WO2010131344A1 - 電力変換装置および電力変換装置のコンデンサ電圧の制御方法 - Google Patents

電力変換装置および電力変換装置のコンデンサ電圧の制御方法 Download PDF

Info

Publication number
WO2010131344A1
WO2010131344A1 PCT/JP2009/058928 JP2009058928W WO2010131344A1 WO 2010131344 A1 WO2010131344 A1 WO 2010131344A1 JP 2009058928 W JP2009058928 W JP 2009058928W WO 2010131344 A1 WO2010131344 A1 WO 2010131344A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
voltage
circuit
switching circuit
controlling
Prior art date
Application number
PCT/JP2009/058928
Other languages
English (en)
French (fr)
Inventor
河野 雅樹
啓太 畠中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN200980159240.3A priority Critical patent/CN102422524B/zh
Priority to PCT/JP2009/058928 priority patent/WO2010131344A1/ja
Priority to AU2009346120A priority patent/AU2009346120B2/en
Priority to CA 2761023 priority patent/CA2761023C/en
Priority to RU2011150483/07A priority patent/RU2482599C1/ru
Priority to US13/259,613 priority patent/US8674631B2/en
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011513161A priority patent/JP5283751B2/ja
Priority to MX2011011886A priority patent/MX2011011886A/es
Priority to KR1020117026523A priority patent/KR101285486B1/ko
Priority to EP09844618.0A priority patent/EP2432117A4/en
Publication of WO2010131344A1 publication Critical patent/WO2010131344A1/ja
Priority to ZA2011/07478A priority patent/ZA201107478B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/24Coasting mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power conversion device and a method for controlling a capacitor voltage of the power conversion device, and in particular, a power conversion device that can cope with a case where a no-load induced voltage during high-speed rotation of a synchronous machine is higher than a DC power supply voltage and
  • the present invention relates to a method for controlling a capacitor voltage of a power converter.
  • the driving mode is characterized by coasting (coasting) without acceleration or deceleration by the drive system.
  • coasting coasting
  • a no-load induced voltage is generated, and this no-load induced voltage is all connected via a diode connected in reverse parallel to the switching circuit constituting the power converter.
  • the wave is rectified, the DC voltage (voltage between terminals of the capacitor) rises to regenerate power to the power supply side, and the drive system as a whole performs a braking operation.
  • Patent Document 1 As a related technique, in Patent Document 1 below, a parallel connection circuit of a one-way conduction means and an opening / closing means is inserted in series between a power source of an inverter and an inverter arm, and a permanent magnet type synchronous motor is driven through the inverter.
  • the opening and closing means are opened while the inverter is stopped, the excitation current is controlled so that the terminal voltage of the electric motor becomes a predetermined value while the opening and closing means is opened at the start of operation of the inverter,
  • the torque current of the motor is controlled with the opening / closing means closed, and the motor is accelerated / decelerated, and when the inverter in operation is stopped, the terminal voltage of the motor is After reducing the torque current to zero while controlling the excitation current to reach the value, open the switching means, and then reduce the excitation current to stop the inverter operation.
  • Drive apparatus for an electric vehicle for permanent magnet motor is disclosed, wherein. In the technique disclosed in Patent Document 1, consideration is given to measures against overvoltage of the capacitor on the power supply side.
  • Patent Document 1 regarding the capacitor on the inverter arm side, it can be sufficiently dealt with by appropriately selecting the voltage rating of the semiconductor element such as IGBT and the capacitor on the inverter arm side.
  • the voltage rating of the IGBT and other semiconductor elements and the capacitor on the inverter arm side is properly selected, the no-load induced voltage becomes higher, the capacitor on the inverter arm side becomes overvoltage, and the inverter must be stopped. It is thought that can occur.
  • In order to discharge the capacitor on the inverter arm side it is necessary to attach a discharge circuit to the capacitor on the inverter arm side, and there is a problem that the power converter becomes larger than necessary and the cost increases.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a power conversion device that can eliminate the need to provide a discharge circuit for each capacitor and a method for controlling the capacitor voltage of the power conversion device. .
  • a power conversion device includes a circuit breaker connected in series to a DC power supply and a parallel connection to the DC power supply via the circuit breaker.
  • a second capacitor connected in parallel to the DC side of the power converter, a second switching circuit connected in series between the first capacitor and the second capacitor, and the discharge circuit are controlled
  • a control circuit that includes: a first voltage detector that detects a voltage of the first capacitor; and a second voltage detector that detects a voltage of the second capacitor.
  • the system Circuit based on the voltage and the voltage of the second capacitor of the first capacitor, and controls the discharge circuit.
  • the present invention there is no need to provide a discharge circuit for each capacitor. That is, since the discharge of the first capacitor connected in parallel to the DC power source and the second capacitor connected in parallel to the DC side of the power converter can be performed by one discharge circuit, the power converter can be reduced in size. And cost reduction by reducing the number of parts can be realized.
  • FIG. 1 is a diagram illustrating the configuration of the power conversion device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration of the control circuit 11 of the power conversion device according to the first embodiment of the present invention.
  • FIG. 3 is a waveform diagram showing an operation of a main part of the power conversion device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating the configuration of the power conversion device according to the second embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a configuration of the control circuit 15 of the power conversion device according to the second embodiment of the present invention.
  • FIG. 6 is a waveform diagram showing the main operation of the power conversion apparatus according to the second embodiment of the present invention.
  • FIG. 1 is a diagram illustrating the configuration of the power conversion device according to the first embodiment of the present invention.
  • the power converter according to the present embodiment includes a circuit breaker 2 connected in series to the DC power supply 1, a first capacitor 6 connected in parallel to the DC power supply 1 via the circuit breaker 2, and Resistor 3 connected in series and connected in parallel to capacitor 6 to suppress overvoltage, first switching circuit 4, power converter 12 driving synchronous machine 13, and DC side of power converter 12 A second capacitor 9 connected in parallel; a second switching circuit 8 connected in series between the capacitor 9 and the capacitor 6; a first voltage detector 7 for detecting the voltage of the capacitor 6; A second voltage detector 10 that detects the voltage of the capacitor 9, a switching circuit 4, a switching circuit 8, and a control circuit 11 that controls the circuit breaker 2 are provided.
  • the resistor 3 and the switching circuit 4 constitute a discharge circuit 5.
  • a permanent magnet synchronous machine using a magnetic flux generated by a permanent magnet attached to a rotor is used as the synchronous machine 13.
  • the magnetic flux by the permanent magnet is constant, and an induced voltage proportional to the product of the magnetic flux density by the permanent magnet and the rotational speed of the synchronous machine 13 is generated as a characteristic of the synchronous machine 13 alone.
  • This induced voltage is generally called a no-load induced voltage.
  • the power converter 12 cannot generate a voltage higher than the DC voltage of the input DC power source 1, the permanent magnet is used in a region where the no-load induced voltage exceeds the maximum output voltage of the power converter 12.
  • the power converter 12 performs so-called field weakening control so that the armature winding generates a magnetic flux that cancels out the magnetic flux generated by the above-described operation, and the operation up to a high rotational speed is performed.
  • an electric vehicle such as an automobile or a train is characterized in that the power converter is stopped and there is an operation mode of coasting that travels by inertia and is neither powered nor regenerated.
  • the aforementioned no-load induced voltage is generated.
  • the synchronous machine 13 in a region where the no-load induced voltage generated in the synchronous machine 13 is larger than the DC voltage of the power converter 12 (corresponding to the voltage across the capacitor 6), the synchronous machine 13 is full-wave rectified via the diodes of the switching circuits Gu, Gv, Gw, Gx, Gy, and Gz constituting the power converter 12, and the DC voltage rises to the DC power supply 1 side. Electric power is regenerated, braking force is generated in the entire system, and braking operation is performed.
  • the operation of the power converter to flow the exciting current for field-weakening control during the coasting of the electric vehicle is caused by the copper loss caused by the current flowing through the winding of the permanent magnet synchronous machine or the power converter 12. Since loss occurs, it is not preferable from the viewpoint of energy saving. In particular, in an electric vehicle where energy efficiency is the most important issue, it is a very big issue.
  • the switching circuit 8 is inserted in series between the power converter 12 and the capacitor 6, and the synchronous machine 13 is driven via the power converter 12.
  • the switching circuit 8 can be configured to include an open / close circuit such as a transistor such as an IGBT in which a one-way conduction circuit such as a diode is connected in antiparallel, and the power converter 12 is The same switching circuits Gu, Gv, Gw, Gx, Gy, Gz can be used.
  • the switching circuit 4 can also be configured to include an open / close circuit such as a transistor such as an IGBT in which a one-way conduction circuit such as a diode is connected in antiparallel.
  • the same circuit as the switching circuits Gu, Gv, Gw, Gx, Gy, Gz can be used.
  • the control circuit 11 receives the voltage value of the capacitor 9 detected by the voltage detector 10 and the voltage value of the capacitor 6 detected by the voltage detector 7 as inputs, and the circuit breaker 2, the switching circuit 4, and the switching circuit 8. To control.
  • control circuit 11 controls the transistor of the switching circuit 8 to be on in order to supply power from the DC power source 1 to the power converter 12.
  • the control circuit 11 controls the transistor of the switching circuit 8 to be turned off.
  • the capacitor 9 passes through the diodes of the switching circuits Gu, Gv, Gw, Gx, Gy, and Gz constituting the power converter 12.
  • the capacitor 9 is immediately charged and the entire system is not braked.
  • the transistor of the switching circuit 8 when the transistor of the switching circuit 8 is in the OFF state, the flow of power in the direction from the power converter 12 side to the DC power supply 1 side is interrupted by the switching circuit 8, and thus occurs in the synchronous machine 13 during coasting. It is possible to prevent unnecessary braking force generated due to regeneration of the no-load induced voltage to the DC power supply 1 side and the accompanying power loss, and further the voltage of the DC power supply 1 rises above the normal voltage. Can be prevented.
  • FIG. 2 shows an example of the configuration of the control circuit 11.
  • the control circuit 11 receives the voltage value Vc of the capacitor 9 and the voltage value Vfc of the capacitor 6, and configures the switching circuit 8 and the discharge circuit 5 in accordance with the voltage value Vc of the capacitor 9 and the voltage value Vfc of the capacitor 6. Outputs a signal for controlling the switching circuit 4 and the current breaker 2.
  • the comparator 16a compares the voltage value Vc of the capacitor 9 with a predetermined threshold value (in this example, 1850V) indicating the set value of the overvoltage, and the voltage value of the capacitor 9 When Vc becomes equal to or higher than a predetermined threshold value (here, 1850 V) indicating the set value of the overvoltage, the comparator 16a outputs a value (logic signal) “1”.
  • a predetermined threshold value here, 1850 V
  • the value “1” output from the comparator 16a is input to a logical product (AND) unit 19a. Note that the output signal of the logical product (AND) unit 19 a is held by the holding unit 18 at a value of “1”.
  • the holding (latch) unit 18 holds the output value “1” of the comparator 16a, and the holding condition is determined by the inverting (NOT) unit 17a and the comparator 16b.
  • the voltage value Vc of the capacitor 9 is input to the comparator 16b, and the voltage value Vc of the capacitor 9 is compared with a predetermined threshold (here, 1600V as an example), and the comparator 16b When Vc becomes lower than a predetermined threshold (here, 1600 V), a value “1” is output.
  • the output of the comparator 16b is input to the inverting (NOT) unit 17a and inverted.
  • the holding (latch) unit 18 holds the output “1” of the comparator 16a.
  • the voltage value Vc of the capacitor 9 becomes larger than a predetermined threshold (here, 1600 V)
  • the output of the comparator 16b becomes “0”
  • the output of the inverting (NOT) 17a becomes “1”.
  • the unit 18 releases the hold state and changes the value of the comparator 16a from “1” to “0”. That is, once the voltage Vc of the capacitor 9 reaches 1850 V, a control signal SCS (described later) for controlling the circuit breaker 2 is “0” until the voltage Vc is discharged to 1600 V.
  • the voltage value Vfc of the capacitor 6 is input to the comparator 16c and compared with a predetermined threshold value (here, 1600V as an example), and the voltage value Vfc of the capacitor 6 is set to a predetermined threshold value (here, 1600V) or more, the comparator 16c outputs the value “1”.
  • a predetermined threshold value here, 1600V as an example
  • the comparator 16c outputs the value “1”.
  • the value “1” output from the comparator 16c is input to a logical product (AND) unit 19a.
  • the AND circuit 19a outputs a signal “1” when both the value output from the comparator 16a and the value output from the comparator 16c are “1”. In other cases, the logical product (AND) unit 19a outputs a signal “0”.
