WO2010126041A1 - ポリビニルアルコール系樹脂組成物 - Google Patents

ポリビニルアルコール系樹脂組成物 Download PDF

Info

Publication number
WO2010126041A1
WO2010126041A1 PCT/JP2010/057463 JP2010057463W WO2010126041A1 WO 2010126041 A1 WO2010126041 A1 WO 2010126041A1 JP 2010057463 W JP2010057463 W JP 2010057463W WO 2010126041 A1 WO2010126041 A1 WO 2010126041A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl alcohol
resin composition
pvoh
alcohol resin
minutes
Prior art date
Application number
PCT/JP2010/057463
Other languages
English (en)
French (fr)
Inventor
渋谷 光夫
井上 馨
高橋 裕一
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to EP10769739.3A priority Critical patent/EP2426172B1/en
Priority to US13/266,546 priority patent/US8722782B2/en
Publication of WO2010126041A1 publication Critical patent/WO2010126041A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a polyvinyl alcohol-based resin composition, and more specifically, a melt-forming polyvinyl alcohol-based resin (hereinafter also referred to as a PVOH-based resin) composition that is less colored by melt molding and has a high melt viscosity temporal stability.
  • a polyvinyl alcohol-based resin composition and more specifically, a melt-forming polyvinyl alcohol-based resin (hereinafter also referred to as a PVOH-based resin) composition that is less colored by melt molding and has a high melt viscosity temporal stability.
  • PVOH-based resins are excellent in water solubility, solvent resistance, gas barrier properties, strength, transparency, hydrophilicity, and the like, and are used in various applications such as packaging for goods.
  • PVOH-based resin has a melting point and a thermal decomposition temperature close to each other.
  • a molded product, particularly a film is to be obtained by melt molding, it must be molded at a temperature near the decomposition temperature. There was a problem in the appearance of the molded product (contamination of foreign matter caused by scorching or thermal decomposition product) and long run moldability.
  • PVOH-based resin An ethylene / vinyl alcohol copolymer having a melting point lowered by ethylene modification is known as a PVOH-based resin that can be melt-molded.
  • a PVOH resin having a 1,2-diol component in the side chain has been proposed (Patent Document 1).
  • This PVOH resin with 1,2-diol component in the side chain has a low melting point while maintaining water solubility and gas barrier properties, and can be molded at low temperatures, so it can be thermally decomposed during melt molding. Can be obtained, and a molded article having a good appearance can be obtained which is free from scorching, gel and fish eyes.
  • PVOH-based resin can be hot-melt molded, when molded at a high temperature of 200 ° C. or higher, particularly when molded, the molded product is likely to be colored, and the resin viscosity increases in the molten state over time. There were challenges and there was room for further improvement.
  • the present invention has been made in view of the above circumstances, and an object thereof is a PVOH-based resin composition that can be melt-molded.
  • the PVOH-based resin composition is less colored by melt-molding and has a high melt viscosity stability over time.
  • the object is to provide a resin composition.
  • the present inventors first conducted intensive research on the cause of coloring, and obtained the knowledge that the carbonyl group present in the PVOH-based resin had an effect.
  • the reason why the carbonyl group affects the coloring is not clear, but in the PVOH resin having a carbonyl group, the hydroxyl group adjacent to the carbonyl group is easily dehydrated, and as a result, —CO— (CH It is considered that a conjugated double bond structure consisting of ⁇ CH) n — is formed.
  • the present inventors have obtained the knowledge that the carbonyl group present in the PVOH-based resin has an influence on the temporal stability of the melt viscosity.
  • the reason why the carbonyl group affects the aging stability of the melt viscosity is not clear, but for example, acetalization of the carbonyl group and the hydroxyl group of the PVOH resin promoted by an acid component or an alkali component in the PVOH resin. It is conceivable that the melt viscosity is increased by a crosslinking reaction such as ketalization or the like, or the melt viscosity is decreased due to decomposition by a reverse aldol reaction starting from a terminal carbonyl group.
  • the present inventors specified the absorbance at 280 nm in the ultraviolet absorption spectrum as an index of the amount of carbonyl group incorporated in the PVOH resin in the aqueous solution, and used carboxylic acid and alkali (earth) metal salt.
  • the above-mentioned problems have been solved by adjusting the pH of the aqueous solution to be within a predetermined range.
  • the reason why the stability over time of the melt viscosity is improved is not clear, but by adjusting the pH of the aqueous solution using a carboxylic acid and an alkali (earth) metal salt, the PVOH molecules generated during melt molding are cut. And the cross-linking reaction between the PVOH molecules is balanced, and the change in the apparent molecular weight is reduced, so that it is considered that the change in melt viscosity with time is reduced.
  • the PVOH-based resin composition of the present invention has a structural unit represented by the following general formula (1) and has an absorbance at 280 nm in an ultraviolet absorption spectrum of 0.1 to 0.
  • the pH is 5.5-7.
  • the notation of alkali (earth) metal salt means an alkali metal salt and / or an alkaline earth metal salt.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an organic group
  • X represents a single bond or a bond chain
  • R 4 , R 5 and R 6 each independently represent a hydrogen atom. Or an organic group is shown.
  • the present inventors have found that the carbonyl group present in the PVOH-based resin undergoes chain transfer at the terminal of the polymerization chain of the vinyl ester to the aldehyde compound present in the system during the polymerization of vinyl ester such as vinyl acetate. It was found that hydroxyl groups were oxidized during polymerization at high temperature or drying.
  • aldehyde compounds for example, acetaldehyde derived from vinyl alcohol produced by transesterification reaction between vinyl acetate and methanol as a polymerization solvent, and polymerization that is widely used for polymerization of vinyl acetate and has a long half-life and high activity.
