WO2011136177A1 - 薄膜太陽電池およびその製造方法、透明導電膜付き基体およびその製造方法 - Google Patents

薄膜太陽電池およびその製造方法、透明導電膜付き基体およびその製造方法 Download PDF

Info

Publication number
WO2011136177A1
WO2011136177A1 PCT/JP2011/060064 JP2011060064W WO2011136177A1 WO 2011136177 A1 WO2011136177 A1 WO 2011136177A1 JP 2011060064 W JP2011060064 W JP 2011060064W WO 2011136177 A1 WO2011136177 A1 WO 2011136177A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
substrate
photoelectric conversion
electrode layer
Prior art date
Application number
PCT/JP2011/060064
Other languages
English (en)
French (fr)
Inventor
泰 折田
宗 本谷
努 松浦
弘也 山林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012512833A priority Critical patent/JPWO2011136177A1/ja
Publication of WO2011136177A1 publication Critical patent/WO2011136177A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a thin-film solar cell and a manufacturing method thereof, a substrate with a transparent conductive film, and a manufacturing method thereof.
  • Oil and other fossil fuels have the problem of carbon dioxide emissions that cause supply insecurity and global warming due to concerns about future depletion.
  • the spread of photovoltaic power generation systems has been increasing due to the recent increase in environmental awareness and the price reduction of the system, which is expected as an alternative energy for fossil fuels.
  • bulk solar cells have problems such as supply anxiety due to a future shortage of raw materials and difficulty in cost reduction.
  • thin-film solar cells have the potential to eliminate material shortages and significantly reduce costs by significantly reducing the amount of semiconductor used, and are attracting attention as next-generation solar cells. .
  • a bulk solar cell has a semiconductor substrate with a thickness of several hundred ⁇ m, whereas a thin film solar cell has a semiconductor layer thickness of several ⁇ m to 10 ⁇ m or less.
  • Such a super straight type general configuration of the thin-film solar cell includes a light-transmitting substrate, a front transparent conductive oxide layer, a photoelectric conversion unit having a semiconductor pin structure, and a rear transparent conductive oxide from the light receiving surface side. A layer and a back surface reflecting silver electrode are sequentially laminated.
  • the amount of semiconductor used in a thin film solar cell is much smaller than that of a bulk solar cell. For this reason, in order to improve the photoelectric conversion efficiency, it is necessary to obtain high conversion efficiency in the same volume.
  • Patent Document 1 discloses that a surface texture shape formed on the surface of a transparent conductive oxide layer on a light-transmitting substrate scatters incident light incident on a photoelectric conversion unit, thereby effectively forming a semiconductor layer.
  • a transparent conductive film capable of increasing the amount of light and increasing the photoelectric conversion efficiency of a solar cell is described.
  • a high light transmittance is required as a characteristic of the transparent conductive layer.
  • an optical material having an antireflection effect by having a first transparent conductive thin film and a second transparent conductive thin film containing zinc oxide as a main component with a low refractive index thin film layer sandwiched between them.
  • the film thickness design is devised to improve the light transmission of the transparent conductive laminate.
  • patent document 3 in order to obtain high light-scattering property with respect to a wide wavelength band, it is a discontinuous hill part which consists of a 1st oxide, and the continuous layer which consists of a 2nd oxide formed in the upper part.
  • a transparent conductive oxide substrate in which a transparent conductive oxide comprising a continuous layer having a large number of micro-convex portions on the surface of the continuous layer is provided on the substrate is disclosed.
  • This transparent conductive oxide substrate has two types of periods, a long period composed of the first oxide and a short period composed of the second oxide, so that good light scattering can be achieved over a wide wavelength band. It is devised to have performance.
  • Patent Document 2 an improvement in light transmittance can be expected by reducing light reflection at the interface between the translucent substrate and the transparent conductive layer, but there is no effect in improving the light scattering property. Further, according to the technique of Patent Document 3, an improvement in light scattering property in a wide wavelength band can be expected. However, compared with a case where the oxide layer is single, local light transmission by a small ridge formed immediately above the substrate. There is a problem that the decline in sex is inevitable.
  • the substrate with a transparent conductive film on the light receiving surface side is: It must have good light scattering properties over a wide wavelength range.
  • main semiconductor materials having different spectral sensitivity regions such as a-SiC, a-Si, a-SiGe, microcrystalline Si
  • a stacked type (tandem junction type) thin film solar cell in which photoelectric conversion units made up of and the like are stacked.
  • Such a laminated (tandem junction) thin film solar cell has a structure in which an incident light spectrum is divided and absorbed / photoelectrically divided by a plurality of photoelectric conversion units, and each wavelength of a solar spectrum which is a continuous spectrum is obtained.
  • a plurality of photoelectric conversion layers using a semiconductor material having a forbidden band width (energy band gap) suitable for absorption are stacked in order of increasing the forbidden band width from the light incident side.
  • the laminated (tandem junction) thin-film solar cell can contribute to photoelectric conversion of sunlight in a wider wavelength band compared to the case where the photoelectric conversion layer is single, and as a whole solar cell Photoelectric conversion efficiency can be improved.
  • the transparent conductive layer on the light receiving surface side has a wide wavelength band as described above. It is desirable to have good light transmission and light scattering properties.
  • the impurity concentration of the transparent conductive film is set as low as possible, and the transparent conductive film is highly crystallized to ensure conductivity. It is necessary to obtain light transmittance. Further, in order to form a transparent conductive film having good light scattering properties, it is necessary to form long-period irregularities by wet etching after highly crystallizing the transparent conductive film. In order to highly crystallize the transparent conductive film for such purposes, it is essential to perform high-temperature film formation while promoting the formation of crystal nuclei during film formation. However, when high-temperature film formation is performed, there arises a problem that cracks due to thermal stress are likely to occur.
  • the present invention has been made in view of the above, and is a thin-film solar cell excellent in photoelectric conversion efficiency that can effectively use sunlight in a wide wavelength band, and a method for manufacturing the same, and such a thin-film solar cell. It aims at obtaining the base
  • a thin film solar cell includes a multilayer film on a substrate and a translucent conductive film mainly composed of zinc oxide formed on the multilayer film.
  • a first electrode layer comprising: a photoelectric conversion layer for performing photoelectric conversion; and a second electrode layer in this order.
  • the multilayer film includes a hafnium oxide layer and a silicon oxide layer stacked from the substrate side. One or more pairs are stacked, and the pair immediately below the first electrode layer includes a hafnium oxide layer having a thickness of 20 nm to 40 nm and a silicon oxide layer having a thickness of 2 nm to 10 nm.
  • the first electrode layer has an uneven shape on the surface on the photoelectric conversion layer side.
  • the present invention it is possible to obtain a thin-film solar cell that can effectively use sunlight in a wide wavelength band and that has excellent photoelectric conversion efficiency.
  • FIG. 1 is a cross-sectional view showing a configuration of a super straight type thin film solar cell according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the substrate with a transparent conductive film according to the first embodiment of the present invention.
  • FIG. 3 is a characteristic diagram showing changes in surface irregularities when a zinc oxide (ZnO) film is formed on a glass substrate under different conditions and the surface is chemically etched.
  • FIG. 4 is a characteristic diagram showing changes in surface irregularities when a zinc oxide (ZnO) film is formed on a glass substrate under different conditions and the surface is chemically etched.
  • FIG. 5-1 is a sectional view for explaining an example of the manufacturing process of the thin-film solar cell according to the first embodiment.
  • FIG. 5-1 is a sectional view for explaining an example of the manufacturing process of the thin-film solar cell according to the first embodiment.
  • FIG. 5C is a cross-sectional view for explaining an example of the manufacturing process of the thin-film solar cell according to the first embodiment.
  • FIGS. 5-4 is sectional drawing for demonstrating an example of the manufacturing process of the thin film solar cell concerning Embodiment 1.
  • FIGS. FIG. 6 is a flowchart for explaining an example of the manufacturing process of the thin-film solar cell according to the first embodiment.
  • FIG. 7: is sectional drawing which shows the structure of the substrate type thin film solar cell concerning Embodiment 2 of this invention.
  • FIG. 8: is sectional drawing which shows the structure of the base
  • FIG. 9-1 is a plan view showing a schematic configuration of a tandem thin film solar cell module according to Embodiment 3 of the present invention.
  • FIG. 9-2 is a cross-sectional view of relevant parts for explaining the cross-sectional structure of the tandem thin film solar cell module according to Embodiment 3 of the present invention.
  • FIG. 9-3 is a cross-sectional view of relevant parts for explaining the cross-sectional structure of the tandem thin film solar cell module according to Embodiment 3 of the present invention.
  • FIG. 10-1 is a sectional view of relevant parts for explaining the manufacturing process of the tandem thin film solar cell module according to the third embodiment of the present invention.
  • FIG. 9-2 is a cross-sectional view of relevant parts for explaining the cross-sectional structure of the tandem thin film solar cell module according to Embodiment 3 of the present invention.
  • FIG. 9-3 is a cross-sectional view of relevant parts for explaining the cross-sectional structure of the tandem thin film solar cell module according to Embodiment 3 of the present invention.
  • FIGS. 10-2 is a cross-sectional view of the relevant part for explaining the manufacturing process of the tandem thin film solar cell module according to the third embodiment of the present invention.
  • FIG. 10-3 is a sectional view of relevant parts for explaining the manufacturing process of the tandem thin film solar cell module according to the third embodiment of the present invention.
  • FIG. 10-4 is a cross-sectional view of relevant parts for explaining the manufacturing process of the tandem thin film solar cell module according to the third embodiment of the present invention.
  • FIGS. 10-5 is principal part sectional drawing for demonstrating the manufacturing process of the tandem-type thin film solar cell module concerning Embodiment 3 of this invention.
  • FIGS. FIGS. 10-6 is principal part sectional drawing for demonstrating the manufacturing process of the tandem-type thin film solar cell module concerning Embodiment 3 of this invention.
  • FIGS. 10-7 is principal part sectional drawing for demonstrating the manufacturing process of the tandem-type thin film solar cell module concerning Embodiment 3 of this invention.
  • FIGS. FIGS. 10-8 is principal part sectional drawing for demonstrating the manufacturing process of the tandem-type thin film solar cell module concerning Embodiment 3 of this invention.
  • FIGS. FIGS. 10-9 is principal part sectional drawing for demonstrating the manufacturing process of the tandem-type thin film solar cell module concerning Embodiment 3 of this invention.
  • FIGS. FIGS. 10-10 is principal part sectional drawing for demonstrating the manufacturing process of the tandem-type thin film solar cell module concerning Embodiment 3 of this invention.
  • FIGS. FIGS. 10-7 is principal part sectional drawing for demonstrating the manufacturing process of the tandem-type thin film solar cell module concerning Embodiment 3 of this invention.
  • FIGS. FIGS. 10-8 is principal part sectional drawing for demonstrating the manufacturing process of the tandem-type thin film solar cell module concerning Embodiment 3 of this invention.
  • FIGS. FIG. 11 is a cross-sectional view focusing on the translucent substrate, the collector electrode, the multilayer antireflection film, and the front transparent electrode layer in the tandem thin film solar cell module according to Embodiment 4 of the present invention.
  • FIG. 12 is a cross-sectional view focusing on the translucent substrate, the collector electrode, the multilayer antireflection film, and the front transparent electrode layer in another tandem-type thin film solar cell module according to Embodiment 4 of the present invention. .
  • FIG. 1 is a cross-sectional view showing a configuration of a thin-film solar cell that is a super straight type photovoltaic element according to the first embodiment of the present invention.
  • the thin film solar cell according to the first embodiment is a stacked (tandem junction) thin film solar cell in which two photoelectric conversion layers are stacked.
  • FIG. 2 is a cross-sectional view showing the configuration of the substrate with a transparent conductive film according to the first embodiment of the present invention.
  • the thin-film solar cell according to the first embodiment has a multilayer antireflection film 2, a front transparent electrode layer 3 as a first electrode layer, and a first photoelectric conversion unit 4 on a translucent substrate 1.
  • the intermediate layer 5, the second photoelectric conversion unit 6, the back transparent conductive film 7, and the back electrode layer 8 as the second electrode layer are sequentially stacked.
  • the substrate with a transparent conductive film according to the first embodiment includes a translucent substrate 1, a multilayer antireflection film 2, and a front transparent electrode as shown in FIG. 2 in the configuration of the thin film solar cell according to the first embodiment. And a layer (first electrode layer) 3.
  • a glass substrate a light-transmitting resin having heat resistance such as polyimide or polyvinyl, or a laminate thereof can be used as appropriate. There is no particular limitation as long as the whole can be structurally supported. In addition, a metal film with high permeability, a transparent conductive film, and an insulating film may be formed on these surfaces.
  • the multilayer antireflection film 2 is provided to prevent reflection at the interface between the translucent substrate 1 and the front transparent electrode layer 3, and prevents reflection of light incident from the translucent substrate 1 side.
  • the multilayer antireflection film 2 has a pair structure in which a low refractive index layer and a high refractive index layer are sequentially laminated from the translucent substrate 1 side. These low-refractive index layers and high-refractive index layers are composed of a film thickness depending on the refractive index on the incident light side, the refractive index on the transmitted light side, and the wavelength of light.
  • the design guideline is that the amount of reflected light in the multilayer antireflection film 2 is minimized, and fine adjustment is required depending on the system to be configured.
  • the film forming method is not particularly limited, and an existing method can be used.
  • CVD Chemical Vapor Deposition
  • DC sputtering method DC sputtering method
  • RF sputtering method vacuum deposition method
  • ion plating method etc.
  • a chemical method such as a physical method, a spray method, a dip method, or a CVD method may be used.
  • the high refractive index layer is composed of a hafnium oxide (HfO x ) layer 2a
  • the low refractive index layer is composed of a silicon oxide (SiO x ) layer 2b.
  • the multilayer antireflection film 2 according to the present embodiment has a SiO x layer 2b (film thickness: 5 nm) / HfO x layer 2a (film thickness: 35 nm) from the front transparent electrode layer 3 side.
  • a multilayer antireflection film 2 having a six-layer structure in which three pairs of a silicon oxide (SiO x ) layer 2 b and a hafnium oxide (HfO x ) layer 2 a are stacked is shown.
  • the number of stacked silicon oxide (SiO x ) layers 2b and hafnium oxide (HfO x ) layers 2a in FIG. 2 is not limited to six, but from the translucent substrate 1 side to the silicon oxide (SiO x ) layers 2b Any structure in which the hafnium oxide (HfO x ) layer 2a is sequentially stacked at least in pairs.
  • the uppermost layer pair (the pair on the front transparent electrode layer 3 side) is silicon oxide (SiO x having a thickness of 2 nm to 10 nm from the front transparent electrode layer 3 side).
  • SiO x silicon oxide
  • Layer 2b and a hafnium oxide (HfO x ) layer 2a having a thickness of 20 nm to 40 nm are stacked.
  • a silicon oxide (SiO x) layer 2b having a thickness of 2 nm ⁇ 10 nm is disposed directly below the front transparent electrode layer 3, hafnium oxide with a thickness of 20 nm ⁇ 40 nm directly below the silicon oxide (SiO x) layer 2b
  • the (HfO x ) layer 2a is disposed.
  • a preferable combination of film thicknesses of the silicon oxide (SiO x ) layer 2b and the hafnium oxide (HfO x ) layer 2a in the uppermost layer pair (the pair on the front transparent electrode layer 3 side) is a silicon oxide (SiO x ) layer.
  • the film thickness of 2b is 5 nm
  • the film thickness of the hafnium oxide (HfO x ) layer 2a is 35 nm.
  • the structure of the uppermost two layers immediately below the front transparent electrode layer 3 changes the crystal structure when a zinc oxide (ZnO) film, which is a transparent conductive oxide film formed on the upper layer, is formed. ) It has the effect of enlarging the surface irregularity shape (texture) obtained by etching the surface after film formation.
  • ZnO zinc oxide
  • the surface irregular shape (texture) having a large diameter is formed on the surface of the front transparent electrode layer 3 made of a zinc oxide (ZnO) film.
  • a large-diameter surface uneven shape (texture) has an effect of improving the light scattering property of incident light incident on the thin film solar cell, and is particularly effective for light scattering of light on the long wavelength side. That is, the photocurrent generated in the first photoelectric conversion unit 4 is improved by the light confinement effect such as light scattering and refraction of the enlarged surface uneven shape (texture) formed on the surface of the front transparent electrode layer 3. The photoelectric conversion efficiency can be improved.
  • 3 and 4 are experimental results for confirming the effects of the present invention described above.
  • a zinc oxide (ZnO) film was formed on the glass substrate under different conditions and the surface was chemically etched. It is a characteristic view which shows the change of the surface uneven
  • a zinc oxide (ZnO) film which is a transparent conductive oxide that changes depending on the base, is formed under the same conditions, except that the base conditions for forming the zinc oxide (ZnO) film are different.
  • a change in the surface irregularity shape of a measurement sample obtained by chemically etching the surface of the zinc oxide (ZnO) film was measured.
  • the film forming conditions of the zinc oxide (ZnO) film used for the measurement sample depend on the film forming method and the structure of the film forming apparatus, and the film forming conditions cannot be limited, but the surface shape after chemical etching is maximum.
  • the conditions were as follows. Specifically, a zinc oxide (ZnO) film was formed with a film thickness of 1000 nm by a sputtering method. Chemical etching was performed with hydrochloric acid (1N solution). The sputtering conditions were RF frequency: 13.56 MHz, sputtering gas: Ar, gas pressure: 0.3 Pa, and substrate temperature: 300 ° C. A ZnO sputtering target having an atomic ratio of Zn of 99.5 and 0.5 of Al was used.
  • Reference sample (REF) A zinc oxide (ZnO) film was directly formed on a glass substrate, and the surface was chemically etched.
  • Sample A As a base layer on a glass substrate, from the uppermost layer side, a SiO x layer (film thickness: 5 nm) / HfO x layer (film thickness: 35 nm) / SiO x layer (film thickness: 14 nm) / HfO x
  • Sample B A zinc oxide (ZnO) film was formed under the same conditions as Sample A except that the thickness of the uppermost SiO x layer was 10 nm, and the surface was chemically etched.
  • Sample C A zinc oxide (ZnO) film was formed under the same conditions as Sample A except that the thickness of the uppermost SiO x layer was 15 nm, and the surface thereof was chemically etched.
  • Sample D A zinc oxide (ZnO) film is formed under the same conditions as Sample A, except that the thickness of the SiO x layer of the uppermost layer pair is 0 nm (the uppermost layer is only the HfO x layer). The surface was chemically etched.
  • Sample E A zinc oxide (ZnO) film was formed under the same conditions as Sample A, except that the film thickness of the HfO x layer of the uppermost layer pair was 0 nm (the uppermost layer was only the SiO x layer). The surface was chemically etched.
  • ZnO zinc oxide
  • FIGS. 3 and 4 are parameters extracted from the roughness curve of the cross section obtained by the measurement with the laser probe type three-dimensional shape measuring apparatus.
  • FIG. 3 shows the arithmetic average roughness Ra, the average period Sm of unevenness, and the average interval S between local peaks.
  • the same experiment was performed by changing the film thickness of the uppermost SiO x layer and the film thickness of the HfO x layer under the conditions of Sample A.
  • the film thickness of the uppermost SiO x layer was 2 nm to
  • the thickness of the HfO x layer of the uppermost layer pair is 20 nm to 40 nm, it is confirmed that the increase in the numerical value of the surface shape parameter is remarkable as in the case of Sample A.
  • the increase in the numerical value of the surface shape parameter indicates an increase in the diameter of the uneven surface formed on the zinc oxide (ZnO) film. Therefore, when a sample having a large surface shape parameter value is used for a thin film solar cell, the light scattering property of incident light, particularly the scattering performance in a long wavelength region is improved. For this reason, the effective optical path length inside a photoelectric conversion unit is extended, and it contributes to the efficiency improvement of a thin film solar cell.
  • the front transparent electrode layer 3 is made of a transparent conductive film having translucency.
  • a translucent conductive film using zinc oxide (ZnO) as a base material (main component) is used.
  • ZnO zinc oxide
  • a small amount of impurities may be added to the film of the front transparent electrode layer 3.
  • the front transparent electrode layer 3 mainly composed of zinc oxide (ZnO), gallium (Ga), aluminum (Al), boron (B) of about 5 ⁇ 10 20 to 5 ⁇ 10 21 cm ⁇ 3.
  • the resistivity is reduced by containing a Group 13 element such as copper or a Group 11 element such as copper. Therefore, it is suitable for use as an electrode.
  • the film thickness of the front transparent electrode layer 3 is, for example, 600 nm to 1200 nm.
  • known methods such as a sputtering method, an atmospheric pressure CVD method, a low pressure CVD method, an MOCVD method, an electron beam evaporation method, a sol-gel method, an electrodeposition method, and a spray method can be used.
  • a surface uneven shape called texture is formed on the surface of the front transparent electrode layer 3.
  • This texture causes light scattering and refraction.
  • This texture can be formed by performing dry etching or wet etching on the surfaces of the translucent substrate 1 and the front transparent electrode layer 3.
  • dry etching for example, an etching gas is ionized or radicalized by plasma discharge and irradiated, and physically or chemically etched to form irregularities on the surface of the front transparent electrode layer 3.
  • an inert gas such as argon (Ar) is used as an etching gas.
  • fluorinated gases such as tetrafluoromethane (CF 4 ) and hexafluoroethane (C 2 F 6 ) are used as etching gases, and carbon tetrachloride (CCl 4 ) and silicon tetrachloride (such as chlorinated gases). SiCl 4 ) or the like is used.
  • CF 4 tetrafluoromethane
  • C 2 F 6 hexafluoroethane
  • SiCl 4 silicon tetrachloride
  • examples of the acid solution that can be used include one or a mixture of two or more of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, acetic acid, formic acid, perchloric acid, and the like.
  • the surface irregularity shape (texture) 3 a having a large diameter is formed on the surface of the front transparent electrode layer 3.
  • the surface irregularity shape (texture) 3a having a large diameter means that the formation pitch and the depth are both large.
  • the formation pitch is 1000 nm to 4000 nm
  • the depth is 200 nm to 600 nm.
  • the formation pitch of the surface unevenness shape (texture) is defined as the average period of the surface roughness curve.
  • the depth of the surface irregularity shape (texture) is defined as the arithmetic roughness or the root mean square roughness of the surface roughness curve. In this patent document, the arithmetic mean roughness is unified.
  • Such a large-diameter surface uneven shape (texture) 3a has an effect of improving the light scattering property of incident light incident on the thin film solar cell, and is particularly effective for light scattering of light on the long wavelength side.
  • a ZnO film doped with aluminum (Al) is formed as the transparent conductive film to be the front transparent electrode layer 3, but the transparent conductive film to be the front transparent electrode layer 3 is not limited to this.
  • the film includes a light-transmitting film such as a film in which aluminum (Al) is added as a dopant.
  • the front transparent electrode layer 3 has aluminum (Al), gallium (Ga), indium (In), boron (B), yttrium (Y), silicon (Si), zirconium (Zr), and titanium (Ti) as dopants.
  • a transparent conductive film having light transmissivity which may be a ZnO film, an ITO film, a SnO 2 film, or a transparent conductive film formed by laminating these using at least one element selected from If it is.
  • other film forming methods such as sputtering, thermal CVD, atmospheric pressure CVD, low pressure CVD, MOCVD, electron beam evaporation, sol-gel method, electrodeposition, spraying, etc. May be used.
  • the first photoelectric conversion unit 4 and the second photoelectric conversion unit 6 have a pin junction, and are configured by laminating one or more thin film semiconductor layers that generate photovoltaic power by generating power with incident light. It is a semiconductor photoelectric conversion layer such as a compound system.
  • the first photoelectric conversion unit 4 may be a p-type semiconductor layer 4a that is a first conductivity type semiconductor layer, for example, in order from the light-receiving surface side (translucent substrate 1 side), regardless of whether it is a silicon-based or compound-based photoelectric conversion layer.
  • Each semiconductor layer includes an i-type semiconductor layer 4b which is a semiconductor layer and an n-type semiconductor layer 4c which is a second conductivity type semiconductor layer.
  • the i-type semiconductor layer 4b which is an intrinsic semiconductor layer may show weak p-type and n-type conductivity as long as the photoelectric conversion function is not impaired.
  • the second photoelectric conversion unit 6 may be a p-type semiconductor layer 6a, which is a first conductive semiconductor layer, in order from the light-receiving surface side (translucent substrate 1 side), regardless of whether it is a silicon-based or compound-based photoelectric conversion layer.
  • Each semiconductor layer includes an i-type semiconductor layer 6b which is a semiconductor layer and an n-type semiconductor layer 6c which is a second conductivity type semiconductor layer.
  • the i-type semiconductor layer 6b which is an intrinsic semiconductor layer may show weak p-type and n-type conductivity as long as the photoelectric conversion function is not impaired.
  • the semiconductor photoelectric conversion layer includes amorphous silicon oxide (a-SiO), amorphous silicon carbide (a-SiC), amorphous silicon (a-Si), amorphous silicon germanium (a-SiGe), and silicon (Si) nanodots.
  • the main component is silicon, such as microcrystalline silicon ( ⁇ c-Si) or nanocrystalline silicon (nc-Si), or a compound system such as CIGS (Cu (InGa) Se 2 ), or germanium (Ge).
  • It means a photoelectric conversion layer made of a base material and formed of three semiconductor layers constituting a pin structure by adding an acceptor or donor suitable for each semiconductor to form p-type or n-type.
  • the CVD method is common. Examples of the CVD method include atmospheric pressure CVD, reduced pressure CVD, plasma CVD, thermal CVD, hot wire CVD, and MOCVD.
  • the first photoelectric conversion unit 4 is a photoelectric conversion layer that mainly performs photoelectric conversion by absorbing light in a short wavelength region, and is made of, for example, an amorphous silicon (a-Si) material having a short sunlight absorption wavelength region. It is preferable.
  • a semiconductor photoelectric conversion layer include amorphous silicon oxide (a-SiO), amorphous silicon carbide (a-SiC), amorphous silicon (a-Si), and the like.
  • the second photoelectric conversion unit 6 is a photoelectric conversion layer that performs photoelectric conversion mainly by absorbing light in a higher wavelength region than the first photoelectric conversion unit 4, for example, amorphous silicon having a long absorption wavelength region for absorbing sunlight. Examples thereof include germanium (a-SiGe).
  • the photoelectric conversion units are formed in the order of the first photoelectric conversion unit, the second photoelectric conversion unit,. Therefore, in the stacked type (tandem junction type) thin film solar cell according to the first embodiment, the first photoelectric conversion unit 4 and the second photoelectric conversion unit 6 are formed in this order from the translucent substrate 1 side.
  • the forbidden band width of the first photoelectric conversion unit is preferably about 2.2 to 1.7 eV. Examples of the semiconductor photoelectric conversion layer corresponding to this include a-SiO, a-SiC, a-Si, and the like.