  • the output signal of the AND circuit 19a is input to the inverting (NOT) unit 17b, and the output signal of the inverting (NOT) unit 17b is the output of the ON (inverting (NOT) unit 17b that controls the circuit breaker 2.
  • the control signal SCS In the case of “1”) / OFF (when the output of the inverting (NOT) unit 17 b is “0”), the control signal SCS.
  • the output signal of the comparator 16a is controlled to turn on the switching circuit 4 (when the output of the time element 20a is “1”) / OFF (when the output of the time element 20a is “0”) through the time element 20a.
  • Signal GS. The time element 20a outputs the input signal with a timing delayed by a predetermined time (delay time). This has an effect of preventing the switching circuit 4 from being turned ON (through current flows) before the current breaker 2 is opened (OFF). For this reason, the delay time of the time element 20a is set in anticipation of the time when the circuit breaker 2 is opened (set to a period of time t1 to t2 in FIG. 3 described later (for example, about 100 msec)).
  • the output signal of the time element 20a is further input to the time element 20b, and the output signal of the time element 20b is input to the AND circuit 19b together with the output signal of the comparator 16b.
  • the output of the AND circuit 19b is ON of the switching circuit 8 (when the output of the AND circuit 19b is “1”) / OFF (the output of the AND circuit 19b is “0”). Case) Control signal OS.
  • the output signal of the time element 20a is further input to the time element 20b, and the timing at which the switching circuit 8 is turned on is delayed from the timing at which the switching circuit 4 is turned on, thereby preventing a large current from flowing through the switching circuit 8. This is effective in preventing the switching circuit 8 from being broken.
  • Embodiment 1 considers the case where the voltage of the capacitor 9 becomes a voltage (overvoltage) larger than expected (for example, greater than an assumed threshold) in such a circuit configuration.
  • the no-load induced voltage generated in the synchronous machine 13 is larger than the voltage of the DC power supply 1, and therefore the voltage of the capacitor 9 can often be higher than expected depending on the control method. Therefore, it can be said that the method of controlling the voltage of the capacitor 9 (discharging the electric charge) is important.
  • the control circuit 11 controls the transistor of the switching circuit 4 to the on state before controlling the transistor of the switching circuit 8 to the on state again.
  • the control circuit 11 controls the circuit breaker 2 to be in an OFF state so that power is not regenerated to the DC power supply 1 side.
  • the control circuit 11 controls the transistors of the switching circuit 4 to be on. As a result, since the electric charge of the capacitor 6 is discharged, the voltage of the capacitor 6 detected by the voltage detector 7 decreases.
  • the control circuit 11 controls the transistor of the switching circuit 8 to be on while keeping the transistor of the switching circuit 4 on. Thereby, the electric charge of the capacitor 9 is discharged.
  • the transistor of the switching circuit 8 is controlled to be turned on, thereby preventing a large short-circuit current from flowing through the switching circuit 8. Can prevent destruction.
  • the discharge of the electric charges of the two capacitors 9 and 6 as described above can be performed by one discharge circuit 5.
  • the control circuit 11 controls the transistor of the switching circuit 4 to be in an OFF state. In accordance with this, the control circuit 11 also controls the transistor of the switching circuit 8 to be in an OFF state. By performing the control as described above, the control circuit 11 can prevent the no-load induced voltage generated in the synchronous machine 13 from flowing into (applied to) the DC power supply 1 or the capacitor 6.
  • the power converter can be reduced in size and the cost can be reduced by reducing the number of components.
  • FIG. 4 is a diagram showing a configuration of the power conversion device according to the second embodiment of the present invention.
  • symbol is attached
  • the power converter according to the second embodiment is characterized by further including a current detector 14 that detects a current flowing through the switching circuit 8. Accordingly, the power converter according to the second embodiment includes a control circuit 15 instead of the control circuit 11 of the power converter according to the first embodiment.
  • FIG. 5 shows an example of the configuration of the control circuit 15.
  • the current id detected by the current detector 14 that detects the current flowing through the switching circuit 8 is input, and id is a predetermined threshold (here, 1000 A as an example)
  • a comparator 16d and a logical product (AND) unit 19c are added so that the switching circuit 8 and the switching circuit 4 are turned on only when lower.
  • a predetermined threshold here, 1000 A
  • the control circuit 15 can control the transistors of the switching circuit 8 and the transistors of the switching circuit 4 to be in an off state. .
  • the control circuit 15 turns off the transistors of the switching circuit 8 and the transistors of the switching circuit 4. Control. Thereby, there exists an effect which can prevent that the switching circuit 8 is destroyed by overcurrent. Further, by turning off the transistor of the switching circuit 4 together with the transistor of the switching circuit 8, it is possible to prevent the voltage of the capacitor 6 from dropping, and the capacitor when the transistor of the switching circuit 8 is turned on next time. Thus, the potential difference between the voltage 9 and the voltage of the capacitor 6 can be made as small as possible, and a large current due to the potential difference between the voltage of the capacitor 9 and the voltage of the capacitor 6 can be prevented. As a factor that causes a large current to flow through the switching circuit 8 at time t4, there is a case where the switching circuit 4 is not turned on (the switching circuit 4 is turned off) and the switching circuit 8 is turned on. It is done.
  • control circuit 15 controls the transistor of the switching circuit 4 to be turned on again in order to discharge the capacitor 9 again. Furthermore, immediately thereafter, at time t6, the control circuit 15 controls the transistor of the switching circuit 8 to be turned on, and discharges the capacitor 9.
  • the control circuit 15 controls the transistor of the switching circuit 4 to an off state. In accordance with this, the control circuit 15 also controls the transistor of the switching circuit 8 to be in an OFF state. By performing the control as described above, the control circuit 15 can prevent the no-load induced voltage generated in the synchronous machine 13 from flowing into (applied to) the DC power supply 1 or the capacitor 6.
  • the power converter can be reduced in size and the cost can be reduced by reducing the number of components.
  • the power converter according to the present invention is useful for the power converter and the method for controlling the capacitor voltage of the power converter, and in particular, the no-load induced voltage at the time of high-speed rotation of the synchronous machine is higher than the DC power supply voltage. It is suitable for a power conversion device that can handle high cases and a capacitor voltage control method for the power conversion device.

Abstract

 直流電源に直列に接続された断流器と、直流電源に断流器を介して並列に接続された第1のコンデンサと、直列に接続された抵抗器、および第1のスイッチング回路を含み、第1のコンデンサに並列に接続された放電回路と、同期機を駆動させる電力変換器と、電力変換器の直流側に並列に接続された第2のコンデンサと、第1のコンデンサと第2のコンデンサとの間に直列に接続された第2のスイッチング回路と、放電回路を制御する制御回路と、を備え、制御回路は、第1のコンデンサの電圧および第2のコンデンサの電圧に基づいて、放電回路を制御する。

Description

電力変換装置および電力変換装置のコンデンサ電圧の制御方法
 本発明は、電力変換装置および電力変換装置のコンデンサ電圧の制御方法に関するものであり、特に、同期機の高速回転時の無負荷誘起電圧が直流電源電圧より高い場合に対応可能な電力変換装置および電力変換装置のコンデンサ電圧の制御方法に関する。
 自動車や電車では、駆動システムによる加速、減速を行なわずに惰性で走行(惰行)することが運転モードの特徴である。同期機を使用する駆動システムでは、このような惰行の場合に、無負荷誘起電圧が発生し、この無負荷誘起電圧が電力変換装置を構成するスイッチング回路に逆並列接続されたダイオードを介して全波整流され、直流電圧(コンデンサの端子間電圧)が上昇して電源側に電力を回生し、駆動システム全体としてはブレーキ動作を行なうことになる。
 関連する技術として、下記の特許文献1には、インバータの電源とインバータアーム間に一方向導通手段と開閉手段との並列接続回路を直列に挿入し、インバータを介して永久磁石形同期電動機を駆動する駆動装置であって、インバータの停止中には開閉手段を開放し、インバータの運転開始時には開閉手段を開放したままで、電動機の端子電圧が所定の値になるように励磁電流を制御し、電動機の端子電圧が所定値に達したとき開閉手段を閉とした状態で電動機のトルク電流を制御して電動機を加減速運転し、運転中のインバータを停止するときは、電動機の端子電圧が所定値になるように励磁電流を制御したままでトルク電流をゼロに減少させた後、開閉手段を開放し、しかる後励磁電流を減少させてインバータの運転を停止させることを特徴とする電気車用永久磁石電動機の駆動装置が開示されている。特許文献1に開示された技術では、電源側のコンデンサの過電圧対策に関して考慮されている。
特開2000-308388号公報
 特許文献1では、インバータアーム側のコンデンサに関しては、IGBT等の半導体素子とインバータアーム側のコンデンサの電圧定格を適切に選ぶことで十分に対処できることとされている。しかしながら、IGBT等の半導体素子とインバータアーム側のコンデンサの電圧定格を適切に選んだとしても、無負荷誘起電圧がより高くなり、インバータアーム側のコンデンサが過電圧となり、インバータの停止を余儀なくされる場合が起こり得ると考えられる。そして、インバータアーム側のコンデンサを放電するためには、インバータアーム側のコンデンサに放電回路を付属させる必要があり、電力変換装置が必要以上に大きくなることやコストが大きくなるという課題があった。
 本発明は、上記に鑑みてなされたものであって、コンデンサ毎に放電回路を設ける必要をなくすことが可能な電力変換装置および電力変換装置のコンデンサ電圧の制御方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる電力変換装置は、直流電源に直列に接続された断流器と、前記直流電源に前記断流器を介して並列に接続された第1のコンデンサと、前記第1のコンデンサに並列に接続され、直列に接続された抵抗器、および第1のスイッチング回路を含む放電回路と、同期機を駆動させる電力変換器と、前記電力変換器の直流側に並列に接続された第2のコンデンサと、前記第1のコンデンサと前記第2のコンデンサとの間に直列に接続された第2のスイッチング回路と、前記放電回路を制御する制御回路と、を備えた電力変換装置において、前記第1のコンデンサの電圧を検出する第1の電圧検出器と、前記第2のコンデンサの電圧を検出する第2の電圧検出器と、を更に備え、前記制御回路は、前記第1のコンデンサの電圧および前記第2のコンデンサの電圧に基づいて、前記放電回路を制御することを特徴とする。
 本発明によれば、コンデンサ毎に放電回路を設ける必要をなくすことができる。つまり、直流電源に並列に接続された第1のコンデンサと電力変換器の直流側に並列に接続された第2のコンデンサの放電を1つの放電回路で行うことができるので、電力変換装置の小型化、部品点数低減による低コスト化を実現することができるという効果を奏する。
図1は、本発明の実施の形態1にかかる電力変換装置の構成を示す図である。 図2は、本発明の実施の形態1にかかる電力変換装置の制御回路11の構成を示す図である。 図3は、本発明の実施の形態1にかかる電力変換装置の要部動作を示す波形図である。 図4は、本発明の実施の形態2にかかる電力変換装置の構成を示す図である。 図5は、本発明の実施の形態2にかかる電力変換装置の制御回路15の構成を示す図である。 図6は、本発明の実施の形態2にかかる電力変換装置の要部動作を示す波形図である。
 1 直流電源
 2 断流器
 3 抵抗器
 4、8 スイッチング回路
 5 放電回路
 6、9 コンデンサ
 7、10 電圧検出器
 11、15 制御回路
 12 電力変換器
 13 同期機
 14 電流検出器
 16a、16b、16c、16d 比較器
 17a、17b 反転(NOT)器
 18 保持(ラッチ)器
 19a、19b、19c 論理積(AND)器
 20a、20b 時素器
 以下に、本発明にかかる電力変換装置の実施の形態を図面に基づいて詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる電力変換装置の構成を示す図である。本実施の形態にかかる電力変換装置は、直流電源1に直列に接続された断流器2と、直流電源1に断流器2を介して並列に接続された第1のコンデンサ6と、互いに直列に接続されて、コンデンサ6に並列に接続され過電圧を抑制する抵抗器3、および第1のスイッチング回路4と、同期機13を駆動させる電力変換器12と、電力変換器12の直流側に並列に接続された第2のコンデンサ9と、コンデンサ9とコンデンサ6との間に直列に接続された第2のスイッチング回路8と、コンデンサ6の電圧を検出する第1の電圧検出器7と、コンデンサ9の電圧を検出する第2の電圧検出器10と、スイッチング回路4、スイッチング回路8、および断流器2を制御する制御回路11と、を備えている。抵抗器3、およびスイッチング回路4は、放電回路5を構成する。
 実施の形態1では、同期機13として、回転子に取り付けられた永久磁石による磁束を用いた永久磁石同期機を利用している。永久磁石同期機においては、永久磁石による磁束が一定であり、同期機13単体の特性として、永久磁石による磁束密度と同期機13の回転速度との積に比例した誘起電圧を発生する。この誘起電圧は、一般に無負荷誘起電圧と呼ばれている。これに対して、電力変換器12は入力の直流電源1の直流電圧以上の電圧を発生することはできないことから、無負荷誘起電圧が電力変換器12の最大出力電圧を越える領域では、永久磁石による磁束を打ち消すような磁束を電機子巻線で発生させるように、電力変換器12でいわゆる弱め界磁制御を行って、高回転速度までの運転を行う。
 一般に、自動車や電車などの電気車では、電力変換器が停止していて、力行でもなく回生でもない、惰性で走行する惰行という運転モードがあることが特徴である。そして、永久磁石同期機を利用した電気車の惰行においては、前述した無負荷誘起電圧が発生する。
 図1に示す実施の形態1にかかる電力変換装置において、同期機13で発生する無負荷誘起電圧が電力変換器12の直流電圧(コンデンサ6の両端電圧に相当)よりも大きな領域では、同期機13で発生する無負荷誘起電圧が電力変換器12を構成するスイッチング回路Gu、Gv、Gw、Gx、Gy、Gzのダイオードを介して全波整流され、直流電圧が上昇し、直流電源1側に電力が回生され、システム全体としてはブレーキ力が発生し、ブレーキ動作が行われることになる。
 また、電気車の惰行中に、弱め界磁制御のための励磁電流を流すべく電力変換装置が運転することは、永久磁石同期機の巻線に電流を流すことにより生じる銅損や電力変換器12の損失が発生するので、省エネルギーの観点から好ましいことではない。特に、エネルギー効率が最重要課題の電気自動車においては、非常に大きな課題である。
 そこで、実施の形態1では、図1に示すように、電力変換器12とコンデンサ6の間にスイッチング回路8を直列に挿入し、電力変換器12を介して同期機13を駆動する。なお、実施の形態1において、スイッチング回路8は、例えばダイオード等の一方向導通回路を逆並列に接続した例えばIGBT等のトランジスタ等の開閉回路を含んで構成することができ、電力変換器12を構成するスイッチング回路Gu、Gv、Gw、Gx、Gy、Gzと同じものを使用することができる。また、スイッチング回路4も、スイッチング回路8と同様に、例えばダイオード等の一方向導通回路を逆並列に接続した例えばIGBT等のトランジスタ等の開閉回路を含んで構成することができ、電力変換器12を構成するスイッチング回路Gu、Gv、Gw、Gx、Gy、Gzと同じものを使用することができる。
 制御回路11は、電圧検出器10によって検出されたコンデンサ9の電圧値、および電圧検出器7によって検出されたコンデンサ6の電圧値を入力として、断流器2、スイッチング回路4、およびスイッチング回路8を制御する。
 電力変換器12が加速運転を行う場合には、制御回路11は、直流電源1から電力変換器12に電力を供給するため、スイッチング回路8のトランジスタをオン状態に制御する。
 また、電力変換器12が運転を停止する場合には、制御回路11は、スイッチング回路8のトランジスタをオフ状態に制御する。このときに同期機13で発生する無負荷誘起電圧がコンデンサ9の電圧より大きい場合は、コンデンサ9は電力変換器12を構成するスイッチング回路Gu、Gv、Gw、Gx、Gy、Gzのダイオードを介してピーク充電されるが、コンデンサ9の容量を適切に選択することにより、コンデンサ9は即座に充電され、システム全体としてブレーキ動作になることはない。
 また、スイッチング回路8のトランジスタがオフ状態の場合には、電力変換器12側から直流電源1側へという方向の電力の流れがスイッチング回路8によって遮断されるので、惰行時に同期機13で発生する無負荷誘起電圧が直流電源1側に回生されることによって生じる不要なブレーキ力の発生とそれに伴う電力の損失を防ぐことができ、さらに、直流電源1の電圧が通常の電圧以上に上昇することを防ぐことができる。
 図2に制御回路11の構成の一例を示す。制御回路11は、コンデンサ9の電圧値Vcとコンデンサ6の電圧値Vfcを入力とし、コンデンサ9の電圧値Vcとコンデンサ6の電圧値Vfcの値に応じて、スイッチング回路8、放電回路5を構成するスイッチング回路4、および断流器2を制御する信号を出力する。
 図2に示すように、コンデンサ9の電圧値Vcと過電圧の設定値を示す所定の閾値(ここでは、一例として、1850Vとする。)との比較を比較器16aで行い、コンデンサ9の電圧値Vcが過電圧の設定値を示す所定の閾値(ここでは、1850V)以上になると、比較器16aは、値(論理信号)「1」を出力する。その比較器16aから出力された値「1」は、論理積(AND)器19aに入力される。なお、論理積(AND)器19aの出力信号は、保持(ラッチ)器18によって、「1」の値を保持されるようになっている。つまり、保持(ラッチ)器18は比較器16aの出力の値「1」を保持するようになっており、その保持条件は反転(NOT)器17aと比較器16bで決められている。コンデンサ9の電圧値Vcは比較器16bに入力され、コンデンサ9の電圧値Vcは所定の閾値(ここでは、一例として、1600Vとする。)と比較され、比較器16bは、コンデンサ9の電圧値Vcが所定の閾値(ここでは、1600V)より低くなると値「1」を出力する。その比較器16bの出力は、反転(NOT)器17aに入力され、反転される。つまり、値「1」が反転(NOT)器17aに入力されると、反転(NOT)器17aから値「0」が出力されることになる。反転(NOT)器17aの出力が「0」の場合は、保持(ラッチ)器18は、比較器16aの出力「1」を保持したままになる。コンデンサ9の電圧値Vcが所定の閾値(ここでは、1600V)より大きくなると比較器16bの出力は「0」となり、反転(NOT)器17aの出力は、「1」となるため、保持(ラッチ)器18は保持状態を解除して、比較器16aの値を「1」から「0」に変更する。つまり、コンデンサ9の電圧Vcが一度1850Vになったら、1600Vまで放電されるまで、断流器2を制御する制御信号SCS(後述)は「0」となる。
 また、コンデンサ6の電圧値Vfcは、比較器16cに入力され、所定の閾値(ここでは、一例として、1600Vとする。)と比較され、コンデンサ6の電圧値Vfcが所定の閾値(ここでは、1600V)以上になると、比較器16cは、値「1」を出力する。その比較器16cから出力された値「1」は、論理積(AND)器19aに入力される。
 論理積(AND)器19aは、比較器16aから出力された値と比較器16cから出力された値が両方とも「1」である場合に信号「1」を出力する。なお、それ以外は、論理積(AND)器19aは、信号「0」を出力する。
 論理積(AND)器19aの出力信号は反転(NOT)器17bに入力され、反転(NOT)器17bの出力信号は、断流器2を制御するON(反転(NOT)器17bの出力が「1」の場合)/OFF(反転(NOT)器17bの出力が「0」の場合)制御信号SCSとなる。
 比較器16aの出力信号は、時素器20aを通して、スイッチング回路4のON(時素器20aの出力が「1」の場合)/OFF(時素器20aの出力が「0」の場合)制御信号GSとなる。なお、時素器20aは、入力信号をある所定の時間(遅延時間)だけタイミングを遅らせて出力するものである。これは、断流器2が開放(OFF)されるより、先にスイッチング回路4がONすること(貫通電流が流れること)を防止する効果がある。そのため、時素器20aの遅延時間は、断流器2の開放する時間を見越して設定する(後述する図3における時刻t1~t2の期間分(例えば、100msec程度)に設定する)。
 また、時素器20aの出力信号は更に時素器20bに入力され、その時素器20bの出力信号は比較器16bの出力信号と合わせて論理積(AND)器19bに入力される。その論理積(AND)器19bの出力がスイッチング回路8のON(論理積(AND)器19bの出力が「1」の場合)/OFF(論理積(AND)器19bの出力が「0」の場合)制御信号OSとなる。なお、時素器20aの出力信号を更に時素器20bに入力し、スイッチング回路8がONするタイミングをスイッチング回路4がONするタイミングより遅らせることにより、スイッチング回路8に大きな電流が流れることを防止でき、スイッチング回路8が壊れることを防止できる効果がある。
 実施の形態1は、このような回路構成においてコンデンサ9の電圧が想定以上(例えば、想定の閾値以上等)に大きい電圧(過電圧)になった場合を考慮したものである。前述したように同期機13で発生する無負荷誘起電圧は直流電源1の電圧より大きいので、制御方法などによっては、コンデンサ9の電圧が想定以上に大きい電圧になることがしばしば起こり得る。そのため、コンデンサ9の電圧を制御する(電荷を放電する)方法は重要であると言える。
 次に、実施の形態1の動作について、図3を参照しながら説明する。
 図3の時刻t0において、電圧検出器10によって検出可能なコンデンサ9の電圧が何らかの要因で上昇し過電圧になると、電力変換器12の動作は停止し、制御回路11は、スイッチング回路8のトランジスタをオフ状態に制御する。
 このようにスイッチング回路8のトランジスタをオフ状態に制御した後、コンデンサ9の電圧とコンデンサ6の電圧に電位差がある状態でスイッチング回路8のトランジスタを再びオン状態にすると、スイッチング回路8のインピーダンスが小さいので、スイッチング回路8に大きな短絡電流が流れ、スイッチング回路8が破壊されることになる。これを防止するため、以下に説明するように、実施の形態1では、制御回路11は、スイッチング回路8のトランジスタを再びオン状態に制御する前に、スイッチング回路4のトランジスタをオン状態に制御する。
 時刻t1において、制御回路11は、断流器2をオフ状態に制御して、直流電源1側に電力が回生しないようにする。
 時刻t2において、制御回路11は、スイッチング回路4のトランジスタをオン状態に制御する。これにより、コンデンサ6の電荷が放電されるので、電圧検出器7によって検出されたコンデンサ6の電圧が下がることになる。
 時刻t3において、制御回路11は、スイッチング回路4のトランジスタをオン状態にしたまま、スイッチング回路8のトランジスタをオン状態に制御する。これにより、コンデンサ9の電荷が放電される。このように、コンデンサ9の電圧とコンデンサ6の電圧の電位差を少なくした後でスイッチング回路8のトランジスタをオン状態に制御することで、スイッチング回路8に大きな短絡電流が流れることを防ぎ、スイッチング回路8の破壊を防ぐことができる。実施の形態1においては、上記のような、2つのコンデンサ9とコンデンサ6の電荷の放電を、1つの放電回路5で実施することができる。
 時刻t4において、コンデンサ9の電荷が放電され、コンデンサ9の電圧が電力変換器12が起動できる電圧にまで低下すると、制御回路11は、スイッチング回路4のトランジスタをオフ状態に制御する。また、それに合わせて、制御回路11は、スイッチング回路8のトランジスタもオフ状態に制御する。制御回路11が以上のような制御を行うことにより、同期機13で発生する無負荷誘起電圧が直流電源1やコンデンサ6に流れ込む(印加される)のを防止することができる。
 以上説明したように、実施の形態1においては、コンデンサ9、およびコンデンサ6の各々に放電回路を設ける必要をなくすことができる。すなわち、コンデンサ9とコンデンサ6の放電を1つの放電回路5で行うことができるので、電力変換装置の小型化、部品点数低減による低コスト化を実現することができるという効果を奏する。
実施の形態2.
 次に、本発明の実施の形態2について説明する。図4は、この発明の実施の形態2の電力変換装置の構成を示す図である。
 なお、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ説明する。
 実施の形態2にかかる電力変換装置においては、実施の形態1にかかる電力変換装置と比較して、スイッチング回路8に流れる電流を検出する電流検出器14を更に備えていることが特徴である。また、それに伴い、実施の形態2にかかる電力変換装置においては、実施の形態1にかかる電力変換装置の制御回路11に代えて、制御回路15を備えている。
 図5に制御回路15の構成の一例を示す。実施の形態1の制御回路11と比較して、スイッチング回路8に流れる電流を検出する電流検出器14によって検出された電流idを入力として、idが所定の閾値(ここでは、一例として、1000Aとする。)より低い場合のみスイッチング回路8及びスイッチング回路4をONするように、比較器16dと論理積(AND)器19cを追加する。そのことにより、スイッチング回路8に流れる電流値が所定の閾値(ここでは、1000A)より大きくなると、制御回路15は、スイッチング回路8のトランジスタとスイッチング回路4のトランジスタをオフ状態に制御することができる。
 次に、実施の形態2の動作について、図6を参照しながら説明する。図6の時刻t3までは、実施の形態2の動作は、先に説明した実施の形態1の動作と同じであるので、説明を省略する。
 図6の時刻t4において、電流検出器14で検出されたスイッチング回路8に流れる電流値が所定の閾値より大きくなると、制御回路15は、スイッチング回路8のトランジスタとスイッチング回路4のトランジスタをオフ状態に制御する。これにより、スイッチング回路8が過電流によって破壊されることを防止できる効果を奏する。また、スイッチング回路8のトランジスタと合わせてスイッチング回路4のトランジスタをオフ状態にすることで、コンデンサ6の電圧が下がることを防止して、次にスイッチング回路8のトランジスタをオン状態にするときにコンデンサ9の電圧とコンデンサ6の電圧の電位差をできるだけ小さくすることができ、コンデンサ9の電圧とコンデンサ6の電圧の電位差による大きな電流が流れるのを防止できる効果を奏する。なお、時刻t4のようにスイッチング回路8に大きな電流が流れる要因として、スイッチング回路4がオン状態にされずに(スイッチング回路4がオフ状態で)スイッチング回路8がオン状態にされる場合などが考えられる。
 その後、時刻t5において、制御回路15は、再度、コンデンサ9の電荷の放電を行うためにスイッチング回路4のトランジスタをオン状態に制御する。さらにその後、直ぐに、時刻t6において、制御回路15は、スイッチング回路8のトランジスタをオン状態に制御して、コンデンサ9の電荷を放電する。
 時刻t6においてスイッチング回路8のトランジスタがオン状態に制御されてコンデンサ9の電荷が放電されることにより、時刻t7において、コンデンサ9の電圧が電力変換器12が起動できる電圧にまで低下すると、制御回路15は、スイッチング回路4のトランジスタをオフ状態に制御する。また、それに合わせて、制御回路15は、スイッチング回路8のトランジスタもオフ状態に制御する。制御回路15が以上のような制御を行うことにより、同期機13で発生する無負荷誘起電圧が直流電源1やコンデンサ6に流れ込む(印加される)のを防止することができる。
 以上説明したように、実施の形態2においては、コンデンサ9、およびコンデンサ6の各々に放電回路を設ける必要をなくすことができる。すなわち、コンデンサ9とコンデンサ6の放電を1つの放電回路5で行うことができるので、電力変換装置の小型化、部品点数低減による低コスト化を実現することができるという効果を奏する。
 また、スイッチング回路4が故障した場合などに放電を行おうとしてスイッチング回路8をオンした時にスイッチング回路8が破壊するのを防止することができる。そのため、スイッチング回路8の信頼性を向上できるという効果を奏する。
 以上のように、本発明にかかる電力変換装置は、電力変換装置および電力変換装置のコンデンサ電圧の制御方法に有用であり、特に、同期機の高速回転時の無負荷誘起電圧が直流電源電圧より高い場合に対応可能な電力変換装置および電力変換装置のコンデンサ電圧の制御方法に適している。

Claims (8)

  1.  直流電源に直列に接続された断流器と、
     前記直流電源に前記断流器を介して並列に接続された第1のコンデンサと、
     前記第1のコンデンサに並列に接続され、直列に接続された抵抗器、および第1のスイッチング回路を含む放電回路と、
     同期機を駆動させる電力変換器と、
     前記電力変換器の直流側に並列に接続された第2のコンデンサと、
     前記第1のコンデンサと前記第2のコンデンサとの間に直列に接続された第2のスイッチング回路と、
     前記放電回路を制御する制御回路と、
     を備えた電力変換装置において、
     前記第1のコンデンサの電圧を検出する第1の電圧検出器と、
     前記第2のコンデンサの電圧を検出する第2の電圧検出器と、
     を更に備え、
     前記制御回路は、前記第1のコンデンサの電圧および前記第2のコンデンサの電圧に基づいて、前記放電回路を制御することを特徴とする電力変換装置。
  2.  前記制御回路は、前記第2のコンデンサを放電する場合に、前記断流器をオフ状態に制御し、前記第1のスイッチング回路をオン状態に制御して前記第1のコンデンサを放電し、その後に、前記第2のスイッチング回路をオン状態に制御して前記第2のコンデンサを放電することを特徴とする請求項1記載の電力変換装置。
  3.  前記制御回路は、前記第1のコンデンサの電圧が第1の電圧閾値以上になり且つ前記第2のコンデンサの電圧が第2の電圧閾値以上になったときに、前記断流器をオフ状態に制御し、前記断流器が開放した後に、前記第1のスイッチング回路をオン状態に制御して前記第1のコンデンサを放電し、前記第1のスイッチング回路がオン状態になった後且つ前記第2のコンデンサの電圧が第3の電圧閾値より低くなったときに、前記第2のスイッチング回路をオン状態に制御して前記第2のコンデンサを放電することを特徴とする請求項1記載の電力変換装置。
  4.  前記第2のスイッチング回路に流れる電流を検出する電流検出器を更に備え、
     前記制御回路は、前記第2のコンデンサを放電するときに前記電流検出器によって検出された前記第2のスイッチング回路に流れる電流が電流閾値より大きくなると前記第2のスイッチング回路をオフ状態に制御すること
     を特徴とする請求項1~3のいずれか1つに記載の電力変換装置。
  5.  直流電源に直列に接続された断流器と、前記直流電源に前記断流器を介して並列に接続された第1のコンデンサと、直列に接続された抵抗器、および第1のスイッチング回路を含み、前記第1のコンデンサに並列に接続された放電回路と、同期機を駆動させる電力変換器と、前記電力変換器の直流側に並列に接続された第2のコンデンサと、前記第1のコンデンサと前記第2のコンデンサとの間に直列に接続された第2のスイッチング回路と、前記第1および前記第2のスイッチング回路、ならびに前記断流器を制御する制御回路と、を備えた電力変換装置のコンデンサ電圧の制御方法であって、
     前記制御回路が、前記断流器をオフ状態に制御するステップと、
     前記制御回路が、前記第1のスイッチング回路をオン状態に制御して前記第1のコンデンサを放電するステップと、
     前記制御回路が、その後に、前記第2のスイッチング回路をオン状態に制御して前記第2のコンデンサを放電するステップと、
     を含むことを特徴する電力変換装置のコンデンサ電圧の制御方法。
  6.  前記制御回路が、前記第1のコンデンサの電圧および前記第2のコンデンサの電圧に基づいて、前記放電回路、前記断流器、および前記第2のスイッチング回路を制御することを特徴とする請求項5記載の電力変換装置のコンデンサ電圧の制御方法。
  7.  前記制御回路が、前記第1のコンデンサの電圧が第1の電圧閾値以上になり且つ前記第2のコンデンサの電圧が第2の電圧閾値以上になったときに、前記断流器をオフ状態に制御するステップと、
     前記制御回路が、前記断流器が開放した後に、前記第1のスイッチング回路をオン状態に制御して前記第1のコンデンサを放電するステップと、
     前記制御回路が、前記第1のスイッチング回路がオン状態になった後且つ前記第2のコンデンサの電圧が第3の電圧閾値より低くなったときに、前記第2のスイッチング回路をオン状態に制御して前記第2のコンデンサを放電するステップと、
     を含むことを特徴とする請求項6記載の電力変換装置のコンデンサ電圧の制御方法。
  8.  前記制御回路が、前記第2のコンデンサを放電するときに前記第2のスイッチング回路に流れる電流が電流閾値より大きくなると前記第2のスイッチング回路をオフ状態に制御するステップを更に含むこと
     を特徴とする請求項5~7のいずれか1つに記載の電力変換装置のコンデンサ電圧の制御方法。
PCT/JP2009/058928 2009-05-13 2009-05-13 電力変換装置および電力変換装置のコンデンサ電圧の制御方法 WO2010131344A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PCT/JP2009/058928 WO2010131344A1 (ja) 2009-05-13 2009-05-13 電力変換装置および電力変換装置のコンデンサ電圧の制御方法
AU2009346120A AU2009346120B2 (en) 2009-05-13 2009-05-13 Power conversion apparatus and method of controlling capacitor voltage of power conversion apparatus
CA 2761023 CA2761023C (en) 2009-05-13 2009-05-13 Power conversion apparatus and method of controlling capacitor voltage of power conversion apparatus
RU2011150483/07A RU2482599C1 (ru) 2009-05-13 2009-05-13 Устройство преобразования энергии и способ управления напряжением на конденсаторе устройства преобразования энергии
US13/259,613 US8674631B2 (en) 2009-05-13 2009-05-13 Power conversion apparatus and method of controlling capacitor voltage of power conversion apparatus
CN200980159240.3A CN102422524B (zh) 2009-05-13 2009-05-13 电力变换装置以及电力变换装置的电容器电压的控制方法
JP2011513161A JP5283751B2 (ja) 2009-05-13 2009-05-13 電力変換装置および電力変換装置のコンデンサ電圧の制御方法
MX2011011886A MX2011011886A (es) 2009-05-13 2009-05-13 Dispositivo de conversion de energia y metodo para controlar el voltaje condensador del dispositivo de conversion de energia.
KR1020117026523A KR101285486B1 (ko) 2009-05-13 2009-05-13 전력 변환 장치 및 전력 변환 장치의 콘덴서 전압의 제어 방법
EP09844618.0A EP2432117A4 (en) 2009-05-13 2009-05-13 ELECTRICITY CONTROL DEVICE AND METHOD FOR CONTROLLING THE CAPACITOR VOLTAGE OF THE CIRCUIT ARRANGEMENT
ZA2011/07478A ZA201107478B (en) 2009-05-13 2011-10-12 Power conversion apparatus and method of controlling capacitor voltage of power conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058928 WO2010131344A1 (ja) 2009-05-13 2009-05-13 電力変換装置および電力変換装置のコンデンサ電圧の制御方法

Publications (1)

Publication Number Publication Date
WO2010131344A1 true WO2010131344A1 (ja) 2010-11-18

Family

ID=43084734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058928 WO2010131344A1 (ja) 2009-05-13 2009-05-13 電力変換装置および電力変換装置のコンデンサ電圧の制御方法

Country Status (11)

Country Link
US (1) US8674631B2 (ja)
EP (1) EP2432117A4 (ja)
JP (1) JP5283751B2 (ja)
KR (1) KR101285486B1 (ja)
CN (1) CN102422524B (ja)
AU (1) AU2009346120B2 (ja)
CA (1) CA2761023C (ja)
MX (1) MX2011011886A (ja)
RU (1) RU2482599C1 (ja)
WO (1) WO2010131344A1 (ja)
ZA (1) ZA201107478B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036918B2 (ja) * 2010-03-26 2012-09-26 三菱電機株式会社 電力変換装置
US20140232183A1 (en) * 2011-09-21 2014-08-21 Kentaro Hirose Electric vehicle
JP2016103883A (ja) * 2014-11-27 2016-06-02 ミネベア株式会社 モータ駆動制御装置およびモータ駆動制御方法
JP7204053B1 (ja) * 2022-02-02 2023-01-13 三菱電機株式会社 搬送システム及び搬送モジュール

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013002016A1 (ja) * 2011-06-29 2015-02-23 富士電機株式会社 電力変換装置
DE102012201827A1 (de) * 2012-02-08 2013-08-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Entladung eines Zwischenkreises eines Spannungsnetzes
DE102012206409A1 (de) * 2012-04-18 2013-10-24 Ge Energy Power Conversion Gmbh Verfahren zum Betreiben einer elektrischen Schaltung
WO2013159306A1 (en) 2012-04-26 2013-10-31 General Electric Company Power converter system, damping system, and method of operating power converter system
CN102897615B (zh) * 2012-09-20 2014-04-16 中达光电工业(吴江)有限公司 电梯的电能回馈装置、回馈方法以及电梯
JP6155708B2 (ja) * 2013-03-08 2017-07-05 株式会社ジェイテクト モータ制御装置
US9735715B2 (en) * 2013-03-15 2017-08-15 Regal Beloit America, Inc. Methods and systems for inductive energy management
JP2015019515A (ja) * 2013-07-11 2015-01-29 アイシン・エィ・ダブリュ株式会社 放電制御装置
US10063073B2 (en) * 2014-05-21 2018-08-28 Dialog Semiconductor Inc. USB power converter with bleeder circuit for fast correction of output voltage by discharging output capacitor
EP3068022B1 (en) 2015-03-13 2019-03-06 Nxp B.V. Discharging an input capacitor of a switch mode power supply
US10615591B2 (en) * 2015-12-16 2020-04-07 L-3 Communications Magnet-Motor Gmbh Power electronics unit
CN105811388A (zh) * 2016-03-15 2016-07-27 北京新能源汽车股份有限公司 一种用于电机控制器的高压放电方法、电路和具有该电路的电动汽车
CN106301307B (zh) * 2016-10-13 2022-04-29 全球能源互联网研究院 一种新型级联全桥高压直流断路器及其控制方法
EP3373431A1 (de) * 2017-03-06 2018-09-12 Siemens Aktiengesellschaft Einstellbarer energiewandler zur umwandlung von elektrischer energie in wärmeenergie
CN109818540A (zh) * 2017-11-21 2019-05-28 杭州三花研究院有限公司 电机的弱磁控制方法及电机
CN108556642A (zh) * 2017-12-15 2018-09-21 中车大连电力牵引研发中心有限公司 永磁牵引系统及轨道车辆
JP6881350B2 (ja) * 2018-02-28 2021-06-02 トヨタ自動車株式会社 スイッチトリラクタンスモータの制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460266A (en) * 1987-08-31 1989-03-07 Meidensha Electric Mfg Co Ltd Method for starting inverter
JPH0819266A (ja) * 1994-06-30 1996-01-19 Shimadzu Corp インバータ装置
JP2000308388A (ja) 1999-04-16 2000-11-02 Fuji Electric Co Ltd 電気車用永久磁石電動機の駆動装置。
JP2004357412A (ja) * 2003-05-29 2004-12-16 Nissan Motor Co Ltd インバーターの直流電源装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563479A (en) * 1993-10-29 1996-10-08 Aisin Seiki Kabushiki Kaisha Power supply apparatus for electric vehicle
KR970013716A (ko) * 1995-08-18 1997-03-29 배순훈 전원스위칭 회로
RU2141719C1 (ru) * 1998-03-25 1999-11-20 Мищенко Владислав Алексеевич Способ векторного управления синхронным электродвигателем с постоянными магнитами на роторе и электропривод для осуществления этого способа
RU2167071C1 (ru) * 2000-09-21 2001-05-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт судовой электротехники и технологии" Устройство преобразования электрической энергии
US6654262B2 (en) * 2000-11-30 2003-11-25 Mitsubishi Denki Kabushiki Kaisha Inverter with pre-charging capacitor to reduce inrush current
JP2004035741A (ja) * 2002-07-04 2004-02-05 Kansai Paint Co Ltd 水性塩化ビニル樹脂系塗料
JP3954503B2 (ja) * 2003-01-23 2007-08-08 株式会社東芝 電気自動車用電力変換装置
JP4721647B2 (ja) * 2004-03-18 2011-07-13 東芝エレベータ株式会社 エレベータ制御装置
JP4333519B2 (ja) * 2004-08-18 2009-09-16 サンケン電気株式会社 スイッチング電源装置
KR100679322B1 (ko) * 2004-10-07 2007-02-06 조영창 직접 변환 스위칭을 이용한 전원공급장치
CN101199236B (zh) * 2005-06-17 2011-05-04 松下电器产业株式会社 感应加热装置
GB2431739A (en) * 2005-10-27 2007-05-02 Wolfson Microelectronics Plc Switch current sensing circuit
JP4483789B2 (ja) * 2006-01-13 2010-06-16 日産自動車株式会社 ハイブリッド車両の駆動装置
RU63297U1 (ru) * 2006-12-27 2007-05-27 Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ(ТУ)") Автономное транспортное средство
JP5146011B2 (ja) * 2008-02-28 2013-02-20 ダイキン工業株式会社 直接形交流電力変換装置
RU82077U1 (ru) * 2008-12-05 2009-04-10 Открытое Акционерное Общество "Агрегатное Конструкторское Бюро "Якорь" Электропривод

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460266A (en) * 1987-08-31 1989-03-07 Meidensha Electric Mfg Co Ltd Method for starting inverter
JPH0819266A (ja) * 1994-06-30 1996-01-19 Shimadzu Corp インバータ装置
JP2000308388A (ja) 1999-04-16 2000-11-02 Fuji Electric Co Ltd 電気車用永久磁石電動機の駆動装置。
JP2004357412A (ja) * 2003-05-29 2004-12-16 Nissan Motor Co Ltd インバーターの直流電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2432117A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036918B2 (ja) * 2010-03-26 2012-09-26 三菱電機株式会社 電力変換装置
US20140232183A1 (en) * 2011-09-21 2014-08-21 Kentaro Hirose Electric vehicle
JP2016103883A (ja) * 2014-11-27 2016-06-02 ミネベア株式会社 モータ駆動制御装置およびモータ駆動制御方法
JP7204053B1 (ja) * 2022-02-02 2023-01-13 三菱電機株式会社 搬送システム及び搬送モジュール
WO2023148859A1 (ja) * 2022-02-02 2023-08-10 三菱電機株式会社 搬送システム、搬送モジュール及びインバータユニット

Also Published As

Publication number Publication date
EP2432117A1 (en) 2012-03-21
CA2761023C (en) 2015-01-27
ZA201107478B (en) 2013-01-30
EP2432117A4 (en) 2014-12-10
RU2482599C1 (ru) 2013-05-20
KR101285486B1 (ko) 2013-07-12
JP5283751B2 (ja) 2013-09-04
JPWO2010131344A1 (ja) 2012-11-01
CA2761023A1 (en) 2010-11-18
US20120019178A1 (en) 2012-01-26
KR20120009486A (ko) 2012-01-31
US8674631B2 (en) 2014-03-18
AU2009346120B2 (en) 2013-11-21
CN102422524A (zh) 2012-04-18
CN102422524B (zh) 2014-12-03
AU2009346120A1 (en) 2011-11-03
MX2011011886A (es) 2011-12-08

Similar Documents

Publication Publication Date Title
JP5283751B2 (ja) 電力変換装置および電力変換装置のコンデンサ電圧の制御方法
US9787226B2 (en) Alternating current electric system and control method thereof
JP2008530971A (ja) 永久磁石モーター駆動用の安全インターロックおよび保護回路
JP5998548B2 (ja) 電力変換装置
JP5036918B2 (ja) 電力変換装置
JP2008182783A (ja) 3相交流電動機の巻線切替装置及び切替方法
JP4686373B2 (ja) 電気車制御装置
JP5113682B2 (ja) 電力変換装置
JP5191351B2 (ja) 電力変換装置
JP5562367B2 (ja) 電力変換装置
JP4269197B2 (ja) 電気車用永久磁石電動機の駆動装置。
Do et al. Overvoltage protection for interior permanent magnet synchronous motor testbench
JP2014155393A (ja) 交流電機システム及びその制御方法
JP2008178207A (ja) 3相交流電動機の巻線切替装置及び切替方法
JP5214995B2 (ja) 車両用電力変換装置及び車両用駆動制御装置
JP5248880B2 (ja) 車両用電力変換装置及び車両用駆動制御装置
JP4969504B2 (ja) 車両用電力変換装置及び車両用駆動制御装置
JP2008306780A (ja) 鉄道車両駆動制御装置
JP2005253264A (ja) 電気車制御装置
WO2019163320A1 (ja) 電動工具の制御回路
WO2021235003A1 (ja) モータ制御装置およびモータ制御方法
JP4969503B2 (ja) 車両用電力変換装置及び車両用駆動制御装置
JP2021083219A (ja) 回生放電システム
JP2017063609A (ja) 交流電機システム及びその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159240.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011513161

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13259613

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009844618

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009844618

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009346120

Country of ref document: AU

Date of ref document: 20090513

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2761023

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20117026523

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/011886

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011150483

Country of ref document: RU

Kind code of ref document: A