  • Formaldehyde generated by oxidation of methanol, which is a polymerization solvent, with an initiator (AIBN [half-life 32 hours], acetyl peroxide [half-life 32 hours], benzoyl peroxide [half-life 60 hours], etc.) is presumed.
  • AIBN half-life 32 hours
  • acetyl peroxide half-life 32 hours
  • benzoyl peroxide half-life 60 hours]
  • the present inventors have shown that the polyvinyl alcohol resin having the structural unit represented by the general formula (1) in the PVOH resin composition of the present invention is represented by the vinyl ester monomer and the following general formula (2). Saponification of a copolymer obtained by copolymerizing a compound having a 1,2-diol structure or a derivative thereof with an organic peroxide having a half-life of 10 to 300 minutes at 60 ° C. as a polymerization initiator. It has been found that it is more preferable that it is obtained.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an organic group
  • X represents a single bond or a bond chain
  • R 4 , R 5 and R 6 each independently represent a hydrogen atom. Or an organic group is shown.
  • the PVOH-based resin composition of the present invention has a specific non-coloring property and stability over time of melt viscosity as compared with the conventional one, and is specified as follows. You can also. That is, the PVOH resin composition of the present invention has an YI (Yellow Index) value of 50 or less when an extrudate is used under the conditions of a resin temperature of 210 ° C. and a residence time of 3 minutes using an extruder. Further, the ratio of the torque after 60 minutes to the torque after 10 minutes after the start of kneading when the resin temperature is 230 ° C. is 3 or less.
  • YI Yellow Index
  • a polyvinyl alcohol resin having a structural unit represented by the following general formula (1) and having an absorbance at 280 nm of 0.1 to 0.3 in an ultraviolet absorption spectrum in a 4% by mass aqueous solution A polyvinyl alcohol resin composition comprising an acid, and at least one of an alkali metal salt and an alkaline earth metal salt, wherein the polyvinyl alcohol resin composition has a content of 4% by mass.
  • a polyvinyl alcohol-based resin composition having a pH of 5.5 to 7 at 20 ° C. when an aqueous solution of the product is prepared.
  • a polyvinyl alcohol resin having a structural unit represented by the general formula (1) comprises a vinyl ester monomer and a compound having a 1,2-diol structure represented by the following general formula (2) or a derivative thereof:
  • the polyvinyl alcohol resin according to [1] which is obtained by saponifying a copolymer obtained by using an organic peroxide having a half-life of 10 to 300 minutes at 60 ° C. as a polymerization initiator. Composition.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an organic group
  • X represents a single bond or a bond chain
  • R 4 , R 5 and R 6 each independently represent a hydrogen atom. Or an organic group is shown.
  • Kneading started when melt-kneading is performed with a plastograph at a resin temperature of 230 ° C. with a YI value of 50 or less when an extruder is used and the resin temperature is 210 ° C. and the residence time is 3 minutes.
  • a polyvinyl alcohol-based resin composition in which the ratio of torque after 60 minutes to torque after 10 minutes is 3 or less.
  • the PVOH-based resin composition of the present invention can be suitably used for melt molding because it is less colored by melt molding and has high melt viscosity stability over time.
  • the present invention is described in detail below.
  • the PVOH-based resin composition of the present invention has a structural unit represented by the following general formula (1) and has an absorbance at 280 nm of 0.1 to 0.3 in an ultraviolet absorption spectrum when a 4% by mass aqueous solution is obtained. Contains certain PVOH-based resins, carboxylic acids, and alkali (earth) metal salts. First, the PVOH resin used in the present invention will be described.
  • the PVOH resin used in the present invention has a 1,2-diol structural unit represented by the following general formula (1), and R 1 , R 2 and R 3 in the general formula (1) are each independently hydrogen.
  • An atom or an organic group is represented, X represents a single bond or a bond chain, and R 4 , R 5 and R 6 each independently represents a hydrogen atom or an organic group.
  • R 1 to R 3 and R 4 to R 6 in the structural unit represented by the general formula (1) are preferably all hydrogen atoms, and have a structural unit represented by the following general formula (1 ′). Resins are preferably used.
  • R 1 to R 3 and R 4 to R 6 in the structural unit represented by the general formula (1) may be organic groups as long as they do not significantly impair the resin properties.
  • the organic group is not particularly limited, but is preferably an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, If necessary, these alkyl groups may have a substituent such as a halogen group, a hydroxyl group, an ester group, a carboxylic acid group, or a sulfonic acid group.
  • X in the structural unit represented by the general formula (1) is most preferably a single bond from the viewpoint of thermal stability and structural stability under high temperature / acid conditions.
  • a binding chain may be used as long as the effect is not inhibited.
  • Such a bond chain is not particularly limited, but other than hydrocarbon groups such as alkylene, alkenylene, alkynylene, phenylene, naphthylene (these hydrocarbon groups may have halogen such as fluorine, chlorine, bromine, etc.) , —O—, — (CH 2 O) m —, — (OCH 2 ) m —, — (CH 2 O) m CH 2 —, —CO—, —COCO—, —CO (CH 2 ) m CO— , —CO (C 6 H 4 ) CO—, —S—, —CS—, —SO—, —SO 2 —, —NR—, —CONR—, —NRCO—, —CSNR—,
  • R is an optional substituent each independently, a hydrogen atom, an alkyl group are preferred, and m is a natural number
  • the PVOH resin used in the present invention usually contains 1 to 15 mol%, preferably 2 to 10 mol%, more preferably 3 to 9 mol% of the structural unit represented by the general formula (1).
  • the molar fraction of the structural unit represented by the general formula (1) is excessively high, it tends to be difficult to obtain a PVOH-based resin having a desired degree of polymerization.
