WO2011011966A1 - 电感器 - Google Patents

电感器 Download PDF

Info

Publication number
WO2011011966A1
WO2011011966A1 PCT/CN2010/001082 CN2010001082W WO2011011966A1 WO 2011011966 A1 WO2011011966 A1 WO 2011011966A1 CN 2010001082 W CN2010001082 W CN 2010001082W WO 2011011966 A1 WO2011011966 A1 WO 2011011966A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
coil
inductor
common
arms
Prior art date
Application number
PCT/CN2010/001082
Other languages
English (en)
French (fr)
Inventor
邵革良
铃木敦
周杰
Original Assignee
株式会社田村制作所
田村电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社田村制作所, 田村电子(上海)有限公司 filed Critical 株式会社田村制作所
Priority to CN201080008717.0A priority Critical patent/CN102326216B/zh
Priority to JP2012521929A priority patent/JP5784601B2/ja
Priority to EP10803799.5A priority patent/EP2461334B8/en
Priority to IN1755DEN2012 priority patent/IN2012DN01755A/en
Priority to KR1020127005324A priority patent/KR101760382B1/ko
Publication of WO2011011966A1 publication Critical patent/WO2011011966A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/02Adaptations of transformers or inductances for specific applications or functions for non-linear operation
    • H01F38/023Adaptations of transformers or inductances for specific applications or functions for non-linear operation of inductances
    • H01F2038/026Adaptations of transformers or inductances for specific applications or functions for non-linear operation of inductances non-linear inductive arrangements for converters, e.g. with additional windings

Definitions

  • the present invention relates to an inductor used in a voltage conversion circuit or the like. Background technique
  • a conversion circuit of a staggered PFC (Power Factor Correction Power Factor Correction) system as described in Japanese Laid-Open Patent Publication No. 2007-195282 is used as a voltage conversion circuit that boosts the voltage of the alternating current or the direct current to a desired level.
  • a conversion circuit of a staggered PFC (Power Factor Correction Power Factor Correction) system as described in Japanese Laid-Open Patent Publication No. 2007-195282 is used.
  • An example of a conversion circuit of an interleaved PFC system for a two-phase AC power supply is shown in FIG.
  • the conversion circuit S shown in Fig. 11 branches the alternating current from the alternating current power source E to the two inductors and L 2 . Further, the configuration (from left to right direction in FIG. 11) in the AC power supply E and the inductors, diodes between 1 ⁇ 2, the inductor L 2 in the direction of current flow is generally constant.
  • the terminal on the upstream side of the inductor L 2 (left side
  • the output of the inductor L 2 is branched into two.
  • the path of one of the branches is connected to the first output terminal of the conversion circuit S via a diode.
  • the other path branched from the output ends of the inductors Li, L 2 is connected to the second output terminal 0 2 of the conversion circuit S via the MOS transistors Mi, M 2 .
  • an electrolytic capacitor is provided between the first output terminal and the second output terminal o 2 .
  • the gate of the MOS transistor M 2 is connected to the controller C.
  • the controller C intermittently transmits a pulse signal to the gate, whereby the output of the inductor, L 2 and the second output terminal 0 2 of the conversion circuit S are intermittently connected/disconnected.
  • the controller C makes the phase of the pulse signal transmitted to the MOS transistor 180 out of phase with the pulse signal transmitted to the MOS transistor M 2 . Supply is provided.
  • an object of the present invention is to provide an inductor capable of obtaining a good output and capable of realizing a small voltage conversion circuit.
  • an inductor of the present invention has a magnetic core and a plurality of coils, the magnetic core having: a plurality of coil arms each wound with a plurality of coils; and at least one magnetic flux loop formed with each coil arm a common arm; and a pair of bases, the coil arm and the common arm being located between the pair of bases.
  • the common arm is integrally formed with one of the pair of base portions, and is in close contact with the other.
  • the common arm may include: a first divided arm portion integrally formed with one of the pair of base portions; and a second divided arm portion integrated with another square of the base portion, the first divided arm portion and the second The dividing arms are in close contact with each other.
  • the magnetic resistance of the coil arm is larger than the magnetic resistance of the common arm.
  • the coil arm is separated from either of the pair of base portions, and a plate-like gap member is interposed between the coil arm and the base.
  • the gap member is formed of, for example, a resin material.
  • the magnetic resistance of the material forming the coil arm can be made larger than the magnetic resistance of the material forming the base portion and the common arm.
  • the coil arm is a powder magnetic core, and the base and common arm are ferrite cores.
  • the coil arm and the pair of base portions may be integrally formed, and an air gap may be formed between the other of the base portions and the coil arm, instead of having a plate-like gap between the coil arm and the base portion. The structure of the part.
  • the number of the coil arms can be two, and the coil arm and the common arm are arranged in a line between the pair of base portions so that the common arm is located between the two coil arms.
  • the number of the common arms may be two, and the coil arm and the common arm are arranged in a line between the pair of base portions such that the plurality of coil arms are located between the two common arms.
  • the pair of base portions may have a polygonal shape, and the coil arms may be provided at positions where the corner portions of the base portion are connected to each other. In this case, one coil arm is provided at each corner of the base, and the common arm is disposed at a position where the center portions of the base are connected to each other.
  • the common arm is disposed between the outer edge portions of the base portion in which the coil arms are not disposed Pick up location.
  • the coil arms are provided, for example, at diagonal corners in the base.
  • the inductor of the present invention described above is used for the voltage conversion circuit of the PFC type interleaved, the magnetic flux generated by each coil can cancel each other in the common arm. Therefore, the magnitude of the magnetic flux penetrating the common arm can be reduced. Therefore, the cross-sectional area of the common arm can be made sufficiently smaller than the cross-sectional area of the coil arm.
  • the volume and the ground contact area of the inductor can be suppressed to be smaller than that of the conventional structure using a plurality of inductors, and a small voltage conversion circuit can be realized.
  • Fig. 1 is a perspective view of an inductor according to a first embodiment of the present invention.
  • Fig. 2 is a schematic side view showing an inductor according to a first embodiment of the present invention.
  • FIG. 3 is a schematic side view showing another example of the inductor according to the first embodiment of the present invention.
  • 4 is a perspective view of an inductor according to a second embodiment of the present invention.
  • Fig. 5 is a schematic side view showing an inductor according to a third embodiment of the present invention.
  • Fig. 6 is a perspective view of an inductor according to a fourth embodiment of the present invention.
  • Fig. 7 is a perspective view of an inductor according to a fifth embodiment of the present invention.
  • Fig. 8 is a perspective view of an inductor according to a sixth embodiment of the present invention.
  • Fig. 9 is a perspective view of a magnetic core of an inductor according to a sixth embodiment of the present invention.
  • Fig. 10 is an exploded perspective view of the inductor of the sixth embodiment of the present invention.
  • Fig. 11 is a circuit diagram showing an example of a voltage conversion circuit of the interleaved PFC system. detailed description
  • Fig. 1 is a perspective view showing an inductor according to a first embodiment of the present invention.
  • 2 is a schematic side view of the inductor of the embodiment.
  • the inductor 1 of the present embodiment has a core 10, a first coil 21, and a second coil 22.
  • the magnetic core 10 is formed by combining the first block 11 and the second block 12.
  • First block 11 The first arm 11b, the second arm llc, and the third arm lid, which are substantially parallel to each other, project from the first core portion 11a as a rod-shaped base portion, and are formed in an E shape. Further, the second block 12 has a rod shape, that is, an I shape. A second core portion which is a base paired with the first core portion 11a is formed. That is, the magnetic core 10 is a so-called EI type magnetic core.
  • the first coil 21 and the second coil 22 are wound around the first arm lib and the third arm lid of the first block 11, respectively. Further, the terminals on the lower side of the first coil 21 and the second coil 22 are connected to the respective lead wires 21a and 22a, and the terminals on the upper side are connected to the common lead wires 23.
  • the magnetic core 10 a powder magnetic core formed by compression-molding a powder of a ferromagnetic material such as iron, a laminated magnetic core formed by laminating steel sheets such as silicon steel, or a ferrite core can be used.
  • the first block 11 and the second block 12 may be the same type of magnetic core, or may be different kinds of magnetic cores.
  • the first arm lib and the third arm lid wound by the coils 21 and 22 and the central second arm lie may also be different kinds of magnetic cores.
  • the cross-sectional area of the second arm 11c can be sufficiently smaller than the total of the cross-sectional areas of the first arm lib and the third arm lid.
  • the first coil 21 and the second coil 22 share a part of the magnetic core 10 (ie, the second arm llc), and the first coil 21 and the second coil 22 are wound around different cores.
  • the size and set area of the inductor can be greatly reduced. Therefore, by using the inductor 1 of the present embodiment for the interleaved PFC circuit, it is possible to realize a voltage conversion circuit which is small and has small ripple ripple. Further, in the present embodiment, since the two sets of coils of the inductor are mounted on the arms outside the magnetic core, heat generated by the coils does not collect in the central portion of the magnetic core, and heat can be efficiently dissipated to the outside.
  • the length ratio of the central second arm 11c is The lengths of the first arm lib and the third arm lid on both sides are slightly longer. Therefore, when the first block 11 and the second block 12 are combined to form the magnetic core 10, an air gap G A is formed between the first arm 11b, the third arm lid, and the second block 12. This air gap G A prevents magnetic saturation at the first arm lib and the third arm lid.
  • the magnetic resistance of the path from the first arm lib or the third arm l id toward the second arm 11c is sufficiently smaller than the magnetic resistance of the path between the first arm lib and the third arm lid.
  • most of the magnetic flux generated by the first coil 21 does not penetrate the third arm lid but penetrates the second arm llc.
  • most of the magnetic flux generated by the second coil 22 does not penetrate the first arm lib but passes through the second arm llc. Therefore, it is possible to prevent the magnetic flux generated by one of the coils from being electromagnetically induced to the other coil, thereby causing noise to be generated in the output.
  • the inductor 1 of the present embodiment has two sets of coils 21, 22 as described above.
  • the present invention is not limited to the above structure.
  • the first auxiliary coil 21' and the second auxiliary coil may be respectively disposed on the first arm lib and the third arm lid, respectively. 22, the structure.
  • the inductor 1' of the above configuration is used for performing switching of the MOS transistor and interleaving in a so-called critical mode operation when detecting that the magnitude of the current flowing through the coil for boosting is zero (zero cross) PFC conversion circuit.
  • the first auxiliary coil 21' and the second auxiliary coil 22' are connected to a PFC controller that controls the MOS transistor, and the PFC controller detects the magnitude of the current flowing in the first coil 21 and the second coil 22 based on the detection result. Controls the switching action of the MOS transistor.
  • this configuration is also useful when the system uses an interleaved PFC conversion circuit. That is, according to this configuration, the conversion circuit based on the coils 21, 22 and the conversion circuit based on the auxiliary coils 21', 22' can be formed by one inductor. Further, in the case where the inductor ⁇ of the present configuration is used in a two-system interleaved PFC type conversion circuit, the direction of the current flowing through the auxiliary coils 21', 22' is preferably determined such that it flows through the auxiliary coil 21' The magnetic flux generated by the overcurrent and the magnetic flux generated by the current flowing through the auxiliary coil 22' cancel each other in the second arm 11c.
  • the second arm 11c has a substantially prismatic shape.
  • the present invention is not limited to the above structure.
  • the illustrated inductor 101 of the second embodiment of the present invention, as shown in FIG. 4 is not disposed in the depth direction of the second arm 111c at the center of the first coil 121 and the second coil 122 (ie, with the first coil 121 and The direction in which the second coils 122 are arranged and the direction perpendicular to both of the axial directions.
  • the size D is substantially the same as the outer diameters of the first coil 121 and the second coil 122.
  • the depth direction of the first core portion 111a and the second block 112 of the first block 111 is reduced at both ends in the width direction (the arrangement direction of the first to third arms 11lb to d) toward the width direction.
  • the center that is, the portion where the second arm 111c is provided
  • the first core portion 111a and the second block 112 of the first core 111 have a substantially hexagonal plate shape, and the first arms of the coils 121 and 122 are disposed.
  • 111b and llld are arranged such that the two sets of corners 11 le of the above-mentioned hexagons are connected to 112a, lllf and 112b, respectively.
  • the side surface 115a on the first arm 111b side and the side surface 115b on the third arm 111d side of the second arm 111c are concave surfaces having a cylindrical surface shape extending in the axial direction of the coils 121 and 122. Further, a part of the first coil 121 and the second coil 122 are disposed in the recesses of the side faces 115a and 115b of the second arm 111c, respectively.
  • the size of the width direction of the inductor 101 i.e., the direction in which the first coil 121 and the second coil 122 are arranged. The direction from the lower left to the upper right in the drawing) can be suppressed.
  • the dimension in the depth direction of the second arm 111c is made as long as possible within a range in which the size of the depth direction of the inductor 101 is not increased. Therefore, according to the present embodiment, it is possible to realize an inductor in which the cross-sectional area of the second arm 111c is sufficiently large and the ground contact area and volume of the inductor are suppressed while ensuring the performance of the inductor.
  • the second bulk body 112 forms a second core portion that is paired with the first core portion 111a by a single body (unit body);
  • the first block 111 in which the first to third arms 11 to 0 protrude from the first core portion 111a forms a magnetic body with the second block 112 (which is substantially the same shape as the first core portion 111a)
  • the core 110 and the like are the same as the first embodiment of the present invention.
  • first arm 111b and the third arm 111d wound around the coils 121 and 122 are formed with an air gap G A
  • the second arm 111c where the coils 121 and 122 are not provided does not form an air gap (ie, the first This is also the same as the first embodiment in that the two blocks 112 and the second arm 111c are in close contact with each other.
  • the two terminals of the first coil 121 and the second coil 122 may be connected to the first coil 121 and the common terminal of one of the two magnetic core portions.
  • the common lead connection of the two coils 122, the terminal close to the other core portion is connected to the single lead, and the direction in which the first coil 121 is wound and the direction in which the second coil 122 is wound are opposite directions.
  • a current flows between the common lead and the single lead, the magnetic flux generated based on the second coil 121 and the magnetic flux generated based on the second coil 122 are in the second arm
  • the 111c cancels each other out, and the inductor 101 is a small inductor having a small cross-sectional area of the second arm 111c, and has the same performance as the two inductors.
  • FIG. 5 is a schematic side view showing an inductor according to a third embodiment of the present invention.
  • the magnetic core 210 has a pair of upper and lower bases (including a first core portion 211a in the lower first block 211 and an upper side paired with the first core portion 211a) a second block 212), and a first arm 211b, a second arm 211c, a third arm 211d and a fourth arm 211e arranged in a row between the bases, the first coil 221 and the second coil 222 are wound inside
  • the second arm 211c and the third arm 211d are on.
  • the magnetic fluxes B11 and B12 generated by the first coil 221 and the second coil 222 pass through the outer first arm 211b and the fourth arm 211e. Therefore, the outer first arm 211b and the fourth arm 211e function as a common arm used by both the first coil 221 and the second coil 222.
  • one of the two terminals of the first coil 221 and the second coil 222 (upper side in the drawing) is connected to the common lead 223.
  • the other side is connected to the separate leads 221a and 222a.
  • the directions in which the first coil 221 and the second coil 222 are wound are opposite to each other. Therefore, in the case where a current flows between the common lead 223 and the single leads 221a, 222a, the magnetic flux B11 generated based on the first coil 221 and the second coil 222 are formed in the first arm 211b and the fourth arm 211e. Generated magnetic flux: B12 becomes the opposite direction and cancels each other.
  • the magnitude of the magnetic flux penetrating the first arm 211b and the fourth arm 211e becomes small. Therefore, the cross-sectional area of the first arm 211b and the fourth arm 211e may be sufficiently smaller than the cross-sectional area of the second arm 211c and the third arm 211d.
  • the first arm 211b to the fourth arm 211e Formed integrally with the first core portion 211a of the first block 211, and further, an air gap G A is formed between the second arm 211c and the third arm 211d and the second block 212 wound by the coils 221 and 222.
  • no air gap is formed between the first arm 211b and the fourth arm 211e and the second block 212 where the coils 221 and 222 are not provided (the first arm 211b and the fourth arm 211e and the second block 212) Closely connected).
  • Fig. 6 is a perspective view of an inductor according to a fourth embodiment of the present invention.
  • the magnetic core 310 has a pair of base portions arranged one above another (a first core portion 311a included in the first block 311 on the lower side, and a second block 312 on the upper side, which The monomer (unit body) forms a second core portion that is paired with the first core portion 311a). Further, both the first core portion 311a and the second block 312 are formed in a substantially triangular plate shape.
  • first coils 321 and The two coils 322 are wound around the first arm 311b and the second arm 311c. In this configuration, the magnetic flux generated by the first coil 321 and the second coil 322 passes through the third arm 311d.
  • the two terminals of the first coil 321 and the second coil 322 may be connected to the first coil 321 and the second terminal in common with one of the magnetic core portions.
  • the common lead connection of the coil 322, the terminal close to the other core portion is connected to the single lead, and the direction in which the first coil 321 is wound and the direction in which the second coil 322 is wound are opposite directions.
  • a current flows between the common lead and the single lead, the magnetic flux generated based on the first coil 321 and the magnetic flux generated based on the second coil 322 are on the third arm.
  • the inductors 301 are small inductors having a small cross-sectional area of the third arm 311d, and have the same performance as the two inductors.
  • the first arm 311b to the third arm 311d are integrally formed with the first core portion 311a, and further, the first arm 311b and the second arm 311c around which the coils 321 and 322 are wound are wound.
  • An air gap G A is formed between the second block 312 and the third arm 311d where the coils 321 and 322 are not provided. (The third arm 311d is in close contact with the second block 312).
  • the inductors according to the first to fourth embodiments of the present invention described above are applied to the doubles in which the phases of the pulses input to the gates of the plurality of MOS transistors are different by 180° as shown in FIG. Phase-type interleaved PFC circuits.
  • the inductor of the present invention can also be applied to an interleaved PFC circuit other than the two-phase type.
  • the inductor according to the fifth embodiment of the present invention to be described below is applied to a four-phase type interleaved PFC circuit which is set to be input to each of the MOS transistors provided in the four sets of coils.
  • the phases of the pulses in the phase are each 90° out of phase.
  • Fig. 7 is a perspective view of an inductor according to a fifth embodiment of the present invention.
  • the magnetic core 410 of the inductor 401 of the present embodiment has a pair of base portions arranged one above the other (the first core portion 411a included in the lower first block 411 and the single body (unit body) and the first core
  • the portion 411a is a pair of upper second blocks 412).
  • the first core portion 411a and the second block 412 are formed in a substantially quadrangular plate shape, and four columnar first arms 411b and second arms are provided at positions where the respective corner portions of the base portion are connected to each other. 411c, a third arm 411d and a fourth arm 411e, and a fifth arm 411f disposed at the center of the rectangle.
  • first arm 411b to the fifth arm 411f are formed integrally with the first core portion 411a.
  • the inductor 401 of the present embodiment has a first coil 421, a second coil 422, a third coil 423, and a fourth coil 424, and these coils are wound around the first arm 411b, the second arm 411c, and the third arm 411d, respectively.
  • the fourth arm 411e is on.
  • the magnetic core 410 is formed by the first coil 421 to the fourth coil 424, respectively.
  • These magnetic fluxes pass through the direction in which the first coil 421 to the fourth coil 424 of the fifth arm 401f of the fifth arm of the present embodiment are wound so that the magnetic fluxes generated by the respective coils in the fifth arm 411f cancel each other. .
  • the terminal on the side close to one of the core portions and the common connection between the first coil 421 and the fourth coil 424 may be commonly connected.
  • the lead wire is connected, the terminal close to the other core portion is connected to the single wire, and the direction in which the first coil 421 and the third coil 423 are wound is opposite to the direction in which the second coil 422 and the fourth coil 424 are wound.
  • a current flows between the common lead and the single lead, and the magnetic flux generated by the first to fourth coils 421 to 424 cancels each other in the fifth arm 411f. Therefore, the magnitude of the magnetic flux penetrating the fifth arm 411f becomes small. Therefore, the cross-sectional area of the fifth arm 411f is sufficiently smaller than the total of the cross-sectional areas of the first arm 411b to the fourth arm 411e.
  • the first coil 421 to the fourth coil 424 share a part of the magnetic core 410 (that is, the fifth arm 411f in this embodiment), and the respective coils are wound around different magnetic waves.
  • the volume and the installation area of the inductor can be greatly reduced. Therefore, by using the inductor 401 of the present embodiment in the interleaved PFC circuit, it is possible to realize a voltage conversion circuit that is small and has small ripple ripple. Further, in the present embodiment, since the four sets of coils of the inductor are mounted on the arms on the outer side of the magnetic core, the heat generated by the coil does not collect in the central portion of the magnetic core, and the heat can be efficiently dissipated to the outside. .
  • an air gap G A is formed between the first arm 411b to the fourth arm 411e and the second block 412. This air gap G A prevents magnetic saturation in the first arm 411b to the fourth arm 411e.
  • an air gap G A is not formed between the central fifth arm 411f and the second block 412 (that is, the fifth arm 411f and the second block 412 are in close contact with each other). Therefore, the magnetic resistance of the path between the fifth arm 411f and the other arm is sufficiently smaller than the magnetic resistance of the path between the first arm 411b to the fourth arm 411f. As a result, most of the magnetic flux generated by the first coil 421 to the fourth coil 424 penetrates the fifth arm 411f. Thereby, it is possible to avoid the problem that noise is generated in the output by electromagnetic induction of the other coil by the magnetic flux generated by one of the coils.
  • the first arm 411b to the fourth arm 411e are disposed at positions where the respective corner portions of the rectangular first core portion 411 and the second block 412 are connected to each other, but
  • the invention is not limited to the above-described configuration.
  • the coil arm may be disposed at a position where the corner portions of the core portions of other polygons such as a rhombic shape and a right-angle trapezoid are connected to each other.
  • the arm in which the coil is provided with the magnetic core and the arm in which the coil is not provided are integrally formed.
  • the present invention is not limited to the above structure.
  • the arm provided with the coil is separated from the other arm.
  • Fig. 8 is a perspective view showing the inductor of the embodiment.
  • Fig. 9 is a perspective view of a magnetic core of the inductor of the present embodiment.
  • Fig. 10 is an exploded perspective view of the inductor of the embodiment.
  • the inductor 501 of the present embodiment has a magnetic core 510, a first coil 521, and a second coil 522. Further, in Figs. 8 to 10, the first coil 521 and the second coil 522 are indicated by broken lines.
  • the magnetic core 510 of the inductor 501 of the present embodiment has a rough outline.
  • the magnetic core 510 has a first arm 513, a second arm 514, a third arm 515, and a fourth arm 516.
  • the first arm 513 and the fourth arm 516 are disposed such that the two corner portions of the hexagonal shape of the first core portion 511a and the second core portion 512a are connected to each other, the first coil 521 and The second coil 522 is disposed around the first arm 513 and the fourth arm 516.
  • the first coil 521 and the second coil 522 are mounted around the first arm 513 and the fourth arm 516 by bobbins 531 and 532, respectively.
  • the first arm 513 and the fourth arm 516 are both cylindrical members separate from the first block 511 and the second block 512. Further, as shown in FIGS. 9 and 10, a gap member G P which is a resin disc is attached to both ends of the first arm 513 and the fourth arm 516, and the first arm 513 and the fourth arm 516 are not the first.
  • the block 511 and the second block 512 are in direct contact.
  • the second arm 514 is divided into two parts of the split arm portions 514a and 514b.
  • One of the divided arm portions 514a is formed integrally with the first core portion 511a
  • the other divided arm portion 514b is formed integrally with the second core portion 512a.
  • the third arm 515 is divided into two parts of the split arms 515a and 515b (Fig. 10).
  • One of the divided arm portions 515a is integrally formed with the first core portion 511a
  • the other divided arm portion 515b is formed integrally with the second core portion 512a.
  • the first bulk 511 is formed by the first core portion 511a, the split arms 514a and 515a, and the second block 512 is formed by the second core portion 512a and the split arms 514b and 515b.
  • the bobbins 531 and 532 are housed between the first block 511 and the second block 512, and the split arms 514a and 514b are in the bobbin 531.
  • the space between the 532 and the 532 is in close contact with each other.
  • the split arms 515a and 515b are in close contact with each other in the space between the bobbins 531 and 532 (not shown).
  • the gap member G P is disposed between the first arm 513 and the fourth arm 516 and the first block 511 and the second block 512, and on the other hand, the first block 511 and the second block 512 are disposed.
  • the connected second arm 514 and third arm 515 do not form a gap. Therefore, the magnetic reluctance of the first arm 513 and the fourth arm 516 is larger than the magnetic reluctance of the second arm 514 and the third arm 515.
  • the first arm 513 and the fourth arm 516 are powder magnetic cores, and on the other hand, the first block 511 and the second block 512 are formed of a ferrite core.
  • the magnetic reluctance of the first arm 513 and the fourth arm 516 is larger than the magnetic reluctance of the second arm 514 and the third arm 515. the result is, Magnetic saturation at the first arm 513 and the fourth arm 516 is prevented. Furthermore, since the magnetic reluctance of the first arm 513 and the fourth arm 516 is large, the magnetic flux generated by the first coil 521 at the first arm 513 does not face the fourth arm 516, and the second coil 522 is at the fourth arm 516. The resulting magnetic flux also does not face the first arm 513, which is mostly directed toward the second arm 514 and the third arm 515.
  • the two terminals of the first coil 521 and the second coil 522 may be connected to the first coil 521 and the second terminal in common with one of the magnetic core portions.
  • the common lead connection of the coil 522, the terminal close to the other core portion is connected to the single lead, and the direction in which the first coil 521 is wound and the direction in which the second coil 522 is wound are opposite directions.
  • a current flows between the common lead and the single lead, and the magnetic flux generated by the first coil 521 and the magnetic flux generated by the second coil 522 are in the second arm 514 and the third arm 515.
  • the inductors 501 are formed as small inductors having a small cross-sectional area of the second arm 514 and the third arm 515, and have the same performance as the two inductors.
  • the inductor 501 of the present embodiment is the same as the second embodiment (FIG. 4), and as shown in FIG. 9, the surfaces of the second arm 514 and the third arm 515 which are close to the coil 521 and the coil 522 are formed along each side.
  • the second arm 514 and the third arm 515 having a sufficient sectional area can be obtained, and the interval between the first coil 521 and the second coil 522 can be shortened, and the width of the inductor 501 can be suppressed as in the second embodiment.
  • the size of the direction i.e., the direction in which the first coil 521 and the second coil 522 are arranged).
  • the present invention is not limited to the configurations of the first to sixth embodiments described above, and an inductor obtained by appropriately combining the configurations of the first to sixth embodiments is also included in the present invention.
  • the arm provided with the coil is integrally formed with one of the core portions, and the air gap G A is provided between the other core portion.
  • an inductor in which a resin gap member G P is provided between an arm provided with a coil and both magnetic core portions is also included in the present invention.
  • the common arm in which the coil is not provided has a pair of divided arm portions provided in each of the first block and the second block, and the split arms are mutually connected The close contact forms a common arm.
  • the first arm 513 and the fourth arm 516 are integrally formed with the first block 511, and are in contact with the second block 512.
  • a structure in which an air gap G A is formed is also included in the present invention.
  • the entirety of the second arm 514 and the third arm 515 are integrally formed with the first block 511, and the second arm 514 and the third arm 515 and the second The core 512 is in close contact.
  • first auxiliary coil 21 and the second auxiliary coil 22 shown in Fig. 3 can be applied to the second to sixth embodiments. That is, in the second to sixth embodiments, the configuration in which the auxiliary coils are added to the arms provided with the coils is also included in the present invention.
  • the auxiliary coils may be provided in each of the first arm 411b, the second arm 411c, the third arm 411d, and the fourth arm 411e, and in the case of being applied to the sixth embodiment, An auxiliary coil may be provided in each of the bobbins 531 and 532. Further, a bobbin around which the auxiliary coil is wound may be further added, and is attached to each of the first arm 513 and the fourth arm 516.
  • the inductor of the present invention described above is used for the voltage conversion circuit of the PFC type interleaved, the magnetic flux generated by each coil can cancel each other in the common arm. Therefore, the magnitude of the magnetic flux penetrating the common arm can be reduced. Therefore, the cross-sectional area of the common arm can be made sufficiently smaller than the cross-sectional area of the coil arm.
  • the volume and the ground contact area of the inductor can be suppressed to be smaller than that of the conventional structure using a plurality of inductors, and a small voltage conversion circuit can be realized. Therefore, it has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

电感器
技术领域
本发明涉及在电压变换电路等中使用的电感器。 背景技术
作为将交流或直流电流的电压升压至所要求的大小的电压变换电 路,使用如日本专利公开 2007-195282号公报所记载的那样的交错 PFC (Power Factor Correct功率因数校正) 方式的变换电路。 双相交流电 源用的交错 PFC方式的变换电路的一例如图 11所示。 图 11所示的变 换电路 S, 将来自交流电源 E的交流电流分支输入到两个电感器 和 L2。 并且, 通过配置在交流电源 E和电感器 、 1^2之间的二极管, 在 电感器 、 L2中流动的电流的方向通常为恒定(在图 11中由左向右的 方向)。 在以下的说明中, 将电感器 L2的上游一侧的端子(图中左 侧) 定义为输入端, 将下游一侧的端子 (图中右侧) 定义为输出端。
电感器 L2的输出端分别分支为两个。 分支后的一方的路径经 由二极管与变换电路 S的第一输出端 连接。另一方面,从电感器 Li、 L2的输出端分支的另一方的路径, 经由 MOS晶体管 Mi、 M2与变换电 路 S的第二输出端 02连接。 此外, 在第一输出端 和第二输出端 o2 之间, 设置有电解电容器。 '
MOS晶体管 M2的栅极与控制器 C连接。 控制器 C间歇地向 栅极发送脉冲信号, 由此, 电感器 、 L2的输出端与变换电路 S的第 二输出端 02间歇地连接 /断开。 控制器 C使向 MOS晶体管 发送的 脉冲信号的相位与向 MOS晶体管 M2发送的脉冲信号的相位相差 180 。 地进行供给。
将上述结构的变换电路 S与交流电源 E连接时,能够从输出端 O 02获得比交流电源 E的电压 VJN更高的电压 V0UT的直流电流。
将交流电流通过使用单一的电感器的变换电路进行变换时, 其输 出为, 电流和电压以山形变动, 脉动波紋较多。 与此相对, 使用交错 PFC 方式的变换电路的情况下, 由于脉动波紋的相位偏移的多个电流 合成, 因此能够获得脉动波紋较少的良好的电流。 发明内容
但是, 由于现有的交错 PFC方式的变换电路使用多个电感器, 所 以存在电路变得大型的问题。
本发明是为了解决上述问题而完成。 即, 本发明的目的在于, 提 供能够获得良好的输出并且能够实现小型的电压变换电路的电感器。
为了达成上述目的, 本发明的电感器具有磁芯和多个线圈, 磁芯 具有: 多个线圈的各个分别加以缠绕的多个线圈用臂; 与各个线圈用 臂形成磁通环的至少 1 个共通臂; 和一对基部, 线圈用臂和共通臂位 于一对基部之间。
在上述结构中, 共通臂与一对基部的一方形成为一体, 与另一方 密接。
或者也可以构成为, 共通臂具有: 与一对基部的一方形成为一体 的第一分割臂部; 和与基部的另一方形成为一体的第二分割臂部, 第 一分割臂部和第二分割臂部相互密接。
另外, 优选构成为线圈臂的磁阻比共通臂的磁阻大。 例如构成为, 线圈臂与一对基部的任一个均分离, 在线圈臂和基部之间夹有板状的 间隙部件。 在该情况下, 间隙部件例如由树脂材料形成。 另外, 能够 构成为形成线圈臂的材料的磁阻比形成基部和共通臂的材料的磁阻 大。 例如, 线圈臂为压粉磁芯, 基部和共通臂为铁氧体磁芯。 另外, 能够构成为线圈臂与一对基部的一方形成为一体, 在基部的另一方与 线圈臂之间形成有空气间隙的结构, 以此代替在线圈臂和基部之间夹 有板状的间隙部件的结构。
另外, 能够构成为线圈臂的个数为 2个, 线圈臂和共通臂, 在一 对基部之间, 以共通臂位于 2个线圈臂之间的方式排成一列地配置。 或者, 能够构成为共通臂的个数为 2个, 线圈臂和共通臂, 在一对基 部之间, 以多个线圈臂位于 2个共通臂之间的方式排成一列地配置。 或者, 能够构成为一对基部为多边形形状, 线圈臂设置在将基部的角 部彼此之间连接的位置。 在该情况下, 线圈臂在基部的所有角部各设 置有 1个, 共通臂配置在将基部的中心部彼此之间连接的位置。 或者, 能够构成为共通臂设置在将基部中未设置线圈臂的外缘部彼此之间连 接的位置。 在上述结构中, 线圈臂例如设置在基部中成对角的角部。 另外也能够构成为, 还具有多组辅助线圈, 多组辅助线圈的各个 缠绕在上述多个线圈用臂上。
另外也能够构成为如下所述结构: 设定为由所述多个线圈用臂的 各个所产生的位于共通臂中的磁通相互抵消。
将以上说明的本发明的电感器用于交错 PFC方式的电压变换电路 的情况下, 由各线圈产生的磁通能够在共通臂中相互抵消。 因此, 能 够减小贯通共通臂的磁通的大小。 因此, 能够使共通臂的截面积比线 圈用臂的截面积充分小。 将这样的电感器用于交错 PFC方式的电压变 换电路时, 与使用多个电感器的现有结构相比, 能够将电感器的体积 和接地面积抑制为较小, 实现小型的电压变换电路。 附图说明
图 1是本发明的第一实施方式的电感器的立体图。
图 2是本发明的第一实施方式的电感器的概略侧面图。
图 3是本发明的第一实施方式的电感器的另一例的概略侧面图。 图 4是本发明的第二实施方式的电感器的立体图。
图 5是本发明的第三实施方式的电感器的概略侧面图。
图 6是本发明的第四实施方式的电感器的立体图。
图 7是本发明的第五实施方式的电感器的立体图。
图 8是本发明的第六实施方式的电感器的立体图。
图 9是本发明的第六实施方式的电感器的磁芯的立体图。
图 10是本发明的第六实施方式的电感器的分解立体图。
图 11是交错 PFC方式的电压变换电路的一例的电路图。 具体实施方式
以下, 对于本发明的实施方式使用附图详细地说明。 图 1 表示本 发明的第一实施方式的电感器的立体图。 此外, 图 2是本实施方式的 电感器的概略侧面图。 如图 1所示, 本实施方式的电感器 1具有磁芯 (core) 10、 第一线圈 21和第二线圈 22。
磁芯 10将第一块体 11和第二块体 12组合而形成。 第一块体 11 从作为棒状的基部的第一磁芯部 11a伸出互相大致平行的第一臂 llb、 第二臂 llc、 第三臂 lid这 3根臂而形成, 呈 E形。 此外, 第二块体 12为棒状, 即 I形形状。 形成与第 1磁芯部 11a成对的基部即第二磁 芯部。 即, 磁芯 10为所谓的 EI型磁芯。 第一线圈 21和第二线圈 22 分别缠绕在第一块体 11的第一臂 lib和第三臂 lid上。 此外, 第一线 圈 21和第二线圈 22的下侧的端子分别与单另的引线 21a、 22a连接, 上侧的端子与共通的引线 23连接。
此外, 作为磁芯 10, 能够使用将铁等的强磁体的粉末压縮成形而 形成的压粉磁芯或将硅钢等钢板叠层而形成的叠层磁芯、 或铁氧体磁 芯等。 此外, 第一块体 11和第二块体 12可以为相同种类的磁芯, 或 者, 也可以为不同种类的磁芯。 另外, 被线圈 21和 22缠绕的第一臂 lib和第三臂 lid与中央的第二臂 lie也可以为不同种类的磁芯。
在以上结构的电感器 1的第一线圈 21和第二线圈 22中流通电流 时, 如图 2所示, 在磁芯 10, 形成基于第一线圈 21的磁通 B1 .和基于 第二线圈 22的磁通 B2。 磁通 B1在第一臂 l ib和第二臂 11c中形成, 此外, 磁通 B2在第三臂 lid和第二臂 11c中形成。 gp, 第二臂 11c被 磁通 B1和 B2双方贯通。
此处, 由于第一线圈 21缠绕的方向与第二线圈 22缠绕的方向相 反, 从引线 23向引线 21a、 22a通过电流时, 在第二臂 11c中磁通 B1 和磁通 B2的方向成为互为相反。 因此, 在第二臂 11c中磁通 B1和磁 通 B2相互抵消,贯通第二臂 11c的磁通的大小减小。从而,第二臂 11c 的截面积可以为比第一臂 lib和第三臂 lid的截面积的合计充分小的 大小。
如上所述, 在本实施方式中, 使第一线圈 21和第二线圈 22共有 磁芯 10的一部分(即第二臂 llc), 与第一线圈 21和第二线圈 22缠绕 在不同的磁芯的结构相比, 能够大幅度减少电感器的体积和设置面积。 因此, 通过将本实施方式的电感器 1用于交错 PFC电路, 可以实现小 型并且脉动波纹较小的电压变换电路。 此外, 在本实施方式中, 由于 电感器的两组线圈被安装在磁芯的外侧的臂, 线圈产生的热不会聚集 在磁芯的中央部, 能够使热有效地向外部逸散。
此外, 本实施方式的电感器 1, 中央的第二臂 11c的长度比配置在 其两侧的第一臂 lib和第三臂 lid的长度稍长。 因此, 将第一块体 11 和第二块体 12组合形成磁芯 10时, 在第一臂 llb、第三臂 lid和第二 块体 12之间形成空气间隙 GA。 该空气间隙 GA防止在第一臂 lib和第 三臂 lid的磁饱和。
此外, 在中央的第二臂 11c和第二块体 12之间不形成间隙 (即, 第二臂 11c和第二块体 12密接)。 因此, 从第一臂 lib或者第三臂 l id 朝向第二臂 11c的路径的磁阻比第一臂 lib和第三臂 lid之间的路径的 磁阻充分小。 其结果是, 第一线圈 21生成的磁通的大部分不贯通第三 臂 lid而是贯通第二臂 llc。 同样, 第二线圈 22生成的磁通的大部分 不贯通第一臂 lib而是贯通第二臂 llc。从而, 能够避免因基于一方的 线圈的磁通对另一方的线圈发生电磁感应, 使在输出中产生噪声的问 题。
此外, 本实施方式的电感器 1, 如上所述, 具有 2组线圈 21、 22。 但是, 本发明不限于上述结构。 例如, 如图 3所示, 也可以为在第一 线圈 21和第二线圈 22的基础上, 分别在第一臂 lib和第三臂 lid分 别设置有第一辅助线圈 21 '和第二辅助线圈 22,的结构。 上述结构的电 感器 1 ', 用于当检测出用于升压的线圈中流通的电流的大小为零 (零 交 (zero cross)) 时进行 M0S晶体管的开关、 在所谓的临界模式动作 的交错 PFC方式的变换电路。 即, 第一辅助线圈 21 '和第二辅助线圈 22'与控制 M0S晶体管的 PFC控制器连接, PFC控制器检测在第一线 圈 21和第二线圈 22中流通的电流的大小并基于该检测结果控制 MOS 晶体管的开关动作。
此外, 该结构在 1系统使用交错 PFC方式的变换电路时也有用。 即, 根据本结构, 能够通过一个电感器形成基于线圈 21、 22的变换电 路与基于辅助线圈 21'、 22'的变换电路。 另外, 将本结构的电感器 Γ 用于 2系统的交错 PFC方式的变换回路的情况下,在辅助线圈 21'、 22' 流过的电流的方向,优选确定为使得通过在辅助线圈 21'流过电流而产 生的磁通和通过在辅助线圈 22'流过电流而产生的磁通在第二臂 11c内 相互抵消。
在以上说明的本发明的第一实施方式中, 如图 1所示, 第二臂 11c 呈大致棱柱形。 但是, 本发明不限于上述结构。 例如, 图 4 的立体图 所示的本发明的第二实施方式的电感器 101,如图 4所示, 未配置第一 线圈 121和第二线圈 122的中央的第二臂 111c的进深方向 (即与第一 线圈 121和第二线圈 122的排列方向以及轴方向的双方垂直的方向。 图中由右下向左上的方向) 尺寸 D的大小, 与第一线圈 121和第二线 圈 122的外径大致相同。 因此, 第一块体 111的第一磁芯部 111a和第 二块体 112的进深方向尺寸, 在宽度方向 (第一〜第三臂 lllb〜d的 排列方向) 两端减小, 朝向宽度方向中央 (即设置有第二臂 111c的部 分) 增大, 在宽度方向中央附近成为最大值 D。 进一步具体而言, 如 图 4所示, 第一磁芯 111的第一磁芯部 111a和第二块体 112的形状为 大致六边形的板状, 设置有线圈 121和 122的第一臂 111b和 llld, 以 分别将上述六边形的成对角的 2组角部 ll le与 112a、 lllf与 112b连 接的方式配置。
此外, 第二臂 111c的第一臂 111b一侧的侧面 115a和第三臂 llld 一侧的侧面 115b, 都成为沿着线圈 121、 122的轴方向延伸的圆筒面形 状的凹面。 并且, 第一线圈 121和第二线圈 122的一部分分别配置在 第二臂 111c的侧面 115a和 115b的凹部内。
如上所述, 根据本实施方式的结构, 能够抑制电感器 101 的宽度 方向 (即第一线圈 121和第二线圈 122的排列方向。 从图中左下向右 上的方向) 的尺寸。 进而, 根据本实施方式的结构, 使第二臂 111c的 进深方向尺寸在不增大电感器 101的进深方向尺寸的范围内尽量变长。 因此, 根据本实施方式, 能够实现使第二臂 111c的截面积充分大, 在 确保电感器的性能的同时, 抑制电感器的接地面积和体积的电感器。
此外, 本实施方式的电感器 101 的其他结构, 例如, 关于第二块 体 112以单体 (单元体) 形成与第一磁芯部 111a成对的第二磁芯部这 一点; 和由从第一磁芯部 111a突出有第一〜第三臂 11^〜0的第一块 体 111与未设置臂的 (与第一磁芯部 111a为大致相同形状的) 第二块 体 112形成磁芯 110这一点等, 与本发明的第一实施方式相同。 此外, 在线圈 121和 122所缠绕的第一臂 111b和第三臂 llld形成有空气间隙 GA, 另一方面, 在未设置线圈 121和 122的第二臂 111c没有形成空气 间隙 (即, 第二块体 112和第二臂 111c密接) 这一点, 也与第一实施 方式相同。 此外, 与第一实施方式相同, 也可以构成为: 第一线圈 121 和第 二线圈 122的两个端子中, 与一方的磁芯部接近的一侧的端子与共通 连接第一线圈 121和第二线圈 122的共通的引线连接, 与另一方的磁 芯部接近的端子与单另的引线连接, 并且第一线圈 121 缠绕的方向和 第二线圈 122缠绕的方向为相反方向。 在这样的结构中, 与第一实施 方式相同, 在共通的引线与单另的引线之间流通电流, 基于第二线圈 121产生的磁通和基于第二线圈 122产生的磁通在第二臂 111c内相互 抵消, 电感器 101为第二臂 111c的截面积较小的小型的电感器, 具有 与 2个电感器同等的性能。
以上说明的本发明的第一和第二实施方式中, 构成为磁芯的排列 成一列的 3个臂中, 在外侧的两个臂设置有线圈的结构, 但本发明不 限于上述结构。 图 5是本发明的第三实施方式的电感器的概略侧面图。 如图 5所示的电感器 201,磁芯 210具有上下一对的基部(包括在下侧 的第一块体 211中的第一磁芯部 211a和与第一磁芯部 211a成对的上侧 的第二块体 212)、 和在该基部间排列成一列的第一臂 211b、 第二臂 211c, 第三臂 211d以及第四臂 211e, 第一线圈 221和第二线圈 222缠 绕在内侧的第二臂 211c和第三臂 211d上。 在该结构中, 由第一线圈 221和第二线圈 222生成的磁通 B11和 B12都贯通外侧的第一臂 211b 和第四臂 211e。 从而, 外侧的第一臂 211b和第四臂 211e作为由第一 线圈 221和第二线圈 222双方使用的共用臂发挥作用。
如图 5所示, 在本实施方式的电感器 201 中, 与第一实施方式相 同, 第一线圈 221和第二线圈 222的两个端子的一方 (图中上侧) 与 共通的引线 223连接, 另一方与单另的引线 221a和 222a连接。 此外, 与第一实施方式相同, 第一线圈 221和第二线圈 222缠绕的方向互为 相反方向。 因此, 共通的引线 223和单另的引线 221a、 222a之间流过 电流的情况下,在第一臂 211b和第四臂 211e中基于第一线圈 221产生 的磁通 B11和基于第二线圈 222产生的磁通: B12成为相反方向, 相互 抵消。 因此, 贯通第一臂 211b和第四臂 211e的磁通的大小变得较小。 从而, 第一臂 211b和第四臂 211e的截面积可以为比第二臂 211c、 第 三臂 211d的截面积充分小的大小。
此外, 在本实施方式的电感器 201中, 第一臂 211b〜第四臂 211e 与第一块体 211的第一磁芯部 211a形成为一体, 此外, 在被线圈 221 和 222缠绕的第二臂 211c和第三臂 211d与第二块体 212之间形成有空 气间隙 GA, 另一方面, 在未设置线圈 221和 222的第一臂 211b和第 四臂 211e与第二块体 212之间没有形成空气间隙 (第一臂 211b和第四 臂 211e与第二块体 212密接)。
在以上说明的结构中, 磁芯的臂排列成一列地配置, 但本发明不 限于该结构。 图 6是本发明的第四实施方式的电感器的立体图。 图 6 所示的电感器 301,磁芯 310具有上下配置的一对基部(包含在下侧的 第一块体 311中的第一磁芯部 311a、和上侧的第二块体 312,其以单体 (单元体) 形成与第一磁芯部 311a成对的第二磁芯部)。 此外, 第一 磁芯部 311a和第二块体 312都形成大致三角形的板状。 在将第一磁芯 部 311a和第二块体 312的各自的角部彼此连接的位置设置有三个柱状 的第一臂 311b、 第二臂 311c、 和第三臂 311d, 第一线圈 321和第二线 圈 322被缠绕在第一臂 311b和第二臂 311c上。在该结构中, 由第一线 圈 321和第二线圈 322产生的磁通都贯通第三臂 311d。
此外, 与第一实施方式相同, 还可以构成为: 第一线圈 321 和第 二线圈 322 的两个端子中, 与一方的磁芯部接近一侧的端子与共通连 接第一线圈 321和第二线圈 322的共通的引线连接, 与另一方的磁芯 部接近的端子与单另的引线连接, 并且第一线圈 321 缠绕的方向和第 二线圈 322缠绕的方向为相反方向。 在这样的结构中, 与第一实施方 式相同,在共通的引线和单另的引线之间流通电流,基于第一线圈 321 产生的磁通和基于第二线圈 322产生的磁通在第三臂 311d 内相互抵 消, 电感器 301为第三臂 311d的截面积较小的小型的电感器, 具有与 2个电感器同等的性能。
此外, 在本实施方式的电感器 301中, 第一臂 311b〜第三臂 311d 与第一磁芯部 311a形成为一体, 此外, 缠绕有线圈 321和 322的第一 臂 311b和第二臂 311c与第二块体 312之间形成有空气间隙 GA, 另一 方面, 在未设置线圈 321和 322的第三臂 311d没有形成空气间隙 (第 3臂 311d与第二块体 312密接)。
以上说明的本发明的第一〜第四实施方式的电感器, 适用于图 11 所示的使被输入多个 MOS晶体管的栅极的脉冲的相位相差 180° 的双 相型的交错 PFC电路。 但是, 本发明的电感器也能够适用于双相型以 外的交错 PFC电路。 以下说明的本发明的第五实施方式的电感器, 适 用于四相型的交错 PFC电路,该四相型的交错 PFC电路被设定为使被 输入到设置于 4组线圈的各个的 MOS 晶体管中的脉冲的相位各相差 90° 。
图 7是本发明的第五实施方式的电感器的立体图。 本实施方式的 电感器 401的磁芯 410,具有上下配置的一对基部(包含在下侧的第一 块体 411中的第一磁芯部 411a和以单体(单元体)与第一磁芯部 411a 成对的上侧的第二块体 412)。第一磁芯部 411a和第二块体 412形成为 大致四边形的板状, 在将该基部的各自的角部彼此之间连接的位置, 设置有 4个柱状的第一臂 411b、 第二臂 411c、 第三臂 411d和第四臂 411e, 以及配置在长方形的中央的第五臂 411f。 此外, 第一臂 411b〜 第五臂 411f与第一磁芯部 411a形成为一体。此外, 本实施方式的电感 器 401具有第一线圈 421、第二线圈 422、第三线圈 423和第四线圈 424, 这些线圈分别缠绕在第一臂 411b、 第二臂 411c、 第三臂 411d、 第四臂 411e上。
在以上结构的电感器 401的第一线圈 421、 第二线圈 422、 第三线 圈 423和第四线圈 424中流通电流时,在磁芯 410, 形成分别由第一线 圈 421〜第四线圈 424 的各个所产生的磁通。 这些磁通都贯通第五臂 本实施方式的电感器 401的第一线圈 421〜第四线圈 424缠绕的方 向,以使由各线圈产生的在第五臂 411f中的磁通相互抵消的方式设置。 具体而言, 可以构成为: 第一线圈 421〜第四线圈 424的两个端子中, 与一方的磁芯部接近的一侧的端子与共通连接第一线圈 421〜第四线 圈 424 的共通的引线连接, 与另一方的磁芯部接近的端子与单另的引 线连接,并且第一线圈 421和第三线圈 423缠绕的方向与第二线圈 422 和第四线圈 424缠绕的方向为相反方向。 在这样的结构中, 与第一实 施方式相同, 在共通的引线和单另的引线之间流通电流, 由第一线圈 421〜第四线圈 424产生的磁通在第五臂 411f内相互抵消。因此,贯通 第五臂 411f的磁通的大小变得较小。从而, 第五臂 411f的截面积为比 第一臂 411b〜第四臂 411e的截面积的合计充分小的大小。 如上所述,在本实施方式中,在第一线圈 421〜第四线圈 424共有 磁芯 410的一部分(即, 在该实施方式中为第五臂 411f), 与各线圈被 缠绕在不同的磁芯的结构相比, 能够大幅度减少电感器的体积和设置 面积。 因此, 通过在交错 PFC电路中使用本实施方式的电感器 401, 可以实现小型并且脉动波纹较小的电压变换电路。 此外, 在本实施方 式中, 由于电感器的 4组线圈被安装在磁芯的外侧的臂上, 所以线圈 产生的热不会聚集在磁芯的中央部, 能够使热有效地向外部逸散。
此外,在本实施方式的电感器 401中,在第一臂 411b〜第四臂 411e 与第二块体 412之间形成有空气间隙 GA。 该空气间隙 GA防止第一臂 411b〜第四臂 411e中的磁饱和。
此外, 在中央的第五臂 411f与第二块体 412之间没有形成空气间 隙 GA (即, 第五臂 411f和第二块体 412密接)。 因此, 第五臂 411f和 其他臂之间的路径的磁阻比第一臂 411b〜第四臂 411f间的路径的磁阻 充分小。其结果是, 由第一线圈 421〜第四线圈 424产生的磁通的大部 分贯通第五臂 411f。 从而, 能够避免通过由某个线圈产生的磁通对其 他线圈发生电磁感应而在输出中产生噪声的问题。
此外, 在本实施方式中, 第一臂 411b〜第四臂 411e都被配置在将 作为长方形的第一磁芯部 411和第二块体 412的各角部彼此之间连接 的位置, 但本发明不限于上述结构, 例如, 还可以构成为在将菱形、 直角梯形等其他多边形的磁芯部的角部彼此之间连接的位置配置线圈 用臂。
以上说明的本发明的第一〜第五实施方式中, 在磁芯设置有线圈 的臂和未设置线圈的 (即, 与上述设置有线圈的所有臂共有磁通环) 臂形成为一体。 但是, 本发明不限于上述结构。 以下说明的本发明的 第六实施方式的电感器中, 设置有线圈的臂与其他臂分离。
图 8表示本实施方式的电感器的立体图。 此外, 图 9是本实施方 式的电感器的磁芯的立体图。 此外, 图 10是本实施方式的电感器的分 解立体图。 如图 8所示, 本实施方式的电感器 501具有磁芯 510和第 一线圈 521以及第二线圈 522。此外, 在图 8〜图 10中, 第一线圈 521 和第二线圈 522用虛线表示。
如图 9所示,本实施方式的电感器 501的磁芯 510, 具有具备大致 六边形的板状的第一磁芯部 511a和第二磁芯部 512a的第一块体 511 和第二块体 512。 此外, 磁芯 510具有第一臂 513、 第二臂 514、 第三 臂 515和第四臂 516。第一臂 513和第四臂 516按照将第一磁芯部 511a 和第二磁芯部 512a的六边形的成对角的 2个角部彼此之间连接的方式 配置, 第一线圈 521和第二线圈 522配置在第一臂 513和第四臂 516 的周围。 此外, 如图 8和图 10所示, 第一线圈 521和第二线圈 522分 别通过绕线管(bobbin) 531和 532安装在第一臂 513和第四臂 516的 周围。
第一臂 513和第四臂 516都是与第一块体 511和第二块体 512分 离的圆柱形的部件。 此外, 如图 9和图 10所示, 在第一臂 513和第四 臂 516的两端安装有树脂制的圆板即间隙部件 GP, 第一臂 513和第四 臂 516不与第一块体 511和第二块体 512直接接触。
另一方面, 第二臂 514分为分割臂部 514a和 514b两部分。 一方 的分割臂部 514a与第一磁芯部 511a形成为一体,此外,另一方的分割 臂部 514b与第二磁芯部 512a形成为一体。 同样地, 第三臂 515分为 分割臂部 515a和 515b两部分 (图 10)。 一方的分割臂部 515a与第一 磁芯部 511a形成为一体, 此外, 另一方的分割臂部 515b与第二磁芯 部 512a形成为一体。 像这样, 由第一磁芯部 511a、 分割臂部 514a和 515a形成第一块体 511,另一方面,由第二磁芯部 512a、分割臂部 514b 和 515b形成第二块体 512。此外,如图 8和图 9所示,组装电感器 501 时, 在第一块体 511和第二块体 512之间收纳绕线管 531和 532, 分割 臂部 514a和 514b在绕线管 531和 532之间的空间中相互密接。 同样, 组装电感器 501时, 分割臂部 515a和 515b在绕线管 531和 532之间 的空间中相互密接 (不图示)。
像这样, 在第一臂 513和第四臂 516与第一块体 511和第二块体 512之间设置间隙部件 GP, 另一方面, 在将第一块体 511和第二块体 512连接的第二臂 514和第三臂 515不形成间隙。 因此, 第一臂 513 和第四臂 516的磁阻比第二臂 514和第三臂 515的磁阻大。 特别是, 在本实施方式中, 第一臂 513和第四臂 516为压粉磁芯, 另一方面第 一块体 511和第二块体 512由铁氧体磁芯形成。 因此, 第一臂 513和 第四臂 516的磁阻比第二臂 514和第三臂 515的磁阻更大 。其结果是, 防止在第一臂 513和第四臂 516的磁饱和。 此外, 因为第一臂 513和 第四臂 516的磁阻较大, 因此由第一线圈 521在第一臂 513产生的磁 通不朝向第四臂 516,由第二线圈 522在第四臂 516产生的磁通也不朝 向第一臂 513, 这些磁通大部分朝向第二臂 514和第三臂 515。
此外, 与其他实施方式相同, 可以构成为: 在第一线圈 521 和第 二线圈 522的两个端子中, 与一方的磁芯部接近的一侧的端子与共通 连接第一线圈 521和第二线圈 522的共通的引线连接, 与另一方的磁 芯部接近的端子与单另的引线连接, 并且第一线圈 521 缠绕的方向和 第二线圈 522缠绕的方向为相反方向。 在这样的结构中, 在共通的引 线和单另的引线之间流通电流, 由第一线圈 521 产生的磁通和由第二 线圈 522产生的磁通在第二臂 514和第三臂 515内相互抵消, 电感器 501形成为第二臂 514和第三臂 515的截面积较小的小型的电感器,而 且具有与 2个电感器同等的性能。
此外, 本实施方式的电感器 501与第二实施方式(图 4)相同, 如 图 9所示, 第二臂 514和第三臂 515的接近线圈 521和线圈 522的面, 形成为沿着各线圈的外周面的凹面。 其结果是, 可以获得足够的截面 积的第二臂 514和第三臂 515,并且可以缩短第一线圈 521和第二线圈 522 的间隔, 与第二实施方式相同, 能够抑制电感器 501 的宽度方向 (即, 第一线圈 521和第二线圈 522的排列方向) 的尺寸。
以上为本发明的实施方式。 此外, 本发明不仅限于上述第一〜第 六实施方式的结构, 将第一〜第六实施方式的结构适当组合而得的电 感器也包含在本发明中。 例如, 构成为在第一〜第五实施方式的电感 器中, 设置有线圈的臂与一方的磁芯部形成为一体, 并且, 在与另一 方的磁芯部之间设置有空气间隙 GA的结构, 而代替该结构, 如第六实 施方式所述, 在设置有线圈的臂和双方的磁芯部之间设置有树脂制的 间隙部件 GP的电感器也包含在本发明中。 还可以构成为, 在第一^ '第 五实施方式的电感器中, 未设置线圈的共通臂具有设置在第一块体和 第二块体的各个的一对分割臂部, 分割臂部彼此之间密接形成共通臂。
同样, 在第六实施方式的电感器 501 中与第一〜第五实施方式相 同, 第一臂 513和第四臂 516与第一块体 511形成为一体, 并且在与 第二块体 512之间形成有空气间隙 GA的结构也包含在本发明中。此外, 还可以构成为在第六实施方式的电感器 501中, 第二臂 514和第三臂 515的整体与第一块体 511形成为一体, 并且, 第二臂 514和第三臂 515与第二磁芯 512密接。
此外, 还可以将图 3所示的第一辅助线圈 21,和第二辅助线圈 22, 应用于第二〜第六实施方式。 即, 在第二〜第六实施方式中, 对设置 有线圈的臂的各个追加辅助线圈的结构也包含在本发明中。 例如, 应 用于第五实施方式的情况下, 可以在第一臂 411b、 第二臂 411c、 第三 臂 411d和第四臂 411e的各个设置辅助线圈,在应用于第六实施方式的 情况下, 可以在绕线管 531和 532的各个设置辅助线圈, 此外, 还可 以构成为进一步追加缠绕有辅助线圈的绕线管, 安装在第一臂 513和 第四臂 516的各自的周围。
工业应用性
将以上说明的本发明的电感器用于交错 PFC方式的电压变换电路 的情况下, 由各线圈产生的磁通能够在共通臂中相互抵消。 因此, 能 够减小贯通共通臂的磁通的大小。 从而能够使共通臂的截面积比线圈 用臂的截面积充分小。 在将这样的电感器用于交错 PFC方式的电压变 换电路时, 与使用多个电感器的现有结构相比, 能够将电感器的体积 和接地面积抑制为较小, 实现小型的电压变换电路, 因此具有工业应 用性。

Claims

权利要求
1. 一种电感器, 其具有磁芯和多个线圈, 其特征在于- 所述磁芯具有: 所述多个线圈的各个分别加以缠绕的多个线圈用 臂; 与各个所述线圈用臂形成磁通环的至少 1个共通臂; 和一对基部, 所述线圈用臂和所述共通臂位于所述一对基部之间。
2. 如权利要求 1所述的电感器, 其特征在于:
所述共通臂与所述一对基部的一方形成为一体, 与该基部的另一 方密接。
3. 如权利要求 1所述的电感器, 其特征在于:
所述共通臂具有: 与所述一对基部的一方形成为一体的第一分割 臂部; 和与该基部的另一方形成为一体的第二分割臂部,
所述第一分割臂部和第二分割臂部相互密接。
4. 如权利要求 1所述的电感器, 其特征在于:
所述线圈臂的磁阻比所述共通臂的磁阻大。
5. 如权利要求 4所述的电感器, 其特征在于:
所述线圈臂与所述一对基部的任一个均分离, 在所述线圈臂和该 基部之间夹有板状的间隙部件。
6. 如权利要求 5所述的电感器, 其特征在于:
所述间隙部件由树脂材料形成。
7. 如权利要求 4所述的电感器, 其特征在于:
形成所述线圈臂的材料的磁阻比形成所述基部和所述共通臂的材 料的磁阻大。
8. 如权利要求 7所述的电感器, 其特征在于:
所述线圈臂为压粉磁芯, 所述基部和所述共通臂为铁氧体磁芯
9. 如权利要求 4所述的电感器, 其特征在于:
所述线圈臂与所述一对基部的一方形成为一体, 在该基部的另一 方与该线圈臂之间形成有空气间隙。
10. 如权利要求 1所述的电感器, 其特征在于:
所述线圈臂的个数为 2个,
所述线圈臂和所述共通臂, 在所述一对基部之间, 以所述共通臂 位于所述 2个线圈臂之间的方式排成一列地配置。
11. 如权利要求 1所述的电感器, 其特征在于:
所述共通臂的个数为 2个,
所述线圈臂和所述共通臂, 在所述一对基部之间, 以所述多个线 圈臂位于所述 2个共通臂之间的方式排成一列地配置。
12. 如权利要求 1所述的电感器, 其特征在于:
所述一对基部为多边形形状,
所述线圈臂设置在将所述基部的角部彼此之间连接的位置。
13. 如权利要求 12所述的电感器, 其特征在于:
所述线圈臂在所述基部的所有角部各设置有 1个,
所述共通臂配置在将所述基部的中心部彼此之间连接的位置。
14. 如权利要求 12所述的电感器, 其特征在于:
所述共通臂设置在将所述基部中未设置所述线圈臂的外缘部彼此 之间连接的位置。
15. 如权利要求 12所述的电感器, 其特征在于:
所述线圈臂设置在所述基部中成对角的角部。
16. 如权利要求 1所述的电感器, 其特征在于:
还具有多组辅助线圈, 所述多组辅助线圈的各个缠绕在所述多个 线圈用臂上。
17. 如权利要求 1〜16的任一项所述的电感器, 其特征在于: 设定为由所述多个线圈用臂的各个所产生的位于所述共通臂中的 磁通相互抵消。
PCT/CN2010/001082 2009-07-31 2010-07-19 电感器 WO2011011966A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080008717.0A CN102326216B (zh) 2009-07-31 2010-07-19 电感器
JP2012521929A JP5784601B2 (ja) 2009-07-31 2010-07-19 インダクタ
EP10803799.5A EP2461334B8 (en) 2009-07-31 2010-07-19 Inductor
IN1755DEN2012 IN2012DN01755A (zh) 2009-07-31 2010-07-19
KR1020127005324A KR101760382B1 (ko) 2009-07-31 2010-07-19 인덕터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910160965.6 2009-07-31
CN2009101609656A CN101989485A (zh) 2009-07-31 2009-07-31 电感器

Publications (1)

Publication Number Publication Date
WO2011011966A1 true WO2011011966A1 (zh) 2011-02-03

Family

ID=43528720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001082 WO2011011966A1 (zh) 2009-07-31 2010-07-19 电感器

Country Status (6)

Country Link
EP (1) EP2461334B8 (zh)
JP (1) JP5784601B2 (zh)
KR (1) KR101760382B1 (zh)
CN (2) CN101989485A (zh)
IN (1) IN2012DN01755A (zh)
WO (1) WO2011011966A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2711944A1 (en) * 2011-05-16 2014-03-26 Hitachi, Ltd. Reactor device and power converter employing same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360863B (zh) * 2011-11-08 2013-10-16 田村(中国)企业管理有限公司 磁集成双电感器
JP6227245B2 (ja) * 2012-12-12 2017-11-08 コーセル株式会社 チョークコイル装置
JP5812068B2 (ja) * 2013-09-10 2015-11-11 株式会社豊田自動織機 リアクトル装置及びリアクトル装置の製造方法
CN103489569A (zh) * 2013-10-08 2014-01-01 上海理工大学 一种多相直流非耦合集成电感器
CN104299758A (zh) * 2014-04-27 2015-01-21 山东嘉诺电子有限公司 一种低功耗ec磁芯
CN103943330A (zh) * 2014-05-05 2014-07-23 田村(中国)企业管理有限公司 混合磁路的三相耦合电感器
CN104021920B (zh) * 2014-05-27 2016-09-28 华为技术有限公司 耦合电感和功率变换器
CN105895302B (zh) * 2014-09-01 2019-05-28 杨玉岗 一种多相磁集成耦合电感器
JP6459116B2 (ja) * 2014-09-09 2019-01-30 Tmp株式会社 トランス
EP3330981B1 (en) * 2014-12-03 2020-04-29 Mitsubishi Electric Corporation Dual-mode choke coil and high-frequency filter using same, and on-board motor integrated electric power steering and on-board charging device
TWI557759B (zh) 2015-04-10 2016-11-11 台達電子工業股份有限公司 集成式電感及其集成式電感磁芯
US10763028B2 (en) 2015-04-10 2020-09-01 Delta Electronics, Inc. Magnetic component and magnetic core of the same
JP2017139397A (ja) * 2016-02-05 2017-08-10 スミダコーポレーション株式会社 磁性部品
JP6697682B2 (ja) * 2016-08-17 2020-05-27 住友電気工業株式会社 磁性コア、コイル部品、回路基板、及び電源装置
CN108022716B (zh) * 2016-10-31 2021-02-09 株式会社田村制作所 电感器
EP3401935B1 (en) * 2017-05-08 2020-12-02 Delta Electronics (Thailand) Public Co., Ltd. Integrated magnetic component and power converter
US11955267B2 (en) 2018-01-17 2024-04-09 Panasonic Intellectual Property Management Co., Ltd. Reactor, core member, and power supply circuit
JP2020205377A (ja) * 2019-06-18 2020-12-24 Tmp株式会社 インダクタ
US11508518B2 (en) * 2020-02-19 2022-11-22 Tdk Corporation Coil device with predetermined gap arrangement
JP7445900B2 (ja) * 2021-03-17 2024-03-08 Tmp株式会社 チョークコイル
DE102022125323A1 (de) 2022-09-30 2024-04-04 HELLA GmbH & Co. KGaA Elektrische Schaltung und Gekoppelte-Spuleneinheit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237722A (ja) * 1996-02-28 1997-09-09 Tamura Seisakusho Co Ltd 複合コイル
JP2001230120A (ja) * 2000-02-18 2001-08-24 Hitachi Ferrite Electronics Ltd 四脚磁心及び該四脚磁心を用いたコモンモード、ノーマルモードを備えたハイブリッドチョークコイル
JP2007195282A (ja) 2006-01-17 2007-08-02 Renesas Technology Corp 電源装置
CN201004357Y (zh) * 2006-12-19 2008-01-09 庄忆芳 电感器结构
CN201160024Y (zh) * 2008-03-07 2008-12-03 天通浙江精电科技有限公司 磁芯及其集成电感
CN201508741U (zh) * 2009-03-23 2010-06-16 台达电子工业股份有限公司 滤波电感器总成

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166520A (ja) * 1985-01-18 1986-07-28 Canon Inc 画像記録装置
JPS61166520U (zh) * 1985-04-01 1986-10-16
JPS61228608A (ja) * 1985-04-01 1986-10-11 Nissin Electric Co Ltd 分路リアクトル
JP3255237B2 (ja) * 1991-07-31 2002-02-12 住友金属工業株式会社 半導体ウェーハ収納容器
JP2567360Y2 (ja) * 1991-10-15 1998-04-02 株式会社トーキン ノイズ防止チョークコイル
JPH07263262A (ja) * 1994-03-25 1995-10-13 Sony Corp 複合型交流リアクトル
JP3379419B2 (ja) * 1998-01-16 2003-02-24 松下電器産業株式会社 複合形リアクタとその製造方法と電源装置
JP2001093753A (ja) * 1999-09-22 2001-04-06 Fuji Electric Co Ltd 多重インバータ用変圧器
EP1548765B1 (en) * 2002-09-19 2009-07-22 Nec Tokin Corporation Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet
US6873239B2 (en) * 2002-11-01 2005-03-29 Metglas Inc. Bulk laminated amorphous metal inductive device
US20080074227A1 (en) * 2006-09-21 2008-03-27 Ford Global Technologies, Llc Inductor topologies with substantial common-mode and differential-mode inductance
JP2009071248A (ja) * 2007-09-18 2009-04-02 Hitachi Metals Ltd リアクトルおよびパワーコンディショナ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237722A (ja) * 1996-02-28 1997-09-09 Tamura Seisakusho Co Ltd 複合コイル
JP2001230120A (ja) * 2000-02-18 2001-08-24 Hitachi Ferrite Electronics Ltd 四脚磁心及び該四脚磁心を用いたコモンモード、ノーマルモードを備えたハイブリッドチョークコイル
JP2007195282A (ja) 2006-01-17 2007-08-02 Renesas Technology Corp 電源装置
CN201004357Y (zh) * 2006-12-19 2008-01-09 庄忆芳 电感器结构
CN201160024Y (zh) * 2008-03-07 2008-12-03 天通浙江精电科技有限公司 磁芯及其集成电感
CN201508741U (zh) * 2009-03-23 2010-06-16 台达电子工业股份有限公司 滤波电感器总成

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2461334A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2711944A1 (en) * 2011-05-16 2014-03-26 Hitachi, Ltd. Reactor device and power converter employing same
EP2711944A4 (en) * 2011-05-16 2015-01-07 Hitachi Ltd REACTOR DEVICE AND POWER CONVERTER THEREWITH

Also Published As

Publication number Publication date
CN102326216B (zh) 2016-03-16
CN102326216A (zh) 2012-01-18
KR101760382B1 (ko) 2017-07-21
JP2013501346A (ja) 2013-01-10
EP2461334B1 (en) 2014-06-18
IN2012DN01755A (zh) 2015-06-05
CN101989485A (zh) 2011-03-23
EP2461334B8 (en) 2014-09-17
EP2461334A4 (en) 2013-01-09
EP2461334A1 (en) 2012-06-06
JP5784601B2 (ja) 2015-09-24
KR20120066010A (ko) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2011011966A1 (zh) 电感器
TWI430299B (zh) 集成多相耦合電感器及產生電感之方法
KR102086355B1 (ko) 선형 전자기 장치
JP6619926B2 (ja) 複合型リアクトル
US20140292455A1 (en) Reactor, Transformer, and Power Conversion Apparatus Using Same
JP2003151367A (ja) 電力用配線構造
US20220208425A1 (en) Integrated inductor and power module
JP2017195684A (ja) マルチフェーズ型コンバータ用リアクトル
JP2012134266A (ja) 複合磁気部品及びそれを用いたスイッチング電源装置
JP6533342B2 (ja) 複合平滑インダクタおよび平滑化回路
JP2009059995A (ja) 複合磁気部品
JP4946171B2 (ja) インダクタンス装置
WO2015180577A1 (zh) 耦合电感和功率变换器
JP2010062409A (ja) インダクター部品
WO2019013131A1 (ja) プレーナ型トランス及びdcdcコンバータ
US11605500B2 (en) Transformer core and transformer
JP6337463B2 (ja) コイル部品およびコイル部品セット
US11711020B2 (en) Transformers for multiphase power converters
JP4461931B2 (ja) インバータユニット
TWI796453B (zh) 整合式多相非耦合電源電感器及製造方法
CN113436859B (zh) 集成多相耦合电感的耦合电感器及电压转换电路
JP2010192742A (ja) リアクトル
WO2023279925A1 (zh) 一种电感器
CN207302782U (zh) 扼流线圈用磁芯
JP2018078320A (ja) 複合型リアクトル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008717.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10803799

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521929

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201000392

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2010803799

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1755/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127005324

Country of ref document: KR

Kind code of ref document: A