WO2010150713A1 - 動力出力装置 - Google Patents

動力出力装置 Download PDF

Info

Publication number
WO2010150713A1
WO2010150713A1 PCT/JP2010/060402 JP2010060402W WO2010150713A1 WO 2010150713 A1 WO2010150713 A1 WO 2010150713A1 JP 2010060402 W JP2010060402 W JP 2010060402W WO 2010150713 A1 WO2010150713 A1 WO 2010150713A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
electric motor
battery
motor
torque
Prior art date
Application number
PCT/JP2010/060402
Other languages
English (en)
French (fr)
Inventor
武史 池上
伸悟 加藤
義弘 須永
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US13/379,209 priority Critical patent/US8543274B2/en
Priority to CN2010800262659A priority patent/CN102458942A/zh
Priority to RU2012102365/11A priority patent/RU2519018C2/ru
Priority to JP2011519865A priority patent/JPWO2010150713A1/ja
Priority to BRPI1015562A priority patent/BRPI1015562A2/pt
Priority to DE112010002693T priority patent/DE112010002693T5/de
Publication of WO2010150713A1 publication Critical patent/WO2010150713A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a power output device for a vehicle including an engine and an electric motor, and more particularly to a power output device that can start an engine as needed during traveling with only the electric motor.
  • a vehicle (hybrid vehicle) equipped with such a hybrid system can run not only in cooperation with the engine and the electric motor but also in the electric motor alone, depending on the performance of the electric motor and the battery.
  • the driving force (torque) required from the electronic control unit exceeds the available torque of the electric motor during EV traveling that uses only the electric motor, the stopped engine is restarted. Must start.
  • the electronic control unit controls to drive the motor with a torque obtained by subtracting the engine starting torque from the maximum torque of the motor during EV traveling.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-163551
  • Patent Document 1 an engine startability state such as the engine temperature is detected, and the engine is started until the power required based on this startability state reaches the output limit of the electric motor. I have control.
  • a request output from the user (calculated based on the vehicle speed and the accelerator pedal position) is output in a region where the motor generator can be independently driven during EV independent traveling by the motor generator.
  • a control device for a hybrid vehicle that starts the engine by changing the gear ratio until the torque necessary to start the engine is secured in response to the exceeding is known (for example, Japanese Patent Laid-Open No. 2000-177712) (Refer to “Patent Document 2” hereinafter)).
  • the hybrid vehicle control device disclosed in Patent Document 2 does not perform control so that the engine starting torque is not used in advance, but exceeds the motor generator's independent travelable range when the requested output from the user is calculated.
  • the engine is started after changing to a gear ratio at which the engine can be started, and then the requested output is controlled by the engine and the motor generator.
  • the user will experience a considerable delay in response to the depression of the accelerator pedal, and there is also a problem that the riding comfort (riding taste) of the hybrid vehicle deteriorates.
  • the present invention has been made in view of the above points, and its purpose is to more accurately calculate an engine starting torque for restarting the engine when the vehicle is running only with an electric motor.
  • An object of the present invention is to provide a power output device capable of suppressing the output of an electric motor from being excessively limited.
  • a power output apparatus includes an engine (2), an electric motor (3), and an electric motor control unit (20) for controlling the electric motor (3),
  • a vehicle (1) comprising a battery (30), a connecting / disconnecting part (8) for connecting / disconnecting the engine (2) and the electric motor (3), and a transmission (4), the electric motor (3) causes the engine (2).
  • a power output device (10) of the vehicle (1) arranged to be able to start the vehicle, a battery state detector (11) for detecting at least one of the state of the battery (30) and the amount of stored electricity (SOC), and the battery A battery output calculation unit (16) that calculates a battery output that can be output by the battery (30) based on at least one of the state of the battery (30) and the amount of stored electricity (SOC) detected by the state detection unit (11).
  • the engine (2) is disconnected based on at least one of the motor output and the motor output and the engine start torque necessary for starting the engine (2) calculated by the start torque calculating unit (15). And an EV range setting unit (17) for setting a travelable EV range, and the EV range setting unit (17) compares the battery output of the battery (30) with the motor torque or the motor output of the electric motor (3). Then, the lower one is selected, and the range obtained by adding the range obtained by subtracting the engine start torque from the selected torque or output and the range obtained by subtracting the engine start torque from the maximum motor torque is set as the EV range. It is characterized by that.
  • EV electric vehicle
  • the engine can be started by the engine starting torque that has been put, and the operation can be shifted to the cooperative running in which the driving force of the engine and the motor is output to the drive wheels.
  • the output of the electric motor is limited by a torque required to start (push) the engine, but the torque is uniformly limited without considering the states of the engine, the electric motor, and the battery. Therefore, even if EV traveling is possible, the EV range may be limited too much.
  • the EV range is set in consideration of the states of the engine, the electric motor, and the battery, so that the EV range can be set more accurately. Further, when the output is further required than the output in the EV range of the electric motor, the engine can be quickly operated without changing the gear ratio or the like in order to secure the torque (engine starting torque) necessary for starting the engine. Therefore, the EV range can be maximized while ensuring the merchantability when starting the engine.
  • the power output apparatus includes an engine (2), an electric motor (3), an electric motor control unit (20) for controlling the electric motor (3), a battery (30), and an engine.
  • the engine (2) is arranged to be able to start by the electric motor (3).
  • a power output device (10) for a vehicle (1) comprising: a battery state detection unit (11) that detects at least one of a state of a battery (30) and an amount of stored electricity (SOC); and a battery state detection unit (11)
  • a battery output calculation unit (16) that calculates a battery output that can be output by the battery (30) based on at least one of the detected state of the battery (30) and the amount of stored electricity (SOC), and at least an electric motor ( )
  • An electric motor torque / output calculating unit (14) for calculating the output and the maximum torque of the electric motor (3), an engine state detecting unit (13) for detecting the state of the engine (2), and an engine state detecting unit (13)
  • a starting torque calculating unit (15) for calculating an engine starting torque required for
  • the EV range setting unit (17) compares the battery output of the battery (30) and the motor output of the electric motor (3), selects the lower one, and selects the engine from the selected output. A range obtained by adding a range obtained by reducing the starting torque and a range obtained by subtracting the engine starting torque from the maximum motor torque is set as the EV range. Even in such a configuration, since the EV range is set in consideration of the states of the engine, the electric motor, and the battery, the EV range can be set more accurately. Thereby, the EV range can be ensured to the maximum while ensuring the merchantability when starting the engine. In addition, since the motor output can be calculated from the rotation speed and torque of the motor, the size of the entire detection device and the number of sensors can be reduced.
  • the power output apparatus of the present invention further includes a vehicle speed detection unit (107) that detects the vehicle speed (Nv) of the vehicle (1), and the starting torque calculation unit (15) uses a vehicle speed detection unit based on the calculated engine starting torque.
  • a value obtained by subtracting a certain lower limit value in accordance with the vehicle speed (Nv) detected in (107) may be newly calculated as the engine starting torque.
  • the electric motor rotates at high speed, an inertial force is applied to the engine, and it is possible to suppress the motor output from being limited as the engine starting torque.
  • the battery state detection unit (11) includes the voltage (V), current (I), and integrated current value (It) of the battery (30) in addition to the amount of charge (SOC) of the battery (30). ), Temperature (Tb), battery internal pressure, or battery internal concentration may be detected.
  • V voltage
  • I current
  • It integrated current value
  • SOC amount of charge
  • Tb Temperature
  • battery internal pressure battery internal pressure
  • battery internal concentration battery internal concentration
  • the motor state detector (12) may directly detect the motor temperature (Tm) by the motor temperature sensor (103) that detects the temperature (Tm) of the motor (3), or The electric current, torque and rotation speed (Nm) of the electric motor (3) may be detected, and the electric motor temperature may be estimated from these detected values.
  • Tm motor temperature
  • Nm electric current, torque and rotation speed
  • the engine state detection unit (13) includes one of a coolant temperature (Tw) of the cooling water of the engine (2) and an oil temperature (To) of the lubricating oil of the engine (2), and the engine.
  • Tw coolant temperature
  • To oil temperature
  • the position of the piston in (2) may be detected.
  • a power output apparatus includes an electric motor control unit (20) for controlling the engine (2), the electric motor (3), and the electric motor (3). ), A battery (30), a connecting / disconnecting portion (8) for connecting / disconnecting the engine (2) and the electric motor (3), and a transmission (4), the engine is driven by the electric motor (3).
  • a motor torque calculator (14) that calculates the maximum motor torque that can be output from the motor (3), and an engine temperature detector that detects the temperature (Tw, To) of the engine (2). (19) and a starting torque calculating unit that calculates an engine starting torque necessary for starting the engine (2) based on the temperature (Tw, To) of the engine (2) detected by the engine temperature detecting unit (19).
  • the engine (2) is disconnected and the motor (3 EV range setting unit (17) that sets an EV range that can be traveled only with the electric motor (3).
  • the EV range setting unit (17) includes a battery output of the battery (30), an engine start torque, and an electric motor (3).
  • a motor output range is calculated from the maximum motor torque, and a range in which the calculated motor output range is the maximum torque is set as an EV range.
  • the EV range is set without considering the motor torque or the motor output of the motor, but some coupling shock occurs when the engine and the motor are connected. However, a sufficiently wide EV range can be set.
  • the power output device in another embodiment of the present invention includes an engine (2), an electric motor (3), an electric motor control unit (20) for controlling the electric motor (3), a battery (30), an engine ( Vehicle (1) provided with connection / disconnection part (8) which connects / disconnects 2) and electric motor (3), and transmission (4), vehicle which is arranged so that engine (2) can be started by electric motor (3)
  • a remaining capacity detector (23) for detecting the remaining capacity of the battery (30)
  • a battery temperature detector (Tb) for detecting the temperature (Tb) of the battery (30) 22
  • an EV range setting unit (17) that sets an EV range that can be traveled only by the electric motor (3)
  • the electric motor torque calculation unit (21) is configured to detect the electric motor (3) detected by the electric motor temperature detection unit (24). Based on the temperature (Tm), the motor torque corrected by the temperature (Tm) of the electric motor (3) is calculated, and the EV range setting unit (17) sets the maximum so that the electric motor torque falls within a predetermined range from the battery output. The torque range is set as the EV range.
  • the engine state detection unit (13) or the engine temperature detection unit (19) is configured so that the engine (2) when the engine (2) is disconnected from the electric motor (3). ) May be detected, and the EV range setting unit (17) may set the EV range based on the temperature (Tw, To) of the engine (2) at the time of disconnection.
  • the temperature of the engine decreases from the time of disconnecting the engine, the temperature of the engine when the engine and the electric motor are reconnected can be estimated from the temperature of the engine and the elapsed time at the time of disconnecting.
  • the connecting / disconnecting portion is configured to disconnect the engine (2) from the electric motor (3) or connect the electric motor (3) and the engine (2) according to the traveling state of the vehicle (1).
  • the connection / disconnection control unit (18) for controlling (8) is further provided.
  • the connection / disconnection control unit (18) disconnects the engine (2) from the electric motor (3) based on the remaining capacity of the battery (30), the engine
  • the connecting / disconnecting portion (8) may be configured not to disconnect the engine (2).
  • the electric motor state detection unit (12) or the electric motor temperature detection unit (24) is the engine state detection unit. (13) Or the oil temperature (To) of the lubricating oil or the coolant temperature (Tw) detected by the engine temperature detector (19) may be used as the temperature (Tm) of the electric motor (3).
  • the power output device of the present invention further includes a connection / disconnection control section (18) for controlling the connection / disconnection section (8) so as to disconnect the engine (2) from the electric motor (3) according to the traveling state of the vehicle (1).
  • the connection / disconnection control unit (18) 8) After connecting the electric motor (3) to the engine (2) and securing the engine starting torque necessary for starting the engine (2) from the electric motor (3), This connection is disconnected by the connecting / disconnecting portion (8), and then the connecting / disconnecting portion (8) when the rotational speed of the engine (2) becomes equal to the rotational speed of the input shaft of the electric motor (3) during EV traveling.
  • the electric motor (3) and the engine (2) may be connected again.
  • the motor output can be supplied to the drive wheels to the maximum during EV traveling while suppressing the shock at the time of engine start from being transmitted to the drive wheels.
  • the shock to the drive wheels caused by connecting the electric motor and the engine in an unstable state of the engine is suppressed, the driver's drivability is not adversely affected.
  • the engine (2) and the motor (3) are connected by the connecting / disconnecting part (8) to start the engine (2), and then the motor (3) and the engine (2) are connected.
  • the EV range setting unit (17) may increase the EV range by the engine starting torque.
  • the motor torque corresponding to the engine starting torque that was restricted when the engine was stopped can also be used for EV travel.
  • the vehicle (1) further includes a navigation system (40) for navigating the driving of the driver of the vehicle (1), and the EV range setting unit (17) includes the navigation system (40). If it is determined whether or not regeneration from the electric motor (3) can be performed in the future based on the navigation state at, and if it is determined that regeneration from the electric motor (3) can be performed in the future, the EV range is increased. Good. Thus, when it is known by the navigation system that a long downhill will be reached in the future, for example, the battery can be charged by the regenerative brake of the electric motor on this downhill. There will be no problem for driving.
  • the EV range setting unit (17) may move the boundary of the EV range for a certain period in a direction that does not shift from cooperative traveling to EV traveling.
  • the EV range setting unit (17) allows the EV range of the EV range to be maintained for a certain period. What is necessary is just to move a boundary in the direction which does not transfer to EV travel from cooperative travel. With this configuration, it is possible to prevent hunting that frequently switches between EV traveling and cooperative traveling. Thereby, the drivability of the driver of the vehicle is not adversely affected.
  • the vehicle (1) is a plug-in hybrid vehicle capable of charging the battery (30) from an external power source, and the EV range setting unit (17) is in accordance with the capacity of the battery (30). Further, the EV range set as described above may be further set to be expanded. Thereby, for example, even when the output of the electric motor is limited according to the state of the battery, when the battery capacity is sufficiently large, the EV travelable area can be expanded based on the size of the battery capacity. it can. Thereby, the timing of engine starting can be delayed, and it can contribute to the improvement of the fuel economy (fuel consumption) of a vehicle.
  • the transmission (4) has a plurality of shift stages corresponding to predetermined gear ratios (transmission ratios).
  • the EV range setting unit (17) includes the vehicle body weight of the vehicle (1), the radius of the drive wheels of the vehicle (1), the gear ratio of each gear stage, A region where the EV range should be expanded may be set based on a shift shock amount that is allowed at the time of shifting (drivability allowance: a threshold value that the driver of the vehicle determines or recognizes as comfortable).
  • driving allowance a threshold value that the driver of the vehicle determines or recognizes as comfortable.
  • the gear position the larger the gear ratio.
  • the gear ratio is larger, fluctuations during vehicle shift (vehicle behavior) are less likely to be amplified. Therefore, the EV travelable region that can be enlarged can be increased as the gear position becomes higher. This can further contribute to an improvement in the fuel economy of the vehicle.
  • An output device can be provided.
  • FIG. 1 is a schematic connection configuration diagram of a vehicle in an embodiment of the present invention. It is a skeleton figure of an example of the transmission shown in FIG. It is a skeleton figure of another example of a transmission. It is a skeleton figure of another example of a transmission. It is a block diagram which shows the structure of the electronic control unit in 1st Embodiment.
  • 3 is a torque-rotation speed characteristic map of an electric motor for explaining a method of setting an EV range.
  • 3 is a torque-rotation speed characteristic map of an electric motor for explaining a method of setting an EV range.
  • 3 is a torque-rotation speed characteristic map of an electric motor for explaining a method of setting an EV range.
  • It is a torque characteristic figure of an engine and an electric motor.
  • the power output apparatus of the present invention is applied to a vehicle equipped with an electric motor for driving a vehicle and a high voltage battery such as an electric vehicle and a hybrid vehicle.
  • an electronic control unit mounted on the vehicle to control the entire vehicle.
  • the electronic control unit will be described as controlling an engine and controlling a transmission, a battery, and an electric motor.
  • FIG. 1 is a schematic connection configuration diagram of a vehicle according to an embodiment of the present invention.
  • the vehicle 1 of this embodiment is what is called a hybrid vehicle, and as shown in FIG. 1, the engine 2, the electric motor 3, the electric motor control part 20 for controlling the electric motor 3, the battery 30, the engine 2, and the electric motor 3 includes a connecting / disconnecting portion (clutch) 8, a transmission 4, a differential mechanism 5, left and right drive shafts 6R and 6L, and left and right drive wheels 7R and 7L.
  • the rotational driving force of the engine 2 and the electric motor 3 is transmitted to the left and right drive wheels 7R, 7L via the transmission 4, the differential mechanism 5, and the drive shafts 6R, 6L.
  • the vehicle 1 also includes an electromagnetic control unit (ECU) 10 for controlling the engine 2, the electric motor 3, the transmission 4, the differential mechanism 5, the connection / disconnection unit 8, the electric motor control unit 20, and the battery 30, respectively.
  • the power output apparatus of the present invention is mainly constituted by the electronic control unit 10.
  • the electronic control unit 10 can start the stopped engine 2 by rotational driving of the electric motor 3 by connecting the engine 2 to the electric motor 3 through the connecting / disconnecting portion 8 under predetermined conditions. it can.
  • the electric motor control unit 20 outputs a torque command value to the electric motor 3 under the control of the electronic control unit 10.
  • the motor control unit 20 includes an inverter (not shown) for converting DC power from the battery 30 into AC power.
  • the electronic control unit 10 is not only configured as a single unit, but also controls, for example, an engine ECU for controlling the engine 2, an electric motor ECU for controlling the electric motor 3 and the electric motor control unit 20, and a battery 30.
  • the ECU may include a plurality of ECUs such as a battery ECU for controlling the transmission, and an AT ECU for controlling the transmission 4 when the transmission 4 is an automatic transmission.
  • the electric motor 3 functions as a motor that generates a driving force for running the vehicle 1 using electric energy of the battery 30 when the engine 2 and the electric motor 3 cooperate with each other or when the electric motor 3 alone performs EV driving.
  • the vehicle 1 when the vehicle 1 is decelerated, it functions as a generator that generates electric power by regeneration of the electric motor 3.
  • the battery 30 is charged with electric power (regenerative energy) generated by the electric motor 3.
  • the engine 2, the electric motor 3, and the like are only required to have a known configuration and are not a characteristic part of the present invention, and thus detailed description thereof will be omitted.
  • FIG. 2 is a skeleton diagram of an example of the transmission 4 shown in FIG.
  • FIG. 3 is a skeleton diagram of another example of the transmission 4.
  • FIG. 4 is a skeleton diagram of still another example of the transmission 4.
  • the transmission 4 shown in FIG. 2 is a parallel 6-shaft transmission with 5 forward speeds and 1 reverse speed, and is a dry twin clutch transmission (DCT: dual clutch transmission).
  • DCT dry twin clutch transmission
  • the transmission 4 shown in FIG. 2 is also provided with an air conditioner shaft A / CS that is connected to a compressor A / C of an air conditioner that is an auxiliary machine of the vehicle via a clutch.
  • the drive shaft including these six shafts and the differential mechanism 5 (D) is disposed so as to engage (abut) with each other as shown in FIG. That is, the inner main shaft IMS or the outer main shaft OMS is engaged with the counter shaft CS, the idle shaft IS and the reverse shaft RS, the idle shaft IS is engaged with the reverse shaft RS and the counter shaft CS, and the secondary shaft SS is the counter shaft.
  • the countershaft CS is disposed so as to engage with the differential mechanism 5 (D). Further, the air conditioner shaft A / CS is wound around a belt so as to interlock with the reverse shaft RS.
  • the transmission 4 includes a first clutch C1 for odd-numbered stages and a second clutch C2 for even-numbered stages.
  • the first and second clutches C1 and C2 are dry clutches.
  • the first clutch C1 is connected to the inner main shaft IMS, and the second clutch C2 is connected to the outer main shaft OMS.
  • a planetary gear mechanism carrier 73 serving as a first speed drive gear, a third speed drive gear 43, a fifth speed drive gear 45, and an idle drive gear 52 are fixed in order from the left side in FIG. Placed in.
  • a 3-5 speed synchromesh mechanism (selector mechanism) 82 is slidable in the axial direction between the 3rd speed drive gear 43 and the 5th speed drive gear 45 of the inner main shaft IMS.
  • a reverse drive gear 50 is fixedly disposed on the inner main shaft IMS.
  • a reverse idle gear 51 is fixedly arranged, and a reverse driven gear 48 is rotatably arranged.
  • a reverse synchromesh mechanism 81 is provided in the vicinity of the reverse driven gear 48 of the reverse shaft RS so as to be slidable in the axial direction.
  • a second speed drive gear 42 and a fourth speed drive gear 44 are rotatably disposed, and a reverse driven gear 56 is fixedly disposed.
  • a 2-4 speed synchromesh mechanism 83 is slidably provided in the axial direction between the 2nd speed drive gear 42 and the 4th speed drive gear 44 of the secondary shaft SS.
  • a 2-3 speed driven gear 53, a 4-5 speed driven gear 55, a parking gear 58, and a final drive gear 54 are fixedly arranged in order from the left side in FIG.
  • the final drive gear 54 meshes with the differential ring gear 59 of the differential mechanism 5 (D).
  • the idle driven gear 57 is fixedly arranged on the idle shaft IS.
  • the idle driven gear 57 meshes with the idle drive gear 52, the reverse driven gear 56, and the differential ring gear 59.
  • the outer main shaft OMS, the reverse shaft RS, the secondary shaft SS, the counter shaft CS, the idle shaft IS, the air conditioner shaft A / CS, and the output shaft of the differential mechanism 5 (D) can be freely rotated by ball bearings or roller bearings. Retained.
  • a one-way clutch 41 is provided so as to be fixedly connected to the ring gear 75 of the planetary gear mechanism.
  • the carrier 73 of the planetary gear mechanism is finally connected to the foot shaft through the differential mechanism 5 (D), and the sun gear 71 of the planetary gear mechanism is connected to the motor 3 and the engine 2 (not shown in FIG. 2).
  • the planetary gears 72 and 74 mesh with the sun gear 71 and the ring gear 75, respectively.
  • the 2nd speed drive gear 42 is coupled to the secondary shaft SS, and when slid rightward, the 4th speed drive gear 44 is coupled to the secondary shaft SS. .
  • the transmission 4 is set to the second speed or the fourth speed by engaging the second clutch C2.
  • the transmission 4 is set to the third speed or the fifth speed by engaging the first clutch C1.
  • the reverse driven gear 48 is coupled to the reverse shaft RS.
  • the transmission 4 is set to reverse (reverse) by engaging the first clutch C1.
  • the sun gear 71 is connected to the engine 2 (not shown in FIG. 2), the ring gear 75 is connected to the electric motor 3, and the carrier 73 is connected to the differential mechanism 5 (D ) And finally connected to the foot shaft.
  • the transmission 4 shown in FIG. 4 is a parallel five-shaft transmission with seven forward speeds and one reverse speed, and is a dry twin clutch transmission (DCT: dual clutch transmission).
  • DCT dry twin clutch transmission
  • an inner main shaft IMS connected to the electric motor 3 via a crankshaft of the engine 2 (not shown) and a sun gear 71 of a planetary gear mechanism, and an outer main shaft forming an outer cylinder of the inner main shaft IMS.
  • An OMS, a secondary shaft SS, a reverse shaft RS, and an idle shaft IS that are parallel to the inner main shaft IMS, respectively, and a countershaft CS that is parallel to these shafts and that forms an output shaft are provided.
  • the transmission 4 includes a first clutch C1 for odd-numbered stages and a second clutch C2 for even-numbered stages.
  • the first and second clutches C1 and C2 are dry clutches.
  • the first clutch C1 is connected to the inner main shaft IMS, and the second clutch C2 is connected to the outer main shaft OMS.
  • a planetary gear mechanism carrier 73 serving as a first speed drive gear, a third speed drive gear 43, a seventh speed drive gear 47, a fifth speed drive gear 45, an idle A drive gear 52 is fixedly arranged.
  • a 3-7 speed synchromesh mechanism (selector mechanism) 84 is slidable in the axial direction between the 3rd speed drive gear 43 and the 7th speed drive gear 47.
  • a 5-speed synchromesh mechanism (selector mechanism) 85 is provided in the vicinity of the 5-speed drive gear 4 so as to be slidable in the axial direction.
  • a reverse drive gear 50 is fixedly disposed on the inner main shaft IMS.
  • a reverse idle gear 51 and a reverse idle gear 51 are fixedly arranged in order from the left side in FIG. 4, and a reverse driven gear 48 is rotatably arranged between them.
  • a reverse synchromesh mechanism 81 is provided in the vicinity of the reverse driven gear 48 so as to be slidable in the axial direction together with the reverse driven gear 48.
  • a second speed drive gear 42, a sixth speed drive gear 46, and a fourth speed drive gear 44 are rotatably disposed in order from the left side in FIG. 4, and a reverse driven gear 56 is fixed.
  • a 2-6 speed synchromesh mechanism 86 is provided between the 2nd speed drive gear 42 and the 6th speed drive gear 46 of the secondary shaft SS so as to be slidable in the axial direction.
  • a 4-speed synchromesh mechanism (selector mechanism) 87 is provided in the vicinity of the 4-speed drive gear 44 so as to be slidable in the axial direction.
  • the idle driven gear 57 is fixedly arranged on the idle shaft IS.
  • the idle driven gear 57 meshes with the idle drive gear 52, the reverse driven gear 56, and the differential ring gear 59.
  • the outer main shaft OMS, the reverse shaft RS, the secondary shaft SS, the counter shaft CS, and the idle shaft IS are rotatably held by ball bearings or roller bearings.
  • the transmission 4 shown in FIG. 4 five shift rails are provided.
  • the transmission 4 In the first shift rail, by engaging the first clutch C1, the transmission 4 is set to the first speed when the reverse synchromesh mechanism 81 is in the neutral state, and the synchro sleep of the reverse synchromesh mechanism 81 is set to the left side. If sliding, reverse (reverse) is set.
  • the transmission 4 In the second shift rail, by engaging the second clutch C2, the transmission 4 is set to the second speed when the synchromesh of the 2-6 speed synchromesh mechanism 86 slides to the left, When the synchromesh of the 2-6 speed synchromesh mechanism 86 is sliding to the right, it is set to 6 speed.
  • the transmission 4 In the third shift rail, by engaging the first clutch C1, the transmission 4 is set to the third speed when the synchromesh of the 3-7 speed synchromesh mechanism 84 slides to the left, When the sync sleep of the 3-7 speed synchromesh mechanism 84 slides to the right, it is set to 7 speed.
  • the transmission 4 In the fourth shift rail, by engaging the second clutch C2, the transmission 4 causes the reverse synchromesh mechanism 81 and the fourth-speed synchromesh mechanism 87 to interlock and slides the reverse synchromesh mechanism 81 to the left. If the 4th speed synchromesh mechanism 87 is slid to the right, the speed is set to 4th speed.
  • the transmission 4 In the fifth shift rail, by engaging the first clutch C1, the transmission 4 is set to parking when the fifth-speed synchromesh mechanism 85 is slid to the left, and the fifth-speed synchromesh mechanism 85 is set. Is set to the fifth speed.
  • FIG. 5 is a block diagram showing the configuration of the electronic control unit 10 in the first embodiment.
  • the electronic control unit 10 includes a battery state detection unit 11, an electric motor state detection unit 12, an engine state detection unit 13, an electric motor torque / output calculation unit 14, a starting torque calculation unit 15, A battery output calculation unit 16, an EV range setting unit 17, and a connection / disconnection control unit 18 are provided.
  • a battery temperature sensor 101 for detecting the temperature Tb of the battery 30 is provided in the vicinity of the battery 30.
  • a current / voltage sensor 102 that detects the current I, voltage V, and current integrated value It of the battery 30 is provided.
  • the battery 30 is provided with an internal pressure sensor, an ion concentration sensor, and the like for detecting the internal pressure of the battery 30 (battery internal pressure) and the ion concentration in the electrolyte in the battery 30 (battery internal concentration). Also good. Detection values of these sensors 101 and 102 are output to the battery state detection unit 11.
  • An electric motor temperature sensor 103 for detecting the temperature Tm of the electric motor 3 is provided in the vicinity of the electric motor 3, and an electric motor rotational speed for detecting the rotational speed Nm of the electric motor 3 is provided in the vicinity of the input shaft or the output shaft of the electric motor 3.
  • a sensor 104 is provided. Detection values of these sensors 103 and 104 are output to the motor state detection unit 12.
  • a coolant temperature sensor 105 for detecting a coolant temperature Tw for cooling the engine 2 and an oil temperature To of lubricating oil (engine oil) for lubricating the engine 2.
  • a lubricating oil temperature sensor 106 for detecting.
  • a vehicle speed sensor 107 for detecting the vehicle speed Nv of the vehicle 1 is provided at an appropriate position of the vehicle 1.
  • the rotational speed Ni of the main shaft (not shown) of the engine 2 or the output shaft of the electric motor 3 or the rotational speed of the counter shaft (not shown in the transmission 4) is not provided without providing the vehicle speed sensor 107 for detecting the vehicle speed Nv exclusively.
  • the vehicle speed Nv may be calculated from No.
  • the battery state detection unit 11 acquires (detects) the temperature Tb of the battery 30 detected by the battery temperature sensor 101, the current I and the voltage V of the battery 30 detected by the current / voltage sensor 102. And the battery state detection part 11 calculates the electrical storage amount of the battery 30, ie, SOC, based on the electric current I of the battery 30, and the voltage V as needed. Each detection value detected by the battery state detection unit 11 is output to the battery output calculation unit 16 and the connection / disconnection control unit 18.
  • the battery state detection unit 11 calculates an integrated current value It based on the current I of the battery 30.
  • the battery state detection unit 11 similarly acquires (detects) the internal pressure of the battery 30 (battery internal pressure) detected by an internal pressure sensor and an ion concentration sensor (not shown) and the ion concentration in the electrolyte in the battery 30 (battery internal concentration).
  • various data of the battery 30 are collectively referred to as the state of the battery 30.
  • the output limit range of the electric motor 3 during EV traveling can be made as narrow as possible.
  • the motor state detection unit 12 acquires (detects) the temperature Tm of the motor 3 detected by the motor temperature sensor 103 and the rotation speed Nm of the motor 3 detected by the motor rotation speed sensor 104. Each detection value detected by the motor state detection unit 12 is output to the motor torque / output calculation unit 14 and the connection / disconnection control unit 18.
  • the temperature Tm, the rotational speed Nm, and the like of the electric motor 3 are collectively referred to as the state of the electric motor 3.
  • the motor state detection unit 12 directly detects the motor temperature Tm by the motor temperature sensor 103 for detecting the temperature Tm of the motor 3 as described above. However, when the motor temperature sensor 103 is not provided, the motor state detection unit 12 is detected by the energization current to the motor 3 detected by the current / voltage sensor 102, the torque of the motor 3, and the motor rotation speed sensor 104. The rotation speed Nm may be acquired, and the motor temperature may be estimated from these detected values. Thus, by detecting the state of the electric motor 3 in detail, the output restriction range of the electric motor 3 during EV traveling can be made as narrow as possible.
  • the engine state detection unit 13 acquires (detects) the coolant temperature Tw detected by the coolant temperature sensor 105 and the oil temperature To of the lubricant detected by the lubricant temperature sensor 106. Although not shown, the engine state detection unit 13 acquires (detects) the rotational speed Ne of the engine 2 from a rotational speed sensor for detecting the rotational speed Ne of the crankshaft of the engine 2. Further, the engine state detection unit 13 detects the position of a piston in each cylinder (not shown) of the engine 2. A piston position detection unit may be provided separately from the engine state detection unit 13. Each detection value detected by the engine state detection unit 13 is output to the starting torque calculation unit 15 and the connection / disconnection control unit 18.
  • the coolant temperature Tw of the engine 2 the oil temperature To of the lubricating oil, the rotational speed Ne, and the like are collectively referred to as the state of the engine 2.
  • the output limit range of the electric motor 3 during EV traveling can be made as narrow as possible.
  • the threshold for starting the engine 2 for example, the vehicle speed Nv detected by the vehicle speed sensor 107 reaches a predetermined vehicle speed, etc.
  • the fuel economy (fuel consumption) of the vehicle can be improved.
  • the engine state detection unit 13 sets the coolant temperature Tw detected by the coolant temperature sensor 105 or the oil temperature To of the lubricant detected by the lubricant temperature sensor 106. Based on this, the temperature of the engine 2 may be detected.
  • the electric motor state detection unit 12 uses the oil temperature To of the lubricating oil or the coolant water temperature Tw detected by the engine state detection unit 13 as the electric motor. 3 may be used as the temperature Tm. Thereby, the size and the number of sensors of the entire detection device in the vehicle 1 can be reduced (reduced).
  • the motor torque / output calculation unit 14 calculates the motor torque or motor output that can be output from the motor 3 based on the state of the motor 3 detected by the motor state detection unit 12, that is, the temperature Tm and the rotation speed Nm of the motor 3. At least one and the maximum torque of the electric motor 3 are calculated. In this case, the motor torque / output calculation unit 14 may calculate the output of the motor 3 based on the current I and the voltage V detected by the current / voltage sensor 102, for example. When the motor state detection unit 12 detects the torque and the rotation speed Nm of the motor 3, the motor torque / output calculation unit 14 multiplies the torque of the motor 3 by the rotation speed Nm, thereby An output that can be output from 3 may be obtained. The calculated torque or output of the electric motor 3 and the maximum torque are output to the EV range setting unit 17.
  • the starting torque calculating unit 15 calculates the engine starting torque necessary for starting the engine 2 based on the state of the engine 2 detected by the engine state detecting unit 13, that is, the coolant temperature Tw and the lubricating oil temperature To. calculate. Since the torque (engine starting torque) necessary for restarting the stopped engine 2 depends on the temperature of the engine 2 at that time, in this embodiment, the cooling is performed in order to determine the temperature state of the engine 2. Water temperature Tw of water and oil temperature To of lubricating oil are used. The calculated engine starting torque is output to EV range setting unit 17.
  • the starting torque calculating unit 15 newly starts the engine by subtracting a certain lower limit value from the engine starting torque calculated as described above according to the vehicle speed Nv detected by the vehicle speed sensor (vehicle speed detecting unit) 107.
  • the torque may be calculated.
  • the rotational speed Nm of the electric motor 3 is high-speed rotation, so that an inertial force is applied to the crankshaft of the engine 2. Therefore, when setting the EV range described later, the engine starting torque is corrected so that the range in which EV traveling is possible is not too narrow by restricting the EV range too much. Thereby, the output restriction
  • the battery output calculation unit 16 can output from the battery 30 based on at least one of the temperature Tb of the battery 30 detected by the battery temperature sensor 101 and the current I and voltage V of the battery 30 detected by the current / voltage sensor 102. The correct battery output. The calculated battery output is output to the EV range setting unit 17.
  • the EV range setting unit 17 includes at least a battery output that can be output by the battery 30 calculated by the battery output calculation unit 16, a motor torque that can be output from the motor 3 calculated by the motor torque / output calculation unit 14, and a motor output.
  • a battery output that can be output by the battery 30 calculated by the battery output calculation unit 16
  • a motor torque that can be output from the motor 3 calculated by the motor torque / output calculation unit 14, and a motor output.
  • an EV range in which the engine 2 can be separated and only the electric motor 3 can be driven is set.
  • the EV range setting unit 17 compares the battery output of the battery 30 with the motor torque or the motor output of the electric motor 3, and selects the lower one, and starts the engine from the selected torque or output. A range obtained by adding the range obtained by subtracting the torque and the range obtained by subtracting the engine starting torque from the maximum motor torque is set as the EV range.
  • the EV range setting unit 17 When the engine state detection unit 13 detects the temperature of the engine 2 when the engine 2 is disconnected from the electric motor 3 and the detected temperature data is stored in a memory (not shown), the EV range setting unit 17 Thus, the EV range may be set based on the temperature of the engine 2 at the time of disconnection stored in the memory. Although the temperature of the engine 2 decreases from the time of disconnection of the engine 2, the temperature of the engine 2 when the engine 2 and the electric motor 3 are connected again is estimated from the temperature of the engine 2 and the elapsed time at the time of disconnection. Can do.
  • the EV range setting method by the EV range setting unit 17 will be described using the torque-rotation speed characteristic maps of the electric motor 3 shown in FIGS. 6 to 8 are torque-rotational speed characteristics maps of the electric motor 3 for explaining a method of setting the EV range (EV travel range).
  • the output limit value of the battery 30 is acquired based on the performance of the battery 30 with respect to the electric motor 3.
  • the battery state detection unit 11 detects the temperature Tb and the amount of electricity stored in the battery 30, that is, the state of the battery 30 such as the SOC
  • the output range of the battery is determined based on the state of the battery 30. Then, the output is limited by the state of the battery 30 as shown by the two-dot chain line in FIG. 6A.
  • the output limit value of the motor according to the motor maximum torque and the motor rotation speed Nm is acquired.
  • the state of the electric motor 3 such as the temperature Tm and the rotation speed Nm of the electric motor 3 is detected by the electric motor state detecting unit 12, based on the state of the electric motor 3, as shown by a dotted line in FIG.
  • the torque of the electric motor 3 is limited depending on the state of the electric motor 3.
  • the EV range setting unit 17 compares the output limit of the battery 30 depending on the state of the battery 30 with the torque limit of the electric motor 3 depending on the state of the electric motor 3, and the lower one, here the output of the battery 30 depending on the state of the battery 30 Select a limit.
  • the EV range setting unit 17 includes a range obtained by subtracting the engine start torque from the output limit of the battery 30 according to the state of the battery 30 selected in FIG. 6A, and a range obtained by subtracting the engine start torque from the maximum motor torque. Is set as the EV range.
  • the range obtained by subtracting the engine start torque from the output limit of the battery 30 depending on the state of the battery 30 selected in FIG. 6A is lower in the total motor speed range than the range obtained by subtracting the engine start torque from the motor maximum torque.
  • the EV range setting unit 17 sets, as the EV range, a range obtained by subtracting the engine starting torque as indicated by the bidirectional arrow in FIG. 6B from the maximum motor torque (in the range indicated by the thick solid line in FIG. 6B).
  • the starting torque calculating unit 15 calculates the engine starting torque again based on the change in the state of the engine 2 detected by the engine state detecting unit 13, and the EV range setting unit 17 is set in FIG. 6B.
  • a range that is reduced by an amount corresponding to the engine starting torque changed by the state of the engine 2 as indicated by a bidirectional arrow in FIG. 7A is newly set as an EV range. Set.
  • the motor torque / output calculation unit 14 calculates at least one of the motor torque and the motor output that can be output from the motor 3 again based on the change in the state of the motor 3 detected by the motor state detection unit 12.
  • the EV range setting unit 17 reduces the EV range set in FIG. 7A by a torque limit change due to the state of the motor 3 as shown by the black two-way arrow in FIG. 7B (in FIG. 7B). The range within the lower range from the two thick solid lines) is newly set as the EV range.
  • the battery output calculation unit 16 calculates the battery output that can be output again by the battery 30 based on the change in the state of the battery 30 detected by the battery state detection unit 11, and the EV range setting unit 17 7B, the EV range set in FIG. 7B is reduced by the output limit change due to the change in the state of the battery 30 as shown by the black two-way arrow in FIG. 8 (below the two thick solid lines in FIG. 8). (Inside range) is newly set as the EV range.
  • the EV range setting unit 17 performs the state of the engine 2, the electric motor 3 at the timing of executing the EV range setting process described later with respect to the EV range (see FIG. 6B) initially set as described above. And a change in the engine starting torque of the engine 2, a change in the torque or output of the electric motor 3, and a change in the battery output of the battery 30 based on the change in either of the state of FIG.
  • the EV range is set in
  • the EV range setting unit 17 may move the boundary of the EV range for a certain period (a transition point between EV travel and cooperative travel) in a direction that does not shift from cooperative travel to EV travel. That is, the EV range setting unit 17 may be set so as to reduce the EV range in this case.
  • the EV range setting unit 17 is configured so that the EV range boundary (in cooperation with the EV traveling) can be maintained so that the EV traveling can be maintained for a certain period. What is necessary is just to move the transition point with a working travel
  • the EV range setting unit 17 may be set so as to expand the EV range in this case.
