed of a Y-axis frame portion 34a and an X-axis frame portion 34b. The frame X axis frame portion 34b is connected to one end of the louver 33b in the Z axis direction. The frame X axis frame portion 34 b is connected to one end of the louver 33 in the Z axis direction.
  • the second fin portion 10Fb has the same shape as the first fin portion 10Fa including the other angle ⁇ .
  • louvers 33 a and one end of louvers 33 b corresponding to each other are joined to each other in first fin portion 10 Fa and second fin portion 10 Fb, and X axis frame portion 24 b and Y axis frame The portion 34b is joined.
  • the 6th fin unit 10F is formed.
  • the thickness of the new frame portion further configured frame portion 24 and the frame portion 34 of the sixth fin unit 10F is twice the frame portion 14 of the first embodiment, that is, 2T 1.
  • the width of the new louvers 33 more configuration and louvers 33a and louvers 33b is D
  • the distance in the X-axis direction is D / 2, a thickness of T 1.
  • the point that the distance in the X axis direction of the louver 33 is D / 2 is to differ greatly.
  • the distance of the louver 33 in the X-axis direction can be increased without changing the height of the sixth fin unit 10F. It becomes narrow from D to D / 2, the density of the louvers 33 can be increased, and the cooling performance can be enhanced.
  • FIG. 8 is a perspective view of a seventh heat sink 100G according to the seventh embodiment.
  • the seventh fin unit 10G is a double fin unit configured of a first fin portion 10Ga and a second fin portion 10Gb.
  • the first fin portion 10Ga of the seventh fin unit 10G is formed of one metal plate, and is connected to a plurality of louvers 43a formed by cutting and raising the metal plate obliquely in the ⁇ Z-axis direction and the plurality of louvers 43a. It comprises the frame portion 44 which is left uncut and raised.
  • the frame portion 44 is composed of a Y-axis frame portion 44a and an X-axis frame portion 44b.
  • the frame X-axis frame portion 44b is connected to a substantially central portion in the Z-axis direction of the louver 43a.
  • the first fin portion 10Ga has eighteen louvers 43a arranged in six rows in the X-axis direction and in three rows in the Y-axis direction. Furthermore, the material and thickness of the first fin portion 10Ga are the same as those of the first fin unit 10A of the first embodiment, and the angle ⁇ between the frame portion 44 and the louver 43a is also the same as that of the first embodiment. However, the width of the louver 43a of the seventh embodiment is D / 2.
  • the second fin portion 10Gb of the seventh fin unit 10G is the same as the first fin portion 10Ga.
  • the first fin portion 10Ga and the second fin portion 10Gb are joined by brazing or the like to one end of the corresponding louver 43a and one end of the louver 43b.
  • the seventh fin unit 10G is formed.
  • the X-axis frame portion 44b is connected to a substantially central portion in the Z-axis direction of the louver 43a
  • the X-axis frame portion 54b is connected to a plurality of louvers 43b at a substantially central portion in the Z-axis direction. Therefore, the frame 44 and the frame 54 are separated in the Z-axis direction.
  • the distance is determined by the cut and raised angle of the louver 43a and the louver 43b.
  • the width of the new louvers 43 more configuration and louvers 43a and louvers 43b is D
  • the distance in the X-axis direction is D / 2, a thickness of T 1.
  • FIG. 9 is a side view of the seventh heat sink 100G according to the seventh embodiment as viewed from the ⁇ X-axis direction.
  • the arrows indicate the flow of the cooling fluid CF, and the cooling fluid CF flows along the + Y axis direction.
  • the cooling for flowing in the seventh heat sink 100G collides with the X axis frame portion 44b and the X axis frame portion 54b to generate turbulent flow.
  • the cooling fluid CF continues to flow in the + Y-axis direction as a stable laminar flow between the louver 43 and the louver 43, but the X-axis frame portion 44b and the X-axis frame portion 54b are surrounded by the dotted line E2. Becomes turbulent again. Specifically, the stable laminar flow flowing between the louver 43 and the louver 43 collides with the X-axis frame portion 44 b and the X-axis frame portion 54 b provided at the central portion in the Z-axis direction of the louver 43 The flow is diverted to both sides of the Z axis of the frame portion 44b and the X axis frame portion 54b. Thereby, the cooling fluid CF is fractionated on both sides of the X-axis frame portion 44b and the X-axis frame portion 54b, and flows downstream as a turbulent flow.
  • the cooling fluid CF forms a turbulent flow by the X-axis frame portion 44b and the X-axis frame portion 54b in the same manner as the portion surrounded by the dotted line E2 in the portion surrounded by the dotted line E3.
  • the cooling fluid CF is diverted again to both sides of the Z-axis by the X-axis frame portion 44b and the X-axis frame portion 54b in a portion surrounded by the dotted line E4, and the cooling fluid CF is divided by the X-axis frame portion 44b and the X-axis frame portion 54b. It will be turbulent. Thereafter, the cooling fluid CF flows out from the + Y side of the seventh heat sink 100G.
  • the cooling fluid CF which has flowed into the seventh heat sink 100G from the -Y side, becomes turbulent many times in the seventh heat sink 100G and heat exchange with the louver 43 or the base plate portion 11 is promoted. Therefore, the heat transfer between the heat-generating component 12 and the cooling fluid CF is improved, and the heat dissipation characteristic is improved.
  • the surface area of the louver 43 can be increased by laminating the louver 43a and the louver 43b and thermally bonding the respective ends, for example, by brazing, whereby the cooling performance can be enhanced.
  • the X-axis frame portion 44 b and the X-axis frame portion 54 b can generate turbulent flow. For example, it is also possible to change the placement height. Since only one end of a plurality of louvers is combined, the workability is not greatly impaired.
  • FIG. 10 is a perspective view of an eighth heat sink 100H according to the eighth embodiment.
  • the eighth fin unit 10H is a compound fin unit including the first fin portion 10Ga and the second fin portion 10Gb described in the seventh embodiment.
  • the first fin portion 10Ga and the second fin portion 10Gb are joined with one end of the corresponding louver 43a and one end of the louver 43b being shifted in the Y axis direction. It is formed.
  • the width of the new louvers that are more configuration and louvers 43a and louvers 43b is D
  • the distance in the X-axis direction is D / 2
  • FIG. 11 is a side view of the eighth heat sink 100H of the eighth embodiment as viewed from the -X-axis direction.
  • the arrows indicate the flow of the cooling fluid CF, and the cooling fluid CF flows along the + Y axis direction.
  • the cooling for flowing in the eighth heat sink 100H collides with the X-axis frame portion 54b to generate turbulent flow.
  • the X-axis frame portion 44b of the cooling fluid CF on the upper side (+ Z side) is separated from the base plate portion 11 in the Z-axis direction. Therefore, the cooling fluid CF flowing in the eighth heat sink 100H collides with the X-axis frame portion 44b to generate turbulent flow.
  • the cooling fluid CF becomes a stable laminar flow between the louver 43 and the louver 43 and continues to flow in the + Y-axis direction, but becomes turbulent again by the X-axis frame portion 54b in the dotted line F2 and downstream thereof Then, the turbulent flow occurs again by the X-axis frame portion 44b.
  • the cooling fluid CF is turbulent by the X-axis frame portion 54b in the same manner as the portion surrounded by the dotted line F2 in the portion surrounded by the dotted line F3, and turbulent flow is also formed by the X-axis frame portion 44b downstream thereof. Be done. Finally, the cooling fluid CF is diverted again to both sides of the Z axis by the X axis frame 54b at a portion surrounded by the dotted line F4 to become turbulent flow, and downstream again by the X axis frame 44b to both sides of the Z axis It is diverted and it becomes a turbulent flow. Thereafter, the cooling fluid CF flows out from the + Y side of the eighth heat sink 100H.
  • the cooling fluid CF that has flowed into the seventh heat sink 100G from the -Y side becomes turbulent in the eighth heat sink 100H many times, and heat exchange with the louver 43 or the base plate portion 11 is promoted. Therefore, the heat transfer between the heat-generating component 12 and the cooling fluid CF is improved, and the heat dissipation characteristic is improved.
  • FIG. 12 is an exploded perspective view of the ninth heat sink 100J of the ninth embodiment.
  • the ninth fin unit 10J is a compound fin unit including the first fin portion 10Ga and the second fin portion 10Gb described in the seventh embodiment.
  • FIG. 13 is a perspective view of the ninth heat sink 100J after the first fin portion 10Ga and the second fin portion 10Gb are assembled.
  • the first fin portion 10Ga and the second fin portion 10Gb are assembled not to join the louver 53a and the louver 53b corresponding to each other, but shifted by a distance D / 4 in the X-axis direction Be That is, the louver 53a of the first fin unit 10Ga is inserted between the louvers 53b of the second fin unit 10Gb, and the louver 53b of the second fin unit 10Gb is inserted between the louvers 53a of the first fin unit 10Ga. After being inserted into each other, the end portions on the -Z side of the louvers 53a and 53b are joined to the base plate portion 11 by brazing or the like.
  • the louver 53b In order for the end portions on the -Z side of the louvers 53a and 53b to be in contact with the base plate portion 11, the louver 53b is not in contact with the base plate portion 11 if it is slightly longer in the -Z axial direction than the louver 53a. This is because the frame portion 54 of the second fin portion 10Gb is located on the frame portion 44 of the first fin portion 10Ga. Therefore, the connection position between the X-axis frame portion 54b and the louver 53b is in the width direction of the louver 53b. Or slightly higher in the Z direction than the center of.
  • the end of only the louver 53 a may be joined to the base plate portion 11.
  • the frame portion 44 of the first fin portion 10Ga and the frame portion 54 of the second fin portion 10Gb are bonded. Therefore, the heat from the base plate portion 11 is transmitted to the louver 53a, and the heat is transmitted from the louver 53a to the frame 44 and the frame 54 and finally to the louver 53b.
  • the distance between the louver 53a and the louver 53b of the ninth fin unit 10J is D / 4, and the distance in the X-axis direction is narrow. That is, the density of the louvers 53 is increased, and the ninth heat sink 100J can improve the cooling performance.
  • FIG. 14 is an exploded perspective view of a tenth heat sink 100K according to the tenth embodiment.
  • FIG. 15 is a perspective view of a tenth heat sink 100K after assembling the first fin portion 10Ka and the second fin portion 10Kb. 14 and 15 are drawn in a state in which the X-axis frame portion 64b and the X-axis frame portion 74b on the left side ( ⁇ Y-axis side) in FIGS. 14 and 15 are removed for the sake of understanding.
  • the tenth heat sink 100K includes a tenth fin unit 10K.
  • the tenth fin unit 10K is composed of a first fin portion 10Ka and a second fin portion 10Kb.
  • the first fin portion 10Ka includes a plurality of louvers 63a formed by cutting and raising a part of a metal plate, and a frame portion 64 connected to the plurality of louvers 63a and holding the louvers 63a.
  • the second fin portion 10Kb is also composed of a plurality of louvers 63b and a frame portion 74 connected to the plurality of louvers 63b and holding the louvers 63b.
  • the frame 64 is composed of a Y-axis frame 64a and an X-axis frame 64b
  • the frame 74 is composed of a Y-axis frame 74a and an X-axis frame 74b.
  • a portion (portion D / 2 in the X-axis direction) of the louver 63a remains flush with the frame 64, and the remaining portion is bent in the 90-degree direction.
  • the cut-and-raised angle ⁇ of the remaining part of the louver 63a can be arbitrarily set from 10 degrees to 90 degrees.
  • the louver 63b is also the same. Further, as shown in FIG. 14, the louver 63 rows adjacent to each other are formed, for example, shifted by D / 2 from each other in the X-axis direction.
  • the first fin portion 10Ka and the second fin portion 10Kb are combined by overlapping the second fin portion 10Kb and the first fin portion 10Ka by D / 4 in the X-axis direction. .
  • the first fin portion 10Ka and the second fin portion 10Kb are assembled with the louvers 63a and louvers 63b, which correspond to each other, at a distance D / 4 apart in the X-axis direction. That is, the bent end of the louver 63b is joined to a part of the same plane as the frame 64 of the louver 63a by brazing or the like.
  • the louver 63a and the louver 63b are assembled with a distance D / 4 in the X-axis direction, but they need not necessarily be in the X-axis direction.
  • the louver 63a and the louver 63b are bent. Also, it may be a curved bend instead of a linear bend. Since no torsional deformation occurs in the connection portion between the frame and the louver, stable processing can be achieved, and the louver shape can be shaped with relatively high dimensional accuracy.
  • FIG. 16 is a perspective view of an eleventh heat sink 100L according to the eleventh embodiment.
  • the eleventh heat sink 100L of the eleventh embodiment has a plurality of flow path changing portions 15 formed on the X axis frame portion 14b on the -Y side.
  • the other configuration is the same as that of the first heat sink 100A of the first embodiment, so the description will be omitted.
  • the flow passage changing portion 15 includes an upper flow passage changing portion 15 a and a lower flow passage changing portion 15 b.
  • the upper flow passage changing portion 15 a and the lower flow passage changing portion 15 b are provided between the pair of louvers 13 in the X axis direction.
  • the eleventh heat sink 100L has the three upper flow passage changing portions 15a and the four lower flow passage changing portions 15b drawn, it can be appropriately increased or decreased according to the number of louvers 13.
  • FIG. 17A is a side view of an eleventh heat sink 100L according to the eleventh embodiment in which the upper flow passage changing portion 15a is provided.
  • FIG. 17B is an enlarged view of a portion surrounded by a broken line G in FIG.
  • the arrows indicate the flow of the cooling fluid CF, and the cooling fluid CF flows along the + Y axis direction.
  • the cooling fluid CF which has flowed into the eleventh fin unit 10L from the -Y side generates turbulent flow in a portion surrounded by the broken line H1.
  • the cooling fluid CF that has flowed into the eleventh fin unit 10L from the + Z side of the X axis frame portion 14b collides with the upper flow path changing portion 15a provided in the X axis frame portion 14b and becomes oblique on the + Z side. Flow and turbulence occurs.
  • the cooling fluid CF that has flowed into the eleventh fin unit 10L from the -Z side of the X-axis frame portion 14b flows into the hole portion 16 formed by cutting and raising the upper flow path changing portion 15a. Flowing diagonally on the + Z side generates turbulent flow.
  • the cooling fluid CF generates a turbulent flow by a flow that is upside down from the flow described above.
  • the flow path changing portion 15 may have the upper flow path changing portion 15a and the lower flow path changing portion 15b cut and raised as described above, or the direction of the flow path changing portion 15 on the heat generating component 22 side.
  • the refrigerant may be flowed preferentially to a part of the heat generating component 22 to intensively cool the most heat generating part of the heat generating component 22.
  • the flow passage changing portion 15 is provided in the upstream X-axis frame portion 14b on the -Y side, but may be provided in the downstream X-axis frame portion 14b. Further, by providing the flow path changing portion 15 in the X-axis frame portion 14, the occurrence of turbulent flow is increased and heat exchange is promoted. Therefore, the cooling fluid CF which has flowed into the eleventh heat sink 100L becomes turbulent in the eleventh heat sink 100L and heat exchange with the louver 13 or the base plate portion 11 is promoted.
  • FIG. 18 is a perspective view of a twelfth heat sink 100M of the twelfth embodiment.
  • a liquid such as water or antifreeze liquid is used as the cooling fluid CF.
  • the cooling fluid CF is a liquid, it is necessary to provide a cover plate so that the cooling fluid CF can flow in the pipe.
  • the twelfth heat sink 100M of the twelfth embodiment has an inlet and an outlet (not shown) so that the cooling fluid CF for liquid does not leak to the + Z side of the twelfth fin unit 10L. It belongs to the cover plate 17 which closes the outer circumference except (not). Here, the cover plate 17 is drawn by a dotted line so that the twelfth fin unit 10L can be seen through.
  • the other configuration is the same as that of the first heat sink 100A of the first embodiment, so the description will be omitted.
  • the louver 13 is preferably thicker since the heat supply to the tip of the louver 13 becomes a neck since the heat dissipation performance is superior to that of a gas such as air.
  • the cover plate 17, like the base plate portion 11, for example, the thickness T 2 are aluminum of about 0.8 mm, copper or thermally conductive alloys thereof it is constituted good material, e.g. It is made in square plate shape according to the heat-emitting component 12.
  • the cover plate 17 may be attached to the second to eleventh embodiments so that the cooling fluid CF for liquid flows in the pipe.
  • FIG. 19A is a perspective view of a thirteenth heat sink 100N of the thirteenth embodiment, in which the cover plate 17 is drawn in a dotted line so that the thirteenth fin unit 10N can be seen through.
  • FIG. 19B is a side view of the thirteenth heat sink 100N of the thirteenth embodiment as seen from the ⁇ X axis direction, with the cover plate 17 omitted.
  • the thirteenth fin unit 10N is composed of a single metal plate, and a plurality of it is formed by cutting and raising the metal plate obliquely in the -Z-axis direction. Louvers 83 and a frame portion 84 connected to the plurality of louvers 83 and remaining unraised.
  • the frame portion 84 is composed of a Y-axis frame portion 84a and an X-axis frame portion 84b.
  • the frame X axis frame portion 84 b is connected to one end of the louver 83 in the + Z axis direction. Besides, it has the same shape as the first fin unit 10A including the dimensions such as the angle ⁇ and the length D.
  • the thirteenth fin unit 10N shown in FIG. 19 can be manufactured at low cost because it is integrally formed by press-forming one metal plate. Further, since they are connected by the frame portion 84 to be integrated, handling is easy and assembling work is simple. Furthermore, in the thirteenth embodiment, it is only necessary to change the shape of the mold at the time of press molding to change the position of the frame 84, so there is no need for significant cost increase.
  • the cover plate 17 described in the twelfth embodiment is installed as a flow path wall so as to form a flow path for the cooling fluid CF at a position facing the base plate portion 11 with the thirteenth fin unit N interposed therebetween, that is, + Z side. ing.
  • the frame portion 84 is in close contact with the cover plate 17. Since this position is out of the main flow of the cooling fluid CF, even if there is dust in the cooling fluid CF, it is difficult to get caught on the frame.
  • the flow of the cooling fluid CF changes its direction to the opposite side to the frame portion 84, and flows near the base plate portion 11,
  • the cooling performance is improved because it can be cooled directly. It is more effective to determine the position of the frame 84 so that the flow of the cooling fluid CF whose direction is changed concentrates on the heat-generating component 12 whose temperature is high.
  • FIG. 20A is a side view of a fourteenth heat sink 100P according to the fourteenth embodiment, as viewed from the -Y-axis direction.
  • the cover plate 17 is provided on the + Z side of the fourteenth heat sink 100P.
  • the heat generating component 22 is drawn to aid understanding, it is not included with the fourteenth heat sink 100P.
  • the heat generating component 22 has a step 22a (which may be convex or concave) and a flat portion 22b at the center.
  • the base plate portion 21 also has a step portion 21a and a flat portion 21b at the center of the heat-generating component 22 having such a step. This is because it is necessary to take away heat by increasing the contact area between the base plate portion 21 and the heat generating component 22. It is preferable to match the louvers in accordance with the step 21 a and the flat portion 21 b of the base plate 21.
  • the fourteenth fin unit 10P of the fourteenth embodiment is composed of two types of louvers 83A and louvers 83B.
  • the louver 83A has the same shape as the louver 83 of the thirteenth fin unit 10N of the thirteenth embodiment.
  • the louver 83A is fixed to the flat portion 21b of the base plate portion 21 by brazing or the like in a state of being inclined at the angle ⁇ as in the thirteenth embodiment.
  • a louver 83B having the same shape as the louver 83A is fixed to the step portion 21a of the base plate portion 21 by brazing or the like at an angle ⁇ (smaller than the angle ⁇ ).
  • louvers 83A and louvers 83B are thermally connected to the base plate portion 21.
  • the louver 83A and the louver 83B may be adjusted at an appropriate angle. That is, the partial cooling performance and the flow resistance of the refrigerant can be adjusted by forming the heat dissipating fins having different cut-and-raise angles in one fin unit.
  • FIG. 20B is a side view of a fourteenth heat sink 100P ′, which is a modification of the fourteenth embodiment, as viewed from the ⁇ Y-axis direction.
  • the heat-generating component 22 has a projecting stepped portion 22a and a flat portion 22b at the center.
  • the base plate portion 21 also has a projecting stepped portion 21a and a flat portion 21b at the center of the heat generating component 22 having such a level difference.
  • the fourteenth heat sink 100P includes two types of louvers 83A and louvers 83C.
  • a louver 83C formed shorter than the louver 83A is fixed to the flat portion 21b of the base plate portion 21 by brazing or the like in a state of being inclined to the angle ⁇ .
  • all the louvers 83A and 83C are thermally connected to the convex base plate portion 21. That is, the partial cooling performance and the flow resistance of the refrigerant can be adjusted by forming the heat dissipating fins having different louvers in one fin unit.
  • louver height when the louver height is different, if the base plate is flat, it can not be joined where the louver height is low, but in that case, fin units with different louver height are mixed if the base plate is uneven. Even thermal bonding is possible.
  • FIG. 20C is a perspective view of a fifteenth heat sink 100Q according to the fifteenth embodiment.
  • the cover plate 17 is provided on the + Z side of the fifteenth heat sink 100Q also in the fifteenth embodiment.
  • the fifteenth heat sink 100Q is provided with a fifteenth fin unit 10Q formed of louvers 83D and louvers 83E which have different lengths in the Y-axis direction.
  • the length L2 in the Y-axis direction of the louver 83E is approximately twice the length L1 of the louver 83D. Therefore, by adjusting the position in the Y-axis direction of the X-axis frame portion 84b where turbulent flow of the cooling fluid CF occurs, the partial cooling performance for the heat-generating component 12 and the fluid resistance of the cooling fluid CF are adjusted. be able to. That is, partial cooling efficiency can be adjusted by providing louvers 83E and louvers 83D having different lengths.
  • one fin unit has been described, but a combination of a plurality of fin portions cut by a cut line CL may be used as indicated by an alternate long and short dash line in FIG.
  • FIG. 21 is an exploded perspective view of a sixteenth heat sink 100R of the sixteenth embodiment
  • FIG. 22 is a perspective view of the sixteenth heat sink 100R of the sixteenth embodiment
  • FIG. It is a side view of the 16th heat sink 100R.
  • the cover plate 17 is provided on the + Z side of the sixteenth heat sink 100R.
  • the sixteenth fin unit 10 ⁇ / b> R is a duplex fin unit configured by the first fin portion 10 ⁇ / b> Ra and the second fin portion 10 ⁇ / b> Rb.
  • the first fin portion 10Ra and the second fin portion 10Rb have the same shape, and are the same as the thirteenth fin unit 10N described in the thirteenth embodiment.
  • the length of the short sides of the louvers 93a and 93b of the first fin portion 10Ra and the second fin portion 10Rb is about half (D / 2) of the length of the short side of the louver 83 of the thirteenth fin unit 10N. .
  • the short side length of the louver 93 of the sixteenth fin unit 10R configured by overlapping the first fin portion 10Ra and the second fin portion 10Rb vertically is the thirteenth fin unit It becomes the same as the length D of the short side of the louver 83 of 10N.
  • the louver area is increased by thermally joining the respective louver tips facing each other by brazing, for example. Can improve cooling performance.
  • the frame portions 94 and 104 of the respective fin portions 10Ra and 10Rb are disposed on the side opposite to the base plate portion 11.
  • the flow of the cooling fluid CF changes its direction to the opposite side to the respective frame portions 94 and 104 and flows near the base plate portion 11 to cool the base plate portion 11 directly, thereby improving the cooling performance.
  • the workability is not greatly impaired.
  • two or more fin portions to be stacked may be provided.
  • FIG. 25 is a perspective view of the seventeenth heat sink 100S according to the seventeenth embodiment
  • FIG. It is a side view of the seventeenth heat sink 100S.
  • the cover plate 17 is provided on the + Z side of the seventeenth heat sink 100S.
  • the seventeenth fin unit 10S is a double fin unit configured by the first fin portion 10Sa and the second fin portion 10Sb.
  • the first fin portion 10Sa has the same shape as the thirteenth heat sink 100N described in the thirteenth embodiment.
  • the second fin portion 10Sb is the frame portion 124 moved from one end of the louver 103b on the + Z side to the ⁇ Z side. The amount of movement is preferably about the thickness T1 of the frame portion 114.
  • the distance between the louvers 103a and 103b is the same as the length D of the short sides of the louvers 103a and 103b. It is.
  • the first fin portion 10Sa and the second fin portion 10Sb are superimposed and combined by being shifted by D / 2 in the X-axis direction.
  • the louver 103a of the first fin portion 10Sa is inserted between the louvers 103b of the second fin portion 10Sb
  • the louver 103b of the second fin portion 10Sb is inserted between the louvers 103a of the first fin portion 10Sa.
  • the distance between the louver 103a and the louver 103b of the seventeenth fin unit 10S is D / 2, and the distance in the X-axis direction becomes narrow. That is, by arranging the plurality of fin portions 10Sa and 10Sb so that the louvers 103a and 103b are alternately arranged, the pitch of the fins can be reduced and the density of the fins can be increased without changing the height of the louvers 103. Performance can be enhanced.
  • the frame portions 114 and 124 of the plurality of fin portions 10Sa and 10Sb overlap are channel walls (cover plate 17 of the thirteenth embodiment Is closely attached).
  • the flow path wall is disposed at a position facing the base plate portion 11 with the seventeenth fin unit 10S interposed therebetween so as to form a flow path for the cooling fluid CF. Since only a plurality of fin units are combined, the workability is not greatly impaired.
  • FIG. 27 is a perspective view of the eighteenth heat sink 100T of the eighteenth embodiment
  • FIG. 28 is a side view of the eighteenth heat sink 100T of the eighteenth embodiment as viewed from the ⁇ X axis direction.
  • the cover plate 17 is provided on the + Z side of the eighteenth heat sink 100T.
  • the eighteenth fin unit 10T is a dual fin unit configured by the first fin portion 10Ta and the second fin portion 10Tb.
  • the first fin portion 10Ta and the second fin portion 10Tb have the same shape, and are the same as the first fin portion 10Ra or the second fin portion 10Rb of the sixteenth embodiment.
  • the first fin portion 10Ta and the second fin portion 10Tb are arranged in a shifted manner in the Y-axis direction and joined.
  • the cover plate 17 used in the thirteenth embodiment is applied as the flow path wall. Further, the flow path deflecting unit 15 described in the eleventh embodiment is also applied to the heat sinks described in the thirteenth to eighteenth embodiments.
  • the fin unit is joined to the base plate portion by the louver in a state in which the frame portion and the base plate portion are all separated in the Z-axis direction. This is because when the frame portion and the base plate portion are in face-to-face contact, there is a possibility that thermal bonding can not be reliably performed due to air bubbles or the like.
  • FIG. 29 is a diagram for contacting the case where the louver is joined to the base plate portion.
  • FIG. 29A is an explanatory view of a state in which the louver 13 is obliquely joined to the base plate portion 11 by brazing in the first to eighteenth embodiments.
  • the louver 13 when the louver 13 is made to contact the base plate portion 11 at an angle ⁇ by the brazing material 18 at an angle ⁇ , the edge K will be in contact, and air bubbles are included in brazing. It can not be done. Therefore, the louver 13 can be reliably joined to the base plate portion 11. Also, for thermal bonding, the brazing material 18 may be placed and heated, but if the brazing sheet is used as the material of any of the members, the brazing material 18 is already clad in the brazing sheet, so Assembly work is easy.
  • FIG. 29B is an explanatory view of a state in which the louvers 13C and 13F are vertically joined to the base plates 11 and 21 by brazing in the third and fourth embodiments.
  • the louvers 13C and 13F are securely joined to the base plate portion 11 by the brazing material 18 as described in FIG. 19A.
  • bubbles such as air may enter the brazing material during brazing. The air bubbles prevent the air bubbles from entering the brazing material 18 because they prevent the heat transfer.
  • FIG. 29C is an explanatory view of a state in which the louver 13 is joined to the base plate portion 11 by the caulking portion 19 in the first to eighteenth embodiments.
  • the base plate portion 11 is provided with a crimped portion 19 so that the louver 13 can be joined by the crimped portion 19 so as to be more excellent in heat radiation efficiency. Therefore, the groove portion 20 is provided in the base plate portion 11, and the louver 13 is inserted into the groove portion 20.
  • the louver 13 is inserted into the base plate portion 11 so that the angle between the louver 13 and the base plate portion 11 is also ⁇ . Thereafter, the louver 13 is crimped in the ⁇ X-axis direction by the caulking portion 19 provided on the base plate portion 11.
  • the louver 13 and the caulking portion 19 of the base plate portion 11 are connected with a larger area, and heat exchange is promoted. Therefore, heat transfer with the heat-generating component is improved by the promoting effect, and the heat dissipation characteristic is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】 本発明は、より熱交換が効率的なヒートシンクを提供する。 【解決手段】発熱部品(12)の熱を冷却用流体(CF)へ伝達するヒートシンク(100A)であって、発熱部品(12)に熱的に接続された平板状のベースプレート部(11)と、切り起こして形成される複数のルーバー(13)と複数のルーバー(13)と連結し切り起こされずに残った枠部(14)とを有するフィンユニット(10A)とを備える。また、複数のルーバー(13)の一方の端部がベースプレート部(11)に熱的に接続されるとともに、枠部(14)がベースプレート部(11)の表面から離れている。

Description

ヒートシンク
 本発明は、CPU、集積回路、半導体素子等の各種電子部品、電子機器、そのほか各種電気機器などの放熱のために使用されるヒートシンクに関するものである。特に薄板材を加工して製作した薄板フィンを備えるものであって、放熱効率に優れたヒートシンクに関するものである。
 CPU、集積回路、半導体素子などの電子部品、電子機器及び各種電気機器においては、放熱のためにヒートシンクが設けられる。また、これらの素子又は機器の発熱量、発熱密度の増大によって、放熱効率に優れた高性能のヒートシンクが求められる。
 特許文献1に開示されたヒートシンク200のフィンユニット20は、図30に示したとおり、隣接する鈎形の二辺、および/または、隣接するコの字形の三辺からなる切り込みを一枚の金属板に形成し、その部分を切り起こすことにより複数のフィン列を形成するものである。前記複数のフィン列同士の間には切り起こされなかった部分が残っており“連結部”と称されている。また、フィン列の中のフィン同士の間にも切り起こされなかった部分が残っており、フィン列の中の各々のフィンの断面形状は、切り起こされた部分と切り起こされなかった部分とで概ねL字形をなしている。このように特許文献1に開示されたヒートシンクにおいては、フィンの前記L字形の一方の面(底部)及び前記した連結部がベースプレート又は発熱体(以下においては、単に「ベースプレート部」と記して、「ベースプレート又は発熱体」を指すものとする。)に接している。
特開2009-26784号公報
 しかし、特許文献1に開示されたヒートシンクは、フィンのL字状の一方の面(垂直部)のみがベースプレート部から起立しているものであり、他方の面(底部)はベースプレート部に密着されている。このため、冷却流体との熱交換に与るのは主として前者(垂直部)の面のみであり、従って、特許文献1に開示されたヒートシンクには、熱交換の効率になお改善の余地が有るといえる。
 本発明は、より効率的な熱交換を実現し得るヒートシンクを提供することを目的とする。
即ち、本発明は、L字状をなすフィン面が双方(垂直部及び底部)ともベースプレート部からは離れた状態となるようにしたヒートシンクである。
 第1の観点のヒートシンクは、発熱部品の熱を冷却用流体へ伝達するヒートシンクである。また、このヒートシンクは発熱部品に熱的に接続された平板状のベースプレート部と、複数のルーバーとこの複数のルーバーに連結して前記複数のルーバーを取り囲む枠部とを有するフィンユニットとを備える。また、複数のルーバーの一方の端部がベースプレート部に熱的に接続されるとともに、枠部がベースプレート部の表面から離れている。枠部がベースプレート部の表面から離れて冷却流体の流れの中に存在するときには枠部が冷却流体に対して乱流を起こすことができる。したがってこの観点のヒートシンクは冷却効率が高い。
 第2の観点のヒートシンクの複数のルーバーの少なくとも一部は一枚の金属板から切り起こして形成されるとともに、枠部は切り起こされずに残って形成される。
 第3の観点のヒートシンクの複数のルーバーは、冷却用流体の流れる方向に並行に伸びる長さと切り起こし方向の幅と切り起こし角度とを有しており、複数のルーバーのうちのいくつかのルーバーは他のルーバーと異なる長さ、異なる幅又は異なる切り起こし角度の少なくともいずれか一つを有している。
 第4の観点のヒートシンクのフィンユニットは、一枚の金属板をプレスして形成された第1フィンユニットと別の一枚の金属板をプレスして形成された第2フィンユニットとを有し、第1フィンユニットのルーバーは第2フィンユニットのルーバーと異なる長さ、異なる幅又は異なる切り起こし角度の少なくともいずれか一つを有している。
 第5の観点のヒートシンクのフィンユニットは、一枚の金属板をプレスして形成された第1フィンユニットと別の一枚の金属板をプレスして形成された第2フィンユニットとを有し、第1フィンユニットのルーバーの一方の端部がベースプレート部に熱的に接続され、第2フィンユニットのルーバーの端部が第1フィンユニットのルーバーの他方の端部に熱的に接続される。
 そして、第6の観点のヒートシンクにおいて、第1フィンユニットの枠部と第2フィンユニットの枠部とが離れている。
 第7の観点のヒートシンクにおいて、第1フィンユニットの枠部と第2フィンユニットの枠部とは接合している。
 第8の観点のヒートシンクのフィンユニットは、一枚の金属板をプレスして形成された第1フィンユニットと別の一枚の金属板をプレスして形成された第2フィンユニットとを有し、第1フィンユニットの複数のルーバー間に、第2フィンユニットの複数のルーバーが配置される。
 第9の観点のヒートシンクの枠部は、冷却用流体の流れ方向を変える流路変更部を有する。
 第10の観点のヒートシンクにおいて、冷却用流体は液体であり、液体の冷却用流体CFの流路が構成されるように、複数のルーバーの他方の端部と接続されたカバープレートを備える。
 第11の観点のヒートシンクのフィンユニットは一枚の金属板をプレスして形成され、フィンユニットはベースプレート部にロウ付けされる。
 第12の観点のヒートシンクの金属板は、母材がアルミニウムで、その少なくとも一方の表面にロウ材をクラッドして作った。
 第13の観点のヒートシンクは発熱部品の熱を冷却用流体へ伝達する。ヒートシンクは、発熱部品に熱的に接続された平板状のベースプレート部と、複数のルーバーと複数のルーバーに連結して複数のルーバーを取り囲む枠部とを有するフィンユニットと、を備える。複数のルーバーの一方の端部が前記ベースプレート部に熱的に接続されるとともに、フィンユニットを挟んでベースプレート部と相対する位置に、冷却用流体の流路を構成するように流路壁が設置されていて、枠部が流路壁に密着されている。
 第14の観点のヒートシンクの冷却用流体は液体であり、液体の冷却用流体CFの流路が構成されるように、複数のルーバーの他方の端部と接続されて流路壁となるカバープレートを備える。
 本発明のヒートシンクは、冷却効率が高く、また、製造が簡単である。
第1実施形態の第1ヒートシンク100Aの斜視図である。 -X軸方向から見た第1実施形態の第1ヒートシンク100Aの側面図である。 第1実施形態の第1ヒートシンク100Aの平面図である。 (a)は、-Y軸方向から見た第2実施形態の第2ヒートシンク100Bの側面図である。 (b)は、-Y軸方向から見た第3実施形態の第3ヒートシンク100Cの側面図である。 (c)は、-Y軸方向から見た第4実施形態の第4ヒートシンク100Dの側面図である。 第5実施形態の第5ヒートシンク100Eの斜視図である。 第6実施形態の第6ヒートシンク100Fの分解斜視図である。 第6実施形態の第6ヒートシンク100Fの斜視図である。 第7実施形態の第7ヒートシンク100Gの斜視図である。 -X軸方向から見た第7実施形態の第7ヒートシンク100Gの側面図である。 第8実施形態の第8ヒートシンク100Hの斜視図である。 -X軸方向から見た第8実施形態の第8ヒートシンク100Hの側面図である。 第9実施形態の第9ヒートシンク100Jの分解斜視図である。 第9実施形態の第9ヒートシンク100Jの斜視図である。 第10実施形態の第10ヒートシンク100Kの分解斜視図である。 第10実施形態の第10ヒートシンク100Kの斜視図である。 第11実施形態の第11ヒートシンク100Lの斜視図である。 (a)は、上流路変更部15aが設けられた第11実施形態の第11ヒートシンク100Lの側面図である。 (b)は、(a)の破線Gで囲まれた部分の拡大図である。 第12実施形態の第12ヒートシンク100Mの斜視図である。 (a)は、第13実施形態の第13ヒートシンク100Nの斜視図である。 (b)は、-X軸方向から見た第13実施形態の第13ヒートシンク100Nの側面図である。 (a)は、-Y軸方向から見た第14実施形態の第14ヒートシンク100Pの側面図である。 (b)は、-Y軸方向から見た第14実施形態の変形例である第14ヒートシンク100P’の側面図である。 (c)は、第15実施形態の第15ヒートシンク100Qの斜視図である。 第16実施形態の第16ヒートシンク100Rの分解斜視図である。 第16実施形態の第16ヒートシンク100Rの斜視図である。 -X軸方向から見た第16実施形態の第16ヒートシンク100Rの側面図である。 第17実施形態の第17ヒートシンク100Sの分解斜視図である。 第17実施形態の第17ヒートシンク100Sの斜視図である。 -X軸方向から見た第17実施形態の第17ヒートシンク100Sの側面図である。 第18実施形態の第18ヒートシンク100Tの斜視図である。 -X軸方向から見た第18実施形態の第18ヒートシンク100Tの側面図である。 ルーバーがベースプレート部に接合される場合を説明するための図である。 (a)は、第1~第18実施形態においてルーバー13がロウ付けにより斜めにベースプレート部11に接合されている状態の説明図である。 (b)は、第3及び第4実施形態において、ルーバー13C、13Fがロウ付けにより垂直にベースプレート部11、21に接合されている状態の説明図である。 (c)は、第1~第18実施形態において、ルーバー13がカシメ部19によりベースプレート部11に接合されている状態の説明図である。 従来のヒートシンク200を示した斜視図である。
(第1実施形態)
<第1ヒートシンク100Aの構成>
 図1は、第1実施形態の第1ヒートシンク100Aの斜視図である。ここで、ベースプレート部11の面をXY平面とし、またベースプレート部11に垂直な方向を+Z軸方向とする。
 図1に示されたように、第1ヒートシンク100Aは半導体素子、集積回路又はCPU等の発熱部品12に取り付けられる。理解を助けるため発熱部品12が描かれているが、第1ヒートシンク100Aに付属するものではない。第1ヒートシンク100Aは発熱部品12のXY平面に密着して載置されたベースプレート部11と、そのベースプレート部11に熱的に接続された第1フィンユニット10Aとを備える。第1実施形態において、第1フィンユニット10Aは1つの金属板より構成され、その金属板に対して斜めに±Z軸方向に向かって切り起こして形成された複数のルーバー13と、その複数のルーバー13に連結し切り起こされずに残った枠部14とより構成される。第1フィンユニット10Aはルーバー13の一端部をベースプレート部11にロウ付けなどで、ベースプレート部11に熱的に接続される。また、枠部14はY軸枠部14a及びX軸枠部14bより構成され、ベースプレート部11の表面に接続されないようにルーバー13のZ軸方向のほぼ中央部分に接続されている。また、図1において第1ヒートシンク100AはX軸方向で6個、Y軸方向で3列に並んだ18個のルーバー13により構成された1つの第1フィンユニット10Aを有しているが、数十個から数百個の第1フィンユニット10Aが設けられていてもよい。
 第1実施形態において、第1フィンユニット10Aは一枚のアルミニウム、銅、あるいはそれらの合金などの熱伝導性が良好な金属板をプレスして形成されたものであり、その金属板の厚さTは0.4mmから2mm程度である。また、ルーバー13の幅Dは2mmから20mm程度であり、ルーバー13とルーバー13とのX軸方向の距離も幅Dとほぼ一致する。また、ベースプレート部11の厚さTは例えば0.5~15mm程度のアルミニウム、銅、あるいはそれらの合金などの熱伝導性が良好な材料より構成され、例えば発熱部品12に合わせて四角形板状に作られている。
 また、枠部14からルーバー13の切り起こし角度θは、10度から90度まで任意に設定できる。図1では、ルーバー13の幅Dの約D/2の位置で枠部14からルーバー13が切り起こされているが、任意の位置で切り起こしてもよい。
 また、Y方向に並んだ各ルーバー13列の間にはX軸枠部14bがそれぞれ設けられている。このX軸枠部14bはベースプレート部11からZ軸方向で離れている。すなわちX軸枠部14bはベースプレート部11とは直接接していない。さらに、図1に示されたように隣接されたルーバー13列はX軸方向で互いに例えばD/2ずれて形成されている。例えば、ルーバー13列をX軸方向に距離D/2ずれると、第1列に属されているルーバー13が第2列目のルーバー13列のルーバー13とルーバー13との間に位置付けられる。これにより、以下に説明するように、第1ヒートシンク100Aの冷却性能が向上する。なお、隣接されたルーバー13列がX軸方向にずらすことは必須でなく、必要に応じてずらせばよい。
<第1ヒートシンク100Aによる冷却>
 図2は、-X軸方向から見た第1実施形態の第1ヒートシンク100Aの側面図である。図2において、太い矢印は冷却用流体CFの流れを示し、冷却用流体CFは+Y軸方向に沿って流れている。冷却用流体CFは空気などの気体が用いることを前提に説明するが、水または不凍液などの液体が用いられてもよい。
 図2において点線B1内に示されたように、まず、X軸枠部14bがベースプレート部11からZ軸方向で離れているために、第1ヒートシンク100A中で流れる冷却用流体CFがそのX軸枠部14bに衝突して乱流が発生する。これにより、冷却用流体CFが下流のルーバー13の表面から熱を奪いやすくするとともに、ベースプレート部11からも熱を奪う。このため第1ヒートシンク100Aの冷却性能が向上する。
 その後、冷却用流体CFはルーバー13の間で乱流から安定した層流となっていくが、点線B2に囲まれた部分でX軸枠部14bにより再び乱流となる。具体的に、ルーバー13の間を流れる安定した層流は、ルーバー13のZ軸方向の中央部分に設けられたX軸枠部14bに衝突し、X軸枠部14bのZ軸の両側に分流され、乱流としてX軸枠部14bのZ軸の両側を流れる。
 また、冷却用流体CFは点線B3に囲まれた部分で上述の点線B2に囲まれた部分と同じようにX軸枠部14bにより乱流が形成される。最後、冷却用流体CFは点線B4に囲まれた部分でX軸枠部14bにより再びそのZ軸の両側に分流され、X軸枠部14bで乱流となる。その後、第1ヒートシンク100Aの+Y側より冷却用流体CFが流出される。
 上述のように、-Y側より第1ヒートシンク100Aに流入した冷却用流体CFは、第1ヒートシンク100A内で何度も乱流になってルーバー13又はベースプレート部11と熱交換を促進する。したがって、発熱部品12と冷却用流体CFとの間で熱伝達が向上し、放熱特性が向上する。
 図3は、第1実施形態の第1ヒートシンク100Aの平面図である。図3でも、矢印は冷却用流体CFの流れを示し、冷却用流体CFは+Y軸方向に沿って流れている。
 まず、図3において冷却用流体CFは-Y側から第1ヒートシンク100Aのルーバー13とルーバー13との間に流入する。そして、隣接されたルーバー13列がX軸方向で互いに距離D/2ずれて形成されるため、-Y側のルーバー13列を通過した冷却用流体CFは中央のルーバー13列のルーバー13に衝突される。したがって、冷却用流体CFはそのルーバー13のX軸方向の両側に分流し乱流が形成される。その後、中央のルーバー13列のルーバー13に沿って+Y軸方向に流れる。
 また、冷却用流体CFは点線C2に囲まれた部分でも点線C1に囲まれた部分と同じに+Y側のルーバー13列により乱流が形成される。その後、+Y側より第1ヒートシンク100Aを流出する。
 上述のように、-Y側より第1ヒートシンク100Aに流入した冷却用流体CFは、第1ヒートシンク100A内で何度も乱流になって熱交換が促進される。したがって、その乱流の促進効果により、発熱部品12と冷却用流体CF間の熱伝達が向上し、放熱特性が向上する。
 また、第1フィンユニット10Aはプレス成形で一体的に成形するので低コストで作製できる。また、切り起こされていない枠部14で連結されて一体になっているので扱いが容易で組み付け作業が簡便である。第1実施形態において、各ルーバー13のX軸方向の距離D及び幅Dは一定であるが、その距離及び幅の変更はプレス成形時の金型の形状を変えて切り起こされていない金属板の位置を変えることだけで済むので、大幅なコストアップの必要がない。
 図4は、各ルーバーのX軸方向の距離D及び幅が変更された第2実施形態~第4実施形態のヒートシンクを示した図である。
(第2実施形態)
<第2ヒートシンク100Bの構成>
 図4(a)は、-Y軸方向から見た第2実施形態の第2ヒートシンク100Bの側面図である。理解を助けるため発熱部品22が描かれているが、第2ヒートシンク100Bに付属するものではない。第2実施形態において、例えば発熱部品22は中央に段差部22a(凸状でも凹状でもよい)と平坦部22bを有している。このように段差があるような発熱部品22に対しては、ベースプレート部21も中央に段差部21aと平坦部21bとを有している。ベースプレート部21と発熱部品22とが接する面積を多くして、熱を奪う必要があるからである。ベースプレート部21の段差部21aと平坦部21bに合わせて、ルーバーも合わせることが好ましい。
 図4(a)に示されたように、第2実施形態の第2フィンユニット10Bは2種類のルーバー13A及びルーバー13Bより構成される。ルーバー13Aは第1実施形態の第1フィンユニット10Aのルーバー13と同じ形状である。ルーバー13Aは、同じ角度θに傾いた状態でベースプレート部21の平坦部21bにロウ付けなどで固定されている。また、ルーバー13Bはルーバー13Aと同じ角度θでベースプレート部21の段差部21aにロウ付けなどで固定されている。ルーバー13Bの幅はルーバー13Aの幅より短くに構成されている。例えばベースプレート部21の段差部21aの高さがD/4である場合、ルーバー13Bは幅D/2で形成されている。これにより、全てのルーバー13A、ルーバー13Bが同じ角度θでベースプレート部21に熱的に接続される。
 また、このように、プレス成形時の金型の形状を変えて、ベースプレート部21の段差部21aと平坦部21bに合わせて、ルーバーの位置及び幅を変えることだけで済むので、第2実施形態の第2フィンユニット10Bは大幅なコストアップがない。
(第3実施形態)
<第3ヒートシンク100Cの構成>
 図4(b)は、-Y軸方向から見た第3実施形態の第3ヒートシンク100Cの側面図である。第3実施形態においても、例えば発熱部品22は中央に突起状の段差部22aと平坦部22bを有している。このように段差があるような発熱部品22に対しては、ベースプレート部21も中央に突起状の段差部21aと平坦部21bとを有している。
 図4(b)に示されたように、第3実施形態の第3フィンユニット10Cは2種類のルーバー13C及びルーバー13Dを含んでいる。第3実施形態において、ルーバー13Cは第1実施形態の第1フィンユニット10Aのルーバー13と同じ幅Dである。ルーバー13Cは、直角に傾いた状態でベースプレート部21の平坦部21bにロウ付けなどで固定されている。また、ルーバー13Dも第1実施形態の第1フィンユニット10Aのルーバー13と同じ幅Dである。但し、ルーバー13Dの角度φは角度θより小さくなってベースプレート部21の段差部21aにロウ付けなどで固定されている。これにより、全てのルーバー13C、ルーバー13Dがベースプレート部21に熱的に接続される。もちろん、ベースプレート部21の段差部21aと平坦部21bとの段差高さにはいろいろな高さがあるので、ルーバー13Cとルーバー13Dとは適切な角度で調整されてもよい。
 また、このように、プレス成形時の金型の形状を変えて、ベースプレート部21の段差部21aと平坦部21bに合わせて、ルーバーの角度を変えることだけで済むので、第3実施形態の第3フィンユニット10Cは大幅なコストアップがない。
(第4実施形態)
<第4ヒートシンク100Dの構成>
 図4(c)は、-Y軸方向から見た第4実施形態の第4ヒートシンク100Dの側面図である。第4実施形態においても、例えば発熱部品22は中央に突起状の段差部22aと平坦部22bを有している。このように段差があるような発熱部品22に対しては、ベースプレート部21も中央に突起状の段差部21aと平坦部21bとを有している。
 図4(c)に示されたように、第4実施形態の第4フィンユニット10Dは2種類のルーバー13E及びルーバー13Fを含んでいる。第4実施形態において、ルーバー13Eは第2実施形態の第2フィンユニット10Bのルーバー13Aと同じで、ベースプレート部21の凹部に角度θで固定されている。また、ルーバー13Fの角度φは垂直になっており、ベースプレート部21の段差部21aに垂直にロウ付けなどで固定されている。ルーバー13Fの幅DNがルーバー13Eの幅Dよりかなり狭くなっている。これにより、全てのルーバー13E、13Fが凸状のベースプレート部21に熱的に接続される。
 第2実施形態から第4実施形態まで、ベースプレート部21の段差部21aと平坦部21bに合わせて、ルーバー13の間隔およびルーバー13の角度を変える例を示した。段差部が三段以上ある場合または発熱部品22の発熱量などに応じて、ルーバー13の間隔およびルーバー13の角度を適宜変更することができる。
(第5実施形態)
<第5ヒートシンク100Eの構成>
 図5は、第5実施形態の第5ヒートシンク100Eの斜視図である。第5実施形態において、第5フィンユニット10Eのみが第1実施形態と異なっているため、第5フィンユニット10Eについて説明し、その他の説明を省略する。
 図5に示されたように、第5フィンユニット10Eは1つの金属板をプレスして構成されたルーバー13、ルーバー23と枠部14とを備えている。また、第5フィンユニット10Eはルーバー13、ルーバー23の一端部をベースプレート部11にロウ付けすることで、ベースプレート部11に熱的に接続される。また、枠部14はベースプレート部11の表面に接続されない。枠部14はY軸枠部14a及びX軸枠部14bより構成され、X軸枠部14bはルーバー13、23のZ軸方向のほぼ中央部分に接続されている。
 図5において、第5ヒートシンク100EはX軸方向で6個の短いルーバー13から構成されたルーバー13の列と、6個の長いルーバー23から構成されたルーバー23の列とを備える。もちろん、数十個から数百個の第5フィンユニット10Eがベースプレート部11に設けられていてもよい。
 第5実施形態において、第5フィンユニット10Eの材料及び厚さは第1実施形態と同じで、枠部14とルーバー13、23との角度θも第1実施形態と同じである。また、ルーバー13列とルーバー23列とはX軸方向で互いにD/2ずれて形成されている。
 第5フィンユニット10Eにおいてルーバー23のY軸方向の長さL2がルーバー13の長さL1の約2倍である。このため、冷却用流体CFの乱流が発生するX軸枠部14bのY軸方向の位置を調整することにより、発熱部品12に対する部分的な冷却性能、冷却用流体CFの流体抵抗を調整することができる。つまり、長さの異なるルーバー13及びルーバー23を設けることで、部分的な冷却効率を調整することができる。
 また、第5実施形態において、第5フィンユニット10Eはルーバー13列とルーバー23列とを有していたが、ルーバー13列を有するフィンユニットと、ルーバー23列を有するフィンユニットとを別々の金属板から形成し、それぞれを1枚のベースプレート部11に配置してもよい。
(第6実施形態)
<第6ヒートシンク100Fの構成>
 図6は、第6実施形態の第6ヒートシンク100Fの分解斜視図である。図7は、組み立てた後の第6フィンユニット10Fの斜視図である。第6実施形態において、第6フィンユニット10Fは第1フィン部10Faと第2フィン部10Fbとにより構成された複式フィンユニットである。
 まず、第6フィンユニット10Fの第1フィン部10Faについて説明する。
 第1フィン部10Faは、1つの金属板により構成され、その金属板に対して斜めに切り起こして形成された複数のルーバー33aと、その複数のルーバー33aに連結し切り起こされずに残った枠部24とにより構成される。また、枠部24はY軸枠部24a及びX軸枠部24bにより構成される。また枠X軸枠部24bはルーバー33aのZ軸方向の一端に接続されている。図6において、第1フィン部10FaはX軸方向で6個、Y軸方向で3列に並んだ18個のルーバー33aを有している。さらに、第1フィン部10Faの材料及び厚さは第1実施形態の第1フィンユニット10Aと同じで、枠部24とルーバー33aとの角度θも第1実施形態と同じである。但し、第6実施形態のルーバー33aの幅はD/2である。
 次に、第6フィンユニット10Fの第2フィン部10Fbについて説明する。
 第2フィン部10Fbは、1つの金属板により構成され、その金属板に対して斜めに-Z軸方向に向かって切り起こして形成された複数のルーバー33bと、その複数のルーバー33bに連結し切り起こされずに残った枠部34とより構成される。また、枠部34はY軸枠部34a及びX軸枠部34bより構成される。また枠X軸枠部34bはルーバー33bのZ軸方向の一端に接続されている。また枠X軸枠部34bはルーバー33のZ軸方向の一端に接続されている。その他角度θを含めて第2フィン部10Fbは第1フィン部10Faと同じ形状である。
 図7に示されたように、第1フィン部10Faと第2フィン部10Fbとは、互いに対応されるルーバー33aの一端とルーバー33bの一端とが接合し、X軸枠部24bとY軸枠部34bとが接合される。そして第6フィンユニット10Fが形成される。第6フィンユニット10Fの枠部24と枠部34とより構成された新しい枠部の厚さは、第1実施形態の枠部14の2倍、すなわち2Tとなる。ルーバー33aとルーバー33bとより構成された新しいルーバー33の幅はDで、X軸方向の距離はD/2であり、その厚さはTである。
 また、組み立てた後の第6フィンユニット10Fの全体的な形状は第1実施形態の第1フィンユニット10Aとほぼ同じであるが、ルーバー33のX軸方向の距離がD/2である点が大きく異なる。
 第6実施形態において、複数のフィン部により構成された第6フィンユニット10Fをベースプレート部11に配置することにより、第6フィンユニット10Fの高さを変えずにルーバー33のX軸方向の距離がDからD/2に狭くなり、ルーバー33の密度を高めることができ、冷却性能を高められる。
(第7実施形態)
<第7ヒートシンク100Gの構成>
 図8は、第7実施形態の第7ヒートシンク100Gの斜視図である。第7実施形態において、第7フィンユニット10Gは第1フィン部10Gaと第2フィン部10Gbより構成された複式フィンユニットである。
 まず、第7フィンユニット10Gの第1フィン部10Gaについて説明する。
 第1フィン部10Gaは、1つの金属板により構成され、その金属板に対して斜めに±Z軸方向に向かって切り起こして形成された複数のルーバー43aと、その複数のルーバー43aに連結し切り起こされずに残った枠部44とより構成される。また、枠部44はY軸枠部44a及びX軸枠部44bより構成される。また枠X軸枠部44bはルーバー43aのZ軸方向のほぼ中央部分に接続されている。図8において、第1フィン部10GaはX軸方向で6個、Y軸方向で3列に並んだ18個のルーバー43aを有している。さらに、第1フィン部10Gaの材料及び厚さは第1実施形態の第1フィンユニット10Aと同じで、枠部44とルーバー43aとの角度θも第1実施形態と同じである。但し、第7実施形態のルーバー43aの幅が第1実施形態のルーバー13の幅はD/2である。
 そして、第7フィンユニット10Gの第2フィン部10Gbは、第1フィン部10Gaと同じである。
 図8に示されたように、第1フィン部10Gaと第2フィン部10Gbとは、互いに対応されるルーバー43aの一端とルーバー43bの一端とがロウ付けなどで接合される。これにより第7フィンユニット10Gが形成される。また、X軸枠部44bがルーバー43aのZ軸方向のほぼ中央部分に接続されて、X軸枠部54bが複数のルーバー43bにそのZ軸方向のほぼ中央部分に接続されている。このため、枠部44と枠部54とが、Z軸方向に離れている。その距離はルーバー43a及びルーバー43bの切り起こし角度により決定される。さらに、ルーバー43aとルーバー43bとより構成された新しいルーバー43の幅はDで、X軸方向の距離はD/2であり、その厚さはTである。
<第7ヒートシンク100Gによる冷却>
 図9は、-X軸方向から見た第7実施形態の第7ヒートシンク100Gの側面図である。図9において、矢印は冷却用流体CFの流れを示し、冷却用流体CFは+Y軸方向に沿って流れている。
 まず、図9の点線E1内に示されたように、X軸枠部44b及びX軸枠部54bがベースプレート部11からZ軸方向で離れているために、第7ヒートシンク100G中で流れる冷却用流体CFがそのX軸枠部44b及びX軸枠部54bに衝突して乱流が発生する。
 その後、冷却用流体CFはルーバー43とルーバー43との間で安定した層流となって+Y軸方向に流れ続くが、点線E2に囲まれた部分でX軸枠部44b及びX軸枠部54bにより再び乱流となる。具体的に、ルーバー43とルーバー43との間を流れる安定した層流は、ルーバー43のZ軸方向の中央部分に設けられたX軸枠部44b及びX軸枠部54bに衝突し、X軸枠部44b及びX軸枠部54bのZ軸の両側に分流される。これにより、冷却用流体CFはX軸枠部44b及びX軸枠部54bの両側に分留され、乱流として下流に流れる
 また、冷却用流体CFは点線E3に囲まれた部分で上述の点線E2に囲まれた部分と同じようにX軸枠部44b及びX軸枠部54bにより乱流が形成される。最後、冷却用流体CFは点線E4に囲まれた部分でX軸枠部44b及びX軸枠部54bにより再びそれらのZ軸の両側に分流され、X軸枠部44b及びX軸枠部54bで乱流となる。その後、第7ヒートシンク100Gの+Y側より冷却用流体CFが流出される。
 上述のように、-Y側より第7ヒートシンク100Gに流入した冷却用流体CFは、第7ヒートシンク100G内で何度も乱流になってルーバー43又はベースプレート部11と熱交換が促進される。したがって、発熱部品12と冷却用流体CFとの間で熱伝達が向上し、放熱特性が向上する。
 ルーバー43a及びルーバー43bを積層し、それぞれの一端同士を例えばロウ付けで熱的に接合することで、ルーバー43の表面積を大きくすることができ、冷却性能を高められる。また、X軸枠部44b及びX軸枠部54bは、乱流を発生させることができる。例えば、配置する高さを変えることも可能である。複数のルーバーの一端同士を組み合わせるだけなので、作業性が大きく損なわれることはない。
(第8実施形態)
<第8ヒートシンク100Hの構成>
 図10は、第8実施形態の第8ヒートシンク100Hの斜視図である。第8実施形態において、第8フィンユニット10Hは第7実施形態で説明された第1フィン部10Gaと第2フィン部10Gbより構成された複式フィンユニットである。
 図10に示されたように、第8フィンユニット10Hは第1フィン部10Gaと第2フィン部10Gbとが、対応されるルーバー43aの一端とルーバー43bの一端とがY軸方向にずれて接合して形成される。ここで、ルーバー43aとルーバー43bとより構成された新しいルーバーの幅はDで、X軸方向の距離はD/2であり、その厚さはTである。
<第8ヒートシンク100Hによる冷却>
 図11は、-X軸方向から見た第8実施形態の第8ヒートシンク100Hの側面図である。図11において、矢印は冷却用流体CFの流れを示し、冷却用流体CFは+Y軸方向に沿って流れている。
 まず、図11の点線F1内で示されたように、第8フィンユニット10HのX軸枠部54bがベースプレート部11からZ軸方向で離れているために、第8ヒートシンク100H中で流れる冷却用流体CFがそのX軸枠部54bに衝突して乱流が発生する。そして、分流された冷却用流体CFはX軸枠部54bを通過した後、上部側(+Z側)の冷却用流体CFは、X軸枠部44bがベースプレート部11からZ軸方向で離れているために、第8ヒートシンク100H中で流れる冷却用流体CFがそのX軸枠部44bに衝突して乱流が発生する。
 その後、冷却用流体CFはルーバー43とルーバー43との間で安定した層流となって+Y軸方向に流れ続くが、点線F2内のX軸枠部54bにより再び乱流になり、且つその下流でX軸枠部44bにより再び乱流となる。
 また、冷却用流体CFは点線F3に囲まれた部分で点線F2に囲まれた部分と同じようにX軸枠部54bにより乱流になり、その下流でもX軸枠部44bにより乱流が形成される。最後、冷却用流体CFは点線F4に囲まれた部分でX軸枠部54bにより再びそのZ軸の両側に分流され乱流となり、その下流でX軸枠部44bにより再びそのZ軸の両側に分流され乱流となる。その後、第8ヒートシンク100Hの+Y側より冷却用流体CFが流出される。
 上述のように、-Y側より第7ヒートシンク100Gに流入した冷却用流体CFは、第8ヒートシンク100H内で何度も乱流になってルーバー43又はベースプレート部11と熱交換が促進される。したがって、発熱部品12と冷却用流体CFとの間で熱伝達が向上し、放熱特性が向上する。
(第9実施形態)
<第9ヒートシンク100Jの構成>
 図12は、第9実施形態の第9ヒートシンク100Jの分解斜視図である。第9実施形態において、第9フィンユニット10Jは第7実施形態で説明された第1フィン部10Gaと第2フィン部10Gbより構成された複式フィンユニットである。
 図12に示されたように、第1フィン部10Gaと第2フィン部10Gbとは、第2フィン部10Gbと第1フィン部10GaとをX軸方向にD/4ずらして重ね合わせて組み合わされる。図13は、第1フィン部10Gaと第2フィン部10Gbとを組み立てた後の第9ヒートシンク100Jの斜視図である。
 図13に示されたように、第1フィン部10Gaと第2フィン部10Gbとは互いに対応されるルーバー53aとルーバー53bとを接合するのではなく、X軸方向で距離D/4ずれて組み立てられる。つまり、第1フィン部10Gaのルーバー53aが第2フィン部10Gbのルーバー53bの間に挿入され、第2フィン部10Gbのルーバー53bが第1フィン部10Gaのルーバー53aの間に挿入される。互いに挿入した後にルーバー53a及び53bの-Z側の端部はベースプレート部11にロウ付けなどで接合される。
 ルーバー53a及び53bの-Z側の端部がベースプレート部11に接するには、ルーバー53bがルーバー53aよりも多少-Z軸方向に長くないとベースプレート部11に接しない。なぜなら第2フィン部10Gbの枠部54は第1フィン部10Gaの枠部44の上に位置するからである、このため、X軸枠部54bとルーバー53bとの接続位置をルーバー53bの幅方向の中央よりややZ方向に高い位置にしたりする。
 また別の方法として、ルーバー53aのみの端部がベースプレート部11に接合されるようにしてもよい。第1フィン部10Gaの枠部44と第2フィン部10Gbの枠部54とが接着されている。そのため、ベースプレート部11からの熱がルーバー53aに伝わり、その熱がルーバー53aから枠部44と枠部54とに伝わり、最後にルーバー53bにも伝わるからである。
 第9実施形態の構成によれば、第9フィンユニット10Jのルーバー53aとルーバー53bとの距離はD/4となり、X軸方向の間隔が狭くなる。つまり、ルーバー53の密度が高くなり、第9ヒートシンク100Jは冷却性能を高めることができる。
(第10実施形態)
<第10ヒートシンク100Kの構成>
 図14は、第10実施形態の第10ヒートシンク100Kの分解斜視図である。図15は、第1フィン部10Kaと第2フィン部10Kbとを組み立てた後の第10ヒートシンク100Kの斜視図である。なお、図14及び図15は、理解のため、図14及び図15中の左側(-Y軸側)のX軸枠部64b及びX軸枠部74bが取り除かれた状態で描かれている。
 第10ヒートシンク100Kは第10フィンユニット10Kを備える。第10フィンユニット10Kは第1フィン部10Kaと第2フィン部10Kbとにより構成される。第1フィン部10Kaは、金属板に対して一部を切り起こして形成された複数のルーバー63aと、その複数のルーバー63aに連結してルーバー63aを保持する枠部64とより構成される。第2フィン部10Kbも複数のルーバー63bと、その複数のルーバー63bに連結してルーバー63bを保持する枠部74とより構成される。また、枠部64はY軸枠部64a及びX軸枠部64bより構成され、枠部74はY軸枠部74a及びX軸枠部74bより構成される。
 ルーバー63aの一部(X軸方向にD/2の部分)は枠64と同一面のままであり、残りの部分が90度方向に曲げられている。なお、ルーバー63aの残りの部分の切り起こし角度θは、10度から90度まで任意に設定できる。ルーバー63bも同様である。さらに、図14に示されたように隣接されたルーバー63列はX軸方向で互いに例えばD/2ずれて形成されている。
 図15に示されたように、第1フィン部10Kaと第2フィン部10Kbとは、第2フィン部10Kbと第1フィン部10KaとをX軸方向にD/4ずらして重ね合わせて組み合わされる。
 図15に示されたように、第1フィン部10Kaと第2フィン部10Kbとは互いに対応されるルーバー63aとルーバー63bと、X軸方向で距離D/4ずれて組み立てられる。つまりルーバー63aの枠64と同じ平面の一部にルーバー63bの折り曲げた端部がロウ付けなどで接合される。なお、図15ではルーバー63aとルーバー63bと、X軸方向で距離D/4ずれて組み立てられるが、必ずしもX軸方向にずれていなくてもよい。
 第10実施形態の構成によれば、ルーバー63a及びルーバー63bが折り曲げた構成である。また直線的な折り曲げでなく曲線的な折り曲げであってもよい。枠とルーバーの接続部にねじり変形を生じさせないので、安定した加工となることから、ルーバー形状を比較的寸法精度よく成形することが可能である。
(第11実施形態)
<第11ヒートシンク100Lの構成>
 図16は、第11実施形態の第11ヒートシンク100Lの斜視図である。
 第11実施形態の第11ヒートシンク100Lは第1実施形態の第1ヒートシンク100Aに比べると、-Y側のX軸枠部14bに複数の流路変更部15が形成されている。その他の構成は第1実施形態の第1ヒートシンク100Aと同じであるため、説明を省略する。
 図16に示されたように、流路変更部15は上流路変更部15aと下流路変更部15bとを含んでいる。上流路変更部15aと下流路変更部15bとは一対のルーバー13のX軸方向の間に設けられている。また、第11ヒートシンク100Lは3つの上流路変更部15aと4つの下流路変更部15bとが描かれているが、ルーバー13の数に応じて適宜増減することができる。
<第11ヒートシンク100Lによる冷却>
 以下、上流路変更部15aを一例として、第11ヒートシンク100Lによる冷却を説明する。
 図17は(a)は、上流路変更部15aが設けられた第11実施形態の第11ヒートシンク100Lの側面図である。図17(b)は、(a)の破線Gで囲まれた部分の拡大図である。図17において、矢印は冷却用流体CFの流れを示し、冷却用流体CFは+Y軸方向に沿って流れている。
 図17(a)に示されたように、X軸枠部14bに上流路変更部15aが設けられているため、破線Gで囲まれた部分において乱流が発生される。その他のX軸枠部14b、14b及び14bで発生する乱流は第1実施形態と同じであるため、説明を省略する。以下、図17(a)の破線Gで囲まれた部分について、図17(b)を参照しながら説明する。
 図17(b)に示されたように、-Y側から第11フィンユニット10Lに流入した冷却用流体CFは、破線H1に囲まれた部分で乱流が発生する。具体的に、X軸枠部14bの+Z側から第11フィンユニット10Lに流入した冷却用流体CFは、X軸枠部14bに設けられた上流路変更部15aに衝突し+Z側の斜めになって流れ、乱流が発生する。
 一方、X軸枠部14bの-Z側から第11フィンユニット10Lに流入した冷却用流体CFは、上流路変更部15aを切り起こして形成された孔部16に流入し、その孔部16により+Z側の斜めになって流れ、乱流が発生する。
 下流路変更部15b(図16を参照)では、冷却用流体CFは、上述した流れとは上下逆の流れにより乱流を発生させる。流路変更部15は、以上の説明のように上流路変更部15aと下流路変更部15bとがそれぞれ切り起されていてもよいし、または発熱部品22の側に流路変更部15の向きを揃えて発熱部品22の一部に冷媒を優先的に流して、発熱部品22の一番発熱している箇所を集中的に冷却しても良い。
 第11実施形態においては、上流の-Y側のX軸枠部14bに流路変更部15が設けられているが、下流のX軸枠部14bに設けられてもよい。
 また、X軸枠部14に流路変更部15を設けることにより、乱流の発生箇所が多くなって熱交換が促進される。したがって、第11ヒートシンク100Lに流入した冷却用流体CFは、第11ヒートシンク100L内で何度も乱流になってルーバー13又はベースプレート部11と熱交換が促進される。
(第12実施形態)
<第12ヒートシンク100Mの構成>
 図18は、第12実施形態の第12ヒートシンク100Mの斜視図である。第12実施形態において、冷却用流体CFとして水、不凍液などの液体が用いられている。冷却用流体CFが液体である場合には、冷却用流体CFが管内を流れるようにカバープレートを設ける必要がある。
 第12実施形態の第12ヒートシンク100Mは第1実施形態の第1ヒートシンク100Aに比べると、第12フィンユニット10Lの+Z側に液体の冷却用流体CFが漏れないように流入口及び流出口(図示しない)を除いて外周を塞ぐカバープレート17が属されている。ここで、第12フィンユニット10Lが透視できるように、カバープレート17は点線で描かれている。その他の構成は第1実施形態の第1ヒートシンク100Aと同じであるため、説明を省略する。
 ところで、液体の場合、空気などの気体よりも放熱性能に優れるため、ルーバー13先端への熱の供給がネックになることからルーバー13は厚い方がよい。本発明であれば、プレス成形する元板を厚くするだけなので、厚いルーバーを狭いピッチで配置することが容易である。
 第12実施形態において、カバープレート17はベースプレート部11と同様に、例えば厚さTは0.8mm程度のアルミニウム、銅、あるいはそれらの合金などの熱伝導性が良好な材料より構成され、例えば発熱部品12に合わせて四角形板状に作られている。なお図示しないが、第2実施形態から第11実施形態にもカバープレート17を取り付けて液体の冷却用流体CFが管内を流れるようにしてもよい。
(第13実施形態)
<第13ヒートシンク100Nの構成>
 図19(a)は、第13実施形態の第13ヒートシンク100Nの斜視図で、第13フィンユニット10Nが透視できるようにカバープレート17は点線で描かれている。図19(b)は-X軸方向から見た第13実施形態の第13ヒートシンク100Nの側面図で、カバープレート17を省略している。
 図19(a)に示されたように、第13フィンユニット10Nは、1枚の金属板により構成され、その金属板に対して斜めに-Z軸方向に向かって切り起こして形成された複数のルーバー83と、その複数のルーバー83に連結し切り起こされずに残った枠部84とより構成される。また、枠部84はY軸枠部84a及びX軸枠部84bより構成される。また枠X軸枠部84bはルーバー83の+Z軸方向の一端に接続されている。その他、角度θ及び長さDなどの寸法を含めて第1フィンユニット10Aと同じ形状である。
 図19に示された第13フィンユニット10Nは1枚の金属板をプレス成形することで一体的に成形するので低コストで作製できる。また、枠部84で連結されて一体になっているので扱いが容易で、組み付け作業が簡便である。さらに、第13実施形態はプレス成形時の金型の形状を変えて枠部84の位置を変えることだけで済むので、大幅なコストアップの必要がない。
 第13フィンユニットNを挟んでベースプレート部11と相対する位置、すなわち+Z側に冷却用流体CFの流路を構成するように流路壁として第12実施形態で説明されたカバープレート17が設置されている。枠部84は、そのカバープレート17に密着されている。この位置は冷却用流体CFの主流から外れているので、冷却用流体CF中にゴミがあっても枠部にひっかかりにくい。
 また、図19(b)の点線J1~J4に示されたように冷却用流体CFの流れは枠部84と反対側に向きを変え、ベースプレート部11の近くを流れるようになりベースプレート部11を直接冷やせるので冷却性能が向上する。向きを変えた冷却用流体CFの流れが、温度が高くなる発熱部品12に集中して流れるように枠部84の位置を決めればより効果的である。
(第14実施形態)
<第14ヒートシンク100Pの構成>
 図20(a)は、-Y軸方向から見た第14実施形態の第14ヒートシンク100Pの側面図である。図示しないが、第14実施形態でも第14ヒートシンク100Pの+Z側にカバープレート17が設けられている。また、理解を助けるため発熱部品22が描かれているが、第14ヒートシンク100Pに付属するものではない。第14実施形態において、例えば発熱部品22は中央に段差部22a(凸状でも凹状でもよい)と平坦部22bを有している。このように段差があるような発熱部品22に対しては、ベースプレート部21も中央に段差部21aと平坦部21bとを有している。ベースプレート部21と発熱部品22とが接する面積を多くして、熱を奪う必要があるからである。ベースプレート部21の段差部21aと平坦部21bに合わせて、ルーバーも合わせることが好ましい。
 図20(a)に示されたように、第14実施形態の第14フィンユニット10Pは2種類のルーバー83A及びルーバー83Bより構成される。ルーバー83Aは第13実施形態の第13フィンユニット10Nのルーバー83と同じ形状である。ルーバー83Aは、第13実施形態と同じに角度θに傾いた状態でベースプレート部21の平坦部21bにロウ付けなどで固定されている。但し、ルーバー83Aと同じ形状であるルーバー83Bを角度φ(角度θより小さい)にベースプレート部21の段差部21aにロウ付けなどで固定されている。これにより、全てのルーバー83A、ルーバー83Bがベースプレート部21に熱的に接続される。もちろん、ベースプレート部21の段差部21aと平坦部21bとの段差高さにはいろいろな高さがあるので、ルーバー83Aとルーバー83Bとは適切な角度で調整されてもよい。つまり、ひとつのフィンユニットの中に、切り起し角度が異なる放熱フィンを形成することで、部分的な冷却性能、冷媒の流通抵抗を調整することができる。
 また、このようにプレス成形時の金型の形状を変えてベースプレート部21の段差部21aと平坦部21bに合わせてルーバーの角度を変えることだけで済むので、第14実施形態の第14フィンユニット10Pは大幅なコストアップがない。また、この方法は異なる仕様のヒートシンクの場合でも、基本形状のフィンユニットをいくつか用意しておけば、適切なフィンユニットを組み合わせるだけで済む。このため製品毎にプレス成形金型を作製する必要がないので、余計なコストがかからない。
 また、第14実施形態では一つのフィンユニットで説明したが、図20(a)の一点鎖線に示されたように数本のカットラインCLにより切断された複数のフィン部の組み合わせでもよい。
(第14実施形態の変形例)
<第14ヒートシンク100P’の構成>
 図20(b)は、-Y軸方向から見た第14実施形態の変形例である第14ヒートシンク100P’の側面図である。第14実施形態の変形例においても、例えば発熱部品22は中央に突起状の段差部22aと平坦部22bを有している。このように段差があるような発熱部品22に対しては、ベースプレート部21も中央に突起状の段差部21aと平坦部21bとを有している。
 図20(b)に示されたように、第14ヒートシンク100P’は2種類のルーバー83A及びルーバー83Cを含んでいる。第14実施形態の変形例において、ルーバー83Aより短く形成されたルーバー83Cは角度θに傾いた状態でベースプレート部21の平坦部21bにロウ付けなどで固定されている。これにより、全てのルーバー83A、83Cが凸状のベースプレート部21に熱的に接続される。つまり、ひとつのフィンユニットの中に、ルーバーの高さが異なる放熱フィンを形成することで、部分的な冷却性能、冷媒の流通抵抗を調整することができる。
 上述のようにルーバーの高さが異なる場合、ベースプレートが平らであるとルーバー高さが低いところは接合できないが、その場合はベースプレートに凹凸を形成すればルーバー高さが異なるフィンユニットが混在していても熱的な接合をさせることは可能である。
 また、第14実施形態の変形例では一つのフィンユニットで説明したが、図20(b)に示されたように複数のカットラインCLにより切断された複数のフィン部の組み合わせでもよい。また、ルーバー83A及びルーバー83Cは一枚の金属板をプレスして形成されるので、ルーバー83C同士の間隔がルーバー83A同士の間隔より狭くなることもできる。
(第15実施形態)
<第15ヒートシンク100Qの構成>
 図20(c)は、第15実施形態の第15ヒートシンク100Qの斜視図である。図示しないが、第15実施形態でも第15ヒートシンク100Qの+Z側にカバープレート17が設けられている。図20(c)に示されたように、第15ヒートシンク100QはY軸方向の長さが異なるルーバー83D及びルーバー83Eにより形成された第15フィンユニット10Qを備えている。
 第15フィンユニット10Qにおいてルーバー83EのY軸方向の長さL2がルーバー83Dの長さL1の約2倍である。このため、冷却用流体CFの乱流が発生するX軸枠部84bのY軸方向の位置を調整することにより、発熱部品12に対する部分的な冷却性能、冷却用流体CFの流体抵抗を調整することができる。つまり、長さの異なるルーバー83E及びルーバー83Dを設けることで、部分的な冷却効率を調整することができる。
 また、第15実施形態では一つのフィンユニットで説明したが、図20(c)の一点鎖線に示されたようにカットラインCLにより切断された複数のフィン部の組み合わせでもよい。
(第16実施形態)
<第16ヒートシンク100Rの構成>
 図21は第16実施形態の第16ヒートシンク100Rの分解斜視図で、図22は第16実施形態の第16ヒートシンク100Rの斜視図で、図23は-X軸方向から見た第16実施形態の第16ヒートシンク100Rの側面図である。図示しないが、第16実施形態でも第16ヒートシンク100Rの+Z側にカバープレート17が設けられている。
 図21に示されたように、第16フィンユニット10Rは第1フィン部10Raと第2フィン部10Rbとにより構成された複式フィンユニットである。ここで、第1フィン部10Raと第2フィン部10Rbとは同じ形状で、第13実施形態で説明された第13フィンユニット10Nと同じである。但し、第1フィン部10Raと第2フィン部10Rbとのルーバー93a、93bの短辺の長さは第13フィンユニット10Nのルーバー83の短辺の長さの半分程度(D/2)である。
 このため、図22に示されたように第1フィン部10Raと第2フィン部10Rbとを上下で重ねて構成された第16フィンユニット10Rのルーバー93の短辺の長さは第13フィンユニット10Nのルーバー83の短辺の長さDと同じになる。
 ここで、複数のフィン部10Ra、10Rbを積層して形成された第16フィンユニット10Rにおいて、それぞれの相対するルーバー先端同士を例えばロウ付けで熱的に接合することでルーバーの面積を大きくすることができ、冷却性能を高められる。
 また、図23の点線K1~K4に示されたようにそれぞれのフィン部10Ra、10Rbの枠部94、104はベースプレート部11とは反対側の配置している。これにより、冷却用流体CFの流れはそれぞれの枠部94、104と反対側に向きを変え、ベースプレート部11の近くを流れるようになってベースプレート部11を直接冷やせるので冷却性能が向上する。また、複数のフィン部10Ra、10Rbを組み合わせるだけなので、作業性が大きく損なわれることはない。なお、積層されるフィン部は2つ以上設けられていてもよい。
(第17実施形態)
<第17ヒートシンク100Sの構成>
 図24は第17実施形態の第17ヒートシンク100Sの分解斜視図で、図25は第17実施形態の第17ヒートシンク100Sの斜視図で、図26は-X軸方向から見た第17実施形態の第17ヒートシンク100Sの側面図である。図示しないが、第17実施形態でも第17ヒートシンク100Sの+Z側にカバープレート17が設けられている。
 図24に示されたように、第17フィンユニット10Sは第1フィン部10Saと第2フィン部10Sbとにより構成された複式フィンユニットである。ここで、第1フィン部10Saは第13実施形態で説明された第13ヒートシンク100Nと同じ形状である。また、第2フィン部10Sbはその枠部124がルーバー103bの+Z側の一端から-Z側に移動されたものである。その移動量は、枠部114の厚さT1程度であれば好ましい。さらに、第1フィン部10Sa及び第2フィン部10Sbは一枚の金属板をプレスすることで形成されるので、ルーバー103a、103b同士の間隔はルーバー103a、103bの短辺の長さDと同じである。
 図25に示されたように、第1フィン部10Saと第2フィン部10SbとはX軸方向にD/2ずらして重ね合わせて組み合わされる。これにより、第1フィン部10Saのルーバー103aが第2フィン部10Sbのルーバー103bの間に挿入され、第2フィン部10Sbのルーバー103bが第1フィン部10Saのルーバー103aの間に挿入される。互いに挿入した後にルーバー103a及び103bの-Z側の端部はベースプレート部11にロウ付けなどで接合される。
 第17実施形態の構成によれば、第17フィンユニット10Sのルーバー103aとルーバ103bとの距離はD/2となり、X軸方向の間隔が狭くなる。つまり、複数のフィン部10Sa、10Sbをルーバー103a、103bが互い違いになるよう配置することにより、ルーバー103の高さを変えずにフィンのピッチを小さくしてフィンの密度を高めることができ、冷却性能を高められる。
 図26の点線S1~S4に示されたように、複数のフィン部10Sa、10Sbの枠部114、124が重なり合う位置では、枠部114、124は流路壁(第13実施形態のカバープレート17を参照)に密着されている。なお、流路壁は第17フィンユニット10Sを挟んでベースプレート部11と相対する位置に、冷却用流体CFの流路を構成するように配置されている。複数のフィンユニットを組み合わせるだけなので、作業性が大きく損なわれることはない。
(第18実施形態)
<第18ヒートシンク100Tの構成>
 図27は第18実施形態の第18ヒートシンク100Tの斜視図で、図28は-X軸方向から見た第18実施形態の第18ヒートシンク100Tの側面図である。図示しないが、第18実施形態でも第18ヒートシンク100Tの+Z側にカバープレート17が設けられている。
 図27に示されたように、第18フィンユニット10Tは第1フィン部10Taと第2フィン部10Tbとにより構成された複式フィンユニットである。ここで、第1フィン部10Taと第2フィン部10Tbとは同じ形状で、第16実施形態の第1フィン部10Ra又は第2フィン部10Rbと同じである。但し、第1フィン部10Taと第2フィン部10TbとはY軸方向にずれて接合して配置される。
 図28の点線M1~M4に示されたように、積層する第1フィン部10Taと第2フィン部のそれぞれの枠部134、144の位置を流れ方向の前後に適切にずらすことにより、更に冷却用流体CFの流れがベースプレート部11近くを流れやすくすることができるので、より直接冷やせるようになり冷却性能が向上する。
 第14~第18実施形態に説明されたヒートシングでは、流路壁が描かれていないが、流路壁として第13実施形態で用いたカバープレート17が適用される。また、第13~第18実施形態で説明されたヒートシングには第11実施形態で説明された流路偏向部15も適用される。
<ルーバーとベースプレート部との接合の構成>
 上述の第1~第18実施形態において、全てが枠部とベースプレート部とがZ軸方向で離れている状態に、フィンユニットがルーバーによりベースプレート部に接合されている。これは、枠部とベースプレート部とが面同士で接触する場合は、気泡などの原因で確実に熱的接合ができない可能性があるが、ルーバーの先端でベースプレート部に接合すると気泡が残りにくく確実に接触できるためである。
 図29は、ルーバーがベースプレート部に接合される場合を接するための図である。
 図29(a)は、第1~第18実施形態においてルーバー13がロウ付けにより斜めにベースプレート部11に接合されている状態の説明図である。
 図29(a)に示されたように、ルーバー13をロウ材18により角度θでベースプレート部11に斜めに接触するようにすれば、エッジKで接触することになり、ロウ付けで気泡が含まれることがない。したがって、ルーバー13がベースプレート部11に確実に接合することができる。また、熱的接合には、ロウ材18を置いて加熱すればよいが、ブレージングシートをいずれかの部材の材料として使えば、ロウ材18はすでにブレージングシートにクラッドされた状態なので、ロウ付け前の組み立て作業が容易になる。
 図29(b)は、第3及び第4実施形態において、ルーバー13C、13Fがロウ付けにより垂直にベースプレート部11、21に接合されている状態の説明図である。
 図29(b)に示されたように、ルーバー13C、13Fは図19(a)で説明されたように、ロウ材18により、ベースプレート部11に確実に接合されている。なお、垂直にしたルーバー13C、13Fではロウ付けの際に空気などの気泡がロウ材に入ることがある。気泡は熱の伝達を妨げるためロウ材18中に気泡が入らないようにする。
 図29(c)は、第1~第18実施形態において、ルーバー13がカシメ部19によりベースプレート部11に接合されている状態の説明図である。
 図29(c)において、放熱効率により優れるように、ベースプレート部11にカシメ部19を設けられ、そのカシメ部19によりルーバー13を接合することができる。そのため、ベースプレート部11に溝部20を設け、その溝部20の中にルーバー13を挿入する。ここで、ルーバー13とベースプレート部11との角度もθとなるようにルーバー13をベースプレート部11に挿入する。その後、ベースプレート部11に設けられたカシメ部19により-X軸方向にルーバー13をカシメる。
 このような構成にすれば、ルーバー13とベースプレート部11のカシメ部19とがより大きい面積で接続され、熱交換が促進される。したがって、その促進効果により、発熱部品との熱伝達が向上し、放熱特性が向上する。
 以上、本発明の最適な実施例について詳細に説明したが、当業者に明らかなように、本発明はその技術的範囲内において実施例に様々な変更・変形を加えて実施することができる。
 10A~10T … フィンユニット
 11、21、31 … ベースプレート部
 12、22 … 発熱部品
 13、23、33、43、53、63、83、93、103 … ルーバー
 14、24、34、44、54、64、74、84、94、104、114、124、34、144 … 枠部
 15、15a、15b … 流路変更部
 16 … 孔部
 17 … カバープレート
 18 … ロウ材
 19 … カシメ部
 20 … 溝部
 CF … 冷却用流体
 D … 第1実施形態のルーバーの幅、又はルーバーのピッチ
 T … 金属板の厚さ、すなわち枠部及びルーバーの厚さ
 T … ベースプレート部の厚さ
 θ、φ … 枠部とルーバーとの角度
 

Claims (22)

  1.  発熱部品の熱を冷却用流体へ伝達するヒートシンクにおいて、
     前記発熱部品に熱的に接続された平板状のベースプレート部と、
     複数のルーバーと前記複数のルーバーに連結して前記複数のルーバーを取り囲む枠部とを有するフィンユニットと、を備え、
     前記複数のルーバーの一方の端部が前記ベースプレート部に熱的に接続されるとともに、前記枠部が前記ベースプレート部の表面から離れているヒートシンク。
  2.  前記複数のルーバーの少なくとも一部は一枚の金属板から切り起こして形成されるとともに、前記枠部は切り起こされずに残って形成される請求項1に記載のヒートシンク。
  3.  前記複数のルーバーは、前記冷却用流体の流れる方向に並行に伸びる長さと切り起こし方向の幅と切り起こし角度とを有しており、
     前記複数のルーバーのうちのいくつかのルーバーは他のルーバーと異なる長さ、異なる幅又は異なる切り起こし角度の少なくともいずれか一つを有している請求項1に記載のヒートシンク。
  4.  前記フィンユニットは、一枚の金属板をプレスして形成された第1フィンユニットと別の一枚の金属板をプレスして形成された第2フィンユニットとを有し、
     前記第1フィンユニットのルーバーは前記第2フィンユニットのルーバーと異なる長さ、異なる幅又は異なる切り起こし角度の少なくともいずれか一つを有している請求項1に記載のヒートシンク。
  5.  前記フィンユニットは、一枚の金属板をプレスして形成された第1フィンユニットと別の一枚の金属板をプレスして形成された第2フィンユニットとを有し、
     前記第1フィンユニットのルーバーの一方の端部が前記ベースプレート部に熱的に接続され、前記第2フィンユニットのルーバーの端部が前記第1フィンユニットのルーバーの他方の端部に熱的に接続される請求項1に記載のヒートシンク。
  6.  前記第1フィンユニットの枠部と前記第2フィンユニットの枠部とが離れている請求項5に記載のヒートシンク。
  7.  前記第1フィンユニットの枠部と前記第2フィンユニットの枠部とは接合している請求項5に記載のヒートシンク。
  8.  前記フィンユニットは、一枚の金属板をプレスして形成された第1フィンユニットと別の一枚の金属板をプレスして形成された第2フィンユニットとを有し、
     前記第1フィンユニットの複数のルーバー間に、前記第2フィンユニットの複数のルーバーが配置される請求項2又は請求項3に記載のヒートシンク。
  9.  前記枠部は、前記冷却用流体の流れ方向を変える流路変更部を有する請求項1に記載のヒートシンク。
  10.  前記冷却用流体は液体であり、
     前記液体の冷却用流体CFの流路が構成されるように、前記複数のルーバーの他方の端部と接続されたカバープレートを備える請求項1に記載のヒートシンク。
  11.  前記フィンユニットは金属板をプレスして形成され、
     前記フィンユニットは前記ベースプレート部にロウ付けされる請求項1に記載のヒートシンク。
  12.  前記金属板は、母材がアルミニウムで、その少なくとも一方の表面にロウ材をクラッドして作ったブレージングシートである請求項11に記載のヒートシンク。
  13.  発熱部品の熱を冷却用流体へ伝達するヒートシンクにおいて、
     前記発熱部品に熱的に接続された平板状のベースプレート部と、
     複数のルーバーと前記複数のルーバーに連結して前記複数のルーバーを取り囲む枠部とを有するフィンユニットと、を備え、
     前記複数のルーバーの一方の端部が前記ベースプレート部に熱的に接続されるとともに、
     フィンユニットを挟んでベースプレート部と相対する位置に、冷却用流体の流路を構成するように流路壁が設置されていて、前記枠部が前記流路壁に密着されているヒートシンク。
  14.  前記複数のルーバーの少なくとも一部は一枚の金属板から切り起こして形成されるとともに、前記枠部は切り起こされずに残って形成される請求項13に記載のヒートシンク。
  15.  前記複数のルーバーは、前記冷却用流体の流れる方向に並行に伸びる長さと切り起こし方向の幅と切り起こし角度とを有しており、
     前記複数のルーバーのうちのいくつかのルーバーは他のルーバーと異なる長さ、異なる幅又は異なる切り起こし角度の少なくともいずれか一つを有している請求項13に記載のヒートシンク。
  16.  前記フィンユニットは、一枚の金属板をプレスして形成された第1フィンユニットと別の一枚の金属板をプレスして形成された第2フィンユニットとを有し、
     前記第1フィンユニットのルーバーは前記第2フィンユニットのルーバーと異なる長さ、異なる幅又は異なる切り起こし角度の少なくともいずれか一つを有している請求項13に記載のヒートシンク。
  17.  前記フィンユニットは、一枚の金属板をプレスして形成された第1フィンユニットと別の一枚の金属板をプレスして形成された第2フィンユニットとを有し、
     前記第1フィンユニットのルーバーの一方の端部が前記ベースプレート部に熱的に接続され、前記第2フィンユニットのルーバーの端部が前記第1フィンユニットのルーバーの他方の端部に熱的に接続される請求項13に記載のヒートシンク。
  18.  前記フィンユニットは、一枚の金属板をプレスして形成された第1フィンユニットと別の一枚の金属板をプレスして形成された第2フィンユニットとを有し、
     前記第1フィンユニットの複数のルーバー間に、前記第2フィンユニットの複数のルーバーが配置される請求項14又は請求項15に記載のヒートシンク。
  19.  前記枠部は、前記冷却用流体の流れ方向を変える流路変更部を有する請求項13に記載のヒートシンク。
  20.  前記冷却用流体は液体であり、
     前記液体の冷却用流体CFの流路が構成されるように、前記複数のルーバーの他方の端部と接続されて流路壁となるカバープレートを備える請求項13に記載のヒートシンク。
  21.  前記フィンユニットは金属板をプレスして形成され、
     前記フィンユニットは前記ベースプレート部にロウ付けされる請求項13に記載のヒートシンク。
  22.  前記金属板は、母材がアルミニウムで、その少なくとも一方の表面にロウ材をクラッドして作ったブレージングシートである請求項21に記載のヒートシンク。
PCT/JP2010/004876 2009-08-07 2010-08-03 ヒートシンク WO2011016221A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080034790.5A CN102473693B (zh) 2009-08-07 2010-08-03 散热器
KR1020127004347A KR101729254B1 (ko) 2009-08-07 2010-08-03 히트 싱크
EP10806221.7A EP2463903A4 (en) 2009-08-07 2010-08-03 HEAT SINK
US13/389,117 US20120132400A1 (en) 2009-08-07 2010-08-03 Heat Sink
JP2011525783A JP5718814B2 (ja) 2009-08-07 2010-08-03 ヒートシンク

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-184687 2009-08-07
JP2009184687 2009-08-07

Publications (1)

Publication Number Publication Date
WO2011016221A1 true WO2011016221A1 (ja) 2011-02-10

Family

ID=43544131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004876 WO2011016221A1 (ja) 2009-08-07 2010-08-03 ヒートシンク

Country Status (7)

Country Link
US (1) US20120132400A1 (ja)
EP (1) EP2463903A4 (ja)
JP (1) JP5718814B2 (ja)
KR (1) KR101729254B1 (ja)
CN (1) CN102473693B (ja)
TW (1) TW201111736A (ja)
WO (1) WO2011016221A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028361A (ja) * 2010-07-20 2012-02-09 Furukawa Sky Kk ヒートシンク
JP2013016690A (ja) * 2011-07-05 2013-01-24 Furukawa Sky Kk ヒートシンク
JP2013197453A (ja) * 2012-03-22 2013-09-30 Furukawa Sky Kk ヒートシンク及びその製造方法
JP2014204045A (ja) * 2013-04-08 2014-10-27 株式会社Uacj 冷却器
CN105744802A (zh) * 2016-01-12 2016-07-06 严继光 用于发热设备的辐射式空调系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9184108B2 (en) * 2011-12-08 2015-11-10 Oracle International Corporation Heat dissipation structure for an integrated circuit (IC) chip
EP2824703B1 (en) * 2012-10-29 2022-06-29 Fuji Electric Co., Ltd. Semiconductor device
TWI494051B (zh) * 2012-11-19 2015-07-21 Acer Inc 流體熱交換裝置
WO2016122568A1 (en) * 2015-01-30 2016-08-04 Hewlett-Packard Development Company, L.P. Stacked fin structure
US10865975B2 (en) 2015-08-04 2020-12-15 Signify Holding B.V. Heat sink lighting device and method for manufacturing a heat sink
CN111567155B (zh) * 2018-01-15 2022-11-08 三菱电机株式会社 散热器
CN109595965B (zh) * 2018-12-28 2024-02-23 江苏利柏特股份有限公司 模块生产用板式换热装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283667A (ja) * 1995-12-14 1997-10-31 Texas Instr Inc <Ti> テープ接着形ヒートシンク
JP2009026785A (ja) 2007-07-17 2009-02-05 Kiko Kagi Kofun Yugenkoshi 電子装置の冷却装置における冷却用冷媒を真空封止する装置および方法
JP2009026784A (ja) 2007-07-17 2009-02-05 Furukawa Electric Co Ltd:The 放熱部品
JP2009099740A (ja) * 2007-10-16 2009-05-07 Furukawa Electric Co Ltd:The 筐体の冷却装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265127A (en) * 1963-10-21 1966-08-09 Ford Motor Co Heat exchange element
JPH06209178A (ja) * 1993-01-12 1994-07-26 Fanuc Ltd 電子機器用冷却装置
US5311928A (en) * 1993-06-28 1994-05-17 Marton Louis L Heat dissipator
JP3236137B2 (ja) * 1993-07-30 2001-12-10 富士通株式会社 半導体素子冷却装置
JP2981586B2 (ja) * 1993-10-15 1999-11-22 ダイヤモンド電機株式会社 ヒートシンク
JP3095624B2 (ja) * 1994-07-19 2000-10-10 株式会社ボッシュオートモーティブシステム 積層型熱交換器の偏平チューブのろう付け方法
JPH08204369A (ja) * 1995-01-20 1996-08-09 Sansha Electric Mfg Co Ltd 冷却フィン構造
US5957194A (en) * 1996-06-27 1999-09-28 Advanced Thermal Solutions, Inc. Plate fin heat exchanger having fluid control means
US6113485A (en) * 1997-11-26 2000-09-05 Advanced Micro Devices, Inc. Duct processor cooling for personal computer
JP3469475B2 (ja) * 1998-09-10 2003-11-25 株式会社東芝 鉄道車両用半導体冷却装置
US6205662B1 (en) * 1999-05-14 2001-03-27 Yun-Ching Chen Method of producing a built-up heat exchanger and product thereof
JP2001168561A (ja) * 1999-12-07 2001-06-22 Mitsubishi Alum Co Ltd 放熱器
US6170566B1 (en) * 1999-12-22 2001-01-09 Visteon Global Technologies, Inc. High performance louvered fin for a heat exchanger
JP2001358482A (ja) * 2000-04-14 2001-12-26 Matsushita Refrig Co Ltd 放熱モジュール
JP4634599B2 (ja) * 2000-11-30 2011-02-16 株式会社ティラド 水冷ヒートシンク
US6453987B1 (en) * 2001-10-19 2002-09-24 Chunyao Cheng Unitary heat-dissipating fin strip unit with straight strip portions and U-shaped strip portions
US6446709B1 (en) * 2001-11-27 2002-09-10 Wuh Choung Industrial Co., Ltd. Combination heat radiator
US6615910B1 (en) * 2002-02-20 2003-09-09 Delphi Technologies, Inc. Advanced air cooled heat sink
JP2004153001A (ja) * 2002-10-30 2004-05-27 Denso Corp 冷却フィンおよびそれを用いた沸騰冷却装置
CN2634414Y (zh) * 2003-06-16 2004-08-18 李建民 通用热交换组件
CN2724201Y (zh) * 2004-07-06 2005-09-07 陈万添 散热器结构
US20060011324A1 (en) * 2004-07-13 2006-01-19 Rogers C J Wound, louvered fin heat sink device
JP4614266B2 (ja) * 2004-07-23 2011-01-19 臼井国際産業株式会社 流体攪拌用フィン並びに該フィンを内装した伝熱管および熱交換器または熱交換型ガス冷却装置
KR100668806B1 (ko) * 2005-06-17 2007-01-16 한국과학기술연구원 물맺힘을 조절하여 향상된 열교환 효율을 갖는 루버핀열교환기
US20070240865A1 (en) * 2006-04-13 2007-10-18 Zhang Chao A High performance louvered fin for heat exchanger
JP4814777B2 (ja) * 2006-12-19 2011-11-16 株式会社ソニー・コンピュータエンタテインメント 積層放熱フィン
JP4516582B2 (ja) * 2007-05-15 2010-08-04 株式会社日立製作所 液晶表示装置
JP4888721B2 (ja) * 2007-07-24 2012-02-29 中村製作所株式会社 板状のフィンを有する放熱器の製造方法
JP2009176881A (ja) * 2008-01-23 2009-08-06 Nissan Motor Co Ltd 冷却装置
JP5041435B2 (ja) * 2008-05-22 2012-10-03 古河電気工業株式会社 ヒートシンク
US7684197B2 (en) * 2008-06-23 2010-03-23 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Memory module assembly having heat sinks with improved structure
CN101762200B (zh) * 2008-12-23 2013-03-06 富瑞精密组件(昆山)有限公司 电子装置及其散热装置与散热片
JP5888882B2 (ja) * 2011-06-15 2016-03-22 古河電気工業株式会社 ヒートシンク

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283667A (ja) * 1995-12-14 1997-10-31 Texas Instr Inc <Ti> テープ接着形ヒートシンク
JP2009026785A (ja) 2007-07-17 2009-02-05 Kiko Kagi Kofun Yugenkoshi 電子装置の冷却装置における冷却用冷媒を真空封止する装置および方法
JP2009026784A (ja) 2007-07-17 2009-02-05 Furukawa Electric Co Ltd:The 放熱部品
JP2009099740A (ja) * 2007-10-16 2009-05-07 Furukawa Electric Co Ltd:The 筐体の冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2463903A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028361A (ja) * 2010-07-20 2012-02-09 Furukawa Sky Kk ヒートシンク
JP2013016690A (ja) * 2011-07-05 2013-01-24 Furukawa Sky Kk ヒートシンク
JP2013197453A (ja) * 2012-03-22 2013-09-30 Furukawa Sky Kk ヒートシンク及びその製造方法
JP2014204045A (ja) * 2013-04-08 2014-10-27 株式会社Uacj 冷却器
CN105744802A (zh) * 2016-01-12 2016-07-06 严继光 用于发热设备的辐射式空调系统
CN105744802B (zh) * 2016-01-12 2018-05-11 严继光 用于发热设备的辐射式空调系统

Also Published As

Publication number Publication date
US20120132400A1 (en) 2012-05-31
JPWO2011016221A1 (ja) 2013-01-10
JP5718814B2 (ja) 2015-05-13
TW201111736A (en) 2011-04-01
EP2463903A1 (en) 2012-06-13
KR101729254B1 (ko) 2017-04-24
EP2463903A4 (en) 2015-03-04
CN102473693A (zh) 2012-05-23
KR20120040246A (ko) 2012-04-26
CN102473693B (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
WO2011016221A1 (ja) ヒートシンク
JP6247090B2 (ja) 液冷式冷却装置および液冷式冷却装置用放熱器の製造方法
JP5381561B2 (ja) 半導体冷却装置
US8120914B2 (en) Semiconductor cooling apparatus
JP4581802B2 (ja) 熱電変換装置
JP6738226B2 (ja) 冷却装置
JP6735664B2 (ja) 液冷式冷却装置用放熱器およびその製造方法
JP5005314B2 (ja) 水冷ヒートシンクおよびその製造方法
CN100533716C (zh) 散热装置
JP2010118497A (ja) ルーバー付きフィンを備えた熱交換器
JP5217246B2 (ja) パワーモジュール用ユニットの製造方法
TWI334529B (en) Heat dissipation device
JP5498143B2 (ja) 曲折ルーバー状放熱ユニットを用いたヒートシンク
JP2013225553A (ja) 熱交換器及びその製造方法
JP5589647B2 (ja) 冷却装置
JP2011054778A (ja) 櫛型放熱ユニットを用いた熱交換器
JP5114324B2 (ja) 半導体装置
JP5901416B2 (ja) 熱交換器用フィンおよびそれを用いたヒートシンク、熱交換器用フィンの製造方法
JP2011003708A (ja) コルゲート状放熱ユニットを用いた熱交換器
TWI566670B (zh) 散熱裝置
TWI620497B (zh) 折疊型散熱裝置及其製法
JP5192448B2 (ja) 熱交換器用溝付きベースプレートの製造方法および熱交換器用溝付きベースプレート
CN218868569U (zh) 鳍片结构
JP4656154B2 (ja) ヒートシンクの製造方法およびヒートシンク
JP2007129104A (ja) 積層接合ヒートシンク

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034790.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525783

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13389117

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127004347

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010806221

Country of ref document: EP