WO2010134184A1 - 微細加工処理剤、及び微細加工処理方法 - Google Patents

微細加工処理剤、及び微細加工処理方法 Download PDF

Info

Publication number
WO2010134184A1
WO2010134184A1 PCT/JP2009/059370 JP2009059370W WO2010134184A1 WO 2010134184 A1 WO2010134184 A1 WO 2010134184A1 JP 2009059370 W JP2009059370 W JP 2009059370W WO 2010134184 A1 WO2010134184 A1 WO 2010134184A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing agent
fine processing
film
weight
oxide film
Prior art date
Application number
PCT/JP2009/059370
Other languages
English (en)
French (fr)
Inventor
雅之 宮下
孝信 久次米
啓一 二井
Original Assignee
ステラケミファ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ステラケミファ株式会社 filed Critical ステラケミファ株式会社
Priority to SG2011084852A priority Critical patent/SG176129A1/en
Priority to KR1020117027630A priority patent/KR101560433B1/ko
Priority to CN200980159339.3A priority patent/CN102428547B/zh
Priority to PCT/JP2009/059370 priority patent/WO2010134184A1/ja
Priority to EP09844917.6A priority patent/EP2434536B1/en
Priority to US13/320,171 priority patent/US8974685B2/en
Publication of WO2010134184A1 publication Critical patent/WO2010134184A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound

Definitions

  • the present invention relates to a fine processing agent used for fine processing, cleaning processing, and the like, and a fine processing method using the same in the manufacture of a semiconductor device, a liquid crystal display device, a micro electro mechanical systems (MEMS) device, and the like.
  • the present invention relates to a fine processing agent used for fine processing of a laminated film in which at least a silicon oxide film and a silicon nitride film are laminated, and a fine processing method using the same.
  • One of the most important processes in the manufacturing process of semiconductor devices is to pattern and etch a silicon oxide film, silicon nitride film, polysilicon film, metal film, etc. formed on the wafer surface into a desired shape. It is.
  • wet etching which is a kind of etching technique, a fine processing agent capable of selectively etching only a film to be etched is required.
  • examples of the silicon oxide film to be etched include buffered hydrofluoric acid and hydrofluoric acid.
  • the buffered hydrofluoric acid or hydrofluoric acid is used as a microfabrication processing agent for the laminated film in which the silicon oxide film and the silicon nitride film are laminated, the silicon nitride film is also etched at the same time. As a result, it becomes difficult to pattern into a desired shape.
  • the fine processing agent As a fine processing agent capable of solving such problems and selectively etching only the silicon oxide film, for example, a hydrofluoric acid added with an anionic surfactant such as ammonium lauryl sulfate. (See Patent Document 1 below).
  • the fine processing agent has a very high foaming property, which makes it unsuitable as a fine processing agent used in a semiconductor element manufacturing process.
  • a DRAM Dynamic Random Access Memory
  • the DRAM cell is composed of one transistor and one capacitor. This DRAM has been highly integrated about four times over the past three years. High integration of DRAM is mainly due to high integration of capacitors. Therefore, in order to secure a capacitance value necessary for stable storage operation while reducing the area occupied by the capacitor, the capacitor area is increased, the capacitor insulating film is thinned, and a high dielectric constant film is introduced.
  • the capacitor insulating film As the capacitor insulating film, a silicon oxide film is used, and until now, its thinning has been studied. However, the thinning of the silicon oxide film as the capacitor insulating film has reached the limit with 1Mbit DRAM. Therefore, a silicon nitride film is used as an insulating film in a 4M bit DRAM. Furthermore, application of a tantalum oxide film has been started as higher integration progresses.
  • the capacitor structure of a 64 Mbit generation DRAM is a cylinder type.
  • the silicon oxide film thus formed is removed by wet etching to form a capacitor after forming the cylinder-type capacitor lower electrode, the following problems occur when a conventional etching solution is used.
  • Patent Document 2 discloses a technique for forming a support film made of a silicon nitride film between capacitor lower electrodes.
  • Patent Document 3 listed below discloses a technique for forming a silicon nitride film as an insulating film in order to improve the insulation characteristics with respect to the bit line. A technique for forming a film as an etching stop film in an etching process of a silicon oxide film is disclosed.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to selectively finely process a silicon oxide film when finely processing a laminated film in which at least a silicon oxide film and a silicon nitride film are laminated.
  • An object of the present invention is to provide a fine processing agent that can be used, and a fine processing method using the same.
  • the microfabrication processing agent to which a predetermined water-soluble polymer is added can selectively microfabricate only the silicon oxide film with respect to the laminated film in which the silicon oxide film and the silicon nitride film are laminated. As a result, the present invention has been completed.
  • the fine processing agent according to the present invention provides at least one of (a) 0.01 to 15% by weight of hydrogen fluoride, or 0.1 to 40% by weight of ammonium fluoride in order to solve the above problems. Any one, (b) water, (c) 0.001 to 10% by weight of acrylic acid, ammonium acrylate, acrylic ester, acrylamide, styrene sulfonic acid, ammonium styrene sulfonate, and styrene sulfonic acid ester And at least one water-soluble polymer selected from the group consisting of:
  • the fine processing agent of the present invention can reduce the etching effect on the silicon nitride film without impairing the etching effect on the silicon oxide film by containing the water-soluble polymer.
  • the microfabrication processing agent of the present invention when the microfabrication processing agent of the present invention is applied to microfabrication of a laminated film in which a silicon oxide film and a silicon nitride film are laminated, selective microfabrication of the silicon oxide film while suppressing etching of the silicon nitride film Is possible. As a result, the yield in the semiconductor element manufacturing process can be reduced.
  • the content of the water-soluble polymer is in the range of 0.001 to 10% by weight.
  • the lower limit By setting the lower limit to 0.001% by weight, the effect of adding the water-soluble polymer can be exhibited, and the etching of the silicon nitride film can be suppressed.
  • the increase in the metal impurity in a fine processing agent can be suppressed by making an upper limit into 10 weight%.
  • an increase in viscosity can also be suppressed, thereby preventing a reduction in the rinse removal performance of the fine processing agent with a rinse agent such as ultrapure water.
  • “microfabrication” means including etching of a film to be processed and surface cleaning.
  • the “water-soluble polymer” means a polymer that dissolves 1 mass% or more (10 g / L) at room temperature in a mixed solution containing the components (a) and (b).
  • the water-soluble polymer is preferably a copolymer of ammonium acrylate and methyl acrylate.
  • the water-soluble polymer is polyacrylamide.
  • the water-soluble polymer preferably has a weight average molecular weight in the range of 1,000 to 1,000,000.
  • the stabilizer that serves as a polymerization inhibitor can be reduced in the production of the water-soluble polymer.
  • the water-soluble polymer can be prevented from being contaminated with metal.
  • the weight average molecular weight is set to 1 million or less, an increase in the viscosity of the fine processing agent can be suppressed, so that handleability can be improved.
  • a rinse agent such as ultrapure water.
  • the silicon oxide film preferably has an etch rate at 25 ° C. in the range of 1 to 5000 nm / min. As a result, it is possible to improve the production efficiency by preventing the processing time of the fine processing for the silicon oxide film from being prolonged, and to easily control the film thickness and surface roughness of the silicon oxide film after the micro processing. To do.
  • the microfabrication processing method microfabricates a laminated film in which at least a silicon oxide film and a silicon nitride film are laminated, using the micromachining treatment agent described above. It is characterized by that.
  • the silicon oxide film and a silicon nitride film are added to the fine processing agent capable of reducing the etching effect on the silicon nitride film without impairing the etching effect on the silicon oxide film by adding the water-soluble polymer. Therefore, the silicon oxide film can be selectively finely processed while suppressing the etching of the silicon nitride film. As a result, the yield in the semiconductor element manufacturing process can be reduced.
  • the silicon oxide film is a natural oxide film, a thermal silicon oxide film, a non-doped silicate glass film, a phosphorus-doped silicate glass film, a boron-doped silicate glass film, a phosphorus-doped silicate glass film, a TEOS film, or a fluorine-containing silicon oxide film. It is preferable that
  • the silicon nitride film is preferably a silicon nitride film or a silicon oxynitride film.
  • the present invention has the following effects by the means described above. That is, according to the present invention, only the silicon oxide film can be selectively finely processed with respect to the laminated film in which at least the silicon oxide film and the silicon nitride film are laminated.
  • a semiconductor device a liquid crystal display device, It enables fine processing suitable for manufacturing micromachine devices and the like.
  • the fine processing agent according to the present invention includes (a) at least one of hydrogen fluoride and ammonium fluoride, (b) water, and (c) a water-soluble polymer. .
  • the content of hydrogen fluoride in the component (a) is preferably in the range of 0.01 to 15% by weight with respect to the total weight of the fine processing agent, and 0.05 to 10% by weight. It is more preferable that it is within the range.
  • the content of hydrogen fluoride is less than 0.01% by weight, it is difficult to control the concentration of hydrogen fluoride, and thus there may be a large variation in etch rate with respect to the silicon oxide film.
  • the content of hydrogen fluoride exceeds 15% by weight, the etching rate for the silicon oxide film becomes excessively high, and the controllability of etching deteriorates.
  • the content of the ammonium fluoride is preferably in the range of 0.1 to 40% by weight and preferably in the range of 5 to 25% by weight with respect to the total weight of the fine processing agent. More preferred. If the content of ammonium fluoride is less than 0.1% by weight, it is difficult to control the concentration of ammonium fluoride, and thus there may be a large variation in etch rate with respect to the silicon oxide film. Moreover, when the content of ammonium fluoride exceeds 40% by weight, it approaches the saturation solubility of ammonium fluoride. Therefore, when the liquid temperature of the fine processing agent decreases, the fine processing agent reaches the saturation solubility, Crystals may be deposited.
  • the etching rate with respect to the silicon nitride film can be selectively suppressed, and the etching selectivity (silicon oxide film / silicon nitride film) can be increased. More specifically, for example, the etching rate for the silicon nitride film can be suppressed to 80% or less as compared with the case where the component (a) is not added.
  • the component (a) may be hydrogen fluoride or ammonium fluoride alone or a mixture thereof.
  • the 3rd component may contain.
  • the third component include surfactants and inorganic acids.
  • an organic acid such as formic acid because the effect of selectively suppressing etching on the silicon nitride film is reduced.
  • the surfactant is not particularly limited.
  • the component (a) is hydrofluoric acid alone, it is selected from the group consisting of polyethylene glycol alkyl ether, polyethylene glycol alkyl phenyl ether, and polyethylene glycol fatty acid ester.
  • At least any one nonionic surfactant is preferably exemplified.
  • an aliphatic alcohol, aliphatic carboxylic acid, hydrofluoroalkyl alcohol, hydrofluoroalkyl carboxylic acid, hydrofluoroalkyl It may be used in at least any one selected from the group consisting of a salt of a kill carboxylic acid, an aliphatic amine salt, and an aliphatic sulfonic acid, and the form thereof may be solid or liquid.
  • the amount of the surfactant added is preferably in the range of 0.001 to 0.1% by weight and in the range of 0.003 to 0.05% by weight with respect to the total weight of the fine processing agent. Is more preferred.
  • By adding the surfactant it is possible to suppress the roughness of the surface of the silicon nitride film or semiconductor substrate subjected to the etching process.
  • the conventional etching solution tends to remain locally on the surface of the semiconductor substrate on which a fine pattern has been formed due to ultra-high integration, and uniformly etches when the resist interval is about 0.5 ⁇ m or less. It becomes more difficult.
  • the fine processing agent of the present invention to which a surfactant is added is used as an etching solution, the wettability to the surface of the semiconductor substrate is improved, and the uniformity of etching in the substrate surface is improved.
  • the addition amount is less than 0.001% by weight, the surface tension of the fine processing agent is not sufficiently lowered, and the effect of improving wettability may be insufficient.
  • the addition amount exceeds 0.1% by weight, not only the effect corresponding to that can not be obtained, but also the defoaming property deteriorates, the bubbles adhere to the etched surface, the etching unevenness occurs, or the fine gaps are formed. Bubbles may enter and cause etching failure.
  • the inorganic acid is not particularly limited, and examples thereof include hydrochloric acid, sulfuric acid, and phosphoric acid.
  • the addition amount of the inorganic acid is preferably in the range of 0.01 to 30% by weight, more preferably in the range of 0.05 to 10% by weight, based on the total weight of the fine processing agent. Is preferred. If the addition amount is less than 0.01% by weight, it is difficult to control the concentration of the inorganic acid, which causes a disadvantage that the variation in the etching rate with respect to the silicon oxide film becomes large. On the other hand, when it exceeds 30% by weight, for example, when hydrochloric acid is used, the vapor pressure becomes large, so there is a disadvantage that the chemical composition against evaporation is not stable.
  • the water-soluble polymer in the component (c) is at least any selected from the group consisting of acrylic acid, ammonium acrylate, acrylic ester, acrylamide, styrene sulfonic acid, ammonium styrene sulfonate, and styrene sulfonic acid ester. Or one.
  • the copolymer of ammonium acrylate and methyl acrylate is the case where the component (a) is composed of hydrogen fluoride alone or when hydrogen fluoride and ammonium fluoride are used in combination.
  • the etching suppression effect on the silicon nitride film is high.
  • the copolymerization ratio of ammonium acrylate and methyl acrylate is preferably in the range of 9.9: 0.1 to 5: 5. If the copolymerization ratio of methyl acrylate is larger than the above numerical range, there may be a disadvantage that the solubility of the copolymer of ammonium acrylate and methyl acrylate is reduced.
  • polyacrylamide has a high etching suppression effect on the silicon nitride film, particularly when the component (a) uses hydrogen fluoride and ammonium fluoride in combination, or when hydrogen fluoride and hydrochloric acid are used in combination.
  • the content of the water-soluble polymer in the component (c) is preferably in the range of 0.001 to 10% by weight with respect to the total weight of the fine processing agent, and is 0.1 to 5% by weight. It is more preferable to be within the range of%. If the content is less than 0.001% by weight, the effect of adding the water-soluble polymer is lowered, and the effect of suppressing the etch rate on the silicon nitride film becomes insufficient, such being undesirable. On the other hand, if the content exceeds 10% by weight, the metal impurities in the fine processing agent increase and the viscosity becomes high, so that the rinse removal performance of the fine processing agent with a rinse agent such as ultrapure water is lowered. As a result, it is not suitable as a fine processing agent used in the manufacturing process of a semiconductor device.
  • the weight average molecular weight of the water-soluble polymer is preferably in the range of 1,000 to 1,000,000, and more preferably in the range of 1,000 to 10,000. If the weight average molecular weight is less than 1000, the amount of stabilizer used as a polymerization inhibitor is increased. As a result, it may be a cause of metal contamination to the fine processing agent. When the weight average molecular weight exceeds 1,000,000, the viscosity of the fine processing agent increases, and the handleability may deteriorate. Moreover, the rinse removal performance of the fine processing agent with a rinse agent such as ultrapure water may be reduced.
  • the fine processing agent of the present embodiment can be mixed with additives other than surfactants within a range that does not impede its effect.
  • additives other than surfactants include hydrogen peroxide and a chelating agent.
  • the water-soluble polymer to be added may be purified by distillation, ion exchange resin, ion exchange membrane, electrodialysis, filtration, etc. Purification may be performed by filtration or the like.
  • micromachining method using the micromachining agent according to the present embodiment will be described by taking wet etching as an example.
  • the fine processing agent of the present embodiment is employed in various wet etching methods.
  • an etching method there are an immersion method, a spray method, and the like, and the microfabrication processing agent of the present invention can be adopted in any method.
  • the immersion method is preferable because the composition change of the fine processing agent is small due to evaporation in the etching process.
  • the etching temperature is preferably in the range of 5 to 50 ° C., more preferably in the range of 15 to 35 ° C. It is more preferable that the temperature is within a range of 20 to 30 ° C. Within the above range, evaporation of the fine processing agent can be suppressed, and a change in composition can be prevented. In addition, it is difficult to control the etching rate due to evaporation of the fine processing agent at high temperatures, and the disadvantage is that the components in the micro processing agent are likely to crystallize at low temperatures, resulting in a decrease in etch rate and an increase in liquid particles. Can be avoided. Note that since the etch rate varies from film to film depending on the etching temperature, the difference between the etch rate for the silicon oxide film and the etch rate for the silicon nitride film may be affected.
  • the etch rate for the silicon oxide film at 25 ° C. is preferably in the range of 1 to 5000 nm / min, and in the range of 15 to 1000 nm / min. Is more preferred. If the etch rate is less than 1 nm / min, it takes time for fine processing such as etching, which may lead to a decrease in production efficiency. On the other hand, if it exceeds 5000 nm / min, the controllability of the film thickness after etching and the roughness of the substrate surface (surface opposite to the surface on which the silicon oxide film etc. are formed) become remarkable, and the yield may decrease. is there.
  • Etch rate for silicon oxide film and silicon nitride film The film thickness of the silicon oxide film and the silicon nitride film before and after etching was measured using an optical film thickness measuring device (Nanospec 6100, manufactured by Nanometrics Japan Co., Ltd.), and the change in film thickness due to etching was measured. The above measurement was repeated at three different etching times to calculate the etch rate.
  • Example 1 7.0 parts by weight of hydrogen fluoride (manufactured by Stella Chemifa Corporation, high purity grade for semiconductor, concentration 50% by weight) and ammonium fluoride (manufactured by Stella Chemifa Corporation, high purity grade for semiconductor, concentration 40% by weight) )
  • a mixed solution of 50.0 parts by weight and 40.5 parts by weight of ultrapure water
  • an etching solution fine processing agent of 3.5% by weight of hydrogen fluoride, 20.0% by weight of ammonium fluoride, and 1% by weight of ammonium polyacrylate was prepared.
  • Example 2 Example 2 to 10 were the same as Example 1 except that the contents of hydrogen fluoride and ammonium fluoride and the content and type of the water-soluble polymer were changed as shown in Table 1. Thus, an etching solution was prepared. Furthermore, the etching rate obtained with respect to the TEOS film and the silicon nitride film and the selectivity of the etching rate (silicon oxide film / silicon nitride film) were evaluated using the etching solution obtained in each example. The results are shown in Table 2 below.
  • Comparative Examples 1 and 2 were the same as in Example 1 except that the contents of hydrogen fluoride and ammonium fluoride were changed as shown in Table 1 and no water-soluble polymer was added. Thus, an etching solution was prepared. Furthermore, using the etching solutions obtained in the respective comparative examples, the etching rate with respect to the TEOS film and the silicon nitride film and the selectivity of the etching rate (silicon oxide film / silicon nitride film) were evaluated. The results are shown in Table 2 below.
  • Comparative Examples 3 to 7 In Comparative Examples 3 to 7, the contents of hydrogen fluoride and ammonium fluoride were changed as shown in Table 1, except that the additives shown in Table 1 were used instead of the water-soluble polymer.
  • An etching solution was prepared in the same manner as in Example 1. Furthermore, using the etching solutions obtained in the respective comparative examples, the etching rate with respect to the TEOS film and the silicon nitride film and the selectivity of the etching rate (silicon oxide film / silicon nitride film) were evaluated. The results are shown in Table 2 below.
  • the additive added to the etching solutions according to Comparative Examples 3 to 7 selectively suppresses the etch rate for the silicon nitride film and selects the etch rate for the silicon oxide film relative to the silicon nitride film.
  • the ratio (silicon oxide film / silicon nitride film) could not be increased.
  • the etch rate with respect to the silicon nitride film is selectively suppressed, and the etch rate of the silicon oxide film with respect to the silicon nitride film is reduced. It was confirmed that the selectivity (silicon oxide film / silicon nitride film) was increased.
  • Example 11 20.0 parts by weight of hydrogen fluoride (manufactured by Stella Chemifa Co., Ltd., high-purity grade for semiconductor, concentration 50% by weight) and 27 hydrochloric acid (manufactured by Hayashi Pure Chemical Industries, Ltd., electronic industry grade, concentration 36% by weight) 27 1.0 part by weight of polyacrylamide (concentration 50% by weight, weight average molecular weight 10,000) as a water-soluble polymer was added to a solution obtained by mixing 0.8 part by weight and 51.2 parts by weight of ultrapure water, and stirred. After mixing, the temperature of the mixed solution was adjusted to 25 ° C. and left for 3 hours. As a result, an etching solution (fine processing agent) of 10% by weight of hydrogen fluoride, 10% by weight of hydrochloric acid, and 0.5% by weight of polyacrylamide was prepared.
  • etching solution fine processing agent
  • Example 12 In Example 12, an etching solution was prepared in the same manner as in Example 11 except that the polyacrylamide content was changed as shown in Table 3. Furthermore, using the etching solution obtained in this example, the etching rate with respect to the BPSG film and the silicon nitride film and the selectivity of the etching rate (silicon oxide film / silicon nitride film) were evaluated. The results are shown in Table 3 below.
  • Comparative Example 8 In Comparative Example 8, an etching solution was prepared in the same manner as in Example 12 except that the water-soluble polymer was not added as shown in Table 3. Furthermore, using the etching solution obtained in this comparative example, the etching rate with respect to the BPSG film and the silicon nitride film and the selectivity of the etching rate (silicon oxide film / silicon nitride film) were evaluated. The results are shown in Table 3 below.
  • Example 13 25.0 parts by weight of ammonium fluoride (manufactured by Stella Chemifa Co., Ltd., high purity grade for semiconductors, concentration 40% by weight) and hydrochloric acid (manufactured by Hayashi Junyaku Kogyo Co., Ltd., electronics industry grade, concentration 36% by weight) 27
  • ammonium fluoride manufactured by Stella Chemifa Co., Ltd., high purity grade for semiconductors, concentration 40% by weight
  • hydrochloric acid manufactured by Hayashi Junyaku Kogyo Co., Ltd., electronics industry grade, concentration 36% by weight
  • Comparative Example 9 an etching solution was prepared in the same manner as in Example 13 except that the water-soluble polymer was not added as shown in Table 4. Furthermore, using the etching solution obtained in this comparative example, the etch rate with respect to the TEOS film and the silicon nitride film and the selectivity of the etch rate (silicon oxide film / silicon nitride film) were evaluated. The results are shown in Table 4 below.
  • Example 14 25.0 parts by weight of ammonium fluoride (manufactured by Stella Chemifa Co., Ltd., high purity grade for semiconductor, concentration 40% by weight) and phosphoric acid (manufactured by Kishida Chemical Co., Ltd., electronics industry grade, concentration 85% by weight)
  • ammonium fluoride manufactured by Stella Chemifa Co., Ltd., high purity grade for semiconductor, concentration 40% by weight
  • phosphoric acid manufactured by Kishida Chemical Co., Ltd., electronics industry grade, concentration 85% by weight
  • Comparative Example 10 Comparative Example 10, as shown in Table 4, an etching solution was prepared in the same manner as in Example 14 except that the water-soluble polymer was not added. Furthermore, using the etching solution obtained in this comparative example, the etch rate with respect to the TEOS film and the silicon nitride film and the selectivity of the etch rate (silicon oxide film / silicon nitride film) were evaluated. The results are shown in Table 4 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Weting (AREA)

Abstract

 少なくともシリコン酸化膜、及びシリコン窒化膜が積層された積層膜を微細加工する際に、シリコン酸化膜を選択的に微細加工することが可能な微細加工処理剤、及びそれを用いた微細加工処理方法を提供する。本発明に係る微細加工処理剤は、(a)0.01~15重量%のフッ化水素、又は0.1~40重量%のフッ化アンモニウムの少なくとも何れか1種類と、(b)水と、(c)0.001~10重量%のアクリル酸、アクリル酸アンモニウム、アクリル酸エステル、アクリルアミド、スチレンスルホン酸、スチレンスルホン酸アンモニウム、及びスチレンスルホン酸エステルからなる群より選択される少なくとも何れか1種の水溶性重合体とを含むことを特徴とする。

Description

微細加工処理剤、及び微細加工処理方法
 本発明は、半導体装置、液晶表示装置、マイクロマシン(micro electro mechanical systems;MEMS)デバイス等の製造に於いて、微細加工や洗浄処理等に用いる微細加工処理剤、及びそれを用いた微細加工処理方法に関し、特にシリコン酸化膜、及びシリコン窒化膜が少なくとも積層された積層膜の微細加工に用いる微細加工処理剤、及びそれを用いた微細加工処理方法に関する。
 半導体素子の製造プロセスに於いて、ウエハ表面に成膜されたシリコン酸化膜、シリコン窒化膜、ポリシリコン膜、金属膜等を所望の形状にパターニングし、エッチングすることは最も重要なプロセスの一つである。そのエッチング技術の一種であるウェットエッチングに対しては、エッチング対象となる膜のみを選択的にエッチングすることが可能な微細加工処理剤が求められている。
 前記微細加工処理剤に於いてシリコン酸化膜をエッチング対象とするものとしては、例えば、バッファードフッ酸やフッ化水素酸が挙げられる。しかし、シリコン酸化膜とシリコン窒化膜が積層された積層膜に対し、前記バッファードフッ酸やフッ化水素酸を微細加工処理剤として用いると、シリコン窒化膜も同時にエッチングされる。その結果、所望の形状にパターニングすることが困難になる。
 この様な問題を解決し、シリコン酸化膜のみを選択的にエッチングすることが可能な微細加工処理剤としては、例えばフッ化水素酸にラウリル硫酸アンモニウム等の陰イオン性界面活性剤を添加したものが挙げられる(下記特許文献1参照)。しかし、前記微細加工処理剤では起泡性が極めて大きく、これにより半導体素子の製造プロセスに用いる微細加工処理剤としては適さない。
 一方、微細加工処理剤を用いてウェットエッチングを行う半導体素子としては、例えばDRAM(Dynamic Random Access Memory)が挙げられる。DRAMセルはトランジスタ1個とキャパシタ1個で構成されたものである。このDRAMは過去3年で約4倍の高集積化が進められている。DRAMの高集積化は、主にキャパシタの高集積化によるものである。よって、キャパシタの占有面積を縮小しながら、安定した記憶動作に必要な容量値を確保すべく、キャパシタ面積の増大、キャパシタ絶縁膜の薄膜化及び高誘電率膜の導入が行われている。
 前記キャパシタ絶縁膜としてはシリコン酸化膜が用いられており、これまではその薄膜化が検討されてきた。しかし、キャパシタの絶縁膜としてのシリコン酸化膜の薄膜化が、1MビットのDRAMで限界に達した。そのため、4MビットのDRAMでは、絶縁膜としてシリコン窒化膜が用いられている。更に高集積化が進むにつれてタンタル酸化膜の適用も開始されている。
 64Mビット世代のDRAMのキャパシタ構造はシリンダ型である。シリンダ型のキャパシタ下部電極を形成した後、キャパシタ形成のため、成膜されたシリコン酸化膜をウェットエッチングによって除去する場合、従来のエッチング液を使用すると次に述べる問題が生じる。
 即ち、キャパシタ下部電極を形成した後に、成膜されたシリコン酸化膜をウェットエッチングにより除去する。更に、超純水によるリンスを行い、乾燥させる。この乾燥させる工程で、キャパシタ下部電極の間に存在する水の表面張力により、該下部電極が傾いて互いに付着する"リーニング(leaning)"現象が多発して、2-ビットフェイルを誘発するという問題がある。この為、下記特許文献2では、キャパシタ下部電極間にシリコン窒化膜からなる支持膜を形成する技術が開示されている。また、下記特許文献3には、ビットラインとの絶縁特性を向上させるためにシリコン窒化膜を絶縁膜として成膜する技術が開示され、更に、下記特許文献4には、シリコン窒化膜を後続のシリコン酸化膜のエッチング工程のエッチング停止膜として成膜する技術が開示されている。
 これらの半導体素子の製造プロセスに於いて、従来のエッチング液を用いると、前記特許文献1に於ける支持膜としてのシリコン酸化膜や特許文献2のシリコン窒化膜、特許文献3のエッチング停止膜としてのシリコン酸化膜がエッチング対象と共にエッチングされるという問題がある。
特開2005-328067号公報 特開2003-297952号公報 特開平10-98155号公報 特開2000-22112号公報
 本発明は前記問題点に鑑みなされたものであり、その目的は、少なくともシリコン酸化膜、及びシリコン窒化膜が積層された積層膜を微細加工する際に、シリコン酸化膜を選択的に微細加工することが可能な微細加工処理剤、及びそれを用いた微細加工処理方法を提供することにある。
 本願発明者等は、前記従来の問題点を解決すべく、微細加工処理剤、及びそれを用いた微細加工処理方法について鋭意検討した。その結果、所定の水溶性重合体が添加された微細加工処理剤であると、シリコン酸化膜、及びシリコン窒化膜が積層された積層膜に対し、シリコン酸化膜のみを選択的に微細加工できることを見出して、本発明を完成させるに至った。
 即ち、本発明に係る微細加工処理剤は、前記の課題を解決する為に、(a)0.01~15重量%のフッ化水素、又は0.1~40重量%のフッ化アンモニウムの少なくとも何れか1種類と、(b)水と、(c)0.001~10重量%のアクリル酸、アクリル酸アンモニウム、アクリル酸エステル、アクリルアミド、スチレンスルホン酸、スチレンスルホン酸アンモニウム、及びスチレンスルホン酸エステルからなる群より選択される少なくとも何れか1種の水溶性重合体とを含むことを特徴とする。
 前記構成によれば、本発明の微細加工処理剤は前記水溶性重合体の含有により、シリコン酸化膜に対するエッチング効果を損なうことなく、シリコン窒化膜に対するエッチング効果の低減が図れる。その結果、例えばシリコン酸化膜及びシリコン窒化膜が積層された積層膜の微細加工に本発明の微細加工処理剤を適用すると、シリコン窒化膜のエッチングを抑制しつつシリコン酸化膜の選択的な微細加工が可能になる。これにより、半導体素子の製造プロセスに於ける歩留まりの低減が図れる。
 ここで、前記水溶性重合体の含有量は0.001~10重量%の範囲内にする。下限値を0.001重量%にすることにより、水溶性重合体の添加効果を発揮させることができ、シリコン窒化膜に対するエッチングの抑制が図れる。また、上限値を10重量%にすることにより、微細加工処理剤中の金属不純物の増加を抑制できる。また、粘度の上昇も抑え、これにより超純水等のリンス剤による微細加工処理剤のリンス除去性能の低減も防止することができる。尚、本発明に於ける「微細加工」とは、加工対象となる膜のエッチングや表面のクリーニングを含むことを意味する。また、「水溶性重合体」とは、前記(a)成分及び(b)成分を含む混合溶液に対し、常温で1質量%以上(10g/L)溶解する重合体を意味する。
 前記構成に於いては、前記水溶性重合体がアクリル酸アンモニウムとアクリル酸メチルの共重合体であることが好ましい。
 また、前記構成に於いては、前記水溶性重合体がポリアクリルアミドであることが好ましい。
 更に、前記構成に於いては、前記水溶性重合体の重量平均分子量が1000~100万の範囲内であることが好ましい。水溶性重合体の重量平均分子量を1000以上にすることにより、水溶性重合体の製造の際に、重合阻止剤となる安定剤を低減できる。その結果、水溶性重合体が金属汚染されるのを防止することができる。その一方、前記重量平均分子量を100万以下にすることにより、微細加工処理剤の粘度上昇を抑制できるので取り扱い性の向上が図れる。また、超純水等のリンス剤による微細加工処理剤のリンス除去性能の低減も防止できる。
 また、前記構成に於いては、シリコン酸化膜に対する25℃でのエッチレートが1~5000nm/分の範囲内であることが好ましい。これにより、シリコン酸化膜に対する微細加工処理の処理時間が長時間となるのを防止して生産効率の向上が図れると共に、微細加工後のシリコン酸化膜の膜厚及び表面粗度の制御を容易にする。
 本発明に係る微細加工処理方法は、前記の課題を解決する為に、前記に記載の微細加工処理剤を用いて、少なくともシリコン酸化膜、及びシリコン窒化膜が積層された積層膜を微細加工することを特徴とする。
 前記方法に於いては、前記水溶性重合体の添加により、シリコン酸化膜に対するエッチング効果を損なうことなくシリコン窒化膜に対するエッチング効果の低減が図れる微細加工処理剤を、少なくともシリコン酸化膜及びシリコン窒化膜が積層された積層膜に対し適用するので、シリコン窒化膜のエッチングを抑制しつつシリコン酸化膜の選択的な微細加工が可能になる。その結果、半導体素子の製造プロセスに於ける歩留まりの低減も図れる。
