WO2010146743A1 - シフトレジスタおよび表示装置 - Google Patents
シフトレジスタおよび表示装置 Download PDFInfo
- Publication number
- WO2010146743A1 WO2010146743A1 PCT/JP2010/001259 JP2010001259W WO2010146743A1 WO 2010146743 A1 WO2010146743 A1 WO 2010146743A1 JP 2010001259 W JP2010001259 W JP 2010001259W WO 2010146743 A1 WO2010146743 A1 WO 2010146743A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stage
- output
- switching element
- input
- voltage
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 133
- 230000003111 delayed effect Effects 0.000 claims description 31
- 230000000694 effects Effects 0.000 description 62
- 230000003071 parasitic effect Effects 0.000 description 54
- 238000010586 diagram Methods 0.000 description 32
- 230000001965 increasing effect Effects 0.000 description 32
- 230000001902 propagating effect Effects 0.000 description 23
- 102100040844 Dual specificity protein kinase CLK2 Human genes 0.000 description 16
- 101000749291 Homo sapiens Dual specificity protein kinase CLK2 Proteins 0.000 description 16
- 102100040862 Dual specificity protein kinase CLK1 Human genes 0.000 description 15
- 101000749294 Homo sapiens Dual specificity protein kinase CLK1 Proteins 0.000 description 15
- 230000003405 preventing effect Effects 0.000 description 12
- 230000015556 catabolic process Effects 0.000 description 9
- 230000008878 coupling Effects 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 9
- 238000005859 coupling reaction Methods 0.000 description 9
- 238000006731 degradation reaction Methods 0.000 description 9
- 239000004973 liquid crystal related substance Substances 0.000 description 8
- 230000007257 malfunction Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C19/00—Digital stores in which the information is moved stepwise, e.g. shift registers
- G11C19/18—Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages
- G11C19/182—Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes
- G11C19/184—Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes with field-effect transistors, e.g. MOS-FET
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3674—Details of drivers for scan electrodes
- G09G3/3677—Details of drivers for scan electrodes suitable for active matrices only
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0286—Details of a shift registers arranged for use in a driving circuit
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/029—Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
Definitions
- the present invention relates to a shift register used for a gate driver of a display panel.
- Gate monolithic construction has been promoted to reduce costs by forming gate drivers with amorphous silicon on a liquid crystal panel.
- Gate monolithic is also referred to as a gate driverless, panel built-in gate driver, gate-in panel, or the like.
- FIG. 23 shows the configuration of such a gate driver (scan driving circuit) described in Patent Document 1.
- the gate driver has a configuration in which a plurality of unit stages SRC11, SRC12,..., SRC1N and SRC1D are connected in cascade.
- the first clock CKV is input to the odd stages and the second clock CKVB is input to the even stages.
- the first clock CKV and the second clock CKVB are in an opposite phase relationship.
- a gate signal (G1, G2,... GN, GD) supplied to the gate bus line is output from the output terminal OUT.
- the scan input signal STV is input to the first input terminal IN1 of the first unit stage SRC11, and the gate output from the previous stage is input to the first input terminal IN1 of the subsequent stages SRC12, SRC13,... SRC1N, SRC1D.
- a signal is input.
- the gate signal output from the next unit stage is input to the second input terminal IN2 of the unit stages SRC11, SRC12,..., SRC1N.
- each unit stage includes a first voltage terminal VOFF.
- Patent Document 1 discloses a circuit configuration of a unit stage 100 as shown in FIG. 24 as each of the unit stages SRC11, SRC12,..., SRC1N, and SRC1D.
- the unit stage 100 includes a buffer unit 110, a charging unit 120, a driving unit 130, a discharging unit 140, and a holding unit 150.
- the first clock CKV or the second clock CKVB of FIG. 25 set by the applicant is input to the unit stage 100. That is, when the unit stage 100 is odd-numbered, the first clock CKV of FIG. 25 is input to the clock terminal CK, and when the unit stage 100 is even-numbered, the clock terminal Assume that the second clock CKVB of FIG. 25 is input to CK.
- the first clock CKV and the second clock CKVB are in an opposite phase relationship.
- this gate pulse is input to the next unit stage 100 and a gate pulse is output from the next unit stage 100
- the gate pulse is input to the second input terminal IN2 of the own unit stage 100.
- the transistor Q3 of the driving unit 130 and the transistor Q4 of the discharging unit 140 are turned on, and the output terminal OUT, the gate bus line, and the node N1 are connected to the first voltage terminal VOFF and reset to the low level. .
- the transistor Q5 of the holding unit 150 is turned on every time the second clock CKVB input to the clock terminal CK becomes High level, and the node N1 is periodically switched. To the output terminal OUT.
- the odd-numbered unit stage 100 performs the same operation at a timing shifted by one clock pulse from the timing of FIG.
- the channel resistance of the output transistor such as the transistor Q2 can be sufficiently reduced by the bootstrap effect to increase the driving capability. Accordingly, even when a gate driver is monolithically formed in a panel using a material that is difficult to manufacture TFTs such as an amorphous silicon, it is disadvantageous such as high threshold voltage and low electron mobility of the amorphous silicon TFT. There is an advantage that it is possible to sufficiently overcome such characteristics and meet the demand for lower panel voltage.
- the output transistor indicated by the transistor Q2 in FIG. 24 includes a gate-drain parasitic capacitance (hereinafter referred to as drain parasitic capacitance) and a gate-source parasitic capacitance (hereinafter referred to as source parasitic capacitance).
- drain parasitic capacitance gate-drain parasitic capacitance
- source parasitic capacitance gate-source parasitic capacitance
- the fluctuation DN of the potential of the node N1 through the drain parasitic capacitance acts in a direction to increase the current by decreasing the channel resistance of the transistor Q2.
- the fluctuation DN of the potential at the node N1 outside the gate pulse output period becomes noise.
- the WXGA resolution panel has 768 gate bus lines, but each stage has a period of 767 clocks other than the period in which the original gate pulse is output to the corresponding gate bus line.
- the increase in the potential of the node N1 during the vertical blanking period provided at the boundary between frames defined by the vertical synchronization signal Vsync becomes noise.
- the source parasitic capacitance has an effect of pushing up the potential of the node N1 when the gate pulse is output, and thus advantageously works to increase the driving capability of the transistor Q2.
- the bootstrap capacitance indicated by the capacitor C in the transistor Q2 in FIG. 24 actively enhances this function by synthesizing the capacitance in parallel with the source parasitic capacitance. It is a thing.
- the boot effect is not exhibited until the potential of the output terminal OUT completely rises, so that there is a drawback that the rise TR of the gate pulse is delayed. The delay of the rising TR becomes a waveform distortion of the gate pulse.
- the stage configuration of FIG. 24 has a problem of inducing noise in the stage output.
- the noise is also propagated in a chain to the subsequent stage, which may cause a malfunction of the shift register.
- transistors Q45 and Q46 are provided so that the output terminal OUT and the gate bus line are connected to the first voltage terminal VOFF and kept at the low level every time the clock rises outside the gate pulse output period.
- a control circuit including transistors Q31 to Q34 is provided in order to make the transistor Q45 function.
- the unit stage 400 is provided with two clocks, the first clock terminal CK1 and the second clock terminal CK2, and clocks having phases opposite to each other are input.
- the transistor Q45 and the transistor Q46 are alternately turned on.
- the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to realize a shift register and a display device capable of satisfactorily suppressing noise at each stage output without increasing the circuit scale. There is.
- the shift register of the present invention provides A shift register having at least one cascade connection circuit in which stages are cascaded so as to transmit shift pulses, In at least one of the cascade connection circuits, among all the stages of each cascade connection circuit, a continuous stage group consisting of a plurality of successive stages, wherein each of the stages is A first output transistor having a first DC voltage applied to the drain and a source serving as a first output terminal constituting one output terminal of the stage; A first capacitor having one end connected to the gate of the first output transistor; An input gate that receives a shift pulse to the stage of the own stage and passes a potential supplied to one end of the first capacitor during a pulse period of the shift pulse to the stage of the own stage; One end is connected to the other end of the first capacitor, the first DC voltage is applied to the other end, and the period of the active clock pulse is shifted to the stage of the own stage at the conduction cutoff control terminal.
- a third switching element to which a pulse signal delayed in phase is input One end is connected to the first output terminal, the second DC voltage is applied to the other end, the control terminal for conduction interruption is the next stage for the stages other than the final stage of the continuous stage group.
- the shift pulse output from the first output terminal is input, and the last stage of the continuous stage group is more than the shift pulse output from the first output terminal by the stage of the final stage.
- a fifth switching element to which a shift pulse to the above stage is input.
- the first DC voltage is applied to the drain of the first output transistor, and the switched capacitor operation using the first switching element, the second switching element, and the first capacitor is performed.
- the fifth switching element since the fifth switching element is provided, the fifth switching element is turned on when an active level or a voltage close to the active level is input from the preceding stage to the own stage.
- the second DC voltage is applied to the first output terminal of the next stage. Therefore, when the active level is not output from the first output terminal of each stage, the first output terminal can be reliably held at the Low level.
- the shift register is less susceptible to signal interference from the front and rear stages even in a high temperature state and an initial state where a current easily flows through the transistor and a leakage current is large. Therefore, there is an effect that unnecessary output can be prevented from propagating to the subsequent stage. Further, by disposing a fifth switching element connected to the first output terminal of the preceding stage and the first output terminal of the succeeding stage in the stage between them, the area can be increased during circuit layout. There is an effect that it is possible to perform efficient placement and routing while minimizing delay due to parasitic components of the wiring.
- the gate bus line can be driven by a DC power supply by applying a DC voltage to the drain of the first output transistor, and the gate bus line can be driven by inputting a clock signal to the drain of the first output transistor.
- the load of the external level shifter for generating the control signal of the shift register can be greatly reduced.
- the shift register of the present invention provides A shift register having at least one cascade connection circuit in which stages are cascaded so as to transmit shift pulses, In at least one of the cascade connection circuits, among all the stages of each cascade connection circuit, a continuous stage group consisting of a plurality of successive stages, wherein each of the stages is A first output transistor having a first DC voltage applied to the drain and a source serving as a first output terminal constituting one output terminal of the stage; The first clock signal corresponding to each stage in which the period of the active clock pulse does not overlap the period of the shift pulse to the stage of the own stage is input to the drain, and the source of the stage of the stage is the source.
- a second output transistor serving as a second output terminal constituting one output terminal different from the first output terminal;
- a first capacitor having one end connected to the gate of the first output transistor and the gate of the second output transistor;
- An input gate that receives a shift pulse to the stage of the own stage and passes a potential supplied to one end of the first capacitor during a pulse period of the shift pulse to the stage of the own stage;
- a first switching element one end of which is connected to the other end of the first capacitor, the first DC voltage is applied to the other end, and the first clock signal is input to a conduction cutoff control terminal.
- a second switching element to which a shift pulse is input One end is connected to one end of the first capacitor, the second DC voltage is applied to the other end, and a shift pulse is output from the second output terminal to the control terminal for shutting off the current stage from the second output terminal.
- a third switching element to which a pulse signal delayed in phase is input One end is connected to the first output terminal, the second DC voltage is applied to the other end, the control terminal for conduction interruption is the next stage for the stages other than the final stage of the continuous stage group.
- the shift pulse output from the second output terminal is input, and the last stage of the continuous stage group is more than the shift pulse output from the second output terminal by the stage of the final stage.
- Switching elements of Equipped with a continuous stage group One of the stages other than at least the final stage of the continuous stage group is connected to the conduction cutoff control terminal of the fourth switching element, and the second DC voltage is applied to the other end, and the conduction cutoff control terminal.
- a fifth switching element to which a shift pulse to the above stage is input.
- the first DC voltage is applied to the drain of the first output transistor, and the switched capacitor operation using the first switching element, the second switching element, and the first capacitor is performed.
- the second output transistor is used for outputting a shift pulse transmitted between the stages, the size of the second output transistor is greatly reduced as compared with the first output transistor used for outputting to the outside of the shift register. be able to. Accordingly, the drain parasitic capacitance of the second output transistor is sufficiently smaller than the drain parasitic capacitance and source parasitic capacitance of the first output transistor and the first capacitance, and the drain capacitance of the second output transistor is connected to the drain of the second output transistor. Even if one clock signal is input, the effect that the potential at one end of the first capacitor is pushed up by capacitive coupling can be reduced to a negligible level.
- the load driven by the second output terminal is sufficiently smaller than the load driven by the first output terminal, so that the amount of change in the load of the external level shifter that generates the control signal of the shift register can be ignored. There is an effect that it can be made smaller.
- the fifth switching element since the fifth switching element is provided, the fifth switching element is turned on when an active level or a voltage close to the active level is input from the preceding stage to the own stage.
- the second DC voltage is applied to the second output terminal of the next stage. Therefore, when the active level is not output from the second output terminal of each stage, the first output terminal can be reliably held at the Low level.
- the shift register is less susceptible to signal interference from the front and rear stages even in a high temperature state and an initial state where a current easily flows through the transistor and a leakage current is large. Therefore, there is an effect that unnecessary output can be prevented from propagating to the subsequent stage. Further, by arranging the fifth switching element connected to the second output terminal of the preceding stage and the second output terminal of the succeeding stage in the stage between them, the area is increased during circuit layout. There is an effect that it is possible to perform efficient placement and routing while minimizing delay due to parasitic components of the wiring.
- the gate bus line can be driven by a DC power supply by applying a DC voltage to the drain of the first output transistor, and the gate bus line can be driven by inputting a clock signal to the drain of the first output transistor.
- the load of the external level shifter for generating the control signal of the shift register can be greatly reduced.
- the shift register of the present invention provides A shift register having at least one cascade connection circuit in which stages are cascaded so as to transmit shift pulses, In at least one of the cascade connection circuits, among all the stages of each cascade connection circuit, a continuous stage group consisting of a plurality of successive stages, wherein each of the stages is A first output transistor having a first DC voltage applied to the drain and a source serving as a first output terminal constituting one output terminal of the stage; A first capacitor having one end connected to the gate of the first output transistor; An input gate that receives a shift pulse to the stage of the own stage and passes a potential supplied to one end of the first capacitor during a pulse period of the shift pulse to the stage of the own stage; One end is connected to the other end of the first capacitor, the first DC voltage is applied to the other end, and the period of the active clock pulse is shifted to the stage of the own stage at the conduction cutoff control terminal.
- a third switching element to which a pulse signal delayed in phase is input One end is connected to the first output terminal, the second DC voltage is applied to the other end, the control terminal for conduction interruption is the next stage for the stages other than the final stage of the continuous stage group.
- the shift pulse output from the first output terminal is input, and the last stage of the continuous stage group is more than the shift pulse output from the first output terminal by the stage of the final stage.
- the first DC voltage is applied to the drain of the first output transistor, and the switched capacitor operation using the first switching element, the second switching element, and the first capacitor is performed.
- the seventh switching element since the seventh switching element is provided, the seventh switching element is turned on when the signal input to the conduction cutoff control terminal of the fourth switching element becomes an active level. Then, the second DC voltage is applied to the first output terminal of the preceding stage. Accordingly, when one end of the first capacitor of each stage is reset, the first capacitor is not unnecessarily charged due to leakage through the input gate, and the first switching element is turned on. It is possible to avoid unnecessary push-up that causes interference through the unnecessary charge of the first capacitor.
- the shift register is less susceptible to signal interference from the front and rear stages even in a high temperature state and an initial state where a current easily flows through the transistor and a leakage current is large. Therefore, there is an effect that unnecessary output can be prevented from propagating to the subsequent stage. Further, by arranging a seventh switching element connected to the first output terminal of the preceding stage and the first output terminal of the succeeding stage in the stage between them, the area is increased during circuit layout. There is an effect that it is possible to perform efficient placement and routing while minimizing delay due to parasitic components of the wiring.
- the gate bus line can be driven by a DC power supply by applying a DC voltage to the drain of the first output transistor, and the gate bus line can be driven by inputting a clock signal to the drain of the first output transistor.
- the load of the external level shifter for generating the control signal of the shift register can be greatly reduced.
- the shift register of the present invention provides A shift register having at least one cascade connection circuit in which stages are cascaded so as to transmit shift pulses, In at least one of the cascade connection circuits, among all the stages of each cascade connection circuit, a continuous stage group consisting of a plurality of successive stages, wherein each of the stages is A first output transistor having a first DC voltage applied to the drain and a source serving as a first output terminal constituting one output terminal of the stage; The first clock signal corresponding to each stage in which the period of the active clock pulse does not overlap the period of the shift pulse to the stage of the own stage is input to the drain, and the source of the stage of the stage is the source.
- a second output transistor serving as a second output terminal constituting one output terminal different from the first output terminal;
- a first capacitor having one end connected to the gate of the first output transistor and the gate of the second output transistor;
- An input gate that receives a shift pulse to the stage of the own stage and passes a potential supplied to one end of the first capacitor during a pulse period of the shift pulse to the stage of the own stage;
- a first switching element one end of which is connected to the other end of the first capacitor, the first DC voltage is applied to the other end, and the first clock signal is input to a conduction cutoff control terminal.
- a second switching element to which a shift pulse is input One end is connected to one end of the first capacitor, the second DC voltage is applied to the other end, and a shift pulse is output from the second output terminal to the control terminal for shutting off the current stage from the second output terminal.
- a third switching element to which a pulse signal delayed in phase is input One end is connected to the first output terminal, the second DC voltage is applied to the other end, the control terminal for conduction interruption is the next stage for the stages other than the final stage of the continuous stage group.
- a fourth switching element to which a phase delayed pulse signal is input One end is connected to the second output terminal, the second DC voltage is applied to the other end, and the conduction cutoff control terminal is connected to the conduction cutoff control terminal of the fourth switching element.
- Switching elements of A shift pulse input to the own stage is input to one end, the second DC voltage is applied to the other end, and the conduction cutoff control terminal is connected to the conduction cutoff control terminal of the fourth switching element.
- the first DC voltage is applied to the drain of the first output transistor, and the switched capacitor operation using the first switching element, the second switching element, and the first capacitor is performed.
- the second output transistor is used for outputting a shift pulse transmitted between the stages, the size of the second output transistor is greatly reduced as compared with the first output transistor used for outputting to the outside of the shift register. be able to. Accordingly, the drain parasitic capacitance of the second output transistor is sufficiently smaller than the drain parasitic capacitance and source parasitic capacitance of the first output transistor and the first capacitance, and the drain capacitance of the second output transistor is connected to the drain of the second output transistor. Even if one clock signal is input, the effect that the potential at one end of the first capacitor is pushed up by capacitive coupling can be reduced to a negligible level.
- the load driven by the second output terminal is sufficiently smaller than the load driven by the first output terminal, so that the amount of change in the load of the external level shifter that generates the control signal of the shift register can be ignored. There is an effect that it can be made smaller.
- the seventh switching element when the signal input to the conduction cutoff control terminal of the fourth switching element and the sixth switching element becomes an active level, the seventh switching element is provided.
- the element is turned on, and the second DC voltage is applied to the second output terminal of the preceding stage. Accordingly, when one end of the first capacitor of each stage is reset, the first capacitor is not unnecessarily charged due to leakage through the input gate, and the first switching element is turned on. It is possible to avoid unnecessary push-up that causes interference through the unnecessary charge of the first capacitor.
- the shift register is less susceptible to signal interference from the front and rear stages even in a high temperature state and an initial state where a current easily flows through the transistor and a leakage current is large. Therefore, there is an effect that unnecessary output can be prevented from propagating to the subsequent stage. Further, by disposing a seventh switching element connected to the second output terminal of the preceding stage and the second output terminal of the succeeding stage in the stage between them, the area can be increased during circuit layout. There is an effect that it is possible to perform efficient placement and routing while minimizing delay due to parasitic components of the wiring.
- the gate bus line can be driven by a DC power supply by applying a DC voltage to the drain of the first output transistor, and the gate bus line can be driven by inputting a clock signal to the drain of the first output transistor.
- the load of the external level shifter for generating the control signal of the shift register can be greatly reduced.
- a shift register having at least one cascade connection circuit in which stages are cascaded so as to transmit shift pulses, In at least one of the cascade connection circuits, among all the stages of each cascade connection circuit, a continuous stage group consisting of a plurality of successive stages, wherein each of the stages is A first output transistor having a first DC voltage applied to the drain and a source serving as a first output terminal constituting one output terminal of the stage; A first capacitor having one end connected to the gate of the first output transistor; An input gate that receives a shift pulse to the stage of the own stage and passes a potential supplied to one end of the first capacitor during a pulse period of the shift pulse to the stage of the own stage; One end is connected to the other end of the first capacitor, the first DC voltage is applied to the other end, and the period of the active clock pulse is shifted to the stage of the own stage at the conduction cutoff control terminal.
- a third switching element to which a pulse signal delayed in phase is input One end is connected to the first output terminal, the second DC voltage is applied to the other end, the control terminal for conduction interruption is the next stage for the stages other than the final stage of the continuous stage group.
- the shift pulse output from the first output terminal is input, and the last stage of the continuous stage group is more than the shift pulse output from the first output terminal by the stage of the final stage.
- FIG. 1 illustrates an embodiment of the present invention, and is a circuit diagram illustrating a configuration of a stage included in a shift register of a first example. It is a block diagram which shows the structure of the shift register of a 1st Example. It is a wave form diagram which shows operation
- FIG. 9, showing an embodiment of the present invention is a circuit diagram illustrating a configuration of a stage included in a shift register of a second example. It is a block diagram which shows the structure of the shift register of a 2nd Example. It is a wave form diagram which shows operation
- FIG. 9 showing an embodiment of the present invention, is a circuit diagram illustrating a configuration of a stage included in a shift register of a third example. It is a block diagram which shows the structure of the shift register of a 3rd Example. It is a wave form diagram which shows the operation
- FIG. 11 is a circuit diagram illustrating a configuration of a stage included in the shift register of the fourth example, according to the embodiment of the present invention. It is a block diagram which shows the structure of the shift register of a 3rd Example. It is a wave form diagram which shows the operation
- FIG. 1 illustrates an embodiment of the present invention, and is a waveform diagram illustrating an output waveform of a stage, wherein (a) is a waveform diagram illustrating an output waveform of a stage when a seventh switching element is not provided; ) Is a waveform diagram showing an output waveform of a stage when a seventh switching element is provided.
- FIG. 1, showing an embodiment of the present invention is a circuit diagram showing a first basic configuration of a stage provided in a shift register. It is a block diagram which shows the structure of a shift register provided with the stage of the 1st basic composition. It is a wave form diagram showing operation of a shift register provided with a stage of the 1st basic composition.
- FIG. 9, showing an embodiment of the present invention is a circuit diagram illustrating a second basic configuration of a stage included in a shift register. It is a block diagram which shows the structure of a shift register provided with the stage of the 2nd basic composition. It is a wave form diagram showing operation of a shift register provided with a stage of the 2nd basic composition.
- FIG. 1 is a block diagram illustrating a configuration of a display device.
- FIG. It is a block diagram which shows a prior art and shows the structure of a shift register. It is a circuit diagram which shows a prior art and shows the 1st structural example of the stage with which a shift register is provided.
- Embodiments of the present invention will be described with reference to FIGS. 1 to 22 as follows.
- FIG. 21 shows a configuration of the liquid crystal display device 11 which is a display device according to the present embodiment.
- the liquid crystal display device 11 includes a display panel 12, a flexible printed circuit board 13, and a control board 14.
- the display panel 12 uses amorphous silicon on a glass substrate, a display region 12a, a plurality of gate bus lines (scanning signal lines) GL, a plurality of source bus lines (data signal lines) SL, and a gate driver (scanning).
- This is an active matrix display panel in which a signal line driver circuit) 15 is built.
- the display panel 12 can also be manufactured using polycrystalline silicon, CG silicon, microcrystalline silicon, or the like.
- the display area 12a is an area in which a plurality of picture elements PIX ... are arranged in a matrix.
- the picture element PIX includes a TFT 21, which is a picture element selection element, a liquid crystal capacitor CL, and an auxiliary capacitor Cs.
- the gate of the TFT 21 is connected to the gate bus line GL, and the source of the TFT 21 is connected to the source bus line SL.
- the liquid crystal capacitor CL and the auxiliary capacitor Cs are connected to the drain of the TFT 21.
- the plurality of gate bus lines GL are composed of gate bus lines GL1, GL2, GL3,... GLn, and are connected to the output of the gate driver (scanning signal line drive circuit) 15, respectively.
- the plurality of source bus lines SL are made up of source bus lines SL1, SL2, SL3,..., SLm, and are connected to the output of a source driver 16, which will be described later. Further, although not shown, auxiliary capacitance lines for applying an auxiliary capacitance voltage to the auxiliary capacitances Cs of the picture elements PIX... Are formed.
- the gate driver 15 is provided on the display panel 12 in an area adjacent to the display area 12a on one side in the extending direction of the gate bus lines GL, and sequentially applies gate pulses to the gate bus lines GL. (Scanning pulse) is supplied. Further, another gate driver is provided in a region adjacent to the display region 12a on the other side of the display region 12a in the direction in which the gate bus lines GL extend, and is different from the gate driver 15. The GL may be scanned. Further, the gate driver provided in the region adjacent to one side in the extending direction of the gate bus line GL with respect to the display region 12a and the gate driver provided in the region adjacent to the other side are the same gate bus line. The GL may be scanned. These gate drivers are built monolithically with the display area 12a on the display panel 12, and gate drivers called gate monolithic, gate driverless, panel built-in gate drivers, gate-in panels, etc. are all in the gate driver 15. May be included.
- the flexible printed circuit board 13 includes a source driver 16.
- the source driver 16 supplies a data signal to each of the source bus lines SL.
- the source driver 16 may be monolithically formed on the display panel 12 with the display area 12a.
- the control board 14 is connected to the flexible printed board 13 and supplies necessary signals and power to the gate driver 15 and the source driver 16. Signals and power supplied to the gate driver 15 output from the control board 14 are supplied from the display panel 12 to the gate driver 15 via the flexible printed board 13.
- FIGS. 1 to 3 A first embodiment of the shift register will be described with reference to FIGS. 1 to 3, FIG. 7, and FIGS.
- FIG. 16 shows a configuration of the shift register 21 having the first basic configuration.
- the shift register 21 has a configuration in which a plurality of stages Xi (i is a natural number) are cascaded by the number of gate bus lines GL.
- a cascade connection circuit one circuit in which the stages Xi are connected in cascade.
- Each stage Xi includes terminals V1, V2, S1, S2, S3, S4, and OUT.
- the terminal V1 has a power supply voltage (first DC voltage) VDD at a high level (ie, a gate pulse level) of the gate drive voltage, and a terminal V2.
- first DC voltage first DC voltage
- second DC voltage second DC voltage
- the terminal S1 is the output signal OUTi-1 from the terminal OUT of the preceding stage Xi-1
- the terminal S2 is the clock signal (first signal).
- Clock signal) CLK1 the output signal OUTi + 1 from the terminal OUT of the next stage X to the terminal S3
- the output signal OUTi of its own stage Xi is output from the terminal (first output terminal) OUT.
- the gate start pulse SP is input to the terminal S1 of the stage X1 instead of the output signal OUTi-1.
- an output pulse signal from another stage whose phase is delayed by one pulse from the output signal OUTi-1 of its own stage Xi in the cascade connection circuit at the terminal S3 of the final stage Xn for i For example, there is an output pulse signal output from one output terminal of a dummy stage that has the same configuration as the stage Xi and does not output to the gate bus line GL, following the final stage Xn. .
- the output pulse of this dummy stage is called a gate end pulse EP.
- the gate end pulse EP has the same waveform and the same phase as the pulse of the output signal OUTi.
- an output pulse signal delayed in phase (here, delayed in phase by one pulse) from the output signal OUTi of the stage Xi of the stage Xi is supplied to the terminal S3 of each stage Xi. It may be input from one output terminal of another stage.
- the first stage X1 may include a dummy stage having the same configuration as the preceding stage, and a gate start pulse may be input to the dummy stage, and an output pulse signal of the dummy stage may be input to the stage X1.
- These dummy stages are provided to operate the first stage X1 and the final stage Xn under the same conditions as the other stages Xi. These are the same in other embodiments.
- a power supply voltage (first DC voltage) VDD at a high level (that is, a gate pulse level) of the gate drive voltage is applied to the terminal V1 and a terminal V2.
- the terminal S1 is the output signal OUTi-1 from the terminal OUT of the preceding stage Xi-1
- the terminal S2 is the clock signal (first signal).
- Clock signal CLK2 the terminal S3 receives the output signal OUTi + 1 from the terminal OUT of the next stage Xi + 1
- the terminal S4 receives the clock signal CLK1, respectively. Is output.
- the second DC voltage is lower than the first DC voltage.
- FIG. 15 shows a configuration of each stage Xi included in the shift register having the above basic configuration.
- Stage Xi includes transistors M1, M2, M3, M4, M5, and M6 and a capacitor C1.
- the transistors M1 to M6 are all N-channel TFTs here, but P-channel TFTs can also be used, and the same applies to all transistors in all the embodiments including the transistor M10 described later. .
- the gate of each switching element described below is a control terminal for turning off conduction in the switching element.
- the gate of the transistor (input gate, eighth switching element) M1 is connected to the terminal S1, the drain is connected to the terminal V1, and the source is connected to the node N1 connected to the gate of the transistor M5.
- One end of the capacitor (first capacitor) C1 is connected to the node N1.
- the gate of the transistor (first switching element) M2 is connected to the terminal S2, the drain is connected to the terminal V1, and the source is connected to the other end of the capacitor C1 opposite to the node N1 side.
- the other end of the capacitor C1 is connected to the node N2.
- the gate of the transistor (second switching element) M3 is connected to the terminal S1, the drain is connected to the node N2, and the source is connected to the terminal V2.
- the gate of the transistor (third switching element) M4 is connected to the terminal S3, the drain is connected to the node N1, and the source is connected to the terminal V2.
- the drain of the transistor (first output transistor) M5 is connected to the terminal V1, and the source is connected to the terminal OUT. That is, a DC voltage called the power supply voltage VDD is applied to the drain of the transistor M5, and the source of the transistor M5 functions as a first output terminal that is one output terminal of the stage Xi.
- the gate of the transistor (fourth switching element) M6 is connected to the terminal S4, the drain is connected to the terminal OUT, and the source is connected to the terminal V2.
- the active periods of the clock signal CLK1 and the clock signal CLK2 do not overlap each other.
- the clock signal CLK1 and the clock signal CLK2 are in an opposite phase relationship.
- the high level of the clock signals CLK1 and CLK2 is VDD and the low level is VSS, but the high level of the clock signals CLK1 and CLK2 may be VDD or higher and the low level may be VSS or lower.
- the pulse widths of the clock signals CLK1 and CLK2 and the gate start pulse SP are values corresponding to one horizontal period (1H).
- the gate start pulse SP is, for example, a pulse having one vertical cycle whose phase is shifted by a half cycle of the active clock pulse of the clock signal CLK1 and the clock signal CLK1, or an active clock pulse of the clock signal CLK2 and the clock signal, for example.
- This is a pulse of one vertical cycle whose phase is shifted by a half cycle of CLK2.
- the clock signal input to the terminal S2 is the first clock signal, the clock signal CLK1 for the odd-numbered stage Xi, and the clock signal CLK2 for the even-numbered stage Xi, respectively. Equivalent to.
- the shift pulse input to the stage Xi and the first clock signal do not overlap with each other in the period of the active clock pulse (here, the High level period).
- the gate start pulse SP is input as a shift pulse to the terminal S1 of the stage X1
- the transistors M1 and M3 are turned on to start the operation of the stage X1
- each stage Xi receives the output signal OUTi from the terminal OUT. Output sequentially.
- the node N1 is referred to as a node N1 (i)
- the node N2 is referred to as a node N2 (i)
- the output signal OUTi is referred to as OUT (i).
- a voltage is applied to the node N1 (N ⁇ 1) from the terminal V1 via the transistor M1, and at the node N2 (N ⁇ 1) from the terminal V2.
- the power supply voltage VSS is applied through the transistor M3.
- the capacitor C1 is charged until the potential of the node N1 (N ⁇ 1) becomes (power supply voltage VDD) ⁇ (threshold voltage Vth of the transistor M1), the transistor M1 is turned off.
- the transistor M1 functions as an input gate that receives a shift pulse to the stage Xi of its own stage and passes a voltage applied to the node N1 during the pulse period of the shift pulse.
- the shift pulse is a gate start pulse SP for the stage X1 and a gate pulse included in the output signal OUTi-1 of the preceding stage Xi-1 for the other stages Xi.
- the transistor M2 is turned on, and the potential of the node N2 (N ⁇ 1) is applied by applying a voltage from the terminal V1 ( Power supply voltage VDD) ⁇ (threshold voltage Vth). Accordingly, the potential of the node N1 (N ⁇ 1) is pushed up through the capacitor C1, and the transistor M5 is turned on.
- the gate of the transistor M5 becomes a sufficiently high potential V (N1) with respect to VDD, and the transistor M5 is turned on so as to have a sufficiently small channel resistance, so that the power supply voltage VDD is output from the terminal V1.
- the signal is output as OUT (N ⁇ 1) to the terminal OUT via the transistor M5.
- the output signal OUT (N ⁇ 1) from the terminal OUT becomes a gate pulse with an amplitude of VDD ⁇ VSS.
- the gate pulse is input to the terminal S1 of the next stage X (N), and charges the capacitor C1 of the stage X (N). Then, the potential of the node N1 (N) is pushed up when the high level of the clock signal CLK2 that is the first clock signal is input to the terminal S2, so that the transistor M5 is turned on. As a result, the power supply voltage VDD is output as the output signal OUT (N) from the terminal OUT via the transistor M5, and becomes a gate pulse.
- the gate pulse of the output signal OUT (N) is input to the terminal S3 of the stage X (N ⁇ 1), the transistor M4 is turned on, and the potential of the node N1 (N ⁇ 1) is lowered to the power supply voltage VSS. As a result, the gate pulse as the output signal OUT (N ⁇ 1) falls, and the stage X (N ⁇ 1) is reset.
- the gate pulse of the output signal OUTi is sequentially output to each gate bus line GL.
- each stage Xi every time the clock signal input to the terminal S4 becomes high level, the transistor M6 is turned on and the output terminal OUT is reset to low level.
- the first DC voltage called the power supply voltage VDD is applied to the drain (one end opposite to the gate drive output side) of the transistor M5 that outputs the gate pulse, and the transistor
- the transistor By performing the switched capacitor operation using M2 and M3 and the capacitor C1, the output voltage fluctuation generated when the clock signal is input to the drain of the transistor M5 and the liquid crystal picture generated due to the output voltage fluctuation Charge leakage from the elementary electrode can be prevented.
- the gate bus line can be driven by a DC power source by applying a DC voltage to the drain of the transistor M5, and the gate bus line is driven by the clock signal by inputting a clock signal to the drain of the transistor M5.
- the load of the external level shifter that generates the control signal of the shift register can be greatly reduced.
- the amplitude of the clock signal can be set to an arbitrary value by setting the Low level to VSS or lower and the High level to VDD or higher.
- the High level is set to a value higher than VDD, the ON current of a transistor whose high level is input to the gate increases, and the operation speed can be improved.
- the Low level is set to a value lower than VSS, the OFF current of the transistor that is input to the gate of the Low level is reduced, and it is possible to prevent the malfunction of the level shifter due to the leakage current.
- the gate potential can be made lower than the source potential and the drain potential, so that the threshold voltage Vth generated due to the DC voltage component applied to the gate is elapsed.
- the change can be kept small, and the performance degradation of the shift register can be suppressed.
- the cascade circuit is the continuous stage group itself.
- the cascade connection circuit may partially include a continuous stage group, such as a serial stage group and the aforementioned dummy stage.
- the dummy stage has the same configuration as that described in each claim for the stage Xi, it is possible to regard the dummy stage connected in cascade to the stage Xi as a continuous stage group.
- a plurality of continuous stage groups may be provided in one cascade connection circuit with one or more other stages different from the stage Xi sandwiched between them.
- each of these successive stage groups can be suitably used when driving a plurality of gate bus lines GL... Constituting a corresponding unit. The same applies to the other embodiments.
- one gate driver may be composed of a plurality of IC chips, and a plurality of gate drivers may be sandwiched with the display region 12a interposed therebetween.
- one or more of the cascade connection circuits may be provided on the display panel.
- the third switching element (here, the control terminal for turning off the transistor M4 has a phase higher than the shift pulse (here, the output signal OUTi) output from the terminal OUT by the stage Xi of its own stage).
- the output signal OUTi of the next stage Xi + 1 is input to the stage Xi other than the final stage, and the dummy signal is input to the final stage Xi. It can be realized by supply from a certain stage on the cascade connection circuit such as an output signal from the stage being input.
- the stage Xi + 1 of the next stage is output from the terminal OUT for the stage Xi other than the last stage of the continuous stage group, as a control terminal for turning off the fourth switching element (here, the transistor M6).
- a shift pulse (here, output signal OUTi) is input, and a pulse signal whose phase is delayed from the shift pulse output from the terminal OUTi by the final stage Xi is input to the final stage Xi of the continuous stage group. It only has to be done.
- the final stage Xi can be realized by supply from a certain stage on the cascade connection circuit, such as the output signal from the dummy stage being input.
- a third DC voltage different from the first DC voltage may be applied to the gate of the transistor M1. Thereby, the charging potential of the node N1 is not restricted by the power supply voltage VDD.
- each stage Xi having the configuration shown in FIG. 15 is operated under the conditions that the current flows most easily through each transistor and the leakage current is large, that is, generally in a high temperature state or an initial manufacturing state. Susceptible to interference.
- the stage Xi receives interference, a phenomenon such as malfunction or oscillation of the circuit is likely to occur due to the signal interference.
- the transistor is a TFT, the above phenomenon is particularly noticeable because the leak current is large due to the fact that the element size has to be very large to compensate for the large ON resistance.
- the output signal OUT (N-2) is input from the previous stage X (N-2) and the node N1 (N-1)
- the terminal OUT (N-1) is connected via a parasitic capacitance (such as the source parasitic capacitance of the transistor M5) between the node N1 (N-1) and the terminal OUT (N-1). Is pushed up. This is indicated by interference I1 in FIG.
- the leakage current is large.
- a shift register capable of preventing malfunction and oscillation of the circuit will be described.
- this improvement can respond to the need for countermeasures against leakage because the characteristics of TFTs vary greatly, and the TFTs on the same circuit tend to have different leakage currents.
- FIG. 2 shows the configuration of the shift register 1 of this embodiment.
- the shift register 1 has a configuration in which a plurality of stages Xi (i is a natural number) are cascaded by the number of gate bus lines GL, and each stage Xi has terminals V 1. V2, S1, S2, S3, S4, and OUT are provided. Since the connection relationship between the stages Xi of the shift register 1 is the same as that of the shift register 21, the description thereof is omitted. Note that the terminal S4 of the final stage Xi has the same configuration and operation as the stages Xi other than the final stage by connecting to the terminal OUT of the dummy stage provided next to the final stage Xi. Can be realized.
- FIG. 1 shows the configuration of each stage Xi of the shift register 1.
- the stage Xi of the shift register 1 adds a transistor M10 to the stage Xi of the shift register 21, and instead of inputting a clock signal to the terminal S4, the terminal S4 is a terminal OUT that is an output terminal of the next stage Xi. It is the structure connected to.
- the gate of the transistor (fifth switching element) M10 is connected to the terminal S1, the drain is connected to the terminal S4, thus the gate of the transistor M6, and the source is connected to the terminal V2.
- the transistor M10 when an active level or a voltage close to the active level is input to the terminal S1 from the previous stage Xi-1, the transistor M10 is turned on and the terminal of the next stage Xi + 1 OUT is connected to the terminal V2. Therefore, the terminal OUT can be reliably held at the low level (power supply voltage VSS) when the active level is not output from the terminal OUT of each stage Xi.
- stage Xi in FIG. 1 The operation of stage Xi in FIG. 1 will be described in detail with reference to FIG.
- the clock signal is not input to the terminal S4 and the terminal S4 is connected to the terminal OUT of the next stage Xi + 1, so that the output signal OUTi + 1 of the next stage becomes an active level.
- the transistor M6 Only when the transistor M6 is turned on. Therefore, for example, when the active output signal OUT (N-2) is output from the stage X (N-2), the output signal OUT is passed through the parasitic capacitance of the transistor M5 having a large leak in the stage X (N-1). Even if the interference I1 with respect to (N-1) occurs, after the interference I1 causes the interference I2 that causes charging of the node N1 (N) of the stage X (N), the output signal OUT (N) becomes Low. By being fixed at the level, no further interference propagates.
- FIG. 7A shows a state in which a large noise n1 is generated in the output signal OUTi due to interference in a shift register that does not include the transistor M10.
- the noise n1 can be suppressed to a small noise n2.
- the shift register 1 is less susceptible to signal interference from the previous stage and the subsequent stage even in a high temperature state and an initial state where a current easily flows through the transistor and a leakage current is large. Therefore, unnecessary output can be prevented from propagating to the subsequent stage.
- the transistor M10 connected to the terminal OUT of the preceding stage Xi-1 and the terminal OUT of the succeeding stage Xi + 1 in the stage Xi between them, the area is increased and the parasitic components of the wiring are arranged. Therefore, it is possible to efficiently place and route the delay due to the delay.
- FIG. 18 shows the configuration of the stage Xi provided in the shift register having the second basic configuration.
- the stage Xi in FIG. 18 has a configuration in which a transistor (second output transistor) M7 and a transistor (sixth switching element) M8 are added to the stage Xi in FIG.
- the gate of the transistor M7 is connected to the node N1, the drain is connected to the terminal S2, and the source is connected to the terminal (second output terminal) Z. That is, the first clock signal is input to the drain of the transistor M7, and the source of the transistor M7 functions as a second output terminal that is one output terminal of the stage Xi, which is different from the first output terminal.
- the gate of the transistor M8 is connected to the terminal S4, and hence the gate of the transistor M6, the drain is connected to the terminal Z, and the source is connected to the terminal V2.
- the terminal Z is connected to the terminal S1 of the other stage Xi to which the shift pulse output from the stage Xi is input, and the transistor M7 outputs the shift pulse.
- the transistor M8 resets the terminal Z to the low level.
- the stage for outputting the gate pulse and the stage for outputting the set / reset control signal such as the set signal (shift pulse) and reset signal of the other stage Xi are separated from each other. Further, any number of stages separated in the same manner may be provided.
- the control signal if the stage for outputting the set signal (shift pulse) of another stage and the stage for outputting the reset signal of another stage are further separated, the output of the set signal and the output of the reset signal are performed. Can be avoided, and can be operated more stably.
- a third output transistor similar to the transistor M7 and a ninth switching element similar to the transistor M8 are added to the configuration of FIG.
- the source of the third output transistor is a third output terminal that is one output terminal of the stage Xi, which is different from the first output terminal and the second output terminal. For example, from the second output terminal (terminal Z) A set signal (shift pulse) is output and a reset signal is output from the third output terminal.
- the drain of the transistor M7 that outputs a control signal for setting and resetting the stage Xi on the front stage side and the rear stage side is connected to the terminal S2, so that the potential V (N1) of the node N1 is capacitively coupled. It is possible to prevent the potential of the terminal Z from being raised due to the thrust.
- FIG. 19 shows a configuration of the shift register 22 having the second basic configuration.
- the shift register 22 has a configuration in which a plurality of stages Xi (i is a natural number) are cascaded by the number of gate bus lines GL.
- the terminal V1 has a power supply voltage (first DC voltage) VDD at a high level (ie, a gate pulse level) of the gate drive voltage, and a terminal V2.
- first DC voltage first DC voltage
- second DC voltage second DC voltage
- the terminal S1 is an output signal from the terminal Z of the preceding stage Xi-1
- the terminal S2 is a clock signal (first clock signal).
- the output signal from the terminal Z of the next stage Xi + 1 is input to CLK1 and the terminals S3 and S4, respectively, and the output signal OUTi of its own stage Xi is output from the terminal OUT.
- the gate start pulse SP is input to the terminal S1 of the stage X1 instead of the output signal OUTi-1.
- a power supply voltage (first DC voltage) VDD at a high level (that is, a gate pulse level) of the gate drive voltage is applied to the terminal V1 and a terminal V2.
- first DC voltage DC voltage
- second DC voltage VSS of the gate drive voltage
- the terminal S1 is an output signal from the terminal Z of the preceding stage Xi-1
- the terminal S2 is a clock signal (first clock signal).
- the output signal from the terminal Z of the next stage Xi + 1 is input to CLK2 and the terminals S3 and S4, respectively, and the output signal OUTi of the own stage Xi is output from the terminal OUT.
- the second DC voltage is lower than the first DC voltage.
- FIG. 20 shows an operation waveform of the shift register 22.
- the clock signal CLK1 and the clock signal CLK2 have a pulse width of 1H and are in an opposite phase relationship to each other.
- the gate start pulse SP corresponds to one clock pulse of the clock signal CLK2.
- the gate pulse output from the terminal OUT is the output signal OUT (N ⁇ 1). ).
- the waveform of OUT (N)... The voltage is output for a period of two clock pulses while the potential rises stepwise.
- the shift pulse output from the terminal Z corresponds to the latter half period of the gate pulse of the stage Xi of its own stage, as shown in the waveform of the output signal Z (N ⁇ 1) ⁇ Z (N). Only a period corresponding to one clock pulse of the clock signals CLK1 and CLK2 is output. Accordingly, the pixel is precharged in the first half period of the gate pulse, the data signal is written in the second half period, and the shift pulse can be transmitted to the next stage Xi + 1.
- the shift register 22 it is possible to prevent the potential V (N1) of the node N1 from being pushed up by capacitive coupling and the output of the terminal Z to rise during an unnecessary period, thereby causing the shift register to malfunction. .
- the number of external input signals to the required shift register can be reduced.
- the charging of the node N1 (N-1) interferes with the potential of the terminal Z (N-1) (interference I1), which causes the node N1 (N) of the next stage X (N) to Causes charging at different timing (interference I2).
- the interference I2 propagates to the subsequent stage (interference I3).
- FIG. 5 shows the configuration of the shift register 2 of this embodiment.
- the shift register 2 has a configuration in which a plurality of stages Xi (i is a natural number) are connected in cascade by the number of gate bus lines GL, and each stage Xi has terminals V 1. V2, S1, S2, S3, S4, OUT, and Z are provided. Since the connection relationship between the stages Xi of the shift register 2 is the same as that of the shift register 22, the description thereof is omitted. Note that the terminal S4 of the final stage Xi has the same configuration and operation as the stages Xi other than the final stage by connecting to the terminal Z of the dummy stage provided next to the final stage Xi. Can be realized.
- FIG. 4 shows the configuration of each stage Xi of the shift register 2.
- the stage Xi of the shift register 2 has a configuration in which a transistor M10 is added to the stage Xi of the shift register 22.
- the gate of the transistor (fifth switching element) M10 is connected to the terminal S1, the drain is connected to the terminal S4, and the source is connected to the terminal V2.
- the transistor M10 when an active level or a voltage close to the active level is input to the terminal S1 from the previous stage Xi-1, the transistor M10 is turned on and the terminal of the next stage Xi + 1 Z is connected to terminal V2. Accordingly, the terminal Z can be reliably held at the low level (power supply voltage VSS) when the active level is not output from the terminal Z of each stage Xi.
- stage Xi in FIG. 4 The operation of the stage Xi in FIG. 4 will be described in detail with reference to FIG.
- the output signal Z (N-2) When an active output signal Z (N-2) is output from the stage X (N-2), the output signal Z (N ⁇ ) is output via the parasitic capacitance of the transistor M5 having a large leak at the stage X (N ⁇ 1). Even if the interference I1 with respect to 1) occurs, the output signal Z (N) is fixed at the low level after the interference I1 causes the interference I2 that causes the node N1 (N) of the stage X (N) to be charged. As a result, no further interference propagates.
- the output signal Zi of the stage Xi of the shift register 1 is obtained by the output signal Z (N-2) of the stage Xi-2 two stages before or a signal equivalent to the output signal Z (N-2).
- Interference prevention action P1 is received.
- the effect of (b) of FIG. 7 is obtained as in the first embodiment.
- the shift register 2 is less susceptible to signal interference from the previous stage and the subsequent stage even in a high temperature state and an initial state where a current easily flows through the transistor and a leak current is large. Therefore, unnecessary output can be prevented from propagating to the subsequent stage.
- the transistor M10 connected to the terminal Z of the preceding stage Xi-1 and the terminal Z of the succeeding stage Xi + 1 in the stage Xi between them, the area is increased and the parasitic components of the wiring are arranged. Therefore, it is possible to efficiently place and route the delay due to the delay.
- FIG. 9 shows the configuration of the shift register 3 of this embodiment.
- the shift register 3 has a configuration in which a plurality of stages Xi (i is a natural number) are cascaded by the number of gate bus lines GL. V2, S1, S2, S3, S4, and OUT are provided. Since the connection relationship between the stages Xi of the shift register 3 is the same as that of the shift register 21, the description thereof is omitted.
- FIG. 8 shows the configuration of each stage Xi of the shift register 3.
- the stage Xi of the shift register 3 adds a transistor M11 to the stage Xi of the shift register 21, and instead of inputting a clock signal to the terminal S4, the terminal S4 is a terminal OUT that is an output terminal of the next stage Xi. It is the structure connected to. Note that the terminal S4 of the final stage Xi has the same configuration and operation as the stages Xi other than the final stage by connecting to the terminal OUT of the dummy stage provided next to the final stage Xi. Can be realized.
- the gate of the transistor (seventh switching element) M11 is connected to the terminal S4, and hence the gate of the transistor M6, the drain is connected to the terminal S1, and the source is connected to the terminal V2.
- the transistor M11 Since the transistor M11 is provided, when the output signal OUTi of the next stage Xi + 1 becomes an active level, the transistor M11 is turned on and the terminal S1 of the own stage Xi is connected to the terminal V2. That is, the terminal OUT of the preceding stage Xi-1 is connected to the terminal V2. Therefore, the node N1 is not unnecessarily charged due to leakage through the transistor M1 after the reset of the node N1 in each stage Xi, and the cause of interference through the unnecessary charge of the capacitor C1 when the transistor M2 is turned on. This eliminates unnecessary push-ups.
- stage Xi in FIG. 8 The operation of the stage Xi in FIG. 8 will be described in detail with reference to FIG.
- the difference from the operation described in FIG. 17 is that the clock signal is not input to the terminal S4 and the terminal S4 is connected to the terminal OUT of the next stage Xi + 1, so that the output signal OUTi + 1 of the next stage becomes an active level. Only when the transistor M6 is turned on. After the active output signal OUT (N + 1) is output from the stage X (N + 1), when the node N1 (N + 1) is reset by the output signal OUT (N + 2) of the stage X (N + 2), the output signal caused by the leak An unnecessary component (interference I1) of OUT (N) charges the node N1 (N + 1) of the stage X (N + 1) due to leakage of the transistor M1 (interference I2).
- the output signal OUTi of the stage Xi of the shift register 1 has the interference preventing action P1 by the output signal OUT (N + 2) of the stage Xi + 2 after the second stage or the signal equivalent to the output signal OUT (N + 2). receive.
- FIG. 14A shows a state in which a large noise n1 is generated in the output signal OUTi due to interference in a shift register that does not include the transistor M11.
- the noise n1 can be suppressed to a small noise n2.
- the shift register 3 is less susceptible to signal interference from the preceding stage and the subsequent stage even in a high temperature state or an initial state where a current easily flows through the transistor and a leakage current is large. Therefore, unnecessary output can be prevented from propagating to the subsequent stage.
- the transistor M11 connected to the terminal OUT of the preceding stage Xi-1 and the terminal OUT of the succeeding stage Xi + 1 in the stage Xi between them the area is increased and the parasitic components of the wiring are arranged. Therefore, it is possible to efficiently place and route the delay due to the delay.
- FIG. 12 shows the configuration of the shift register 4 of this embodiment.
- the shift register 4 has a configuration in which a plurality of stages Xi (i is a natural number) are connected in cascade by the number of gate bus lines GL, and each stage Xi has terminals V 1. V2, S1, S2, S3, S4, OUT, and Z are provided. Since the connection relationship between the stages Xi of the shift register 3 is the same as that of the shift register 22, the description thereof is omitted. Note that the terminal S4 of the final stage Xi has the same configuration and operation as the stages Xi other than the final stage by connecting to the terminal Z of the dummy stage provided next to the final stage Xi. Can be realized.
- FIG. 11 shows the configuration of each stage Xi of the shift register 3.
- the stage Xi of the shift register 4 has a configuration in which a transistor M11 is added to the stage Xi of the shift register 22.
- the gate of the transistor (seventh switching element) M11 is connected to the terminal S4, and hence the gate of the transistor M6, the drain is connected to the terminal S1, and the source is connected to the terminal V2.
- the transistor M11 when the output signal Zi of the next stage Xi + 1 becomes an active level, the transistor M11 is turned on and the terminal S1 of the stage Xi of the own stage is connected to the terminal V2. That is, the terminal Z of the preceding stage Xi-1 is connected to the terminal V2. Therefore, the node N1 is not unnecessarily charged due to leakage through the transistor M1 after the reset of the node N1 in each stage Xi, and the cause of interference through the unnecessary charge of the capacitor C1 when the transistor M2 is turned on. This eliminates unnecessary push-ups.
- stage Xi in FIG. 11 The operation of the stage Xi in FIG. 11 will be described in detail with reference to FIG.
- the output signal Zi of the stage Xi of the shift register 1 has the interference preventing action P1 by the output signal Z (N + 2) of the stage Xi + 2 after the second stage or the signal equivalent to the output signal Z (N + 2). receive.
- the effect of (b) of FIG. 14 is the same as that of Example 3.
- the shift register 4 is less susceptible to signal interference from the preceding stage and the subsequent stage even in a high temperature state or an initial state where a current easily flows through the transistor and a leakage current is large. Therefore, unnecessary output can be prevented from propagating to the subsequent stage.
- the transistor M11 connected to the terminal Z of the preceding stage Xi-1 and the terminal Z of the succeeding stage Xi + 1 in the stage Xi between them the area is increased and the parasitic components of the wiring are arranged. Therefore, it is possible to efficiently place and route the delay due to the delay.
- capacitor C1 and the capacitor C101 for example, as shown in FIG. 22A, a parallel plate capacitor in which an insulator is sandwiched between two opposing conductor plates, or FIG.
- the shift register of the present invention provides A shift register having at least one cascade connection circuit in which stages are cascaded so as to transmit shift pulses, In at least one of the cascade connection circuits, among all the stages of each cascade connection circuit, a continuous stage group consisting of a plurality of successive stages, wherein each of the stages is A first output transistor having a first DC voltage applied to the drain and a source serving as a first output terminal constituting one output terminal of the stage; A first capacitor having one end connected to the gate of the first output transistor; An input gate that receives a shift pulse to the stage of the own stage and passes a potential supplied to one end of the first capacitor during a pulse period of the shift pulse to the stage of the own stage; One end is connected to the other end of the first capacitor, the first DC voltage is applied to the other end, and the period of the active clock pulse is shifted to the stage of the own stage at the conduction cutoff control terminal.
- a third switching element to which a pulse signal delayed in phase is input One end is connected to the first output terminal, the second DC voltage is applied to the other end, the control terminal for conduction interruption is the next stage for the stages other than the final stage of the continuous stage group.
- the shift pulse output from the first output terminal is input, and the last stage of the continuous stage group is more than the shift pulse output from the first output terminal by the stage of the final stage.
- a fifth switching element to which a shift pulse to the above stage is input.
- the first DC voltage is applied to the drain of the first output transistor, and the switched capacitor operation using the first switching element, the second switching element, and the first capacitor is performed.
- the fifth switching element since the fifth switching element is provided, the fifth switching element is turned on when an active level or a voltage close to the active level is input from the preceding stage to the own stage.
- the second DC voltage is applied to the first output terminal of the next stage. Therefore, when the active level is not output from the first output terminal of each stage, the first output terminal can be reliably held at the Low level.
- the shift register is less susceptible to signal interference from the front and rear stages even in a high temperature state and an initial state where a current easily flows through the transistor and a leakage current is large. Therefore, there is an effect that unnecessary output can be prevented from propagating to the subsequent stage. Further, by disposing a fifth switching element connected to the first output terminal of the preceding stage and the first output terminal of the succeeding stage in the stage between them, the area can be increased during circuit layout. There is an effect that it is possible to perform efficient placement and routing while minimizing delay due to parasitic components of the wiring.
- the gate bus line can be driven by a DC power supply by applying a DC voltage to the drain of the first output transistor, and the gate bus line can be driven by inputting a clock signal to the drain of the first output transistor.
- the load of the external level shifter for generating the control signal of the shift register can be greatly reduced.
- the shift register of the present invention provides A shift register having at least one cascade connection circuit in which stages are cascaded so as to transmit shift pulses, In at least one of the cascade connection circuits, among all the stages of each cascade connection circuit, a continuous stage group consisting of a plurality of successive stages, wherein each of the stages is A first output transistor having a first DC voltage applied to the drain and a source serving as a first output terminal constituting one output terminal of the stage; The first clock signal corresponding to each stage in which the period of the active clock pulse does not overlap the period of the shift pulse to the stage of the own stage is input to the drain, and the source of the stage of the stage is the source.
- a second output transistor serving as a second output terminal constituting one output terminal different from the first output terminal;
- a first capacitor having one end connected to the gate of the first output transistor and the gate of the second output transistor;
- An input gate that receives a shift pulse to the stage of the own stage and passes a potential supplied to one end of the first capacitor during a pulse period of the shift pulse to the stage of the own stage;
- a first switching element one end of which is connected to the other end of the first capacitor, the first DC voltage is applied to the other end, and the first clock signal is input to a conduction cutoff control terminal.
- a second switching element to which a shift pulse is input One end is connected to one end of the first capacitor, the second DC voltage is applied to the other end, and a shift pulse is output from the second output terminal to the control terminal for shutting off the current stage from the second output terminal.
- a third switching element to which a pulse signal delayed in phase is input One end is connected to the first output terminal, the second DC voltage is applied to the other end, the control terminal for conduction interruption is the next stage for the stages other than the final stage of the continuous stage group.
- the shift pulse output from the second output terminal is input, and the last stage of the continuous stage group is more than the shift pulse output from the second output terminal by the stage of the final stage.
- Switching elements of Equipped with a continuous stage group One of the stages other than at least the final stage of the continuous stage group is connected to the conduction cutoff control terminal of the fourth switching element, and the second DC voltage is applied to the other end, and the conduction cutoff control terminal.
- a fifth switching element to which a shift pulse to the above stage is input.
- the first DC voltage is applied to the drain of the first output transistor, and the switched capacitor operation using the first switching element, the second switching element, and the first capacitor is performed.
- the second output transistor is used for outputting a shift pulse transmitted between the stages, the size of the second output transistor is greatly reduced as compared with the first output transistor used for outputting to the outside of the shift register. be able to. Accordingly, the drain parasitic capacitance of the second output transistor is sufficiently smaller than the drain parasitic capacitance and source parasitic capacitance of the first output transistor and the first capacitance, and the drain capacitance of the second output transistor is connected to the drain of the second output transistor. Even if one clock signal is input, the effect that the potential at one end of the first capacitor is pushed up by capacitive coupling can be reduced to a negligible level.
- the load driven by the second output terminal is sufficiently smaller than the load driven by the first output terminal, so that the amount of change in the load of the external level shifter that generates the control signal of the shift register can be ignored. There is an effect that it can be made smaller.
- the fifth switching element since the fifth switching element is provided, the fifth switching element is turned on when an active level or a voltage close to the active level is input from the preceding stage to the own stage.
- the second DC voltage is applied to the second output terminal of the next stage. Therefore, when the active level is not output from the second output terminal of each stage, the first output terminal can be reliably held at the Low level.
- the shift register is less susceptible to signal interference from the front and rear stages even in a high temperature state and an initial state where a current easily flows through the transistor and a leakage current is large. Therefore, there is an effect that unnecessary output can be prevented from propagating to the subsequent stage. Further, by arranging the fifth switching element connected to the second output terminal of the preceding stage and the second output terminal of the succeeding stage in the stage between them, the area is increased during circuit layout. There is an effect that it is possible to perform efficient placement and routing while minimizing delay due to parasitic components of the wiring.
- the gate bus line can be driven by a DC power supply by applying a DC voltage to the drain of the first output transistor, and the gate bus line can be driven by inputting a clock signal to the drain of the first output transistor.
- the load of the external level shifter for generating the control signal of the shift register can be greatly reduced.
- the shift register of the present invention provides A shift register having at least one cascade connection circuit in which stages are cascaded so as to transmit shift pulses, In at least one of the cascade connection circuits, among all the stages of each cascade connection circuit, a continuous stage group consisting of a plurality of successive stages, wherein each of the stages is A first output transistor having a first DC voltage applied to the drain and a source serving as a first output terminal constituting one output terminal of the stage; A first capacitor having one end connected to the gate of the first output transistor; An input gate that receives a shift pulse to the stage of the own stage and passes a potential supplied to one end of the first capacitor during a pulse period of the shift pulse to the stage of the own stage; One end is connected to the other end of the first capacitor, the first DC voltage is applied to the other end, and the period of the active clock pulse is shifted to the stage of the own stage at the conduction cutoff control terminal.
- a third switching element to which a pulse signal delayed in phase is input One end is connected to the first output terminal, the second DC voltage is applied to the other end, the control terminal for conduction interruption is the next stage for the stages other than the final stage of the continuous stage group.
- the shift pulse output from the first output terminal is input, and the last stage of the continuous stage group is more than the shift pulse output from the first output terminal by the stage of the final stage.
- the first DC voltage is applied to the drain of the first output transistor, and the switched capacitor operation using the first switching element, the second switching element, and the first capacitor is performed.
- the seventh switching element since the seventh switching element is provided, the seventh switching element is turned on when the signal input to the conduction cutoff control terminal of the fourth switching element becomes an active level. Then, the second DC voltage is applied to the first output terminal of the preceding stage. Accordingly, when one end of the first capacitor of each stage is reset, the first capacitor is not unnecessarily charged due to leakage through the input gate, and the first switching element is turned on. It is possible to avoid unnecessary push-up that causes interference through the unnecessary charge of the first capacitor.
- the shift register is less susceptible to signal interference from the front and rear stages even in a high temperature state and an initial state where a current easily flows through the transistor and a leakage current is large. Therefore, there is an effect that unnecessary output can be prevented from propagating to the subsequent stage. Further, by arranging a seventh switching element connected to the first output terminal of the preceding stage and the first output terminal of the succeeding stage in the stage between them, the area is increased during circuit layout. There is an effect that it is possible to perform efficient placement and routing while minimizing delay due to parasitic components of the wiring.
- the gate bus line can be driven by a DC power supply by applying a DC voltage to the drain of the first output transistor, and the gate bus line can be driven by inputting a clock signal to the drain of the first output transistor.
- the load of the external level shifter for generating the control signal of the shift register can be greatly reduced.
- the shift register of the present invention provides A shift register having at least one cascade connection circuit in which stages are cascaded so as to transmit shift pulses, In at least one of the cascade connection circuits, among all the stages of each cascade connection circuit, a continuous stage group consisting of a plurality of successive stages, wherein each of the stages is A first output transistor having a first DC voltage applied to the drain and a source serving as a first output terminal constituting one output terminal of the stage; The first clock signal corresponding to each stage in which the period of the active clock pulse does not overlap the period of the shift pulse to the stage of the own stage is input to the drain, and the source of the stage of the stage is the source.
- a second output transistor serving as a second output terminal constituting one output terminal different from the first output terminal;
- a first capacitor having one end connected to the gate of the first output transistor and the gate of the second output transistor;
- An input gate that receives a shift pulse to the stage of the own stage and passes a potential supplied to one end of the first capacitor during a pulse period of the shift pulse to the stage of the own stage;
- a first switching element one end of which is connected to the other end of the first capacitor, the first DC voltage is applied to the other end, and the first clock signal is input to a conduction cutoff control terminal.
- a second switching element to which a shift pulse is input One end is connected to one end of the first capacitor, the second DC voltage is applied to the other end, and a shift pulse is output from the second output terminal to the control terminal for shutting off the current stage from the second output terminal.
- a third switching element to which a pulse signal delayed in phase is input One end is connected to the first output terminal, the second DC voltage is applied to the other end, the control terminal for conduction interruption is the next stage for the stage other than the final stage of the continuous stage group.
- a fourth switching element to which a phase delayed pulse signal is input One end is connected to the second output terminal, the second DC voltage is applied to the other end, and the conduction cutoff control terminal is connected to the conduction cutoff control terminal of the fourth switching element.
- Switching elements of A shift pulse input to the own stage is input to one end, the second DC voltage is applied to the other end, and the conduction cutoff control terminal is connected to the conduction cutoff control terminal of the fourth switching element.
- the first DC voltage is applied to the drain of the first output transistor, and the switched capacitor operation using the first switching element, the second switching element, and the first capacitor is performed.
- the second output transistor is used for outputting a shift pulse transmitted between the stages, the size of the second output transistor is greatly reduced as compared with the first output transistor used for outputting to the outside of the shift register. be able to. Accordingly, the drain parasitic capacitance of the second output transistor is sufficiently smaller than the drain parasitic capacitance and source parasitic capacitance of the first output transistor and the first capacitance, and the drain capacitance of the second output transistor is connected to the drain of the second output transistor. Even if one clock signal is input, the effect that the potential at one end of the first capacitor is pushed up by capacitive coupling can be reduced to a negligible level.
- the load driven by the second output terminal is sufficiently smaller than the load driven by the first output terminal, so that the amount of change in the load of the external level shifter that generates the control signal of the shift register can be ignored. There is an effect that it can be made smaller.
- the seventh switching element when the signal input to the conduction cutoff control terminal of the fourth switching element and the sixth switching element becomes an active level, the seventh switching element is provided.
- the element is turned on, and the second DC voltage is applied to the second output terminal of the preceding stage. Accordingly, when one end of the first capacitor of each stage is reset, the first capacitor is not unnecessarily charged due to leakage through the input gate, and the first switching element is turned on. It is possible to avoid unnecessary push-up that causes interference through the unnecessary charge of the first capacitor.
- the shift register is less susceptible to signal interference from the front and rear stages even in a high temperature state and an initial state where a current easily flows through the transistor and a leakage current is large. Therefore, there is an effect that unnecessary output can be prevented from propagating to the subsequent stage. Further, by disposing a seventh switching element connected to the second output terminal of the preceding stage and the second output terminal of the succeeding stage in the stage between them, the area can be increased during circuit layout. There is an effect that it is possible to perform efficient placement and routing while minimizing delay due to parasitic components of the wiring.
- the gate bus line can be driven by a DC power supply by applying a DC voltage to the drain of the first output transistor, and the gate bus line can be driven by inputting a clock signal to the drain of the first output transistor.
- the load of the external level shifter for generating the control signal of the shift register can be greatly reduced.
- the shift register of the present invention provides The first clock signal is in an opposite phase relationship between the odd-numbered stage and the even-numbered stage in the continuous stage group,
- the shift pulse input to the first stage in the continuous stage group is out of phase with the first clock signal input to the odd-numbered stage by a half period. It is said.
- the shift register of the present invention provides The input gate has one end to which the first DC voltage is applied, the other end is connected to one end of the first capacitor, and a shift pulse to the stage at its own stage is input to a conduction cutoff control terminal. It is an eighth switching element.
- the shift pulse to the stage of its own stage is input to the control terminal for shutting off the conduction of the eighth switching element, the leakage to one end of the first capacitor through the input gate is originally performed. A reduced state can be achieved. As a result, the effect of preventing unnecessary output from being propagated to the subsequent stage can be enhanced.
- the shift register of the present invention provides The first output transistor, the first switching element, the second switching element, the third switching element, the fourth switching element, and the fifth switching element are TFTs. It is said.
- the TFT having a large leakage current is used as the switching element, in particular, the element size must be made very large to compensate for the large ON resistance, it is unnecessary due to the leakage. There is an effect that the profit that can be enjoyed by not propagating a simple output to the subsequent stage is great.
- TFT characteristics vary widely, and the leakage current tends to vary greatly between TFTs on the same circuit. Therefore, from the viewpoint that countermeasures against leakage are necessary, by preventing unnecessary output due to leakage from propagating to the subsequent stage, There is an effect that the profit that can be enjoyed is large.
- the shift register of the present invention provides The first output transistor, the first switching element, the second switching element, the third switching element, the fourth switching element, the fifth switching element, and the sixth switching element Is a TFT.
- the TFT having a large leakage current is used as the switching element, in particular, the element size must be made very large to compensate for the large ON resistance, it is unnecessary due to the leakage. There is an effect that the profit that can be enjoyed by not propagating a simple output to the subsequent stage is great.
- TFT characteristics vary widely, and the leakage current tends to vary greatly between TFTs on the same circuit. Therefore, from the viewpoint that countermeasures against leakage are necessary, by preventing unnecessary output due to leakage from propagating to the subsequent stage, There is an effect that the profit that can be enjoyed is large.
- the shift register of the present invention provides The second output transistor, the first switching element, the second switching element, the third switching element, the fourth switching element, and the seventh switching element are TFTs. It is said.
- the TFT having a large leakage current is used as the switching element, in particular, the element size must be made very large to compensate for the large ON resistance, it is unnecessary due to the leakage. There is an effect that the profit that can be enjoyed by not propagating a simple output to the subsequent stage is great.
- TFT characteristics vary widely, and the leakage current tends to vary greatly between TFTs on the same circuit. Therefore, from the viewpoint that countermeasures against leakage are necessary, by preventing unnecessary output due to leakage from propagating to the subsequent stage, There is an effect that the profit that can be enjoyed is large.
- the shift register of the present invention provides The second output transistor, the first switching element, the second switching element, the third switching element, the fourth switching element, the sixth switching element, and the seventh switching element Is a TFT.
- the TFT having a large leakage current is used as the switching element, in particular, the element size must be made very large to compensate for the large ON resistance, it is unnecessary due to the leakage. There is an effect that the profit that can be enjoyed by not propagating a simple output to the subsequent stage is great.
- TFT characteristics vary widely, and the leakage current tends to vary greatly between TFTs on the same circuit. Therefore, from the viewpoint that countermeasures against leakage are necessary, by preventing unnecessary output due to leakage from propagating to the subsequent stage, There is an effect that the profit that can be enjoyed is large.
- the eighth switching element is a TFT.
- the TFT having a large leakage current is used as the switching element, in particular, the element size must be made very large to compensate for the large ON resistance, it is unnecessary due to the leakage. There is an effect that the profit that can be enjoyed by not propagating a simple output to the subsequent stage is great.
- TFT characteristics vary widely, and the leakage current tends to vary greatly between TFTs on the same circuit. Therefore, from the viewpoint that countermeasures against leakage are necessary, by preventing unnecessary output due to leakage from propagating to the subsequent stage, There is an effect that the profit that can be enjoyed is large.
- the display device of the present invention provides The shift register is provided.
- the present invention can be suitably used for an active matrix display device.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Shift Register Type Memory (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
シフトパルスの伝達を行うようにステージが縦続接続されてなる縦続接続回路を1つ以上備えたシフトレジスタであって、
上記縦続接続回路の少なくとも1つにおいて、各上記縦続接続回路の全ステージの中に、連続する複数の上記ステージからなる連続ステージ群であって、各上記ステージが、
ドレインに第1の直流電圧が印加されるとともにソースが自段の上記ステージの一出力端子を構成する第1の出力端子となる第1の出力トランジスタと、
上記第1の出力トランジスタのゲートに一端が接続された第1の容量と、
自段の上記ステージへのシフトパルスが入力されて、自段の上記ステージへのシフトパルスのパルス期間に上記第1の容量の一端に供給する電位を通過させる入力ゲートと、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧が印加され、導通遮断の制御端子にアクティブなクロックパルスの期間が自段の上記ステージへのシフトパルスの期間と重ならない上記ステージごとに対応した第1のクロック信号が入力される第1のスイッチング素子と、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧よりも低い第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第2のスイッチング素子と、
一端が上記第1の容量の一端に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、自段の上記ステージが上記第1の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第3のスイッチング素子と、
一端が上記第1の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、上記連続ステージ群の最終段以外の上記ステージについては次段の上記ステージが上記第1の出力端子から出力するシフトパルスが入力されるとともに、上記連続ステージ群の最終段の上記ステージについては上記最終段の上記ステージが上記第1の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第4のスイッチング素子と、
を備えている、連続ステージ群を備えており、
上記連続ステージ群の少なくとも最終段以外の上記ステージは、一端が上記第4のスイッチング素子の導通遮断の制御端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第5のスイッチング素子を備えていることを特徴としている。
シフトパルスの伝達を行うようにステージが縦続接続されてなる縦続接続回路を1つ以上備えたシフトレジスタであって、
上記縦続接続回路の少なくとも1つにおいて、各上記縦続接続回路の全ステージの中に、連続する複数の上記ステージからなる連続ステージ群であって、各上記ステージが、
ドレインに第1の直流電圧が印加されるとともにソースが自段の上記ステージの一出力端子を構成する第1の出力端子となる第1の出力トランジスタと、
ドレインに、アクティブなクロックパルスの期間が自段の上記ステージへのシフトパルスの期間と重ならない上記ステージごとに対応した第1のクロック信号が入力されるとともに、ソースが自段の上記ステージの上記第1の出力端子とは異なる一出力端子を構成する第2の出力端子となる第2の出力トランジスタと、
上記第1の出力トランジスタのゲートおよび上記第2の出力トランジスタのゲートに一端が接続された第1の容量と、
自段の上記ステージへのシフトパルスが入力されて、自段の上記ステージへのシフトパルスのパルス期間に上記第1の容量の一端に供給する電位を通過させる入力ゲートと、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧が印加され、導通遮断の制御端子に上記第1のクロック信号が入力される第1のスイッチング素子と、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧よりも低い第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第2のスイッチング素子と、
一端が上記第1の容量の一端に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、自段の上記ステージが上記第2の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第3のスイッチング素子と、
一端が上記第1の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、上記連続ステージ群の最終段以外の上記ステージについては次段の上記ステージが上記第2の出力端子から出力するシフトパルスが入力されるとともに、上記連続ステージ群の最終段の上記ステージについては上記最終段の上記ステージが上記第2の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第4のスイッチング素子と、
一端が上記第2の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子が上記第4のスイッチング素子の導通遮断の制御端子に接続されている第6のスイッチング素子と、
を備えている、連続ステージ群を備えており、
上記連続ステージ群の少なくとも最終段以外の上記ステージは、一端が上記第4のスイッチング素子の導通遮断の制御端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第5のスイッチング素子を備えていることを特徴としている。
シフトパルスの伝達を行うようにステージが縦続接続されてなる縦続接続回路を1つ以上備えたシフトレジスタであって、
上記縦続接続回路の少なくとも1つにおいて、各上記縦続接続回路の全ステージの中に、連続する複数の上記ステージからなる連続ステージ群であって、各上記ステージが、
ドレインに第1の直流電圧が印加されるとともにソースが自段の上記ステージの一出力端子を構成する第1の出力端子となる第1の出力トランジスタと、
上記第1の出力トランジスタのゲートに一端が接続された第1の容量と、
自段の上記ステージへのシフトパルスが入力されて、自段の上記ステージへのシフトパルスのパルス期間に上記第1の容量の一端に供給する電位を通過させる入力ゲートと、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧が印加され、導通遮断の制御端子にアクティブなクロックパルスの期間が自段の上記ステージへのシフトパルスの期間と重ならない上記ステージごとに対応した第1のクロック信号が入力される第1のスイッチング素子と、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧よりも低い第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第2のスイッチング素子と、
一端が上記第1の容量の一端に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、自段の上記ステージが上記第1の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第3のスイッチング素子と、
一端が上記第1の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、上記連続ステージ群の最終段以外の上記ステージについては次段の上記ステージが上記第1の出力端子から出力するシフトパルスが入力されるとともに、上記連続ステージ群の最終段の上記ステージについては上記最終段の上記ステージが上記第1の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第4のスイッチング素子と、
一端に自段に入力されるシフトパルスが入力され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子が上記第4のスイッチング素子の導通遮断の制御端子に接続されている第7のスイッチング素子と、
を備えている、連続ステージ群を備えていることを特徴としている。
シフトパルスの伝達を行うようにステージが縦続接続されてなる縦続接続回路を1つ以上備えたシフトレジスタであって、
上記縦続接続回路の少なくとも1つにおいて、各上記縦続接続回路の全ステージの中に、連続する複数の上記ステージからなる連続ステージ群であって、各上記ステージが、
ドレインに第1の直流電圧が印加されるとともにソースが自段の上記ステージの一出力端子を構成する第1の出力端子となる第1の出力トランジスタと、
ドレインに、アクティブなクロックパルスの期間が自段の上記ステージへのシフトパルスの期間と重ならない上記ステージごとに対応した第1のクロック信号が入力されるとともに、ソースが自段の上記ステージの上記第1の出力端子とは異なる一出力端子を構成する第2の出力端子となる第2の出力トランジスタと、
上記第1の出力トランジスタのゲートおよび上記第2の出力トランジスタのゲートに一端が接続された第1の容量と、
自段の上記ステージへのシフトパルスが入力されて、自段の上記ステージへのシフトパルスのパルス期間に上記第1の容量の一端に供給する電位を通過させる入力ゲートと、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧が印加され、導通遮断の制御端子に上記第1のクロック信号が入力される第1のスイッチング素子と、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧よりも低い第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第2のスイッチング素子と、
一端が上記第1の容量の一端に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、自段の上記ステージが上記第2の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第3のスイッチング素子と、
一端が上記第1の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、上記連続ステージ群の最終段以外の上記ステージについては次段の上記ステージが上記第2の出力端子から出力するシフトパルスが入力されるとともに、上記連続ステージ群の最終段の上記ステージについては上記最終段の上記ステージが上記第2の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第4のスイッチング素子と、
一端が上記第2の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子が上記第4のスイッチング素子の導通遮断の制御端子に接続されている第6のスイッチング素子と、
一端に自段に入力されるシフトパルスが入力され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子が上記第4のスイッチング素子の導通遮断の制御端子に接続されている第7のスイッチング素子と、
を備えている、連続ステージ群を備えていることを特徴としている。
シフトパルスの伝達を行うようにステージが縦続接続されてなる縦続接続回路を1つ以上備えたシフトレジスタであって、
上記縦続接続回路の少なくとも1つにおいて、各上記縦続接続回路の全ステージの中に、連続する複数の上記ステージからなる連続ステージ群であって、各上記ステージが、
ドレインに第1の直流電圧が印加されるとともにソースが自段の上記ステージの一出力端子を構成する第1の出力端子となる第1の出力トランジスタと、
上記第1の出力トランジスタのゲートに一端が接続された第1の容量と、
自段の上記ステージへのシフトパルスが入力されて、自段の上記ステージへのシフトパルスのパルス期間に上記第1の容量の一端に供給する電位を通過させる入力ゲートと、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧が印加され、導通遮断の制御端子にアクティブなクロックパルスの期間が自段の上記ステージへのシフトパルスの期間と重ならない上記ステージごとに対応した第1のクロック信号が入力される第1のスイッチング素子と、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧よりも低い第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第2のスイッチング素子と、
一端が上記第1の容量の一端に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、自段の上記ステージが上記第1の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第3のスイッチング素子と、
一端が上記第1の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、上記連続ステージ群の最終段以外の上記ステージについては次段の上記ステージが上記第1の出力端子から出力するシフトパルスが入力されるとともに、上記連続ステージ群の最終段の上記ステージについては上記最終段の上記ステージが上記第1の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第4のスイッチング素子と、
を備えている、連続ステージ群を備えており、
上記連続ステージ群の少なくとも最終段以外の上記ステージは、一端が上記第4のスイッチング素子の導通遮断の制御端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第5のスイッチング素子を備えている。
V(N1)=(VDD-Vth-VSS)+(VDD-Vth)
=2×VDD-(VSS+2×Vth)
となる。
シフトパルスの伝達を行うようにステージが縦続接続されてなる縦続接続回路を1つ以上備えたシフトレジスタであって、
上記縦続接続回路の少なくとも1つにおいて、各上記縦続接続回路の全ステージの中に、連続する複数の上記ステージからなる連続ステージ群であって、各上記ステージが、
ドレインに第1の直流電圧が印加されるとともにソースが自段の上記ステージの一出力端子を構成する第1の出力端子となる第1の出力トランジスタと、
上記第1の出力トランジスタのゲートに一端が接続された第1の容量と、
自段の上記ステージへのシフトパルスが入力されて、自段の上記ステージへのシフトパルスのパルス期間に上記第1の容量の一端に供給する電位を通過させる入力ゲートと、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧が印加され、導通遮断の制御端子にアクティブなクロックパルスの期間が自段の上記ステージへのシフトパルスの期間と重ならない上記ステージごとに対応した第1のクロック信号が入力される第1のスイッチング素子と、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧よりも低い第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第2のスイッチング素子と、
一端が上記第1の容量の一端に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、自段の上記ステージが上記第1の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第3のスイッチング素子と、
一端が上記第1の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、上記連続ステージ群の最終段以外の上記ステージについては次段の上記ステージが上記第1の出力端子から出力するシフトパルスが入力されるとともに、上記連続ステージ群の最終段の上記ステージについては上記最終段の上記ステージが上記第1の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第4のスイッチング素子と、
を備えている、連続ステージ群を備えており、
上記連続ステージ群の少なくとも最終段以外の上記ステージは、一端が上記第4のスイッチング素子の導通遮断の制御端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第5のスイッチング素子を備えていることを特徴としている。
シフトパルスの伝達を行うようにステージが縦続接続されてなる縦続接続回路を1つ以上備えたシフトレジスタであって、
上記縦続接続回路の少なくとも1つにおいて、各上記縦続接続回路の全ステージの中に、連続する複数の上記ステージからなる連続ステージ群であって、各上記ステージが、
ドレインに第1の直流電圧が印加されるとともにソースが自段の上記ステージの一出力端子を構成する第1の出力端子となる第1の出力トランジスタと、
ドレインに、アクティブなクロックパルスの期間が自段の上記ステージへのシフトパルスの期間と重ならない上記ステージごとに対応した第1のクロック信号が入力されるとともに、ソースが自段の上記ステージの上記第1の出力端子とは異なる一出力端子を構成する第2の出力端子となる第2の出力トランジスタと、
上記第1の出力トランジスタのゲートおよび上記第2の出力トランジスタのゲートに一端が接続された第1の容量と、
自段の上記ステージへのシフトパルスが入力されて、自段の上記ステージへのシフトパルスのパルス期間に上記第1の容量の一端に供給する電位を通過させる入力ゲートと、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧が印加され、導通遮断の制御端子に上記第1のクロック信号が入力される第1のスイッチング素子と、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧よりも低い第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第2のスイッチング素子と、
一端が上記第1の容量の一端に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、自段の上記ステージが上記第2の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第3のスイッチング素子と、
一端が上記第1の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、上記連続ステージ群の最終段以外の上記ステージについては次段の上記ステージが上記第2の出力端子から出力するシフトパルスが入力されるとともに、上記連続ステージ群の最終段の上記ステージについては上記最終段の上記ステージが上記第2の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第4のスイッチング素子と、
一端が上記第2の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子が上記第4のスイッチング素子の導通遮断の制御端子に接続されている第6のスイッチング素子と、
を備えている、連続ステージ群を備えており、
上記連続ステージ群の少なくとも最終段以外の上記ステージは、一端が上記第4のスイッチング素子の導通遮断の制御端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第5のスイッチング素子を備えていることを特徴としている。
シフトパルスの伝達を行うようにステージが縦続接続されてなる縦続接続回路を1つ以上備えたシフトレジスタであって、
上記縦続接続回路の少なくとも1つにおいて、各上記縦続接続回路の全ステージの中に、連続する複数の上記ステージからなる連続ステージ群であって、各上記ステージが、
ドレインに第1の直流電圧が印加されるとともにソースが自段の上記ステージの一出力端子を構成する第1の出力端子となる第1の出力トランジスタと、
上記第1の出力トランジスタのゲートに一端が接続された第1の容量と、
自段の上記ステージへのシフトパルスが入力されて、自段の上記ステージへのシフトパルスのパルス期間に上記第1の容量の一端に供給する電位を通過させる入力ゲートと、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧が印加され、導通遮断の制御端子にアクティブなクロックパルスの期間が自段の上記ステージへのシフトパルスの期間と重ならない上記ステージごとに対応した第1のクロック信号が入力される第1のスイッチング素子と、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧よりも低い第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第2のスイッチング素子と、
一端が上記第1の容量の一端に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、自段の上記ステージが上記第1の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第3のスイッチング素子と、
一端が上記第1の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、上記連続ステージ群の最終段以外の上記ステージについては次段の上記ステージが上記第1の出力端子から出力するシフトパルスが入力されるとともに、上記連続ステージ群の最終段の上記ステージについては上記最終段の上記ステージが上記第1の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第4のスイッチング素子と、
一端に自段に入力されるシフトパルスが入力され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子が上記第4のスイッチング素子の導通遮断の制御端子に接続されている第7のスイッチング素子と、
を備えている、連続ステージ群を備えていることを特徴としている。
シフトパルスの伝達を行うようにステージが縦続接続されてなる縦続接続回路を1つ以上備えたシフトレジスタであって、
上記縦続接続回路の少なくとも1つにおいて、各上記縦続接続回路の全ステージの中に、連続する複数の上記ステージからなる連続ステージ群であって、各上記ステージが、
ドレインに第1の直流電圧が印加されるとともにソースが自段の上記ステージの一出力端子を構成する第1の出力端子となる第1の出力トランジスタと、
ドレインに、アクティブなクロックパルスの期間が自段の上記ステージへのシフトパルスの期間と重ならない上記ステージごとに対応した第1のクロック信号が入力されるとともに、ソースが自段の上記ステージの上記第1の出力端子とは異なる一出力端子を構成する第2の出力端子となる第2の出力トランジスタと、
上記第1の出力トランジスタのゲートおよび上記第2の出力トランジスタのゲートに一端が接続された第1の容量と、
自段の上記ステージへのシフトパルスが入力されて、自段の上記ステージへのシフトパルスのパルス期間に上記第1の容量の一端に供給する電位を通過させる入力ゲートと、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧が印加され、導通遮断の制御端子に上記第1のクロック信号が入力される第1のスイッチング素子と、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧よりも低い第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第2のスイッチング素子と、
一端が上記第1の容量の一端に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、自段の上記ステージが上記第2の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第3のスイッチング素子と、
一端が上記第1の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、上記連続ステージ群の最終段以外の上記ステージについては次段の上記ステージが上記第2の出力端子から出力するシフトパルスが入力されるとともに、上記連続ステージ群の最終段の上記ステージについては上記最終段の上記ステージが上記第2の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第4のスイッチング素子と、
一端が上記第2の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子が上記第4のスイッチング素子の導通遮断の制御端子に接続されている第6のスイッチング素子と、
一端に自段に入力されるシフトパルスが入力され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子が上記第4のスイッチング素子の導通遮断の制御端子に接続されている第7のスイッチング素子と、
を備えている、連続ステージ群を備えていることを特徴としている。
上記第1のクロック信号は、上記連続ステージ群における、奇数番目の上記ステージと偶数番目の上記ステージとで互いに逆相の関係にあり、
上記連続ステージ群における1番目の上記ステージに入力されるシフトパルスは、上記奇数番目の上記ステージに入力される上記第1のクロック信号とは2分の1周期だけ位相がずれていることを特徴としている。
上記入力ゲートは、一端に上記第1の直流電圧が印加され、他端が上記第1の容量の一端に接続され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第8のスイッチング素子であることを特徴としている。
上記第1の出力トランジスタ、上記第1のスイッチング素子、上記第2のスイッチング素子、上記第3のスイッチング素子、上記第4のスイッチング素子、および、上記第5のスイッチング素子はTFTであることを特徴としている。
上記第1の出力トランジスタ、上記第1のスイッチング素子、上記第2のスイッチング素子、上記第3のスイッチング素子、上記第4のスイッチング素子、上記第5のスイッチング素子、および、上記第6のスイッチング素子はTFTであることを特徴としている。
上記第2の出力トランジスタ、上記第1のスイッチング素子、上記第2のスイッチング素子、上記第3のスイッチング素子、上記第4のスイッチング素子、および、上記第7のスイッチング素子はTFTであることを特徴としている。
上記第2の出力トランジスタ、上記第1のスイッチング素子、上記第2のスイッチング素子、上記第3のスイッチング素子、上記第4のスイッチング素子、上記第6のスイッチング素子、および、上記第7のスイッチング素子はTFTであることを特徴としている。
上記第8のスイッチング素子はTFTであることを特徴としている。
前記シフトレジスタを備えていることを特徴としている。
M1 トランジスタ(入力ゲート、第8のスイッチング素子)
M2 トランジスタ(第1のスイッチング素子)
M3 トランジスタ(第2のスイッチング素子)
M4 トランジスタ(第3のスイッチング素子)
M5 トランジスタ(第1の出力トランジスタ)
M6 トランジスタ(第4のスイッチング素子)
M7 トランジスタ(第2の出力トランジスタ)
M8 トランジスタ(第6のスイッチング素子)
M10 トランジスタ(第5のスイッチング素子)
M11 トランジスタ(第7のスイッチング素子)
OUT 端子(一出力端子、第1の出力端子)
Z 端子(一出力端子、第2の出力端子)
VDD 電源電圧(第1の直流電圧)
VSS 電源電圧(第2の直流電圧)
Xi ステージ
CLK1 クロック信号(奇数番目のステージの第1のクロック信号)
CLK2 クロック信号(偶数番目のステージの第1のクロック信号)
Claims (12)
- シフトパルスの伝達を行うようにステージが縦続接続されてなる縦続接続回路を1つ以上備えたシフトレジスタであって、
上記縦続接続回路の少なくとも1つにおいて、各上記縦続接続回路の全ステージの中に、連続する複数の上記ステージからなる連続ステージ群であって、各上記ステージが、
ドレインに第1の直流電圧が印加されるとともにソースが自段の上記ステージの一出力端子を構成する第1の出力端子となる第1の出力トランジスタと、
上記第1の出力トランジスタのゲートに一端が接続された第1の容量と、
自段の上記ステージへのシフトパルスが入力されて、自段の上記ステージへのシフトパルスのパルス期間に上記第1の容量の一端に供給する電位を通過させる入力ゲートと、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧が印加され、導通遮断の制御端子にアクティブなクロックパルスの期間が自段の上記ステージへのシフトパルスの期間と重ならない上記ステージごとに対応した第1のクロック信号が入力される第1のスイッチング素子と、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧よりも低い第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第2のスイッチング素子と、
一端が上記第1の容量の一端に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、自段の上記ステージが上記第1の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第3のスイッチング素子と、
一端が上記第1の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、上記連続ステージ群の最終段以外の上記ステージについては次段の上記ステージが上記第1の出力端子から出力するシフトパルスが入力されるとともに、上記連続ステージ群の最終段の上記ステージについては上記最終段の上記ステージが上記第1の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第4のスイッチング素子と、
を備えている、連続ステージ群を備えており、
上記連続ステージ群の少なくとも最終段以外の上記ステージは、一端が上記第4のスイッチング素子の導通遮断の制御端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第5のスイッチング素子を備えていることを特徴とするシフトレジスタ。 - シフトパルスの伝達を行うようにステージが縦続接続されてなる縦続接続回路を1つ以上備えたシフトレジスタであって、
上記縦続接続回路の少なくとも1つにおいて、各上記縦続接続回路の全ステージの中に、連続する複数の上記ステージからなる連続ステージ群であって、各上記ステージが、
ドレインに第1の直流電圧が印加されるとともにソースが自段の上記ステージの一出力端子を構成する第1の出力端子となる第1の出力トランジスタと、
ドレインに、アクティブなクロックパルスの期間が自段の上記ステージへのシフトパルスの期間と重ならない上記ステージごとに対応した第1のクロック信号が入力されるとともに、ソースが自段の上記ステージの上記第1の出力端子とは異なる一出力端子を構成する第2の出力端子となる第2の出力トランジスタと、
上記第1の出力トランジスタのゲートおよび上記第2の出力トランジスタのゲートに一端が接続された第1の容量と、
自段の上記ステージへのシフトパルスが入力されて、自段の上記ステージへのシフトパルスのパルス期間に上記第1の容量の一端に供給する電位を通過させる入力ゲートと、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧が印加され、導通遮断の制御端子に上記第1のクロック信号が入力される第1のスイッチング素子と、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧よりも低い第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第2のスイッチング素子と、
一端が上記第1の容量の一端に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、自段の上記ステージが上記第2の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第3のスイッチング素子と、
一端が上記第1の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、上記連続ステージ群の最終段以外の上記ステージについては次段の上記ステージが上記第2の出力端子から出力するシフトパルスが入力されるとともに、上記連続ステージ群の最終段の上記ステージについては上記最終段の上記ステージが上記第2の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第4のスイッチング素子と、
一端が上記第2の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子が上記第4のスイッチング素子の導通遮断の制御端子に接続されている第6のスイッチング素子と、
を備えている、連続ステージ群を備えており、
上記連続ステージ群の少なくとも最終段以外の上記ステージは、一端が上記第4のスイッチング素子の導通遮断の制御端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第5のスイッチング素子を備えていることを特徴とするシフトレジスタ。 - シフトパルスの伝達を行うようにステージが縦続接続されてなる縦続接続回路を1つ以上備えたシフトレジスタであって、
上記縦続接続回路の少なくとも1つにおいて、各上記縦続接続回路の全ステージの中に、連続する複数の上記ステージからなる連続ステージ群であって、各上記ステージが、
ドレインに第1の直流電圧が印加されるとともにソースが自段の上記ステージの一出力端子を構成する第1の出力端子となる第1の出力トランジスタと、
上記第1の出力トランジスタのゲートに一端が接続された第1の容量と、
自段の上記ステージへのシフトパルスが入力されて、自段の上記ステージへのシフトパルスのパルス期間に上記第1の容量の一端に供給する電位を通過させる入力ゲートと、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧が印加され、導通遮断の制御端子にアクティブなクロックパルスの期間が自段の上記ステージへのシフトパルスの期間と重ならない上記ステージごとに対応した第1のクロック信号が入力される第1のスイッチング素子と、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧よりも低い第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第2のスイッチング素子と、
一端が上記第1の容量の一端に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、自段の上記ステージが上記第1の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第3のスイッチング素子と、
一端が上記第1の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、上記連続ステージ群の最終段以外の上記ステージについては次段の上記ステージが上記第1の出力端子から出力するシフトパルスが入力されるとともに、上記連続ステージ群の最終段の上記ステージについては上記最終段の上記ステージが上記第1の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第4のスイッチング素子と、
一端に自段に入力されるシフトパルスが入力され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子が上記第4のスイッチング素子の導通遮断の制御端子に接続されている第7のスイッチング素子と、
を備えている、連続ステージ群を備えていることを特徴とするシフトレジスタ。 - シフトパルスの伝達を行うようにステージが縦続接続されてなる縦続接続回路を1つ以上備えたシフトレジスタであって、
上記縦続接続回路の少なくとも1つにおいて、各上記縦続接続回路の全ステージの中に、連続する複数の上記ステージからなる連続ステージ群であって、各上記ステージが、
ドレインに第1の直流電圧が印加されるとともにソースが自段の上記ステージの一出力端子を構成する第1の出力端子となる第1の出力トランジスタと、
ドレインに、アクティブなクロックパルスの期間が自段の上記ステージへのシフトパルスの期間と重ならない上記ステージごとに対応した第1のクロック信号が入力されるとともに、ソースが自段の上記ステージの上記第1の出力端子とは異なる一出力端子を構成する第2の出力端子となる第2の出力トランジスタと、
上記第1の出力トランジスタのゲートおよび上記第2の出力トランジスタのゲートに一端が接続された第1の容量と、
自段の上記ステージへのシフトパルスが入力されて、自段の上記ステージへのシフトパルスのパルス期間に上記第1の容量の一端に供給する電位を通過させる入力ゲートと、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧が印加され、導通遮断の制御端子に上記第1のクロック信号が入力される第1のスイッチング素子と、
一端が上記第1の容量の他端に接続されており、他端に上記第1の直流電圧よりも低い第2の直流電圧が印加され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第2のスイッチング素子と、
一端が上記第1の容量の一端に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、自段の上記ステージが上記第2の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第3のスイッチング素子と、
一端が上記第1の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子に、上記連続ステージ群の最終段以外の上記ステージについては次段の上記ステージが上記第2の出力端子から出力するシフトパルスが入力されるとともに、上記連続ステージ群の最終段の上記ステージについては上記最終段の上記ステージが上記第2の出力端子から出力するシフトパルスよりも位相の遅れたパルス信号が入力される第4のスイッチング素子と、
一端が上記第2の出力端子に接続され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子が上記第4のスイッチング素子の導通遮断の制御端子に接続されている第6のスイッチング素子と、
一端に自段に入力されるシフトパルスが入力され、他端に上記第2の直流電圧が印加され、導通遮断の制御端子が上記第4のスイッチング素子の導通遮断の制御端子に接続されている第7のスイッチング素子と、
を備えている、連続ステージ群を備えていることを特徴とするシフトレジスタ。 - 上記第1のクロック信号は、上記連続ステージ群における、奇数番目の上記ステージと偶数番目の上記ステージとで互いに逆相の関係にあり、
上記連続ステージ群における1番目の上記ステージに入力されるシフトパルスは、上記奇数番目の上記ステージに入力される上記第1のクロック信号とは2分の1周期だけ位相がずれていることを特徴とする請求項1から4までのいずれか1項に記載のシフトレジスタ。 - 上記入力ゲートは、一端に上記第1の直流電圧が印加され、他端が上記第1の容量の一端に接続され、導通遮断の制御端子に自段の上記ステージへのシフトパルスが入力される第8のスイッチング素子であることを特徴とする請求項1から5までのいずれか1項に記載のシフトレジスタ。
- 上記第1の出力トランジスタ、上記第1のスイッチング素子、上記第2のスイッチング素子、上記第3のスイッチング素子、上記第4のスイッチング素子、および、上記第5のスイッチング素子はTFTであることを特徴とする請求項1に記載のシフトレジスタ。
- 上記第1の出力トランジスタ、上記第2の出力トランジスタ、上記第1のスイッチング素子、上記第2のスイッチング素子、上記第3のスイッチング素子、上記第4のスイッチング素子、上記第5のスイッチング素子、および、上記第6のスイッチング素子はTFTであることを特徴とする請求項2に記載のシフトレジスタ。
- 上記第1の出力トランジスタ、上記第1のスイッチング素子、上記第2のスイッチング素子、上記第3のスイッチング素子、上記第4のスイッチング素子、および、上記第7のスイッチング素子はTFTであることを特徴とする請求項3に記載のシフトレジスタ。
- 上記第1の出力トランジスタ、上記第2の出力トランジスタ、上記第1のスイッチング素子、上記第2のスイッチング素子、上記第3のスイッチング素子、上記第4のスイッチング素子、上記第6のスイッチング素子、および、上記第7のスイッチング素子はTFTであることを特徴とする請求項4に記載のシフトレジスタ。
- 上記第8のスイッチング素子はTFTであることを特徴とする請求項6に記載のシフトレジスタ。
- 請求項1から11までのいずれか1項に記載のシフトレジスタを備えていることを特徴とする表示装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011519485A JP5405570B2 (ja) | 2009-06-15 | 2010-02-24 | シフトレジスタおよび表示装置 |
US13/376,401 US8422622B2 (en) | 2009-06-15 | 2010-02-24 | Shift register and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-142554 | 2009-06-15 | ||
JP2009142554 | 2009-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010146743A1 true WO2010146743A1 (ja) | 2010-12-23 |
Family
ID=43356080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/001259 WO2010146743A1 (ja) | 2009-06-15 | 2010-02-24 | シフトレジスタおよび表示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8422622B2 (ja) |
JP (1) | JP5405570B2 (ja) |
WO (1) | WO2010146743A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2010146738A1 (ja) * | 2009-06-15 | 2012-11-29 | シャープ株式会社 | シフトレジスタおよび表示装置 |
WO2017063234A1 (zh) * | 2015-10-14 | 2017-04-20 | 深圳市华星光电技术有限公司 | 阵列栅极驱动器电路、显示面板及显示装置 |
CN107863057A (zh) * | 2017-10-31 | 2018-03-30 | 上海天马微电子有限公司 | 一种移位寄存器、其驱动方法、驱动控制电路及相关装置 |
CN110070839A (zh) * | 2019-04-23 | 2019-07-30 | 深圳市华星光电半导体显示技术有限公司 | Goa电路及显示面板 |
US11749225B2 (en) | 2021-11-12 | 2023-09-05 | Sharp Display Technology Corporation | Scanning signal line drive circuit and display device provided with same |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010097986A1 (ja) * | 2009-02-25 | 2010-09-02 | シャープ株式会社 | シフトレジスタおよび表示装置 |
WO2011092924A1 (ja) * | 2010-01-29 | 2011-08-04 | シャープ株式会社 | シフトレジスタおよび表示装置 |
WO2011108345A1 (en) * | 2010-03-02 | 2011-09-09 | Semiconductor Energy Laboratory Co., Ltd. | Pulse signal output circuit and shift register |
DE112011106202B4 (de) | 2010-03-02 | 2023-10-05 | Semiconductor Energy Laboratory Co., Ltd. | Impulssignal-Ausgangsschaltung und Schieberegister |
KR101756667B1 (ko) | 2011-04-21 | 2017-07-11 | 엘지디스플레이 주식회사 | 쉬프트 레지스터 및 이를 포함하는 표시장치 |
US8718224B2 (en) | 2011-08-05 | 2014-05-06 | Semiconductor Energy Laboratory Co., Ltd. | Pulse signal output circuit and shift register |
US9036766B2 (en) | 2012-02-29 | 2015-05-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
KR101666298B1 (ko) * | 2015-03-06 | 2016-10-13 | 경희대학교 산학협력단 | 직류 타입 쉬프트 레지스터, 구동 장치 및 그 동작 방법 |
KR102409433B1 (ko) * | 2017-11-03 | 2022-06-16 | 삼성디스플레이 주식회사 | 표시 장치 |
CN110085160B (zh) * | 2019-04-04 | 2020-09-01 | 深圳市华星光电半导体显示技术有限公司 | Goa电路及显示面板 |
CN110634528B (zh) * | 2019-09-18 | 2021-04-27 | 上海天马有机发光显示技术有限公司 | 移位寄存器、其驱动方法、驱动控制电路及显示装置 |
CN112967691B (zh) * | 2021-02-04 | 2022-10-18 | 业成科技(成都)有限公司 | 闸极驱动电路、闸极驱动装置与拼接式显示器 |
CN113744701B (zh) * | 2021-07-30 | 2023-05-26 | 北海惠科光电技术有限公司 | 显示面板的驱动电路、阵列基板及显示面板 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003179479A (ja) * | 2001-07-30 | 2003-06-27 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
JP2003331594A (ja) * | 2002-05-10 | 2003-11-21 | Alps Electric Co Ltd | シフトレジスタ装置および表示装置 |
JP2004199066A (ja) * | 2002-12-17 | 2004-07-15 | Samsung Electronics Co Ltd | 表示装置の駆動装置 |
JP2006106320A (ja) * | 2004-10-05 | 2006-04-20 | Alps Electric Co Ltd | 液晶表示装置の駆動回路 |
JP2006178165A (ja) * | 2004-12-22 | 2006-07-06 | Alps Electric Co Ltd | ドライバ回路、シフトレジスタ及び液晶駆動回路 |
JP2008287134A (ja) * | 2007-05-21 | 2008-11-27 | Seiko Epson Corp | パルス出力回路、シフトレジスタ、走査線駆動回路、データ線駆動回路、電気光学装置及び電子機器 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3144166B2 (ja) | 1992-11-25 | 2001-03-12 | ソニー株式会社 | 低振幅入力レベル変換回路 |
KR100281336B1 (ko) | 1998-10-21 | 2001-03-02 | 구본준 | 쉬프트 레지스터 회로 |
KR100438525B1 (ko) | 1999-02-09 | 2004-07-03 | 엘지.필립스 엘시디 주식회사 | 쉬프트 레지스터 회로 |
JP4181710B2 (ja) | 1998-10-21 | 2008-11-19 | エルジー ディスプレイ カンパニー リミテッド | シフトレジスタ |
JP4310939B2 (ja) | 2001-06-29 | 2009-08-12 | カシオ計算機株式会社 | シフトレジスタ及び電子装置 |
JP4473492B2 (ja) | 2002-05-28 | 2010-06-02 | 東芝モバイルディスプレイ株式会社 | シフトレジスタ |
US7486269B2 (en) | 2003-07-09 | 2009-02-03 | Samsung Electronics Co., Ltd. | Shift register, scan driving circuit and display apparatus having the same |
KR101032945B1 (ko) * | 2004-03-12 | 2011-05-09 | 삼성전자주식회사 | 시프트 레지스터 및 이를 포함하는 표시 장치 |
JP4990034B2 (ja) * | 2006-10-03 | 2012-08-01 | 三菱電機株式会社 | シフトレジスタ回路およびそれを備える画像表示装置 |
TWI340947B (en) * | 2006-12-29 | 2011-04-21 | Chimei Innolux Corp | Shift register and liquid crystal display |
CN101377956B (zh) * | 2007-08-31 | 2010-12-29 | 群康科技(深圳)有限公司 | 移位寄存器及液晶显示器 |
WO2010097986A1 (ja) | 2009-02-25 | 2010-09-02 | シャープ株式会社 | シフトレジスタおよび表示装置 |
US8384461B2 (en) * | 2009-06-15 | 2013-02-26 | Sharp Kabushiki Kaisha | Shift register and display device |
DE112011100749B4 (de) * | 2010-03-02 | 2015-06-11 | Semiconductor Energy Laboratory Co., Ltd. | Impulssignal-Ausgangsschaltung und Schieberegister |
-
2010
- 2010-02-24 WO PCT/JP2010/001259 patent/WO2010146743A1/ja active Application Filing
- 2010-02-24 JP JP2011519485A patent/JP5405570B2/ja not_active Expired - Fee Related
- 2010-02-24 US US13/376,401 patent/US8422622B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003179479A (ja) * | 2001-07-30 | 2003-06-27 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
JP2003331594A (ja) * | 2002-05-10 | 2003-11-21 | Alps Electric Co Ltd | シフトレジスタ装置および表示装置 |
JP2004199066A (ja) * | 2002-12-17 | 2004-07-15 | Samsung Electronics Co Ltd | 表示装置の駆動装置 |
JP2006106320A (ja) * | 2004-10-05 | 2006-04-20 | Alps Electric Co Ltd | 液晶表示装置の駆動回路 |
JP2006178165A (ja) * | 2004-12-22 | 2006-07-06 | Alps Electric Co Ltd | ドライバ回路、シフトレジスタ及び液晶駆動回路 |
JP2008287134A (ja) * | 2007-05-21 | 2008-11-27 | Seiko Epson Corp | パルス出力回路、シフトレジスタ、走査線駆動回路、データ線駆動回路、電気光学装置及び電子機器 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2010146738A1 (ja) * | 2009-06-15 | 2012-11-29 | シャープ株式会社 | シフトレジスタおよび表示装置 |
JP5410521B2 (ja) * | 2009-06-15 | 2014-02-05 | シャープ株式会社 | シフトレジスタおよび表示装置 |
WO2017063234A1 (zh) * | 2015-10-14 | 2017-04-20 | 深圳市华星光电技术有限公司 | 阵列栅极驱动器电路、显示面板及显示装置 |
CN107863057A (zh) * | 2017-10-31 | 2018-03-30 | 上海天马微电子有限公司 | 一种移位寄存器、其驱动方法、驱动控制电路及相关装置 |
CN110070839A (zh) * | 2019-04-23 | 2019-07-30 | 深圳市华星光电半导体显示技术有限公司 | Goa电路及显示面板 |
US11749225B2 (en) | 2021-11-12 | 2023-09-05 | Sharp Display Technology Corporation | Scanning signal line drive circuit and display device provided with same |
Also Published As
Publication number | Publication date |
---|---|
JP5405570B2 (ja) | 2014-02-05 |
US8422622B2 (en) | 2013-04-16 |
US20120087459A1 (en) | 2012-04-12 |
JPWO2010146743A1 (ja) | 2012-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5405570B2 (ja) | シフトレジスタおよび表示装置 | |
JP5410521B2 (ja) | シフトレジスタおよび表示装置 | |
WO2010097986A1 (ja) | シフトレジスタおよび表示装置 | |
JP7315469B2 (ja) | シフトレジスタユニットおよびその駆動方法、ゲート駆動回路および表示装置 | |
JP4912186B2 (ja) | シフトレジスタ回路およびそれを備える画像表示装置 | |
WO2011092924A1 (ja) | シフトレジスタおよび表示装置 | |
KR100917637B1 (ko) | 시프트 레지스터 회로 및 표시 구동 장치 | |
KR100847091B1 (ko) | 시프트 레지스터 회로 및 그것을 구비한 화상표시장치 | |
JP4713246B2 (ja) | 液晶表示素子 | |
JP6124479B2 (ja) | シフトレジスタ及び表示装置 | |
US20100321372A1 (en) | Display device and method for driving display | |
WO2010050262A1 (ja) | シフトレジスタ回路および表示装置ならびにシフトレジスタ回路の駆動方法 | |
CN111105762B (zh) | 扫描信号线驱动电路、显示装置及扫描信号线的驱动方法 | |
WO2011129126A1 (ja) | 走査信号線駆動回路およびそれを備えた表示装置 | |
WO2012029799A1 (ja) | シフトレジスタ及び表示装置 | |
KR20100083370A (ko) | 게이트 구동회로 및 이를 갖는 표시장치 | |
WO2015052999A1 (ja) | シフトレジスタ及び表示装置 | |
JP2005293817A (ja) | シフトレジスタとその駆動方法及び液晶表示パネルの駆動装置 | |
KR100856632B1 (ko) | 표시 장치 | |
JP2006106394A (ja) | 液晶駆動回路および液晶表示装置 | |
US8836633B2 (en) | Display driving circuit and display panel using the same | |
US12100358B2 (en) | Scanning signal line drive circuit and display device provided with same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10789128 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011519485 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13376401 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10789128 Country of ref document: EP Kind code of ref document: A1 |