  • the forbidden band width of these layers is preferably smaller than the forbidden band width of the photoelectric conversion layer existing on the front side (light incident side) thereof. Moreover, it is preferable that the thermal expansion coefficient of the main material which comprises the laminated photoelectric converting layer is a close value.
  • the intermediate layer 5 is made of, for example, silicon oxide, and is sandwiched between the first photoelectric conversion unit 4 and the second photoelectric conversion unit 6.
  • the intermediate layer 5 is composed of a film having both light-transmitting properties and light-reflecting properties and having electrical conductivity, and is electrically connected between the first photoelectric conversion unit 4 and the second photoelectric conversion unit 6. Improve optical connectivity. Since the intermediate layer 5 can reflect the light incident on the first photoelectric conversion unit 4, it has the effect of increasing the effective film thickness of the first photoelectric conversion unit 4, and the first photoelectric conversion unit 4 and the second photoelectric conversion unit 4 are effective. The output current density with the conversion unit 6 can be adjusted to improve the module characteristics.
  • n is the order of the photoelectric conversion layers from the light receiving surface side.
  • the formation order is formed on the nth photoelectric conversion layer.
  • the silicon oxide constituting the intermediate layer 5 means one containing mainly silicon atoms and oxygen atoms, and does not limit the stoichiometric ratio of silicon (Si) and oxygen (O). Includes crystalline, polycrystalline, and crystalline. In addition to the main components, other atoms such as nitrogen (N) atoms and hydrogen (H) atoms can also be included.
  • the intermediate layer 5 made of silicon oxide can be formed by a plasma CVD method using, for example, a gas containing silicon (Si) atoms and a gas containing oxygen (O) atoms.
  • oxidized microcrystalline silicon ⁇ c-SiO X
  • aluminum-added zinc oxide ZnO: Al
  • zinc oxide ZnO
  • indium tin oxide ITO
  • oxide A transparent film having conductivity such as tin (SnO 2 ) can be used.
  • the silicon oxide of the intermediate layer 5 can have a refractive index of about 1.5 to 4 by adjusting the oxygen concentration in the film, and the value can be reduced compared to the nth photoelectric conversion layer. it can.
  • the refractive index of silicon oxide with respect to light having a wavelength of 600 nm can be about 1.5 to 4.
  • the intermediate layer 5 having a different refractive index By providing the intermediate layer 5 having a different refractive index, light reflection at the interface is increased, and the amount of light reflected to the nth photoelectric conversion layer is increased, thereby increasing the photocurrent generated in the nth photoelectric conversion layer. Can be made.
  • the refractive index of silicon oxide at this time is smaller than the refractive index of the nth photoelectric conversion layer, the reflection to the nth photoelectric conversion layer can be increased.
  • the n-th (light incident side) photoelectric conversion layer is often formed of a material having a large forbidden band, so that a lot of short-wavelength light is absorbed and long-wavelength light is hardly absorbed. Therefore, a lot of long wavelength light reaches the intermediate layer.
  • the average film thickness of the intermediate layer 5 is preferably 500 nm or less.
  • a more preferable average film thickness of the intermediate layer 5 is 10 nm to 100 nm.
  • the average film thickness includes variations in the formation of the intermediate layer 5.
  • middle layer 5 can be measured by cross-sectional observation using an electron microscope, an optical microscope, an atomic force microscope, etc.
  • the shape of the intermediate layer 5 follows the surface irregularities (texture) of the nth photoelectric conversion layer to be formed. Due to light confinement effects such as light scattering and refraction due to surface unevenness (texture), the photocurrent generated in each of the nth photoelectric conversion layer and the (n + 1) th photoelectric conversion layer is improved, and the stacked thin film solar cell Improvement in conversion efficiency can be expected.
  • surface irregularities (textures) are often formed on the front transparent electrode layer 3, and the intermediate layer 5 is also formed in a shape inheriting the surface irregularities (textures).
  • the material constituting the intermediate layer 5 formed on the nth photoelectric conversion layer at least in the wavelength region where light can be absorbed by the (n + 1) th photoelectric conversion layer, the nth photoelectric conversion layer And the refractive index is different from each other and the light absorption coefficient is small. Moreover, it is preferable to have a conductivity that does not hinder the flow of photocurrent.
  • the back electrode layer 8 is more preferable as it has higher light reflection and higher electrical conductivity.
  • the back electrode layer 8 is made of a metal material such as silver (Ag), aluminum (Al), titanium (Ti) or palladium (Pd) having a high visible light reflectivity, an alloy thereof, or a nitride or oxide thereof. Or the like.
  • the back electrode layer 8 reflects light that has not been absorbed by the photoelectric conversion layer and returns it to the photoelectric conversion layer again, which contributes to an improvement in photoelectric conversion efficiency.
  • the back electrode layer 8 is formed by a known means such as a sputtering method, a CVD method, or a spray method.
  • a back transparent conductive film 7 may be provided between the back electrode layer 8 and the second photoelectric conversion unit 6.
  • the back transparent conductive film 7 is mainly composed of a crystalline metal oxide such as zinc oxide (ZnO), indium tin oxide (ITO), tin oxide (SnO 2 ), and zirconium oxide (ZrO 2 ) as in the case of the front transparent electrode layer 3.
  • ZnO zinc oxide
  • ITO indium tin oxide
  • SnO 2 tin oxide
  • ZrO 2 zirconium oxide
  • a transparent conductive oxide film as a component, or a translucent film such as a film obtained by adding aluminum (Al) to these transparent conductive oxide films.
  • the film formation is formed by a known means such as a sputtering method, a CVD method, or a spray method.
  • the surface of the back surface transparent conductive film 7 has a surface texture structure in which irregularities are formed by a roughening process such as a blast method or a wet etching method. Note that it is not always necessary to form the uneven surface by various etching.
  • the back transparent conductive film 7 also has an effect of improving the adhesion between the second photoelectric conversion unit 6 and the back electrode layer 8.
  • the multilayer antireflection film 2 is formed in the lower layer of the front transparent electrode layer 3.
  • the multilayer antireflection film 2 By reducing the light reflectance by the multilayer antireflection film 2, it is possible to reduce the reflected light caused by the difference in refractive index between the translucent substrate 1 and the front transparent electrode layer 3, and to transmit light to the front transparent electrode layer 3.
  • Property (transmittance) can be improved.
  • a silicon oxide (SiO x ) layer 2b having a film thickness of 2 nm to 10 nm and a film thickness of 20 nm to 40 nm from the front transparent electrode layer 3 side are directly below (uppermost layer) of the front transparent electrode layer 3.
  • a hafnium oxide (HfO x ) layer 2a is directly below (uppermost layer) of the front transparent electrode layer 3.
  • a silicon oxide (SiO x) layer 2b having a thickness of 2 nm ⁇ 10 nm is disposed directly below the front transparent electrode layer 3, hafnium oxide with a thickness of 20 nm ⁇ 40 nm directly below the silicon oxide (SiO x) layer 2b
  • the (HfO x ) layer 2a is disposed.
  • the structure of the uppermost two layers immediately below the front transparent electrode layer 3 changes the crystal structure when a zinc oxide (ZnO) film, which is a transparent conductive oxide film formed on the upper layer, is formed. ) It has the effect of enlarging the surface irregularity shape (texture) obtained by etching the surface after film formation.
  • the surface irregular shape (texture) having a large diameter is formed on the surface of the front transparent electrode layer 3 made of a zinc oxide (ZnO) film.
  • a large-diameter surface uneven shape (texture) has an effect of improving the light scattering property of incident light incident on the thin film solar cell, and is particularly effective for light scattering of light on the long wavelength side. That is, the photocurrent generated in the first photoelectric conversion unit 4 is improved by the light confinement effect such as light scattering and refraction of the enlarged surface uneven shape (texture) formed on the surface of the front transparent electrode layer 3. The photoelectric conversion efficiency can be improved.
  • the multilayer antireflection film 2 according to the first embodiment improves the crystallinity of the zinc oxide film formed thereon, in addition to the light transmission improvement effect by suppressing the light reflection at the original interface of the antireflection film. And has the effect of increasing the surface unevenness formed by chemical etching after the transparent conductive film is formed.
  • the multilayer antireflection film 2 according to the first embodiment improves the light transmittance as the performance of the substrate with the transparent conductive oxide film, and particularly improves the light scattering characteristic on the long wavelength side. It has the effect of improving the efficiency of the thin film solar cell formed on the top.
  • the shape of the first photoelectric conversion unit 4 follows the shape of the front transparent electrode layer 3. That is, the shape of the 1st photoelectric conversion unit 4 has the surface uneven
  • the shape of the intermediate layer 5 follows the shape of the first photoelectric conversion unit 4. That is, the shape of the intermediate layer 5 has a surface uneven shape (texture) whose diameter is increased on the surface. Thereby, the photocurrent generated in the second photoelectric conversion unit 6 can be improved and the photoelectric conversion efficiency can be improved by the light confinement effect such as light scattering and refraction due to the surface unevenness (texture) of the intermediate layer 5.
  • the thin film solar cell according to the first embodiment is formed on the surface of the front transparent electrode layer 3 and the effect of improving the light transmittance (transmittance) to the front transparent electrode layer 3 by the multilayer antireflection film 2.
  • the photoelectric that can effectively use sunlight in a wide wavelength band especially the wavelength band of 300 nm to 1300 nm.
  • a thin film solar cell excellent in conversion efficiency has been realized.
  • FIGS. 5-1 to 5-4 are cross-sectional views for explaining an example of the manufacturing process of the thin-film solar cell according to the first embodiment.
  • FIG. 6 is a flowchart for explaining an example of the manufacturing process of the thin-film solar cell according to the first embodiment.
  • the translucent substrate 1 is prepared.
  • a non-alkali glass substrate is used as the translucent substrate 1 and will be described below.
  • an inexpensive blue plate glass substrate may be used as the translucent substrate 1.
  • a soda glass substrate it is generally necessary to form a SiO 2 film of about 50 nm as a barrier layer by PCVD or the like in order to prevent the diffusion of alkali components from the translucent substrate 1,
  • the laminated film of the HfO x layer and the SiO x layer is unnecessary because it serves as a barrier layer.
  • the multilayer antireflection film 2 is formed on the translucent substrate 1 by, for example, vapor deposition (FIG. 5-1, step S10).
  • the film-forming temperature is higher than room temperature, and when it is 100 to 200 ° C., the multilayer antireflection film 2 excellent in terms of film thickness uniformity and film roughness can be obtained.
  • the multilayer antireflection film 2 can be formed by sputtering, CVD, or the like. Also in these film forming methods, it is desirable to form a film at a temperature of 100 to 300 ° C. higher than room temperature.
  • the multilayer antireflection film 2 has a structure having one or more pairs of the HfO x layer 2a and the SiO x layer 2b from the translucent substrate 1 side, and the uppermost layer pair has a film thickness of 2 nm to 10 nm from the surface side.
  • a silicon oxide (SiO x ) layer 2b and a hafnium oxide (HfO x ) layer 2a having a thickness of 20 nm to 40 nm are stacked.
  • the SiO x layer 2b (film thickness: 5 nm) / HfO x layer 2a (film thickness: 35 nm) / SiO x layer 2b (film thickness: 14 nm) / HfO x layer 2a
  • a multilayer film having a structure of (film thickness: 30 nm) / SiO x layer 2b (film thickness: 20 nm) / HfO x layer 2a (film thickness: 17 nm) is formed.
  • a glass substrate is used as the translucent substrate 1.
  • the front transparent electrode layer 3 made of zinc oxide (ZnO) having a thickness of 1 ⁇ m and containing aluminum (Al) as a dopant is formed on the multilayer antireflection film 2 by, for example, DC sputtering (FIG. 5-2, step S20).
  • the film forming conditions are, for example, film forming power: 500 W to 1000 W, film forming pressure: 0.1 Pa to 0.5 Pa, film forming temperature: 100 ° C. or higher, and the film forming temperature is preferably 300 ° C. or higher.
  • ZnO has a lower impurity concentration because the lower the impurity concentration, the higher the light transmittance is obtained.
  • the atomic ratio with respect to Zn is preferably 0.1% to 1%, more preferably 0.1% to 0.5%. % And so on.
  • the ZnO film is made highly crystalline by reducing the film formation conditions at high temperature and low pressure, thereby ensuring conductivity. That is, the front transparent electrode layer 3 is formed under conditions that promote crystallization so that the impurity concentration is as low as possible and the mobility is increased by that amount in order to obtain light transmittance while ensuring conductivity. It is desirable.
  • the impurity may be 0.1% to 1% of Zn by atomic ratio
  • the substrate temperature may be about 200 ° C. to 450 ° C., more preferably 300 ° C. or higher.
  • a surface irregularity shape is formed on the surface of the front transparent electrode layer 3 by dry etching using, for example, argon (Ar) as an etching gas (FIG. 5-3, step S30).
  • the multilayer antireflection film 2 is formed below the front transparent electrode layer 3, and the film thickness of 2 nm to 2 nm from the front transparent electrode layer 3 side is directly below the top transparent electrode layer 3 (uppermost layer).
  • a 10 nm silicon oxide (SiO x ) layer 2b and a hafnium oxide (HfO x ) layer 2a having a thickness of 20 nm to 40 nm are stacked.
  • the structure of the uppermost two layers is a crystal structure of zinc oxide (ZnO), which is a transparent conductive oxide film formed thereon.
  • ZnO zinc oxide
  • the surface unevenness shape obtained by etching the surface after forming the transparent conductive oxide film can be increased. Therefore, the surface irregularity shape (texture) 3 a having a large diameter is formed on the surface of the front transparent electrode layer 3.
  • the translucent substrate 1 is immersed in, for example, a 1% hydrochloric acid (HCl) aqueous solution for 30 seconds to etch and roughen the surface of the front transparent electrode layer 3, and the diameter of the front transparent electrode layer 3 is increased.
  • HCl hydrochloric acid
  • an uneven surface shape (texture) 3a may be formed.
  • the translucent substrate 1 is washed with pure water for 1 minute or more and dried.
  • a surface irregularity shape (texture) 3a having an enlarged diameter of, for example, an average depth of 100 nm or more is formed on the surface of the front transparent electrode layer 3, and the average film thickness is about 500 nm.
  • the first photoelectric conversion unit 4 made of, for example, amorphous silicon ( ⁇ -Si) is formed on the front transparent electrode layer 3 by the plasma CVD method (FIG. 5-4, step S40).
  • a-Si film As the first photoelectric conversion unit 4, from the front transparent electrode layer 3 side, a p-type amorphous silicon film (a-Si film), an i-type amorphous silicon film (a-Si film), an n-type amorphous silicon film ( a-Si films) are sequentially stacked.
  • the first photoelectric conversion unit 4 is formed in a shape that follows the shape of the front transparent electrode layer 3. That is, the formed first photoelectric conversion unit 4 has a surface uneven shape (texture) having a large diameter on the surface.
  • the intermediate layer 5 made of, for example, silicon oxide is formed on the first photoelectric conversion unit 4 by the plasma CVD method (FIG. 5-4, step S50).
  • the intermediate layer 5 is formed in a shape that follows the shape of the first photoelectric conversion unit 4. That is, the formed intermediate layer 5 has an uneven surface shape (texture) with a large diameter on the surface.
  • the second photoelectric conversion unit 6 made of, for example, amorphous silicon germanium (a-SiGe) is formed on the intermediate layer 5 by the plasma CVD method (FIG. 5-4, step S60).
  • a-SiGe amorphous silicon germanium
  • a-Si film As the second photoelectric conversion unit 6, from the front transparent electrode layer 3 side, a p-type amorphous silicon film (a-Si film), an i-type amorphous silicon film (a-Si film), an n-type amorphous silicon film ( a-Si films) are sequentially stacked.
  • the second photoelectric conversion unit 6 is formed in a shape that follows the shape of the intermediate layer 5. That is, the formed second photoelectric conversion unit 6 has a surface uneven shape (texture) having a large diameter on the surface.
  • a back transparent conductive film 7 made of zinc oxide (ZnO) is formed on the second photoelectric conversion unit 6 by, for example, sputtering (FIG. 5-4, step S70).
  • a back electrode layer 8 made of, for example, silver (Ag) is formed by sputtering (FIG. 5-4, step S80).
  • the multilayer antireflection film 2 is formed below the front transparent electrode layer 3.
  • the multilayer antireflection film 2 By reducing the light reflectance by the multilayer antireflection film 2, it is possible to reduce the reflected light caused by the difference in refractive index between the translucent substrate 1 and the front transparent electrode layer 3, and to transmit light to the front transparent electrode layer 3.
  • Property (transmittance) can be improved.
  • a silicon oxide (SiO x ) layer 2b having a film thickness of 2 nm to 10 nm and a film thickness of 20 nm to 40 nm from the front transparent electrode layer 3 side are directly below (uppermost layer) of the front transparent electrode layer 3.
  • a hafnium oxide (HfO x ) layer 2a is directly below (uppermost layer) of the front transparent electrode layer 3.
  • a silicon oxide (SiO x) layer 2b having a thickness of 2 nm ⁇ 10 nm is disposed directly below the front transparent electrode layer 3, hafnium oxide with a thickness of 20 nm ⁇ 40 nm directly below the silicon oxide (SiO x) layer 2b
  • the (HfO x ) layer 2a is disposed.
  • unevenness of crystal nuclei formed at the initial stage of film growth remains, and minute unevenness of Ra 1 to 5 nm is left. Exists.
  • the transparent conductive film When a transparent conductive film is formed on the multilayer antireflection film 2 having such minute irregularities by a sputtering method, CVD, or the like, the transparent conductive film generates crystal nuclei on the convex portions of the multilayer antireflection film 2 and promotes crystal growth. It is.
  • the structure of the uppermost two layers immediately below the front transparent electrode layer 3 changes its crystal structure when forming a zinc oxide (ZnO) film, which is a transparent conductive oxide film formed on the upper layer, It has the effect of increasing the surface irregularity shape (texture) obtained by etching the surface of the zinc oxide (ZnO) film after it is formed.
  • ZnO zinc oxide
  • the multilayer antireflection film 2 according to the first embodiment improves the crystallinity of the zinc oxide film formed thereon, in addition to the light transmission improvement effect by suppressing the light reflection at the original interface of the antireflection film. And has the effect of increasing the surface unevenness formed by chemical etching after the transparent conductive film is formed.
  • the multilayer antireflection film 2 according to the first embodiment improves the light transmittance as the performance of the substrate with the transparent conductive oxide film, and particularly improves the light scattering characteristic on the long wavelength side. It has the effect of improving the efficiency of the thin film solar cell formed on the top.
  • the surface irregularity shape (texture) having a large diameter is formed on the surface of the front transparent electrode layer 3 made of a zinc oxide (ZnO) film.
  • a large-diameter surface uneven shape (texture) has an effect of improving the light scattering property of incident light incident on the thin film solar cell, and is particularly effective for light scattering of light on the long wavelength side. That is, the photocurrent generated in the first photoelectric conversion unit 4 is improved by the light confinement effect such as light scattering and refraction of the enlarged surface uneven shape (texture) formed on the surface of the front transparent electrode layer 3. The photoelectric conversion efficiency can be improved.
  • the shape of the first photoelectric conversion unit 4 follows the shape of the front transparent electrode layer 3. That is, the shape of the 1st photoelectric conversion unit 4 has the surface uneven
  • the shape of the intermediate layer 5 follows the shape of the first photoelectric conversion unit 4. That is, the shape of the intermediate layer 5 has a surface uneven shape (texture) whose diameter is increased on the surface. Thereby, the photocurrent generated in the second photoelectric conversion unit 6 can be improved and the photoelectric conversion efficiency can be improved by the light confinement effect such as light scattering and refraction due to the surface unevenness (texture) of the intermediate layer 5.
  • the multilayer antireflection film 2 improves the light transmittance (transmittance) to the front transparent electrode layer 3 and the surface of the front transparent electrode layer 3.
  • the effect of improving the light scattering property of incident light due to the large-diameter surface irregularities (texture) formed on the surface it is possible to effectively use sunlight in a wide wavelength band (especially in the wavelength range of 300 nm to 1300 nm).
  • a thin film solar cell excellent in photoelectric conversion efficiency can be manufactured.
  • the silicon oxide (SiO x ) layer 2b and the hafnium oxide (HfO x ) layer 2a are stacked in the multilayer antireflection film 2 has been described.
  • x As a material having a higher refractive index and a higher thermal expansion coefficient than the layer 2b and having a light transmittance of 90% or more at a wavelength of 300 nm to 1200 nm, for example, magnesium oxide (MgO), hafnium oxide (HfO 2 ), A film made of a material such as titanium dioxide (TiO 2 ), sapphire (Al 2 O 3 ), zirconium oxide (ZrO 2 ), yttrium oxide (Y 2 O 3 ) or the like is laminated with a silicon oxide (SiO x ) layer 2b to form a multilayer.
  • the antireflection film 2 may be configured. However, it consists of a multilayer antireflection film 2 composed of a silicon oxide (SiO x ) layer 2b and a hafnium oxide (HfO x ) layer 2a, and a translucent conductive film using zinc oxide (ZnO) as a base material (main component). In the case of the combination of the front transparent electrode layer 3, the above-described effects can be obtained more reliably.
  • FIG. FIG. 7 is sectional drawing which shows the structure of the thin film solar cell which is a substrate type photovoltaic device concerning Embodiment 2 of this invention.
  • the thin film solar cell according to the second embodiment is a stacked (tandem junction) thin film solar cell in which two photoelectric conversion layers are stacked.
  • FIG. 8 is sectional drawing which shows the structure of the base
  • the thin-film solar cell according to the second embodiment includes a multilayer reflective film 10, a back electrode layer 18 that is a second electrode layer, a second photoelectric conversion unit 6, and an intermediate layer on a light reflective substrate 9.
  • the layer 5, the first photoelectric conversion unit 4, and the front transparent electrode layer 3 that is the first electrode layer are sequentially stacked.
  • substrate with a transparent conductive film concerning Embodiment 2 is the structure of the thin film solar cell concerning Embodiment 2, as shown in FIG. 8, the light-reflective board
  • the light reflective substrate 9 reflects the light transmitted without being absorbed by the second photoelectric conversion unit 6 and returns it to the second photoelectric conversion unit 6 again, thereby contributing to the improvement of the photoelectric conversion efficiency.
  • the light reflective substrate 9 may be made of a material having light reflectivity, or may be formed by providing a light reflective layer on the surface of a substrate that does not have light reflectivity.
  • the light reflective substrate 9 is used as a substrate that contributes to the improvement of photoelectric conversion efficiency. However, it is not essential that the substrate has light reflectivity in the spirit of the present invention.
  • the back electrode layer 18 is made of a transparent conductive film having translucency.
  • a translucent conductive film using zinc oxide (ZnO) as a base material (main component) is used.
  • the back electrode layer 18 has a surface irregularity shape (texture) with a large diameter formed on the surface thereof, similarly to the front transparent electrode layer 3 of the first embodiment.
  • Such a large-diameter surface uneven shape (texture) has an effect of improving the light scattering property of light reflected by the light reflective substrate 9 or the multilayer reflective film 10 and returning to the second photoelectric conversion unit 6, and is particularly long. It is effective for light scattering on the wavelength side.
  • a multilayer film having the same configuration as the multilayer antireflection film 2 in the first embodiment is disposed on the light reflective substrate 9 and used as the multilayer reflective film 10 to form a substrate type thin film. It constitutes a solar cell.
  • the multilayer reflective film 10 according to the present embodiment is provided on the light reflective substrate 9 in order to reflect the light transmitted through the back electrode layer 18.
  • the multilayer reflective film 10, together with the light reflective substrate 9, reflects light that has not been absorbed by the photoelectric conversion unit and returns it to the photoelectric conversion unit again, contributing to improvement in photoelectric conversion efficiency.
  • the multilayer reflective film 10 has a pair structure in which a low refractive index layer and a high refractive index layer are sequentially laminated at least one layer from the light reflective substrate 9 side. These low-refractive index layers and high-refractive index layers are composed of a film thickness depending on the refractive index on the incident light side, the refractive index on the transmitted light side, and the wavelength of light.
  • the design guideline is that when the light is reflected mainly by the multilayer reflective film 10, the amount of light reflected by the multilayer reflective film 10 is the largest.
  • the multilayer reflective film 10 may be configured to have low reflection. Fine adjustment is required depending on the system to be constructed.
  • the film forming method is not particularly limited, and an existing method can be used. For example, a CVD method, a sputtering method, or the like can be used.
  • the high refractive index layer is composed of a hafnium oxide (HfO x ) layer 10a
  • the low refractive index layer is composed of a silicon oxide (SiO x ) layer 10b.
  • the multilayer reflective film 10 according to the present embodiment has a SiO x layer 10b (film thickness: 5 nm) / HfO x layer 10a (film thickness: 35 nm) / SiO 2 from the back electrode layer 18 side.
  • x layer 10b (film thickness: 14 nm) / HfO x layer 10a (film thickness: 30 nm) / SiO x layer 10b (film thickness: 20 nm) / HfO x layer 10a (film thickness: 17 nm).
  • a multilayer antireflection film 2 having a six-layer structure in which three pairs of a silicon oxide (SiO x ) layer 10 b and a hafnium oxide (HfO x ) layer 10 a are stacked is shown.
  • the number of stacked layers of the silicon oxide (SiO x ) layer 10b and the hafnium oxide (HfO x ) layer 10a in 2 is not limited to six, and the silicon oxide (SiO x ) layer 10b from the light reflective substrate 9 side Any structure in which the hafnium oxide (HfO x ) layer 10a is sequentially stacked at least in pairs.
  • the uppermost layer pair (the pair on the back electrode layer 18 side) is a silicon oxide (SiO x ) layer 10b having a thickness of 2 nm to 10 nm from the back electrode layer 18 side.
  • a hafnium oxide (HfO x ) layer 10a having a thickness of 20 nm to 40 nm are stacked.
  • a silicon oxide (SiO x) layer 10b having a thickness of 2 nm ⁇ 10 nm is disposed directly below the back electrode layer 18, the silicon oxide hafnium oxide with a thickness of 20 nm ⁇ 40 nm directly below the (SiO x) layer 10b ( HfO x ) layer 10a is arranged.
  • a preferable combination of film thicknesses of the silicon oxide (SiO x ) layer 10b and the hafnium oxide (HfO x ) layer 10a in the uppermost layer pair (the pair on the back electrode layer 18 side) is a silicon oxide (SiO x ) layer 10b.
  • the hafnium oxide (HfO x ) layer 10a has a thickness of 35 nm.
  • the structure of the uppermost two layers immediately below the back electrode layer 18 changes the crystal structure when a zinc oxide (ZnO) film, which is a transparent conductive oxide film formed on the upper layer, is formed, and the zinc oxide (ZnO) It has the effect of increasing the surface irregularity shape (texture) obtained by etching the surface after the film is formed.
  • ZnO zinc oxide
  • the concavo-convex shape (texture) having a large diameter is formed on the surface of the back electrode layer 18 made of a zinc oxide (ZnO) film.
  • a large-diameter surface uneven shape (texture) has an effect of improving the light scattering property of the reflected light that is reflected by the light reflective substrate 9 or the multilayer reflective film 10 and returns to the second photoelectric conversion unit 6.
  • it is effective for light scattering of light on the long wavelength side. That is, the photocurrent generated in the second photoelectric conversion unit 6 is improved by the light confinement effect such as light scattering and refraction of the enlarged surface uneven shape (texture) formed on the surface of the back electrode layer 18, Photoelectric conversion efficiency can be improved.
  • the multilayer reflective film 10 is formed below the back electrode layer 18. Since the multilayer reflective film 10 reflects light that has not been absorbed by the photoelectric conversion unit and returns it to the photoelectric conversion unit again, it contributes to an improvement in photoelectric conversion efficiency.
  • a silicon oxide (SiO x ) layer 10b having a thickness of 2 nm to 10 nm and a hafnium oxide having a thickness of 20 nm to 40 nm are formed directly below (uppermost layer) of the back electrode layer 18 from the back electrode layer 18 side.
  • a (HfO x ) layer 10a is laminated.
  • a silicon oxide (SiO x) layer 10b having a thickness of 2 nm ⁇ 10 nm is disposed directly below the front transparent electrode layer 3, hafnium oxide with a thickness of 20 nm ⁇ 40 nm directly below the silicon oxide (SiO x) layer 10b
  • the (HfO x ) layer 10a is disposed.
  • the structure of the uppermost two layers immediately below the back electrode layer 18 changes the crystal structure when a zinc oxide (ZnO) film, which is a transparent conductive oxide film formed on the upper layer, is formed, and the zinc oxide (ZnO) It has the effect of increasing the surface irregularity shape (texture) obtained by etching the surface after the film is formed.
  • the concavo-convex shape (texture) having a large diameter is formed on the surface of the back electrode layer 18 made of a zinc oxide (ZnO) film.
  • a large-diameter surface uneven shape (texture) has an effect of improving the light scattering property of the reflected light that is reflected by the light reflective substrate 9 or the multilayer reflective film 10 and returns to the second photoelectric conversion unit 6.
  • it is effective for light scattering of light on the long wavelength side. That is, the photocurrent generated in the second photoelectric conversion unit 6 is improved by the light confinement effect such as light scattering and refraction of the enlarged surface uneven shape (texture) formed on the surface of the back electrode layer 18, Photoelectric conversion efficiency can be improved.
  • the multilayer reflective film 10 according to the second embodiment has the effect of improving the crystallinity of the zinc oxide film formed thereon in addition to the effect of improving the light reflectivity inherent to the reflective film. It has the effect of increasing the surface unevenness formed by etching performed after film formation. As a result, the multilayer reflective film 10 according to the second embodiment improves the light reflectivity as the performance of the substrate with the transparent conductive oxide film, and improves the light scattering characteristics particularly on the long wavelength side. This has the effect of improving the efficiency of the thin film solar cell formed on the surface.
  • the shape of the second photoelectric conversion unit 6 follows the shape of the back electrode layer 18. That is, the shape of the second photoelectric conversion unit 6 has an uneven surface shape (texture) with a large diameter on the surface.
  • the shape of the intermediate layer 5 follows the shape of the second photoelectric conversion unit 6. That is, the shape of the intermediate layer 5 has a surface uneven shape (texture) whose diameter is increased on the surface.
  • the effect of improving the light scattering property of the reflected light due to the surface irregularities (textures) made into the surface it is possible to effectively use sunlight in a wide wavelength band (especially the wavelength band of 300 nm to 1300 nm), and to the photoelectric conversion efficiency Excellent thin film solar cells have been realized.
  • a thin film solar cell module in which thin film solar cells are electrically connected in series can be configured.
  • FIG. 9-1 is a plan view illustrating a schematic configuration of a thin film solar cell module (hereinafter referred to as a module) 101 which is a super straight type tandem thin film solar cell according to a third embodiment of the present invention.
  • FIG. 9-2 is a diagram for explaining a cross-sectional structure of the module 101, and is a cross-sectional view of the main part in the direction of the line AA ′ of FIG. 9-1.
  • FIG. 9-3 is a cross-sectional view of the main part of FIG. 9-2.
  • the module 101 includes a strip-shaped (rectangular) thin-film solar cell (hereinafter referred to as a cell) formed on a translucent substrate 102.
  • a cell a strip-shaped (rectangular) thin-film solar cell (hereinafter referred to as a cell) formed on a translucent substrate 102.
  • a plurality of cells 100, and these cells 100 are electrically connected in series.
  • the cell 100 is a tandem-type thin film solar cell provided with a collecting electrode for the purpose of reducing the resistance of the transparent electrode layer.
  • a collector electrode 201 is partially formed on a multilayer antireflection film 202 formed on a translucent substrate 102, and a front transparent electrode layer is formed on the multilayer antireflection film 202 and the collector electrode 201.
  • 103 is formed.
  • the substrate with a transparent conductive film according to the third embodiment includes a translucent substrate 102 and a current collector as shown in FIGS. 9-2 and 9-3 in the configuration of the thin film solar cell according to the third embodiment.
  • the electrode 201, the multilayer antireflection film 202, and the front transparent electrode layer 103 are included.
  • the front transparent electrode layer 103 On the front transparent electrode layer 103, the first photoelectric conversion unit 107, the first intermediate layer 108, the second photoelectric conversion unit 112, the second intermediate layer 113, the third photoelectric conversion unit 117, the back transparent electrode layer 118, and The back reflective electrode layer 119 is laminated in this order.
  • the multilayer antireflection film 202 and the front transparent electrode layer 103 formed on the translucent substrate 102 extend in a direction substantially parallel to the transversal direction of the translucent substrate 102 and reach the translucent substrate 102.
  • a stripe-shaped first groove D1 is formed.
  • the front transparent electrode layer 103 is formed separately for each cell so as to straddle the adjacent cells 100.
  • first photoelectric conversion unit 107, the first intermediate layer 108, the second photoelectric conversion unit 112, the second intermediate layer 113, and the third photoelectric conversion unit 117 formed on the front transparent electrode layer 103 include the first photoelectric conversion unit 107, Striped second grooves (connection grooves) D2 extending in a direction substantially parallel to the transversal direction of the translucent substrate 102 and reaching the front transparent electrode layer 103 are formed at locations different from the grooves D1.
  • the back surface transparent electrode layer 118 and the back surface reflective electrode layer 119 are embedded in the portion of the second groove (connection groove) D2, so that the back surface reflective electrode layer 119 is connected to the front surface transparent electrode layer 103.
  • this front transparent electrode layer 103 straddles the adjacent cell 100, one back transparent electrode layer 118 and the back surface reflective electrode layer 119 of two adjacent cells, and the other front transparent electrode layer 103 are electrically connected. It is connected to the.
  • the first photoelectric conversion unit 107, the first intermediate layer 108, the second photoelectric conversion unit 112, the second intermediate layer 113, the third photoelectric conversion unit 117, the back transparent electrode layer 118, and the back reflective electrode layer 119 include A stripe-shaped third groove (separation groove) D3 reaching the front transparent electrode layer 103 is formed at a location different from the first groove D1 and the second groove (connection groove) D2, and each cell 100 is separated. ing. As described above, the front transparent electrode layer 103 of the cell 100 is connected to the back surface reflective electrode layer 119 of the adjacent cell 100, whereby the adjacent cells 100 are electrically connected in series.
  • FIGS. 10-1 to 10-11 are cross-sectional views for explaining the manufacturing process of the module 101 according to the third embodiment and corresponding to FIGS. 9-2.
  • the translucent substrate 102 is prepared.
  • a plate-like member or a sheet-like member made of glass, transparent resin, or the like is used for the light-transmitting substrate 102 used in a thin film solar cell of a type in which light enters from the light-transmitting substrate 102 side.
  • a non-alkali glass substrate is used as the light-transmitting substrate 102 to be described below.
  • an inexpensive blue plate glass substrate may be used as the light-transmitting substrate 102.
  • the multilayer film of the HfO x layer and the SiO x layer of the multilayer antireflection film 202 formed on the translucent substrate 102 serves as a barrier layer and is unnecessary.
  • a multilayer antireflection film 202 is formed on the translucent substrate 102 by vapor deposition (FIG. 10-1).
  • the film forming temperature is higher than room temperature, and a multilayer antireflection film 202 excellent in terms of film thickness uniformity, film roughness and the like is obtained when the temperature is 100 to 200 ° C.
  • the multilayer antireflection film 202 can also be formed by sputtering or CVD. Also in these film forming methods, it is desirable to form a film at a temperature of 100 to 300 ° C. higher than room temperature.
  • the multilayer antireflection film 202 according to the third embodiment has the same configuration and effect as the multilayer antireflection film 2 in the first embodiment.
  • the multilayer antireflection film 202 has a structure having one or more pairs of an HfO x layer (for example, HfO 2 layer) and an SiO x layer (for example, SiO 2 layer) from the translucent substrate 102 side.
  • a silicon oxide (SiO x ) layer with a thickness of 2 nm to 10 nm and a hafnium oxide (HfO x ) layer with a thickness of 20 nm to 40 nm are stacked from the surface side.
  • the multilayer antireflection film 202 includes a hafnium oxide (HfO x ) layer and a silicon oxide (SiO x ) layer having a thermal expansion coefficient larger than that of silicon oxide.
  • HfO x hafnium oxide
  • SiO x silicon oxide
  • thermal expansion coefficient larger than that of silicon oxide.
  • SiO x layer for example, SiO 2 layer
  • SiO x layer for example, SiO 2 layer
  • SiO x layer for example, SiO 2 layer
  • magnesium oxide (MgO) hafnium oxide (HfO 2 ), titanium dioxide (TiO 2 ), sapphire (Al 2 O 3 ), zirconium oxide (ZrO 2 ), yttrium oxide (Y 2 O 3 ), etc. Is mentioned.
  • Table 1 shows the refractive index: n and the thermal expansion coefficient of these materials and SiO 2 .
  • any transparent film may be used as long as the transmittance of light with a wavelength of 300 nm to 1200 nm is 90% or more and the thermal expansion coefficient is 4.0 ⁇ 10 ⁇ 6 / ° C. or more. It doesn't matter whether it is insulating or insulating.
  • these transparent films have a thermal expansion coefficient larger than that of the translucent substrate 1 and smaller than that of the current collecting electrode 201.
  • Such a multilayer antireflection film 202 is formed using a method such as CVD, sputtering, or vapor deposition.
  • the collector electrode 201 is made of aluminum (Al), silver (Ag), molybdenum (Mo), copper (Cu), platinum (Pt), which is a metal material (low resistance material) whose surface resistance is lower than that of the front transparent electrode layer 103.
  • At least one metal layer is formed by sputtering or vapor deposition using at least one material selected from chromium and chromium (Cr).
  • the shape processing of the collecting electrode 201 is performed by forming a mask film or a metal film and then etching the film with an acid or alkali solution using the photoresist pattern as a mask.
  • the collecting electrode 201 is preferably a laminated film of two or more layers made of two or more materials selected from the above materials.
  • the uppermost layer is a molybdenum (Mo) layer
  • Mo molybdenum
  • ZnO zinc oxide
  • a collecting electrode 201 having a three-layer structure of a Mo layer, an Al layer, and a Mo layer is used.
  • the edge of the slope forming the end face of the current collecting electrode 201 has a skirt. It is possible to make it gentler as it is pulled.
  • the angle formed between the inclined surface forming the end face of the current collecting electrode 201 and the surface direction of the translucent substrate 102 is 60 degrees or less.
  • a 1 ⁇ m-thick zinc oxide (ZnO) film containing aluminum (Al) as a dopant is formed by a sputtering method as a transparent conductive film that becomes the front transparent electrode layer 103 on the collecting electrode 201 and the multilayer antireflection film 202.
  • a ZnO film doped with aluminum (Al) is formed as the transparent conductive film to be the front transparent electrode layer 103.
  • the transparent conductive film to be the front transparent electrode layer 103 is not limited to this, but is oxidized.
  • Transparent conductive oxide films mainly composed of crystalline metal oxides such as indium tin (ITO), tin oxide (SnO 2 ) and zirconium oxide (ZrO 2 ), and aluminum (as a dopant in these transparent conductive oxide films) It is composed of a light-transmitting film such as a film to which Al) is added.
  • ITO indium tin
  • SnO 2 tin oxide
  • ZrO 2 zirconium oxide
  • Al a light-transmitting film
  • the front transparent electrode layer 103 has aluminum (Al), gallium (Ga), indium (In), boron (B), yttrium (Y), silicon (Si), zirconium (Zr), and titanium (Ti) as dopants.
  • a transparent conductive film having light transmissivity which may be a ZnO film, an ITO film, a SnO 2 film, or a transparent conductive film formed by laminating these using at least one element selected from If it is.
  • the front transparent electrode layer 103 is formed by the sputtering method.
  • the method of forming the front transparent electrode layer 103 is not limited to this, and may be a vacuum deposition method, an ion plating method, or the like.
  • a physical method or a chemical method such as a spray method, a dip method, or a CVD method may be used.
  • the front transparent electrode layer 103 is formed with an uneven shape on the surface to form a surface texture structure (not shown).
  • a part of the front transparent electrode layer 103 is cut and removed in a stripe shape in a direction substantially parallel to the transversal direction of the translucent substrate 102, and the front transparent electrode layer 103 is patterned into a strip shape. Separated into the front transparent electrode layer 103 (FIG. 10-4).
  • a stripe-shaped first groove D1 extending in a direction substantially parallel to the transversal direction of the translucent substrate 102 and reaching the translucent substrate 102 is formed by a laser scribing method. To do.
  • the first photoelectric conversion unit 107 is formed on the front transparent electrode layer 103 including the first groove D1 by the PCVD method.
  • the first photoelectric conversion unit 107 has a shape corresponding to the shape of the front transparent electrode layer 103, that is, a shape having an uneven shape on the surface.
  • a P-type amorphous silicon layer 104, an I-type amorphous silicon layer 105, and an N-type amorphous silicon layer 106 are sequentially formed from the front transparent electrode layer 103 side (FIG. 10-5). ).
  • the same material as that of the first photoelectric conversion unit 4 in Embodiment 1 can be used.
  • the first intermediate layer 108 is formed on the first photoelectric conversion unit 107 (FIG. 10-5).
  • a zinc oxide (ZnO) film is deposited by DC sputtering.
  • the first intermediate layer 108 has a shape corresponding to the shape of the first photoelectric conversion unit 107 (the shape of the front transparent electrode layer 103), that is, a shape having an uneven shape on the surface.
  • the second photoelectric conversion unit 112 is formed on the first intermediate layer 108 by the PCVD method.
  • a P-type microcrystalline silicon layer 109, an I-type microcrystalline silicon layer 110, and an N-type microcrystalline silicon layer 111 are sequentially formed from the first intermediate layer 108 side (FIG. 10-6).
  • Each layer of the second photoelectric conversion unit 112 including the microcrystalline silicon film has a shape corresponding to the shape of the first intermediate layer 108 (the shape of the front transparent electrode layer 103), that is, a shape having an uneven shape on the surface.
  • the second photoelectric conversion unit 112 can be made of the same material as the second photoelectric conversion unit 6 in Embodiment 1.
  • a conductive silicon oxide (SiO x ) film is deposited on the second photoelectric conversion unit 112 by PCVD to form a second intermediate layer 113 (FIG. 10-7).
  • the film thickness of the conductive silicon oxide (SiO x ) film constituting the second intermediate layer 113 is, for example, 10 nm.
  • the conductive silicon oxide (the second intermediate layer 113 described above instead of the transparent conductive film) is used as the first intermediate layer 108 (
  • An SiO x ) film or a laminated film of the conductive silicon oxide (SiO x ) film and a transparent conductive film may be used.
  • a laminated film for example, a conductive silicon oxide (SiO x ) film having a thickness of 20 nm or less and a transparent conductive film having a thickness of 20 nm or more and 100 nm or less are laminated.
  • Formation of the microcrystalline silicon layer of the second photoelectric conversion unit 112 and the conductive silicon oxide (SiO x ) film of the second intermediate layer 113 is performed by, for example, using monosilane (SiH 4 ), hydrogen (H 2 ), carbon dioxide ( Using CO 2 ) as a doping gas, phosphine (PH 3 ), the reaction gas amount ratio (H 2 / SiH 4 ratio) and the reaction gas amount ratio (H 2 / SiH 4 ratio) with a large reaction gas amount ratio (H 2 / SiH 4 ratio) Is performed by the PCVD method under the condition of 10 or more.
  • the conditions of PCVD at this time are, for example, using a capacitively coupled parallel plate electrode, a power frequency of 10 MHz to 100 MHz, a power density of 3 mW / cm 2 to 800 mW / cm 2 , a pressure of 50 Pa to 1300 Pa, and a substrate temperature of 150 ° C. to 230 ° C. It is said. It may be used diborane (B 2 H 6) in place of the phosphine as a doping gas (PH 3), phosphine (PH 3) and diborane (B 2 H 6) may be mixed with both the gas.
  • the crystallinity of the microcrystalline silicon film thus formed, evaluated using Raman spectroscopy, is preferably such that the ratio of (111) orientation to (220) orientation is 0.5 or more.
  • a third photoelectric conversion unit 117 is formed on the second intermediate layer 113 by the PCVD method (FIG. 10-8).
  • a P-type microcrystalline silicon layer 114, an I-type microcrystalline silicon layer 115, and an N-type microcrystalline silicon layer 116 are sequentially formed from the second intermediate layer 113 side.
  • the third photoelectric conversion unit 117, the second intermediate layer 113, the second photoelectric conversion unit 112, the first intermediate layer 108, and the first photoelectric conversion unit 107 that are stacked in this manner are connected to the front transparent electrode layer 103 and the first photoelectric conversion unit 103.
  • patterning is performed by laser scribing (FIG. 10-9). That is, a part of each of these layers is cut and removed into a stripe shape in a direction substantially parallel to the transversal direction of the translucent substrate 102, patterned into a strip shape, and separated.
  • Such patterning is performed by a laser scribing method in a stripe shape that extends in a direction substantially parallel to the short direction of the translucent substrate 102 and reaches the front transparent electrode layer 103 at a location different from the first groove D1. This is done by forming a second groove (connection groove) D2. After the formation of the second groove (connection groove) D2, the scattered matter adhering in the second groove (connection groove) D2 is removed by high-pressure water cleaning, megasonic cleaning, or brush cleaning.
  • the back transparent electrode layer 118 and the back reflective electrode layer 119 are sequentially formed on the third photoelectric conversion unit 117 and in the second groove (connection groove) D2 by sputtering (FIG. 10). -10).
  • the back transparent electrode layer 118 for example, zinc oxide (ZnO) is deposited by sputtering. Further, a film made of a conductive oxide such as indium tin oxide (ITO) or tin oxide (SnO 2 ) may be formed as the back transparent electrode layer 118.
  • the back transparent electrode layer 118 contributes to improving the adhesion between the third photoelectric conversion unit 117 and the back reflective electrode layer 119 and preventing the third photoelectric conversion unit 117 from diffusing metal into silicon. Although it is preferable to form an uneven shape 118a (see FIG. 9-3) on the surface of the back transparent electrode layer 118, it is not always necessary to form it.
  • the back surface reflective electrode layer 119 for example, an aluminum (Al) film is deposited by sputtering. Further, the back reflective electrode layer 119 may be made of at least one material of Al, Ag, Au, Cu, Pt, and Cr, and at least one metal layer may be formed by sputtering or vapor deposition.
  • a part of the conversion unit 107 is cut and removed into a stripe shape in a direction substantially parallel to the transversal direction of the translucent substrate 102 and patterned into a strip shape to be separated into a plurality of cells 100 (FIGS. 10-11).
  • Patterning is performed by a laser scribing method, extending in a direction substantially parallel to the transversal direction of the translucent substrate 102 at a location different from the first groove D1 and the second groove (connection groove) D2, and transparent on the front surface. This is performed by forming a stripe-like third groove (separation groove) D3 reaching the electrode layer 103. Note that it is difficult to directly absorb the laser in the back-surface reflective electrode layer 119 having a high reflectance, so that the laser light energy is applied to the semiconductor layers (the first photoelectric conversion unit 107, the second photoelectric conversion unit 112, and the third photoelectric conversion unit 117). Is absorbed, and the back surface reflective electrode layer 119 is blown locally together with the semiconductor layer to be separated corresponding to the plurality of cells 100. Thus, the module 101 having the cell 100 as shown in FIGS. 9-1 to 9-3 is completed.
  • the multilayer antireflection film 202 is combined with a transparent film and a SiO 2 film having a high refractive index and high thermal expansion coefficient than SiO 2.
  • the multilayer antireflection film 202 has an effect of reducing the difference in thermal expansion between the current collecting electrode 201 and the translucent substrate 102.
  • the alkali impurity concentration contained in the light-transmitting substrate 102 is set as much as possible. It is necessary to improve the heat resistance of the light-transmitting substrate 102 by reducing it. On the other hand, when the alkali impurity concentration is lowered, the thermal expansion coefficient of the translucent substrate 102 is lowered.
  • the front transparent electrode layer 103 and the translucent substrate 102 The thermal expansion coefficient is lower than the thermal expansion coefficient of the collecting electrode 201. For this reason, the difference in thermal expansion coefficient between the translucent substrate 102 and the current collecting electrode 201 causes cracks in the front transparent electrode layer 103 during thermal contraction after the formation of the front transparent electrode layer 103.
  • the multilayer antireflection film 202 is inserted between the translucent substrate 102 and the current collecting electrode 201 to reduce the difference in thermal expansion coefficient between the translucent substrate 102 and the current collecting electrode 201, thereby making the front transparent Generation of cracks during heat shrinkage of the electrode layer 103 can be prevented, and insertion of a collecting electrode for the purpose of reducing the resistance of the transparent electrode layer can be made possible.
  • FIG. 11 is a cross-sectional view of the tandem thin film solar cell module according to the fourth embodiment, paying attention to the translucent substrate 102, the current collecting electrode 201, the multilayer antireflection film 202, and the front transparent electrode layer 103.
  • the configuration other than these is the same as that in the third embodiment.
  • the collector electrode 201 is formed in the concave portion reaching the inside of the translucent substrate 102 from the surface of the multilayer antireflection film 202, and the surface of the collector electrode 201 And the surface of the multilayer antireflection film 202 are the same surface (flat surface).
  • a front transparent electrode layer 103 is formed on the current collecting electrode 201 and the multilayer antireflection film 202.
  • the multilayer antireflection film 202 is formed on the entire surface of the light-transmitting substrate 102, and then a recess is formed.
  • recesses are formed in the multilayer antireflection film 202 and the translucent substrate 102 where the current collecting electrode 201 is to be formed.
  • the concave portion is formed on the multilayer antireflection film 202 by forming a resist pattern having an opening in a region where the concave portion is to be formed, and then using this as a mask with an acid or alkaline solution such as hydrofluoric acid for the thickness of the collecting electrode 201.
  • the multilayer antireflection film 202 and the translucent substrate 102 are formed by etching away.
  • the current collecting electrode 201 is formed so that the surface of the current collecting electrode 201 and the surface of the multilayer antireflection film 202 are flat, and the front transparent electrode layer 103 is formed thereon.
  • a module can be formed by carrying out the steps of FIG.
  • the concave portion is formed in the light-transmitting substrate 102 first, and then the multilayer antireflection film 202 is formed.
  • a resist pattern similar to that of the first method is formed on the light-transmitting substrate 102, and the light-transmitting substrate 102 is etched using this as a mask to form a recess in the light-transmitting substrate 102.
  • the multilayer antireflection film 202 is formed by mask vapor deposition or sputtering.
  • the collector electrode 201 is formed so that the surface of the collector electrode 201 and the surface of the multilayer antireflection film 202 are flat, and the front transparent electrode layer 103 is formed thereon.
  • the thin film solar cell module can be formed by carrying out the steps of FIG. 10-5 and thereafter in Embodiment 3.
  • a multilayer antireflection film 202 is formed on the entire surface of the light-transmitting substrate 102, and a resist pattern similar to that in the first method is formed on the multilayer antireflection film 202 to prevent multilayer reflection.
  • the film 202 may be removed by etching to form a recess again.
  • the collector electrode 201 is formed so that the surface of the collector electrode 201 and the surface of the multilayer antireflection film 202 are flat, and the front transparent electrode layer 103 is formed thereon.
  • the thin film solar cell module can be formed by carrying out the steps of FIG. 10-5 and thereafter in Embodiment 3.
  • FIG. 12 is a cross-sectional view focusing on the translucent substrate 102, the collector electrode 201, the multilayer antireflection film 202, and the front transparent electrode layer 103 in another tandem-type thin film solar cell module according to the fourth embodiment. is there.
  • configurations other than these are the same as those in the third embodiment.
  • a collecting electrode 201 is formed in a recess reaching the translucent substrate 102 from the surface of the multilayer antireflection film 202, and the surface of the collecting electrode 201 And the surface of the multilayer antireflection film 202 are the same surface (flat surface).
  • a front transparent electrode layer 103 is formed on the current collecting electrode 201 and the multilayer antireflection film 202.
  • the configuration as shown in FIG. 12 is the same as the first method except that the concave portion is formed only in the multilayer antireflection film 202 after the multilayer antireflection film 202 is formed on the translucent substrate 102 in the first method described above. It is formed in the same manner as the method. Thereafter, the thin film solar cell module can be formed by carrying out the steps of FIG. 10-5 and subsequent steps in the third embodiment.
  • the multilayer antireflection film 202 has an effect of reducing the thermal expansion difference between the current collecting electrode 201 and the translucent substrate 102.
  • the current collecting electrode 201 is embedded in the concave portion of the multilayer antireflection film 202 or the translucent substrate 102, and the surface of the current collecting electrode 201 and the surface of the multilayer antireflection film 202 are the same surface (flat surface). Therefore, the front transparent electrode layer 103 is contracted over the entire film at the time of thermal contraction, and partial application of stress due to the thermal contraction of the collecting electrode 201 is prevented. Thereby, the thermal expansion coefficient difference between the translucent substrate 102 and the current collecting electrode 201 can be relaxed, and the occurrence of cracks during the thermal contraction of the front transparent electrode layer 103 can be prevented. It is possible to insert a current collecting electrode for the purpose of realizing the above.
  • the current collecting electrode 201 is embedded in the concave portion of the multilayer antireflection film 202 or the translucent substrate 102, and the surface of the current collecting electrode 201 and the surface of the multilayer antireflection film 202 are on the same surface (flat surface).
  • the order of forming the recesses and forming the multilayer antireflection film 202 is not limited.
  • the embodiment described above is an example to which the present invention is applied, and the present invention can be applied to a multi-junction thin film solar cell in which one or more photoelectric conversion units are stacked.
  • the first photoelectric conversion unit is amorphous.
  • a multi-junction using an amorphous silicon germanium or microcrystalline silicon photoelectric conversion unit for the silicon photoelectric conversion unit, a second photoelectric conversion unit, and an amorphous silicon germanium or microcrystalline silicon or microcrystalline silicon germanium photoelectric conversion unit for the third photoelectric conversion unit It can be applied to type thin film solar cells.
  • the thin film solar cell according to the present invention is useful for realizing a thin film solar cell excellent in photoelectric conversion efficiency.

Abstract

 基板1上に多層膜2と、前記多層膜2上に形成された酸化亜鉛を主成分とする透光性導電膜からなる第1の電極層3と、光電変換を行う光電変換層4、6と、第2の電極層8とをこの順で有し、前記多層膜2は、前記基板1側から酸化ハフニウム層2aと酸化シリコン層2bとが積層された対が1対以上積層されてなり、前記第1の電極層3の直下の前記対は、膜厚が20nm~40nmの酸化ハフニウム層2aと膜厚が2nm~10nmの酸化シリコン層2bとが積層されてなり、前記第1の電極層3は、前記光電変換層4側の面に凹凸形状を有する。

Description

薄膜太陽電池およびその製造方法、透明導電膜付き基体およびその製造方法
 本発明は、薄膜太陽電池およびその製造方法、透明導電膜付き基体およびその製造方法に関する。
 石油等の化石燃料は、将来の枯渇懸念による供給不安や地球温暖化現象の原因となる二酸化炭素排出の問題を抱えている。一方、近年の環境意識の高まりやシステムの低価格化などにより太陽光発電システムの普及が拡大してきており、化石燃料の代替エネルギーとして期待されている。しかしながら太陽光発電システムにおいても、バルク太陽電池は、将来の原料不足による供給不安や低コスト化の困難性という課題を抱えている。それに対して薄膜太陽電池は、半導体の使用量を大幅に減らすことで原料不足の解消と大幅な低コスト化を実現する可能性を有しており、次世代型の太陽電池として注目されている。具体的には、バルク太陽電池は数百μmの厚さの半導体基板を有するのに対して、薄膜太陽電池は半導体層の厚さが数μm~10μm以下である。
 このような薄膜太陽電池セルのスーパーストレート型の一般的な構成は、受光面側から光透過性基体、前面透明導電酸化物層、半導体のpin構造を有した光電変換ユニット、背面透明導電酸化物層、裏面反射銀電極が順次積層された構成となっている。薄膜太陽電池は前述のとおり半導体の使用量がバルク太陽電池に比べて圧倒的に少ない。このため、光電変換効率向上のためには同一体積中で高い変換効率を得なければならず、半導体層自体の質の向上の他に、半導体層に侵入する太陽光を有効に利用する技術が重要となっている。
 例えば特許文献1には、透光性基板上の透明導電酸化物層の表面に形成された表面テクスチャ形状が光電変換ユニット内に入射する入射光を散乱させることにより半導体層内での実効的な光量を増大させて太陽電池の光電変換効率を高めることができる透明導電膜が記載されている。
 また、太陽光の有効利用の為に、透明導電層の特性として高い光透過性も必要とされる。例えば特許文献2では、酸化亜鉛を主成分とする第1の透明導電性薄膜と第2の透明導電性薄膜を有し、その中間に低屈折率薄膜層を挟み、反射防止効果のある光学的膜厚設計により透明導電性積層体の光透過性を向上させる工夫がなされている。
 また、特許文献3では、広い波長帯域に対する高い光散乱性を得るために、第1の酸化物からなる不連続な小山部と、その上部に形成される第2の酸化物からなる連続層であって、該連続層の表面にミクロの多数の凸部を連続して有する連続層とからなる透明導電酸化物が基体上に設けられた透明導電酸化物基体が開示されている。この透明導電酸化物基体では、第1の酸化物からなる長周期と第2の酸化物からなる短周期との2種の周期を持つことにより、広い範囲の波長帯域に対して良好な光散乱性能を持つように工夫されている。
特公平6-12840号公報 特開2008-49518号公報 特開2009-140930号公報
 しかしながら、上記特許文献2の技術によれば透光性基板と透明導電層と界面での光反射低減による光透過性向上は見込めるが、光散乱性の向上については効果が無い。また、特許文献3の技術によれば広波長帯域における光散乱性の向上が見込めるが、酸化物層が単一である場合と比べれば、基板直上に形成される小山部による局所的な光透過性の低下は免れないといった問題がある。
 また、地上に降り注ぐ入射太陽光(AM1.5)全域の光(特に、300nm~1300nm)を有効に利用するためには、特許文献3のように、受光面側の透明導電膜付き基体は、広い波長領域において良好な光散乱特性を有していなければならない。広い波長領域で光電効果を得ることができる薄膜太陽電池として、分光感度領域(光電変換に寄与する波長領域)の異なる主半導体材料、例えばa-SiC、a-Si、a-SiGe、微結晶Si等からなる光電変換ユニットが積層された積層型(タンデム接合型)薄膜太陽電池がある。
 このような積層型(タンデム接合型)薄膜太陽電池は、入射光スペクトルを複数の光電変換ユニットで分割して吸収・光電変換する構造とされており、連続スペクトルである太陽光スペクトルの各波長を吸収するのに適した禁制帯幅(エネルギーバンドギャップ)を有する半導体材料を用いた複数個の光電変換層が光の入射側から禁制帯幅の大きい順序で積層されている。これにより、積層型(タンデム接合型)薄膜太陽電池は、光電変換層が単一の場合と比較して、より広い波長帯域の太陽光を光電変換に寄与させることができ、太陽電池全体としての光電変換効率を向上させることが可能となる。
 しかし、このような分光感度領域(光電変換に寄与する波長領域)の異なる発電層を複数層備える薄膜太陽電池においても、先に示したように受光面側の透明導電層は、広い波長帯域に対する良好な光透過性と光散乱性を有していることが望ましい。
 上記のような良好な光透過性を有する透明導電膜を形成するためには、透明導電膜の不純物濃度はできるだけ低濃度にして透明導電膜を高結晶化することにより、導電率を確保しつつ光透過性を得る必要がある。また、良好な光散乱性を有する透明導電膜を形成するためにも、透明導電膜を高結晶化した後にウェットエッチングにより長周期の凹凸を形成できるようにする必要がある。このような目的で透明導電膜を高結晶化するためには、製膜時における結晶核生成を促しながら高温製膜を行うことが必須である。しかし、高温製膜を行うと、熱応力によるクラックが発生しやすくなるという問題が生じる。
 本発明は、上記に鑑みてなされたものであって、広い波長帯域の太陽光を有効利用可能な、光電変換効率に優れた薄膜太陽電池およびその製造方法、また、このような薄膜太陽電池を実現するための透明導電膜付き基体およびその製造方法を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる薄膜太陽電池は、基板上に多層膜と、前記多層膜上に形成された酸化亜鉛を主成分とする透光性導電膜からなる第1の電極層と、光電変換を行う光電変換層と、第2の電極層とをこの順で有し、前記多層膜は、前記基板側から酸化ハフニウム層と酸化シリコン層とが積層された対が1対以上積層されてなり、前記第1の電極層の直下の前記対は、膜厚が20nm~40nmの酸化ハフニウム層と膜厚が2nm~10nmの酸化シリコン層とが積層されてなり、前記第1の電極層は、前記光電変換層側の面に凹凸形状を有すること、を特徴とする。
 本発明によれば、広い波長帯域の太陽光を有効利用可能な、光電変換効率に優れた薄膜太陽電池が得られる、という効果を奏する。
図1は、本発明の実施の形態1にかかるスーパーストレート型の薄膜太陽電池の構成を示す断面図である。 図2は、本発明の実施の形態1にかかる透明導電膜付き基体の構成を示す断面図である。 図3は、ガラス基板上の異なる条件の下地上に酸化亜鉛(ZnO)膜を製膜し、表面を化学的エッチングした場合の表面凹凸形状の変化を示す特性図である。 図4は、ガラス基板上の異なる条件の下地上に酸化亜鉛(ZnO)膜を製膜し、表面を化学的エッチングした場合の表面凹凸形状の変化を示す特性図である。 図5-1は、実施の形態1にかかる薄膜太陽電池の製造工程の一例を説明するための断面図である。 図5-2は、実施の形態1にかかる薄膜太陽電池の製造工程の一例を説明するための断面図である。 図5-3は、実施の形態1にかかる薄膜太陽電池の製造工程の一例を説明するための断面図である。 図5-4は、実施の形態1にかかる薄膜太陽電池の製造工程の一例を説明するための断面図である。 図6は、実施の形態1にかかる薄膜太陽電池の製造工程の一例を説明するためのフローチャートである。 図7は、本発明の実施の形態2にかかるサブストレート型の薄膜太陽電池の構成を示す断面図である。 図8は、本発明の実施の形態2にかかる透明導電膜付き基体の構成を示す断面図である。 図9-1は、本発明の実施の形態3にかかるタンデム型薄膜太陽電池モジュールの概略構成を示す平面図である。 図9-2は、本発明の実施の形態3にかかるタンデム型薄膜太陽電池モジュールの断面構造を説明するための要部断面図である。 図9-3は、本発明の実施の形態3にかかるタンデム型薄膜太陽電池モジュールの断面構造を説明するための要部断面図である。 図10-1は、本発明の実施の形態3にかかるタンデム型薄膜太陽電池モジュールの製造工程を説明するための要部断面図である。 図10-2は、本発明の実施の形態3にかかるタンデム型薄膜太陽電池モジュールの製造工程を説明するための要部断面図である。 図10-3は、本発明の実施の形態3にかかるタンデム型薄膜太陽電池モジュールの製造工程を説明するための要部断面図である。 図10-4は、本発明の実施の形態3にかかるタンデム型薄膜太陽電池モジュールの製造工程を説明するための要部断面図である。 図10-5は、本発明の実施の形態3にかかるタンデム型薄膜太陽電池モジュールの製造工程を説明するための要部断面図である。 図10-6は、本発明の実施の形態3にかかるタンデム型薄膜太陽電池モジュールの製造工程を説明するための要部断面図である。 図10-7は、本発明の実施の形態3にかかるタンデム型薄膜太陽電池モジュールの製造工程を説明するための要部断面図である。 図10-8は、本発明の実施の形態3にかかるタンデム型薄膜太陽電池モジュールの製造工程を説明するための要部断面図である。 図10-9は、本発明の実施の形態3にかかるタンデム型薄膜太陽電池モジュールの製造工程を説明するための要部断面図である。 図10-10は、本発明の実施の形態3にかかるタンデム型薄膜太陽電池モジュールの製造工程を説明するための要部断面図である。 図10-11は、本発明の実施の形態3にかかるタンデム型薄膜太陽電池モジュールの製造工程を説明するための要部断面図である。 図11は、本発明の実施の形態4にかかるタンデム型薄膜太陽電池モジュールにおいて透光性基板、集電電極、多層反射防止膜および前面透明電極層に注目して示した断面図である。 図12は、本発明の実施の形態4にかかる他のタンデム型薄膜太陽電池モジュールにおいて透光性基板、集電電極、多層反射防止膜および前面透明電極層に注目して示した断面図である。
 以下に、本発明にかかる薄膜太陽電池およびその製造方法、透明導電膜付き基体およびその製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態1.
 図1は、本発明の実施の形態1にかかるスーパーストレート型の光起電力素子である薄膜太陽電池の構成を示す断面図である。実施の形態1にかかる薄膜太陽電池は、光電変換層が2層積層された積層型(タンデム接合型)薄膜太陽電池である。図2は、本発明の実施の形態1にかかる透明導電膜付き基体の構成を示す断面図である。
 実施の形態1にかかる薄膜太陽電池は、図1に示すように透光性基板1の上に、多層反射防止膜2、第1電極層である前面透明電極層3、第1光電変換ユニット4、中間層5、第2光電変換ユニット6、裏面透明導電膜7、第2電極層である裏面電極層8が順次積層された構成を有する。この薄膜太陽電池においては、透光性基板1側から光を入射させる。また、実施の形態1にかかる透明導電膜付き基体は、実施の形態1にかかる薄膜太陽電池の構成のうち、図2に示すように透光性基板1と多層反射防止膜2と前面透明電極層(第1電極層)3とにより構成される。
 透光性基板1としては、ガラス基板、ポリイミド若しくはポリビニルなどの耐熱性を有する光透過性樹脂、又はそれらが積層されたものなどを適宜用いることができるが、光透過性が高く、薄膜太陽電池全体を構造的に支持しえるものであれば特に限定されない。また、これらの表面に、透過性の高い金属膜、透明導電膜、絶縁膜を製膜したものであってもよい。
 多層反射防止膜2は、透光性基板1と前面透明電極層3との界面での反射を防止するために設けられ、透光性基板1側から入射した光の反射を防止する。多層反射防止膜2は、透光性基板1側から低屈折率層と高屈折率層とが少なくとも一層ずつ順次積層された対構造を有する。これらの低屈折率層と高屈折率層とは、入射光側の屈折率、透過光側の屈折率、および光の波長に依存した膜厚で構成される。その設計指針は、多層反射防止膜2における反射光量が最も少なくなることであり、構成する系によって微小な調整が必要になる。また、その製膜方法は、特に限定されるものではなく既存の手法を用いることができ、例えばCVD(Chemical Vapor Deposition)法、DCスパッタリング法、RFスパッタリング法、真空蒸着法、イオンプレーティング法などの物理的方法や、スプレー法、ディップ法、CVD法などの化学的方法を用いてもよい。
 本実施の形態にかかる多層反射防止膜2においては、高屈折率層は酸化ハフニウム(HfO)層2aからなり、低屈折率層は酸化シリコン(SiO)層2bからなる。本実施の形態にかかる多層反射防止膜2は、図1および図2に示すように前面透明電極層3側からSiO層2b(膜厚:5nm)/HfO層2a(膜厚:35nm)/SiO層2b(膜厚:14nm)/HfO層2a(膜厚:30nm)/SiO層2b(膜厚:20nm)/HfO層2a(膜厚:17nm)の構成を有し、真空蒸着法により形成される。
 なお、ここでは、酸化シリコン(SiO)層2bと酸化ハフニウム(HfO)層2aとの対が3対積層された6層構造の多層反射防止膜2を示しているが、多層反射防止膜2における酸化シリコン(SiO)層2bと酸化ハフニウム(HfO)層2aとの積層数は6層に限定されるものではなく、透光性基板1側から酸化シリコン(SiO)層2bと酸化ハフニウム(HfO)層2aとが少なくとも対単位で順次積層された構造であればよい。
 そして、実施の形態1にかかる多層反射防止膜2においては、最上層の対(前面透明電極層3側の対)は、前面透明電極層3側から膜厚2nm~10nmの酸化シリコン(SiO)層2bと膜厚20nm~40nmの酸化ハフニウム(HfO)層2aとが積層された構造とされる。すなわち、前面透明電極層3の直下には膜厚2nm~10nmの酸化シリコン(SiO)層2bが配置され、該酸化シリコン(SiO)層2bの直下には膜厚20nm~40nmの酸化ハフニウム(HfO)層2aが配置される。そして、最上層の対(前面透明電極層3側の対)における酸化シリコン(SiO)層2bと酸化ハフニウム(HfO)層2aとの好ましい膜厚の組み合わせは、酸化シリコン(SiO)層2bの膜厚が5nmであり、酸化ハフニウム(HfO)層2aの膜厚が35nmである。
 前面透明電極層3の直下の該最上層2層の構成は、その上部に形成される透明導電酸化膜である酸化亜鉛(ZnO)膜の形成時にその結晶構造を変化させ、該酸化亜鉛(ZnO)膜の製膜後にその表面をエッチングすることで得られる表面凹凸形状(テクスチャ)を大きくする効果を有する。
 この効果により、実施の形態1にかかる薄膜太陽電池においては、大径化された表面凹凸形状(テクスチャ)が酸化亜鉛(ZnO)膜からなる前面透明電極層3の表面に形成されている。そして、このような大径の表面凹凸形状(テクスチャ)は、薄膜太陽電池に入射した入射光の光散乱性の向上効果を有し、特に長波長側の光の光散乱に有効である。すなわち、前面透明電極層3の表面に形成された大径化された表面凹凸形状(テクスチャ)の光散乱・屈折等の光閉じ込め効果により、第1光電変換ユニット4で発生する光電流を向上させ、光電変換効率を向上させることができる。
 図3および図4は、上述した本発明の効果を確認するための実験結果であり、ガラス基板上の異なる条件の下地上に酸化亜鉛(ZnO)膜を製膜し、表面を化学的エッチングした場合の表面凹凸形状の変化を示す特性図である。ここでは、酸化亜鉛(ZnO)膜を製膜する下地の条件が異なること以外は、下地に依存して変化する透明導電酸化物である酸化亜鉛(ZnO)膜を同条件で製膜し、さらに酸化亜鉛(ZnO)膜の表面に化学エッチングを施した測定試料の表面凹凸形状の変化を測定した。
 測定試料に用いた酸化亜鉛(ZnO)膜の製膜条件は、その製膜方法や製膜装置の構成に依存し、製膜条件を限定できるものではないが、化学エッチング後の表面形状が最大となるような条件を用いた。具体的には、酸化亜鉛(ZnO)膜は、スパッタリング法により膜厚1000nmで製膜した。また、化学エッチングは、塩酸(1N溶液)により行った。スパッタリング法の条件は、RF周波数:13.56MHz、スパッタリングガス:Ar、ガス圧:0.3Pa、基板温度:300℃とした。ZnOのスパッタリングターゲットとして、原子の比率でZnが99.5に対して0.5がAlであるものを使用した。
 測定試料は、以下の6種類を作製した。
(1)参考サンプル(REF):ガラス基板上に直接酸化亜鉛(ZnO)膜を製膜し、その表面に化学エッチングを施した。
(2)サンプルA:ガラス基板上に下地層として、最上層側からSiO層(膜厚:5nm)/HfO層(膜厚:35nm)/SiO層(膜厚:14nm)/HfO層(膜厚:30nm)/SiO層(膜厚:20nm)/HfO層2a(膜厚:17nm)の構成を有する多層膜を形成し、該多層膜上に酸化亜鉛(ZnO)膜を形成し、その表面に化学エッチングを施した。
(3)サンプルB:最上層のSiO層の膜厚を10nmとしたこと以外は、サンプルAと同じ条件で酸化亜鉛(ZnO)膜を形成し、その表面に化学エッチングを施した。
(4)サンプルC:最上層のSiO層の膜厚を15nmとしたこと以外は、サンプルAと同じ条件で酸化亜鉛(ZnO)膜を形成し、その表面に化学エッチングを施した。
(5)サンプルD:最上層対のSiO層の膜厚を0nm(最上層はHfO層のみ)としたこと以外は、サンプルAと同じ条件で酸化亜鉛(ZnO)膜を形成し、その表面に化学エッチングを施した。
(6)サンプルE:最上層対のHfO層の膜厚を0nm(最上層はSiO層のみ)としたこと以外は、サンプルAと同じ条件で酸化亜鉛(ZnO)膜を形成し、その表面に化学エッチングを施した。
 図3および図4に示した数値パラメータは、レーザープローブ式3次元形状測定装置での測定により得られた断面の粗さ曲線から抽出したパラメータである。図3では、算術的平均粗さRa、凹凸の平均周期Sm、局所山頂間の平均間隔Sを示している。
 図3から、酸化亜鉛(ZnO)膜に形成される表面凹凸形状の下地依存性が認められる。すなわち、図3から分かるように、サンプルAのみが他のサンプルと比較して表面形状パラメータ(算術的平均粗さRa、凹凸の平均周期Sm、局所山頂間の平均間隔S)の数値の増加が顕著である。これは、上述した多層膜の最上層2層による効果であると考えられる。
 また、サンプルAの条件において最上層対のSiO層の膜厚をさらに変化させた実験により、最上層対のSiO層の膜厚が2nm~10nmである場合に、サンプルAと同様に表面形状パラメータの数値の増加が顕著であることが確認されている。
 また、サンプルAの条件において最上層対のHfO層の膜厚を変化させた実験により、最上層対のHfO層の膜厚が20nm~40nmである場合に、サンプルAと同様に表面形状パラメータの数値の増加が顕著であることが確認されている。
 さらに、サンプルAの条件において最上層対のSiO層の膜厚とHfO層の膜厚とを変化させて同様の実験を行った結果、最上層対のSiO層の膜厚が2nm~10nmであり、最上層対のHfO層の膜厚が20nm~40nmである場合に、サンプルAと同様に表面形状パラメータの数値の増加が顕著であることが確認されている。
 また、上述した本発明の効果は、酸化亜鉛(ZnO)膜の直下に酸化シリコン(SiO)層または酸化ハフニウム(HfO)層が単独で配置されている場合には発現しないことが確認された。すなわち、図4から分かるように酸化亜鉛(ZnO)膜の直下に酸化シリコン(SiO)層と酸化ハフニウム(HfO)層との対が存在せず、酸化シリコン(SiO)層または酸化ハフニウム(HfO)層のみが配置されたサンプルCおよびサンプルDは、サンプルAと比較して表面形状パラメータ(算術的平均粗さRa、凹凸の平均周期Sm、局所山頂間の平均間隔S)の数値が小さい。これは、サンプルBやサンプルCと同様である。これは、酸化亜鉛(ZnO)膜の直下に酸化シリコン(SiO)層または酸化ハフニウム(HfO)層が単独で配置されている場合には本発明の効果は発現しないためであると考えられる。
 表面形状パラメータの数値の増加は、酸化亜鉛(ZnO)膜に形成された表面凹凸形状の大径化を示している。したがって、表面形状パラメータの数値の大きいサンプルを薄膜太陽電池に用いた場合には、入射光の光散乱性、特に長波長領域における散乱性能を向上させる。このため、光電変換ユニット内部での実効的な光路長が伸長化し、薄膜太陽電池の効率向上に寄与するものとなる。
 前面透明電極層3は、透光性を有する透明導電膜からなり、本発明では例えば酸化亜鉛(ZnO)を母材(主要成分)とする透光性導電膜を用いる。なお、前面透明電極層3の膜中に微量の不純物が添加されていてもよい。例えば、酸化亜鉛(ZnO)が主成分である前面透明電極層3の場合には、5×1020~5×1021cm-3程度のガリウム(Ga)やアルミニウム(Al)やホウ素(B)などの第13族元素、または銅のような第11族元素が含有されることにより抵抗率が低減する。このため、電極として使用するのに適している。また、前面透明電極層3の膜厚は、例えば600nm~1200nmである。前面透明電極層3の製法には、スパッタリング法、常圧CVD法、減圧CVD法、MOCVD法、電子ビーム蒸着法、ゾルゲル法、電析法、スプレー法等の公知の方法を用いることができる。
 また、前面透明電極層3の表面には、テクスチャと呼ばれる表面凹凸形状が形成されている。このテクスチャは、光の散乱・屈折を生じさせる。このテクスチャは、透光性基板1および前面透明電極層3の表面にドライエッチング、またはウェットエッチングなどを施すことにより形成することができる。ドライエッチングの場合は、例えばプラズマ放電によりエッチングガスをイオン化またはラジカル化して照射し、物理的または化学的にエッチングして前面透明電極層3の表面に凹凸を形成する。物理的なエッチングにはエッチングガスとしてアルゴン(Ar)などの不活性ガスが用いられる。化学的なエッチングでは、エッチングガスとしてフッ素系ガスとして四フッ化メタン(CF)、六フッ化エタン(C)など、塩素系ガスとして四塩化炭素(CCl)、四塩化珪素(SiCl)などが用いられる。ウェットエッチングの場合は、透光性基板1または前面透明電極層3を酸溶液またはアルカリ溶液中に浸漬する方法などを用いることができる。この際、使用できる酸溶液としては、塩酸、硫酸、硝酸、フッ酸、酢酸、蟻酸、過塩素酸等の1種または2種以上の混合物が挙げられる。
 ここで、実施の形態1にかかる薄膜太陽電池においては、大径化された表面凹凸形状(テクスチャ)3aが前面透明電極層3の表面に形成されている。ここで、大径化された表面凹凸形状(テクスチャ)3aは、形成ピッチおよび深さがともに大きなものを意味し、例えば形成ピッチが1000nm~4000nmであり、深さが200nm~600nmである。なお、本実施の形態においては、表面凹凸形状(テクスチャ)の形成ピッチは、表面の粗さ曲線の平均周期と定義される。表面凹凸形状(テクスチャ)の深さは、表面の粗さ曲線の算術的粗さ、若しくは二乗平均粗さと定義される。本特許文献においては算術的平均粗さとして統一している。そして、このような大径の表面凹凸形状(テクスチャ)3aは、薄膜太陽電池に入射した入射光の光散乱性の向上効果を有し、特に長波長側の光の光散乱に有効である。
 なお、本実施の形態では前面透明電極層3になる透明導電膜としてアルミニウム(Al)ドーパントしたZnO膜を形成するが、前面透明電極層3になる透明導電膜としてはこれに限定されることなく、酸化インジウム錫(ITO:Indium Tin Oxide)、酸化スズ(SnO)および酸化ジルコニウム(ZrO)などの結晶性金属酸化物を主成分とする透明導電性酸化膜や、これらの透明導電性酸化膜にドーパントとしてアルミニウム(Al)を添加した膜などの透光性の膜によって構成される。また、前面透明電極層3は、ドーパントとしてアルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ホウ素(B)、イットリウム(Y)、シリコン(Si)、ジルコニウム(Zr)、チタン(Ti)から選択した少なくとも1種類以上の元素を用いたZnO膜、ITO膜、SnO膜、またはこれらを積層して形成した透明導電膜であってもよく、光透過性を有している透明導電膜であればよい。また、成膜方法として、スパッタリング法、熱CVD法、常圧CVD法、減圧CVD法、MOCVD法、電子ビーム蒸着法、ゾルゲル法、電析法、スプレー法等の公知などの他の成膜方法を用いてもよい。
 第1光電変換ユニット4および第2光電変換ユニット6は、pin接合を有し、入射する光により発電を行って光起電力を発生させる薄膜半導体層が1層以上積層されて構成されるシリコン系、化合物系等の半導体光電変換層である。第1光電変換ユニット4は、シリコン系、化合物系光電変換層を問わず、例えば受光面側(透光性基板1側)から順番に第1導電型半導体層であるp型半導体層4a、真性半導体層であるi型半導体層4b、第2導電型半導体層であるn型半導体層4cの各半導体層を有する。また、真性半導体層であるi型半導体層4bは、光電変換機能を損なわない限り、弱いp型、n型の導電性を示すものであってもよい。第2光電変換ユニット6は、シリコン系、化合物系光電変換層を問わず、例えば受光面側(透光性基板1側)から順番に第1導電型半導体層であるp型半導体層6a、真性半導体層であるi型半導体層6b、第2導電型半導体層であるn型半導体層6cの各半導体層を有する。また、真性半導体層であるi型半導体層6bは、光電変換機能を損なわない限り、弱いp型、n型の導電性を示すものであってもよい。
 ここで、半導体光電変換層とは、アモルファス酸化シリコン(a-SiO)、アモルファス炭化シリコン(a-SiC)、アモルファスシリコン(a-Si)、アモルファスシリコンゲルマニウム(a-SiGe)、シリコン(Si)ナノドット、微結晶シリコン(μc-Si)、ナノ結晶シリコン(nc-Si)などのシリコン系、およびCIGS(Cu(InGa)Se)等の化合物系、ゲルマニウム(Ge)のいずれかを主成分とする母材からなり、それぞれの半導体に適したアクセプタまたはドナーが添加されてp型またはn型を形成し、pin構造を構成する3つの半導体層からなる光電変換層を意味する。これらの製法としては、CVD法が一般的である。CVD法としては、常圧CVD、減圧CVD、プラズマCVD、熱CVD、ホットワイヤーCVD、MOCVD法等が挙げられる。
 第1光電変換ユニット4は、主に短波長領域の光を吸収して光電変換を行う光電変換層であり、たとえば太陽光の吸収波長領域が短いアモルファスシリコン(a-Si)系の材料からなることが好ましい。このような半導体光電変換層としては、アモルファス酸化シリコン(a-SiO)、アモルファス炭化シリコン(a-SiC)、アモルファスシリコン(a-Si)等が挙げられる。
 第2光電変換ユニット6は、主に第1光電変換ユニット4よりも高波長領域の光を吸収して光電変換を行う光電変換層であり、たとえば吸収する太陽光の吸収波長領域が長いアモルファスシリコンゲルマニウム(a-SiGe)等が挙げられる。
 また、複数層の光電変換ユニットを有する積層型薄膜太陽電池において、光電変換ユニットは受光面側から順番に第1の光電変換ユニット、第2の光電変換ユニット・・・の順に形成される。したがって、実施の形態1にかかる積層型(タンデム接合型)薄膜太陽電池では、透光性基板1側から第1光電変換ユニット4、第2光電変換ユニット6の順で形成されている。第1の光電変換ユニットが有する禁制帯幅は、2.2~1.7eV程度であることが好ましい。これに該当する半導体光電変換層としては、例えばa-SiO、a-SiC、a-Si等が挙げられる。以下に続く第2の光電変換層、第3の光電変換層は、これらが有する禁制帯幅がその前側(光入射側)に存在する光電変換層の禁制帯幅より小さいことが好ましい。また、積層される光電変換層を構成する主材料の熱膨張係数は、近しい値であることが好ましい。
 中間層5は、例えば酸化シリコンからなり、第1光電変換ユニット4と第2光電変換ユニット6との間に狭持される。中間層5は、光透過性および光反射性の双方の特性を有し、かつ導電性を有する膜により構成され、第1光電変換ユニット4と第2光電変換ユニット6との間の電気的、光学的接続を改善する。中間層5は、第1光電変換ユニット4に入射した光を反射させることができるため、第1光電変換ユニット4の実効膜厚を増大させる効果があり、第1光電変換ユニット4と第2光電変換ユニット6との出力電流密度を調節し、モジュール特性を向上させることができる。3層以上の光電変換層が積層された積層型薄膜太陽電池においては、第nの光電変換層と第(n+1)の光電変換層に狭持されるように例えば酸化シリコンが形成される。ここで、nは、受光面側からの光電変換層の順番である。形成順としては第nの光電変換層の上に形成されることになる。
 ここで、中間層5を構成する酸化シリコンとは、主としてシリコン原子と酸素原子を含むものを意味し、シリコン(Si)、酸素(O)の化学量論比を限定するものではなく、また非晶質、多結晶、結晶のいずれをも含む。また、主成分の他に、窒素(N)原子や、水素(H)原子等の他の原子をも含ませることができる。酸化シリコンからなる中間層5は、例えばシリコン(Si)原子を含むガスおよび酸素(O)原子を含むガスを使用して、プラズマCVD法により形成することができる。このような中間層5としては、上記酸化シリコン以外に、酸化微結晶シリコン(μc-SiO)やアルミニウム添加酸化亜鉛(ZnO:Al)、酸化亜鉛(ZnO)、酸化インジウム錫(ITO)、酸化スズ(SnO)等の導電性を有した透明な膜を用いることができる。
 中間層5の酸化シリコンは、膜中の酸素濃度を調整することによって屈折率を1.5~4程度にすることができ、第nの光電変換層と比較してその値を小さくすることができる。例えば、波長600nmの光に対する酸化シリコンの屈折率は、1.5~4程度とすることができる。屈折率の異なる中間層5を設けることで、その界面における光反射を大きくさせ、第nの光電変換層へ反射される光量を増加させることにより第nの光電変換層で発生する光電流を増大させることができる。このときの酸化シリコンの屈折率は、第n光電変換層の屈折率に対してより小さい方が、第n光電変換層への反射を大きくすることができる。
 また通常、第n(光入射側)の光電変換層は、禁制帯幅が大きい材料で形成されることが多く、短波長光が多く吸収され、長波長光はあまり吸収されない。したがって、中間層には長波長光が多く到達することになる。
 中間層5の平均膜厚が5nm以上の場合に、第nの光電変換層への光反射効果が顕著に現れ、中間層5の平均膜厚が増加するにつれて中間層5での光吸収が増加する。したがって、中間層5における光吸収抑制のため、中間層5の平均膜厚としては500nm以下が好ましい。そして、より好ましい中間層5の平均膜厚は、10nm~100nmである。ここでの平均膜厚とは、中間層5の成膜の際のばらつきを含むものである。また、中間層5の平均膜厚は、電子顕微鏡、光学顕微鏡、原子間力顕微鏡等を用いた断面観察で測定することができる。
 また、中間層5の形状は、成膜される第nの光電変換層の表面凹凸(テクスチャ)を追従している。表面凹凸(テクスチャ)による光散乱・屈折等の光閉じ込め効果により、第nの光電変換層と第(n+1)との光電変換層のそれぞれで発生する光電流を向上させ、積層型薄膜太陽電池の変換効率向上が期待できる。一般的には前面透明電極層3に表面凹凸(テクスチャ)が形成されている場合が多く、中間層5もこの表面凹凸(テクスチャ)を引き継いだ形状で形成される。
 第nの光電変換層上に成膜される中間層5を構成する材料に望まれる特性としては、少なくとも第(n+1)の光電変換層で光吸収可能な波長領域において、第nの光電変換層と屈折率が異なること、および光吸収係数が小さいことである。また、光電流が流れることを阻害しない程度の導電率を有していることが好ましい。
 裏面電極層8は、光反射が大きく、導電率が高い程好ましい。裏面電極層8は、可視光の反射率の高い銀(Ag)、アルミニウム(Al)、チタン(Ti)もしくはパラジウム(Pd)などの金属材料、またはこれらの合金、またはこれらの窒化物、酸化物などにより形成することができる。裏面電極層8は、光電変換層で吸収されなかった光を反射して再度光電変換層に戻すため、光電変換効率の向上に寄与する。裏面電極層8の製膜は、例えばスパッタリング法、CVD法やスプレー法など公知の手段によって行われる。
 なお、第2光電変換ユニット6のシリコンへの金属拡散を防止するために、裏面電極層8と第2光電変換ユニット6との間に裏面透明導電膜7を設けてもよい。裏面透明導電膜7は、前面透明電極層3と同様に酸化亜鉛(ZnO)、酸化インジウム錫(ITO)、酸化スズ(SnO)および酸化ジルコニウム(ZrO)などの結晶性金属酸化物を主成分とする透明導電性酸化膜や、これらの透明導電性酸化膜にアルミニウム(Al)を添加した膜などの透光性の膜によって構成される。製膜は、例えばスパッタリング法、CVD法やスプレー法など公知の手段によって形成される。また、裏面透明導電膜7の表面は、ブラスト法やウェットエッチング法などによる粗面化処理によって凹凸が形成された表面テクスチャ構造を有する。なお、各種エッチングによる表面凹凸形状の形成は必ずしも行う必要はない。また、裏面透明導電膜7は、第2光電変換ユニット6と裏面電極層8との密着力向上の効果も有する。
 以上のような実施の形態1にかかる薄膜太陽電池においては、前面透明電極層3の下層に多層反射防止膜2が形成されている。多層反射防止膜2による光反射率の低減により、透光性基板1と前面透明電極層3との屈折率の違いにより生じる反射光を低減することができ、前面透明電極層3への光透過性(透過率)を向上させることができる。
 また、多層反射防止膜2のうち、前面透明電極層3の直下(最上層)には前面透明電極層3側から膜厚2nm~10nmの酸化シリコン(SiO)層2bと膜厚20nm~40nmの酸化ハフニウム(HfO)層2aとが積層形成されている。すなわち、前面透明電極層3の直下には膜厚2nm~10nmの酸化シリコン(SiO)層2bが配置され、該酸化シリコン(SiO)層2bの直下には膜厚20nm~40nmの酸化ハフニウム(HfO)層2aが配置されている。前面透明電極層3の直下の該最上層2層の構成は、その上部に形成される透明導電酸化膜である酸化亜鉛(ZnO)膜の形成時にその結晶構造を変化させ、該酸化亜鉛(ZnO)膜の製膜後にその表面をエッチングすることで得られる表面凹凸形状(テクスチャ)を大きくする効果を有する。
 この効果により、実施の形態1にかかる薄膜太陽電池においては、大径化された表面凹凸形状(テクスチャ)が酸化亜鉛(ZnO)膜からなる前面透明電極層3の表面に形成されている。そして、このような大径の表面凹凸形状(テクスチャ)は、薄膜太陽電池に入射した入射光の光散乱性の向上効果を有し、特に長波長側の光の光散乱に有効である。すなわち、前面透明電極層3の表面に形成された大径化された表面凹凸形状(テクスチャ)の光散乱・屈折等の光閉じ込め効果により、第1光電変換ユニット4で発生する光電流を向上させ、光電変換効率を向上させることができる。
 すなわち、実施の形態1にかかる多層反射防止膜2は、反射防止膜本来の界面での光反射抑制による光透過性の向上効果に加え、その上部に成膜する酸化亜鉛膜の結晶性を向上させる効果を持ち、透明導電膜成膜後に化学エッチングによって形成する表面凹凸形状を大きくさせる効果を有している。これにより、実施の形態1にかかる多層反射防止膜2は、透明導電酸化膜付き基体の性能として、光透過率を向上させ、また特に長波長側での光散乱特性を向上させることにより、この上部に形成される薄膜太陽電池の効率を向上させる効果を有する。
 また、第1光電変換ユニット4の形状は、前面透明電極層3の形状を追従している。すなわち、第1光電変換ユニット4の形状は、表面に大径化された表面凹凸形状(テクスチャ)を有する。そして、中間層5の形状は、第1光電変換ユニット4の形状を追従している。すなわち、中間層5の形状は、表面に大径化された表面凹凸形状(テクスチャ)を有する。これにより、中間層5の表面凹凸(テクスチャ)による光散乱・屈折等の光閉じ込め効果により、第2光電変換ユニット6で発生する光電流を向上させ、光電変換効率を向上させることができる。
 したがって、実施の形態1にかかる薄膜太陽電池によれば、多層反射防止膜2による前面透明電極層3への光透過性(透過率)の向上効果と、前面透明電極層3の表面に形成された大径化された表面凹凸形状(テクスチャ)による入射光の光散乱性の向上効果とにより、広い波長帯域(特に300nm~1300nmの波長帯域)の太陽光を有効利用することが可能な、光電変換効率に優れた薄膜太陽電池が実現されている。
 つぎに、上記のように構成された実施の形態1にかかる薄膜太陽電池の製造方法について説明する。図5-1~図5-4は、実施の形態1にかかる薄膜太陽電池の製造工程の一例を説明するための断面図である。図6は、実施の形態1にかかる薄膜太陽電池の製造工程の一例を説明するためのフローチャートである。
 最初に透光性基板1を用意する。ここでは、透光性基板1として無アルカリガラス基板を用いて以下説明する。また、透光性基板1として安価な青板ガラス基板を用いてもよい。青板ガラス基板を用いる場合、一般的に透光性基板1からのアルカリ成分の拡散を防止するためにバリア層としてPCVD法などによりSiO膜を50nm程度形成する必要があるが、本発明においては、HfO層とSiO層の積層膜が、バリア層の役割を果たすので不要である。
 まず、透光性基板1の上に、多層反射防止膜2を例えば蒸着法により形成する(図5-1、ステップS10)。製膜温度は、室温よりも高温で、100~200℃の方が膜厚均一性、膜粗密性などの点で優れた多層反射防止膜2が得られる。その他、スパッタリング法、CVD法などでも多層反射防止膜2を形成可能である。これらの製膜法においても、室温よりも100~300℃の高温で製膜する方が望ましい。多層反射防止膜2は、透光性基板1側からHfO層2aとSiO層2bとの対を1層以上有する構造とされ、最上層の対は、表面側から膜厚2nm~10nmの酸化シリコン(SiO)層2bと膜厚20nm~40nmの酸化ハフニウム(HfO)層2aとが積層された構造とする。ここでは、多層反射防止膜2として、表面側からSiO層2b(膜厚:5nm)/HfO層2a(膜厚:35nm)/SiO層2b(膜厚:14nm)/HfO層2a(膜厚:30nm)/SiO層2b(膜厚:20nm)/HfO層2a(膜厚:17nm)の構造を有する多層膜を形成する。透光性基板1としては例えばガラス基板を使用する。
 つぎに、多層反射防止膜2上に、アルミニウム(Al)をドーパントとして含む膜厚1μmの酸化亜鉛(ZnO)からなる前面透明電極層3を例えばDCスパッタリング法により形成する(図5-2、ステップS20)。成膜条件は、例えば製膜パワー:500W~1000W、製膜圧力:0.1Pa~0.5Pa、製膜温度:100℃以上で、製膜温度は望ましくは300℃以上がよい。ZnOは、不純物濃度が低いほど高光透過率が得られるので不純物濃度が低いことが好ましく、例えばZnに対して原子比が0.1%~1%、より好ましくは0.1%~0.5%などとするとよい。しかし、不純物濃度が低くなると導電率が低下するので、導電率10Ωcmを確保できなくなる。そのため、ZnO膜の製膜条件を高温、低圧力化することで高結晶化させて、導電率を確保する。すなわち、前面透明電極層3は、導電率を確保しつつ光透過性を得るため、不純物濃度はできるだけ低濃度にして、その分、移動度が高くなるよう結晶化を促進する条件で成膜することが望ましい。そのためには結晶サイズが大きくなるような基板温度の高い条件で膜形成を行うことが望ましい。たとえばZnOであれば不純物を原子比でZnの0.1%~1%として、基板温度を200℃~450℃程度にするとよく、300℃以上とするとより好ましい。
 つぎに、例えばエッチングガスとしてアルゴン(Ar)を用いたドライエッチングにより、前面透明電極層3の表面に表面凹凸形状(テクスチャ)を形成する(図5-3、ステップS30)。ここで、本実施の形態では、前面透明電極層3の下層に多層反射防止膜2を形成し、前面透明電極層3の直下(最上層)には前面透明電極層3側から膜厚2nm~10nmの酸化シリコン(SiO)層2bと膜厚20nm~40nmの酸化ハフニウム(HfO)層2aとを積層形成する。前面透明電極層3の直下にこのような最上層2層を形成することにより、該最上層2層の構成が、その上部に形成される透明導電酸化膜である酸化亜鉛(ZnO)の結晶構造を変化させ、該透明導電酸化膜の製膜後にその表面をエッチングすることで得られる表面凹凸形状を大きくすることができる。したがって、前面透明電極層3の表面には、大径化された表面凹凸形状(テクスチャ)3aが形成される。
 また、透光性基板1を例えば1%の塩酸(HCl)水溶液中に30秒間浸して前面透明電極層3の表面をエッチングして粗面化し、前面透明電極層3の表面に大径化された表面凹凸形状(テクスチャ)3aを形成してもよい。その後、透光性基板1を1分間以上の純水洗浄を行い、乾燥する。このエッチング処理により、前面透明電極層3の表面に例えば平均100nm以上の深さの大径化された表面凹凸形状(テクスチャ)3aが形成され、平均膜厚は約500nm程度になる。
 つぎに、例えばアモルファスシリコン(α-Si)からなる第1光電変換ユニット4を、前面透明電極層3上にプラズマCVD法により形成する(図5-4、ステップS40)。第1光電変換ユニット4としては、前面透明電極層3側からからp型のアモルファスシリコン膜(a-Si膜)、i型のアモルファスシリコン膜(a-Si膜)、n型のアモルファスシリコン膜(a-Si膜)を順次積層形成する。第1光電変換ユニット4は、前面透明電極層3の形状を追従した形状に形成される。すなわち、形成された第1光電変換ユニット4は、表面に大径化された表面凹凸形状(テクスチャ)を有する。
 つぎに、例えば酸化シリコンからなる中間層5を、第1光電変換ユニット4上にプラズマCVD法により形成する(図5-4、ステップS50)。中間層5は、第1光電変換ユニット4の形状を追従した形状に形成される。すなわち、形成された中間層5は、表面に大径化された表面凹凸形状(テクスチャ)を有する。
 つぎに、例えばアモルファスシリコンゲルマニウム(a-SiGe)からなる第2光電変換ユニット6を、中間層5上にプラズマCVD法により形成する(図5-4、ステップS60)。第2光電変換ユニット6としては、前面透明電極層3側からからp型のアモルファスシリコン膜(a-Si膜)、i型のアモルファスシリコン膜(a-Si膜)、n型のアモルファスシリコン膜(a-Si膜)を順次積層形成する。第2光電変換ユニット6は、中間層5の形状を追従した形状に形成される。すなわち、形成された第2光電変換ユニット6は、表面に大径化された表面凹凸形状(テクスチャ)を有する。
 つぎに、第2光電変換ユニット6上に、酸化亜鉛(ZnO)からなる裏面透明導電膜7を例えばスパッタリング法により形成する(図5-4、ステップS70)。
 つぎに、例えば銀(Ag)からなる裏面電極層8をスパッタリング法により形成する(図5-4、ステップS80)。以上の工程を実施することにより、図1に示す実施の形態1にかかるスーパーストレート型の薄膜太陽電池が得られる。
 以上のような実施の形態1にかかる薄膜太陽電池の製造方法においては、前面透明電極層3の下層に多層反射防止膜2を形成する。多層反射防止膜2による光反射率の低減により、透光性基板1と前面透明電極層3との屈折率の違いにより生じる反射光を低減することができ、前面透明電極層3への光透過性(透過率)を向上させることができる。
 また、多層反射防止膜2のうち、前面透明電極層3の直下(最上層)には前面透明電極層3側から膜厚2nm~10nmの酸化シリコン(SiO)層2bと膜厚20nm~40nmの酸化ハフニウム(HfO)層2aとを積層形成する。すなわち、前面透明電極層3の直下には膜厚2nm~10nmの酸化シリコン(SiO)層2bが配置し、該酸化シリコン(SiO)層2bの直下には膜厚20nm~40nmの酸化ハフニウム(HfO)層2aを配置する。酸化ハフニウム(HfO)層2a上の薄膜の酸化シリコン(SiO)層2bの表面には、膜成長初期に形成される結晶核の凹凸が残っている状態となり、Ra1~5nmの微小な凹凸が存在する。このような微小凹凸を有する多層反射防止膜2上に透明導電膜をスパッタリング法、CVDなどで製膜すると、透明導電膜は多層反射防止膜2の凸部に結晶核を生じ、結晶成長が促される。このように、前面透明電極層3の直下の該最上層2層の構成は、その上部に形成される透明導電酸化膜である酸化亜鉛(ZnO)膜の形成時にその結晶構造を変化させ、該酸化亜鉛(ZnO)膜の製膜後にその表面をエッチングすることで得られる表面凹凸形状(テクスチャ)を大きくする効果を有する。
 すなわち、実施の形態1にかかる多層反射防止膜2は、反射防止膜本来の界面での光反射抑制による光透過性の向上効果に加え、その上部に成膜する酸化亜鉛膜の結晶性を向上させる効果を持ち、透明導電膜成膜後に化学エッチングによって形成する表面凹凸形状を大きくさせる効果を有している。これにより、実施の形態1にかかる多層反射防止膜2は、透明導電酸化膜付き基体の性能として、光透過率を向上させ、また特に長波長側での光散乱特性を向上させることにより、この上部に形成される薄膜太陽電池の効率を向上させる効果を有する。
 この効果により、実施の形態1にかかる薄膜太陽電池の製造方法においては、大径化された表面凹凸形状(テクスチャ)が酸化亜鉛(ZnO)膜からなる前面透明電極層3の表面に形成される。そして、このような大径の表面凹凸形状(テクスチャ)は、薄膜太陽電池に入射した入射光の光散乱性の向上効果を有し、特に長波長側の光の光散乱に有効である。すなわち、前面透明電極層3の表面に形成された大径化された表面凹凸形状(テクスチャ)の光散乱・屈折等の光閉じ込め効果により、第1光電変換ユニット4で発生する光電流を向上させ、光電変換効率を向上させることができる。
 また、第1光電変換ユニット4の形状は、前面透明電極層3の形状を追従する。すなわち、第1光電変換ユニット4の形状は、表面に大径化された表面凹凸形状(テクスチャ)を有する。そして、中間層5の形状は、第1光電変換ユニット4の形状を追従する。すなわち、中間層5の形状は、表面に大径化された表面凹凸形状(テクスチャ)を有する。これにより、中間層5の表面凹凸(テクスチャ)による光散乱・屈折等の光閉じ込め効果により、第2光電変換ユニット6で発生する光電流を向上させ、光電変換効率を向上させることができる。
 したがって、実施の形態1にかかる薄膜太陽電池の製造方法によれば、多層反射防止膜2による前面透明電極層3への光透過性(透過率)の向上効果と、前面透明電極層3の表面に形成された大径化された表面凹凸形状(テクスチャ)による入射光の光散乱性の向上効果とにより、広い波長帯域(特に300nm~1300nmの波長帯域)の太陽光を有効利用することが可能な、光電変換効率に優れた薄膜太陽電池を作製することができる。
 なお、上述した実施の形態1においては、多層反射防止膜2のうち、酸化シリコン(SiO)層2bと酸化ハフニウム(HfO)層2aとを積層する場合について説明したが、酸化シリコン(SiO)層2bよりも高屈折率および高熱膨張係数を有し、かつ波長300nm~1200nmの光の透過率が90%以上である材料として、例えば酸化マグネシウム(MgO)、酸化ハフニウム(HfO)、二酸化チタン(TiO)、サファイヤ(Al)、酸化ジルコニウム(ZrO)、酸化イットリウム(Y)などの材料からなる膜を酸化シリコン(SiO)層2bと積層させて多層反射防止膜2を構成してもよい。ただし、酸化シリコン(SiO)層2bと酸化ハフニウム(HfO)層2aとからなる多層反射防止膜2と、酸化亜鉛(ZnO)を母材(主要成分)とする透光性導電膜からなる前面透明電極層3の組み合わせの場合において、上述した効果がより確実に得られる。
実施の形態2.
 図7は、本発明の実施の形態2にかかるサブストレート型の光起電力素子である薄膜太陽電池の構成を示す断面図である。実施の形態2にかかる薄膜太陽電池は、光電変換層が2層積層された積層型(タンデム接合型)薄膜太陽電池である。図8は、本発明の実施の形態2にかかる透明導電膜付き基体の構成を示す断面図である。
 実施の形態2にかかる薄膜太陽電池は、図7に示すように光反射性基板9の上に、多層反射膜10、第2電極層である裏面電極層18、第2光電変換ユニット6、中間層5、第1光電変換ユニット4、第1電極層である前面透明電極層3が順次積層された構成を有する。この薄膜太陽電池においては、前面透明電極層3側から光を入射させる。また、実施の形態2にかかる透明導電膜付き基体は、実施の形態2にかかる薄膜太陽電池の構成のうち、図8に示すように光反射性基板9と多層反射膜10と裏面電極層18とにより構成される。
 光反射性基板9は、第2光電変換ユニット6で吸収させずに透過した光を反射して、再度第2光電変換ユニット6に戻し、光電変換効率の向上に寄与する。光反射性基板9は、光反射性を有する材料により構成されてもよく、光反射性を持たない基体の表面に光反射層を設けて構成されてもよい。なお、本実施の形態では、光電変換効率の向上に寄与する基板として光反射性基板9を用いているが、本発明の趣旨においては基板が光反射性を有することは必須でない。
 裏面電極層18は、透光性を有する透明導電膜からなり、本発明では酸化亜鉛(ZnO)を母材(主要成分)とする透光性導電膜を用いる。また、裏面電極層18は、実施の形態1の前面透明電極層3と同様に、大径化された表面凹凸形状(テクスチャ)が表面に形成されている。このような大径の表面凹凸形状(テクスチャ)は、光反射性基板9または多層反射膜10で反射して第2光電変換ユニット6に戻る光の光散乱性の向上効果を有し、特に長波長側の光の光散乱に有効である。裏面電極層18の詳細は、実施の形態1の前面透明電極層3と同じであるため、詳細な説明は省略する。なお、図7および図8において図1の場合と同じ構成については図1と同じ符号を付すことで、詳細な説明は省略する。
 実施の形態2にかかる薄膜太陽電池では、実施の形態1における多層反射防止膜2と同じ構成の多層膜を光反射性基板9上に配置して多層反射膜10として用いてサブストレート型の薄膜太陽電池を構成している。本実施の形態にかかる多層反射膜10は、裏面電極層18を透過してきた光を反射するために光反射性基板9の上に設けられる。多層反射膜10は光反射性基板9とともに、光電変換ユニットで吸収されなかった光を反射して再度光電変換ユニットに戻すため、光電変換効率の向上に寄与する。
 多層反射膜10は、光反射性基板9側から低屈折率層と高屈折率層とが少なくとも一層ずつ順次積層された対構造を有する。これらの低屈折率層と高屈折率層とは、入射光側の屈折率、透過光側の屈折率、および光の波長に依存した膜厚で構成される。その設計指針は、主として多層反射膜10で反射する場合は、多層反射膜10における反射光量が最も多くなることである。光反射性基板9と組み合わせて反射する場合は、多層反射膜10は低反射となる構成としてもよい。構成する系によって微小な調整が必要になる。また、その製膜方法は、特に限定されるものではなく既存の手法を用いることができ、例えばCVD法、スパッタリング法、などを用いることができる。
 本実施の形態にかかる多層反射膜10は、高屈折率層は酸化ハフニウム(HfO)層10aからなり、低屈折率層は酸化シリコン(SiO)層10bからなる。本実施の形態にかかる多層反射膜10は、図7および図8に示すように裏面電極層18側からSiO層10b(膜厚:5nm)/HfO層10a(膜厚:35nm)/SiO層10b(膜厚:14nm)/HfO層10a(膜厚:30nm)/SiO層10b(膜厚:20nm)/HfO層10a(膜厚:17nm)の構成を有する。
 なお、ここでは、酸化シリコン(SiO)層10bと酸化ハフニウム(HfO)層10aとの対が3対積層された6層構造の多層反射防止膜2を示しているが、多層反射防止膜2における酸化シリコン(SiO)層10bと酸化ハフニウム(HfO)層10aとの積層数は6層に限定されるものではなく、光反射性基板9側から酸化シリコン(SiO)層10bと酸化ハフニウム(HfO)層10aとが少なくとも対単位で順次積層された構造であればよい。
 そして、実施の形態2にかかる多層反射膜10においては、最上層の対(裏面電極層18側の対)は、裏面電極層18側から膜厚2nm~10nmの酸化シリコン(SiO)層10bと膜厚20nm~40nmの酸化ハフニウム(HfO)層10aとが積層された構造とされる。すなわち、裏面電極層18の直下には膜厚2nm~10nmの酸化シリコン(SiO)層10bが配置され、該酸化シリコン(SiO)層10bの直下には膜厚20nm~40nmの酸化ハフニウム(HfO)層10aが配置される。そして、最上層の対(裏面電極層18側の対)における酸化シリコン(SiO)層10bと酸化ハフニウム(HfO)層10aとの好ましい膜厚の組み合わせは、酸化シリコン(SiO)層10bの膜厚が5nmであり、酸化ハフニウム(HfO)層10aの膜厚が35nmである。
 裏面電極層18の直下の該最上層2層の構成は、その上部に形成される透明導電酸化膜である酸化亜鉛(ZnO)膜の形成時にその結晶構造を変化させ、該酸化亜鉛(ZnO)膜の製膜後にその表面をエッチングすることで得られる表面凹凸形状(テクスチャ)を大きくする効果を有する。
 この効果により、実施の形態2にかかる薄膜太陽電池においては、大径化された表面凹凸形状(テクスチャ)が酸化亜鉛(ZnO)膜からなる裏面電極層18の表面に形成されている。そして、このような大径の表面凹凸形状(テクスチャ)は、光反射性基板9または多層反射膜10で反射して第2光電変換ユニット6に戻る反射光の光散乱性の向上効果を有し、特に長波長側の光の光散乱に有効である。すなわち、裏面電極層18の表面に形成された大径化された表面凹凸形状(テクスチャ)の光散乱・屈折等の光閉じ込め効果により、第2光電変換ユニット6で発生する光電流を向上させ、光電変換効率を向上させることができる。
 各層の製造方法は実施の形態1と同様であるため、上記の説明を参照することとしてここでは省略する。
 以上のような実施の形態2にかかる薄膜太陽電池においては、裏面電極層18の下層に多層反射膜10が形成されている。多層反射膜10は、光電変換ユニットで吸収されなかった光を反射して再度光電変換ユニットに戻すため、光電変換効率の向上に寄与する。
 また、多層反射膜10のうち、裏面電極層18の直下(最上層)には裏面電極層18側から膜厚2nm~10nmの酸化シリコン(SiO)層10bと膜厚20nm~40nmの酸化ハフニウム(HfO)層10aとが積層形成されている。すなわち、前面透明電極層3の直下には膜厚2nm~10nmの酸化シリコン(SiO)層10bが配置され、該酸化シリコン(SiO)層10bの直下には膜厚20nm~40nmの酸化ハフニウム(HfO)層10aが配置されている。裏面電極層18の直下の該最上層2層の構成は、その上部に形成される透明導電酸化膜である酸化亜鉛(ZnO)膜の形成時にその結晶構造を変化させ、該酸化亜鉛(ZnO)膜の製膜後にその表面をエッチングすることで得られる表面凹凸形状(テクスチャ)を大きくする効果を有する。
 この効果により、実施の形態2にかかる薄膜太陽電池においては、大径化された表面凹凸形状(テクスチャ)が酸化亜鉛(ZnO)膜からなる裏面電極層18の表面に形成されている。そして、このような大径の表面凹凸形状(テクスチャ)は、光反射性基板9または多層反射膜10で反射して第2光電変換ユニット6に戻る反射光の光散乱性の向上効果を有し、特に長波長側の光の光散乱に有効である。すなわち、裏面電極層18の表面に形成された大径化された表面凹凸形状(テクスチャ)の光散乱・屈折等の光閉じ込め効果により、第2光電変換ユニット6で発生する光電流を向上させ、光電変換効率を向上させることができる。
 すなわち、実施の形態2にかかる多層反射膜10は、反射膜本来の光反射性の向上効果に加え、その上部に成膜する酸化亜鉛膜の結晶性を向上させる効果を持ち、透明導電膜成膜後に行うエッチングによって形成する表面凹凸形状を大きくさせる効果を有している。これにより、実施の形態2にかかる多層反射膜10は、透明導電酸化膜付き基体の性能として、光反射率を向上させ、また特に長波長側での光散乱特性を向上させることにより、この上部に形成される薄膜太陽電池の効率を向上させる効果を有する。
 また、第2光電変換ユニット6の形状は、裏面電極層18の形状を追従している。すなわち、第2光電変換ユニット6の形状は、表面に大径化された表面凹凸形状(テクスチャ)を有する。そして、中間層5の形状は、第2光電変換ユニット6の形状を追従している。すなわち、中間層5の形状は、表面に大径化された表面凹凸形状(テクスチャ)を有する。これにより、中間層5の表面凹凸(テクスチャ)による光散乱・屈折等の光閉じ込め効果により、第1光電変換ユニット4で発生する光電流を向上させ、光電変換効率を向上させることができる。
 したがって、実施の形態2にかかる薄膜太陽電池によれば、多層反射膜10による裏面電極層18への光反射性(反射率)の向上効果と、裏面電極層18の表面に形成された大径化された表面凹凸形状(テクスチャ)による反射光の光散乱性の向上効果とにより、広い波長帯域(特に300nm~1300nmの波長帯域)の太陽光を有効利用することが可能な、光電変換効率に優れた薄膜太陽電池が実現されている。
 なお、上述した実施の形態1および実施の形態2では示していないが、実施の形態1および実施の形態2で説明した薄膜太陽電池の構成において、後述する実施の形態3に示すような複数の薄膜太陽電池セルが電気的に直列接続された薄膜太陽電池モジュールを構成することができる。
実施の形態3.
 図9-1は、本発明の実施の形態3にかかるスーパーストレート型のタンデム型薄膜太陽電池である薄膜太陽電池モジュール(以下、モジュールと呼ぶ)101の概略構成を示す平面図である。図9-2は、モジュール101の断面構造を説明するための図であり、図9-1の線分A-A’方向における要部断断面図である。図9-3は、図9-2の要部断断面図である。
 図9-1および図9-2に示すように、実施の形態3にかかるモジュール101は、透光性基板102上に形成された短冊状(矩形状)の薄膜太陽電池セル(以下、セルと呼ぶ)100を複数備え、これらのセル100が電気的に直列に接続された構造を有する。セル100は、透明電極層の低抵抗化を目的とした集電電極を備えたタンデム型薄膜太陽電池である。セル100は、透光性基板102上に形成された多層反射防止膜202の上に集電電極201が部分的に形成され、多層反射防止膜202上および集電電極201上に前面透明電極層103が形成されている。また、実施の形態3にかかる透明導電膜付き基体は、実施の形態3にかかる薄膜太陽電池の構成のうち、図9-2および図9-3に示すように透光性基板102と集電電極201と多層反射防止膜202と前面透明電極層103とにより構成される。
 また、前面透明電極層103上には、第1光電変換ユニット107、第1中間層108、第2光電変換ユニット112、第2中間層113、第3光電変換ユニット117、裏面透明電極層118および裏面反射電極層119がこの順で積層されている。
 透光性基板102上に形成された多層反射防止膜202および前面透明電極層103には、透光性基板102の短手方向と略平行な方向に延在するとともに透光性基板102に達するストライプ状の第1の溝D1が形成されている。この第1の溝D1の部分に第1光電変換ユニット107が埋め込まれることで、前面透明電極層103が隣接するセル100に跨るようにセル毎に分離されて形成されている。
 また、前面透明電極層103上に形成された第1光電変換ユニット107、第1中間層108、第2光電変換ユニット112、第2中間層113、第3光電変換ユニット117には、第1の溝D1と異なる箇所において透光性基板102の短手方向と略平行な方向に延在するとともに前面透明電極層103に達するストライプ状の第2の溝(接続溝)D2が形成されている。この第2の溝(接続溝)D2の部分に裏面透明電極層118および裏面反射電極層119が埋め込まれることで、裏面反射電極層119が前面透明電極層103に接続される。そして、該前面透明電極層103が隣接するセル100に跨っているため、隣り合う2つのセルの一方の裏面透明電極層118および裏面反射電極層119と他方の前面透明電極層103とが電気的に接続されている。
 また、第1光電変換ユニット107、第1中間層108、第2光電変換ユニット112、第2中間層113、第3光電変換ユニット117、裏面透明電極層118および裏面反射電極層119には、第1の溝D1および第2の溝(接続溝)D2とは異なる箇所で、前面透明電極層103に達するストライプ状の第3の溝(分離溝)D3が形成されて、各セル100が分離されている。このように、セル100の前面透明電極層103が、隣接するセル100の裏面反射電極層119と接続することによって、隣接するセル100が電気的に直列接続している。
 つぎに、上記のように構成された実施の形態3にかかるモジュール101の製造方法について説明する。図10-1~図10-11は、実施の形態3にかかるモジュール101の製造工程を説明するための要部断面図であり、図9-2に対応する断面図である。
 はじめに透光性基板102を準備する。透光性基板102側から光を入射するタイプの薄膜太陽電池に用いられる透光性基板102には、ガラス、透明樹脂等からなる板状部材やシート状部材が用いられる。本実施の形態においては、透光性基板102として無アルカリガラス基板を用いて以下説明する。また、透光性基板102として安価な青板ガラス基板を用いてもよい。青板ガラス基板を用いる場合は、一般的に透光性基板102からのアルカリ成分の拡散を防止するためにバリア層としてPCVD法などによりSiO膜を50nm程度形成する必要がある。しかし、本実施の形態においては、透光性基板102上に形成される多層反射防止膜202のHfO層とSiO層との積層膜がバリア層の役割を果たすので不要である。
 つぎに、透光性基板102上に、多層反射防止膜202を蒸着法により形成する(図10-1)。製膜温度は、室温よりも高温で、100~200℃の方が膜厚均一性、膜粗密性などの点で優れた多層反射防止膜202が得られる。多層反射防止膜202は、その他、スパッタリング法やCVD法などでも形成可能である。これらの製膜法においても、室温よりも100~300℃の高温で製膜した方が望ましい。
 実施の形態3にかかる多層反射防止膜202は、実施の形態1における多層反射防止膜2と同様の構成および効果を有する。多層反射防止膜202は、透光性基板102側からHfO層(例えばHfO層)とSiO層(例えばSiO層)との対を1層以上有する構造とされ、最上層の対は、表面側から膜厚2nm~10nmの酸化シリコン(SiO)層と膜厚20nm~40nmの酸化ハフニウム(HfO)層とが積層された構造とする。また、実施の形態3にかかる多層反射防止膜202は、熱膨張係数が酸化シリコンより大きい酸化ハフニウム(HfO)層と酸化シリコン(SiO)層からなる。例えばHfO層の上に多層反射防止膜202の最上層として10nm以下の薄膜のSiO層を形成することで、熱膨張による形状変化量を調節する役割をする。
 なお、SiO層(例えばSiO層)と組み合わせる、SiO層(例えばSiO層)よりも高屈折率および高熱膨張係数を有し、かつ波長300nm~1500nmの光の透過率が90%以上である材料として、例えば酸化マグネシウム(MgO)、酸化ハフニウム(HfO)、二酸化チタン(TiO)、サファイヤ(Al)、酸化ジルコニウム(ZrO)、酸化イットリウム(Y)などが挙げられる。表1に、これらの材料とSiOとの屈折率:nおよび熱膨張係数を示す。また、これらの他に、波長300nm~1200nmの光の透過率が90%以上であり、熱膨張係数が4.0×10-6/℃以上であるような透明な膜であればよく、導電性・絶縁性も問わない。また、これらの透明膜は、熱膨張係数が透光性基板1よりも大きく、集電電極201よりも小さい。このような多層反射防止膜202は、CVD、スパッタリング、蒸着等の方法を用いて形成される。
Figure JPOXMLDOC01-appb-T000001
 つぎに、多層反射防止膜202上に集電電極201を形成する(図10-2)。集電電極201は、面抵抗が前面透明電極層103よりも低い金属材料(低抵抗材料)であるアルミニウム(Al)、銀(Ag)、モリブデン(Mo)、銅(Cu)、白金(Pt)およびクロム(Cr)のうちから選択される少なくとも一つの材料を用いて、少なくとも一層の金属層をスパッタリング法または蒸着法により形成する。集電電極201の形状加工は、マスク製膜または、金属膜を形成後にフォトレジストパターンをマスクとして酸またはアルカリ溶液により膜をエッチングして形成する。
 また、集電電極201は、上記の材料から選択される2種類以上の材料からなる2層以上の積層膜とされることが好ましい。たとえば、最上層をモリブデン(Mo)層とすることにより、酸化亜鉛(ZnO)系膜の前面透明電極層103との接合性を良好にすることができる。本実施の形態では、Mo層とAl層とMo層との3層構造の集電電極201を用いる。多層反射防止膜202のSiOと接する面にMo層を形成することにより、透光性基板102とAl層とが直接接触することによるシリカアルミニウムの残渣を生じることを防ぐ効果がある。また、エッチングレートがAlよりもMoの方が遅くなるようなエッチング液を用いて、AlとMoとのエッチングレート差を利用して、集電電極201の端面を形成する斜面のエッジが裾を引くように緩やかになるようにすることが可能である。
 集電電極201の端面を形成する斜面と、透光性基板102の面方向とがなす角度は60度以下とされることが好ましい。このようにして集電電極201に急峻な凹凸形状を設けないことにより、この上に形成される前面透明電極層103における集電電極201の凹凸に起因した欠陥の発生を防止できる。また、集電電極201に急峻な凹凸形状を設けないことにより、その上に形成される前面透明電極層103のカバレッジ性を良好にすることができる。
 つぎに、集電電極201上および多層反射防止膜202上に前面透明電極層103になる透明導電膜として、アルミニウム(Al)をドーパントとして含む膜厚1μmの酸化亜鉛(ZnO)膜をスパッタリング法で形成する(図10-3)。本実施の形態では前面透明電極層103になる透明導電膜としてアルミニウム(Al)ドーパントしたZnO膜を形成するが、前面透明電極層103になる透明導電膜としてはこれに限定されることなく、酸化インジウム錫(ITO)、酸化スズ(SnO)および酸化ジルコニウム(ZrO)などの結晶性金属酸化物を主成分とする透明導電性酸化膜や、これらの透明導電性酸化膜にドーパントとしてアルミニウム(Al)を添加した膜などの透光性の膜によって構成される。
 また、前面透明電極層103は、ドーパントとしてアルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ホウ素(B)、イットリウム(Y)、シリコン(Si)、ジルコニウム(Zr)、チタン(Ti)から選択した少なくとも1種類以上の元素を用いたZnO膜、ITO膜、SnO膜、またはこれらを積層して形成した透明導電膜であってもよく、光透過性を有している透明導電膜であればよい。また、上記においてはスパッタリング法により前面透明電極層103を形成する場合について説明したが、前面透明電極層103の形成方法はこれに限定されるものではなく、真空蒸着法、イオンプレーティング法などの物理的方法や、スプレー法、ディップ法、CVD法などの化学的方法を用いてもよい。また、前面透明電極層103には、表面に凹凸形状を形成し、表面テクスチャ構造を形成する(図示せず)。
 次に、前面透明電極層103の一部を透光性基板102の短手方向と略平行な方向のストライプ状に切断・除去して、前面透明電極層103を短冊状にパターニングし、複数の前面透明電極層103に分離する(図10-4)。前面透明電極層103のパターニングは、レーザスクライブ法により、透光性基板102の短手方向と略平行な方向に延在して透光性基板102に達するストライプ状の第1の溝D1を形成することで行う。なお、このように透光性基板102上に基板面内で互いに分離された複数の前面透明電極層103を得るには、写真製版などで形成したレジストマスクを用いてエッチングする方法や、メタルマスクを用いた蒸着法などの方法でも可能である。
 次に、第1の溝D1を含む前面透明電極層103上に第1光電変換ユニット107をPCVD法により形成する。ここで、第1光電変換ユニット107は、前面透明電極層103の形状に対応した形状、すなわち表面に凹凸形状を有した形状とされる。本実施の形態では、第1光電変換ユニット107として、前面透明電極層103側からP型アモルファスシリコン層104、I型アモルファスシリコン層105、N型アモルファスシリコン層106を順次形成する(図10-5)。また、第1光電変換ユニット107には、実施の形態1における第1光電変換ユニット4と同様の材料を用いることができる。
 次に、第1光電変換ユニット107上に、第1中間層108を形成する(図10-5)。第1中間層108としては、例えば酸化亜鉛(ZnO)膜をDCスパッタリング法で堆積形成する。第1中間層108は、第1光電変換ユニット107の形状(前面透明電極層103の形状)に対応した形状、すなわち表面に凹凸形状を有した形状とされる。
 続いて、第1中間層108上に第2光電変換ユニット112をPCVD法により形成する。本実施の形態では、第2光電変換ユニット112として、第1中間層108側からP型微結晶シリコン層109、I型微結晶シリコン層110、N型微結晶シリコン層111を順次形成する(図10-6)。微結晶シリコン膜を含む第2光電変換ユニット112の各層は、第1中間層108の形状(前面透明電極層103の形状)に対応した形状、すなわち表面に凹凸形状を有した形状とされる。また、第2光電変換ユニット112には、実施の形態1における第2光電変換ユニット6と同様の材料を用いることができる。
 つぎに、第2光電変換ユニット112上に導電性酸化シリコン(SiO)膜をPCVDにより堆積し、第2中間層113を形成する(図10-7)。第2中間層113を構成する導電性酸化シリコン(SiO)膜の膜厚は、例えば膜厚10nmである。
 なお、上記においては第1中間層108を透明導電膜により構成した場合について示したが、第1中間層108として透明導電膜の代わりに上述した第2中間層113を構成する導電性酸化シリコン(SiO)膜や、該導電性酸化シリコン(SiO)膜と透明導電膜の積層膜を用いてもよい。このような積層膜としては、例えば膜厚が20nm以下の導電性酸化シリコン(SiO)膜と、膜厚が20nm以上、100nm以下の透明導電膜を積層して構成される。
 第2光電変換ユニット112の微結晶シリコン層および第2中間層113の導電性酸化シリコン(SiO)膜の形成は、例えば反応ガスとしてモノシラン(SiH)、水素(H)、炭酸ガス(CO)を、ドーピングガスとしてホスフィン(PH)を用いて、反応ガス量比(H/SiH比)が大きい微結晶作製条件で、且つ反応ガス量比(H/SiH比)が10以上の条件で、PCVD法により行う。
 このときのPCVDの条件は、例えば容量結合型の平行平板電極を用いて、電源周波数10MHz~100MHz、パワー密度3mW/cm~800mW/cm、圧力50Pa~1300Pa、基板温度150℃~230℃とされる。ドーピングガスとしてホスフィン(PH)の代わりにジボラン(B)を用いてもよく、ホスフィン(PH)とジボラン(B)の両方のガスを混合させてもよい。このようにして形成された微結晶シリコン膜のラマン分光法を用いて評価した結晶性は、(111)配向と(220)配向の比が0.5以上であることが好ましい。
 続いて、第2中間層113上に第3光電変換ユニット117をPCVD法により形成する(図10-8)。本実施の形態では、第3光電変換ユニット117として、第2中間層113側からP型微結晶シリコン層114、I型微結晶シリコン層115、N型微結晶シリコン層116を順次形成する。
 そして、このようにして積層形成された第3光電変換ユニット117、第2中間層113、第2光電変換ユニット112、第1中間層108および第1光電変換ユニット107に、前面透明電極層103と同様にレーザスクライブによってパターニングを施す(図10-9)。すなわち、これらの各層の一部を透光性基板102の短手方向と略平行な方向のストライプ状に切断・除去して、短冊状にパターニングし、分離する。このようなパターニングは、レーザスクライブ法により、第1の溝D1と異なる箇所に、透光性基板102の短手方向と略平行な方向に延在して前面透明電極層103に達するストライプ状の第2の溝(接続溝)D2を形成することで行う。第2の溝(接続溝)D2の形成後、第2の溝(接続溝)D2内に付着している飛散物を高圧水洗浄、メガソニック洗浄、あるいはブラシ洗浄により除去する。
 次に、第3光電変換ユニット117上および第2の溝(接続溝)D2内に第2の電極層となる裏面透明電極層118および裏面反射電極層119をスパッタリング法により順次形成する(図10-10)。裏面透明電極層118としては、例えば酸化亜鉛(ZnO)をスパッタリング法で堆積形成する。また、裏面透明電極層118として酸化インジウム錫(ITO)や酸化スズ(SnO)等の導電性酸化物からなる膜を形成してもよい。裏面透明電極層118は、第3光電変換ユニット117と裏面反射電極層119との密着力向上と、第3光電変換ユニット117のシリコンへの金属拡散の防止に寄与する。裏面透明電極層118の表面には凹凸形状118a(図9-3参照)を形成することが好ましいが、必ずしも形成しなくてもよい。
 裏面反射電極層119としては、例えばアルミニウム(Al)膜をスパッタリング法で堆積形成する。また、裏面反射電極層119としては、Al、Ag、Au、Cu、PtおよびCrの少なくとも一つの材料からなり、少なくとも一層の金属層をスパッタリング法または蒸着法により形成してもよい。
 裏面反射電極層119の形成後、裏面反射電極層119、裏面透明電極層118、第3光電変換ユニット117、第2中間層113、第2光電変換ユニット112、第1中間層108および第1光電変換ユニット107の一部を透光性基板102の短手方向と略平行な方向のストライプ状に切断・除去して短冊状にパターニングして複数のセル100に分離する(図10-11)。パターニングは、レーザスクライブ法により、第1の溝D1および第2の溝(接続溝)D2とは異なる箇所に、透光性基板102の短手方向と略平行な方向に延在して前面透明電極層103に達するストライプ状の第3の溝(分離溝)D3を形成することで行う。なお、反射率の高い裏面反射電極層119にレーザを直接吸収させるのは困難なので、半導体層(第1光電変換ユニット107、第2光電変換ユニット112、第3光電変換ユニット117)にレーザ光エネルギーを吸収させて、半導体層とともに裏面反射電極層119を局所的に吹き飛ばすことによって複数のセル100に対応させて分離される。以上により、図9-1~図9-3に示すようなセル100を有するモジュール101が完成する。
 以上のような実施の形態3においては、多層反射防止膜202がSiOよりも高屈折率かつ高熱膨張係数を有する透明膜とSiO膜とを組み合わせて形成される。これにより、多層反射防止膜202は、集電電極201と透光性基板102との熱膨張差を緩和する効果を有するようになる。
 前面透明電極層103の低抵抗化を図るには、透明電極層の高温製膜化が有効であるが、高温製膜を実現するには透光性基板102に含まれるアルカリ不純物濃度をできる限り低くして透光性基板102の耐熱性を向上させる必要がある。一方、アルカリ不純物濃度を低くすると、透光性基板102の熱膨張係数は低くなる。
 成膜法により透明電極層の低抵抗化を図ったうえで、集電電極を形成することによりさらに透明電極層の低抵抗化を図ろうとすると、前面透明電極層103および透光性基板102の熱膨張係数は集電電極201の熱膨張係数よりも低くなる。このため、透光性基板102と集電電極201との熱膨張係数差が、前面透明電極層103の形成後の熱収縮時において、前面透明電極層103のクラック発生の原因となる。
 そこで、多層反射防止膜202を透光性基板102と集電電極201との間に挿入することにより、透光性基板102と集電電極201との熱膨張係数差を緩和して、前面透明電極層103の熱収縮時におけるクラックの発生を防止することができ、透明電極層の低抵抗化を目的とする集電電極の挿入を可能にすることができる。
実施の形態4.
 実施の形態4では、実施の形態3の変形例について説明する。図11は、実施の形態4にかかるタンデム型薄膜太陽電池モジュールにおいて透光性基板102、集電電極201、多層反射防止膜202および前面透明電極層103に注目して示した断面図である。実施の形態4にかかるモジュールにおいて、これら以外の構成は実施の形態3の場合と同様である。図11に示すように、実施の形態4にかかるモジュールにおいては、多層反射防止膜202の表面から透光性基板102の内部に達する凹部に集電電極201が形成され、集電電極201の表面と多層反射防止膜202の表面とが同一面(平坦面)とされている。そして、集電電極201上および多層反射防止膜202上に前面透明電極層103が形成されている。
 図11に示すような構成を形成する第1の方法では、先に透光性基板102上に全面に多層反射防止膜202を形成し、その後凹部を形成する。この場合は、多層反射防止膜202の形成後、集電電極201を形成する部位の多層反射防止膜202および透光性基板102に凹部を形成する。凹部は、多層反射防止膜202上に、凹部を形成する領域に開口を有するレジストパターンを形成した後、これをマスクにしてフッ酸などの酸やアルカリ溶液で集電電極201の膜厚相当分だけ多層反射防止膜202および透光性基板102をエッチング除去して形成する。つぎに、集電電極201の表面と多層反射防止膜202の表面とが平坦になるように集電電極201を形成し、その上に前面透明電極層103を形成する。これ以降は、実施の形態3における図10-5以降の工程を実施することでモジュールを形成できる。
 また、図11に示すような構成を形成する第2の方法では、先に透光性基板102に凹部を形成し、その後、多層反射防止膜202を形成する。この場合は、透光性基板102上に第1の方法の場合と同様のレジストパターンを形成し、これをマスクにして透光性基板102をエッチングして透光性基板102に凹部を形成する。つぎに、多層反射防止膜202をマスク蒸着あるいはスパッタリングで形成する。その後、第1の方法の場合と同様に、集電電極201の表面と多層反射防止膜202の表面とが平坦になるように集電電極201を形成し、その上に前面透明電極層103を形成する。これ以降は、実施の形態3における図10-5以降の工程を実施することで薄膜太陽電池モジュールを形成できる。
 また、凹部の形成後、透光性基板102上の全面に多層反射防止膜202を形成し、多層反射防止膜202上に第1の方法の場合と同様のレジストパターンを形成して多層反射防止膜202をエッチング除去して再度凹部を形成してもよい。そして、集電電極201の表面と多層反射防止膜202の表面とが平坦になるように集電電極201を形成し、その上に前面透明電極層103を形成する。これ以降は、実施の形態3における図10-5以降の工程を実施することで薄膜太陽電池モジュールを形成できる。
 図12は、実施の形態4にかかる他のタンデム型薄膜太陽電池モジュールにおいて透光性基板102、集電電極201、多層反射防止膜202および前面透明電極層103に注目して示した断面図である。実施の形態4にかかる他のモジュールにおいて、これら以外の構成は実施の形態3の場合と同様である。図12に示すように、実施の形態4にかかる他のモジュールにおいては、多層反射防止膜202の表面から透光性基板102に達する凹部に集電電極201が形成され、集電電極201の表面と多層反射防止膜202の表面とが同一面(平坦面)とされている。そして、集電電極201上および多層反射防止膜202上に前面透明電極層103が形成されている。
 図12に示すような構成は、上述した第1の方法において透光性基板102上に多層反射防止膜202を形成した後に多層反射防止膜202のみに凹部を形成すること以外は、第1の方法と同様にして形成される。そして、これ以降は、実施の形態3における図10-5以降の工程を実施することで薄膜太陽電池モジュールを形成できる。
 上述した実施の形態4にかかるモジュールおよび実施の形態4にかかる他のモジュールにおいても、多層反射防止膜202は集電電極201と透光性基板102との熱膨張差を緩和する効果を有する。
 すなわち、集電電極201が多層反射防止膜202や透光性基板102の凹部に埋設され、集電電極201の表面と多層反射防止膜202の表面とが同一面(平坦面)になっているため、前面透明電極層103は熱収縮時に膜全体で収縮し、集電電極201の熱収縮による部分的な応力の印加が防止される。これにより、透光性基板102と集電電極201との熱膨張係数差を緩和して、前面透明電極層103の熱収縮時におけるクラックの発生を防止することができ、透明電極層の低抵抗化を目的とする集電電極の挿入を可能にすることができる。
 なお、集電電極201が多層反射防止膜202や透光性基板102の凹部に埋設され、集電電極201の表面と多層反射防止膜202の表面とが同一面(平坦面)になっていれば、凹部の形成と多層反射防止膜202の形成との順序は問わない。
 なお、上述した実施の形態3および実施の形態4は、実施の形態2で示したようなサブストレート型の薄膜太陽電池にも適用可能である。
 上述した実施の形態は本発明を適用した一例であり、本発明は光電変換ユニットを1段または2段以上積層した多接合型薄膜太陽電池に適用できる。例えば、光電変換ユニットが光入射側から第1光電変換ユニット、第2光電変換ユニット、第3光電変換ユニットの順に配置された三接合型シリコン系薄膜太陽電池において、例えば第1光電変換ユニットにアモルファスシリコン光電変換ユニット、第2光電変換ユニットにアモルファスシリコンゲルマニウムあるいは微結晶シリコン系光電変換ユニット、第3光電変換ユニットにアモルファスシリコンゲルマニウムあるいは微結晶シリコンあるいは微結晶シリコンゲルマニウム系光電変換ユニットを用いた多接合型薄膜太陽電池に適用できる。
 以上のように、本発明にかかる薄膜太陽電池は、光電変換効率に優れた薄膜太陽電池の実現に有用である。
 1 透光性基板
 2 多層反射防止膜
 2a 酸化ハフニウム(HfO)層
 2b 酸化シリコン(SiO)層
 3 前面透明電極層
 4 第1光電変換ユニット
 4a p型半導体層
 4b i型半導体層
 4c n型半導体層
 5 中間層
 6 第2光電変換ユニット
 6a p型半導体層
 6b i型半導体層
 6c n型半導体層
 7 裏面透明導電膜
 8 裏面電極層
 9 光反射性基板
 10 多層反射膜
 10a 酸化ハフニウム(HfO)層
 10b 酸化シリコン(SiO)層
 18 裏面電極層
 100 薄膜太陽電池セル(セル)
 101 薄膜太陽電池モジュール(モジュール)
 102 透光性基板
 103 前面透明電極層
 104 P型アモルファスシリコン層
 105 I型アモルファスシリコン層
 106 N型アモルファスシリコン層
 107 第1光電変換ユニット
 108 第1中間層
 109 P型微結晶シリコン層
 110 I型微結晶シリコン層
 111 N型微結晶シリコン層
 112 第2光電変換ユニット
 113 第2中間層
 114 P型微結晶シリコン層
 115 I型微結晶シリコン層
 116 N型微結晶シリコン層
 117 第3光電変換ユニット
 118 裏面透明電極層
 118a 凹凸形状
 119 裏面反射電極層
 201 集電電極
 202 多層反射防止膜
 D1 第1の溝
 D2 第2の溝(接続溝)
 D3 第3の溝(分離溝)

Claims (15)

  1.  基板上に多層膜と、前記多層膜上に形成された酸化亜鉛を主成分とする透光性導電膜からなる第1の電極層と、光電変換を行う光電変換層と、第2の電極層とをこの順で有し、
     前記多層膜は、前記基板側から酸化ハフニウム層と酸化シリコン層とが積層された対が1対以上積層されてなり、
     前記第1の電極層の直下の前記対は、膜厚が20nm~40nmの酸化ハフニウム層と膜厚が2nm~10nmの酸化シリコン層とが積層されてなり、
     前記第1の電極層は、前記光電変換層側の面に凹凸形状を有すること、
     を特徴とする薄膜太陽電池。
  2.  前記多層膜上において前記透光性導電膜に覆われて配置され、または前記多層膜の前記透光性導電膜側の表面から少なくとも前記基板に達するように埋設されるとともに前記透光性導電膜側の表面が前記多層膜の表面と同一面として設けられた前記透光性導電膜よりも面抵抗の低い1層以上の低抵抗材料層からなる集電電極を有すること、
     を特徴とする請求項1に記載の薄膜太陽電池。
  3.  前記酸化ハフニウム層は、波長が300nm~1200nmの光の透過率が90%以上であり、熱膨張係数が4.0×10-6/℃以上であり、熱膨張係数が前記集電電極よりも小さい透光性膜であること、
     を特徴とする請求項2に記載の薄膜太陽電池。
  4.  前記集電電極は、端面を形成する斜面と前記基板の面方向とがなす角度が60度以下とされること、
     を特徴とする請求項2または3に記載の薄膜太陽電池。
  5.  前記集電電極は、2層以上の前記低抵抗材料層が積層されていること、
     を特徴とする請求項2または3に記載の薄膜太陽電池。
  6.  前記第1の電極層の直下の前記対は、膜厚が35nmの酸化ハフニウム層と膜厚が5nmの酸化シリコン層とが積層されてなること、
     を特徴とする請求項1~5のいずれか1つに記載の薄膜太陽電池。
  7.  基板上に多層膜と前記多層膜上に形成された酸化亜鉛を主成分とする透光性導電膜とをこの順で有し、
     前記多層膜は、前記基板側から酸化ハフニウム層と酸化シリコン層とが積層された対が1対以上積層されてなり、
     前記透光性導電膜の直下の前記対は、膜厚が20nm~40nmの酸化ハフニウム層と膜厚が2nm~10nmの酸化シリコン層とが積層されてなり、
     前記透光性導電膜は、表面に凹凸形状を有すること、
     を特徴とする透明導電膜付き基体。
  8.  前記多層膜上において前記透光性導電膜に覆われて配置され、または前記多層膜の前記透光性導電膜側の表面から少なくとも前記基板に達するように埋設されるとともに前記透光性導電膜側の表面が前記多層膜の表面と同一面として設けられた前記透光性導電膜よりも面抵抗の低い1層以上の低抵抗材料層からなる集電電極を有すること、
     を特徴とする請求項7に記載の透明導電膜付き基体。
  9.  前記酸化ハフニウム層は、波長が300nm~1200nmの光の透過率が90%以上であり、熱膨張係数が4.0×10-6/℃以上であり、熱膨張係数が前記集電電極よりも小さい透光性膜であること、
     を特徴とする請求項8に記載の透明導電膜付き基体。
  10.  前記集電電極は、端面を形成する斜面と前記基板の面方向とがなす角度が60度以下とされること、
     を特徴とする請求項8または9に記載の透明導電膜付き基体。
  11.  前記集電電極は、2層以上の前記低抵抗材料層が積層されていること、
     を特徴とする請求項8または9に記載の透明導電膜付き基体。
  12.  前記多層膜が反射防止膜であり、
     前記基板が透光性を有すること、
     を特徴とする請求項7~11のいずれか1つに記載の透明導電膜付き基体。
  13.  前記多層膜が反射膜であること、
     を特徴とする請求項7~11のいずれか1つに記載の透明導電膜付き基体。
  14.  基板上に、前記基板側から酸化ハフニウム層と酸化シリコン層とが積層された対を1対以上積層して多層膜を形成する工程と、
     前記多層膜上に酸化亜鉛を主成分とする透光性導電膜を製膜温度が200~450℃で形成した後に前記透光性導電膜の表面をエッチングすることにより前記透光性導電膜の表面に凹凸形状を形成して第1の電極層を形成する工程と、
     前記第1の電極層上に光電変換を行う光電変換層と、第2の電極層とを形成する工程と、
     を含み、
     前記多層膜として、前記基板側から酸化ハフニウム層と酸化シリコン層とが積層された対を1対以上積層形成するとともに前記第1の電極層の直下の前記対として膜厚が20nm~40nmの酸化ハフニウム層と膜厚が2nm~10nmの酸化シリコン層とを積層形成すること、
     を特徴とする薄膜太陽電池の製造方法。
  15.  基板上に、前記基板側から酸化ハフニウム層と酸化シリコン層とが積層された対を1対以上積層して多層膜を形成する工程と、
     前記多層膜上に酸化亜鉛を主成分とする透光性導電膜を製膜温度が200~450℃で形成する工程と、
     前記透光性導電膜の表面をエッチングすることにより前記透光性導電膜の表面に凹凸形状を形成する工程と、
     を含み、
     前記多層膜として、前記基板側から酸化ハフニウム層と酸化シリコン層とが積層された対を1対以上積層形成するとともに前記透光性導電膜の直下の前記対として膜厚が20nm~40nmの酸化ハフニウム層と膜厚が2nm~10nmの酸化シリコン層とを積層形成すること、
     を特徴とする透明導電膜付き基体の製造方法。
PCT/JP2011/060064 2010-04-26 2011-04-25 薄膜太陽電池およびその製造方法、透明導電膜付き基体およびその製造方法 WO2011136177A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012512833A JPWO2011136177A1 (ja) 2010-04-26 2011-04-25 薄膜太陽電池およびその製造方法、透明導電膜付き基体およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010101317 2010-04-26
JP2010-101317 2010-04-26

Publications (1)

Publication Number Publication Date
WO2011136177A1 true WO2011136177A1 (ja) 2011-11-03

Family

ID=44861476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060064 WO2011136177A1 (ja) 2010-04-26 2011-04-25 薄膜太陽電池およびその製造方法、透明導電膜付き基体およびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2011136177A1 (ja)
WO (1) WO2011136177A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036192A (ko) * 2015-09-23 2017-04-03 삼성디스플레이 주식회사 광 센서 및 이를 포함하는 표시 장치
US20210184624A1 (en) * 2018-07-27 2021-06-17 (Cnbm) Bengbu Design & Research Institute For Glass Industry Co., Ltd Facade elements with patterned cover plate and optical interference layer
US20210313480A1 (en) * 2018-07-27 2021-10-07 (Cnbm) Bengbu Design & Research Institute For Glass Industry Co., Ltd Solar module with patterned cover plate and optical interference layer
WO2023176123A1 (ja) * 2022-03-17 2023-09-21 株式会社村田製作所 太陽電池装置および発電装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294812A (ja) * 1999-04-07 2000-10-20 Sanyo Electric Co Ltd 光電変換素子及びその製造方法
JP2001060708A (ja) * 1999-06-18 2001-03-06 Nippon Sheet Glass Co Ltd 透明積層体およびこれを用いたガラス物品
JP2003142705A (ja) * 2001-11-07 2003-05-16 Mitsubishi Heavy Ind Ltd 光起電力素子
JP2004228449A (ja) * 2003-01-24 2004-08-12 Seiko Epson Corp 光電変換素子
JP2005197140A (ja) * 2004-01-09 2005-07-21 Sony Corp 光励起式機能デバイス及びその製造方法
WO2010026899A1 (ja) * 2008-09-04 2010-03-11 株式会社カネカ 透明電極付き基板および透明電極付き基板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294812A (ja) * 1999-04-07 2000-10-20 Sanyo Electric Co Ltd 光電変換素子及びその製造方法
JP2001060708A (ja) * 1999-06-18 2001-03-06 Nippon Sheet Glass Co Ltd 透明積層体およびこれを用いたガラス物品
JP2003142705A (ja) * 2001-11-07 2003-05-16 Mitsubishi Heavy Ind Ltd 光起電力素子
JP2004228449A (ja) * 2003-01-24 2004-08-12 Seiko Epson Corp 光電変換素子
JP2005197140A (ja) * 2004-01-09 2005-07-21 Sony Corp 光励起式機能デバイス及びその製造方法
WO2010026899A1 (ja) * 2008-09-04 2010-03-11 株式会社カネカ 透明電極付き基板および透明電極付き基板の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036192A (ko) * 2015-09-23 2017-04-03 삼성디스플레이 주식회사 광 센서 및 이를 포함하는 표시 장치
KR102591364B1 (ko) * 2015-09-23 2023-10-19 삼성디스플레이 주식회사 광 센서 및 이를 포함하는 표시 장치
US20210184624A1 (en) * 2018-07-27 2021-06-17 (Cnbm) Bengbu Design & Research Institute For Glass Industry Co., Ltd Facade elements with patterned cover plate and optical interference layer
US20210313480A1 (en) * 2018-07-27 2021-10-07 (Cnbm) Bengbu Design & Research Institute For Glass Industry Co., Ltd Solar module with patterned cover plate and optical interference layer
WO2023176123A1 (ja) * 2022-03-17 2023-09-21 株式会社村田製作所 太陽電池装置および発電装置

Also Published As

Publication number Publication date
JPWO2011136177A1 (ja) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5147818B2 (ja) 光電変換装置用基板
JP5868503B2 (ja) 太陽電池およびその製造方法
JP5174966B2 (ja) 薄膜太陽電池およびその製造方法
JP2008181965A (ja) 積層型光電変換装置及びその製造方法
JP5093503B2 (ja) 薄膜太陽電池及び薄膜太陽電池用表面電極
US20140124030A1 (en) Thin film solar cell and method for manufacturing same
JP5127925B2 (ja) 薄膜太陽電池およびその製造方法
US20110308582A1 (en) Photoelectric conversion device and manufacturning method thereof
WO2011136177A1 (ja) 薄膜太陽電池およびその製造方法、透明導電膜付き基体およびその製造方法
US20110308589A1 (en) Photoelectric conversion device and method for manufacturing the same
WO2011125259A1 (ja) 光電変換装置用基板とその製造方法、薄膜光電変換装置とその製造方法及び太陽電池モジュール
JP2016029675A (ja) 薄膜太陽電池用透光性絶縁基板、及び集積型薄膜シリコン太陽電池
KR101658534B1 (ko) 태양전지 및 그 제조방법
JP2010141192A (ja) 薄膜太陽電池セルおよび薄膜太陽電池
JP2012216732A (ja) 薄膜太陽電池基板の製造方法および薄膜太陽電池の製造方法
JP5542038B2 (ja) 薄膜太陽電池およびその製造方法、薄膜太陽電池モジュール
JP2010272651A (ja) 薄膜太陽電池およびその製造方法
JP2011096730A (ja) 薄膜太陽電池およびその製造方法
JP5542025B2 (ja) 光電変換装置
JP5036663B2 (ja) 薄膜太陽電池およびその製造方法
JP5548400B2 (ja) 薄膜光電変換装置、及びその製造方法
JP2010034230A (ja) 薄膜太陽電池及び薄膜太陽電池用表面電極
JP2010034231A (ja) 薄膜太陽電池及び薄膜太陽電池用表面電極
JP2012049190A (ja) 光電変換装置用基板の製造方法および光電変換装置の製造方法
JP2013004538A (ja) 透明導電膜の製造方法、薄膜太陽電池セルおよびその製造方法、薄膜太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774958

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512833

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774958

Country of ref document: EP

Kind code of ref document: A1