  • the traveling state is shifted in the EV traveling and the cooperative traveling, the boundary of the EV range is moved for a certain period so as not to cause hunting that frequently switches between the EV traveling and the cooperative traveling. Can do. As a result, the drivability of the driver of the vehicle 1 is not adversely affected.
  • connection / disconnection control unit 18 controls the connection / disconnection unit 8 so as to disconnect the engine 2 from the electric motor 3 or connect the electric motor 3 and the engine 2 according to the traveling state of the vehicle 1.
  • the connection / disconnection control unit 18 determines that it is difficult to restart the engine 2 when the engine 2 is disconnected from the electric motor 3 based on the remaining capacity (SOC) of the battery 30, the connection / disconnection control unit 18 The engine 2 is not disconnected (prohibited).
  • connection / disconnection control unit 18 connects the electric motor 3 and the engine 2 through the connection / disconnection unit 8.
  • this connection is disconnected by the connecting / disconnecting portion 8.
  • the electric motor 3 and the engine 2 may be controlled to be connected again by the connecting / disconnecting portion 8.
  • the output of the electric motor 3 can be supplied to the drive wheels 7R and 7L at the maximum during EV traveling while suppressing the shock at the start of the engine 2 from being transmitted to the drive wheels 7R and 7L.
  • the shock to the drive wheels 7R and 7L due to the connection between the electric motor 3 and the engine 2 when the rotation of the engine 2 is unstable can be suppressed, it adversely affects the drivability of the driver. There is nothing.
  • connection / disconnection control unit 18 controls the connection / disconnection unit 8 to disconnect the electric motor 3 and the engine 2 after connecting the engine 2 and the electric motor 3 with the connection / disconnection unit 8.
  • the EV range setting unit 17 may increase the EV range by the engine starting torque.
  • the motor torque corresponding to the engine starting torque that was limited when the engine 2 was stopped can also be used for EV travel.
  • the vehicle 1 further includes a navigation system 40 for navigating the driving of the driver of the vehicle 1.
  • the navigation system 40 includes a control unit, a memory, a map drawing unit, a guidance route drawing unit, a voice output unit, and the like.
  • the navigation system 40 identifies the current position of the vehicle by a GPS sensor, a distance sensor, an angle sensor, etc. provided at an appropriate position of the vehicle 1, and information on the uphill and downhill on the route in the map data ( (Tilt information and distance information) can be acquired.
  • the GPS sensor receives a GPS signal transmitted from a GPS satellite and detects the longitude and latitude of the current position of the vehicle 1.
  • the distance sensor indicates the travel distance of the vehicle 1 from a predetermined position.
  • the angle sensor measures the traveling direction of the vehicle 1.
  • the EV range setting unit 17 determines whether regeneration from the electric motor 3 can be performed in the future based on the navigation state in the navigation system 40, that is, whether or not there is a downhill on the route. Also good. When it is determined that regeneration from the electric motor 3 can be performed in the future, the EV range setting unit 17 may increase the EV range. Since the battery 30 can be charged by the regenerative brake of the electric motor 3 on the downhill, there is no problem with EV traveling even if the EV traveling range is expanded.
  • FIG. 9 is a torque characteristic diagram of the engine 2 and the electric motor 3.
  • the torque characteristics of the output torque with respect to the temperature of the electric motor 3 have a relationship such that the output torque of the electric motor 3 decreases as the temperature of the electric motor 3 increases.
  • the torque characteristic of the engine starting torque with respect to the temperature of the engine 2 has a relationship such that the engine starting torque rapidly decreases when the temperature of the engine 2 is low, but the engine starting torque hardly changes at a predetermined temperature or higher.
  • 10 and 11 are flowcharts showing the EV range setting process executed by the electronic control unit 10 shown in FIG.
  • the EV range setting process is executed at predetermined time intervals after the vehicle 1 is started (after the ignition is turned on), and the set EV range is updated.
  • the battery state detection unit 11 detects the voltage V and current I of the battery 30 via the current / voltage sensor 102 (step S101), and the detected voltage of the battery 30 is detected. Based on V and current I, the charged amount of battery 30, that is, SOC is calculated (step S102).
  • the battery state detection unit 11 detects the temperature Tb of the battery 30 via the battery temperature sensor 101 (step S103), and outputs the storage amount SOC and the temperature Tb of the battery 30 to the battery output calculation unit 16.
  • the battery output calculation unit 16 calculates a battery output that can be output from the battery 30 based on the storage amount SOC and the temperature Tb of the battery 30 (step S104), and outputs the calculated battery output to the EV range setting unit 17 To do.
  • the motor state detection unit 12 detects the temperature Tm and current value of the motor 3 via the current / voltage sensor 102 and the motor temperature sensor 103 (step S105), and the motor torque / output calculation unit 14 detects the motor 3
  • the maximum motor torque is calculated based on the temperature Tm and the current value (step S106), and the calculated maximum motor torque is output to the EV range setting unit 17.
  • the motor state detection unit 12 detects the rotation speed Nm of the motor 3 via the motor rotation speed sensor 104 (step S107), and the motor torque / output calculation section 14 is based on the rotation speed Nm of the motor 3. Then, an electric motor characteristic map indicating the relationship between the torque of the electric motor and the rotational speed is acquired (step S108), and based on the electric motor characteristic map, the electric motor torque that can be output by the electric motor 3 is calculated (step S109). The motor torque is output to the EV range setting unit 17.
  • the engine state detection unit 13 detects the temperature of the engine 2 (replaced by the coolant water temperature Tw or the lubricant oil temperature To) via the coolant temperature sensor 105 or the lubricant temperature sensor 106 (step S110). ).
  • the starting torque calculation unit 15 acquires an engine starting torque map indicating the relationship between the starting torque and the temperature of the engine 2 (step S111), and based on the temperature of the engine 2 detected in step S110, the starting torque calculation unit 15 The engine starting torque is calculated (step S112), and the calculated engine starting torque is output to the EV range setting unit 17.
  • the cooling water temperature Tw or the lubricating oil oil detected by the cooling water temperature sensor 105 or the lubricating oil temperature sensor 106 is not provided without providing the electric motor temperature sensor 103.
  • the temperature To can be used as the temperature Tm of the electric motor 3
  • the electric vehicle temperature sensor 103 that exclusively detects the temperature Tm of the electric motor 3 because the vehicle of the present embodiment has a wide range in which the electric motor 3 performs single EV traveling. Installation is also required.
  • the EV range setting unit 17 determines whether or not the battery output calculated in step S104 is larger than the motor output calculated in step S109 (which is smaller) (step S113).
  • the EV range setting unit 17 specifies a range (1) obtained by subtracting the engine start torque from the motor torque (step S114), and starts the engine from the motor maximum torque. A range (2) in which the torque is reduced is specified (step S115). Then, the EV range setting unit 17 sets a range obtained by adding these ranges (1) and (2) as an EV range (step S116), and ends the EV range setting process.
  • the EV range setting unit 17 specifies a range (3) obtained by subtracting the engine starting torque from the battery output (step S117). A range (2) obtained by subtracting the engine starting torque from the motor maximum torque is specified (step S118). Then, the EV range setting unit 17 sets a range obtained by adding these ranges (3) and (2) as an EV range (step S119), and ends the EV range setting process.
  • the starting torque calculating unit 15 may newly calculate a value obtained by subtracting a certain lower limit value according to the vehicle speed Nv detected by the vehicle speed sensor 107 as the engine starting torque. Moreover, the battery state detection part 11 detects the internal pressure (battery internal pressure) of the battery 30, the ion concentration in the electrolyte in the battery 30 (battery internal concentration), etc., and the battery output calculation part 16 is based on these detection data. Thus, the battery output may be corrected.
  • the motor state detection unit 12 may estimate the temperature Tm of the electric motor 3 based on the energization amount, torque, and rotation speed of the electric motor 3, and when the electric motor 3 is disposed adjacent to the engine 2.
  • the temperature of the engine 2 (cooling water temperature Tw or lubricating oil temperature To) may be used without directly detecting the temperature Tm of the electric motor 3.
  • the battery output calculation unit 16 uses the battery 30 based on at least one of the state of the battery 30 and the storage amount SOC detected by the battery state detection unit 11.
  • the battery output that can be output is calculated, and the motor torque / output calculation unit 14 can output the motor torque or the motor that can be output from the motor 3 based on the temperature Tm and the rotation speed Nm of the motor 3 detected by the motor state detection unit 12.
  • the output and the maximum torque of the electric motor 3 are calculated, and the starting torque calculation unit 15 determines the engine 2 based on the coolant temperature Tw of the engine 2 detected by the engine state detection unit 13 or the oil temperature To of the lubricating oil.
  • the engine starting torque required for starting the engine is calculated, and the EV range setting unit 17 determines the battery output of the battery 30 and the electric motor. Compare the motor torque or motor output of the motor and select the lower one, and add the range obtained by subtracting the engine start torque from the selected torque or output and the range obtained by subtracting the engine start torque from the maximum motor torque. This range was set as the EV range.
  • the power output device (electronic control unit 10) of the present embodiment is configured as described above, when the vehicle 1 is traveling on an EV (electric vehicle), that is, when the vehicle 1 is traveling only by the motor 3, the motor 3
  • the engine When the output is required more than the output in the EV range, the engine is started with the engine start torque remaining in advance, and the driving force of the engine 2 and the electric motor 3 is output to the drive wheels 7R and 7L. It is possible to shift to work driving.
  • the output of the electric motor 3 is limited by a torque (engine starting torque) necessary for starting (pushing) the engine 2, but the state of the engine 2, the electric motor 3, and the battery 30 is not considered.
  • the torque of the electric motor 3 was limited uniformly.
  • the EV range as wide as possible is set in consideration of the states of the engine 2, the electric motor 3, and the battery 30, so that the EV range can be set more accurately. Thereby, the EV range can be ensured to the maximum while ensuring the merchantability of the vehicle 1 when the engine is started.
  • FIG. 12 is a block diagram showing a configuration of the electronic control unit 10 in the second embodiment.
  • symbol is attached
  • the electronic control unit 10 calculates the remaining temperature of the battery 30 and the battery temperature detection unit 22 that detects the temperature Tb of the battery 30 instead of the battery state detection unit 11 in the first embodiment. And a remaining capacity detector 23. Further, the motor state detection unit 12 of the electronic control unit 10 includes a motor temperature detection unit 24 that detects the temperature of the motor 3. Furthermore, the electronic control unit 10 of the present embodiment includes an engine temperature detection unit 19 that detects the temperature of the engine 2 instead of the engine state detection unit 13 in the first embodiment.
  • the battery temperature detection unit 22 detects the temperature Tb of the battery 30 via the battery temperature sensor 101, and outputs the detected temperature Tb of the battery 30 to the battery output calculation unit 16.
  • the remaining capacity detector 23 calculates the remaining capacity SOC of the battery 30 based on the current I and the voltage V of the battery 30 detected by the current / voltage sensor 102, and calculates the calculated remaining capacity SOC of the battery 30 as a battery output. To the unit 16.
  • the battery output calculation unit 16 is a battery that can be output by the battery 30 based on the remaining capacity SOC of the battery 30 input from the remaining capacity detection unit 23 and the temperature Tb of the battery 30 input from the battery temperature detection unit 22. Calculate the output.
  • the motor torque calculation unit 21 calculates the maximum motor torque that can be output from the motor 3 based on the temperature Tm of the motor 3 detected by the motor temperature detection unit 24 in the motor state detection unit 12 via the motor temperature sensor 103. To do.
  • the starting torque calculation unit 15 is based on the coolant temperature Tw of the engine 2 detected by the engine temperature detection unit 19 via the coolant temperature sensor 105 or the lubricant temperature sensor 106 or the lubricant oil temperature To. The engine starting torque required for starting is calculated.
  • the EV range setting unit 17 calculates a motor output range from the battery output of the battery 30, the engine start torque of the engine 2, and the motor maximum torque of the motor 3, and sets the range in which the calculated motor output range is the maximum torque as the EV Set as a range.
  • the motor torque calculation unit 21 calculates the motor torque or the motor output corrected by the temperature Tm of the motor 3 based on the temperature Tm of the motor 3 detected by the motor temperature detection unit 24, and the EV range setting unit 17
  • the range of the maximum torque may be set as the EV range so that the motor torque falls within a predetermined range from the battery output.
  • FIG. 13 is a flowchart showing an EV range setting process executed by the electronic control unit 10 shown in FIG. As in the first embodiment, this EV range setting process is executed at predetermined time intervals after the vehicle 1 is started (after the ignition is turned on), and the set EV range is updated.
  • the remaining capacity detection unit 23 detects the voltage V and current I of the battery 30 via the current / voltage sensor 102 (step S201), and the detected voltage of the battery 30 is detected. Based on V and current I, the remaining capacity of battery 30 is calculated (step S202). The remaining capacity detection unit 23 outputs the calculated remaining capacity of the battery 30 to the battery output calculation unit 16.
  • the battery temperature detection unit 22 detects the temperature Tb of the battery 30 via the battery temperature sensor 101 (step S203), and outputs the temperature Tb of the battery 30 to the battery output calculation unit 16.
  • the battery output calculation unit 16 calculates a battery output that can be output from the battery 30 based on the remaining capacity of the battery 30 and the temperature Tb (step S204), and outputs the calculated battery output to the EV range setting unit 17.
  • the motor temperature detection unit 24 detects the temperature Tm of the motor 3 via the motor temperature sensor 103 (step S205), and the motor torque calculation unit 21 calculates the motor maximum torque based on the temperature Tm of the motor 3. The calculated maximum motor torque is output to the EV range setting unit 17 (step S206).
  • the engine temperature detection unit 19 detects the temperature of the engine 2 (replaced by the coolant water temperature Tw or the lubricant oil temperature To) via the coolant temperature sensor 105 or the lubricant temperature sensor 106 (step S207). ).
  • the starting torque calculation unit 15 acquires an engine starting torque map indicating the relationship between the starting torque and the temperature of the engine 2 (step S208), and calculates the engine starting torque based on the temperature of the engine 2 detected in step S207. Calculate (step S209). Then, the starting torque calculation unit 15 outputs the calculated engine starting torque to the EV range setting unit 17.
  • the EV range setting unit 17 calculates a motor output range based on the battery output calculated in step S204, the motor maximum torque calculated in step S206, and the engine start torque calculated in step S209 (step S210), a range with the calculated motor output range as the maximum torque is set as the EV range (step S211), and this EV range setting process is terminated.
  • the remaining capacity detection unit 23 detects the remaining capacity of the battery 30 based on the current I and the voltage V of the battery 30, and the battery temperature detection unit 22
  • the temperature Tb of the battery 30 is detected
  • the battery output calculation unit 16 is based on the remaining capacity of the battery 30 detected by the remaining capacity detection unit 23 and the temperature Tb of the battery 30 detected by the battery temperature detection unit 22.
  • the battery output that can be output by the battery 30 is calculated
  • the motor state detection unit 12 detects the state of the motor 3
  • the motor torque calculation unit 21 is based on the state of the motor 3 detected by the motor state detection unit 12.
  • the maximum motor torque that can be output from the motor 3 is calculated, and the engine temperature detection unit 19 detects the coolant temperature Tw of the engine 2 or the oil temperature of the lubricating oil.
  • the starting torque calculating unit 15 calculates the engine starting torque necessary for starting the engine 2 based on the water temperature Tw or the oil temperature To of the engine 2 detected by the engine temperature detecting unit 19, and the EV range.
  • the setting unit 17 calculates the motor output range from the battery output of the battery 30, the engine start torque, and the motor maximum torque of the motor 3, and sets the range where the calculated motor output range is the maximum torque as the EV range. It was. With this configuration, unlike the case of the first embodiment, the EV range is set without considering the motor torque or the motor output of the motor 3, but when the engine 2 and the motor 3 are connected. Although some coupling shock can occur, a sufficiently wide EV range can be set.
  • the modified example of the power output apparatus in the first embodiment can be adopted as a modified example in the power output apparatus of the second embodiment as long as it does not contradict the configuration and function of the power output apparatus of the second embodiment. . In this case, the same effect as that applied to the first embodiment can be obtained.
  • the power output apparatus of the present invention can be applied to a so-called plug-in hybrid vehicle as well as a hybrid vehicle that charges the battery 30 by regenerating the electric motor 3 when the vehicle 1 travels.
  • the EV range setting method when the power output apparatus of the present invention is applied to a plug-in hybrid vehicle will be described. Since the hardware configuration of the plug-in hybrid vehicle is substantially the same as that of the hybrid vehicle of the first or second embodiment, the illustration thereof is omitted and added by using the reference numerals of the components in FIGS. 1 and 5. -Explain the changes.
  • the capacity of the battery 30 (battery capacity) is often increased compared to a normal hybrid vehicle in order to expand the EV travel range. This is because a plug-in hybrid vehicle aims to improve fuel economy (fuel consumption) by expanding opportunities for EV travel.
  • the EV range (EV possible region) can be expanded by setting the accelerator pedal depression amount (accelerator pedal opening) and the depression time threshold higher than those of a normal hybrid vehicle.
  • the motor torque can be increased with respect to the rotation speed of the motor 3, the start timing of the engine 2 can be delayed.
  • EV driving opportunities are expanded, so that the fuel economy of the vehicle 1 can be further improved.
  • a battery charger (not shown) is provided to directly charge the battery 30.
  • the battery charger enables the battery 30 to be charged by inserting a charging plug (not shown) into a household outlet plug (that is, an external power source).
  • FIG. 14 is a torque-rotation speed characteristic map of the electric motor 3 for explaining a method of setting an EV range (EV travel range) in the plug-in hybrid vehicle.
  • the EV range setting unit 17 first sets the torque limit and engine start torque from the output limit of the motor 3 to the torque limit depending on the state of the motor 3. The range obtained by subtracting the minutes is set as the EV range.
  • the EV range setting unit 17 has expanded the EV range to a range (a hatched portion in FIG. 14) that takes into account the drivability allowance (threshold value for determining that the driver of the vehicle 1 is comfortable).
  • a range (a range indicated by a thick solid line and a range indicated by a diagonal line in FIG. 14) is set as the EV range of the plug-in hybrid vehicle.
  • the allowable drivability for example, the acceleration (G) of the shift shock during the shift of the transmission 4 may be used.
  • the allowable drivability for example, the allowable value N when the starting clutch (one-way clutch) between the input shaft of the engine 1 and the transmission 4 is connected falls from the EV running state to the driving of the engine 2.
  • the allowable value N1 at the 1st speed and the allowable value N5 at the 5th speed are as follows: become that way.
  • the shock start may be reduced by 26 Nm (corresponding to “ ⁇ ” in FIG. 14) from the engine starting torque shown in FIG. That is, the EV range may be expanded by 26 Nm.
  • the engine start torque may be reduced by 156 Nm (corresponding to “ ⁇ ” in FIG. 14) as the allowable pull-in amount of engine 1. That is, the EV range may be expanded by 156 Nm.
  • the EV range can be further expanded by allowing the shift shock of the transmission 4 to a predetermined level. Thereby, since the EV travel opportunity increases, the fuel economy of the vehicle 1 can be improved.
  • the shift shock is more tolerable in the fifth gear because the shift ratio is lower than that in the first gear, and fluctuations during shifting are less likely to be amplified. It is. Therefore, the EV range can be sufficiently expanded even with a shift shock equivalent to 0.01G.
  • the motor 3 rotates at a high speed, and thus an inertial force is applied to the engine 2. Therefore, it can be expected that the shock related to engine start is offset by the inertial force.
  • each part of the electronic control unit 10, the engine 2, the electric motor 3, the transmission 4, and the like constituting the power output apparatus can be replaced with an arbitrary configuration that can exhibit the same function.
  • arbitrary components may be added.
  • the transmission 4 is described as a dry twin clutch transmission DCT, but the present invention is not limited to such a transmission.
  • the transmission 4 may be a wet transmission including a hydraulic control device, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

バッテリの状態および蓄電量の少なくとも一方を検出し、それに基づいて、バッテリにより出力可能なバッテリ出力を算出する。電動機の状態を検出し、それに基づいて、電動機から出力可能な電動機トルクまたは電動機出力の少なくとも一方と、電動機の最大トルクとを算出する。エンジンの状態を検出し、それに基づいて、エンジンの始動に必要なエンジン始動トルクを算出する。算出したバッテリ出力と、算出した電動機トルクおよび電動機出力の少なくとも一方と、算出したエンジン始動トルクとに基づいて、エンジンを切り離して電動機のみで走行可能なEV範囲を設定する。この場合、バッテリ出力と、電動機トルクまたは電動機出力とを比較していずれか低い方を選択し、選択したトルクまたは出力からエンジン始動トルクを減じた範囲と、電動機最大トルクからエンジン始動トルクを減じた範囲とを加えた範囲を、EV範囲として設定する。

Description

動力出力装置
 本発明は、エンジンと電動機とを備えた車両の動力出力装置に関し、より詳細には、電動機のみで走行中に必要に応じてエンジンを始動させることができる動力出力装置に関する。
 従来、内燃機関であるガソリンまたはディーゼルエンジンと、電動機(モータジェネレータ)との2種類の動力源を組み合わせて使用するパワートレインを搭載する車両が実用化されている。このようなパワートレインをハイブリッドシステムと呼ぶ。
 このようなハイブリッドシステムを搭載した車両(ハイブリッド車両)は、電動機やバッテリの性能によっては、エンジンと電動機との協働走行のみならず、電動機のみで走行することも可能である。このようなハイブリッド車両において、電動機のみで走行するEV走行中に、電子制御ユニットから要求される駆動力(トルク)が電動機の利用可能なトルクを超えた場合には、停止しているエンジンを再始動しなければならない。
 停止中のエンジンを再始動するためには、エンジンの温度に依存するエンジン始動トルクをエンジンに供給する必要がする。そのため、電子制御ユニットは、EV走行中には、電動機の最大トルクからこのエンジン始動トルクを差し引いたトルクで電動機を駆動するように制御していた。
 また、1つのエンジンに対し、2つのモータ(電動機および発電機)を備える車両も実用化されている。このような車両において、エンジン始動トルクを温度で補正することが提案されている(例えば、特開2005-163551号公報(以下、「特許文献1」という)参照)。特許文献1に開示される動力出力装置では、エンジンの温度等のエンジン始動性状態を検出し、この始動性状態に基づいて要求される動力が電動機の出力制限に達するまでエンジンを始動するように制御している。
 さらに、1つのエンジンと1つのモータジェネレータとを備える車両において、モータジェネレータによるEV単独走行中に、ユーザからの要求出力(車速とアクセルペダル位置により算出される)がモータジェネレータの単独走行可能領域を超えたことに応じて、エンジンを始動させるのに必要なトルクを確保するまで変速比を変化させ、エンジンを始動させるハイブリッド車両の制御装置が知られている(例えば、特開2000-177412号公報(以下、「特許文献2」という)参照)。
 しかしながら、特許文献1に開示の動力出力装置では、エンジンの温度に応じてエンジン始動トルクを補正しているものの、電動機のみで走行するEV範囲(EV走行範囲)を拡大するために、エンジンの温度等に基づいてこのEV範囲を修正するものではない。そのため、電動機のみで走行するEV範囲を狭くしすぎてしまい、実質的にEV走行可能領域を制限してしまうという問題があった。
 また、特許文献2に開示のハイブリッド車両の制御装置では、エンジン始動トルクを予め利用させないように制御するのではなく、ユーザからの要求出力が算出された際にモータジェネレータの単独走行可能領域を超えているときには、エンジンを始動可能な変速比に変更した後、エンジンを始動させ、その後、その要求出力をエンジンとモータジェネレータとで出力するように制御している。このような場合、ユーザは、アクセルペダルの踏み込みに対して、相当の応答遅れを体感することになり、ハイブリッド車両の乗り心地(乗り味)が悪くなってしまうという問題もあった。
 本発明は上述の点に鑑みてなされたものであり、その目的は、車両が電動機のみで走行しているときに、エンジンを再始動するためのエンジン始動トルクをより正確に算出することにより、電動機の出力を制限し過ぎることを抑制することができる動力出力装置を提供することにある。
 上記の課題を解決するために、本発明の一実施形態における動力出力装置は、エンジン(2)と、電動機(3)と、電動機(3)を制御するための電動機制御部(20)と、バッテリ(30)と、エンジン(2)と電動機(3)とを断接する断接部(8)と、変速機(4)とを備える車両(1)において、電動機(3)によりエンジン(2)を始動可能に配置された車両(1)の動力出力装置(10)であって、バッテリ(30)の状態および蓄電量(SOC)の少なくとも一方を検出するバッテリ状態検出部(11)と、バッテリ状態検出部(11)により検出されるバッテリ(30)の状態および蓄電量(SOC)の少なくとも一方に基づいて、バッテリ(30)により出力可能なバッテリ出力を算出するバッテリ出力算出部(16)と、電動機(3)の状態を検出する電動機状態検出部(12)と、電動機状態検出部(12)により検出される電動機(3)の状態に基づいて、電動機(3)から出力可能な電動機トルクまたは電動機出力の少なくとも一方と、電動機(3)の最大トルクとを算出する電動機トルク/出力算出部(14)と、エンジン(2)の状態を検出するエンジン状態検出部(13)と、エンジン状態検出部(13)により検出されるエンジン(2)の状態に基づいて、エンジン(2)の始動に必要なエンジン始動トルクを算出する始動トルク算出部(15)と、バッテリ出力算出部(16)により算出されるバッテリ(30)により出力可能なバッテリ出力と、電動機トルク/出力算出部(14)により算出される電動機(3)から出力可能な電動機トルクおよび電動機出力の少なくとも一方と、始動トルク算出部(15)により算出されるエンジン(2)の始動に必要なエンジン始動トルクとに基づいて、エンジン(2)を切り離して電動機(3)のみで走行可能なEV範囲を設定するEV範囲設定部(17)とを備え、EV範囲設定部(17)は、バッテリ(30)のバッテリ出力と、電動機(3)の電動機トルクまたは電動機出力とを比較していずれか低い方を選択し、その選択されたトルクまたは出力からエンジン始動トルクを減じた範囲と、電動機最大トルクからエンジン始動トルクを減じた範囲とを加えた範囲を、EV範囲として設定することを特徴とする。
 このように構成することにより、EV(電気自動車)走行中、すなわち、電動機のみで車両が走行しているとき、電動機のEV範囲の出力よりもさらに出力が必要となる場合には、予め残しておいたエンジン始動トルクによりエンジンを始動して、エンジンと電動機の駆動力を駆動輪に出力する協働走行に移行することができる。従来ならば、エンジンを始動する(押し掛けする)のに必要なトルク分だけ電動機の出力を制限しているが、エンジン、電動機およびバッテリの状態を考慮せず、一律にトルクを制限していた。そのため、EV走行可能であってもEV範囲を制限しすぎることもあった。しかしながら、本発明の動力出力装置では、エンジン、電動機およびバッテリの状態を考慮してEV範囲を設定しているので、より的確にEV範囲を設定することができる。また、電動機のEV範囲の出力よりもさらに出力が必要となるときに、エンジンを始動させるのに必要なトルク(エンジン始動トルク)を確保するために変速比等を変更することなく、迅速にエンジンを始動させることができるので、エンジン始動時の商品性を確保しつつ、EV範囲を最大限に確保することができる。
 また、本発明の一実施形態における動力出力装置は、エンジン(2)と、電動機(3)と、電動機(3)を制御するための電動機制御部(20)と、バッテリ(30)と、エンジン(2)と電動機(3)とを断接する断接部(8)と、変速機(4)とを備える車両(1)において、電動機(3)によりエンジン(2)を始動可能に配置された車両(1)の動力出力装置(10)であって、バッテリ(30)の状態および蓄電量(SOC)の少なくとも一方を検出するバッテリ状態検出部(11)と、バッテリ状態検出部(11)により検出されるバッテリ(30)の状態および蓄電量(SOC)の少なくとも一方に基づいて、バッテリ(30)により出力可能なバッテリ出力を算出するバッテリ出力算出部(16)と、少なくとも電動機(3)のトルクおよび回転数を検出する電動機状態検出部(12)と、電動機状態検出部(12)により検出される電動機(3)のトルクおよび回転数に基づいて、電動機(3)から出力可能な出力と、電動機(3)の最大トルクとを算出する電動機トルク/出力算出部(14)と、エンジン(2)の状態を検出するエンジン状態検出部(13)と、エンジン状態検出部(13)により検出されるエンジン(2)の状態に基づいて、エンジン(2)の始動に必要なエンジン始動トルクを算出する始動トルク算出部(15)と、バッテリ出力算出部(16)により算出されるバッテリ(30)により出力可能なバッテリ出力と、電動機トルク/出力算出部(14)により算出される電動機(3)から出力可能な電動機トルクと、始動トルク算出部(15)により算出されるエンジン(2)の始動に必要なエンジン始動トルクとに基づいて、エンジン(2)を切り離して電動機(3)のみで走行可能なEV範囲を設定するEV範囲設定部(17)とを備え、EV範囲設定部(17)は、バッテリ(30)のバッテリ出力と、電動機(3)の電動機出力とを比較していずれか低い方を選択し、その選択された出力からエンジン始動トルクを減じた範囲と、電動機最大トルクからエンジン始動トルクを減じた範囲とを加えた範囲を、EV範囲として設定することを特徴とする。このような構成としても、エンジン、電動機およびバッテリの状態を考慮してEV範囲を設定しているので、より的確にEV範囲を設定することができる。これにより、エンジン始動時の商品性を確保しつつ、EV範囲を最大限に確保することができる。また、電動機の回転数とトルクから電動機出力を算出することができるので、検出装置全体のサイズやセンサ数を低減することができる。
 本発明の動力出力装置では、車両(1)の車速(Nv)を検出する車速検出部(107)をさらに備え、始動トルク算出部(15)は、算出されたエンジン始動トルクから、車速検出部(107)により検出される車速(Nv)に応じてある下限値を減じた値を新たにエンジン始動トルクとして算出してもよい。車両の車速によっては、電動機が高速で回転するため、エンジンに慣性力が掛かり、その分だけエンジン始動トルクとして電動機出力を制限することを抑制することができる。
 本発明の動力出力装置では、バッテリ状態検出部(11)は、バッテリ(30)の蓄電量(SOC)に加え、バッテリ(30)の電圧(V)、電流(I)、電流積算値(It)、温度(Tb)、電池内圧、電池内部濃度のいずれかを検出すればよい。このようにバッテリの状態を詳細に検出することにより、EV走行時の電動機の出力制限範囲を極力狭くすることができる。
 本発明の動力出力装置では、電動機状態検出部(12)は、電動機(3)の温度(Tm)を検出する電動機温度センサ(103)により電動機温度(Tm)を直接検出してもよく、あるいは、電動機(3)の通電電流、トルクおよび回転数(Nm)を検出し、これらの検出値から電動機温度を推定するように構成されてもよい。このように電動機の状態を詳細に検出することにより、EV走行時の電動機の出力制限範囲を極力狭くすることができる。
 本発明の動力出力装置では、エンジン状態検出部(13)は、エンジン(2)の冷却水の水温(Tw)およびエンジン(2)の潤滑油の油温(To)のいずれか一方と、エンジン(2)のピストンの位置とを検出すればよい。このようにエンジンの状態を詳細に検出することにより、EV走行時の電動機の出力制限範囲を極力狭くすることができる。
 また、上記の課題を解決するために、本発明の別の実施形態における動力出力装置は、エンジン(2)と、電動機(3)と、電動機(3)を制御するための電動機制御部(20)と、バッテリ(30)と、エンジン(2)と電動機(3)とを断接する断接部(8)と、変速機(4)とを備える車両(1)において、電動機(3)によりエンジン(2)を始動可能に配置された車両(1)の動力出力装置(10)であって、バッテリ(30)の残容量を検出する残容量検出部(23)と、バッテリ(30)の温度(Tb)を検出するバッテリ温度検出部(22)と、残容量検出部(23)により検出されるバッテリ(30)の残容量と、バッテリ温度検出部(22)により検出されるバッテリ(30)の温度(Tb)とに基づいて、バッテリ(30)により出力可能なバッテリ出力を算出するバッテリ出力算出部(16)と、電動機(3)の状態を検出する電動機状態検出部(12)と、電動機状態検出部(12)により検出される電動機(3)の状態に基づいて、電動機(3)から出力可能な電動機最大トルクを算出する電動機トルク算出部(14)と、エンジン(2)の温度(Tw、To)を検出するエンジン温度検出部(19)と、エンジン温度検出部(19)により検出されるエンジン(2)の温度(Tw、To)に基づいて、エンジン(2)の始動に必要なエンジン始動トルクを算出する始動トルク算出部(15)と、バッテリ出力算出部(16)により算出されるバッテリ(30)により出力可能なバッテリ出力と、電動機トルク算出部(14)により算出される電動機(3)から出力可能な電動機最大トルクと、始動トルク算出部(15)により算出されるエンジン(2)の始動に必要なエンジン始動トルクとに基づいて、エンジン(2)を切り離して電動機(3)のみで走行可能なEV範囲を設定するEV範囲設定部(17)とを備え、EV範囲設定部(17)は、バッテリ(30)のバッテリ出力と、エンジン始動トルクと、電動機(3)の電動機最大トルクとから電動機出力範囲を算出し、算出した電動機出力範囲を最大トルクとした範囲をEV範囲として設定することを特徴とする。このように構成することにより、上記の場合と異なり、電動機の電動機トルクまたは電動機出力を考慮することなく、EV範囲を設定することになるが、エンジンと電動機との接続時に多少の連結ショックが起こりうるものの、十分に広いEV範囲を設定することができる。
 本発明の別の実施形態における動力出力装置は、エンジン(2)と、電動機(3)と、電動機(3)を制御するための電動機制御部(20)と、バッテリ(30)と、エンジン(2)と電動機(3)とを断接する断接部(8)と、変速機(4)とを備える車両(1)において、電動機(3)によりエンジン(2)を始動可能に配置された車両(1)の動力出力装置(10)であって、バッテリ(30)の残容量を検出する残容量検出部(23)と、バッテリ(30)の温度(Tb)を検出するバッテリ温度検出部(22)と、残容量検出部(23)により検出されるバッテリ(30)の残容量と、バッテリ温度検出部(22)により検出されるバッテリ(30)の温度(Tb)とに基づいて、バッテリ(30)により出力可能なバッテリ出力を算出するバッテリ出力算出部(16)と、電動機(3)の温度(Tm)を検出する電動機温度検出部(24)と、電動機温度検出部(24)により検出される電動機(3)の温度(Tm)に基づいて、電動機制御部(20)から出力されるトルク指令値に対して実際に出力可能な電動機最大トルクを算出する電動機トルク算出部(21)と、エンジン(2)の温度(Tw、To)を検出するエンジン温度検出部(19)と、エンジン温度検出部(19)により検出されるエンジン(2)の温度(Tw、To)に基づいて、エンジン(2)の始動に必要なトルクを算出する始動トルク算出部(15)と、バッテリ出力算出部(16)により算出されるバッテリ(30)により出力可能なバッテリ出力と、電動機トルク算出部(21)により算出される電動機(3)から出力可能な電動機最大トルクと、始動トルク算出部(15)により算出されるエンジン(2)の始動に必要なエンジン始動トルクとに基づいて、エンジン(2)を切り離して電動機(3)のみで走行可能なEV範囲を設定するEV範囲設定部(17)とを備え、電動機トルク算出部(21)は、電動機温度検出部(24)により検出される電動機(3)の温度(Tm)に基づいて、電動機(3)の温度(Tm)で補正した電動機トルクを算出し、EV範囲設定部(17)は、電動機トルクがバッテリ出力から所定の範囲に収まるように、最大トルクとした範囲をEV範囲として設定することを特徴とする。
 本発明の動力出力装置では、上記のいずれかの構成において、エンジン状態検出部(13)またはエンジン温度検出部(19)は、電動機(3)からエンジン(2)を切り離したときのエンジン(2)の温度(Tw、To)を検出し、EV範囲設定部(17)は、切り離したときのエンジン(2)の温度(Tw、To)に基づいて、EV範囲を設定してもよい。エンジン切り離し時からエンジンの温度は下がることになるが、切り離し時のエンジンの温度と経過時間等から、エンジンと電動機とを再度接続するときのエンジンの温度を推定することができる。
 本発明の動力出力装置では、車両(1)の走行状態に応じて、電動機(3)からエンジン(2)を切り離し、あるいは電動機(3)とエンジン(2)とを接続するように断接部(8)を制御する断接制御部(18)をさらに備え、断接制御部(18)は、バッテリ(30)の残容量に基づいて、電動機(3)からエンジン(2)を切り離すとエンジン(2)の再始動が困難であると判定した場合には、断接部(8)にエンジン(2)の切り離しをさせないように構成されればよい。
 本発明の動力出力装置では、電動機(3)がエンジン(2)に隣接して配置されている場合には、電動機状態検出部(12)または電動機温度検出部(24)は、エンジン状態検出部(13)またはエンジン温度検出部(19)により検出される潤滑油の油温(To)または冷却水の水温(Tw)を電動機(3)の温度(Tm)として利用してもよい。これにより、車両における検出装置全体のサイズやセンサ数を削減することができる。
 本発明の動力出力装置では、車両(1)の走行状態に応じて、電動機(3)からエンジン(2)を切り離すように断接部(8)を制御する断接制御部(18)をさらに備え、車両(1)が電動機(3)のみで走行中に、電動機(3)に要求される駆動力がEV範囲を超えた場合には、断接制御部(18)は、断接部(8)により電動機(3)とエンジン(2)とを接続して、エンジン(2)の始動に必要なエンジン始動トルクを電動機(3)から確保することにより、エンジン(2)を押し掛けした後、断接部(8)によりこの接続を切り離し、その後、エンジン(2)の回転数がEV走行時の電動機(3)の入力軸の回転数と同等になった時点で、断接部(8)により電動機(3)とエンジン(2)とを再度接続すればよい。これにより、エンジン始動時のショックが駆動輪に伝達することを抑制しつつ、EV走行中に電動機出力を駆動輪に最大限供給することができる。このように、エンジンの回転が不安定な状態で電動機とエンジンとを接続することによる駆動輪へのショックを抑制するので、運転者のドライバビリティに悪影響を及ぼすことがない。
 本発明の動力出力装置では、エンジン(2)を始動するために断接部(8)によりエンジン(2)と電動機(3)とを接続した後、電動機(3)とエンジン(2)とを切り離したときには、EV範囲設定部(17)は、エンジン始動トルク分だけEV範囲を増加させればよい。この場合、エンジンは既に始動しているため、エンジン停止時には制限していたエンジン始動トルク分の電動機トルクもEV走行に利用することができる。
 本発明の動力出力装置では、車両(1)は、車両(1)の運転者の運転をナビゲートするナビゲーションシステム(40)をさらに備え、EV範囲設定部(17)は、ナビゲーションシステム(40)におけるナビゲーション状態に基づいて、電動機(3)からの回生が今後なされ得るか否かを判断し、電動機(3)からの回生が今後なされ得ると判断した場合には、EV範囲を増大させればよい。このようにナビゲーションシステムにより今後例えば長い下り坂に差しかかることが分かっている場合には、この下り坂で電動機の回生ブレーキによりバッテリの充電が可能であるため、EV走行範囲を拡大させてもEV走行に対して問題となることはない。
 本発明の動力出力装置では、電動機(3)に要求される駆動力がEV範囲を超えて、EV走行からエンジン(2)と電動機(3)とによる協働走行に移行した後は、EV範囲設定部(17)は、一定期間EV範囲の境界を協働走行からEV走行に移行しない方向に移動させればよい。また、エンジン(2)と電動機(3)とによる協働走行からEV走行に移行した後は、EV範囲設定部(17)は、一定期間EV走行を維持することができるように、EV範囲の境界をEV走行から協働走行に移行しない方向に移動させればよい。このように構成することにより、EV走行と協働走行とで頻繁に切り替わるハンチングを生じさせないようにすることができる。これにより、車両の運転者のドライバビリティに悪影響を及ぼすことがない。
 本発明の動力出力装置では、車両(1)は、外部電源からバッテリ(30)を充電可能なプラグインハイブリッド車両であり、EV範囲設定部(17)は、バッテリ(30)の容量に応じて、上述のように設定されたEV範囲を拡大するようにさらに設定してもよい。これにより、例えばバッテリの状態に応じて電動機の出力制限がなされている場合であっても、バッテリ容量が十分に大きいときには、そのバッテリ容量の大きさに基づいてEV走行可能領域を拡大することができる。これにより、エンジン始動のタイミングを遅らせることができ、車両の燃料経済性(燃費)の向上に寄与することができる。
 ここで、本発明の動力出力装置では、変速機(4)は、それぞれ所定の変速比(変速レシオ)に対応する複数の変速段を有している。上記のようなプラグインハイブリッド車両の場合には、EV範囲設定部(17)は、車両(1)の車体重量と、車両(1)の駆動輪の半径と、各変速段の変速比と、変速時に許容される変速ショック量(ドライバビリティ許容量:車両の運転者が快適であると判断し、あるいは認識する閾値)とに基づいて、EV範囲を拡大すべき領域を設定すればよい。通常、変速段が低いほど変速比が大きくなる。変速比が大きいほど変速時の変動(車両の挙動)が増幅されにくいため、高い変速段になるほど、拡大され得るEV走行可能領域を大きくすることができる。これにより、さらに、車両の燃料経済性の向上に寄与することができる。
 なお、上記で括弧内に記した図面参照符号は、後述する実施形態における対応する構成要素を参考のために例示するものである。
 本発明によれば、車両が電動機のみで走行しているときに、エンジンを再始動するためのエンジン始動トルクをより正確に算出することにより、電動機の出力を制限し過ぎることを抑制可能な動力出力装置を提供することができる。
本発明の一実施形態における車両の概略的な接続構成図である。 図1に示す変速機の一例のスケルトン図である。 変速機の別の例のスケルトン図である。 変速機のさらに別の例のスケルトン図である。 第1実施形態における電子制御ユニットの構成を示すブロック図である。 EV範囲の設定方法を説明するための電動機のトルク-回転数特性マップである。 EV範囲の設定方法を説明するための電動機のトルク-回転数特性マップである。 EV範囲の設定方法を説明するための電動機のトルク-回転数特性マップである。 エンジンおよび電動機のトルク特性図である。 図5に示す電子制御ユニットで実行されるEV範囲設定処理を示すフローチャートである。 図5に示す電子制御ユニットで実行されるEV範囲設定処理を示すフローチャートである。 第2実施形態における電子制御ユニットの構成を示すブロック図である。 図12に示す電子制御ユニットで実行されるEV範囲設定処理を示すフローチャートである。 本発明の変形例に係るプラグインハイブリッド車両におけるEV範囲の設定方法を説明するための電動機のトルク-回転数特性マップである。
 以下、添付図面を参照して本発明の動力出力装置の好適な実施形態を詳細に説明する。本発明の動力出力装置は、電気自動車やハイブリッド自動車などの車両駆動用の電動機および高圧バッテリを搭載する車両に適用され、例えば、車両全体を制御するために車両に搭載された電子制御ユニット(ECU:Electronic Control Unit)により実現される。以下の実施形態では、電子制御ユニットは、エンジンを制御するとともに、変速機やバッテリ、電動機を制御するものとして説明する。
 (第1実施形態)
 まず、本発明の第1実施形態における車両の構成を説明する。図1は、本発明の一実施形態における車両の概略的な接続構成図である。本実施形態の車両1は、いわゆるハイブリッド車両であり、図1に示すように、エンジン2と、電動機3と、電動機3を制御するための電動機制御部20と、バッテリ30と、エンジン2と電動機3とを断接する断接部(クラッチ)8と、変速機4と、ディファレンシャル機構5と、左右のドライブシャフト6R、6Lと、左右の駆動輪7R、7Lとを備える。エンジン2と電動機3の回転駆動力は、変速機4、ディファレンシャル機構5およびドライブシャフト6R、6Lを介して左右の駆動輪7R、7Lに伝達される。
 また、この車両1は、エンジン2、電動機3、変速機4、ディファレンシャル機構5、断接部8、電動機制御部20およびバッテリ30をそれぞれ制御するための電磁制御ユニット(ECU)10を備える。本発明の動力出力装置は、主に電子制御ユニット10により構成される。電子制御ユニット10は、後述するように、所定の条件下、断接部8を介して電動機3にエンジン2を接続することにより、停止中のエンジン2を電動機3の回転駆動により始動することができる。電動機制御部20は、電子制御ユニット10の制御により、電動機3にトルク指令値を出力する。また、電動機制御部20は、バッテリ30からの直流電力から交流電力に変換するための図示しないインバータを含んでいる。
 なお、電子制御ユニット10は、1つのユニットとして構成されるだけでなく、例えば、エンジン2を制御するためのエンジンECU、電動機3や電動機制御部20を制御するための電動機ECU、バッテリ30を制御するためのバッテリECU、変速機4が自動変速機である場合の変速機4を制御するためのATECUなど複数のECUから構成されてもよい。
 電動機3は、エンジン2と電動機3との協働走行や電動機3のみのEV走行の際には、バッテリ30の電気エネルギーを利用して車両1を走行させるための駆動力を発生するモータとして機能するとともに、車両1の減速時には電動機3の回生により電力を発電するジェネレータとして機能する。この電動機3の回生時には、バッテリ30は、電動機3により発電された電力(回生エネルギー)により充電される。
 なお、本実施形態では、エンジン2、電動機3等は、公知の構成を備えていればよく、本発明の特徴部分ではないため、それらの詳細な説明は省略するものとする。
 次に、本実施形態の変速機4の構成を説明する。図2は、図1に示す変速機4の一例のスケルトン図である。図3は、変速機4の別の例のスケルトン図である。図4は、変速機4のさらに別の例のスケルトン図である。以下、図2に示す変速機4の構成を詳細に説明する。図2に示す変速機4は、前進5段、後進1段の平行6軸式トランスミッションであり、乾式のツインクラッチ式変速機(DCT:デュアルクラッチトランスミッション)である。
 図2の変速機4には、図示しないエンジン2のクランクシャフトおよびプラネタリギヤ機構のサンギヤ71を介して電動機3に接続される内側メインシャフトIMSと、この内側メインシャフトIMSの外筒をなす外側メインシャフトOMSと、内側メインシャフトIMSにそれぞれ平行なセカンダリシャフトSS、リバースシャフトRSおよびアイドルシャフトISと、これらのシャフトに平行で、出力軸をなすカウンタシャフトCSとが設けられる。なお、図2に示す変速機4は、車両の補機であるエアコンディショナのコンプレッサA/Cにクラッチを介して連結されるエアコンシャフトA/CSも設けられている。
 これら6本のシャフトおよびディファレンシャル機構5(D)を含むドライブシャフトは、図2に示すように、互いに係合(当接)するように配置される。すなわち、内側メインシャフトIMSまたは外側メインシャフトOMSはカウンタシャフトCS、アイドルシャフトISおよびリバースシャフトRSに係合し、アイドルシャフトISはリバースシャフトRSおよびカウンタシャフトCSに係合し、セカンダリシャフトSSはカウンタシャフトCSに係合し、カウンタシャフトCSはディファレンシャル機構5(D)に係合するように配置される。また、エアコンシャフトA/CSはリバースシャフトRSに連動するようにベルトを掛け回される。
 変速機4は、奇数段用の第1クラッチC1と、偶数段用の第2クラッチC2とを備える。第1および第2クラッチC1、C2は乾式のクラッチである。第1クラッチC1は内側メインシャフトIMSに連結され、第2クラッチC2は外側メインシャフトOMSに連結される。
 外側メインシャフトOMS上には、図2において左側から順に、1速駆動ギヤとなるプラネタリギヤ機構のキャリヤ73と、3速駆動ギヤ43と、5速駆動ギヤ45と、アイドル駆動ギヤ52とが固定的に配置される。また、内側メインシャフトIMSの3速駆動ギヤ43と5速駆動ギヤ45との間には、3-5速シンクロメッシュ機構(セレクタ機構)82が軸方向にスライド自在に設けられる。また、内側メインシャフトIMS上には、リバース駆動ギヤ50が固定的に配置される。
 リバースシャフトRS上には、リバースアイドルギヤ51が固定的に配置されるとともに、リバース従動ギヤ48が回転自在に配置される。また、リバースシャフトRSのリバース従動ギヤ48の近傍には、リバースシンクロメッシュ機構81が軸方向にスライド自在に設けられる。
 セカンダリシャフトSS上には、図2において左側から順に、2速駆動ギヤ42と4速駆動ギヤ44とが回転自在に配置されるとともに、リバース従動ギヤ56が固定的に配置される。また、セカンダリシャフトSSの2速駆動ギヤ42と4速駆動ギヤ44との間には、2-4速シンクロメッシュ機構83が軸方向にスライド自在に設けられる。
 カウンタシャフトCS上には、図2において左側から順に、2-3速従動ギヤ53と、4-5速従動ギヤ55と、パーキングギヤ58と、ファイナル駆動ギヤ54とが固定的に配置される。ファイナル駆動ギヤ54はディファレンシャル機構5(D)のディファレンシャルリングギヤ59と噛み合う。
 アイドルシャフトIS上には、アイドル従動ギヤ57が固定的に配置される。アイドル従動ギヤ57は、アイドル駆動ギヤ52、リバース従動ギヤ56およびディファレンシャルリングギヤ59と噛み合う。なお、外側メインシャフトOMS、リバースシャフトRS、セカンダリシャフトSS、カウンタシャフトCS、アイドルシャフトIS、エアコンシャフトA/CSおよびディファレンシャル機構5(D)の出力シャフトのそれぞれは、ボールベアリングまたはローラベアリングにより回転自在に保持される。
 また、プラネタリギヤ機構のリングギヤ75に固定的に連結するように、ワンウェイクラッチ41が設けられる。図2に示す変速機4では、プラネタリギヤ機構のキャリヤ73がディファレンシャル機構5(D)を介して最終的に足軸に連結され、プラネタリギヤ機構のサンギヤ71が電動機3および図2では図示しないエンジン2に連結される。なお、プラネタリギヤ72、74は、サンギヤ71およびリングギヤ75にそれぞれ噛み合う。
 2-4速シンクロメッシュ機構83のシンクロスリープを左方向にスライドすると、2速駆動ギヤ42がセカンダリシャフトSSに結合され、右方向にスライドすると、4速駆動ギヤ44がセカンダリシャフトSSに結合される。このとき、第2クラッチC2を係合することにより、変速機4は2速または4速に設定される。
 3-5速シンクロメッシュ機構82のシンクロスリープを左方向にスライドすると、3速駆動ギヤ43が内側メインシャフトIMSに結合され、右方向にスライドすると、5速駆動ギヤ45が内側メインシャフトIMSに結合される。このとき、第1クラッチC1を係合することにより、変速機4は3速または5速に設定される。
 リバースシンクロメッシュ機構81のシンクロスリープを右側にスライドすると、リバース従動ギヤ48がリバースシャフトRSに結合される。このとき、第1クラッチC1を係合することにより、変速機4はリバース(後進)に設定される。
 次に、図3に示す変速機4の変形例について説明する。なお、図2に示す変速機4と同様の構成要素には同一の符号を付している。図3に示す変速機4は、プラネタリギヤ機構のサンギヤ71がリングギヤ75に連結されていない点で、図2に示す変速機4とは異なる。以下、これらの変速機4の相違点について簡単に説明する。
 このような相違点により、図3に示す変速機4のプラネタリギヤ機構では、サンギヤ71が図2では図示しないエンジン2に連結され、リングギヤ75が電動機3に連結され、キャリヤ73がディファレンシャル機構5(D)を介して最終的に足軸に連結される。
 次に、図4に示す変速機4のさらなる変形例について説明する。なお、図2に示す変速機4と同様の構成要素には同一の符号を付している。図4に示す変速機4は、前進7段、後進1段の平行5軸式トランスミッションであり、乾式のツインクラッチ式変速機(DCT:デュアルクラッチトランスミッション)である。
 図4の変速機4には、図示しないエンジン2のクランクシャフトおよびプラネタリギヤ機構のサンギヤ71を介して電動機3に接続される内側メインシャフトIMSと、この内側メインシャフトIMSの外筒をなす外側メインシャフトOMSと、内側メインシャフトIMSにそれぞれ平行なセカンダリシャフトSS、リバースシャフトRSおよびアイドルシャフトISと、これらのシャフトに平行で、出力軸をなすカウンタシャフトCSとが設けられる。
 変速機4は、奇数段用の第1クラッチC1と、偶数段用の第2クラッチC2とを備える。第1および第2クラッチC1、C2は乾式のクラッチである。第1クラッチC1は内側メインシャフトIMSに連結され、第2クラッチC2は外側メインシャフトOMSに連結される。
 外側メインシャフトOMS上には、図4において左側から順に、1速駆動ギヤとなるプラネタリギヤ機構のキャリヤ73と、3速駆動ギヤ43と、7速駆動ギヤ47と、5速駆動ギヤ45と、アイドル駆動ギヤ52とが固定的に配置される。また、内側メインシャフトIMS上には、3速駆動ギヤ43と7速駆動ギヤ47との間に、3-7速シンクロメッシュ機構(セレクタ機構)84が軸方向にスライド自在に設けられる。また、5速駆動ギヤ4の近傍には、5速シンクロメッシュ機構(セレクタ機構)85が軸方向にスライド自在に設けられる。さらに、内側メインシャフトIMS上には、リバース駆動ギヤ50が固定的に配置される。
 リバースシャフトRS上には、図4において左側から順に、リバースアイドルギヤ51と、リバースアイドルギヤ51とが固定的に配置されるとともに、これらの間にはリバース従動ギヤ48が回転自在に配置される。また、リバース従動ギヤ48の近傍には、リバースシンクロメッシュ機構81が、リバース従動ギヤ48とともに軸方向にスライド自在に設けられる。
 セカンダリシャフトSS上には、図4において左側から順に、2速駆動ギヤ42と、6速駆動ギヤ46と、4速駆動ギヤ44とが回転自在に配置されるとともに、リバース従動ギヤ56が固定的に配置される。また、セカンダリシャフトSSの2速駆動ギヤ42と6速駆動ギヤ46との間には、2-6速シンクロメッシュ機構86が軸方向にスライド自在に設けられる。また、4速駆動ギヤ44の近傍には、4速シンクロメッシュ機構(セレクタ機構)87が軸方向にスライド自在に設けられる。
 カウンタシャフトCS上には、4において左側から順に、2-3速従動ギヤ53と、6-7速従動ギヤ60と、4-5速従動ギヤ55と、パーキングギヤ58と、ファイナル駆動ギヤ54とが固定的に配置される。ファイナル駆動ギヤ54は図示しないディファレンシャル機構5のディファレンシャルリングギヤと噛み合う。
 アイドルシャフトIS上には、アイドル従動ギヤ57が固定的に配置される。アイドル従動ギヤ57は、アイドル駆動ギヤ52、リバース従動ギヤ56およびディファレンシャルリングギヤ59と噛み合う。なお、外側メインシャフトOMS、リバースシャフトRS、セカンダリシャフトSS、カウンタシャフトCSおよびアイドルシャフトISのそれぞれは、ボールベアリングまたはローラベアリングにより回転自在に保持される。
 図4の変速機4では、5本のシフトレールが設けられている。第1シフトレールでは、第1クラッチC1を係合することにより、変速機4は、リバースシンクロメッシュ機構81がニュートラル状態のとき、1速に設定され、リバースシンクロメッシュ機構81のシンクロスリープが左側にスライドしている場合には、リバース(後進)に設定される。第2シフトレールでは、第2クラッチC2を係合することにより、変速機4は、2-6速シンクロメッシュ機構86のシンクロスリープが左側にスライドしている場合には、2速に設定され、2-6速シンクロメッシュ機構86のシンクロスリープが右側にスライドしている場合には、6速に設定される。第3シフトレールでは、第1クラッチC1を係合することにより、変速機4は、3-7速シンクロメッシュ機構84のシンクロスリープが左側にスライドしている場合には、3速に設定され、3-7速シンクロメッシュ機構84のシンクロスリープが右側にスライドしている場合には、7速に設定される。第4シフトレールでは、第2クラッチC2を係合することにより、変速機4は、リバースシンクロメッシュ機構81および4速シンクロメッシュ機構87を連動させて、リバースシンクロメッシュ機構81を左側にスライドしている場合には、リバース(後進)に設定され、4速シンクロメッシュ機構87を右側にスライドしている場合には、4速に設定される。第5シフトレールでは、第1クラッチC1を係合することにより、変速機4は、5速シンクロメッシュ機構85を左側にスライドしている場合には、パーキングに設定され、5速シンクロメッシュ機構85を右側にスライドしている場合には、5速に設定される。
 次に、本実施形態の電子制御ユニット10の構成を説明する。図5は、第1実施形態における電子制御ユニット10の構成を示すブロック図である。図5に示すように、電子制御ユニット10は、バッテリ状態検出部11と、電動機状態検出部12と、エンジン状態検出部13と、電動機トルク/出力算出部14と、始動トルク算出部15と、バッテリ出力算出部16と、EV範囲設定部17と、断接制御部18とを備える。
 また、本実施形態の車両1では、バッテリ30の近傍には、バッテリ30の温度Tbを検出するためのバッテリ温度センサ101が設けられる。バッテリ30と電動機制御部20との間には、バッテリ30の電流I、電圧Vおよび電流積算値Itを検出する電流・電圧センサ102が設けられる。また、図示を省略するが、バッテリ30には、バッテリ30の内圧(電池内圧)やバッテリ30内の電解質中のイオン濃度(電池内部濃度)を検出する内圧センサやイオン濃度センサなどが設けられてもよい。これらのセンサ101、102等の検出値はバッテリ状態検出部11に出力される。
 電動機3の近傍には、電動機3の温度Tmを検出する電動機温度センサ103が設けられ、電動機3の入力軸または出力軸の近傍には、電動機3の回転数Nmを検出するための電動機回転数センサ104が設けられる。これらのセンサ103、104の検出値は電動機状態検出部12に出力される。
 エンジン2の近傍には、エンジン2を冷却するための冷却水(クーラント)の水温Twを検出するための冷却水温センサ105と、エンジン2を潤滑するための潤滑油(エンジンオイル)の油温Toを検出する潤滑油温センサ106とが設けられる。
 さらに、車両1の適当な位置に、車両1の車速Nvを検出する車速センサ107が設けられる。なお、車速Nvを専用に検出する車速センサ107を設けることなく、エンジン2のメインシャフト(図示せず)あるいは電動機3の出力軸の回転数Niまたは変速機4内の図示しないカウンタシャフトの回転数Noから車速Nvを算出するようにしてもよい。例えば、「Nv=Ni×変速レシオ×タイヤ周長」あるいは「Nv=No×タイヤ周長」のような関係式に基づいて車速Nvを検出(算出)することができる。
 バッテリ状態検出部11は、バッテリ温度センサ101により検出されるバッテリ30の温度Tb、電流・電圧センサ102により検出されるバッテリ30の電流Iおよび電圧Vを取得(検出)する。そして、バッテリ状態検出部11は、必要に応じて、バッテリ30の電流I、電圧Vに基づいて、バッテリ30の蓄電量、すなわちSOCを算出する。バッテリ状態検出部11により検出される各検出値は、バッテリ出力算出部16と断接制御部18とに出力される。
 また、バッテリ状態検出部11は、バッテリ30の電流Iに基づいて、電流積算値Itを算出する。バッテリ状態検出部11は、図示しない内圧センサやイオン濃度センサにより検出されるバッテリ30の内圧(電池内圧)やバッテリ30内の電解質中のイオン濃度(電池内部濃度)も同様に取得(検出)する。なお、本明細書では、バッテリ30の各種データを総称して、バッテリ30の状態という。このようにバッテリ30の状態を詳細に検出することにより、EV走行時の電動機3の出力制限範囲を極力狭くすることができる。
 電動機状態検出部12は、電動機温度センサ103により検出される電動機3の温度Tmと、電動機回転数センサ104により検出される電動機3の回転数Nmとを取得(検出)する。電動機状態検出部12により検出される各検出値は、電動機トルク/出力算出部14と断接制御部18とに出力される。なお、本明細書では、電動機3の温度Tm、回転数Nm等を総称して、電動機3の状態という。
 電動機状態検出部12は、上記のように、電動機3の温度Tmを検出するための電動機温度センサ103により電動機温度Tmを直接検出している。しかしながら、電動機温度センサ103を設けていない場合には、電動機状態検出部12は、電流・電圧センサ102により検出される電動機3への通電電流、電動機3のトルクおよび電動機回転数センサ104により検出される回転数Nmを取得し、これらの検出値から電動機温度を推定するように構成されてもよい。このように電動機3の状態を詳細に検出することにより、EV走行時の電動機3の出力制限範囲を極力狭くすることができる。
 エンジン状態検出部13は、冷却水温センサ105により検出される冷却水の水温Twと、潤滑油温センサ106により検出される潤滑油の油温Toとを取得(検出)する。図示を省略したが、エンジン状態検出部13は、エンジン2のクランクシャフトの回転数Neを検出するための回転数センサからエンジン2の回転数Neを取得(検出)する。また、エンジン状態検出部13は、エンジン2の図示しない各シリンダ内のピストンの位置を検出する。なお、エンジン状態検出部13とは別に、ピストン位置検出部が設けられてもよい。エンジン状態検出部13により検出される各検出値は、始動トルク算出部15と、断接制御部18とに出力される。なお、本明細書では、エンジン2の冷却水の水温Tw、潤滑油の油温To、回転数Ne等を総称して、エンジン2の状態という。このようにエンジン2の状態を詳細に検出することにより、EV走行時の電動機3の出力制限範囲を極力狭くすることができる。これにより、EV走行範囲を拡大させることができるので、エンジン2による燃料の消費を抑制することができる。また、エンジン2を始動させる閾値(例えば、車速センサ107により検出される車速Nvが所定の車速に達する等)を上げることができるので、車両の燃料経済性(燃費)を向上させることができる。
 なお、エンジン状態検出部13は、電動機3からエンジン2を切り離したとき、冷却水温センサ105により検出される冷却水の水温Tw、あるいは潤滑油温センサ106により検出される潤滑油の油温Toに基づいて、エンジン2の温度を検出してもよい。
 ここで、電動機3がエンジン2に隣接して配置されている場合には、電動機状態検出部12は、エンジン状態検出部13により検出される潤滑油の油温Toまたは冷却水の水温Twを電動機3の温度Tmとして利用すればよい。これにより、車両1における検出装置全体のサイズやセンサ数を削減(低減)することができる。
 電動機トルク/出力算出部14は、電動機状態検出部12により検出される電動機3の状態、すなわち、電動機3の温度Tmや回転数Nmに基づいて、電動機3から出力可能な電動機トルクまたは電動機出力の少なくとも一方と、電動機3の最大トルクとを算出する。この場合、電動機トルク/出力算出部14は、例えば、電流・電圧センサ102により検出される電流I、電圧Vに基づいて、電動機3の出力を算出すればよい。なお、電動機状態検出部12により電動機3のトルクおよび回転数Nmが検出されている場合には、電動機トルク/出力算出部14は、電動機3のトルクと回転数Nmとを乗算することにより、電動機3から出力可能な出力を求めるようにしてもよい。算出された電動機3のトルクまたは出力と最大トルクは、EV範囲設定部17に出力される。
 始動トルク算出部15は、エンジン状態検出部13により検出されるエンジン2の状態、すなわち、冷却水の水温Twや潤滑油の油温Toに基づいて、エンジン2の始動に必要なエンジン始動トルクを算出する。停止しているエンジン2を再始動するのに必要なトルク(エンジン始動トルク)は、そのときのエンジン2の温度に依存するので、エンジン2の温度状態を判断するために、本実施形態では冷却水の水温Twや潤滑油の油温Toを用いている。なお、算出されたエンジン始動トルクはEV範囲設定部17に出力される。
 また、始動トルク算出部15は、上記のように算出されたエンジン始動トルクから、車速センサ(車速検出部)107により検出される車速Nvに応じてある下限値を減じた値を新たにエンジン始動トルクとして算出してもよい。車速Nvによっては電動機3の回転数Nmが高速回転であるため、エンジン2のクランクシャフトに慣性力が掛かる。そのため、後述するEV範囲を設定する際に、このEV範囲を制限し過ぎることによりEV走行を可能とする範囲が狭くなりすぎないように、エンジン始動トルクを補正するものである。これにより、電動機3の出力制限を効果的に抑制することができる。
 バッテリ出力算出部16は、バッテリ温度センサ101により検出されるバッテリ30の温度Tbおよび電流・電圧センサ102により検出されるバッテリ30の電流I、電圧Vの少なくとも一方に基づいて、バッテリ30により出力可能なバッテリ出力を算出する。算出されたバッテリ出力はEV範囲設定部17に出力される。
 EV範囲設定部17は、バッテリ出力算出部16により算出されるバッテリ30により出力可能なバッテリ出力と、電動機トルク/出力算出部14により算出される電動機3から出力可能な電動機トルクおよび電動機出力の少なくとも一方と、始動トルク算出部15により算出されるエンジン2の始動に必要なエンジン始動トルクとに基づいて、エンジン2を切り離して電動機3のみで走行可能なEV範囲を設定する。
 具体的には、EV範囲設定部17は、バッテリ30のバッテリ出力と、電動機3の電動機トルクまたは電動機出力とを比較していずれか低い方を選択し、その選択されたトルクまたは出力からエンジン始動トルクを減じた範囲と、電動機最大トルクからエンジン始動トルクを減じた範囲とを加えた範囲を、EV範囲として設定する。
 なお、エンジン状態検出部13がエンジン2を電動機3から切り離したときのエンジン2の温度を検出し、検出される温度データが図示しないメモリに格納されている場合には、EV範囲設定部17は、このようにメモリに格納されている切り離し時のエンジン2の温度に基づいてEV範囲を設定してもよい。エンジン2の切り離し時からエンジン2の温度は下がることになるが、切り離し時のエンジン2の温度と経過時間等から、エンジン2と電動機3とを再度接続するときのエンジン2の温度を推定することができる。
 ここで、図6~図8の電動機3のトルク-回転数特性マップを用いて、EV範囲設定部17によるEV範囲の設定方法を説明する。図6~図8は、EV範囲(EV走行範囲)の設定方法を説明するための電動機3のトルク-回転数特性マップである。
 まず、図6Aでは、図6Aの実線に示すように、電動機3に対するバッテリ30の性能に基づいて、バッテリ30の出力制限値が取得される。これに対して、バッテリ状態検出部11によりバッテリ30の温度Tbと蓄電量、すなわちSOC等のバッテリ30の状態が検出されると、このバッテリ30の状態に基づいて、バッテリの出力可能範囲が決定され、図6Aの2点鎖線に示すようなバッテリ30の状態による出力制限がなされる。
 次いで、電動機3の出力制限として、図6Aの1点鎖線に示すように、電動機最大トルクおよび電動機回転数Nmに応じた電動機の出力制限値が取得される。これに対して、電動機状態検出部12により電動機3の温度Tmや回転数Nm等の電動機3の状態が検出されると、図6Aの点線に示すように、この電動機3の状態に基づいて、電動機3の状態による電動機3のトルク制限がなされる。
 そして、EV範囲設定部17は、バッテリ30の状態によるバッテリ30の出力制限と、電動機3の状態による電動機3のトルク制限とを比較し、低い方、ここではバッテリ30の状態によるバッテリ30の出力制限を選択する。
 次いで、図6Bでは、EV範囲設定部17は、図6Aで選択されたバッテリ30の状態によるバッテリ30の出力制限からエンジン始動トルクを減じた範囲と、電動機最大トルクからエンジン始動トルクを減じた範囲とを加えた範囲をEV範囲として設定する。ここで、図6Aで選択されたバッテリ30の状態によるバッテリ30の出力制限からエンジン始動トルクを減じた範囲は、電動機最大トルクよりエンジン始動トルクを減じた範囲よりも全電動機回転数範囲において低いので、EV範囲設定部17は、電動機最大トルクから図6Bの双方向矢印に示すようなエンジン始動トルクを減じた範囲(図6Bにおいて太い実線で示す範囲内)をEV範囲として設定する。
 次いで、図7Aでは、始動トルク算出部15は、エンジン状態検出部13により検出されるエンジン2の状態の変化に基づいて再度エンジン始動トルクを算出し、EV範囲設定部17は、図6Bにおいて設定されたEV範囲に対して、図7Aの双方向矢印に示すようなエンジン2の状態により変化したエンジン始動トルク分だけ減じた範囲(図7Aにおいて太い実線で示す範囲内)を新たにEV範囲として設定する。
 次いで、図7Bでは、電動機トルク/出力算出部14は、電動機状態検出部12により検出される電動機3の状態の変化に基づいて再度電動機3から出力可能な電動機トルクまたは電動機出力の少なくとも一方を算出し、EV範囲設定部17は、図7Aにおいて設定されたEV範囲に対して、図7Bの黒色の双方向矢印に示すような電動機3の状態によるトルク制限変化分だけ減じた範囲(図7Bにおいて2本の太い実線から下側の範囲内)を新たにEV範囲として設定する。
 次いで、図8では、バッテリ出力算出部16は、バッテリ状態検出部11により検出されるバッテリ30の状態の変化に基づいて再度バッテリ30により出力可能なバッテリ出力を算出し、EV範囲設定部17は、図7Bにおいて設定されたEV範囲に対して、図8の黒色の双方向矢印に示すようなバッテリ30の状態変化による出力制限変化分だけ減じた範囲(図8において2本の太い実線から下側の範囲内)を新たにEV範囲として設定する。
 このようにして、EV範囲設定部17は、上述のように最初に設定したEV範囲(図6B参照)に対して、後述するEV範囲設定処理の実行のタイミングで、エンジン2の状態、電動機3の状態およびバッテリ30の状態のいずれかが変化したことに基づくエンジン2のエンジン始動トルクの変化分、電動機3のトルクまたは出力の変化分、バッテリ30のバッテリ出力の変化分を補正して、新たにEV範囲を設定するものである。
 図5に戻って、電子制御ユニット10から電動機3に要求される駆動力がEV範囲を超えることにより、電動機3のみによるEV走行からエンジン2と電動機3とによる協働走行に移行した後は、EV範囲設定部17は、一定期間EV範囲の境界(EV走行と協働走行との移行ポイント)を協働走行からEV走行に移行しない方向に移動させればよい。すなわち、EV範囲設定部17は、この場合にはEV範囲を小さくするように設定すればよい。
 また、エンジン2と電動機3とによる協働走行からEV走行に移行した後は、EV範囲設定部17は、一定期間EV走行を維持することができるように、EV範囲の境界(EV走行と協働走行との移行ポイント)をEV走行から協働走行に移行しない方向に移動させればよい。すなわち、EV範囲設定部17は、この場合にはEV範囲を拡大するように設定すればよい。
 このように、EV走行と協働走行において走行状態が移行されると、EV範囲の境界を一定期間移動させることにより、EV走行と協働走行とで頻繁に切り替わるハンチングを生じさせないようにすることができる。これにより、車両1の運転者のドライバビリティに悪影響を及ぼすことがない。
 断接制御部18は、車両1の走行状態に応じて、電動機3からエンジン2を切り離したり、電動機3とエンジン2とを接続したりするように断接部8を制御する。そして、断接制御部18は、バッテリ30の残容量(SOC)に基づいて、電動機3からエンジン2を切り離すとエンジン2の再始動が困難であると判定した場合には、断接部8にエンジン2の切り離しを行わせない(禁止する)。
 車両1が電動機3のみで走行中に、電動機3に要求される駆動力がEV範囲を超えた場合には、断接制御部18は、断接部8により電動機3とエンジン2とを接続して、エンジン2の始動に必要なエンジン始動トルクを電動機3から確保することにより、エンジン2を押し掛けした後、断接部8によりこの接続を切り離し、その後、エンジン2の回転数がEV走行時の電動機3の入力軸の回転数と同等になった時点で、断接部8により電動機3とエンジン2とを再度接続するように制御してもよい。これにより、エンジン2の始動時のショックが駆動輪7R、7Lに伝達することを抑制しつつ、EV走行中に電動機3の出力を駆動輪7R、7Lに最大限供給することができる。このように、エンジン2の回転が不安定な状態で電動機3とエンジン2とを接続することによる駆動輪7R、7Lへのショックを抑制することができるので、運転者のドライバビリティに悪影響を及ぼすことがない。
 また、上記のような場合において、断接制御部18が、エンジン2を始動するために断接部8によりエンジン2と電動機3とを接続した後、電動機3とエンジン2とを切り離すように制御したときには、EV範囲設定部17は、エンジン始動トルク分だけEV範囲を増加させてもよい。ここでは、エンジン2は既に始動しているため、エンジン2の停止時には制限していたエンジン始動トルク分の電動機トルクもEV走行に利用することができる。
 また、車両1は、車両1の運転者の運転をナビゲートするためのナビゲーションシステム40をさらに備える。このナビゲーションシステム40は、図示を省略するが、その内部に制御部、メモリ、地図描画部、誘導経路描画部、音声出力部等を備えるものである。
 ナビゲーションシステム40は、車両1の適当な位置に設けられているGPSセンサ、距離センサ、角度センサなどにより自車の現在位置を特定するとともに、地図データにおいてルート上における上り坂や下り坂の情報(傾斜情報や距離情報)を取得することができる。なお、GPSセンサは、GPS衛星から送られてくるGPS信号を受信して車両1の現在位置の経度および緯度を検出するものであり、距離センサは、所定の位置からの車両1の走行距離を測定するものであり、角度センサは、車両1の進行方向を測定するものである。
 ここで、EV範囲設定部17は、ナビゲーションシステム40におけるナビゲーション状態、すなわち、ルート上に下り坂があるか否か等に基づいて、電動機3からの回生が今後なされ得るか否かを判断してもよい。電動機3からの回生が今後なされ得ると判断した場合には、EV範囲設定部17はEV範囲を増大させればよい。下り坂で電動機3の回生ブレーキによりバッテリ30の充電が可能であるため、EV走行範囲を拡大させてもEV走行に対して問題となることはない。
 次に、エンジン2の始動トルクおよび電動機3の出力トルクと、エンジン2および電動機3の温度との関係を簡単に説明する。図9は、エンジン2および電動機3のトルク特性図である。図9に示すように、電動機3の温度に対する出力トルクのトルク特性は、電動機3の温度が上昇するに伴って、電動機3の出力トルクが減少するような関係を有する。一方、エンジン2の温度に対するエンジン始動トルクのトルク特性は、エンジン2の温度が低いときにはエンジン始動トルクが急激に減少するが、所定の温度以上ではエンジン始動トルクがほとんど変化しないような関係を有する。
 本発明では、エンジン2のエンジン始動トルクおよび電動機3の出力トルクと各温度との関係に着目して、特に同一の温度に対するエンジン始動トルクと電動機トルクとの差が大きい領域では、温度に対する補正をすることにより、車両1が電動機3のみで走行可能なEV範囲を拡大させることができる。
 次に、図5のブロック図並びに図10および図11のフローチャートを参照して、本実施形態の動力出力装置の動作を説明する。図10および図11は、図5に示す電子制御ユニット10で実行されるEV範囲設定処理を示すフローチャートである。このEV範囲設定処理は、車両1の始動後(イグニッションON後)、所定の時間間隔で実行され、設定されるEV範囲を更新していくものである。
 本実施形態のEV範囲設定処理では、まず、バッテリ状態検出部11は、電流・電圧センサ102を介してバッテリ30の電圧Vおよび電流Iを検出し(ステップS101)、検出されたバッテリ30の電圧Vおよび電流Iに基づいて、バッテリ30の蓄電量、すなわちSOCを算出する(ステップS102)。
 次いで、バッテリ状態検出部11は、バッテリ温度センサ101を介してバッテリ30の温度Tbを検出し(ステップS103)、バッテリ30の蓄電量SOCと温度Tbとをバッテリ出力算出部16に出力する。バッテリ出力算出部16は、このバッテリ30の蓄電量SOCおよび温度Tbに基づいて、バッテリ30から出力可能なバッテリ出力を算出し(ステップS104)、算出されたバッテリ出力をEV範囲設定部17に出力する。
 次いで、電動機状態検出部12は、電流・電圧センサ102および電動機温度センサ103を介して電動機3の温度Tmと電流値を検出し(ステップS105)、電動機トルク/出力算出部14は、この電動機3の温度Tmと電流値に基づいて、電動機最大トルクを算出し(ステップS106)、算出された電動機最大トルクをEV範囲設定部17に出力する。
 次いで、電動機状態検出部12は、電動機回転数センサ104を介して電動機3の回転数Nmを検出し(ステップS107)、電動機トルク/出力算出部14は、この電動機3の回転数Nmに基づいて、電動機のトルクと回転数との関係を示す電動機特性マップを取得し(ステップS108)、この電動機特性マップに基づいて、電動機3が出力可能な電動機トルクを算出し(ステップS109)、算出された電動機トルクをEV範囲設定部17に出力する。
 次いで、エンジン状態検出部13は、冷却水温センサ105または潤滑油温センサ106を介してエンジン2の温度(冷却水の水温Twまたは潤滑油の油温Toで代用される)を検出する(ステップS110)。始動トルク算出部15は、エンジン2の始動トルクと温度との関係を示すエンジン始動トルクマップを取得し(ステップS111)、ステップS110にて検出されたエンジン2の温度に基づいて、現時点で必要なエンジン始動トルクを算出し(ステップS112)、算出されたエンジン始動トルクをEV範囲設定部17に出力する。なお、エンジン2と電動機3との設置位置が近い場合には、電動機温度センサ103を設けることなく、冷却水温センサ105または潤滑油温センサ106により検出される冷却水の水温Twまたは潤滑油の油温Toを電動機3の温度Tmとして利用することもできるが、本実施形態の車両では、電動機3による単独EV走行を行う領域も広いため、電動機3の温度Tmを専用に検出する電動機温度センサ103の設置も必要となる。
 次いで、EV範囲設定部17は、ステップS104において算出されたバッテリ出力がステップS109において算出された電動機出力よりも大きいか否か(いずれが小さいか)を判断する(ステップS113)。
 バッテリ出力が電動機トルクよりも大きいと判断した場合には、EV範囲設定部17は、電動機トルクからエンジン始動トルクを減じた範囲(1)を特定するとともに(ステップS114)、電動機最大トルクからエンジン始動トルクを減じた範囲(2)を特定する(ステップS115)。そして、EV範囲設定部17は、これらの範囲(1)および(2)を加えた範囲をEV範囲として設定し(ステップS116)、このEV範囲設定処理を終了する。
 一方、ステップS113において、バッテリ出力が電動機トルクよりも小さいと判断した場合には、EV範囲設定部17は、バッテリ出力からエンジン始動トルクを減じた範囲(3)を特定するとともに(ステップS117)、電動機最大トルクからエンジン始動トルクを減じた範囲(2)を特定する(ステップS118)。そして、EV範囲設定部17は、これらの範囲(3)および(2)を加えた範囲をEV範囲として設定して(ステップS119)、このEV範囲設定処理を終了する。
 なお、始動トルク算出部15は、車速センサ107により検出される車速Nvに応じてある下限値を減じた値を新たにエンジン始動トルクとして算出してもよい。また、バッテリ状態検出部11は、バッテリ30の内圧(電池内圧)やバッテリ30内の電解質中のイオン濃度(電池内部濃度)等を検出し、バッテリ出力算出部16は、これらの検出データに基づいて、バッテリ出力を補正してもよい。
 また、電動機状態検出部12は、電動機3の通電量、トルクおよび回転数に基づいて電動機3の温度Tmを推定してもよく、電動機3がエンジン2に隣接して配置されている場合には、電動機3の温度Tmを直接検出することなく、エンジン2の温度(冷却水温Twまたは潤滑油温To)を利用してもよい。
 以上説明したように、第1実施形態の動力出力装置では、バッテリ出力算出部16が、バッテリ状態検出部11により検出されるバッテリ30の状態および蓄電量SOCの少なくとも一方に基づいて、バッテリ30により出力可能なバッテリ出力を算出し、電動機トルク/出力算出部14が、電動機状態検出部12により検出される電動機3の温度Tmおよび回転数Nmに基づいて、電動機3から出力可能な電動機トルクまたは電動機出力と、電動機3の最大トルクとを算出し、始動トルク算出部15が、エンジン状態検出部13により検出されるエンジン2の冷却水の水温Twまたは潤滑油の油温Toに基づいて、エンジン2の始動に必要なエンジン始動トルクを算出し、EV範囲設定部17が、バッテリ30のバッテリ出力と、電動機3の電動機トルクまたは電動機出力とを比較していずれか低い方を選択し、その選択されたトルクまたは出力からエンジン始動トルクを減じた範囲と、電動機最大トルクからエンジン始動トルクを減じた範囲とを加えた範囲を、EV範囲として設定することとした。
 本実施形態の動力出力装置(電子制御ユニット10)はこのように構成されるので、車両1がEV(電気自動車)走行中、すなわち、電動機3のみで車両1が走行しているとき、電動機3のEV範囲の出力よりもさらに出力が必要となる場合には、予め残しておいたエンジン始動トルクによりエンジンを始動して、エンジン2と電動機3の駆動力を駆動輪7R、7Lに出力する協働走行に移行することができる。従来においても、エンジン2を始動する(押し掛けする)のに必要なトルク(エンジン始動トルク)分だけ電動機3の出力を制限していたが、エンジン2、電動機3およびバッテリ30の状態を考慮せず、一律に電動機3のトルクを制限していた。そのため、EV走行可能であってもEV範囲を制限しすぎることもあった。しかしながら、本実施形態の動力出力装置では、エンジン2、電動機3およびバッテリ30の状態を考慮してできる限り広いEV範囲を設定しているので、より的確にEV範囲を設定することができる。これにより、車両1のエンジン始動時の商品性を確保しつつ、EV範囲を最大限に確保することができる。
 (第2実施形態)
 次に、本発明の第2実施形態を説明する。本実施形態における車両も第1実施形態における車両1と同様の構成を有するため、ここでは車両1の詳細な構成の説明を省略する。本実施形態は、電動機トルクまたは電動機出力を算出することなく、EV範囲を設定する点で、第1実施形態とは異なる。
 まず、本実施形態の電子制御ユニットの構成を説明する。図12は、第2実施形態における電子制御ユニット10の構成を示すブロック図である。なお、第1実施形態の電子制御ユニット10と同様の構成要素には同一の符号を付し、本実施形態の機能と関係しない点についてはその説明を省略する。
 図5に示すように、電子制御ユニット10は、第1実施形態におけるバッテリ状態検出部11に代えて、バッテリ30の温度Tbを検出するバッテリ温度検出部22と、バッテリ30の残容量を算出する残容量検出部23とを備える。また、電子制御ユニット10の電動機状態検出部12は、電動機3の温度を検出する電動機温度検出部24を含む。さらに、本実施形態の電子制御ユニット10は、第1実施形態におけるエンジン状態検出部13に代えて、エンジン2の温度を検出するエンジン温度検出部19を備える。
 バッテリ温度検出部22は、バッテリ温度センサ101を介してバッテリ30の温度Tbを検出し、検出したバッテリ30の温度Tbをバッテリ出力算出部16に出力する。残容量検出部23は、電流・電圧センサ102により検出されたバッテリ30の電流Iおよび電圧Vに基づいて、バッテリ30の残容量SOCを算出し、算出したバッテリ30の残容量SOCをバッテリ出力算出部16に出力する。
 バッテリ出力算出部16は、残容量検出部23から入力されるバッテリ30の残容量SOCと、バッテリ温度検出部22から入力されるバッテリ30の温度Tbとに基づいて、バッテリ30により出力可能なバッテリ出力を算出する。
 電動機トルク算出部21は、電動機状態検出部12内の電動機温度検出部24により電動機温度センサ103を介して検出される電動機3の温度Tmに基づいて、電動機3から出力可能な電動機最大トルクを算出する。
 始動トルク算出部15は、エンジン温度検出部19により冷却水温センサ105または潤滑油温センサ106を介して検出されるエンジン2の冷却水の水温Twまたは潤滑油の油温Toに基づいて、エンジン2の始動に必要なエンジン始動トルクを算出する。
 EV範囲設定部17は、バッテリ30のバッテリ出力と、エンジン2のエンジン始動トルクと、電動機3の電動機最大トルクとから電動機出力範囲を算出し、算出した電動機出力範囲を最大トルクとした範囲をEV範囲として設定する。
 なお、電動機トルク算出部21は、電動機温度検出部24により検出される電動機3の温度Tmに基づいて、電動機3の温度Tmで補正した電動機トルクまたは電動機出力を算出し、EV範囲設定部17は、電動機トルクがバッテリ出力から所定の範囲に収まるように、最大トルクとした範囲をEV範囲として設定してもよい。
 次に、図12のブロック図および図13のフローチャートを参照して、本実施形態の動力出力装置の動作を説明する。図13は、図12に示す電子制御ユニット10で実行されるEV範囲設定処理を示すフローチャートである。第1実施形態と同様に、このEV範囲設定処理は、車両1の始動後(イグニッションON後)、所定の時間間隔で実行され、設定されるEV範囲を更新していくものである。
 本実施形態のEV範囲設定処理では、まず、残容量検出部23は、電流・電圧センサ102を介してバッテリ30の電圧Vおよび電流Iを検出し(ステップS201)、検出されたバッテリ30の電圧Vおよび電流Iに基づいて、バッテリ30の残容量を算出する(ステップS202)。残容量検出部23は算出したバッテリ30の残容量をバッテリ出力算出部16に出力する。
 次いで、バッテリ温度検出部22は、バッテリ温度センサ101を介してバッテリ30の温度Tbを検出し(ステップS203)、バッテリ30の温度Tbをバッテリ出力算出部16に出力する。バッテリ出力算出部16は、バッテリ30の残容量および温度Tbに基づいて、バッテリ30から出力可能なバッテリ出力を算出し(ステップS204)、算出されたバッテリ出力をEV範囲設定部17に出力する。
 次いで、電動機温度検出部24は、電動機温度センサ103を介して電動機3の温度Tmを検出し(ステップS205)、電動機トルク算出部21は、この電動機3の温度Tmに基づいて、電動機最大トルクを算出し(ステップS206)、算出された電動機最大トルクをEV範囲設定部17に出力する。
 次いで、エンジン温度検出部19は、冷却水温センサ105または潤滑油温センサ106を介してエンジン2の温度(冷却水の水温Twまたは潤滑油の油温Toで代用される)を検出する(ステップS207)。始動トルク算出部15は、エンジン2の始動トルクと温度との関係を示すエンジン始動トルクマップを取得し(ステップS208)、ステップS207にて検出されたエンジン2の温度に基づいて、エンジン始動トルクを算出する(ステップS209)。そして、始動トルク算出部15は、算出されたエンジン始動トルクをEV範囲設定部17に出力する。
 次いで、EV範囲設定部17は、ステップS204において算出されたバッテリ出力、ステップS206において算出された電動機最大トルク、およびステップS209において算出されたエンジン始動トルクに基づいて、電動機出力範囲を算出し(ステップS210)、算出された電動機出力範囲を最大トルクとした範囲をEV範囲として設定して(ステップS211)、このEV範囲設定処理を終了する。
 以上説明したように、第2実施形態の動力出力装置では、残容量検出部23が、バッテリ30の電流Iおよび電圧Vに基づいて、バッテリ30の残容量を検出し、バッテリ温度検出部22が、バッテリ30の温度Tbを検出し、バッテリ出力算出部16が、残容量検出部23により検出されるバッテリ30の残容量と、バッテリ温度検出部22により検出されるバッテリ30の温度Tbとに基づいて、バッテリ30により出力可能なバッテリ出力を算出し、電動機状態検出部12が電動機3の状態を検出し、電動機トルク算出部21が、電動機状態検出部12により検出される電動機3の状態に基づいて、電動機3から出力可能な電動機最大トルクを算出し、エンジン温度検出部19が、エンジン2の冷却水の水温Twまたは潤滑油の油温Toを検出し、始動トルク算出部15が、エンジン温度検出部19により検出されるエンジン2の水温Twまたは油温Toに基づいて、エンジン2の始動に必要なエンジン始動トルクを算出し、EV範囲設定部17が、バッテリ30のバッテリ出力と、エンジン始動トルクと、電動機3の電動機最大トルクとから電動機出力範囲を算出し、算出した電動機出力範囲を最大トルクとした範囲をEV範囲として設定することとした。このように構成することにより、第1実施形態の場合と異なり、電動機3の電動機トルクまたは電動機出力を考慮することなく、EV範囲を設定することになるが、エンジン2と電動機3との接続時に多少の連結ショックが起こりうるものの、十分に広いEV範囲を設定することができる。
 なお、第1実施形態における動力出力装置の変形例は、第2実施形態の動力出力装置の構成や機能と矛盾しない限り、第2実施形態の動力出力装置においても変形例として採用することができる。この場合、第1実施形態に適用した場合と同様の効果を奏することができる。
 ここで、本発明の上記実施形態の変形例について説明する。本発明の動力出力装置は、車両1の走行時に電動機3を回生させることによりバッテリ30を充電するハイブリッド車両以外にも、いわゆるプラグインハイブリッド車両にも適用可能である。以下、本発明の動力出力装置をプラグインハイブリッド車両に適用した場合におけるEV範囲の設定方法を説明する。なお、プラグインハイブリッド車両のハード構成は、第1または第2実施形態のハイブリッド車両と概ね同様であるため、その図示を省略し、図1および図5の各構成要素の参照符号を用いて追加・変更点について説明する。
 プラグインハイブリッド車両では、EV走行領域を拡大させるために、バッテリ30の容量(バッテリ容量)が通常のハイブリッド車両に比べて増加されていることが多い。これは、プラグインハイブリッド車両においては、EV走行の機会を拡大することにより、燃料経済性(燃費)を向上させることを目的とするためである。このように、バッテリ30の容量が大きい場合には、エンジン2の始動トルクを十分に確保することができる。このため、通常のハイブリッド車両に比べて、アクセルペダルの踏み込み量(アクセルペダル開度)および踏み込み時間の閾値を高く設定することにより、EV範囲(EV可能領域)を拡大することができる。この場合、電動機3の回転数に対して電動機トルクを大きくすることができるので、エンジン2の始動タイミングを遅らせることができる。これにより、EV走行機会が拡大するため、車両1の燃料経済性をさらに向上させることができる。
 ここで、プラグインハイブリッド車両では、バッテリ30を直接充電するために、図示しないバッテリチャージャが設けられる。バッテリチャージャは、図示しない充電用プラグを家庭用コンセントプラグ(すなわち、外部電源)に差し込むことにより、バッテリ30を充電可能にするものである。
 次に、図14の電動機3のトルク-回転数特性マップを用いて、EV範囲設定部17によるEV範囲の設定方法を説明する。図14は、プラグインハイブリッド車両におけるEV範囲(EV走行範囲)の設定方法を説明するための電動機3のトルク-回転数特性マップである。本例においても上記実施形態と同様に、図6Aおよび図6Bを用いて説明したように、EV範囲設定部17は、まず、電動機3の出力制限から電動機3の状態によるトルク制限およびエンジン始動トルク分を減じた範囲をEV範囲として設定する。
 そして、EV範囲設定部17は、このEV範囲に対して、ドライバビリティ許容量(車両1の運転者が快適であると判断する閾値)を考慮した範囲(図14では、斜線部分)まで拡大した範囲(図14において太い実線で示す範囲および斜線で示す範囲)をプラグインハイブリッド車両のEV範囲として設定する。
 ここで、ドライバビリティ許容量としては、例えば、変速機4の変速時における変速ショックの加速度(G)を用いればよい。このとき、ドライバビリティ許容量、例えば、エンジン1の入力軸と変速機4との間の発進クラッチ(ワンウェイクラッチ)を接続する場合の許容値Nは、EV走行状態からエンジン2の駆動までの落ち込み量(変速ショック量)を0.01Gとすると、車両1の車体重量、駆動輪のタイヤ半径および各変速段における変速レシオを用いて以下の計算式で求めることができる。
 N=(車体重量)×(タイヤ半径)/(変速レシオ)
 一例として、車体重量が1,300kgf、タイヤ半径が0.3m、1速および5速レシオがそれぞれ15、2.5であるならば、1速における許容値N1および5速における許容値N5は以下のようになる。
 N1=1,300×0.3/15=26(Nm)
 N5=1,300×0.3/2.5=156(Nm)
 したがって、変速機4の変速段が1速のときには、ショック許容分として、図14に示すエンジン始動トルクから26Nm(図14において「α」に対応する)だけ減じてもよい。すなわち、26NmだけEV範囲を拡大してもよい。また、変速段が5速のときには、同様に、エンジン1の引き込み許容分として、エンジン始動トルクから156Nm(図14において「β」に対応する)だけ減じてもよい。すなわち、156NmだけEV範囲を拡大してもよい。このように、プラグインハイブリッド車両では、変速機4の変速ショックを所定レベルまで許容することにより、EV範囲をさらに拡大することができる。これにより、EV走行機会が増すため、車両1の燃料経済性を向上させることができる。
 なお、上記式からも明白なように、5速段の方が変速ショックをより許容可能であるのは、1速の場合に比べて変速レシオが低いので、変速時の変動が増幅されにくいためである。そのため、0.01G相当の変速ショックであっても、EV範囲を十分に拡大させることができる。また、5速段での車両1の走行、すなわち、ある程度の高速走行では、電動機3が高速で回転しているため、エンジン2に対して慣性力が掛かる。そのため、エンジン始動に関するショックも慣性力により相殺されることを期待することができる。
 以上、本発明の動力出力装置の実施形態を添付図面に基づいて詳細に説明したが、本発明は、これらの構成に限定されるものではなく、請求の範囲、明細書および図面に記載された技術的思想の範囲内において種々の変形が可能である。なお、直接明細書および図面に記載のない形状・構造・機能を有するものであっても、本発明の作用・効果を奏する以上、本発明の技術的思想の範囲内である。すなわち、動力出力装置を構成する電子制御ユニット10や、エンジン2、電動機3、変速機4などの各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。
 上述の実施形態では、変速機4が乾式のツインクラッチ式変速機DCTであるものとして説明したが、本発明はこのような変速機に限定されない。変速機4は、例えば、油圧制御装置を備える湿式の変速機であってもよい。

Claims (18)

  1.  エンジンと、電動機と、前記電動機を制御するための電動機制御部と、バッテリと、前記エンジンと前記電動機とを断接する断接部と、変速機とを備える車両において、前記電動機により前記エンジンを始動可能に配置された車両の動力出力装置であって、
     前記バッテリの状態および蓄電量の少なくとも一方を検出するバッテリ状態検出部と、
     前記バッテリ状態検出部により検出される前記バッテリの状態および蓄電量の少なくとも一方に基づいて、前記バッテリにより出力可能なバッテリ出力を算出するバッテリ出力算出部と、
     前記電動機の状態を検出する電動機状態検出部と、
     前記電動機状態検出部により検出される前記電動機の状態に基づいて、該電動機から出力可能な電動機トルクまたは電動機出力の少なくとも一方と、前記電動機の最大トルクとを算出する電動機トルク/出力算出部と、
     前記エンジンの状態を検出するエンジン状態検出部と、
     前記エンジン状態検出部により検出される前記エンジンの状態に基づいて、前記エンジンの始動に必要なエンジン始動トルクを算出する始動トルク算出部と、
     前記バッテリ出力算出部により算出される前記バッテリにより出力可能なバッテリ出力と、前記電動機トルク/出力算出部により算出される前記電動機から出力可能な電動機トルクおよび電動機出力の少なくとも一方と、前記始動トルク算出部により算出される前記エンジンの始動に必要なエンジン始動トルクとに基づいて、前記エンジンを切り離して前記電動機のみで走行可能なEV範囲を設定するEV範囲設定部と
     を備え、
     前記EV範囲設定部は、前記バッテリのバッテリ出力と、前記電動機の電動機トルクまたは電動機出力とを比較していずれか低い方を選択し、その選択されたトルクまたは出力から前記エンジン始動トルクを減じた範囲と、前記電動機最大トルクから前記エンジン始動トルクを減じた範囲とを加えた範囲を、前記EV範囲として設定することを特徴とする動力出力装置。
  2.  エンジンと、電動機と、前記電動機を制御するための電動機制御部と、バッテリと、前記エンジンと前記電動機とを断接する断接部と、変速機とを備える車両において、前記電動機により前記エンジンを始動可能に配置された車両の動力出力装置であって、
     前記バッテリの状態および蓄電量の少なくとも一方を検出するバッテリ状態検出部と、
     前記バッテリ状態検出部により検出される前記バッテリの状態および蓄電量の少なくとも一方に基づいて、前記バッテリにより出力可能なバッテリ出力を算出するバッテリ出力算出部と、
     少なくとも前記電動機のトルクおよび回転数を検出する電動機状態検出部と、
     前記電動機状態検出部により検出される前記電動機のトルクおよび回転数に基づいて、該電動機から出力可能な出力と、前記電動機の最大トルクとを算出する電動機トルク/出力算出部と、
     前記エンジンの状態を検出するエンジン状態検出部と、
     前記エンジン状態検出部により検出される前記エンジンの状態に基づいて、前記エンジンの始動に必要なエンジン始動トルクを算出する始動トルク算出部と、
     前記バッテリ出力算出部により算出される前記バッテリにより出力可能なバッテリ出力と、前記電動機トルク/出力算出部により算出される前記電動機から出力可能な電動機トルクと、前記始動トルク算出部により算出される前記エンジンの始動に必要なエンジン始動トルクとに基づいて、前記エンジンを切り離して前記電動機のみで走行可能なEV範囲を設定するEV範囲設定部と
     を備え、
     前記EV範囲設定部は、前記バッテリのバッテリ出力と、前記電動機の電動機出力とを比較していずれか低い方を選択し、その選択された出力から前記エンジン始動トルクを減じた範囲と、前記電動機最大トルクから前記エンジン始動トルクを減じた範囲とを加えた範囲を、前記EV範囲として設定することを特徴とする動力出力装置。
  3.  前記車両の車速を検出する車速検出部をさらに備え、
     前記始動トルク算出部は、前記算出されたエンジン始動トルクから、前記車速検出部により検出される車速に応じてある下限値を減じた値を新たにエンジン始動トルクとして算出することを特徴とする請求項1または2に記載の動力出力装置。
  4.  前記バッテリ状態検出部は、前記バッテリの蓄電量に加え、前記バッテリの電圧、電流、電流積算値、温度、電池内圧および電池内部濃度のいずれかを検出することを特徴とする請求項1または2に記載の動力出力装置。
  5.  前記電動機状態検出部は、前記電動機の温度を検出する電動機温度センサにより電動機温度を直接検出するか、あるいは、前記電動機の通電電流、トルクおよび回転数を検出し、これらの検出値から電動機温度を推定することを特徴とする請求項1または2に記載の動力出力装置。
  6.  前記エンジン状態検出部は、前記エンジンの冷却水の水温および該エンジンの潤滑油の油温のいずれか一方と、前記エンジンのピストンの位置とを検出することを特徴とする請求項1または2に記載の動力出力装置。
  7.  エンジンと、電動機と、前記電動機を制御するための電動機制御部と、バッテリと、前記エンジンと前記電動機とを断接する断接部と、変速機とを備える車両において、前記電動機により前記エンジンを始動可能に配置された車両の動力出力装置であって、
     前記バッテリの残容量を検出する残容量検出部と、
     前記バッテリの温度を検出するバッテリ温度検出部と、
     前記残容量検出部により検出される前記バッテリの残容量と、前記バッテリ温度検出部により検出される前記バッテリの温度とに基づいて、前記バッテリにより出力可能なバッテリ出力を算出するバッテリ出力算出部と、
     前記電動機の状態を検出する電動機状態検出部と、
     前記電動機状態検出部により検出される前記電動機の状態に基づいて、該電動機から出力可能な電動機最大トルクを算出する電動機トルク算出部と、
     前記エンジンの温度を検出するエンジン温度検出部と、
     前記エンジン温度検出部により検出される前記エンジンの温度に基づいて、前記エンジンの始動に必要なエンジン始動トルクを算出する始動トルク算出部と、
     前記バッテリ出力算出部により算出される前記バッテリにより出力可能なバッテリ出力と、前記電動機トルク算出部により算出される前記電動機から出力可能な電動機最大トルクと、前記始動トルク算出部により算出される前記エンジンの始動に必要なエンジン始動トルクとに基づいて、前記エンジンを切り離して前記電動機のみで走行可能なEV範囲を設定するEV範囲設定部と
     を備え、
     前記EV範囲設定部は、前記バッテリのバッテリ出力と、前記エンジン始動トルクと、前記電動機の電動機最大トルクとから電動機出力範囲を算出し、算出した電動機出力範囲を最大トルクとした範囲を前記EV範囲として設定することを特徴とする動力出力装置。
  8.  エンジンと、電動機と、前記電動機を制御するための電動機制御部と、バッテリと、前記エンジンと前記電動機とを断接する断接部と、変速機とを備える車両において、前記電動機により前記エンジンを始動可能に配置された車両の動力出力装置であって、
     前記バッテリの残容量を検出する残容量検出部と、
     前記バッテリの温度を検出するバッテリ温度検出部と、
     前記残容量検出部により検出される前記バッテリの残容量と、前記バッテリ温度検出部により検出される前記バッテリの温度とに基づいて、前記バッテリにより出力可能なバッテリ出力を算出するバッテリ出力算出部と、
     前記電動機の温度を検出する電動機温度検出部と、
     前記電動機温度検出部により検出される前記電動機の温度に基づいて、前記電動機制御部から出力されるトルク指令値に対して実際に出力可能な電動機最大トルクを算出する電動機トルク算出部と、
     前記エンジンの温度を検出するエンジン温度検出部と、
     前記エンジン温度検出部により検出される前記エンジンの温度に基づいて、前記エンジンの始動に必要なトルクを算出する始動トルク算出部と、
     前記バッテリ出力算出部により算出される前記バッテリにより出力可能なバッテリ出力と、前記電動機トルク算出部により算出される前記電動機から出力可能な電動機最大トルクと、前記始動トルク算出部により算出される前記エンジンの始動に必要なエンジン始動トルクとに基づいて、前記エンジンを切り離して前記電動機のみで走行可能なEV範囲を設定するEV範囲設定部と
     を備え、
     前記電動機トルク算出部は、前記電動機温度検出部により検出される前記電動機の温度に基づいて、前記電動機の温度で補正した前記電動機トルクを算出し、前記EV範囲設定部は、前記電動機トルクが前記バッテリ出力から所定の範囲に収まるように、最大トルクとした範囲を前記EV範囲として設定することを特徴とする動力出力装置。
  9.  前記エンジン状態検出部または前記エンジン温度検出部は、前記電動機から前記エンジンを切り離したときの前記エンジンの温度を検出し、前記EV範囲設定部は、切り離したときの前記エンジンの温度に基づいて、前記EV範囲を設定することを特徴とする請求項1、2、7および8のいずれかに記載の動力出力装置。
  10.  前記車両の走行状態に応じて、前記電動機から前記エンジンを切り離し、あるいは前記電動機と前記エンジンとを接続するように前記断接部を制御する断接制御部をさらに備え、
     前記断接制御部は、前記バッテリの残容量に基づいて、前記電動機から前記エンジンを切り離すと該エンジンの再始動が困難であると判定した場合には、前記断接部に前記エンジンの切り離しをさせないことを特徴とする請求項1、2、7および8のいずれかに記載の動力出力装置。
  11.  前記電動機が前記エンジンに隣接して配置されている場合には、前記電動機状態検出部または前記電動機温度検出部は、前記エンジン状態検出部または前記エンジン温度検出部により検出される潤滑油の油温または冷却水の水温を前記電動機の温度として利用することを特徴とする請求項1、2、7および8のいずれかに記載の動力出力装置。
  12.  前記車両の走行状態に応じて、前記電動機から前記エンジンを切り離すように前記断接部を制御する断接制御部をさらに備え、
     前記車両が前記電動機のみで走行中に、前記電動機に要求される駆動力が前記EV範囲を超えた場合には、前記断接制御部は、前記断接部により前記電動機と前記エンジンとを接続して、前記エンジンの始動に必要な前記エンジン始動トルクを前記電動機から確保することにより、前記エンジンを押し掛けした後、前記断接部によりこの接続を切り離し、その後、前記エンジンの回転数がEV走行時の前記電動機の入力軸の回転数と同等になった時点で、前記断接部により前記電動機と前記エンジンとを再度接続することを特徴とする請求項1、2、7および8のいずれかに記載の動力出力装置。
  13.  前記エンジンを始動するために前記断接部により前記エンジンと前記電動機とを接続した後、前記電動機と前記エンジンとを切り離したときには、前記EV範囲設定部は、前記エンジン始動トルク分だけ前記EV範囲を増加させることを特徴とする請求項12に記載の動力出力装置。
  14.  前記車両は、該車両の運転者の運転をナビゲートするナビゲーションシステムをさらに備え、
     前記EV範囲設定部は、前記ナビゲーションシステムにおけるナビゲーション状態に基づいて、前記電動機からの回生が今後なされ得るか否かを判断し、前記電動機からの回生が今後なされ得ると判断した場合には、前記EV範囲を増大させることを特徴とする請求項1、2、7および8のいずれかに記載の動力出力装置。
  15.  前記電動機に要求される駆動力が前記EV範囲を超えて、EV走行から前記エンジンと前記電動機とによる協働走行に移行した後は、前記EV範囲設定部は、一定期間前記EV範囲の境界を前記協働走行から前記EV走行に移行しない方向に移動させることを特徴とする請求項1、2、7および8のいずれかに記載の動力出力装置。
  16.  前記エンジンと前記電動機とによる協働走行からEV走行に移行した後は、前記EV範囲設定部は、一定期間前記EV走行を維持することができるように、前記EV範囲の境界を前記EV走行から前記協働走行に移行しない方向に移動させることを特徴とする請求項1、2、7および8のいずれかに記載の動力出力装置。
  17.  前記車両は、外部電源から前記バッテリを充電可能なプラグインハイブリッド車両であり、
     前記EV範囲設定部は、前記バッテリの容量に応じて、前記設定されたEV範囲を拡大するように設定することを特徴とする請求項1、2、7および8のいずれかに記載の動力出力装置。
  18.  前記変速機は、それぞれ所定の変速比に対応する複数の変速段を有し、
     前記EV範囲設定部は、前記車両の車体重量と、該車両の駆動輪の半径と、前記複数の変速段のそれぞれの変速比と、変速時に許容される変速ショック量とに基づいて、前記EV範囲を拡大すべき領域を設定することを特徴とする請求項17に記載の動力出力装置。
PCT/JP2010/060402 2009-06-25 2010-06-18 動力出力装置 WO2010150713A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/379,209 US8543274B2 (en) 2009-06-25 2010-06-18 Power output apparatus
CN2010800262659A CN102458942A (zh) 2009-06-25 2010-06-18 动力输出装置
RU2012102365/11A RU2519018C2 (ru) 2009-06-25 2010-06-18 Устройство управления выходной мощностью
JP2011519865A JPWO2010150713A1 (ja) 2009-06-25 2010-06-18 動力出力装置
BRPI1015562A BRPI1015562A2 (pt) 2009-06-25 2010-06-18 aparelho de saída de força
DE112010002693T DE112010002693T5 (de) 2009-06-25 2010-06-18 Stromausgabevorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-151669 2009-06-25
JP2009151669 2009-06-25

Publications (1)

Publication Number Publication Date
WO2010150713A1 true WO2010150713A1 (ja) 2010-12-29

Family

ID=43386482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060402 WO2010150713A1 (ja) 2009-06-25 2010-06-18 動力出力装置

Country Status (7)

Country Link
US (1) US8543274B2 (ja)
JP (1) JPWO2010150713A1 (ja)
CN (1) CN102458942A (ja)
BR (1) BRPI1015562A2 (ja)
DE (1) DE112010002693T5 (ja)
RU (1) RU2519018C2 (ja)
WO (1) WO2010150713A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010150713A1 (ja) * 2009-06-25 2012-12-10 本田技研工業株式会社 動力出力装置
JP2013043479A (ja) * 2011-08-22 2013-03-04 Honda Motor Co Ltd ハイブリッド車両及びハイブリッド車両の制御方法
JP2013177082A (ja) * 2012-02-28 2013-09-09 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2013208944A (ja) * 2012-03-30 2013-10-10 Honda Motor Co Ltd ハイブリッド車両
JP2014118022A (ja) * 2012-12-14 2014-06-30 Toyota Motor Corp ハイブリッド車両の動力伝達装置及びハイブリッドシステム
JP2015175463A (ja) * 2014-03-17 2015-10-05 本田技研工業株式会社 変速機
JP2019199186A (ja) * 2018-05-17 2019-11-21 スズキ株式会社 内燃機関の始動制御装置
JP2021037825A (ja) * 2019-09-02 2021-03-11 株式会社デンソーテン 制御装置および制御方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103732462B (zh) * 2011-08-08 2016-09-07 丰田自动车株式会社 车辆、车辆的控制方法以及车辆的控制装置
DE102012214252B4 (de) * 2012-08-10 2024-05-16 Robert Bosch Gmbh Verfahren zum Steuern des Betriebs eines Hybridfahrzeuges und Hybridfahrzeug mit einer nach diesem Verfahren betreibbaren Steuerung
KR20140079156A (ko) * 2012-12-18 2014-06-26 현대자동차주식회사 하이브리드 차량의 모터의 토크 결정 방법 및 시스템
CN104870868B (zh) * 2012-12-26 2017-05-03 日产自动车株式会社 电动车辆的变速控制装置
JP6114128B2 (ja) * 2013-07-05 2017-04-12 本田技研工業株式会社 自動変速装置
JPWO2015034025A1 (ja) 2013-09-04 2017-03-02 本田技研工業株式会社 ハイブリッド車両用駆動装置
US10183674B2 (en) * 2015-04-23 2019-01-22 Ford Global Technologies, Llc Hybrid/electric vehicle motor control during step-ratio transmission engagement
US10414391B2 (en) * 2015-08-19 2019-09-17 Cummins Inc. Engine start/stop control system and method
DE102017101512A1 (de) * 2016-01-28 2017-08-03 Steering Solutions Ip Holding Corporation Verfahren zum Steuern eines Umrichters bei MOSFET- Kurzschlüssen
DE102017218870B4 (de) * 2017-02-17 2021-03-18 Ford Global Technologies, Llc Anlassverfahren für einen Verbrennungsmotor
KR102506763B1 (ko) * 2018-03-09 2023-03-07 현대자동차주식회사 구동 모터를 구비한 차량 및 그 제어 장치
CN108749644B (zh) * 2018-04-17 2024-04-09 江西精骏电控技术有限公司 纯电动汽车实现在任何路况下平稳启动的装置及控制方法
MX2020012658A (es) * 2018-07-02 2021-02-02 Nippon Steel Corp Metodo de ajuste de la frecuencia de la portadora, sistema de accionamiento del motor y dispositivo de ajuste de la frecuencia de la portadora.
KR20210031579A (ko) * 2019-09-11 2021-03-22 현대자동차주식회사 하이브리드 파워트레인
US11897346B2 (en) 2020-05-15 2024-02-13 Hamilton Sundstrand Corporation Electrical motor power control systems
US11881797B2 (en) 2020-05-15 2024-01-23 Hamilton Sundstrand Corporation Electric motor power control systems
US20220203845A1 (en) * 2020-12-31 2022-06-30 Thermo King Corporation Direct drive parallel power system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005117779A (ja) * 2003-10-07 2005-04-28 Aisin Aw Co Ltd ハイブリッド車輌の制御装置
JP2006132448A (ja) * 2004-11-05 2006-05-25 Aisin Aw Co Ltd ハイブリッド車用駆動装置、制御装置及びエンジン始動方法
JP2007230383A (ja) * 2006-03-01 2007-09-13 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2008044521A (ja) * 2006-08-15 2008-02-28 Nissan Motor Co Ltd ハイブリッド車両の電気走行制御装置
JP2009030680A (ja) * 2007-07-25 2009-02-12 Nissan Motor Co Ltd 車両の発進クラッチスタンバイ制御装置
JP2010083351A (ja) * 2008-09-30 2010-04-15 Mazda Motor Corp 車両用駆動装置の制御方法
JP2010095191A (ja) * 2008-10-17 2010-04-30 Toyota Motor Corp ハイブリッド車両の制御装置
JP2010132241A (ja) * 2008-12-08 2010-06-17 Aisin Aw Co Ltd 走行支援装置、走行支援方法及びコンピュータプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3721818B2 (ja) 1998-12-21 2005-11-30 三菱自動車工業株式会社 ハイブリッド車両の制御装置
US7073615B2 (en) * 2003-09-19 2006-07-11 Ford Global Technologies, Llc. System and method for operating an electric motor by limiting performance
JP3945470B2 (ja) * 2003-10-23 2007-07-18 日産自動車株式会社 ハイブリッド変速機のモード切り替え制御装置
JP3941775B2 (ja) 2003-11-28 2007-07-04 トヨタ自動車株式会社 動力出力装置およびその制御方法並びにこれを搭載する自動車
US7107956B2 (en) * 2004-07-30 2006-09-19 Ford Global Technologies, Llc Vehicle and method for controlling engine start in a vehicle
DE102007008477B4 (de) 2006-02-22 2018-10-04 Mitsubishi Fuso Truck And Bus Corp. Steuerverfahren für ein hybrid-elektrisches Fahrzeug
JP4862621B2 (ja) * 2006-11-15 2012-01-25 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
RU2357876C1 (ru) * 2008-01-30 2009-06-10 Нурбей Владимирович Гулиа Гибридный силовой агрегат транспортного средства
JPWO2010150713A1 (ja) * 2009-06-25 2012-12-10 本田技研工業株式会社 動力出力装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005117779A (ja) * 2003-10-07 2005-04-28 Aisin Aw Co Ltd ハイブリッド車輌の制御装置
JP2006132448A (ja) * 2004-11-05 2006-05-25 Aisin Aw Co Ltd ハイブリッド車用駆動装置、制御装置及びエンジン始動方法
JP2007230383A (ja) * 2006-03-01 2007-09-13 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2008044521A (ja) * 2006-08-15 2008-02-28 Nissan Motor Co Ltd ハイブリッド車両の電気走行制御装置
JP2009030680A (ja) * 2007-07-25 2009-02-12 Nissan Motor Co Ltd 車両の発進クラッチスタンバイ制御装置
JP2010083351A (ja) * 2008-09-30 2010-04-15 Mazda Motor Corp 車両用駆動装置の制御方法
JP2010095191A (ja) * 2008-10-17 2010-04-30 Toyota Motor Corp ハイブリッド車両の制御装置
JP2010132241A (ja) * 2008-12-08 2010-06-17 Aisin Aw Co Ltd 走行支援装置、走行支援方法及びコンピュータプログラム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010150713A1 (ja) * 2009-06-25 2012-12-10 本田技研工業株式会社 動力出力装置
JP2013043479A (ja) * 2011-08-22 2013-03-04 Honda Motor Co Ltd ハイブリッド車両及びハイブリッド車両の制御方法
JP2013177082A (ja) * 2012-02-28 2013-09-09 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2013208944A (ja) * 2012-03-30 2013-10-10 Honda Motor Co Ltd ハイブリッド車両
JP2014118022A (ja) * 2012-12-14 2014-06-30 Toyota Motor Corp ハイブリッド車両の動力伝達装置及びハイブリッドシステム
JP2015175463A (ja) * 2014-03-17 2015-10-05 本田技研工業株式会社 変速機
JP2019199186A (ja) * 2018-05-17 2019-11-21 スズキ株式会社 内燃機関の始動制御装置
JP7110718B2 (ja) 2018-05-17 2022-08-02 スズキ株式会社 内燃機関の始動制御装置
JP2021037825A (ja) * 2019-09-02 2021-03-11 株式会社デンソーテン 制御装置および制御方法

Also Published As

Publication number Publication date
BRPI1015562A2 (pt) 2016-08-16
US8543274B2 (en) 2013-09-24
JPWO2010150713A1 (ja) 2012-12-10
DE112010002693T5 (de) 2013-01-24
RU2012102365A (ru) 2013-07-27
US20120101677A1 (en) 2012-04-26
RU2519018C2 (ru) 2014-06-10
CN102458942A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
WO2010150713A1 (ja) 動力出力装置
US9944278B2 (en) Vehicle
CN104773161B (zh) 混合动力电动车辆
US8512201B2 (en) Control apparatus for hybrid vehicle
US20150006000A1 (en) Control system and control method for hybrid vehicle
US8210986B2 (en) Hybrid vehicle drive control apparatus
JP5698358B2 (ja) ハイブリッド車両の制御装置
CN106864449B (zh) 控制包括双离合变速器的混合动力电动车辆的装置和方法
US9233614B2 (en) Electric vehicle and method of controlling same, for preheating of lubricant
JP5759547B2 (ja) 車両の制御装置
US9381910B2 (en) Hybrid electric vehicle control device
JP2011213166A (ja) ハイブリッド車両用駆動装置
US20130253748A1 (en) Battery Warm-up Apparatus of Hybrid Electric Vehicle
JPWO2011077813A1 (ja) ハイブリッド車両
WO2015034025A1 (ja) ハイブリッド車両用駆動装置
JP6015773B2 (ja) ハイブリッド車両の制御装置
JP5362793B2 (ja) 車両の制御装置および制御方法
JP2011084170A (ja) ハイブリッド車両
JP6554030B2 (ja) ハイブリッド車両の制御装置
JP5350772B2 (ja) 車両の駆動制御装置及び発進制御方法
JP2018157675A (ja) 輸送機器の制御装置
JP4253937B2 (ja) 車両用駆動装置の制御装置
JP5932460B2 (ja) ハイブリッド車両の制御装置
JP3951957B2 (ja) 動力出力装置及びその制御方法並びに車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026265.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792031

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519865

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13379209

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100026939

Country of ref document: DE

Ref document number: 112010002693

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 590/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012102365

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 10792031

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1015562

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1015562

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111223