 前記シリコン酸化膜は、自然酸化膜、熱シリコン酸化膜、ノンドープシリケートガラス膜、リンドープシリケートガラス膜、ボロンドープシリケートガラス膜、リンボロンドープシリケートガラス膜、TEOS膜、又はフッ素含有シリコン酸化膜の何れかであることが好ましい。
 前記シリコン窒化膜は、シリコン窒化膜、又はシリコン酸窒化膜であることが好ましい。
 本発明は、前記に説明した手段により、以下に述べるような効果を奏する。
 即ち、本発明によれば、シリコン酸化膜とシリコン窒化膜が少なくとも積層された積層膜に対し、シリコン酸化膜のみを選択的に微細加工処理することができるので、例えば半導体装置、液晶表示装置、マイクロマシンデバイス等の製造に於いて好適な微細加工を可能にする。
 本発明の実施の一形態について、以下に説明する。
 本実施の形態に係る本発明に係る微細加工処理剤は、(a)フッ化水素又はフッ化アンモニウムの少なくとも何れか1種類と、(b)水と、(c)水溶性重合体とを含む。
 前記(a)成分に於けるフッ化水素の含有量は、微細加工処理剤の全重量に対し0.01~15重量%の範囲内であることが好適であり、0.05~10重量%の範囲内であることがより好適である。フッ化水素の含有量が0.01重量%未満であると、フッ化水素の濃度制御が困難である為、シリコン酸化膜に対するエッチレートのバラツキが大きくなる場合がある。またフッ化水素の含有量が15重量%を超えると、シリコン酸化膜に対するエッチレートが大きくなり過ぎ、エッチングの制御性が低下する。
 また、前記フッ化アンモニウムの含有量は、微細加工処理剤の全重量に対し0.1~40重量%の範囲内であることが好適であり、5~25重量%の範囲内であることがより好適である。フッ化アンモニウムの含有量が0.1重量%未満であると、フッ化アンモニウムの濃度制御が困難である為、シリコン酸化膜に対するエッチレートのバラツキが大きくなる場合がある。またフッ化アンモニウムの含有量が40重量%を超えると、フッ化アンモニウムの飽和溶解度に近づいているため、微細加工処理剤の液温が低下すると微細加工処理剤が飽和溶解度に達し、液中に結晶が析出する恐れがある。
 本実施の形態においては、前記(a)成分を含むことによりシリコン窒化膜に対するエッチレートを選択的に抑制して、エッチング選択比(シリコン酸化膜/シリコン窒化膜)を大きくすることができる。より具体的には、例えば、シリコン窒化膜に対するエッチレートが前記(a)成分を添加しない場合と比べて8割以下に抑制可能になる。
 前記(a)成分はフッ化水素又はフッ化アンモニウムの単独でもよく混合物でもよい。また、第3成分が含有されていてもよい。第3成分としては、例えば、界面活性剤や無機酸が挙げられる。但し、ギ酸等の有機酸を添加する場合、シリコン窒化膜に対するエッチングを選択的に抑制する効果が低減するので好ましくない。
 前記界面活性剤としては特に限定されず、例えば、(a)成分がフッ化水素酸単独の場合は、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルキルフェニルエーテル、及びポリエチレングリコール脂肪酸エステルからなる群より選択される少なくとも何れか1種の非イオン界面活性剤が好適に例示される。また、(a)成分がフッ化水素酸とフッ化アンモニウム混合物、またはフッ化アンモニウム単独の場合は、脂肪族アルコール、脂肪族カルボン酸、ハイドロフルオロアルキルアルコール、ハイドロフルオロアクキルカルボン酸、ハイドロフルオロアクキルカルボン酸の塩、脂肪族アミン塩、及び脂肪族スルホン酸からなる群より選択される少なくとも何れか1種で使用されてもよく、その形態としては固体のまま或いは液状で良い。
 前記界面活性剤の添加量は、微細加工処理剤の全重量に対し0.001~0.1重量%の範囲内であることが好適であり、0.003~0.05重量%の範囲内であることがより好適である。界面活性剤を添加することにより、エッチング処理を施したシリコン窒化膜や半導体基板等の表面の荒れを抑制することができる。更に、従来のエッチング液であると、超高集積化に伴い微細パターンが施された半導体基板表面に局部的に残留しやすく、レジスト間隔が0.5μm程度あるいはそれ以下になると均一的にエッチングすることがより困難となる。しかし、界面活性剤を添加した本発明の微細加工処理剤をエッチング液として使用した場合、半導体基板表面への濡れ性が改善され、エッチングの基板面内に於ける均一性が改善される。但し、前記添加量が0.001重量%未満であると、微細加工処理剤の表面張力が十分に低下しない為に、濡れ性の向上効果が不十分になる場合がある。また、前記添加量が0.1重量%を超えると、それに見合う効果が得られないだけでなく、消泡性が悪化してエッチング面に泡が付着し、エッチングむらが生じたり、微細間隙に泡が入り込んでエッチング不良を生じる場合がある。
 前記無機酸としては特に限定されず、例えば、塩酸、硫酸、リン酸等が例示できる。前記無機酸の添加量は、微細加工処理剤の全重量に対し0.01~30重量%の範囲内であることが好適であり、0.05~10重量%の範囲内であることがより好適である。前記添加量が0.01重量%未満であると、無機酸の濃度制御が困難である為、シリコン酸化膜に対するエッチレートのバラツキが大きくなるという不都合がある。その一方、30重量%を超えると、例えば塩酸を用いた場合、蒸気圧が大きくなるため、蒸発に対する薬液組成が安定しないという不都合がある。
 前記(c)成分に於ける水溶性重合体は、アクリル酸、アクリル酸アンモニウム、アクリル酸エステル、アクリルアミド、スチレンスルホン酸、スチレンスルホン酸アンモニウム、及びスチレンスルホン酸エステルからなる群より選択される少なくとも何れか1種である。
 前記に列挙した水溶性重合体のうち、アクリル酸アンモニウムとアクリル酸メチルの共重合体は、前記(a)成分がフッ化水素単独からなる場合や、フッ化水素とフッ化アンモニウムを併用した場合に特に、シリコン窒化膜に対するエッチングの抑制効果が高い。尚、アクリル酸アンモニウムとアクリル酸メチルの共重合比は9.9:0.1~5:5の範囲内であることが好ましい。前記数値範囲よりアクリル酸メチルの共重合比が大きくなるとアクリル酸アンモニウムとアクリル酸メチルの共重合体の溶解度が小さくなるという不都合を生じる場合がある。また、ポリアクリルアミドは、前記(a)成分がフッ化水素とフッ化アンモニウムを併用した場合や、フッ化水素と塩酸を併用した場合に特に、シリコン窒化膜に対するエッチングの抑制効果が高い。
 前記(c)成分に於ける水溶性重合体の含有量は、微細加工処理剤の全重量に対し0.001~10重量%の範囲内であることが好適であり、0.1~5重量%の範囲内であることがより好適である。含有量が0.001重量%未満であると、水溶性重合体の添加効果が低下し、シリコン窒化膜に対するエッチレートの抑制効果が不十分になるため好ましくない。また含有量が10重量%を超えると、微細加工処理剤中の金属不純物が増加し、また粘度も高くなるため超純水等のリンス剤による微細加工処理剤のリンス除去性能が低下する。その結果、半導体装置の製造プロセスに用いる微細加工処理剤としては適さない。
 水溶性重合体の重量平均分子量は1000~100万の範囲内であることが好適であり、1000~1万の範囲内であることがより好適である。重量平均分子量が1000未満であると、重合阻止剤となる安定剤を使用量が多くなる。その結果、微細加工処理剤に対する金属汚染等の原因となり得る場合がある。重量平均分子量が100万を超えると、微細加工処理剤の粘度が大きくなるため取り扱い性が低下する場合がある。また、超純水等のリンス剤による微細加工処理剤のリンス除去性能も低減する場合がある。
 本実施の形態の微細加工処理剤は、その効果を阻害しない範囲内に於いて、界面活性剤以外の添加剤を混合することも可能である。前記添加剤としては、例えば、過酸化水素、キレート剤等が例示できる。
 求められる微細加工表面処理剤の純度によっては、添加する水溶性重合体を蒸留、イオン交換樹脂、イオン交換膜、電気透析、濾過等を用いて精製してもよく、また微細加工処理剤の循環濾過等を行って精製してもよい。
 次に、本実施の形態に係る微細加工処理剤を用いた微細加工処理方法について、ウェットエッチングを例にして説明する。
 本実施の形態の微細加工処理剤は、種々のウェットエッチング法に採用される。エッチング方法としては、浸漬式やスプレー式等があるが、いずれの方法にも本発明の微細加工処理剤は採用され得る。浸漬式は、エッチング工程での蒸発により微細加工処理剤の組成変化が少ないので好適である。
 微細加工処理剤をエッチング液として使用した場合のエッチング温度(エッチング液の液温)は、5~50℃の範囲内であることが好適であり、15~35℃の範囲内であることがより好適であり、20~30℃の範囲内であることが更に好適である。前記範囲内であると、微細加工処理剤の蒸発を抑制することができ、組成変化を防止することができる。また、高温度では微細加工処理剤の蒸発によりエッチレートの制御が困難になり、低温度では微細加工処理剤中の成分が結晶化しやすくなり、エッチレートの低下、液中粒子の増加するというデメリットを回避できる。尚、エッチング温度によっては膜毎にエッチレートが変化するので、シリコン酸化膜に対するエッチレートとシリコン窒化膜に対するエッチレートとの差も影響を受ける場合がある。
 また、本実施の形態の微細加工処理剤は、25℃に於けるシリコン酸化膜に対するエッチレートは、1~5000nm/分の範囲内であることが好適であり、15~1000nm/分の範囲内であることがより好適である。エッチレートが1nm/分未満であると、エッチング等の微細加工処理に時間を要し、生産効率の低下を招来する場合がある。また、5000nm/分を超えると、エッチング後の膜厚の制御性の低下や基板表面(シリコン酸化膜等の形成面とは反対側の面)の荒れが顕著になり、歩留まりが低下する場合がある。
 以下に、この発明の好適な実施例を例示的に詳しく説明する。但し、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例に過ぎない。
 (シリコン酸化膜及びシリコン窒化膜に対するエッチレート)
 光学式膜厚測定装置(ナノメトリクスジャパン(株)社製、Nanospec6100)を用いてエッチング前後のシリコン酸化膜、及びシリコン窒化膜の膜厚を測定し、エッチングによる膜厚の変化を測定した。3つの異なるエッチング時間に於いて前記測定を繰り返し実施し、エッチレートを算出した。
 (水溶性重合体)
 後述する各実施例において使用した水溶性重合体、及び各比較例において使用した添加剤は下記表1に示す通りである。
Figure JPOXMLDOC01-appb-T000001
 (実施例1)
 フッ化水素(ステラケミファ(株)製、半導体用高純度グレード、濃度50重量%)7.0重量部と、フッ化アンモニウム(ステラケミファ(株)製、半導体用高純度グレード、濃度40重量%)50.0重量部と、超純水40.5重量部とを混合した溶液に、水溶性重合体としてのポリアクリル酸アンモニウム(濃度40重量%、重量平均分子量6000)2.5重量部を添加し、攪拌混合した後、混合液を25℃に調温し3時間静置した。これにより、フッ化水素3.5重量%、フッ化アンモニウム20.0重量%、ポリアクリル酸アンモニウム1重量%のエッチング液(微細加工処理剤)を調製した。
 次に、シリコン酸化膜としてのTEOS膜、及びシリコン窒化膜に対するエッチレートを測定した。更に、エッチレートの選択比(シリコン酸化膜/シリコン窒化膜)を評価した。結果を下記表2に示す。
 (実施例2~10)
 実施例2~10に於いては、表1に示す通りにフッ化水素及びフッ化アンモニウムの含有量と、水溶性重合体の含有量及び種類を変更したこと以外は、前記実施例1と同様にしてエッチング液を調製した。更に、各実施例で得られたエッチング液を用いて、TEOS膜及びシリコン窒化膜に対するエッチレート、エッチレートの選択比(シリコン酸化膜/シリコン窒化膜)を評価した。結果を下記表2に示す。
 (比較例1、2)
 比較例1~2に於いては、表1に示す通りにフッ化水素及びフッ化アンモニウムの含有量を変更し、かつ水溶性重合体を添加しなかったこと以外は、前記実施例1と同様にしてエッチング液を調製した。更に、各比較例で得られたエッチング液を用いて、TEOS膜及びシリコン窒化膜に対するエッチレート、エッチレートの選択比(シリコン酸化膜/シリコン窒化膜)を評価した。結果を下記表2に示す。
 (比較例3~7)
 比較例3~7に於いては、表1に示す通りにフッ化水素及びフッ化アンモニウムの含有量を変更し、水溶性重合体に代えて、表1に示す添加剤を用いたこと以外は、前記実施例1と同様にしてエッチング液を調製した。更に、各比較例で得られたエッチング液を用いて、TEOS膜及びシリコン窒化膜に対するエッチレート、エッチレートの選択比(シリコン酸化膜/シリコン窒化膜)を評価した。結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 前記表2からも明らかな通り、比較例3~7に係るエッチング液に添加した添加剤では、シリコン窒化膜に対するエッチレートを選択的に抑制し、シリコン窒化膜に対するシリコン酸化膜のエッチレートの選択比(シリコン酸化膜/シリコン窒化膜)を大きくすることができなかった。
 一方、実施例1~10に係る微細加工表面処理剤では、水溶性重合体を添加することにより、シリコン窒化膜に対するエッチレートを選択的に抑制し、シリコン窒化膜に対するシリコン酸化膜のエッチレートの選択比(シリコン酸化膜/シリコン窒化膜)が大きくなることが確認された。
 (実施例11)
 フッ化水素(ステラケミファ(株)製、半導体用高純度グレード、濃度50重量%)20.0重量部と、塩酸(林純薬工業(株)製、電子工業グレード、濃度36重量%)27.8重量部と、超純水51.2重量部とを混合した溶液に、水溶性重合体としてのポリアクリルアミド(濃度50重量%、重量平均分子量10000)1.0重量部を添加し、攪拌混合した後、混合液を25℃に調温し3時間静置した。これにより、フッ化水素10重量%、塩酸10重量%、ポリアクリルアミド0.5重量%のエッチング液(微細加工処理剤)を調製した。
 次に、シリコン酸化膜としてのBPSG膜、及びシリコン窒化膜に対するエッチレートを測定した。更に、エッチレートの選択比(シリコン酸化膜/シリコン窒化膜)を評価した。結果を下記表3に示す。
 (実施例12)
 実施例12に於いては、表3に示す通りにポリアクリルアミドの含有量を変更したこと以外は、前記実施例11と同様にしてエッチング液を調製した。更に、本実施例で得られたエッチング液を用いて、BPSG膜及びシリコン窒化膜に対するエッチレート、エッチレートの選択比(シリコン酸化膜/シリコン窒化膜)を評価した。結果を下記表3に示す。
 (比較例8)
 比較例8に於いては、表3に示す通りに水溶性重合体を添加しなかったこと以外は、前記実施例12と同様にしてエッチング液を調製した。更に、本比較例で得られたエッチング液を用いて、BPSG膜及びシリコン窒化膜に対するエッチレート、エッチレートの選択比(シリコン酸化膜/シリコン窒化膜)を評価した。結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 前記表3から明らかな通り、実施例11~12に係るエッチング液では、いずれも水溶性重合体としてポリアクリルアミドを添加することにより、シリコン窒化膜に対するエッチレートを選択的に抑制し、シリコン窒化膜に対するシリコン酸化膜のエッチレートの選択比(シリコン酸化膜/シリコン窒化膜)が大きくなることが確認された。
 (実施例13)
 フッ化アンモニウム(ステラケミファ(株)製、半導体用高純度グレード、濃度40重量%)25.0重量部と、塩酸(林純薬工業(株)製、電子工業グレード、濃度36重量%)27.8重量部と、超純水45.2重量部とを混合した溶液に、水溶性重合体としてのポリアクリルアミド(濃度50重量%、重量平均分子量10000)2.0重量部を添加し、撹拌混合した後、混合液を25℃に調温し3時間静置した。これにより、フッ化アンモニウム10重量%、塩酸10重量%、ポリアクリルアミド1重量%のエッチング液(微細加工処理剤)を調製した。
 次に、シリコン酸化膜としてTEOS膜、及びシリコン窒化膜に対するエッチレートを測定した。更に、エッチレートの選択比(シリコン酸化膜/シリコン窒化膜)を評価した。結果を下記表4に示す。
 (比較例9)
 比較例9に於いては、表4に示す通りに水溶性重合体を添加しなかったこと以外は、前記実施例13と同様にしてエッチング液を調製した。更に、本比較例で得られたエッチング液を用いて、TEOS膜及びシリコン窒化膜に対するエッチレート、エッチレートの選択比(シリコン酸化膜/シリコン窒化膜)を評価した。結果を下記表4に示す。
 (実施例14)
 フッ化アンモニウム(ステラケミファ(株)製、半導体用高純度グレード、濃度40重量%)25.0重量部と、リン酸(キシダ化学(株)製、電子工業グレード、濃度85重量%)23.5重量部と、超純水49.5重量部とを混合した溶液に、水溶性重合体としてのポリアクリルアミド(濃度50重量%、重量平均分子量10000)2.0重量部を添加し、撹拌混合した後、混合液を25℃に調温し3時間静置した。これにより、フッ化アンモニウム10重量%、リン酸20重量%、ポリアクリルアミド1重量%のエッチング液(微細加工処理剤)を調製した。
 次に、シリコン酸化膜としてTEOS膜、及びシリコン窒化膜に対するエッチレートを測定した。更に、エッチレートの選択比(シリコン酸化膜/シリコン窒化膜)を評価した。結果を下記表4に示す。
 (比較例10)
 比較例10に於いては、表4に示す通り、水溶性重合体を添加しなかったこと以外は、前記実施例14と同様にしてエッチング液を調製した。更に、本比較例で得られたエッチング液を用いて、TEOS膜及びシリコン窒化膜に対するエッチレート、エッチレートの選択比(シリコン酸化膜/シリコン窒化膜)を評価した。結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000004
 前記表4から明らかな通り、実施例13~14に係るエッチング液では、いずれも水溶性重合体としてポリアクリルアミドを添加することにより、シリコン窒化膜に対するエッチレートを選択的に抑制し、シリコン窒化膜に対するシリコン酸化膜のエッチレートの選択比(シリコン酸化膜/シリコン窒化膜)が大きくなることが確認された。

Claims (16)

  1.  (a)0.01~15重量%のフッ化水素、又は0.1~40重量%のフッ化アンモニウムの少なくとも何れか1種類と、
     (b)水と、
     (c)0.001~10重量%のアクリル酸、アクリル酸アンモニウム、アクリル酸エステル、アクリルアミド、スチレンスルホン酸、スチレンスルホン酸アンモニウム、及びスチレンスルホン酸エステルからなる群より選択される少なくとも何れか1種の水溶性重合体とを含むことを特徴とする微細加工処理剤。
  2.  前記水溶性重合体がアクリル酸アンモニウムとアクリル酸メチルの共重合体であることを特徴とする請求の範囲第1項に記載の微細加工処理剤。
  3.  前記水溶性重合体がポリアクリルアミドであることを特徴とする請求の範囲第1項に記載の微細加工処理剤。
  4.  前記水溶性重合体の重量平均分子量が1000~100万の範囲内であることを特徴とする請求の範囲第1項に記載の微細加工処理剤。
  5.  シリコン酸化膜に対する25℃でのエッチレートが1~5000nm/分の範囲内であることを特徴とする請求の範囲第1項に記載の微細加工処理剤。
  6.  前記微細加工処理剤が界面活性剤を含むことを特徴とする請求の範囲第1項に記載の微細加工処理剤。
  7.  前記界面活性剤の添加量が0.001~0.1重量%であることを特徴とする請求の範囲第1項に記載の微細加工処理剤。
  8.  前記(a)成分がフッ化水素のみからなり、前記界面活性剤がポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルキルフェニルエーテル、及びポリエチレングリコール脂肪酸エステルからなる群より選択される少なくとも何れか1種の非イオン界面活性剤であることを特徴とする請求の範囲第6項に記載の微細加工処理剤。
  9.  前記(a)成分がフッ化水素酸及びフッ化アンモニウム、またはフッ化アンモニウムのみからなり、前記界面活性剤が脂肪族アルコール、脂肪族カルボン酸、ハイドロフルオロアルキルアルコール、ハイドロフルオロアクキルカルボン酸、ハイドロフルオロアクキルカルボン酸の塩、脂肪族アミン塩、及び脂肪族スルホン酸からなる群より選択される少なくとも何れか1種であることを特徴とする請求の範囲第6項に記載の微細加工処理剤。
  10.  前記(a)成分には無機酸が含まれることを特徴とする請求の範囲第1項に記載の微細加工処理剤。
  11.  前記無機酸の添加量が0.01~30重量%であることを特徴とする請求の範囲第1項に記載の微細加工処理剤。
  12.  前記(a)成分には有機酸が含まれないことを特徴とする請求の範囲第1項に記載の微細加工処理剤。
  13.  請求の範囲第1項に記載の微細加工処理剤を用いて、少なくともシリコン酸化膜、及びシリコン窒化膜が積層された積層膜を微細加工することを特徴とする微細加工処理方法。
  14.  前記シリコン酸化膜は、自然酸化膜、熱シリコン酸化膜、ノンドープシリケートガラス膜、リンドープシリケートガラス膜、ボロンドープシリケートガラス膜、リンボロンドープシリケートガラス膜、TEOS膜、又はフッ素含有シリコン酸化膜の何れかであることを特徴とする請求の範囲第13項に記載の微細加工処理方法。
  15.  前記シリコン窒化膜は、シリコン窒化膜、又はシリコン酸窒化膜であることを特徴とする請求の範囲第13項に記載の微細加工処理方法。
  16.  前記微細加工処理剤は、その液温を5~50℃の範囲内で使用することを特徴とする請求の範囲第13項に記載の微細加工処理方法。
PCT/JP2009/059370 2009-05-21 2009-05-21 微細加工処理剤、及び微細加工処理方法 WO2010134184A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG2011084852A SG176129A1 (en) 2009-05-21 2009-05-21 Fine-processing agent and fine-processing method
KR1020117027630A KR101560433B1 (ko) 2009-05-21 2009-05-21 미세 가공 처리제 및 미세 가공 처리 방법
CN200980159339.3A CN102428547B (zh) 2009-05-21 2009-05-21 微细加工处理剂及微细加工处理方法
PCT/JP2009/059370 WO2010134184A1 (ja) 2009-05-21 2009-05-21 微細加工処理剤、及び微細加工処理方法
EP09844917.6A EP2434536B1 (en) 2009-05-21 2009-05-21 Etching method
US13/320,171 US8974685B2 (en) 2009-05-21 2009-05-21 Fine-processing agent and fine-processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059370 WO2010134184A1 (ja) 2009-05-21 2009-05-21 微細加工処理剤、及び微細加工処理方法

Publications (1)

Publication Number Publication Date
WO2010134184A1 true WO2010134184A1 (ja) 2010-11-25

Family

ID=43125881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059370 WO2010134184A1 (ja) 2009-05-21 2009-05-21 微細加工処理剤、及び微細加工処理方法

Country Status (6)

Country Link
US (1) US8974685B2 (ja)
EP (1) EP2434536B1 (ja)
KR (1) KR101560433B1 (ja)
CN (1) CN102428547B (ja)
SG (1) SG176129A1 (ja)
WO (1) WO2010134184A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628009A (zh) * 2011-02-03 2012-08-08 斯泰拉化工公司 清洗液及清洗方法
US20130244444A1 (en) * 2012-03-16 2013-09-19 Fujifilm Corporation Method of producing a semiconductor substrate product and etching liquid
CN106587649A (zh) * 2016-12-31 2017-04-26 庞绮琪 Tft玻璃基板薄化工艺预处理剂
CN106630658A (zh) * 2016-12-31 2017-05-10 庞绮琪 液晶显示屏玻璃基板薄化工艺预处理组合物
JP7014477B1 (ja) * 2021-05-20 2022-02-01 ステラケミファ株式会社 微細加工処理剤、及び微細加工処理方法
WO2022097558A1 (ja) * 2020-11-09 2022-05-12 ステラケミファ株式会社 微細加工処理剤、及び微細加工処理方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932486B2 (en) 2011-04-07 2015-01-13 Performance Indicator, Llc Persistent phosphors of alkaline earths modified by halides and 3d ions
RU2524344C1 (ru) * 2013-05-22 2014-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" Композиция для сухого травления пленок диоксида кремния в фотолитографическом процессе
WO2016096083A1 (en) * 2014-12-19 2016-06-23 Merck Patent Gmbh Agent for increasing etching rates
US10280082B2 (en) * 2016-10-04 2019-05-07 Honeywell International Inc. Process to recover hydrogen fluoride from hydrogen fluoride-polymer compositions
CN107043219B (zh) * 2017-01-09 2019-10-22 天津美泰真空技术有限公司 一种tft玻璃蚀刻预处理液
WO2021205632A1 (ja) * 2020-04-10 2021-10-14 株式会社日立ハイテク エッチング方法
JP7107332B2 (ja) * 2020-06-02 2022-07-27 栗田工業株式会社 分離膜の洗浄方法
KR20240011661A (ko) * 2021-05-20 2024-01-26 스텔라 케미파 코포레이션 미세 가공 처리제 및 미세 가공 처리 방법
CN115353886B (zh) * 2022-08-31 2023-08-25 湖北兴福电子材料股份有限公司 一种磷酸基蚀刻液及其配制方法
CN115799063A (zh) * 2023-01-31 2023-03-14 广州粤芯半导体技术有限公司 一种氧化物层的刻蚀方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1098155A (ja) 1996-09-09 1998-04-14 Hyundai Electron Ind Co Ltd 半導体素子のキャパシタ形成方法
JP2000022112A (ja) 1998-04-18 2000-01-21 Samsung Electron Co Ltd キャパシタ及びその製造方法
JP2001249465A (ja) * 1999-12-28 2001-09-14 Tokuyama Corp 残さ洗浄液
JP2002134468A (ja) * 2000-10-26 2002-05-10 Daikin Ind Ltd 犠牲またはマスク酸化膜除去液
JP2003297952A (ja) 2002-03-21 2003-10-17 Samsung Electronics Co Ltd 円筒型キャパシタを含む半導体素子及びその製造方法
JP2005303305A (ja) * 2004-04-08 2005-10-27 Samsung Electronics Co Ltd Paa系のエッチング液、それを利用するエッチング方法及び結果物の構造
JP2005328067A (ja) 2004-05-15 2005-11-24 Samsung Electronics Co Ltd 酸化膜除去用のエッチング液及びその製造方法と、半導体素子の製造方法
JP2008541447A (ja) * 2005-05-13 2008-11-20 サッチェム,インコーポレイテッド 酸化物の選択的な湿式エッチング

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19603572C1 (de) * 1996-02-01 1997-10-02 Sen Johann Gottler Polierflüssigkeit zum Säurepolieren von Glas, insbesondere Kristallglas, und deren Verwendung zum Säurepolieren von Glas
JP3408090B2 (ja) * 1996-12-18 2003-05-19 ステラケミファ株式会社 エッチング剤
RU2121563C1 (ru) * 1998-02-27 1998-11-10 Мамедов Борис Абдулович Способ очистки каналов продуктивного пласта
DE19844102C2 (de) * 1998-09-25 2000-07-20 Siemens Ag Herstellverfahren für eine Halbleiterstruktur
US6670281B2 (en) 1998-12-30 2003-12-30 Honeywell International Inc. HF etching and oxide scale removal
KR100522845B1 (ko) * 2000-09-01 2005-10-20 가부시끼가이샤 도꾸야마 잔류물 제거용 세정액
JP2003035963A (ja) 2001-07-24 2003-02-07 Kanto Chem Co Inc フォトレジスト残渣除去液組成物
KR100481209B1 (ko) 2002-10-01 2005-04-08 삼성전자주식회사 다중 채널을 갖는 모스 트랜지스터 및 그 제조방법
US20040194800A1 (en) * 2003-03-05 2004-10-07 Jeanne Chang Use of sulfonated polystyrene polymers in hard surface cleaners to provide easier cleaning benefit
JP4799843B2 (ja) 2003-10-17 2011-10-26 三星電子株式会社 高いエッチング選択比を有するエッチング組成物、その製造方法、これを用いた酸化膜の選択的エッチング方法、及び半導体装置の製造方法
EP1689825A4 (en) 2003-12-01 2008-09-24 Advanced Tech Materials REMOVAL OF SACRIFICIAL LAYERS ON MICROELECTROMECHANICAL SYSTEMS USING SUPERCRITICAL FLUID OR CHEMICAL FORMULATIONS
US20050118832A1 (en) 2003-12-01 2005-06-02 Korzenski Michael B. Removal of MEMS sacrificial layers using supercritical fluid/chemical formulations

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1098155A (ja) 1996-09-09 1998-04-14 Hyundai Electron Ind Co Ltd 半導体素子のキャパシタ形成方法
JP2000022112A (ja) 1998-04-18 2000-01-21 Samsung Electron Co Ltd キャパシタ及びその製造方法
JP2001249465A (ja) * 1999-12-28 2001-09-14 Tokuyama Corp 残さ洗浄液
JP2002134468A (ja) * 2000-10-26 2002-05-10 Daikin Ind Ltd 犠牲またはマスク酸化膜除去液
JP2003297952A (ja) 2002-03-21 2003-10-17 Samsung Electronics Co Ltd 円筒型キャパシタを含む半導体素子及びその製造方法
JP2005303305A (ja) * 2004-04-08 2005-10-27 Samsung Electronics Co Ltd Paa系のエッチング液、それを利用するエッチング方法及び結果物の構造
JP2005328067A (ja) 2004-05-15 2005-11-24 Samsung Electronics Co Ltd 酸化膜除去用のエッチング液及びその製造方法と、半導体素子の製造方法
JP2008541447A (ja) * 2005-05-13 2008-11-20 サッチェム,インコーポレイテッド 酸化物の選択的な湿式エッチング

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628009A (zh) * 2011-02-03 2012-08-08 斯泰拉化工公司 清洗液及清洗方法
CN102628009B (zh) * 2011-02-03 2016-01-13 斯泰拉化工公司 清洗液及清洗方法
US20130244444A1 (en) * 2012-03-16 2013-09-19 Fujifilm Corporation Method of producing a semiconductor substrate product and etching liquid
CN106587649A (zh) * 2016-12-31 2017-04-26 庞绮琪 Tft玻璃基板薄化工艺预处理剂
CN106630658A (zh) * 2016-12-31 2017-05-10 庞绮琪 液晶显示屏玻璃基板薄化工艺预处理组合物
WO2022097558A1 (ja) * 2020-11-09 2022-05-12 ステラケミファ株式会社 微細加工処理剤、及び微細加工処理方法
JP7014477B1 (ja) * 2021-05-20 2022-02-01 ステラケミファ株式会社 微細加工処理剤、及び微細加工処理方法
WO2022244275A1 (ja) * 2021-05-20 2022-11-24 ステラケミファ株式会社 微細加工処理剤、及び微細加工処理方法

Also Published As

Publication number Publication date
SG176129A1 (en) 2011-12-29
US8974685B2 (en) 2015-03-10
EP2434536A4 (en) 2012-12-19
EP2434536A1 (en) 2012-03-28
CN102428547B (zh) 2014-12-10
CN102428547A (zh) 2012-04-25
EP2434536B1 (en) 2019-03-13
US20120056126A1 (en) 2012-03-08
KR101560433B1 (ko) 2015-10-14
KR20120018335A (ko) 2012-03-02

Similar Documents

Publication Publication Date Title
WO2010134184A1 (ja) 微細加工処理剤、及び微細加工処理方法
JP5400528B2 (ja) 微細加工処理剤、及びそれを用いた微細加工処理方法
KR101097275B1 (ko) 실리콘질화막에 대한 고선택비 식각용 조성물
JP5278768B2 (ja) 単結晶ケイ素中に直角のアンダーカットを作製する方法
KR101316054B1 (ko) 실리콘 산화막 식각용 조성물 및 이를 이용한 실리콘 산화막의 식각 방법
CN102484056B (zh) 用于抑制金属微细结构体的图案倒塌的处理液和使用其的金属微细结构体的制造方法
JP5401647B2 (ja) 微細加工処理剤、及び微細加工処理方法
JP5279301B2 (ja) 微細加工処理剤、及び微細加工処理方法
TWI507508B (zh) Micro-processing agent, and micro-processing methods
KR100588812B1 (ko) 실리콘 산화막 에칭용 조성물 및 이를 이용한 실리콘산화막 에칭방법
CN102640264B (zh) 用于抑制金属微细结构体的图案倒塌的处理液和使用其的金属微细结构体的制造方法
CN114891509A (zh) 一种高选择性的缓冲氧化物蚀刻液
KR20230097179A (ko) 미세 가공 처리제 및 미세 가공 처리 방법
KR20100137746A (ko) 실리콘산화막 기준, 실리콘질화막과 티타늄질화막의 선택적 식각방법에 관한 식각용액 제조방법
KR20090030702A (ko) 절연막 제거용 식각 조성물
CN114929836B (zh) 一种非金属氧化物膜用缓冲蚀刻液
TW202309343A (zh) 用於半導體基板的蝕刻液組合物
KR20120061314A (ko) 식각액 조성물 및 이를 사용한 반도체 소자의 제조 방법
JP2010067982A (ja) エッチング液

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159339.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844917

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13320171

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117027630

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009844917

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP