JP5283751B2 - 電力変換装置および電力変換装置のコンデンサ電圧の制御方法 - Google Patents

電力変換装置および電力変換装置のコンデンサ電圧の制御方法 Download PDF

Info

Publication number
JP5283751B2
JP5283751B2 JP2011513161A JP2011513161A JP5283751B2 JP 5283751 B2 JP5283751 B2 JP 5283751B2 JP 2011513161 A JP2011513161 A JP 2011513161A JP 2011513161 A JP2011513161 A JP 2011513161A JP 5283751 B2 JP5283751 B2 JP 5283751B2
Authority
JP
Japan
Prior art keywords
capacitor
voltage
circuit
switching circuit
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011513161A
Other languages
English (en)
Other versions
JPWO2010131344A1 (ja
Inventor
雅樹 河野
啓太 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2010131344A1 publication Critical patent/JPWO2010131344A1/ja
Application granted granted Critical
Publication of JP5283751B2 publication Critical patent/JP5283751B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/24Coasting mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、電力変換装置および電力変換装置のコンデンサ電圧の制御方法に関するものであり、特に、同期機の高速回転時の無負荷誘起電圧が直流電源電圧より高い場合に対応可能な電力変換装置および電力変換装置のコンデンサ電圧の制御方法に関する。
自動車や電車では、駆動システムによる加速、減速を行なわずに惰性で走行(惰行)することが運転モードの特徴である。同期機を使用する駆動システムでは、このような惰行の場合に、無負荷誘起電圧が発生し、この無負荷誘起電圧が電力変換装置を構成するスイッチング回路に逆並列接続されたダイオードを介して全波整流され、直流電圧(コンデンサの端子間電圧)が上昇して電源側に電力を回生し、駆動システム全体としてはブレーキ動作を行なうことになる。
関連する技術として、下記の特許文献1には、インバータの電源とインバータアーム間に一方向導通手段と開閉手段との並列接続回路を直列に挿入し、インバータを介して永久磁石形同期電動機を駆動する駆動装置であって、インバータの停止中には開閉手段を開放し、インバータの運転開始時には開閉手段を開放したままで、電動機の端子電圧が所定の値になるように励磁電流を制御し、電動機の端子電圧が所定値に達したとき開閉手段を閉とした状態で電動機のトルク電流を制御して電動機を加減速運転し、運転中のインバータを停止するときは、電動機の端子電圧が所定値になるように励磁電流を制御したままでトルク電流をゼロに減少させた後、開閉手段を開放し、しかる後励磁電流を減少させてインバータの運転を停止させることを特徴とする電気車用永久磁石電動機の駆動装置が開示されている。特許文献1に開示された技術では、電源側のコンデンサの過電圧対策に関して考慮されている。
特開2000−308388号公報
特許文献1では、インバータアーム側のコンデンサに関しては、IGBT等の半導体素子とインバータアーム側のコンデンサの電圧定格を適切に選ぶことで十分に対処できることとされている。しかしながら、IGBT等の半導体素子とインバータアーム側のコンデンサの電圧定格を適切に選んだとしても、無負荷誘起電圧がより高くなり、インバータアーム側のコンデンサが過電圧となり、インバータの停止を余儀なくされる場合が起こり得ると考えられる。そして、インバータアーム側のコンデンサを放電するためには、インバータアーム側のコンデンサに放電回路を付属させる必要があり、電力変換装置が必要以上に大きくなることやコストが大きくなるという課題があった。
本発明は、上記に鑑みてなされたものであって、コンデンサ毎に放電回路を設ける必要をなくすことが可能な電力変換装置および電力変換装置のコンデンサ電圧の制御方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる電力変換装置は、直流電源に直列に接続された断流器と、前記直流電源に前記断流器を介して並列に接続された第1のコンデンサと、前記第1のコンデンサに並列に接続され、直列に接続された抵抗器、および第1のスイッチング回路を含む放電回路と、同期機を駆動させる電力変換器と、前記電力変換器の直流側に並列に接続された第2のコンデンサと、前記第1のコンデンサと前記第2のコンデンサとの間に直列に接続された第2のスイッチング回路と、前記放電回路を制御する制御回路と、を備えた電力変換装置において、前記第1のコンデンサの電圧を検出する第1の電圧検出器と、前記第2のコンデンサの電圧を検出する第2の電圧検出器と、を更に備え、前記制御回路は、前記第1のコンデンサの電圧および前記第2のコンデンサの電圧に基づいて、前記放電回路を制御することを特徴とする。
本発明によれば、コンデンサ毎に放電回路を設ける必要をなくすことができる。つまり、直流電源に並列に接続された第1のコンデンサと電力変換器の直流側に並列に接続された第2のコンデンサの放電を1つの放電回路で行うことができるので、電力変換装置の小型化、部品点数低減による低コスト化を実現することができるという効果を奏する。
図1は、本発明の実施の形態1にかかる電力変換装置の構成を示す図である。 図2は、本発明の実施の形態1にかかる電力変換装置の制御回路11の構成を示す図である。 図3は、本発明の実施の形態1にかかる電力変換装置の要部動作を示す波形図である。 図4は、本発明の実施の形態2にかかる電力変換装置の構成を示す図である。 図5は、本発明の実施の形態2にかかる電力変換装置の制御回路15の構成を示す図である。 図6は、本発明の実施の形態2にかかる電力変換装置の要部動作を示す波形図である。
1 直流電源
2 断流器
3 抵抗器
4、8 スイッチング回路
5 放電回路
6、9 コンデンサ
7、10 電圧検出器
11、15 制御回路
12 電力変換器
13 同期機
14 電流検出器
16a、16b、16c、16d 比較器
17a、17b 反転(NOT)器
18 保持(ラッチ)器
19a、19b、19c 論理積(AND)器
20a、20b 時素器
以下に、本発明にかかる電力変換装置の実施の形態を図面に基づいて詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1にかかる電力変換装置の構成を示す図である。本実施の形態にかかる電力変換装置は、直流電源1に直列に接続された断流器2と、直流電源1に断流器2を介して並列に接続された第1のコンデンサ6と、互いに直列に接続されて、コンデンサ6に並列に接続され過電圧を抑制する抵抗器3、および第1のスイッチング回路4と、同期機13を駆動させる電力変換器12と、電力変換器12の直流側に並列に接続された第2のコンデンサ9と、コンデンサ9とコンデンサ6との間に直列に接続された第2のスイッチング回路8と、コンデンサ6の電圧を検出する第1の電圧検出器7と、コンデンサ9の電圧を検出する第2の電圧検出器10と、スイッチング回路4、スイッチング回路8、および断流器2を制御する制御回路11と、を備えている。抵抗器3、およびスイッチング回路4は、放電回路5を構成する。
実施の形態1では、同期機13として、回転子に取り付けられた永久磁石による磁束を用いた永久磁石同期機を利用している。永久磁石同期機においては、永久磁石による磁束が一定であり、同期機13単体の特性として、永久磁石による磁束密度と同期機13の回転速度との積に比例した誘起電圧を発生する。この誘起電圧は、一般に無負荷誘起電圧と呼ばれている。これに対して、電力変換器12は入力の直流電源1の直流電圧以上の電圧を発生することはできないことから、無負荷誘起電圧が電力変換器12の最大出力電圧を越える領域では、永久磁石による磁束を打ち消すような磁束を電機子巻線で発生させるように、電力変換器12でいわゆる弱め界磁制御を行って、高回転速度までの運転を行う。
一般に、自動車や電車などの電気車では、電力変換器が停止していて、力行でもなく回生でもない、惰性で走行する惰行という運転モードがあることが特徴である。そして、永久磁石同期機を利用した電気車の惰行においては、前述した無負荷誘起電圧が発生する。
図1に示す実施の形態1にかかる電力変換装置において、同期機13で発生する無負荷誘起電圧が電力変換器12の直流電圧(コンデンサ6の両端電圧に相当)よりも大きな領域では、同期機13で発生する無負荷誘起電圧が電力変換器12を構成するスイッチング回路Gu、Gv、Gw、Gx、Gy、Gzのダイオードを介して全波整流され、直流電圧が上昇し、直流電源1側に電力が回生され、システム全体としてはブレーキ力が発生し、ブレーキ動作が行われることになる。
また、電気車の惰行中に、弱め界磁制御のための励磁電流を流すべく電力変換装置が運転することは、永久磁石同期機の巻線に電流を流すことにより生じる銅損や電力変換器12の損失が発生するので、省エネルギーの観点から好ましいことではない。特に、エネルギー効率が最重要課題の電気自動車においては、非常に大きな課題である。
そこで、実施の形態1では、図1に示すように、電力変換器12とコンデンサ6の間にスイッチング回路8を直列に挿入し、電力変換器12を介して同期機13を駆動する。なお、実施の形態1において、スイッチング回路8は、例えばダイオード等の一方向導通回路を逆並列に接続した例えばIGBT等のトランジスタ等の開閉回路を含んで構成することができ、電力変換器12を構成するスイッチング回路Gu、Gv、Gw、Gx、Gy、Gzと同じものを使用することができる。また、スイッチング回路4も、スイッチング回路8と同様に、例えばダイオード等の一方向導通回路を逆並列に接続した例えばIGBT等のトランジスタ等の開閉回路を含んで構成することができ、電力変換器12を構成するスイッチング回路Gu、Gv、Gw、Gx、Gy、Gzと同じものを使用することができる。
制御回路11は、電圧検出器10によって検出されたコンデンサ9の電圧値、および電圧検出器7によって検出されたコンデンサ6の電圧値を入力として、断流器2、スイッチング回路4、およびスイッチング回路8を制御する。
電力変換器12が加速運転を行う場合には、制御回路11は、直流電源1から電力変換器12に電力を供給するため、スイッチング回路8のトランジスタをオン状態に制御する。
また、電力変換器12が運転を停止する場合には、制御回路11は、スイッチング回路8のトランジスタをオフ状態に制御する。このときに同期機13で発生する無負荷誘起電圧がコンデンサ9の電圧より大きい場合は、コンデンサ9は電力変換器12を構成するスイッチング回路Gu、Gv、Gw、Gx、Gy、Gzのダイオードを介してピーク充電されるが、コンデンサ9の容量を適切に選択することにより、コンデンサ9は即座に充電され、システム全体としてブレーキ動作になることはない。
また、スイッチング回路8のトランジスタがオフ状態の場合には、電力変換器12側から直流電源1側へという方向の電力の流れがスイッチング回路8によって遮断されるので、惰行時に同期機13で発生する無負荷誘起電圧が直流電源1側に回生されることによって生じる不要なブレーキ力の発生とそれに伴う電力の損失を防ぐことができ、さらに、直流電源1の電圧が通常の電圧以上に上昇することを防ぐことができる。
図2に制御回路11の構成の一例を示す。制御回路11は、コンデンサ9の電圧値Vcとコンデンサ6の電圧値Vfcを入力とし、コンデンサ9の電圧値Vcとコンデンサ6の電圧値Vfcの値に応じて、スイッチング回路8、放電回路5を構成するスイッチング回路4、および断流器2を制御する信号を出力する。
図2に示すように、コンデンサ9の電圧値Vcと過電圧の設定値を示す所定の閾値(ここでは、一例として、1850Vとする。)との比較を比較器16aで行い、コンデンサ9の電圧値Vcが過電圧の設定値を示す所定の閾値(ここでは、1850V)以上になると、比較器16aは、値(論理信号)「1」を出力する。その比較器16aから出力された値「1」は、論理積(AND)器19aに入力される。なお、論理積(AND)器19aの出力信号は、保持(ラッチ)器18によって、「1」の値を保持されるようになっている。つまり、保持(ラッチ)器18は比較器16aの出力の値「1」を保持するようになっており、その保持条件は反転(NOT)器17aと比較器16bで決められている。コンデンサ9の電圧値Vcは比較器16bに入力され、コンデンサ9の電圧値Vcは所定の閾値(ここでは、一例として、1600Vとする。)と比較され、比較器16bは、コンデンサ9の電圧値Vcが所定の閾値(ここでは、1600V)より低くなると値「1」を出力する。その比較器16bの出力は、反転(NOT)器17aに入力され、反転される。つまり、値「1」が反転(NOT)器17aに入力されると、反転(NOT)器17aから値「0」が出力されることになる。反転(NOT)器17aの出力が「0」の場合は、保持(ラッチ)器18は、比較器16aの出力「1」を保持したままになる。コンデンサ9の電圧値Vcが所定の閾値(ここでは、1600V)より大きくなると比較器16bの出力は「0」となり、反転(NOT)器17aの出力は、「1」となるため、保持(ラッチ)器18は保持状態を解除して、比較器16aの値を「1」から「0」に変更する。つまり、コンデンサ9の電圧Vcが一度1850Vになったら、1600Vまで放電されるまで、断流器2を制御する制御信号SCS(後述)は「0」となる。
また、コンデンサ6の電圧値Vfcは、比較器16cに入力され、所定の閾値(ここでは、一例として、1600Vとする。)と比較され、コンデンサ6の電圧値Vfcが所定の閾値(ここでは、1600V)以上になると、比較器16cは、値「1」を出力する。その比較器16cから出力された値「1」は、論理積(AND)器19aに入力される。
論理積(AND)器19aは、比較器16aから出力された値と比較器16cから出力された値が両方とも「1」である場合に信号「1」を出力する。なお、それ以外は、論理積(AND)器19aは、信号「0」を出力する。
論理積(AND)器19aの出力信号は反転(NOT)器17bに入力され、反転(NOT)器17bの出力信号は、断流器2を制御するON(反転(NOT)器17bの出力が「1」の場合)/OFF(反転(NOT)器17bの出力が「0」の場合)制御信号SCSとなる。
比較器16aの出力信号は、時素器20aを通して、スイッチング回路4のON(時素器20aの出力が「1」の場合)/OFF(時素器20aの出力が「0」の場合)制御信号GSとなる。なお、時素器20aは、入力信号をある所定の時間(遅延時間)だけタイミングを遅らせて出力するものである。これは、断流器2が開放(OFF)されるより、先にスイッチング回路4がONすること(貫通電流が流れること)を防止する効果がある。そのため、時素器20aの遅延時間は、断流器2の開放する時間を見越して設定する(後述する図3における時刻t1〜t2の期間分(例えば、100msec程度)に設定する)。
また、時素器20aの出力信号は更に時素器20bに入力され、その時素器20bの出力信号は比較器16bの出力信号と合わせて論理積(AND)器19bに入力される。その論理積(AND)器19bの出力がスイッチング回路8のON(論理積(AND)器19bの出力が「1」の場合)/OFF(論理積(AND)器19bの出力が「0」の場合)制御信号OSとなる。なお、時素器20aの出力信号を更に時素器20bに入力し、スイッチング回路8がONするタイミングをスイッチング回路4がONするタイミングより遅らせることにより、スイッチング回路8に大きな電流が流れることを防止でき、スイッチング回路8が壊れることを防止できる効果がある。
実施の形態1は、このような回路構成においてコンデンサ9の電圧が想定以上(例えば、想定の閾値以上等)に大きい電圧(過電圧)になった場合を考慮したものである。前述したように同期機13で発生する無負荷誘起電圧は直流電源1の電圧より大きいので、制御方法などによっては、コンデンサ9の電圧が想定以上に大きい電圧になることがしばしば起こり得る。そのため、コンデンサ9の電圧を制御する(電荷を放電する)方法は重要であると言える。
次に、実施の形態1の動作について、図3を参照しながら説明する。
図3の時刻t0において、電圧検出器10によって検出可能なコンデンサ9の電圧が何らかの要因で上昇し過電圧になると、電力変換器12の動作は停止し、制御回路11は、スイッチング回路8のトランジスタをオフ状態に制御する。
このようにスイッチング回路8のトランジスタをオフ状態に制御した後、コンデンサ9の電圧とコンデンサ6の電圧に電位差がある状態でスイッチング回路8のトランジスタを再びオン状態にすると、スイッチング回路8のインピーダンスが小さいので、スイッチング回路8に大きな短絡電流が流れ、スイッチング回路8が破壊されることになる。これを防止するため、以下に説明するように、実施の形態1では、制御回路11は、スイッチング回路8のトランジスタを再びオン状態に制御する前に、スイッチング回路4のトランジスタをオン状態に制御する。
時刻t1において、制御回路11は、断流器2をオフ状態に制御して、直流電源1側に電力が回生しないようにする。
時刻t2において、制御回路11は、スイッチング回路4のトランジスタをオン状態に制御する。これにより、コンデンサ6の電荷が放電されるので、電圧検出器7によって検出されたコンデンサ6の電圧が下がることになる。
時刻t3において、制御回路11は、スイッチング回路4のトランジスタをオン状態にしたまま、スイッチング回路8のトランジスタをオン状態に制御する。これにより、コンデンサ9の電荷が放電される。このように、コンデンサ9の電圧とコンデンサ6の電圧の電位差を少なくした後でスイッチング回路8のトランジスタをオン状態に制御することで、スイッチング回路8に大きな短絡電流が流れることを防ぎ、スイッチング回路8の破壊を防ぐことができる。実施の形態1においては、上記のような、2つのコンデンサ9とコンデンサ6の電荷の放電を、1つの放電回路5で実施することができる。
時刻t4において、コンデンサ9の電荷が放電され、コンデンサ9の電圧が電力変換器12が起動できる電圧にまで低下すると、制御回路11は、スイッチング回路4のトランジスタをオフ状態に制御する。また、それに合わせて、制御回路11は、スイッチング回路8のトランジスタもオフ状態に制御する。制御回路11が以上のような制御を行うことにより、同期機13で発生する無負荷誘起電圧が直流電源1やコンデンサ6に流れ込む(印加される)のを防止することができる。
以上説明したように、実施の形態1においては、コンデンサ9、およびコンデンサ6の各々に放電回路を設ける必要をなくすことができる。すなわち、コンデンサ9とコンデンサ6の放電を1つの放電回路5で行うことができるので、電力変換装置の小型化、部品点数低減による低コスト化を実現することができるという効果を奏する。
実施の形態2.
次に、本発明の実施の形態2について説明する。図4は、この発明の実施の形態2の電力変換装置の構成を示す図である。
なお、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ説明する。
実施の形態2にかかる電力変換装置においては、実施の形態1にかかる電力変換装置と比較して、スイッチング回路8に流れる電流を検出する電流検出器14を更に備えていることが特徴である。また、それに伴い、実施の形態2にかかる電力変換装置においては、実施の形態1にかかる電力変換装置の制御回路11に代えて、制御回路15を備えている。
図5に制御回路15の構成の一例を示す。実施の形態1の制御回路11と比較して、スイッチング回路8に流れる電流を検出する電流検出器14によって検出された電流idを入力として、idが所定の閾値(ここでは、一例として、1000Aとする。)より低い場合のみスイッチング回路8及びスイッチング回路4をONするように、比較器16dと論理積(AND)器19cを追加する。そのことにより、スイッチング回路8に流れる電流値が所定の閾値(ここでは、1000A)より大きくなると、制御回路15は、スイッチング回路8のトランジスタとスイッチング回路4のトランジスタをオフ状態に制御することができる。
次に、実施の形態2の動作について、図6を参照しながら説明する。図6の時刻t3までは、実施の形態2の動作は、先に説明した実施の形態1の動作と同じであるので、説明を省略する。
図6の時刻t4において、電流検出器14で検出されたスイッチング回路8に流れる電流値が所定の閾値より大きくなると、制御回路15は、スイッチング回路8のトランジスタとスイッチング回路4のトランジスタをオフ状態に制御する。これにより、スイッチング回路8が過電流によって破壊されることを防止できる効果を奏する。また、スイッチング回路8のトランジスタと合わせてスイッチング回路4のトランジスタをオフ状態にすることで、コンデンサ6の電圧が下がることを防止して、次にスイッチング回路8のトランジスタをオン状態にするときにコンデンサ9の電圧とコンデンサ6の電圧の電位差をできるだけ小さくすることができ、コンデンサ9の電圧とコンデンサ6の電圧の電位差による大きな電流が流れるのを防止できる効果を奏する。なお、時刻t4のようにスイッチング回路8に大きな電流が流れる要因として、スイッチング回路4がオン状態にされずに(スイッチング回路4がオフ状態で)スイッチング回路8がオン状態にされる場合などが考えられる。
その後、時刻t5において、制御回路15は、再度、コンデンサ9の電荷の放電を行うためにスイッチング回路4のトランジスタをオン状態に制御する。さらにその後、直ぐに、時刻t6において、制御回路15は、スイッチング回路8のトランジスタをオン状態に制御して、コンデンサ9の電荷を放電する。
時刻t6においてスイッチング回路8のトランジスタがオン状態に制御されてコンデンサ9の電荷が放電されることにより、時刻t7において、コンデンサ9の電圧が電力変換器12が起動できる電圧にまで低下すると、制御回路15は、スイッチング回路4のトランジスタをオフ状態に制御する。また、それに合わせて、制御回路15は、スイッチング回路8のトランジスタもオフ状態に制御する。制御回路15が以上のような制御を行うことにより、同期機13で発生する無負荷誘起電圧が直流電源1やコンデンサ6に流れ込む(印加される)のを防止することができる。
以上説明したように、実施の形態2においては、コンデンサ9、およびコンデンサ6の各々に放電回路を設ける必要をなくすことができる。すなわち、コンデンサ9とコンデンサ6の放電を1つの放電回路5で行うことができるので、電力変換装置の小型化、部品点数低減による低コスト化を実現することができるという効果を奏する。
また、スイッチング回路4が故障した場合などに放電を行おうとしてスイッチング回路8をオンした時にスイッチング回路8が破壊するのを防止することができる。そのため、スイッチング回路8の信頼性を向上できるという効果を奏する。
以上のように、本発明にかかる電力変換装置は、電力変換装置および電力変換装置のコンデンサ電圧の制御方法に有用であり、特に、同期機の高速回転時の無負荷誘起電圧が直流電源電圧より高い場合に対応可能な電力変換装置および電力変換装置のコンデンサ電圧の制御方法に適している。

Claims (7)

  1. 直流電源に直列に接続された断流器と、
    前記直流電源に前記断流器を介して並列に接続された第1のコンデンサと、
    前記第1のコンデンサに並列に接続され、直列に接続された抵抗器、および第1のスイッチング回路を含む放電回路と、
    同期機を駆動させる電力変換器と、
    前記電力変換器の直流側に並列に接続された第2のコンデンサと、
    前記第1のコンデンサと前記第2のコンデンサとの間に直列に接続された第2のスイッチング回路と、
    前記放電回路を制御する制御回路と、
    を備えた電力変換装置において、
    前記第1のコンデンサの電圧を検出する第1の電圧検出器と、
    前記第2のコンデンサの電圧を検出する第2の電圧検出器と、
    を更に備え、
    前記制御回路は、
    前記第1のコンデンサの電圧および前記第2のコンデンサの電圧に基づいて、前記放電回路を制御し、
    前記第2のコンデンサを放電する場合に、前記断流器をオフ状態に制御し、前記第1のスイッチング回路をオン状態に制御して前記第1のコンデンサを放電し、その後に、前記第2のスイッチング回路をオン状態に制御して前記第2のコンデンサを放電する
    ことを特徴とする電力変換装置。
  2. 直流電源に直列に接続された断流器と、
    前記直流電源に前記断流器を介して並列に接続された第1のコンデンサと、
    前記第1のコンデンサに並列に接続され、直列に接続された抵抗器、および第1のスイッチング回路を含む放電回路と、
    同期機を駆動させる電力変換器と、
    前記電力変換器の直流側に並列に接続された第2のコンデンサと、
    前記第1のコンデンサと前記第2のコンデンサとの間に直列に接続された第2のスイッチング回路と、
    前記放電回路を制御する制御回路と、
    を備えた電力変換装置において、
    前記第1のコンデンサの電圧を検出する第1の電圧検出器と、
    前記第2のコンデンサの電圧を検出する第2の電圧検出器と、
    を更に備え、
    前記制御回路は、
    前記第1のコンデンサの電圧および前記第2のコンデンサの電圧に基づいて、前記放電回路を制御し、
    前記第1のコンデンサの電圧が第1の電圧閾値以上になり且つ前記第2のコンデンサの電圧が第2の電圧閾値以上になったときに、前記断流器をオフ状態に制御し、前記断流器が開放した後に、前記第1のスイッチング回路をオン状態に制御して前記第1のコンデンサを放電し、前記第1のスイッチング回路がオン状態になった後且つ前記第2のコンデンサの電圧が第3の電圧閾値より低くなったときに、前記第2のスイッチング回路をオン状態に制御して前記第2のコンデンサを放電する
    ことを特徴とする電力変換装置。
  3. 前記第2のスイッチング回路に流れる電流を検出する電流検出器を更に備え、
    前記制御回路は、前記第2のコンデンサを放電するときに前記電流検出器によって検出された前記第2のスイッチング回路に流れる電流が電流閾値より大きくなると前記第2のスイッチング回路をオフ状態に制御すること
    を特徴とする請求項1または2に記載の電力変換装置。
  4. 直流電源に直列に接続された断流器と、前記直流電源に前記断流器を介して並列に接続された第1のコンデンサと、直列に接続された抵抗器、および第1のスイッチング回路を含み、前記第1のコンデンサに並列に接続された放電回路と、同期機を駆動させる電力変換器と、前記電力変換器の直流側に並列に接続された第2のコンデンサと、前記第1のコンデンサと前記第2のコンデンサとの間に直列に接続された第2のスイッチング回路と、前記第1および前記第2のスイッチング回路、ならびに前記断流器を制御する制御回路と、を備えた電力変換装置のコンデンサ電圧の制御方法であって、
    前記制御回路が、前記断流器をオフ状態に制御するステップと、
    前記制御回路が、前記第1のスイッチング回路をオン状態に制御して前記第1のコンデンサを放電するステップと、
    前記制御回路が、その後に、前記第2のスイッチング回路をオン状態に制御して前記第2のコンデンサを放電するステップと、
    を含むことを特徴する電力変換装置のコンデンサ電圧の制御方法。
  5. 前記制御回路が、前記第1のコンデンサの電圧および前記第2のコンデンサの電圧に基づいて、前記放電回路、前記断流器、および前記第2のスイッチング回路を制御することを特徴とする請求項4に記載の電力変換装置のコンデンサ電圧の制御方法。
  6. 前記制御回路が、前記第1のコンデンサの電圧が第1の電圧閾値以上になり且つ前記第2のコンデンサの電圧が第2の電圧閾値以上になったときに、前記断流器をオフ状態に制御するステップと、
    前記制御回路が、前記断流器が開放した後に、前記第1のスイッチング回路をオン状態に制御して前記第1のコンデンサを放電するステップと、
    前記制御回路が、前記第1のスイッチング回路がオン状態になった後且つ前記第2のコンデンサの電圧が第3の電圧閾値より低くなったときに、前記第2のスイッチング回路をオン状態に制御して前記第2のコンデンサを放電するステップと、
    を含むことを特徴とする請求項5に記載の電力変換装置のコンデンサ電圧の制御方法。
  7. 前記制御回路が、前記第2のコンデンサを放電するときに前記第2のスイッチング回路に流れる電流が電流閾値より大きくなると前記第2のスイッチング回路をオフ状態に制御するステップを更に含むこと
    を特徴とする請求項5または6に記載の電力変換装置のコンデンサ電圧の制御方法。
JP2011513161A 2009-05-13 2009-05-13 電力変換装置および電力変換装置のコンデンサ電圧の制御方法 Expired - Fee Related JP5283751B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058928 WO2010131344A1 (ja) 2009-05-13 2009-05-13 電力変換装置および電力変換装置のコンデンサ電圧の制御方法

Publications (2)

Publication Number Publication Date
JPWO2010131344A1 JPWO2010131344A1 (ja) 2012-11-01
JP5283751B2 true JP5283751B2 (ja) 2013-09-04

Family

ID=43084734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011513161A Expired - Fee Related JP5283751B2 (ja) 2009-05-13 2009-05-13 電力変換装置および電力変換装置のコンデンサ電圧の制御方法

Country Status (11)

Country Link
US (1) US8674631B2 (ja)
EP (1) EP2432117A4 (ja)
JP (1) JP5283751B2 (ja)
KR (1) KR101285486B1 (ja)
CN (1) CN102422524B (ja)
AU (1) AU2009346120B2 (ja)
CA (1) CA2761023C (ja)
MX (1) MX2011011886A (ja)
RU (1) RU2482599C1 (ja)
WO (1) WO2010131344A1 (ja)
ZA (1) ZA201107478B (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308791B1 (ko) * 2010-03-26 2013-09-17 미쓰비시덴키 가부시키가이샤 전력 변환 장치
EP2728733A4 (en) * 2011-06-29 2015-04-01 Fuji Electric Co Ltd ELECTRIC CONVERSION DEVICE
WO2013042215A1 (ja) * 2011-09-21 2013-03-28 トヨタ自動車株式会社 電気自動車
DE102012201827A1 (de) * 2012-02-08 2013-08-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Entladung eines Zwischenkreises eines Spannungsnetzes
DE102012206409A1 (de) * 2012-04-18 2013-10-24 Ge Energy Power Conversion Gmbh Verfahren zum Betreiben einer elektrischen Schaltung
WO2013159306A1 (en) 2012-04-26 2013-10-31 General Electric Company Power converter system, damping system, and method of operating power converter system
CN102897615B (zh) * 2012-09-20 2014-04-16 中达光电工业(吴江)有限公司 电梯的电能回馈装置、回馈方法以及电梯
JP6155708B2 (ja) * 2013-03-08 2017-07-05 株式会社ジェイテクト モータ制御装置
US9735715B2 (en) * 2013-03-15 2017-08-15 Regal Beloit America, Inc. Methods and systems for inductive energy management
JP2015019515A (ja) * 2013-07-11 2015-01-29 アイシン・エィ・ダブリュ株式会社 放電制御装置
US10063073B2 (en) * 2014-05-21 2018-08-28 Dialog Semiconductor Inc. USB power converter with bleeder circuit for fast correction of output voltage by discharging output capacitor
JP6228910B2 (ja) * 2014-11-27 2017-11-08 ミネベアミツミ株式会社 モータ駆動制御装置およびモータ駆動制御方法
EP3068022B1 (en) 2015-03-13 2019-03-06 Nxp B.V. Discharging an input capacitor of a switch mode power supply
WO2017101996A1 (de) * 2015-12-16 2017-06-22 L-3 Communications Magnet-Motor Gmbh Leistungselektronikeinheit
CN105811388A (zh) * 2016-03-15 2016-07-27 北京新能源汽车股份有限公司 一种用于电机控制器的高压放电方法、电路和具有该电路的电动汽车
CN106301307B (zh) * 2016-10-13 2022-04-29 全球能源互联网研究院 一种新型级联全桥高压直流断路器及其控制方法
EP3373431A1 (de) * 2017-03-06 2018-09-12 Siemens Aktiengesellschaft Einstellbarer energiewandler zur umwandlung von elektrischer energie in wärmeenergie
CN109818540A (zh) * 2017-11-21 2019-05-28 杭州三花研究院有限公司 电机的弱磁控制方法及电机
CN108556642A (zh) * 2017-12-15 2018-09-21 中车大连电力牵引研发中心有限公司 永磁牵引系统及轨道车辆
JP6881350B2 (ja) * 2018-02-28 2021-06-02 トヨタ自動車株式会社 スイッチトリラクタンスモータの制御装置
WO2023148859A1 (ja) * 2022-02-02 2023-08-10 三菱電機株式会社 搬送システム、搬送モジュール及びインバータユニット

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460266A (en) * 1987-08-31 1989-03-07 Meidensha Electric Mfg Co Ltd Method for starting inverter
JPH0819266A (ja) * 1994-06-30 1996-01-19 Shimadzu Corp インバータ装置
JP2004357412A (ja) * 2003-05-29 2004-12-16 Nissan Motor Co Ltd インバーターの直流電源装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563479A (en) * 1993-10-29 1996-10-08 Aisin Seiki Kabushiki Kaisha Power supply apparatus for electric vehicle
KR970013716A (ko) * 1995-08-18 1997-03-29 배순훈 전원스위칭 회로
RU2141719C1 (ru) * 1998-03-25 1999-11-20 Мищенко Владислав Алексеевич Способ векторного управления синхронным электродвигателем с постоянными магнитами на роторе и электропривод для осуществления этого способа
JP4269197B2 (ja) 1999-04-16 2009-05-27 富士電機システムズ株式会社 電気車用永久磁石電動機の駆動装置。
RU2167071C1 (ru) * 2000-09-21 2001-05-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт судовой электротехники и технологии" Устройство преобразования электрической энергии
US6654262B2 (en) * 2000-11-30 2003-11-25 Mitsubishi Denki Kabushiki Kaisha Inverter with pre-charging capacitor to reduce inrush current
JP2004035741A (ja) * 2002-07-04 2004-02-05 Kansai Paint Co Ltd 水性塩化ビニル樹脂系塗料
JP3954503B2 (ja) * 2003-01-23 2007-08-08 株式会社東芝 電気自動車用電力変換装置
JP4544884B2 (ja) * 2004-03-18 2010-09-15 東芝エレベータ株式会社 エレベータ制御装置
JP4333519B2 (ja) * 2004-08-18 2009-09-16 サンケン電気株式会社 スイッチング電源装置
KR100679322B1 (ko) * 2004-10-07 2007-02-06 조영창 직접 변환 스위칭을 이용한 전원공급장치
WO2006135056A1 (ja) * 2005-06-17 2006-12-21 Matsushita Electric Industrial Co., Ltd. 誘導加熱装置
GB2431739A (en) * 2005-10-27 2007-05-02 Wolfson Microelectronics Plc Switch current sensing circuit
JP4483789B2 (ja) 2006-01-13 2010-06-16 日産自動車株式会社 ハイブリッド車両の駆動装置
RU63297U1 (ru) * 2006-12-27 2007-05-27 Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ(ТУ)") Автономное транспортное средство
JP5146011B2 (ja) * 2008-02-28 2013-02-20 ダイキン工業株式会社 直接形交流電力変換装置
RU82077U1 (ru) * 2008-12-05 2009-04-10 Открытое Акционерное Общество "Агрегатное Конструкторское Бюро "Якорь" Электропривод

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460266A (en) * 1987-08-31 1989-03-07 Meidensha Electric Mfg Co Ltd Method for starting inverter
JPH0819266A (ja) * 1994-06-30 1996-01-19 Shimadzu Corp インバータ装置
JP2004357412A (ja) * 2003-05-29 2004-12-16 Nissan Motor Co Ltd インバーターの直流電源装置

Also Published As

Publication number Publication date
US8674631B2 (en) 2014-03-18
CN102422524A (zh) 2012-04-18
KR20120009486A (ko) 2012-01-31
US20120019178A1 (en) 2012-01-26
AU2009346120B2 (en) 2013-11-21
EP2432117A1 (en) 2012-03-21
AU2009346120A1 (en) 2011-11-03
CA2761023A1 (en) 2010-11-18
KR101285486B1 (ko) 2013-07-12
MX2011011886A (es) 2011-12-08
CN102422524B (zh) 2014-12-03
CA2761023C (en) 2015-01-27
RU2482599C1 (ru) 2013-05-20
WO2010131344A1 (ja) 2010-11-18
JPWO2010131344A1 (ja) 2012-11-01
EP2432117A4 (en) 2014-12-10
ZA201107478B (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5283751B2 (ja) 電力変換装置および電力変換装置のコンデンサ電圧の制御方法
US9787226B2 (en) Alternating current electric system and control method thereof
JP5998548B2 (ja) 電力変換装置
JP2008530971A (ja) 永久磁石モーター駆動用の安全インターロックおよび保護回路
JP4686373B2 (ja) 電気車制御装置
JP5036918B2 (ja) 電力変換装置
JP5113682B2 (ja) 電力変換装置
JP2007028852A (ja) 鉄道車両駆動制御装置
US10615591B2 (en) Power electronics unit
JP5191351B2 (ja) 電力変換装置
JP2014155393A (ja) 交流電機システム及びその制御方法
JP5562367B2 (ja) 電力変換装置
JP4269197B2 (ja) 電気車用永久磁石電動機の駆動装置。
JP5617306B2 (ja) 過電圧保護装置
JP5214995B2 (ja) 車両用電力変換装置及び車両用駆動制御装置
JP5248880B2 (ja) 車両用電力変換装置及び車両用駆動制御装置
JP2005253264A (ja) 電気車制御装置
JP2008306780A (ja) 鉄道車両駆動制御装置
JP7205176B2 (ja) モータ駆動システム
WO2021235003A1 (ja) モータ制御装置およびモータ制御方法
JP2024083857A (ja) 電力変換装置の制御装置
JP4969503B2 (ja) 車両用電力変換装置及び車両用駆動制御装置
JPWO2009101859A1 (ja) インバータ装置とその制御方法
JP2021083219A (ja) 回生放電システム
JP2017063609A (ja) 交流電機システム及びその制御方法

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130528

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees