WO2011001735A1 - 薄膜太陽電池およびその製造方法 - Google Patents

薄膜太陽電池およびその製造方法 Download PDF

Info

Publication number
WO2011001735A1
WO2011001735A1 PCT/JP2010/057288 JP2010057288W WO2011001735A1 WO 2011001735 A1 WO2011001735 A1 WO 2011001735A1 JP 2010057288 W JP2010057288 W JP 2010057288W WO 2011001735 A1 WO2011001735 A1 WO 2011001735A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
transparent conductive
film
solar cell
insulating substrate
Prior art date
Application number
PCT/JP2010/057288
Other languages
English (en)
French (fr)
Inventor
古畑 武夫
恵右 仲村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/379,831 priority Critical patent/US9117957B2/en
Priority to JP2011520820A priority patent/JP5174966B2/ja
Priority to CN201080029500.8A priority patent/CN102473748B/zh
Publication of WO2011001735A1 publication Critical patent/WO2011001735A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a thin film solar cell and a manufacturing method thereof, and particularly to a thin film solar cell excellent in light confinement technology and a manufacturing method thereof.
  • a light confinement technique As this light confinement technique, a method of forming a concavo-convex structure on the surface of a transparent conductive film on a light-transmitting insulating substrate when light is incident from the light-transmitting insulating substrate side is used.
  • the photoelectric conversion efficiency of the thin-film solar cell is improved by the light reflectance reduction effect and the light scattering effect.
  • the light incident from the translucent insulating substrate side is scattered at the interface between the transparent conductive film having a concavo-convex structure and the power generation layer and then enters the power generation layer, so that the light enters the power generation layer substantially obliquely.
  • a substantial optical path of light in the power generation layer is extended and light absorption is increased, so that an output current of the solar cell is increased.
  • tin oxide (SnO 2 ) is well known as a transparent conductive film having such an uneven structure.
  • the concavo-convex structure on the surface of tin oxide (SnO 2 ) is formed by growing crystal grains having a diameter of several tens of nanometers to several ⁇ m on the film surface by a thermal CVD (Chemical Vapor Deposition) method.
  • zinc oxide (ZnO) is spreading as a transparent conductive film material replacing tin oxide (SnO 2 ) from the viewpoint of excellent plasma resistance and abundant resources.
  • ZnO zinc oxide
  • a transparent conductive film is formed on a glass substrate by a sputtering method, and then the transparent conductive film is etched using an acid so that an uneven structure is formed on the film surface.
  • a forming technique has been reported (see, for example, Patent Document 1). By forming a concavo-convex structure simply by this method, cost reduction of a thin film solar cell is expected.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a thin film solar cell having high light scattering performance in a wide wavelength range of sunlight and excellent in photoelectric conversion efficiency, and a method for producing the same.
  • a thin-film solar cell according to the present invention is formed on the translucent insulating substrate by a translucent insulating substrate and a crystalline transparent conductive film, and is formed on the surface.
  • a structure having high light scattering performance in a wide wavelength range of sunlight is realized without increasing the number of irregularities on the surface of the transparent conductive film of the transparent electrode layer, and the wide wavelength range of sunlight is effectively utilized.
  • the thin film solar cell excellent in the photoelectric conversion efficiency obtained is produced.
  • FIGS. 2-1 is sectional drawing for demonstrating an example of the manufacturing process of the thin film solar cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 2-2 is sectional drawing for demonstrating an example of the manufacturing process of the thin film solar cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 2-3 is sectional drawing for demonstrating an example of the manufacturing process of the thin film solar cell concerning Embodiment 1 of this invention.
  • FIGS. FIGS. 2-4 is sectional drawing for demonstrating an example of the manufacturing process of the thin film solar cell concerning Embodiment 1 of this invention.
  • FIGS. 2-5 is sectional drawing for demonstrating an example of the manufacturing process of the thin film solar cell concerning Embodiment 1 of this invention.
  • FIGS. FIG. 3 is a top view showing the cavity region on the translucent insulating substrate in the manufacturing process of the thin-film solar cell according to the first embodiment of the present invention.
  • FIGS. 4-1 is sectional drawing for demonstrating an example of the manufacturing process of the thin film solar cell concerning Embodiment 2 of this invention.
  • FIGS. FIGS. 4-2 is sectional drawing for demonstrating an example of the manufacturing process of the thin film solar cell concerning Embodiment 2 of this invention.
  • FIGS. FIGS. 4-3 is sectional drawing for demonstrating an example of the manufacturing process of the thin film solar cell concerning Embodiment 2 of this invention.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a thin-film solar cell 10 according to a first embodiment of the present invention.
  • the thin-film solar cell 10 is formed on the light-transmitting insulating substrate 1, the first transparent conductive film 2 formed on the light-transmitting insulating substrate 1, the first transparent conductive film 2, and has a concavo-convex structure on the surface. 2 a transparent conductive film 3, a power generation layer 5 formed on the second transparent conductive film 3, and a back electrode layer 6 formed on the power generation layer 5.
  • the first transparent conductive film 2 and the second transparent conductive film 3 constitute a transparent electrode layer that is a first electrode layer.
  • a cavity 4 is provided between adjacent convex portions in the first transparent conductive film 2.
  • an insulating substrate having translucency is used.
  • a material having a high transmittance is usually used, and for example, a glass substrate having a small absorption from the visible to the near infrared region is used.
  • a glass substrate having a small absorption from the visible to the near infrared region is used.
  • an alkali-free glass substrate may be used, or an inexpensive blue plate glass substrate may be used.
  • the first transparent conductive film 2 is made of a transparent conductive film and has an uneven structure.
  • the first transparent conductive film 2 uses, for example, a crystallized zinc oxide (ZnO) film, and at least one element selected from Al, Ga, In, B, Y, Si, Zr, and Ti as a dopant. Or a transparent conductive film formed by laminating these films.
  • ZnO crystallized zinc oxide
  • a transparent conductive film formed by laminating these films In the above, a crystallized ZnO film or the like is shown as the first transparent conductive film 2, but the first transparent conductive film 2 is not limited to this, and the transparent conductive film that is crystallized and has high light transmittance. Any film may be used.
  • Examples of such a transparent conductive film include SnO 2 , In 2 O 3 , ZnO, CdO, CdIn 2 O 4 , CdSnO 3 , MgIn 2 O 4 , CdGa 2 O 4 , GaInO 3 , InGaZnO 4 , Cd 2 Sb 2.
  • a crystallized film of O 7 , Cd 2 GeO 4 , CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , TiO 2 , Al 2 O 3 , or a transparent conductive film configured by stacking these films may be used.
  • a film using at least one element selected from Al, Ga, In, B, Y, Si, Zr, and Ti as a dopant for these films, or a transparent conductive film formed by stacking these elements may be used. .
  • the first transparent conductive film 2 for example, a physical method such as a DC sputtering method, a vacuum deposition method, or an ion plating method, or a chemical method such as a spray method, a dip method, or a CVD method can be used.
  • a physical method such as a DC sputtering method, a vacuum deposition method, or an ion plating method
  • a chemical method such as a spray method, a dip method, or a CVD method.
  • the first transparent conductive film 2 includes cavities 4 between the adjacent convex portions 2 a in the first transparent conductive film 2.
  • the cavity 4 is provided substantially in parallel in the depth direction of the paper.
  • the shape of the hollow portion 4 between the convex portions 2a protrudes from the translucent insulating substrate 1 in the direction of the power generation layer 5, and the cross-sectional shape is a substantially triangular shape (convex shape) with the surface of the translucent insulating substrate 1 as the bottom surface.
  • the height is about 0.2 ⁇ m
  • the bottom width is about 0.15 ⁇ m on the short side
  • the long side in the depth direction on the paper
  • the distance from the center of the cavity 4 to the center of the adjacent cavity 4 across the protrusion 2a of the first transparent conductive film 2 is about 0.3 ⁇ m.
  • the second transparent conductive film 3 is made of a transparent conductive film, and has a concavo-convex structure on the surface that is gentler than the concavo-convex structure of the first transparent conductive film 2.
  • the second transparent conductive film 3 uses, for example, a tin oxide (SnO 2 ) film, and at least one element selected from Al, Ga, In, B, Y, Si, Zr, Ti, and F as a dopant. Or a transparent conductive film formed by laminating these films.
  • the second transparent conductive film 3 is not limited to this, a transparent conductive film having a Mitsutaka permeability If it is.
  • a transparent conductive film In 2 O 3 , ZnO, CdO, CdIn 2 O 4 , CdSnO 3 , MgIn 2 O 4 , CdGa 2 O 4 , GaInO 3 , InGaZnO 4 , Cd 2 Sb 2 O 7 , Cd It may be a 2 GeO 4 , CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , TiO 2 , Al 2 O 3 film, or a transparent conductive film formed by laminating these films. Further, a transparent conductive film formed by laminating these films, or a film using at least one element selected from Al, Ga, In, B, Y, Si, Zr, Ti, and F as a
  • the second transparent conductive film 3 for example, a physical method such as a DC sputtering method, a vacuum deposition method, or an ion plating method, or a chemical method such as a spray method, a dip method, or a CVD method can be used.
  • a physical method such as a DC sputtering method, a vacuum deposition method, or an ion plating method
  • a chemical method such as a spray method, a dip method, or a CVD method.
  • the second transparent conductive film 3 has a convex portion 3 a having a film thickness of about 0.7 ⁇ m from the surface of the translucent insulating substrate 1, and the convex portion 3 a and the concave portion 3 b of the second transparent conductive film 3.
  • the height difference of the top surface is about 0.4 ⁇ m
  • the interval between the apexes of the convex portions 3 a is about 0.6 ⁇ m
  • the width of the bottom surface of the convex portions 3 a is about 0.5 ⁇ m. Therefore, the width of the recess 3b is about 0.1 ⁇ m.
  • the power generation layer 5 has a pn junction or a pin junction, and is configured by laminating at least two thin film semiconductor layers that generate power by incident light.
  • the power generation layer 5 is, for example, a p-type amorphous silicon carbide film (a-SiC film) that is a first conductivity type semiconductor layer, a buffer layer, and a second conductivity type semiconductor layer i from the second transparent conductive film 3 side.
  • a-SiC film p-type amorphous silicon carbide film
  • a first power generation layer (not shown) composed of an n-type amorphous silicon film (a-Si film), an n-type amorphous silicon film (a-Si film) as a third conductivity type semiconductor layer, and a first conductivity type
  • a second power generation layer (not shown) composed of a p-type microcrystalline silicon film that is a p-type semiconductor layer, an i-type microcrystalline silicon film that is a second conductive semiconductor layer, and an n-type microcrystalline silicon film that is a third conductive semiconductor layer
  • the power generation layer 5 has a crystalline layer in any one of the layers.
  • an amorphous silicon-based film or a crystalline silicon-based film such as amorphous silicon germanium or microcrystalline silicon germanium may be used.
  • the power generation layer 5 may have a single structure with a single pin structure or a triple structure with three pin structures stacked.
  • An intermediate layer made of a transparent conductive film may be formed between the first power generation layer and the second power generation layer.
  • middle layer is comprised with the film
  • a film of zinc oxide (ZnO), indium tin oxide (ITO), tin oxide (SnO 2 ), silicon monoxide (SiO), or the like can be used.
  • the back electrode layer 6 is a second electrode layer made of a conductive film that reflects light.
  • a conductive film that reflects light.
  • Al aluminum
  • Al silver
  • a transparent conductive film such as
  • the back electrode layer 6 is formed by a known means such as a sputtering method, a CVD method, or a spray method.
  • a translucent insulating substrate is provided by providing the hollow portions 4 between the adjacent convex portions 2 a in the first transparent conductive film 2.
  • a sufficient light scattering effect can be obtained with respect to sunlight incident from one side. That is, part of the sunlight incident from the translucent insulating substrate 1 side is incident on each convex portion 2 a in the first transparent conductive film 2 and scattered at the interface between the convex portion 2 a and the second transparent conductive film 3. Then, the light enters the second transparent conductive film 3.
  • the other part of the sunlight incident from the translucent insulating substrate 1 side is incident on the cavity 4 and scattered at the interface between the cavity 4 and the second transparent conductive film 3 to be second transparent conductive.
  • the light enters the film 3. Therefore, by providing the convex portions 2a and the hollow portions 4, a sufficient light scattering effect can be obtained with respect to sunlight incident from the translucent insulating substrate 1 side without increasing the number of the convex portions 2a. In addition, since the bottom of the hollow portion 4 is formed by the translucent insulating substrate 1, a large amount of sunlight is directly incident from the translucent insulating substrate 1 side, and sufficient light scattering performance can be obtained. .
  • corrugations on the surface of the 1st transparent conductive film 2 can be reduced, and 1st transparent Generation of defects in the power generation layer 5 due to the unevenness of the surface of the conductive film 2 can be suppressed.
  • the fall of the output voltage resulting from the defect in the electric power generation layer 5 can be prevented, and high photoelectric conversion efficiency can be obtained. That is, a high photoelectric property can be obtained without causing the problem that the number of irregularities on the surface of the transparent conductive film increases as in the prior art, resulting in an increase in defects in the power generation layer and a decrease in output voltage. Conversion efficiency can be realized.
  • the second transparent conductive film 3 is formed on the first transparent conductive film 2, and the power generation layer 5 is formed thereon. For this reason, the unevenness of the steep slope of the transparent conductive film at the interface between the transparent conductive film of the transparent electrode layer and the power generation layer 5 is alleviated, and the generation of defects in the power generation layer 5 due to the unevenness of the steep slope is suppressed. This improves the yield and reliability.
  • the thin-film solar cell 10 according to the present embodiment, a structure having high light scattering performance in a wide wavelength range of sunlight is realized without increasing the number of irregularities on the surface of the transparent conductive film of the transparent electrode layer.
  • a thin film solar cell excellent in photoelectric conversion efficiency that effectively utilizes a wide wavelength range of sunlight can be obtained.
  • the shape of the cavity 4 is a substantially triangular shape (convex shape) with the surface of the translucent insulating substrate 1 as the bottom surface has been described.
  • the surface of the translucent insulating substrate 1 is the bottom surface.
  • the first transparent conductive film 2 is present in the region between the convex portions 2 a on the translucent insulating substrate 1, and the cavity 4 having a shape protruding in the direction of the power generation layer 5 on the first transparent conductive film 2. May be provided.
  • FIGS. 2-1 to 2-5 are cross-sectional views for explaining an example of the manufacturing process of the thin-film solar cell 10 according to the present embodiment.
  • the translucent insulating substrate 1 is prepared.
  • a non-alkali glass substrate is used as the translucent insulating substrate 1 and will be described below.
  • an inexpensive soda lime glass substrate may be used as the light-transmitting insulating substrate 1, but in this case, in order to prevent the diffusion of alkali components from the light-transmitting insulating substrate 1, an SiO 2 film is formed by a PCVD method or the like. It is preferable to form about 50 nm.
  • a translucent insulating substrate is formed by sputtering a zinc oxide (ZnO) film having a film thickness of 0.35% containing aluminum (Al) dopant. 1 is formed to form a crystallized transparent conductive film 21 having crystal grains 2c (FIG. 2-1).
  • the width of the crystal grain 2c is about 0.3 ⁇ m.
  • a physical method such as a vacuum deposition method or an ion plating method, or a chemical method such as a spray method, a dip method, or a CVD method may be used.
  • heat treatment may be performed to control the size of the crystal grains 2c and improve the mobility of the film.
  • etching proceeds until the surface of the light-transmitting insulating substrate 1 is exposed at the crystal grain boundaries that are easily etched, a depression is formed, and a first transparent conductive film 2 in which a large number of convex portions 2a are arranged is formed. (Fig. 2-2).
  • hydrochloric acid 0.3% by weight of hydrochloric acid is used as a liquid used for etching, but is not limited thereto.
  • hydrochloric acid one kind or a mixture of two or more kinds of sulfuric acid, nitric acid, hydrofluoric acid, acetic acid, formic acid, etc. Is mentioned.
  • FIG. 3 is a top view showing a region of the cavity 4 on the translucent insulating substrate 1.
  • the second transparent conductive film 3 is formed using atmospheric pressure CVD (FIG. 2-3).
  • the surface of the transparent conductive film 21 and the film forming chamber is heated to, for example, 540 ° C., and tin tetrachloride, water, and hydrogen chloride gas are simultaneously blown at a hydrogen chloride flow rate / tin tetrachloride flow rate ratio of 2.0, thereby forming irregularities on the surface.
  • the second transparent conductive film 3 is not formed on the bottom of the hollow of the first transparent conductive film 2, and has an overhang shape, and a cavity 4 with the translucent insulating substrate 1 as the bottom is formed there. .
  • the formation of the hollow portion 4 occurs because the reactive species are less likely to reach the concave portion than the convex portion, and the convex portion is preferentially formed. If the aspect ratio, the short side length of the bottom of the recess, and the side surface angle of the recess, any of the protrusions 2a on the diagonal line of the first transparent conductive film 2 and between the adjacent protrusions 2a The cavity 4 is also formed in the recess.
  • the transparent conductive film 21 is etched until the surface of the transparent insulating substrate 1 is exposed is described as an example.
  • the transparent insulating substrate is formed at the bottom of the recess of the transparent conductive film 21. Even when the surface of 1 is not completely exposed, the cavity 4 is formed between the adjacent convex portions 2a.
  • the surface shape of the second transparent conductive film 3 is hardly affected by the unevenness of the base. That is, the surface shape of the second transparent conductive film 3 is hardly affected by the convex portion 2 a of the first transparent conductive film 2. This is because the film formation of the second transparent conductive film 3 proceeds in an overhang shape in the underlying depression, so that even if there is a depression in the foundation, the deposition immediately reaches the height of the convex portion. .
  • the film thickness of the convex portion 3a of the second transparent conductive film 3 is about 0.7 ⁇ m, and the height difference between the upper surface of the convex portion 3a and the upper surface of the concave portion 3b of the second transparent conductive film 3 is about 0.4 ⁇ m.
  • the interval between the apexes of the convex portions 3a is about 0.6 ⁇ m
  • the width of the bottom surface of the convex portions 3a is about 0.5 ⁇ m
  • the width of the concave portions 3b is about 0.1 ⁇ m.
  • the shape of the cavity 4 projects from the translucent insulating substrate 1 toward the power generation layer 5, and the cross-sectional shape is a substantially triangular shape (convex shape) with the surface of the translucent insulating substrate 1 as the bottom surface.
  • the width of the bottom surface is about 0.2 ⁇ m
  • the short side is about 0.15 ⁇ m
  • the long side is the length of the translucent insulating substrate 1.
  • the distance from the center of the cavity 4 to the center of the adjacent cavity 4 across the convex part 2a of the first transparent conductive film 2 is about 0.3 ⁇ m.
  • the area occupied by the cavity 4 in the plane of the first transparent conductive film 2 is approximately 75% when viewed from above.
  • the thermal CVD method is used as a method of forming the second transparent conductive film 3, but the method of forming the second transparent conductive film 3 is not limited to this, and other methods such as a plasma CVD method are used. But you can.
  • the power generation layer 5 is formed on the second transparent conductive film 3 by a plasma CVD method.
  • a plasma CVD method As the power generation layer 5, from the second transparent conductive film 3 side, a p-type amorphous silicon carbide film (a-SiC film), which is a first conductive type semiconductor layer, a buffer layer, and a second conductive type semiconductor.
  • a-SiC film p-type amorphous silicon carbide film
  • a first power generation layer comprising an i-type amorphous silicon film (a-Si film) as a layer and an n-type amorphous silicon film (a-Si film) as a third conductivity type semiconductor layer;
  • a second power generation comprising a p-type microcrystalline silicon film as a first conductive type semiconductor layer, an i-type microcrystalline silicon film as a second conductive type semiconductor layer, and an n-type microcrystalline silicon film as a third conductive type semiconductor layer.
  • Layers are sequentially stacked (FIGS. 2-4).
  • An intermediate layer made of a transparent conductive film may be formed between the first power generation layer and the second power generation layer.
  • middle layer is comprised with the film
  • a film of zinc oxide (ZnO), indium tin oxide (ITO), tin oxide (SnO 2 ), silicon monoxide (SiO), or the like can be used.
  • the back electrode layer 6 is formed on the power generation layer 5 by sputtering (FIG. 2-5).
  • an aluminum (Al) film having a thickness of 200 nm is formed.
  • a silver (Ag) film having a high light reflectance may be used, and in order to prevent metal diffusion into silicon, A transparent conductive film such as zinc oxide (ZnO), indium tin oxide (ITO), or tin oxide (SnO 2 ) may be formed between the back electrode layer 6 and the back electrode layer 6.
  • ZnO zinc oxide
  • ITO indium tin oxide
  • SnO 2 tin oxide
  • the thin film solar cell produced by the method for manufacturing a thin film solar cell according to the present embodiment described above was used as the thin film solar cell of Example 1.
  • a thin film solar cell produced by forming tin oxide (SnO 2 ) having a macro uneven structure on the surface as a transparent electrode layer on a glass substrate by a room temperature thermal CVD method is referred to as a thin film solar cell of Conventional Example 1.
  • a transparent electrode layer is provided in which a zinc oxide (ZnO) film, which is a transparent conductive film, is formed on a glass substrate, and the zinc oxide (ZnO) film is etched with an acid to form an uneven structure on the surface.
  • ZnO zinc oxide
  • a thin film solar cell was produced and used as the thin film solar cell of Conventional Example 2.
  • the thin film solar cell of the comparative example 1 and the comparative example 2 is the same as the thin film solar cell of Example 1 except the structure of a transparent electrode layer.
  • the haze ratio (%) of the transparent conductive film (transparent electrode layer) after the formation of the texture structure (concave / convex structure): ((diffuse transmittance / total light transmittance) ⁇ 100) was evaluated.
  • the haze ratio is a numerical value representing the degree of light diffusion.
  • the transparent conductive film (transparent electrode layer) of the thin film solar cell of Example 1 has a haze ratio of 10% or more in the wavelength range of 300 nm to 900 nm, and the transparent conductive film (transparent) of the thin film solar cell of Conventional Example 1 It was confirmed that the light scattering effect was improved.
  • the short circuit current was able to be improved by increasing the light confinement effect in the transparent conductive film (transparent electrode layer).
  • the transparent conductive film (transparent electrode layer) of the thin film solar cell of Conventional Example 2 steep irregularities on the surface are formed by etching, whereas the transparent conductive film (transparent of the thin film solar cell of Example 1 is transparent).
  • the transparent conductive film is further formed from above after the etching, it is possible to prevent the formation of irregularities on the surface with steep slopes. Thereby, generation
  • Table 2 shows the yield of the thin film solar cells of Example 1 and Conventional Example 2.
  • the yield shown here shows the yield of 20 thin-film solar cells of Example 1 and Conventional Example 2 each having a size of 10 mm square.
  • Table 2 shows that the thin film solar cell of Example 1 has a higher yield than the thin film solar cell of Conventional Example 2. Therefore, in the thin film solar cell of Example 1, it was confirmed that the thin film solar cell which has a favorable yield was implement
  • the light-transmitting insulating substrate is formed by forming the hollow portions 4 between the adjacent convex portions 2 a in the first transparent conductive film 2.
  • a sufficient light scattering effect can be obtained with respect to sunlight incident from one side.
  • the cavity 4 has a bottom surface formed by etching along the grain boundary of the transparent conductive film up to the translucent insulating substrate, so that sufficient light scattering performance can be obtained.
  • the number of irregularities on the surface of the first transparent conductive film 2 can be reduced, and the first Generation
  • the fall of the output voltage resulting from the defect in the electric power generation layer 5 can be prevented, and high photoelectric conversion efficiency can be obtained. That is, a high photoelectric property can be obtained without causing the problem that the number of irregularities on the surface of the transparent conductive film increases as in the prior art, resulting in an increase in defects in the power generation layer and a decrease in output voltage. Conversion efficiency can be realized.
  • the second transparent conductive film 3 is formed on the first transparent conductive film 2, and the power generation layer 5 is formed thereon. For this reason, the unevenness of the steep slope of the transparent conductive film at the interface between the transparent conductive film of the transparent electrode layer and the power generation layer 5 is alleviated, and the generation of defects in the power generation layer 5 due to the unevenness of the steep slope is suppressed. And yield and reliability can be improved.
  • a structure having high light scattering performance in a wide wavelength region of sunlight without increasing the number of irregularities on the surface of the transparent conductive film of the transparent electrode layer is possible to produce a thin-film solar cell that is excellent in photoelectric conversion efficiency by effectively utilizing a wide wavelength range of sunlight.
  • the thin film solar cell having a tandem structure in which the pin structure of the power generation layer has two stages has been described as an example.
  • the pin structure has The present invention can also be applied to a single-stage single structure or a structure in which three or more pin structures are stacked, and the above-described effects of the present invention can be obtained.
  • FIG. 1 another method for manufacturing a transparent conductive film in the method for manufacturing a thin-film solar cell according to the present invention will be described with reference to FIGS. 4-1 to 4-3.
  • FIGS. 4-1 to 4-3 are cross-sectional views for explaining an example of the manufacturing process of the thin-film solar cell according to the second embodiment.
  • the manufacturing method of the thin film solar cell concerning Embodiment 2 is the same as the manufacturing method of the thin film solar cell concerning Embodiment 2 mentioned above except the manufacturing process of a transparent conductive film. Therefore, below, the manufacturing method of a transparent conductive film is demonstrated.
  • a zinc oxide (ZnO) film containing 0.3% by weight of an aluminum (Al) dopant is formed at a film formation temperature of 200 ° C. and a film thickness of 0.23 ⁇ m, and the same dopant amount is formed thereon.
  • a zinc oxide (ZnO) film having a thickness of 0.22 ⁇ m is formed by sputtering at a film forming temperature of 400 ° C.
  • This lower layer film becomes a crystallized transparent conductive film 210a having crystal grains 2d
  • the upper layer film becomes a crystallized transparent conductive film 210b having crystal grains 2e larger than the crystal grains 2d.
  • a transparent conductive film 210 having a two-layer structure in which the transparent conductive film 210a and the transparent conductive film 210b are laminated is formed (FIG. 4-1).
  • the width of each crystal grain 2d is about 0.2 ⁇ m, and the width of each crystal grain 2e is about 0.3 ⁇ m.
  • the transparent conductive film 210 is immersed in an aqueous solution of 0.3 wt% hydrochloric acid and 30 ° C. for 60 seconds, and then washed with pure water and dried for 1 minute or more.
  • the etching progresses in the crystal grain boundary, the amorphous-like region, or the defective region lacking oxygen or the like in the upper transparent conductive film 210b, and the upper transparent conductive film 210b and the lower transparent conductive film 210a. Reach the interface.
  • the lower transparent conductive film 210a a film that is more easily etched is formed.
  • the etching rate of the lower transparent conductive film 210a is faster than the etching rate of the upper transparent conductive film 210b. For this reason, when etching proceeds until the surface of the translucent insulating substrate 1 is exposed, a recess is formed, and a first transparent conductive film 20 in which a number of convex portions 2f having an overhang shape are arranged is formed (FIG. 4-2).
  • the film thickness m of the lower layer of the convex portion 2f of the first transparent conductive film 20 from the translucent insulating substrate 1 is 0.23 ⁇ m
  • the film thickness n of the upper layer of the convex portion 2f is 0.12 ⁇ m.
  • the length k in the lateral direction of the substrate at the bottom of the upper layer of the protrusion 2f is 0.25 ⁇ m.
  • the length j in the substrate lateral direction at the bottom of the upper layer between the adjacent convex portions 2f is 0.05 ⁇ m, and the length in the substrate diagonal direction is 0.07 ⁇ m.
  • the angle of the upper side taper of the convex portion 2f is 85 degrees with the angle in the in-plane direction of the bottom surface being 0 degrees.
  • the length l in the substrate lateral direction of the cavity at the height of the boundary between the upper layer of the convex part 2f and the lower layer of the convex part 2f is 0.2 ⁇ m.
  • the second transparent conductive film 3 is formed using atmospheric pressure CVD (FIG. 4-3).
  • the surface of the transparent conductive film 20 and the film forming chamber is heated to, for example, 540 ° C., and tin tetrachloride, water, and hydrogen chloride gas are simultaneously blown at a hydrogen chloride flow rate / tin tetrachloride flow rate ratio of 2.0, thereby forming irregularities on the surface.
  • the second transparent conductive film 3 is not formed on the bottom of the hollow of the first transparent conductive film 20, and a cavity 40 with the translucent insulating substrate 1 as the bottom is formed there.
  • the formation of the cavity 40 makes it difficult for the reactive species to reach the recess compared to the protrusion, and furthermore, since the protrusion 2f of the first transparent conductive film 20 has an overhang shape, it reaches the recess further. This occurs because the projections are preferentially formed.
  • the cavity 40 can be formed between the convex portions 2f, and sufficient light can be obtained with respect to the sunlight incident from the translucent insulating substrate 1 side by the formed cavity 40. A scattering effect is obtained.
  • a thin-film solar cell was manufactured according to the method for manufacturing a thin-film solar cell according to the second embodiment described above, and the characteristics and yield of the solar cell were evaluated in the same manner as in the first embodiment. As a result, it was confirmed that a thin film solar cell excellent in yield and photoelectric conversion efficiency was realized as in the case of Embodiment 1.
  • the thin film solar cell according to the present invention is useful for effective use of a wide wavelength range of sunlight.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 透光性絶縁基板1と、結晶質の透明導電膜により前記透光性絶縁基板1上に形成され、表面に凹凸構造を有する第1透明導電膜2と、透明導電膜により前記第1透明導電膜2上に形成され、前記第1透明導電膜2の凹凸構造よりも緩やかな凹凸構造を表面に有する第2透明導電膜3と、前記第2透明導電膜3上に形成され、少なくとも結晶質層を一層有して発電を行う発電層5と、光を反射する導電膜により前記発電層5上に形成された裏面電極層6と、を備え、前記第1透明導電膜2の凹凸構造における隣接する凸部2a間に、前記透光性絶縁基板1から前記発電層5方向に突出した略凸状の空洞部4を有する。

Description

薄膜太陽電池およびその製造方法
 本発明は、薄膜太陽電池およびその製造方法に関し、特に光閉じこめ技術に優れた薄膜太陽電池およびその製造方法に関するものである。
 従来、薄膜太陽電池においては、発電層に結晶質層を含む膜を有するタンデム構造を採用することによって、太陽光における広い波長域の光を吸収して光電変換効率の向上が図られている。また、太陽光の広い波長域で光の吸収をより増加させるために、光閉じ込め技術が適用されている。この光閉じ込め技術として、透光性絶縁基板側から光を入射する場合に、透光性絶縁基板上の透明導電膜表面に凹凸構造を形成する方法が用いられている。
 この凹凸構造を形成する技術については、光反射率の低減効果および光散乱効果により薄膜太陽電池の光電変換効率が向上することが一般的に知られている。詳しくは、透光性絶縁基板側から入射してきた光は、凹凸構造を有する透明導電膜と発電層との界面で散乱された後に発電層に入射するので、発電層に概ね斜めに入射する。発電層に斜めに光が入射することにより、発電層内における光の実質的な光路が延びて光の吸収が増大するため、太陽電池の出力電流が増加する。
 従来より、このような凹凸構造を有する透明導電膜として、酸化錫(SnO)が良く知られている。一般的に、酸化錫(SnO)の表面における凹凸構造は、熱CVD(Chemical Vapor Deposition)法により数10nm~数μm径の結晶粒を膜表面に成長させることにより形成される。
 一方、プラズマ耐性に優れるとともに資源的に豊富であるという観点から、酸化錫(SnO)に代わる透明導電膜材料として酸化亜鉛(ZnO)が普及しつつある。透明導電膜材料として酸化亜鉛(ZnO)を用いる場合には、ガラス基板上にスパッタリング法により透明導電膜を形成し、その後、酸を用いて透明導電膜をエッチングすることで膜表面に凹凸構造を形成する技術が報告されている(たとえば、特許文献1参照)。この方法によって簡便に凹凸構造を形成することにより、薄膜太陽電池のコスト低減が期待されている。
 しかし、上記特許文献1の技術によれば、エッチングにより透明導電膜の表面に急峻な斜面の凹凸構造が形成されるため、この急峻な斜面の凹凸構造に起因して発電層内で欠陥が発生し、歩留まりと信頼性とが悪化する、という問題がある。そこで近年は、太陽光におけるより広い波長域において高い光散乱性能を得るために、透明導電膜表面におけるマクロな凹凸構造の上に、さらにミクロな凹凸構造を有する構造が提案されている(たとえば、特許文献2参照)。
特許第3697190号公報 国際公開第2003/036657号
 しかしながら、上記特許文献2の技術によれば、ミクロな凹凸構造を有することにより表透明導電膜の表面の凹凸数が増加する。このため、結晶質層を含む発電層の形成時において基板表面に対して垂直方向に成長する結晶がより多くぶつかり合うことになり、発電層内の欠陥が増加し、出力電圧が低下する、という問題がある。したがって、このような透明導電膜の凹凸構造(テクスチャ構造)では、光電変換効率の向上を実現することは困難であった。
 本発明は、上記に鑑みてなされたものであって、太陽光の広い波長域で高い光散乱性能を有する光電変換効率に優れた薄膜太陽電池およびその製造方法を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる薄膜太陽電池は、透光性絶縁基板と、結晶質の透明導電膜により前記透光性絶縁基板上に形成され、表面に凹凸構造を有する第1透明導電膜と、透明導電膜により前記第1透明導電膜上に形成され、前記第1透明導電膜の凹凸構造よりも緩やかな凹凸構造を表面に有する第2透明導電膜と、前記第2透明導電膜上に形成され、少なくとも結晶質層を一層有して発電を行う発電層と、光を反射する導電膜により前記発電層上に形成された裏面電極層と、を備え、前記第1透明導電膜の凹凸構造における隣接する凸部間に、前記透光性絶縁基板から前記発電層方向に突出した略凸状の空洞部を有すること、を特徴とする。
 本発明によれば、透明電極層の透明導電膜表面の凹凸数を増加させずに太陽光の広い波長域において高い光散乱性能を有する構造を実現して、太陽光の広い波長域を有効活用した光電変換効率に優れた薄膜太陽電池が得られる、という効果を奏する。
図1は、本発明の実施の形態1にかかる薄膜太陽電池の概略構成を示す断面図である。 図2-1は、本発明の実施の形態1にかかる薄膜太陽電池の製造工程の一例を説明するための断面図である。 図2-2は、本発明の実施の形態1にかかる薄膜太陽電池の製造工程の一例を説明するための断面図である。 図2-3は、本発明の実施の形態1にかかる薄膜太陽電池の製造工程の一例を説明するための断面図である。 図2-4は、本発明の実施の形態1にかかる薄膜太陽電池の製造工程の一例を説明するための断面図である。 図2-5は、本発明の実施の形態1にかかる薄膜太陽電池の製造工程の一例を説明するための断面図である。 図3は、本発明の実施の形態1にかかる薄膜太陽電池の製造工程での透光性絶縁基板上における空洞部の領域を示す上面図である。 図4-1は、本発明の実施の形態2にかかる薄膜太陽電池の製造工程の一例を説明するための断面図である。 図4-2は、本発明の実施の形態2にかかる薄膜太陽電池の製造工程の一例を説明するための断面図である。 図4-3は、本発明の実施の形態2にかかる薄膜太陽電池の製造工程の一例を説明するための断面図である。
 以下に、本発明にかかる薄膜太陽電池およびその製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態1.
 図1は、本発明の実施の形態1にかかる薄膜太陽電池10の概略構成を示す断面図である。薄膜太陽電池10は、透光性絶縁基板1、透光性絶縁基板1上に形成された第1透明導電膜2、第1透明導電膜2上に形成されるとともに表面に凹凸構造を有する第2透明導電膜3、第2透明導電膜3上に形成された発電層5、発電層5上に形成された裏面電極層6を備える。ここでは、第1透明導電膜2と第2透明導電膜3とにより第1電極層である透明電極層が構成される。また、第1透明導電膜2における隣接する凸部間には、空洞部4を備える。
 透光性絶縁基板1としては、透光性を有する絶縁基板が用いられる。このような透光性絶縁基板1には、通常は透過率の高い材質が用いられ、例えば可視から近赤外領域までの吸収が小さいガラス基板が使用される。ガラス基板としては無アルカリガラス基板を用いてもよく、また、安価な青板ガラス基板を用いてもよい。
 第1透明導電膜2は、透明導電膜からなり、凹凸構造を有する。第1透明導電膜2は、例えば結晶化した酸化亜鉛(ZnO)膜、この膜にドーパントとしてAl、Ga、In、B、Y、Si、Zr、Tiから選択した少なくとも1種類以上の元素を用いた膜、またはこれらを積層して形成した透明導電膜が用いられる。また、上記においては第1透明導電膜2として結晶化したZnO膜等を示したが、第1透明導電膜2はこれに限定されず、結晶化して光高透過性を有している透明導電膜であればよい。このような透明導電膜としては、例えばSnO、In、ZnO、CdO、CdIn、CdSnO、MgIn、CdGa、GaInO、InGaZnO、CdSb、CdGeO、CuAlO、CuGaO、SrCu、TiO、Alの結晶化した膜、またはこれらの膜を積層して構成した透明導電膜であってもよい。また、これらの膜にドーパントとしてAl、Ga、In、B、Y、Si、Zr、Tiから選択した少なくとも1種類以上の元素を用いた膜、またはこれらを積層して形成した透明導電膜でもよい。
 第1透明導電膜2の形成には、例えばDCスパッタリング法、真空蒸着法、イオンプレーティング法などの物理的方法や、スプレー法、ディップ法、CVD法などの化学的方法を用いることができる。
 また、第1透明導電膜2は、図1に示すように第1透明導電膜2における隣接する凸部2a間に、それぞれ空洞部4を備える。空洞部4は、紙面奥行き方向において略平行に設けられている。凸部2a間の空洞部4の形状は、透光性絶縁基板1から発電層5方向に突出し、断面形状が透光性絶縁基板1の表面を底面とした略三角形状(凸状)であり、高さ0.2μm程度、底面の幅は短辺が0.15μm程度、長辺(紙面奥行き方向)は透光性絶縁基板1の長さである。空洞部4の中心から第1透明導電膜2の凸部2aを挟んで隣の空洞部4の中心までの距離は0.3μm程度である。
 第2透明導電膜3は、透明導電膜からなり、第1透明導電膜2の凹凸構造よりも緩やかな凹凸構造を表面に有する。第2透明導電膜3は、例えば酸化スズ(SnO)膜、この膜にドーパントとしてAl、Ga、In、B、Y、Si、Zr、Ti、Fから選択した少なくとも1種類以上の元素を用いた膜、またはこれらを積層して形成した透明導電膜が用いられる。また、上記においては第2透明導電膜3として酸化スズ(SnO)膜等を示したが、第2透明導電膜3はこれに限定されず、光高透過性を有している透明導電膜であればよい。このような透明導電膜としては、In、ZnO、CdO、CdIn、CdSnO、MgIn、CdGa、GaInO、InGaZnO、CdSb、CdGeO、CuAlO、CuGaO、SrCu、TiO、Al膜、またはこれらの膜を積層して構成した透明導電膜であってもよい。また、これらの膜にドーパントとしてAl、Ga、In、B、Y、Si、Zr、Ti、Fから選択した少なくとも1種類以上の元素を用いた膜、またはこれらを積層して形成した透明導電膜でもよい。
 第2透明導電膜3の形成には、例えばDCスパッタリング法、真空蒸着法、イオンプレーティング法などの物理的方法や、スプレー法、ディップ法、CVD法などの化学的方法を用いることができる。
 図1に示すように、第2透明導電膜3は、凸部3aの膜厚が 透光性絶縁基板1の表面から0.7μm程度、該第2透明導電膜3の凸部3aと凹部3bの上面の高低差が0.4μm程度、凸部3aの頂点の間隔が0.6μm程度、凸部3aの底面の幅が0.5μm程度である。したがって、凹部3bの幅は、0.1μm程度となる。
 発電層5は、pn接合またはpin接合を有し、入射する光により発電を行う薄膜半導体層が少なくとも2層以上積層されて構成される。発電層5は、例えば、第2透明導電膜3側から第1導電型半導体層であるp型非晶質炭化シリコン膜(a-SiC膜)、バッファ層、第2導電型半導体層であるi型非晶質シリコン膜(a-Si膜)、第3導電型半導体層であるn型非晶質シリコン膜(a-Si膜)からなる第1発電層(図示せず)と、第1導電型半導体層であるp型微結晶シリコン膜、第2導電型半導体層であるi型微結晶シリコン膜、第3導電型半導体層であるn型微結晶シリコン膜からなる第2発電層(図示せず)と、を備え、発電層5は何れかの層に結晶質層を有することを特徴とする。
 また、発電層5の各層には、非晶質シリコンゲルマニウム、微結晶シリコンゲルマニウム等、非晶質シリコン系膜や結晶質シリコン系膜を使用してもよい。また、発電層5は、pin構造が1段のシングル構造や、pin構造を3段に重ねたトリプル構造とされてもよい。
 なお、第1発電層と第2発電層との間に、透明導電膜からなる中間層を形成してもよい。中間層は、光透過性および光反射性の双方の特性を有し、かつ導電性を有する膜により構成される。中間層は第1発電層に入射した光を反射させることができるため、第1発電層の実効膜厚を増大させる効果があり、第1発電層と第2発電層との出力電流密度を調節し、モジュール特性を向上させることができる。このような中間層としては、酸化亜鉛(ZnO)、酸化インジウムスズ(ITO)、酸化スズ(SnO)、一酸化ケイ素(SiO)等の膜を用いることができる。
 裏面電極層6は、光を反射する導電膜からなる第2電極層であり、例えば膜厚200nm程度のアルミニウム(Al)膜が用いられる。なお、アルミニウム(Al)膜以外にも、高光反射率を有する銀(Ag)膜を用いてもよい。また、発電層5のシリコンへの金属拡散を防止するために発電層5と裏面電極層6との間に酸化亜鉛(ZnO)、酸化インジウム錫(ITO:Indium Tin Oxide)、酸化スズ(SnO)等の透明導電膜を挿入してもよい。裏面電極層6は、例えばスパッタ法、CVD法やスプレー法など公知の手段によって形成される。
 以上のように構成された本実施の形態にかかる薄膜太陽電池10においては、第1透明導電膜2における隣接する各凸部2a間に、それぞれ空洞部4を備えることにより、透光性絶縁基板1側から入射した太陽光に対して十分な光散乱効果が得られる。すなわち、透光性絶縁基板1側から入射した太陽光は、一部が第1透明導電膜2における各凸部2aに入射し、該凸部2aと第2透明導電膜3との界面において散乱されて第2透明導電膜3に入射していく。また、透光性絶縁基板1側から入射した太陽光は、他の一部が空洞部4に入射し、該空洞部4と第2透明導電膜3との界面において散乱されて第2透明導電膜3に入射していく。したがって、凸部2aと空洞部4とを備えることにより、凸部2aの数を増加させることなく、透光性絶縁基板1側から入射した太陽光に対して十分な光散乱効果が得られる。また、この空洞部4は、透光性絶縁基板1により底面が形成されているため、透光性絶縁基板1側から多くの太陽光が直接入射することとなり、十分な光散乱性能が得られる。
 また、第1透明導電膜2にこのような空洞部4を備えることにより十分な光散乱性能が得られるため、第1透明導電膜2の表面の凹凸数を減少させることができ、第1透明導電膜2の表面の凹凸に起因した発電層5内の欠陥の発生を抑制できる。これにより、発電層5内の欠陥に起因した出力電圧の低下を防止して、高い光電変換効率を得ることができる。すなわち、従来の技術のように透明導電膜の表面の凹凸数が増加することに起因して発電層内の欠陥が増加し、出力電圧が低下する、というような問題を生じることなく、高い光電変換効率を実現することができる。
 また、本実施の形態にかかる薄膜太陽電池10においては、第1透明導電膜2の上に第2透明導電膜3が形成され、その上に発電層5が形成されている。このため、透明電極層の透明導電膜と発電層5との界面の透明導電膜の急峻な斜面の凹凸が緩和され、急峻な斜面の凹凸に起因した発電層5内の欠陥の発生を抑制することができ、歩留まりと信頼性の向上が図られている。
 したがって、本実施の形態にかかる薄膜太陽電池10によれば、透明電極層の透明導電膜表面の凹凸数を増加させずに、太陽光の広い波長域において高い光散乱性能を有する構造を実現して、太陽光の広い波長域を有効活用した光電変換効率に優れた薄膜太陽電池が得られる。
 なお、上記においては、空洞部4の形状が、透光性絶縁基板1の表面を底面とした略三角形状(凸状)である場合について説明したが、透光性絶縁基板1の表面が底面とされず、透光性絶縁基板1上における凸部2a間の領域に第1透明導電膜2が存在し、この第1透明導電膜2上に発電層5方向に突出した形状の空洞部4が設けられていてもよい。
 つぎに、上記のように構成された本実施の形態にかかる薄膜太陽電池10の製造方法について説明する。図2-1~図2-5は、本実施の形態にかかる薄膜太陽電池10の製造工程の一例を説明するための断面図である。
 まず、透光性絶縁基板1を用意する。ここでは、透光性絶縁基板1として無アルカリガラス基板を用いて以下説明する。また、透光性絶縁基板1として安価な青板ガラス基板を用いてもよいが、この場合は、透光性絶縁基板1からのアルカリ成分の拡散を防止するためにPCVD法などによりSiO膜を50nm程度形成するのがよい。
 つぎに、第1透明導電膜2になる透明導電膜として、0.3重量%のアルミニウム(Al)ドーパントを含む膜厚0.45μmの酸化亜鉛(ZnO)膜をスパッタリング法で透光性絶縁基板1上に製膜し、結晶粒2cを有する結晶化した透明導電膜21を形成する(図2-1)。結晶粒2cの横幅の大きさは0.3μm程度である。透明導電膜21を形成する方法として真空蒸着法、イオンプレーティング法などの物理的方法や、スプレー法、ディップ法、CVD法などの化学的方法を用いてもよい。また、結晶粒2cの大きさの制御や膜の移動度を向上させるために熱処理を行ってもよい。
 次に、透明導電膜21を塩酸0.3重量%、液温30℃の水溶液中に90秒間浸した後、1分間以上の純水洗浄および乾燥を実施する。この処理により、エッチングされやすい結晶粒界では透光性絶縁基板1の表面が露出するまでエッチングが進み、窪みが形成され、多数の凸部2aが配列された第1透明導電膜2が形成される(図2-2)。
 エッチングに使用する液として、本実施の形態では塩酸0.3重量%を用いるが、これに限ることなく、例えば、硫酸、硝酸、フッ酸、酢酸、蟻酸等の1種または2種以上の混合物が挙げられる。このエッチング処理により、透光性絶縁基板1から第1透明導電膜2の凸部2aの膜厚は0.3μmとなり、窪み部分の高さhを窪み部分の底面の短辺sで割ったアスペクト比(h/s)は隣り合う凸部2a間の窪みで0.3μm/0.15μm=2、図3に示すような対角線上の凸部2a間の窪みで0.3μm/0.21μm=1.4である。窪みの側面角度は底面の面内方向の角度を0°にして85°である。図3は、透光性絶縁基板1上における空洞部4の領域を示す上面図である。
 次に、常圧熱CVD法を用いて第2透明導電膜3の製膜を行う(図2-3)。透明導電膜21および製膜室内の温度を例えば540℃に加熱し、四塩化錫、水、塩化水素ガスを、塩化水素流量/四塩化錫流量比2.0で、同時に吹き付けることで表面に凹凸を形成する。この時、第1透明導電膜2の窪み底部には第2透明導電膜3が製膜されず、オーバーハング形状となり、そこに透光性絶縁基板1を底面とした空洞部4が形成される。この空洞部4の形成は、反応種が凸部に比べて凹部には到達しにくく、凸部が優先的に製膜されるために起こる。上記に示したアスペクト比と、窪みの底辺の短辺長さと、窪みの側面角度であれば、第1透明導電膜2の対角線上の凸部2a間および隣同士の凸部2a間の、いずれの窪みにおいても空洞部4は形成される。
 なお、ここでは、透明導電膜21に対して透光性絶縁基板1の表面が露出するまでエッチングした場合を例に説明しているが、透明導電膜21の窪みの底部において透光性絶縁基板1の表面が完全に露出されない場合でも、隣接する凸部2a間に空洞部4が形成される。
 一方、第2透明導電膜3の表面形状は、下地の凹凸からはほとんど影響を受けない。すなわち、第2透明導電膜3の表面形状は、第1透明導電膜2の凸部2aからはほとんど影響を受けない。これは、第2透明導電膜3は下地の窪み部ではオーバーハング形状で製膜が進行するため、下地に窪み部があってもその凸部の高さまですぐに製膜が到達するためである。
 これにより、例えば第2透明導電膜3の凸部3aの膜厚が0.7μm程度、第2透明導電膜3の凸部3aの上面と凹部3bの上面との高低差が0.4μm程度になる。また、凸部3aの頂点の間隔が0.6μm程度、凸部3aの底面の幅が0.5μm程度、したがって、凹部3bの幅が0.1μm程度となる。また、空洞部4の形状は、透光性絶縁基板1から発電層5方向に突出し、断面形状が透光性絶縁基板1の表面を底面とした略三角形状(凸状)であり、高さ0.2μm程度、底面の幅は短辺が0.15μm程度、長辺(紙面奥行き方向)は透光性絶縁基板1の長さである。空洞部4の中心から第1透明導電膜2の凸部2aを挟んで隣の空洞部4の中心までの距離は0.3μm程度である。図3に示すように、第1透明導電膜2の面内において空洞部4が占める領域は上から見て略75%である。
 なお、第2透明導電膜3の形成方法として、本実施の形態では熱CVD法を用いたが、第2透明導電膜3の形成方法はこれに限定されず、プラズマCVD法などの他の方法でもよい。
 次に、第2透明導電膜3上に発電層5をプラズマCVD法により形成する。本実施の形態では、発電層5として、第2透明導電膜3側から第1導電型半導体層であるp型非晶質炭化シリコン膜(a-SiC膜)、バッファ層、第2導電型半導体層であるi型非晶質シリコン膜(a-Si膜)、第3導電型半導体層であるn型非晶質シリコン膜(a-Si膜)からなる第1発電層(図示せず)と、第1導電型半導体層であるp型微結晶シリコン膜、第2導電型半導体層であるi型微結晶シリコン膜、第3導電型半導体層であるn型微結晶シリコン膜からなる第2発電層(図示せず)とを順次積層形成する(図2-4)。
 なお、第1発電層と第2発電層との間に、透明導電膜からなる中間層を形成してもよい。中間層は、光透過性および光反射性の双方の特性を有し、かつ導電性を有する膜により構成される。このような中間層としては、酸化亜鉛(ZnO)、酸化インジウムスズ(ITO)、酸化スズ(SnO)、一酸化ケイ素(SiO)等の膜を用いることができる。
 次に、発電層5上に裏面電極層6をスパッタリング法により形成する(図2-5)。本実施の形態では、膜厚200nmのアルミニウム(Al)膜を形成するが、高光反射率を有する銀(Ag)膜を用いてもよく、シリコンへの金属拡散を防止するために発電層5と裏面電極層6との間に酸化亜鉛(ZnO)、酸化インジウム錫(ITO)、酸化スズ(SnO)等の透明導電膜を形成してもよい。以上により、図1に示すような薄膜太陽電池10が完成する。
 つぎに、本実施の形態にかかる薄膜太陽電池の製造方法により作製した薄膜太陽電池の特性評価について説明する。上述した本実施の形態にかかる薄膜太陽電池の製造方法により作製した薄膜太陽電池を実施例1の薄膜太陽電池とした。また、透明電極層として表面にマクロな凹凸構造を有する酸化錫(SnO)を常温熱CVD法によりガラス基板上に形成して作製した薄膜太陽電池を従来例1の薄膜太陽電池とする。また、ガラス基板上に透明導電膜である酸化亜鉛(ZnO)膜を製膜し、この酸化亜鉛(ZnO)膜に対して酸によりエッチングを行って表面に凸凹構造を形成した透明電極層を備える薄膜太陽電池を作製し、これを従来例2の薄膜太陽電池とした。なお、比較例1および比較例2の薄膜太陽電池は、透明電極層の構造以外は実施例1の薄膜太陽電池と同じである。
 これらの薄膜太陽電池に対して、ソーラーシミュレーターを用いてそれぞれAM(エア・マス)1.5の光を100mW/cmの光量で基板側から入射して、太陽電池としての特性を評価した。測定温度は25℃である。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1の薄膜太陽電池では、従来例1、従来例2の薄膜太陽電池に比べて短絡電流が向上していることがわかる。また、実施例1の薄膜太陽電池では、従来例1、従来例2に比べて開放電圧の低下は生じていないことがわかる。したがって、実施例1の薄膜太陽電池では、良好な出力特性が得られていることが確認された。
 またテクスチャ構造(凹凸構造)形成後の透明導電膜(透明電極層)のヘイズ率(%):((拡散透過率/全光透過率)×100)を評価した。ここでヘイズ率とは、光の拡散する度合いを表す数値である。実施例1の薄膜太陽電池の透明導電膜(透明電極層)は、300nmから900nmの波長範囲でいずれもヘイズ率は10%以上が得られ、従来例1の薄膜太陽電池の透明導電膜(透明電極層)よりも増加しており、光の散乱効果が向上していることが確認された。このように、実施例1の薄膜太陽電池では、透明導電膜(透明電極層)における光閉じ込め効果を大きくしたことによって、短絡電流の向上が可能となった。
 また、従来例2の薄膜太陽電池の透明導電膜(透明電極層)ではエッチングにより表面に急峻な斜面の凹凸が形成されるのに対して、実施例1の薄膜太陽電池の透明導電膜(透明電極層)ではエッチング後にその上から更に透明導電膜の製膜を行っているため、この表面における急峻な斜面の凹凸形成を防ぐことができる。これにより、発電層の欠陥発生を抑制することができ、信頼性と歩留まりに優れた太陽電池が得られる。
 表2に実施例1と従来例2の薄膜太陽電池の歩留まりを示す。ここに示した歩留まりは、10mm角の大きさの実施例1および従来例2の薄膜太陽電池を20個作製して、その歩留まりを示したものである。
Figure JPOXMLDOC01-appb-T000002
 表2より、従来例2の薄膜太陽電池に比べて実施例1の薄膜太陽電池は高い歩留まりが得られていることが分かる。したがって、実施例1の薄膜太陽電池では、良好な歩留まりを有する薄膜太陽電池が実現されていることが確認された。
 上述したように本実施の形態にかかる薄膜太陽電池の製造方法においては、第1透明導電膜2における隣接する各凸部2a間に、それぞれ空洞部4を形成することにより、透光性絶縁基板1側から入射した太陽光に対して十分な光散乱効果が得られる。この空洞部4は、透光性絶縁基板まで透明導電膜の粒界に沿ってエッチングすることにより底面が形成されているため、十分な光散乱性能が得られる。
 また、第1透明導電膜2にこのような空洞部4を形成することにより十分な光散乱性能が得られるため、第1透明導電膜2の表面の凹凸数を減少させることができ、第1透明導電膜2の表面の凹凸に起因した発電層5内の欠陥の発生を抑制できる。これにより、発電層5内の欠陥に起因した出力電圧の低下を防止して、高い光電変換効率を得ることができる。すなわち、従来の技術のように透明導電膜の表面の凹凸数が増加することに起因して発電層内の欠陥が増加し、出力電圧が低下する、というような問題を生じることなく、高い光電変換効率を実現することができる。
 また、本実施の形態にかかる薄膜太陽電池の製造方法においては、第1透明導電膜2の上に第2透明導電膜3が形成され、その上に発電層5が形成される。このため、透明電極層の透明導電膜と発電層5との界面の透明導電膜の急峻な斜面の凹凸が緩和され、急峻な斜面の凹凸に起因した発電層5内の欠陥の発生を抑制することができ、歩留まりと信頼性の向上が図ることができる。
 したがって、本実施の形態にかかる薄膜太陽電池の製造方法によれば、透明電極層の透明導電膜表面の凹凸数を増加させずに、太陽光の広い波長域において高い光散乱性能を有する構造を実現し、太陽光の広い波長域を有効活用した光電変換効率に優れた薄膜太陽電池を作製することができる。
 なお、上記においては、発電層のpin構造が2段とされたタンデム構造の薄膜太陽電池を例に説明したが、発電層の何れかの層に結晶質層を有する構造であればpin構造が1段のシングル構造や、pin構造を3段以上重ねた構造においても本発明は適用可能であり、上述した本発明の効果を得ることができる。
実施の形態2.
 実施の形態2では、本発明にかかる薄膜太陽電池の製造方法における透明導電膜の他の製造方法について図4-1~図4-3を参照して説明する。図4-1~図4-3は、実施の形態2にかかる薄膜太陽電池の製造工程の一例を説明するための断面図である。なお、実施の形態2にかかる薄膜太陽電池の製造方法は、透明導電膜の製造工程以外は、上述した実施の形態2にかかる薄膜太陽電池の製造方法と同様である。したがって、以下では、透明導電膜の製造方法について説明する。
 第1透明導電膜20として、0.3重量%のアルミニウム(Al)ドーパントを含む酸化亜鉛(ZnO)膜を製膜温度200℃で膜厚0.23μm製膜し、その上に同じドーパント量で膜厚0.22μmの酸化亜鉛(ZnO)膜を製膜温度400℃でいずれもスパッタリング法で製膜する。この下層膜は、結晶粒2dを有する結晶化した透明導電膜210aとなり、上層膜は結晶粒2dより大きい結晶粒2eを有する結晶化した透明導電膜210bとなる。これにより、透明導電膜210aと透明導電膜210bとが積層して構成された2層構造の透明導電膜210が形成される(図4-1)。結晶粒2dの横幅の大きさはそれぞれ0.2μm程度であり、結晶粒2eの横幅の大きさは0.3μm程度である。
 次に、透明導電膜210を塩酸0.3重量%、液温30℃の水溶液中に60秒間浸した後、1分間以上の純水洗浄および乾燥を実施する。この処理により、上層の透明導電膜210bの結晶粒界や非晶質ライクな領域もしくは酸素等が欠損した欠陥のある領域でエッチングが進行し、上層の透明導電膜210bと下層の透明導電膜210aの界面に達する。下層の透明導電膜210aは、よりエッチングされやすい膜が形成されている。したがって、その後のエッチングでは、下層の透明導電膜210aのエッチングレートは、上層の透明導電膜210bのエッチングレートよりも早くなる。このため、透光性絶縁基板1の表面が露出するまでエッチングが進むと、窪みが形成され、オーバーハング形状を有する凸部2fが多数配列された第1透明導電膜20が形成される(図4-2)。
 図4-2に示すように、透光性絶縁基板1から第1透明導電膜20の凸部2fの下層の膜厚mは0.23μm、凸部2fの上層の膜厚nは0.12μm、凸部2fの上層底部の基板横方向の長さkは0.25μmである。隣接する凸部2f間の上層底部における基板横方向の長さjは0.05μmであり、基板対角線方向の長さは0.07μmである。凸部2fの上層のテーパーとなった側面の角度は、底面の面内方向の角度を0度にして85度である。また、凸部2fの上層と凸部2fの下層との境界の高さにおける空洞部の基板横方向の長さlは0.2μmである。
 次に、常圧熱CVD法を用いて第2透明導電膜3の製膜を行う(図4-3)。透明導電膜20および製膜室内の温度を例えば540℃に加熱し、四塩化錫、水、塩化水素ガスを、塩化水素流量/四塩化錫流量比2.0で、同時に吹き付けることで表面に凹凸を形成する。この時、第1透明導電膜20の窪み底部には第2透明導電膜3は製膜されず、そこに透光性絶縁基板1を底面とした空洞部40が形成される。この空洞部40の形成は、反応種が凸部に比べて凹部には到達しにくく、さらに、第1透明導電膜20の凸部2fがオーバーハング形状であるため、より一層、凹部には到達しにくく、凸部が優先的に製膜されるために起こる。
 上述したような処理を行うことによって各凸部2f間に空洞部40を形成することができ、形成された空洞部40によって透光性絶縁基板1側から入射した太陽光に対して十分な光散乱効果が得られる。
 上述した実施の形態2にかかる薄膜太陽電池の製造方法に従って薄膜太陽電池を作製し、実施の形態1の場合と同様に太陽電池の特性および歩留まりを評価した。その結果、実施の形態1の場合と同様に歩留まりに優れ、光電変換効率に優れた薄膜太陽電池が実現されていることが確認された。
 以上のように、本発明にかかる薄膜太陽電池は、太陽光の広い波長域の有効活用に有用である。
 1 透光性絶縁基板
 2 第1透明導電膜
 2a 凸部
 2c 結晶粒
 2d 結晶粒
 2e 結晶粒
 2f 凸部
 3 第2透明導電膜
 3a 凸部
 3b 凹部
 4 空洞部
 5 発電層
 6 裏面電極層
 10 薄膜太陽電池
 20 透明導電膜
 21 透明導電膜
 40 空洞部
 210 透明導電膜
 210a 透明導電膜
 210b 透明導電膜

Claims (7)

  1.  透光性絶縁基板と、
     結晶質の透明導電膜により前記透光性絶縁基板上に形成され、表面に凹凸構造を有する第1透明導電膜と、
     透明導電膜により前記第1透明導電膜上に形成され、前記第1透明導電膜の凹凸構造よりも緩やかな凹凸構造を表面に有する第2透明導電膜と、
     前記第2透明導電膜上に形成され、少なくとも結晶質層を一層有して発電を行う発電層と、
     光を反射する導電膜により前記発電層上に形成された裏面電極層と、
     を備え、
     前記第1透明導電膜の凹凸構造における隣接する凸部間に、前記透光性絶縁基板から前記発電層方向に突出した略凸状の空洞部を有すること、
     を特徴とする薄膜太陽電池。
  2.  前記空洞部は、底面が前記透光性絶縁基板の表面であり、該透光性絶縁基板の表面と前記第2透明導電膜とにより囲まれて構成されていること、
     を特徴とする請求項1に記載の薄膜太陽電池。
  3.  前記第1透明導電膜の凸部は、オーバーハング形状を有すること、
     を特徴とする請求項1に記載の薄膜太陽電池。
  4.  透光性絶縁基板の一面上に結晶質の透明導電膜を形成する第1工程と、
     前記透明導電膜の一部を、酸を含む溶液を用いて前記透明導電膜のエッチングを行って、前記透光性絶縁基板上に凹凸構造が配列されてなる第1透明導電膜を形成する第2工程と、
     前記第1透明導電膜上および露出した前記透光性絶縁基板上に透明導電膜を堆積して、前記第1透明導電膜の凹凸構造における隣接する凸部間に空洞部を有するとともに前記第1透明導電膜の凹凸構造よりも緩やかな凹凸構造を表面に有する第2透明導電膜を形成する第3工程と、
     前記第2透明導電膜上に、少なくとも一層の結晶質層を含む半導体層からなる発電層を形成する第4工程と、
     前記発電層上に光を反射する導電膜により裏面電極層を形成する第5工程と、
     を含むことを特徴とする薄膜太陽電池の製造方法。
  5.  前記第1工程では、後の製膜ほど高温で行う2段階以上の製膜条件で前記透明導電膜を形成すること、
     を特徴とする請求項4に記載の薄膜太陽電池の製造方法。
  6.  前記第1工程では、ドーパントとしてアルミニウムを含む結晶化した酸化亜鉛膜をスパッタリング法により製膜して前記第1透明導電膜を形成し、
     前記第2工程では、前記酸を含む溶液として塩酸を使用して前記エッチングを行い、
     前記第3工程では、前記第2透明導電膜として常圧熱CVD法により酸化錫を形成すること、
     を特徴とする請求項4に記載の薄膜太陽電池の製造方法。
  7.  前記第2工程では、前記透光性絶縁基板の表面が露出するまで前記透明導電膜のエッチングを行うこと、
     を特徴とする請求項4に記載の薄膜太陽電池の製造方法。
PCT/JP2010/057288 2009-07-01 2010-04-23 薄膜太陽電池およびその製造方法 WO2011001735A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/379,831 US9117957B2 (en) 2009-07-01 2010-04-23 Thin-film solar battery and method for manufacturing the same
JP2011520820A JP5174966B2 (ja) 2009-07-01 2010-04-23 薄膜太陽電池およびその製造方法
CN201080029500.8A CN102473748B (zh) 2009-07-01 2010-04-23 薄膜太阳能电池及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-157095 2009-07-01
JP2009157095 2009-07-01

Publications (1)

Publication Number Publication Date
WO2011001735A1 true WO2011001735A1 (ja) 2011-01-06

Family

ID=43410819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057288 WO2011001735A1 (ja) 2009-07-01 2010-04-23 薄膜太陽電池およびその製造方法

Country Status (4)

Country Link
US (1) US9117957B2 (ja)
JP (1) JP5174966B2 (ja)
CN (1) CN102473748B (ja)
WO (1) WO2011001735A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193947A (ja) * 2012-03-22 2013-09-30 Tosoh Corp 酸化物透明導電膜及びその製造方法、それにより得られる素子、並びに太陽電池
JP2021009958A (ja) * 2019-07-02 2021-01-28 株式会社東芝 太陽電池、積層体、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2556543B1 (en) 2010-04-06 2020-08-12 OY ICS Intelligent Control Systems Ltd Laminate structure with embedded cavities for use with solar cells and related method of manufacture
CN102723386A (zh) * 2012-06-29 2012-10-10 苏州嘉言能源设备有限公司 薄膜太阳能电池光吸收透明薄膜
CN107331713B (zh) * 2013-08-02 2019-05-24 南通大学 一种太阳能电池
US10049927B2 (en) * 2016-06-10 2018-08-14 Applied Materials, Inc. Seam-healing method upon supra-atmospheric process in diffusion promoting ambient
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
KR102405723B1 (ko) 2017-08-18 2022-06-07 어플라이드 머티어리얼스, 인코포레이티드 고압 및 고온 어닐링 챔버
CN111357090B (zh) 2017-11-11 2024-01-05 微材料有限责任公司 用于高压处理腔室的气体输送系统
KR20200075892A (ko) 2017-11-17 2020-06-26 어플라이드 머티어리얼스, 인코포레이티드 고압 처리 시스템을 위한 컨덴서 시스템
KR20230079236A (ko) 2018-03-09 2023-06-05 어플라이드 머티어리얼스, 인코포레이티드 금속 함유 재료들을 위한 고압 어닐링 프로세스
US10950429B2 (en) 2018-05-08 2021-03-16 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
WO2020117462A1 (en) 2018-12-07 2020-06-11 Applied Materials, Inc. Semiconductor processing system
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252500A (ja) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置
WO2003036657A1 (fr) * 2001-10-19 2003-05-01 Asahi Glass Company, Limited Substrat a couche d'oxyde conductrice transparente, son procede de production et element de conversion photoelectrique
JP3697190B2 (ja) * 2001-10-03 2005-09-21 三菱重工業株式会社 太陽電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614554B2 (ja) * 1985-03-22 1994-02-23 工業技術院長 薄膜太陽電池の製造方法
US5176758A (en) * 1991-05-20 1993-01-05 United Solar Systems Corporation Translucent photovoltaic sheet material and panels
US7276658B2 (en) * 2001-06-21 2007-10-02 Akzo Nobel N.V. Manufacturing a solar cell foil connected in series via a temporary substrate
US7288797B2 (en) 2004-01-20 2007-10-30 Nichia Corporation Semiconductor light emitting element
JP4454514B2 (ja) * 2005-02-14 2010-04-21 三洋電機株式会社 光起電力素子および光起電力素子を含む光起電力モジュールならびに光起電力素子の製造方法
JP2007042534A (ja) 2005-08-05 2007-02-15 Toyo Ink Mfg Co Ltd 金属酸化物半導体粒子分散体、金属酸化物半導体電極の製造方法、および光電変換セル
US7671271B2 (en) * 2006-03-08 2010-03-02 National Science And Technology Dev. Agency Thin film solar cell and its fabrication process
US20080105299A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode with thin metal film layer and high work-function buffer layer for use in photovoltaic device and method of making same
CN101330111A (zh) * 2007-06-18 2008-12-24 精碟科技股份有限公司 染料敏化太阳能电池
US8022291B2 (en) * 2008-10-15 2011-09-20 Guardian Industries Corp. Method of making front electrode of photovoltaic device having etched surface and corresponding photovoltaic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252500A (ja) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置
JP3697190B2 (ja) * 2001-10-03 2005-09-21 三菱重工業株式会社 太陽電池
WO2003036657A1 (fr) * 2001-10-19 2003-05-01 Asahi Glass Company, Limited Substrat a couche d'oxyde conductrice transparente, son procede de production et element de conversion photoelectrique

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193947A (ja) * 2012-03-22 2013-09-30 Tosoh Corp 酸化物透明導電膜及びその製造方法、それにより得られる素子、並びに太陽電池
JP2021009958A (ja) * 2019-07-02 2021-01-28 株式会社東芝 太陽電池、積層体、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JP7362317B2 (ja) 2019-07-02 2023-10-17 株式会社東芝 太陽電池、積層体、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム

Also Published As

Publication number Publication date
CN102473748A (zh) 2012-05-23
JPWO2011001735A1 (ja) 2012-12-13
CN102473748B (zh) 2014-08-20
JP5174966B2 (ja) 2013-04-03
US20120138146A1 (en) 2012-06-07
US9117957B2 (en) 2015-08-25

Similar Documents

Publication Publication Date Title
JP5174966B2 (ja) 薄膜太陽電池およびその製造方法
JP5012793B2 (ja) 透明導電性酸化物膜付き基体および光電変換素子
JP5156641B2 (ja) 光電変換装置用透明導電膜付基板及び光電変換装置の製造方法
JP3819632B2 (ja) 光電変換素子及びその製造方法
JP5726377B2 (ja) 太陽電池及びその製造方法
US8710357B2 (en) Transparent conductive structure
JP7064590B2 (ja) 薄膜太陽電池の直列接続構造及び薄膜太陽電池の直列接続構造の製造プロセス
JP5127925B2 (ja) 薄膜太陽電池およびその製造方法
JP2008270562A (ja) 多接合型太陽電池
JP5073121B2 (ja) 光電変換装置用基板とその製造方法、薄膜光電変換装置とその製造方法及び太陽電池モジュール
JP5174900B2 (ja) 薄膜光電変換装置およびその製造方法
JP2016127179A (ja) 薄膜太陽電池およびその製造方法
WO2011136177A1 (ja) 薄膜太陽電池およびその製造方法、透明導電膜付き基体およびその製造方法
JP5538375B2 (ja) 薄膜太陽電池およびその製造方法
JP2000133828A (ja) 薄膜太陽電池及びその製造方法
JP2013012691A (ja) 薄膜太陽電池の製造方法及び薄膜太陽電池
JP5409490B2 (ja) 光起電力装置およびその製造方法
JP2012216732A (ja) 薄膜太陽電池基板の製造方法および薄膜太陽電池の製造方法
JP5542038B2 (ja) 薄膜太陽電池およびその製造方法、薄膜太陽電池モジュール
JP2011096730A (ja) 薄膜太陽電池およびその製造方法
JP2014168012A (ja) 光電変換装置およびその製造方法
JP2013004538A (ja) 透明導電膜の製造方法、薄膜太陽電池セルおよびその製造方法、薄膜太陽電池モジュール
JP5409675B2 (ja) 薄膜太陽電池およびその製造方法
KR100973676B1 (ko) 박막형 태양전지 및 그 제조방법
JP5489664B2 (ja) 薄膜太陽電池およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029500.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793906

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520820

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13379831

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793906

Country of ref document: EP

Kind code of ref document: A1