  • the molar fraction is too low, the melting point becomes high and the temperature is close to the thermal decomposition temperature, so that there is a tendency that scorching, gel, and fish eyes are easily caused by thermal decomposition during melt molding.
  • the content (molar fraction) of the 1,2-diol structural unit represented by the general formula (1) is the 1 H-NMR spectrum (solvent: DMSO-) of the completely saponified PVOH-based resin. d6, internal standard: tetramethylsilane).
  • the hydroxyl group proton in the 1,2-diol unit, the methine proton, the methylene proton, the methylene proton in the main chain, the hydroxyl group linked to the main chain It can be calculated from the peak area derived from protons and the like.
  • the degree of saponification (measured in accordance with JIS K6726) of the PVOH resin used in the present invention is usually 80 to 100 mol%, preferably 85 to 99.9 mol%, more preferably 88 to 99.5 mol%. It is. If the degree of saponification is too low, the stability of melt viscosity tends to be insufficient at the time of melt molding, and the odor of acetic acid generated by the decomposition of the vinyl acetate structural unit portion tends to be significant.
  • the average degree of polymerization of PVOH resin is usually 200 to 1800, preferably 300 to 1500, and more preferably 300 to 1000.
  • the average degree of polymerization is too high, the melt viscosity becomes high and the moldability tends to be lowered.
  • the average degree of polymerization is too low, the mechanical strength of the molded product tends to be insufficient.
  • the PVOH resin used in the present invention generally has an absorbance at 280 nm in an ultraviolet absorption spectrum of a 4% by mass aqueous solution of 0.1 to 0.3, preferably 0.1 to 0.28, more preferably 0.1 to 0.25.
  • the absorbance is too large, the conjugated system tends to be extended to the long wavelength side and easily colored, and the thermal stability tends to decrease.
  • PVOH-based resin having a low absorbance needs to employ a production method with low production efficiency such as cryogenic polymerization.
  • a PVOH resin is not preferable in terms of productivity and cost.
  • the absorbance can be measured by preparing a 4% by mass aqueous solution of PVOH resin and using a UV spectrophotometer.
  • a PVOH resin composition containing a carboxylic acid and an alkali (earth) metal salt is used. It is also possible to prepare an aqueous solution containing 4% by mass of a PVOH-based resin and measure it using a UV spectrophotometer.
  • a method for bringing the absorbance of the PVOH resin aqueous solution into the specified range of the present invention is not particularly limited.
  • a) hydroxycarboxylic acid such as tartaric acid or citric acid, polyvalent carboxylic acid, L-scorbic acid, D -Polymerization in the presence of chelating agents such as hydroxy lactones such as araboascorbic acid, D-glucono-1,5-lactone, polyhydric alcohols such as D-sorbitol and D-xylose, and polyhydric amines such as tetramethylethylenediamine.
  • the method b) is preferably used because it is excellent in productivity and has little influence on other
  • the method for producing such a PVOH resin is not particularly limited.
  • Two or more vinyl ester monomers may be copolymerized with two or more compounds of the general formula (2) or derivatives thereof.
  • R 1 , R 2 , R 3 , X, R 4 , R 5 and R 6 in the structural unit represented by the general formula (2) are all the same as in the case of the general formula (1).
  • the vinyl ester monomers used for the production of PVOH resins include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, stearic acid. Vinyl, vinyl benzoate, vinyl versatate, vinyl trifluoroacetate and the like can be mentioned, but vinyl acetate is preferably used among them economically.
  • a method for producing a PVOH resin from a compound having a 1,2-diol structure represented by the general formula (2) or a derivative thereof and a vinyl ester monomer is not particularly limited, but (i) a vinyl ester monomer and A method of saponifying a copolymer with a compound represented by the following general formula (3), or (ii) saponifying and depolymerizing a copolymer of a vinyl ester monomer and a compound represented by the following general formula (4)
  • a method of carbonation and a method of (iii) saponifying and deketalizing a copolymer of a vinyl ester monomer and a compound represented by the following general formula (5) are preferably used.
  • the method described in JP-A-2006-95825 can be employed.
  • R 1 , R 2 , R 3 , X, R 4 , R 5 and R 6 are all the same as in the general formula (1).
  • R 7 and R 8 are each independently a hydrogen atom or R 9 —CO— (wherein R 9 is an alkyl group).
  • R 10 and R 11 are each independently a hydrogen atom or an organic group similar to R 1 to R 6 .
  • Examples of the compound represented by the general formula (3) include 3,4-dihydroxy-1-butene, 3,4-diacyloxy-1-butene, 3-acyloxy-4-hydroxy-1-butene, and 4-acyloxy-3- Hydroxy-1-butene, 3,4-diacyloxy-2-methyl-1-butene, 4,5-dihydroxy-1-pentene, 4,5-diasiloxy-1-pentene, 4,5-dihydroxy-3-methyl- Examples thereof include 1-pentene, 4,5-diasiloxy-3-methyl-1-pentene, 5,6-dihydroxy-1-hexene, 5,6-diasiloxy-1-hexene, and glycerin monoallyl ether.
  • R 1 to R 6 are hydrogen, X is a single bond, and R 7 to R 8 are R 9 —CO—.
  • R 9 3,4-diasiloxy-1-butene in which R 9 is an alkyl group is preferable, and among these, 3,4-diacetoxy-1-butene in which R 9 is a methyl group is particularly preferable.
  • Cx (vinyl ethylene carbonate) 0.005 (65 ° C.)
  • the 3,4-diacetoxy-1-butene is described in, for example, products manufactured by a synthetic route using 1,3-butadiene as a starting material described in International Publication No. 00/24702, US Pat. No. 5,632,086 and US Pat. No. 6,072,079.
  • a product produced by using an epoxybutene derivative by the above technique as an intermediate can be obtained, and a product of Acros can be obtained from the market at the reagent level.
  • crude 3,4-diacetoxy-1-butene obtained as a by-product during the production process of 1,4-butanediol can be purified and used.
  • the PVOH resin obtained by the above method (ii) or (iii) has a carbonate ring or acetal ring in the side chain.
  • the PVOH obtained by the method (i) System resins are preferred.
  • ethylene or propylene may be used as a copolymerization component as long as the physical properties of the resin are not significantly affected.
  • ⁇ -olefin such as 3-buten-1-ol, 4-penten-1-ol, 5-hexene-1,2-diol and the like, and derivatives such as acylated products thereof; itaconic acid , Unsaturated acids such as maleic acid and acrylic acid or salts or mono- or dialkyl esters thereof; nitriles such as acrylonitrile; amides such as methacrylamide and diacetone acrylamide; ethylene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, Olefins such as AMPS (2-acrylamido-2-methylpropanesulfonic acid)
  • a compound such as sulfonic acid or a salt thereof, and an allyl compound such as ethylene oxide monoallyl ether may be copolymerized. It is also possible to use those having a main chain 1,2-glycol bond content of 1.5 to 3 mol% by copolymerization with vinylene carbonate
  • the method for copolymerizing the above monomers is not particularly limited, and a known method such as bulk polymerization, solution polymerization, suspension polymerization, dispersion polymerization, or emulsion polymerization can be employed. From the viewpoint of being easily obtained, solution polymerization is usually performed.
  • the method for charging the monomer component at the time of copolymerization is not particularly limited, and any method such as batch charging, split charging, continuous charging, etc. may be adopted, but the compounds represented by the general formulas (2) to (5) may be used. Drop polymerization is preferred from the viewpoint of being uniformly distributed in the molecular chain of the polyvinyl ester polymer, and a polymerization method based on the HANNA method is particularly preferred.
  • Examples of the solvent used in such copolymerization usually include lower alcohols such as methanol, ethanol, isopropyl alcohol, n-propanol and butanol, ketones such as acetone and methyl ethyl ketone, or a mixed solvent thereof. Methanol is preferably used.
  • a polymerization initiator is usually used.
  • the polymerization initiator is not particularly limited, and for example, known radical polymerization initiators such as azobisisobutyronitrile, acetyl peroxide, benzoyl peroxide, lauryl peroxide, azobisdimethylvaleronitrile, azobismethoxydimethylvalero And low temperature active radical polymerization initiators such as nitriles.
  • known radical polymerization initiators such as azobisisobutyronitrile, acetyl peroxide, benzoyl peroxide, lauryl peroxide, azobisdimethylvaleronitrile, azobismethoxydimethylvalero
  • low temperature active radical polymerization initiators such as nitriles.
  • an organic peroxide having a half-life at 60 ° C. of usually 10 to 300 minutes, preferably 15 to 250 minutes, more preferably 20 to 200 minutes.
  • the half-life of the polymerization initiator is too long, the YI value of the produced PVOH-based resin tends to be high, and when the half-life is too short, it is difficult to control the polymerization.
  • the half-life said here is measured in 60 degreeC toluene (azo compound) or benzene (other polymerization initiator).
  • organic peroxides having a half-life of 10 to 300 minutes at 60 ° C. include 2,2′-azobis- (2,4-dimethylvaleronitrile) [half-life of 150 minutes], 2,2′- Azo compounds such as azobis- (4-methoxy-2,4-dimethylvaleronitrile) [half-life 11 minutes], t-butyl peroxyneodecanoate [half-life 102 minutes hours], t-butyl peroxypivalate Peroxyesters such as [half-life 288 minutes], t-hexyl peroxypivalate [half-life 222 minutes], bis- (4-tert-butylcyclohexyl) peroxy-dicarbonate [half-life 40 minutes], di -2-Ethylhexylperoxy-dicarbonate [half-life 50 minutes], di-isopropylperoxy-dicarbonate [half-life 36 minutes], di-n-propyl carbonate Peroxy such dicarbonate [
  • the amount of the polymerization initiator used varies depending on the type of the polymerization initiator and cannot be determined unconditionally, but is arbitrarily selected according to the polymerization rate. For example, when an organic peroxide having a half-life of 10 to 300 minutes at 60 ° C. is used, it is usually 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 2 mol%, preferably 1 ⁇ 10 6 with respect to the vinyl ester monomer. ⁇ 6 to 1 ⁇ 10 ⁇ 3 mol%. When the amount of the polymerization initiator used is too large, it tends to be difficult to control the polymerization rate and the heat generation amount, and when it is too small, the polymerization takes a long time and the productivity tends to decrease.
  • the reaction temperature of the polymerization reaction varies depending on the solvent to be used, the pressure, and the heat removal ability of the polymerization canister, and is not generally determined, but is usually 50 to 130 ° C., particularly preferably 55 ° C. to boiling point under normal pressure.
  • the reaction temperature is too high, it tends to be difficult to control the polymerization, and when it is too low, the polymerization tends to be difficult to proceed.
  • Two or more polymerization initiators having different half-lives may be used, and two or more polymerization initiators may be charged sequentially or simultaneously.
  • the copolymer obtained by copolymerization is then saponified.
  • Such saponification is performed by dissolving the copolymer obtained above in an alcohol or hydrous alcohol and using an alkali catalyst or an acid catalyst.
  • the alcohol include methanol, ethanol, propanol, tert-butanol, mixed solvents such as methanol / methyl acetate and methanol / benzene, and methanol is particularly preferably used.
  • the concentration of the copolymer in the alcohol is appropriately selected depending on the viscosity of the system, but is usually selected from the range of 10 to 60% by weight.
  • Catalysts used for saponification include alkali catalysts such as alkali metal hydroxides and alcoholates such as sodium hydroxide, potassium hydroxide, sodium methylate, sodium ethylate, potassium methylate, lithium methylate, etc., sulfuric acid, Examples include acid catalysts such as hydrochloric acid, nitric acid, metasulfonic acid, zeolite, and cation exchange resin.
  • alkali catalysts such as alkali metal hydroxides and alcoholates such as sodium hydroxide, potassium hydroxide, sodium methylate, sodium ethylate, potassium methylate, lithium methylate, etc.
  • sulfuric acid examples include acid catalysts such as hydrochloric acid, nitric acid, metasulfonic acid, zeolite, and cation exchange resin.
  • the apparatus used for the saponification reaction include a kneader and a belt-like continuous saponification apparatus, a twin screw extruder, and the like.
  • the amount of the saponification catalyst used is appropriately selected depending on the saponification method, the target degree of saponification, and the like.
  • an alkali catalyst When an alkali catalyst is used, the vinyl ester monomer and the general formulas (2) to (5) are generally used. In general, 0.1 to 30 mmol, preferably 2 to 17 mmol is suitable for 1 mol of the total amount of the compounds represented by (1).
  • the reaction temperature of the saponification reaction is not particularly limited, but is preferably 10 to 60 ° C, more preferably 20 to 50 ° C.
  • the PVOH-based resin composition of the present invention contains a carboxylic acid and an alkali (earth) metal salt together with the PVOH-based resin.
  • the carboxylic acid include aliphatic carboxylic acids and aromatic carboxylic acids. Among them, aliphatic carboxylic acids are preferably used, and monocarboxylic acids and dicarboxylic acids are preferable. Monocarboxylic acids are preferably used. In addition, those having 2 to 18, preferably 2 to 10, more preferably 2 to 5 carbon atoms are used, and those having water solubility are particularly preferably used. Specific examples include acetic acid, propionic acid, butyric acid, valeric acid, oxalic acid, malonic acid, and succinic acid.
  • acetic acid is preferably used.
  • the content of carboxylic acid is usually 0.001 to 0.2 parts by mass, preferably 0.002 to 0.15 parts by mass, and more preferably 0.002 to 0.1 parts by mass with respect to 100 parts by mass of the PVOH resin. Part by mass.
  • the method for containing the carboxylic acid is not particularly limited, but it is efficient to add it in the production process of the PVOH-based resin. In particular, when the copolymer is added after saponification using an alkali catalyst, It is preferable to adjust and contain the amount consumed by neutralization. Two or more carboxylic acids may be included.
  • the alkali (earth) metal salt is an organic acid salt or an inorganic acid salt of alkali metal and / or alkaline earth metal.
  • the alkali metal include potassium and sodium
  • examples of the alkaline earth metal include calcium and magnesium.
  • alkali metals are preferable from the viewpoint of a large effect on the amount used, and sodium salts are particularly preferably used.
  • organic acid salts include carboxylates such as acetic acid, propionic acid, butyric acid, lauric acid, stearic acid, oleic acid, and behenic acid
  • inorganic acids include salts such as sulfuric acid, sulfurous acid, carbonic acid, and phosphoric acid. Can be mentioned.
  • organic acid salts are preferably used because they have a small influence on the resin and molding equipment when they become free acids.
  • the acid used for the alkali (earth) metal salt may be the same as or different from the carboxylic acid described above, but is preferably the same.
  • the content of the alkali (earth) metal salt is usually 0.0002 to 1 mol%, preferably 0.001 to 0.6 mol%, more preferably 0.002 to 0.002 mol% in terms of metal relative to the PVOH resin. 0.2 mol%.
  • Two or more alkali (earth) metal salts may be contained.
  • the said content represents the total amount, when both an alkali metal salt and alkaline-earth metal salt are included.
  • the method of containing an alkali (earth) metal salt is not particularly limited.
  • an alkaline substance containing an alkali metal is used as a saponification catalyst during the production (saponification) of a PVOH resin, and PVOH after saponification is used.
  • a method of washing and neutralizing with an acid to control the amount of alkali metal salt contained in the resin a method of mixing an aqueous metal salt solution with the PVOH resin before the drying step in the production of the PVOH resin, Examples include a method of mixing a metal salt with a molten PVOH resin.
  • the method of using an alkaline substance containing an alkali metal as a saponification catalyst and using a carboxylic acid when neutralizing it with an acid is used for the carboxylic acid and alkali (earth) metal salt in the resin composition. Since each content can be controlled simultaneously, it is suitable as a method for producing the resin composition of the present invention.
  • the content of the alkali (earth) metal salt in the PVOH resin can be determined by atomic absorption analysis.
  • the pH of the aqueous solution at 20 ° C. when the aqueous solution is prepared so that the content of the PVOH-based resin is 4% by mass is usually 5.5 to 7, particularly 6 To 7, particularly 6.2 to 6.8 are preferred. If the pH of the aqueous solution is too high, the stability of the melt viscosity tends to be insufficient or tends to be colored, and if the pH is too low, the stability of the melt viscosity tends to be insufficient.
  • the pH of the aqueous solution can be adjusted, for example, by controlling the content ratio between the carboxylic acid and the alkali (earth) metal salt.
  • the pH of the aqueous solution is an aqueous solution prepared using the PVOH resin composition containing the carboxylic acid and the alkali (earth) metal salt so that the content of the PVOH resin is 4% by mass. Measured.
  • the PVOH-based resin composition of the present invention can obtain good melt moldability without blending a plasticizer, but can be blended with a plasticizer as required.
  • plasticizers include aliphatic polyhydric alcohols (eg, ethylene glycol, hexanediol, glycerin, trimethylolpropane, diglycerin, etc.), compounds obtained by adding ethylene oxide to polyhydric alcohols such as glycerin, various alkylene oxides (ethylene Oxides, propylene oxide, mixed adducts of ethylene oxide and propylene oxide, etc.), sugars (for example, sorbitol, mannitol, pentaerythritol, xylol, arabinose, ribulose, etc.), phenol derivatives such as bisphenol A and bisphenol S, N-methylpyrrolidone Amide compounds such as ⁇ -methyl-D-glucoside, water and the like.
  • the blending amount is preferably 100 parts by mass or less
  • thermoplastic resins eg polyethylene, polypropylene, polyester in the presence of compatibilizers
  • fragrances e.g. polyethylene, polypropylene, polyester in the presence of compatibilizers
  • fillers talc, clay, montmorillonite, calcium carbonate, glass beads, glass fibers , Silica, mica, alumina, hydrotalcite, titanium oxide, zirconium oxide, boron nitride, aluminum nitride and other inorganic fillers, melamine-formalin-based organic fillers, etc.
  • release agents e.g., UV absorbers, antioxidants
  • additives such as processing stabilizers, weather resistance stabilizers, fungicides, and preservatives can be appropriately blended.
  • the filler is suitably used for the purpose of adjusting the water decomposability and biodegradability of the PVOH-based resin, and providing the resin with anti-blocking properties and printability.
  • the PVOH-based resin composition obtained as described above can be used for melt molding as it is, but considering the workability and discharge stability at the time of melt molding, once kneaded in a molten state, It is preferable to cool and solidify into pellets or the like.
  • kneaders such as a kneader ruder, an extruder, a mixing roll, a Banbury mixer, a blast mill can be used, but usually a single-screw or twin-screw extruder is used. It is industrially preferable, and it is also preferable to provide a vent suction device, a gear pump device, a screen device, a strand support belt, a dry fog generator, and the like as necessary. In particular, in order to remove moisture and by-products (pyrolysis low molecular weight products, etc.), one or more vent holes are provided in the extruder, and suction is performed under reduced pressure, and mixing of oxygen into the extruder is prevented. Therefore, by continuously supplying an inert gas such as nitrogen into the hopper, pellets of PVOH-based resin composition having excellent quality with reduced thermal coloring and thermal deterioration can be obtained.
  • an inert gas such as nitrogen into the hopper
  • the PVOH-based resin composition of the present invention has unique non-coloring properties and stability over time of melt viscosity.
  • the YI (Yellow Index) value is 50 or less, preferably 5 to 48, particularly when an extrudate (melt extruded pellet) is obtained under the conditions of a resin temperature of 210 ° C. and a residence time of 3 minutes using an extruder. A preferred range is 10 to 45.
  • the YI value can be measured using a spectral color difference meter.
  • the PVOH-based resin composition of the present invention has a ratio of torque after 60 minutes to torque after 10 minutes after starting kneading when the resin temperature is 230 ° C. by plastograph (torque after 60 minutes / 10 (Torque after minutes) is 3 or less, preferably 0.3 to 3, particularly preferably 1 to 2.8.
  • the PVOH resin composition of the present invention can be suitably used for melt molding.
  • the melt-molded product using the PVOH-based resin composition of the present invention is not particularly limited, and is a film, sheet, bottle, pipe, tube, injection-molded product, atypical cross-section extrudate, etc. Is exemplified.
  • melt molding method for obtaining such a melt molded product
  • the melting temperature is usually selected from the range of 150 to 250 ° C., but in the PVOH resin composition of the present invention, it is 150 to 220 ° C. (more preferably 185 to 210 ° C.).
  • melt-molded products obtained using the PVOH-based resin composition of the present invention include fibers, gas barrier films, water-soluble films (especially agricultural chemicals, detergents, laundry clothes, civil engineering additives, disinfectants) Water-soluble films for packaging of goods such as dyes and pigments), agricultural films, sheets, pipes, tubes, leak-proof films, temporary coatings, water-soluble fibers for chemical lace, PVDC alternative films for food packaging, etc. .
  • a sheet or film as a melt-molded product may be uniaxially or biaxially stretched, and if necessary, cooling treatment, rolling treatment, printing treatment, dry lamination treatment, solution or melt coating treatment, bag making. Processing, deep drawing processing, box processing, tube processing, split processing, cutting processing, and the like may be performed.
  • Example 1 [Production of PVOH resin] A reaction vessel equipped with a reflux condenser, a dropping funnel and a stirrer was charged with 321.4 g of vinyl acetate, 241.1 g of methanol, and 38.6 g of 3,4-diacetoxy-1-butene. Then, 37.8 g of a 4% methanol solution of t-butylperoxyneodecanoate (half-life 102 minutes) was added over 610 minutes to carry out polymerization.
  • the solution was diluted with methanol to adjust the copolymer concentration to 66% and charged into a kneader. While maintaining the solution temperature at 40 ° C., a 2% methanol solution of sodium hydroxide was added to vinyl acetate in the copolymer. Further, saponification was carried out by adding 12 mmol with respect to 1 mol of the total amount of 3,4-diacetoxy-1-butene.
  • saponified product precipitates in the form of particles to form a slurry, and then acetic acid is added in an amount of 0.35 equivalent to the amount of added sodium hydroxide, and the resin concentration in the slurry is 9 % Methanol was added, and the mixture was stirred in a kneader for 15 minutes, filtered and dried in a hot air dryer to obtain a PVOH-based resin composition (pellet) containing acetic acid and sodium acetate.
  • acetic acid is added in an amount of 0.35 equivalent to the amount of added sodium hydroxide
  • the resin concentration in the slurry is 9 % Methanol
  • the degree of saponification of the PVOH-based resin in the obtained PVOH-based resin composition was analyzed using the alkali consumption required for hydrolysis of the residual vinyl acetate and the residual 3,4-diacetoxy-1-butene. It was 2 mol%, and the average degree of polymerization was 450 when analyzed according to JIS K6726.
  • the amount of side chain introduced containing a 1,2-diol structure was 6 mol% as calculated by measurement with 1 H-NMR spectrum (solvent: DMSO-d6, internal standard: tetramethylsilane). .
  • the absorbance at 280 nm in the ultraviolet absorption spectrum of the 4% aqueous solution of the PVOH resin composition was 0.18
  • the pH of the aqueous solution at 20 ° C. was 6.2.
  • the pH was measured using a glass electrode pH meter (Horiba, Ltd., F-22) and a low conductivity pH electrode (Horiba, Ltd., 6377-10D).
  • the YI value and torque ratio of the PVOH-based resin composition were measured by the following measuring method. The above physical property values are summarized in Table 1.
  • Example 2 by changing the content ratio of acetic acid / sodium acetate, the pH of the 4% aqueous solution (20 ° C.) was 6.8 (Example 2), 6.2 (Example 3), or 5. 8 (Example 4) of a PVOH-based resin composition was obtained. Each physical property value is summarized in Table 1.
  • Comparative Example 1 A PVOH-based resin composition was obtained in the same manner as in Example 1, except that the polymerization initiator was changed to acetyl peroxide (half-life 1920 minutes). Each physical property value is summarized in Table 1.
  • Example 2 by changing the content ratio of acetic acid / sodium acetate, a 4% aqueous solution (20 ° C.) having a pH of 5.3 (Comparative Example 2) or 7.2 (Comparative Example 3) PVOH-based resin A composition was obtained.
  • Each physical property value is summarized in Table 1.
  • the absorbance at 280 nm in the ultraviolet absorption spectrum of a 4% by mass aqueous solution is 0.1 to 0.3, and the pH of the aqueous solution at 20 ° C. is 5.5 to 7.
  • the PVOH-based resin composition No. 4 has a low YI value of 50 or less and a low torque ratio of 3 or less. That is, the PVOH-based resin compositions of Examples 1 to 4 are all suitable for melt molding because the moldings are less colored (yellowing) and the melt viscosity is stable over time.
  • the PVOH-based resin composition of Comparative Example 1 has an absorbance at 280 nm in an ultraviolet absorption spectrum of a 4% by mass aqueous solution higher than 0.3 and a YI value exceeding 50.
  • the PVOH resin composition of Comparative Example 2 has a 4 mass% aqueous solution having a pH at 20 ° C. of less than 5.5 and a torque ratio exceeding 3.
  • the pH of a 4% by mass aqueous solution at 20 ° C. is higher than 7, and the YI value exceeds 50. Therefore, the PVOH resin compositions of Comparative Examples 1 to 3 are not suitable for melt molding because all of the molded products are easily colored and the resin viscosity increases with time in the molten state.
  • the PVOH-based resin composition of the present invention can be suitably used for melt molding because it is less colored by melt molding and has high melt viscosity stability over time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は溶融成形による着色が少なく、溶融粘度の経時安定性が高いポリビニルアルコール系樹脂(PVOH系樹脂)組成物を提供する。本発明は、下記一般式(1)で示される構造単位を有し、かつ4質量%水溶液とした時の紫外線吸収スペクトルにおける280nmの吸光度が0.1~0.3であるポリビニルアルコール系樹脂、カルボン酸、およびアルカリ(土類)金属塩を含有するポリビニルアルコール系樹脂組成物であって、ポリビニルアルコール系樹脂の含有量が4質量%となるようにポリビニルアルコール系樹脂組成物の水溶液を調製した時の、20℃における該水溶液のpHが5.5~7であるポリビニルアルコール系樹脂組成物に関する。〔式中、R1、R2及びR3はそれぞれ独立して水素原子または有機基を示し、Xは単結合または結合鎖を示し、R4、R5及びR6はそれぞれ独立して水素原子または有機基を示す。〕

Description

ポリビニルアルコール系樹脂組成物
 本発明は、ポリビニルアルコール系樹脂組成物に関し、さらに詳しくは、溶融成形による着色が少なく、溶融粘度の経時安定性が高い溶融成形用ポリビニルアルコール系樹脂(以下、PVOH系樹脂とも表記する。)組成物に関する。
 PVOH系樹脂は、水溶性、耐溶剤性、ガスバリア性、強度、透明性、親水性などに優れており、物品包装用などの各種用途に用いられている。通常、PVOH系樹脂は融点と熱分解温度が近接しており、溶融成形によって成形品、特にフィルム等を得ようとする場合は、分解温度の近傍の温度で成形せざるをえず、得られた成形物の外観(焦げや熱分解物に起因する異物の混入)やロングラン成形性に問題があった。
 溶融成形が可能なPVOH系樹脂として、エチレン変性によって融点を下げたエチレン・ビニルアルコール共重合体が知られているが、水溶性ではなく、ガスバリア性の低下も避けられない。溶融成形が可能な他のPVOH系樹脂として、側鎖に1,2-ジオール成分を有するPVOH系樹脂が提案されている(特許文献1)。側鎖に1,2-ジオール成分を有するこのPVOH系樹脂は、水溶性やガスバリア性を保持したまま低融点化されたもので、低温での成形が可能なことから、溶融成形時の熱分解が抑制され、焦げやゲル、フィッシュアイの発生がない、良好な外観の成形物を得ることができる。
 しかしながら、かかるPVOH系樹脂は、熱溶融成形が可能ではあるものの、溶融成形時、特に200℃以上の高温で成形を行うと成形物が着色しやすい、および溶融状態で樹脂粘度が経時増大するという課題があり、さらなる改善の余地があった。
日本国特開2006-89538号公報
 本発明は上記の事情に鑑みてなされたものであり、その目的は、溶融成形が可能なPVOH系樹脂組成物であって、溶融成形による着色が少なく、溶融粘度の経時安定性が高いPVOH系樹脂組成物を提供することにある。
 本発明者らは、上記の実情に鑑みて、まず着色の原因について鋭意研究したところ、PVOH系樹脂中に存在するカルボニル基が影響しているとの知見を得た。カルボニル基が着色に影響を与える理由は、明らかではないが、カルボニル基を有するPVOH系樹脂では、カルボニル基に隣接する水酸基が脱水されやすくなり、その結果、着色の原因となる-CO-(CH=CH)n -からなる共役二重結合構造が形成されると考えられる。
 また、本発明者らは、PVOH系樹脂中に存在するカルボニル基が溶融粘度の経時安定性にも影響しているとの知見を得た。カルボニル基が溶融粘度の経時安定性に影響を与える理由は、明らかではないが、例えば、PVOH系樹脂中の酸成分やアルカリ成分によって促進される、カルボニル基とPVOH系樹脂の水酸基とのアセタール化やケタール化等の架橋反応による溶融粘度の上昇や、末端カルボニル基を起点とした逆アルドール反応による分解を原因とする溶融粘度の低下などが考えられる。
 そこで、本発明者らは、水溶液のPVOH系樹脂中に取り込まれたカルボニル基量の指標として、紫外線吸収スペクトルにおける280nmの吸光度を規定するとともに、カルボン酸とアルカリ(土類)金属塩を用いて、水溶液のpHが所定範囲内となるように調整することによって、上記課題を解決するに至ったものである。なお、溶融粘度の経時安定性が向上する理由は、明らかではないが、カルボン酸とアルカリ(土類)金属塩を用いて、水溶液のpHを調整することにより、溶融成形時に生じるPVOH分子の切断と、PVOH分子間の架橋反応とのバランスがとれて、見かけの分子量の変化が少なくなるので、溶融粘度の経時変化が少なくなると考えられる。
 すなわち、本発明のPVOH系樹脂組成物は、下記一般式(1)で示される構造単位を有し、かつ4質量%水溶液とした時の紫外線吸収スペクトルにおける280nmの吸光度が0.1~0.3であるポリビニルアルコール系樹脂、カルボン酸、およびアルカリ(土類)金属塩を含有し、ポリビニルアルコール系樹脂の含有量が4質量%となるように水溶液を調製した時の、20℃における該水溶液のpHが5.5~7であることを特徴とする。なお、アルカリ(土類)金属塩の表記は、アルカリ金属塩及び/又はアルカリ土類金属塩を意味する。
Figure JPOXMLDOC01-appb-C000003
〔式中、R1、R2及びR3はそれぞれ独立して水素原子または有機基を示し、Xは単結合または結合鎖を示し、R4、R5及びR6はそれぞれ独立して水素原子または有機基を示す。〕
 さらに、本発明者らは、PVOH系樹脂中に存在するカルボニル基が、酢酸ビニルなどのビニルエステルの重合時に系に存在するアルデヒド化合物にビニルエステルの重合連鎖の末端が連鎖移動することによってポリマー中に導入されたり、高温での重合や乾燥の際、水酸基が酸化されて形成されるとの知見を得た。かかるアルデヒド化合物としては、例えば、酢酸ビニルと重合溶媒であるメタノールとのエステル交換反応によって生成したビニルアルコールに由来するアセトアルデヒドや、酢酸ビニルの重合に広く用いられ、かつ半減期が長く活性が高い重合開始剤(AIBN〔半減期32時間〕、アセチルパーオキサイド〔半減期32時間〕、ベンゾイルパーオキサイド〔半減期60時間〕など)によって、重合溶媒であるメタノールが酸化されて生成するホルムアルデヒドなどが推測される。
 そこで、本発明者らは、本発明のPVOH系樹脂組成物において、一般式(1)で示される構造単位を有するポリビニルアルコール系樹脂が、ビニルエステル系モノマーと下記一般式(2)で示される1,2-ジオール構造を有する化合物またはその誘導体とを、重合開始剤として60℃における半減期が10~300分である有機過酸化物を用いて、共重合させた共重合物をケン化して得られたものであることが更に好適であることを見出した。
Figure JPOXMLDOC01-appb-C000004
〔式中、R1、R2及びR3はそれぞれ独立して水素原子または有機基を示し、Xは単結合または結合鎖を示し、R4、R5及びR6はそれぞれ独立して水素原子または有機基を示す。〕
 また、本発明のPVOH系樹脂組成物は、上記の通り、従来のものに比して、特異な非着色性と溶融粘度の経時安定性を具備するものであるので、下記の通りに特定することもできる。すなわち、本発明のPVOH系樹脂組成物は、押出機を用い、樹脂温度210℃、滞留時間3分間の条件で押出し物としたときのYI(Yellow Index)値が50以下であり、プラストグラフにて樹脂温度230℃で溶融混練したときの混練開始後10分後のトルクに対する60分後のトルクの比が3以下であることを特徴とするものでもある。
 即ち、本発明は以下の態様を含む。
[1] 下記一般式(1)で示される構造単位を有し、かつ4質量%水溶液とした時の紫外線吸収スペクトルにおける280nmの吸光度が0.1~0.3であるポリビニルアルコール系樹脂、カルボン酸、およびアルカリ金属塩及びアルカリ土類金属塩のうち少なくとも1つを含有するポリビニルアルコール系樹脂組成物であって、ポリビニルアルコール系樹脂の含有量が4質量%となるようにポリビニルアルコール系樹脂組成物の水溶液を調製した時の、20℃における該水溶液のpHが5.5~7であるポリビニルアルコール系樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
〔式中、R1、R2及びR3はそれぞれ独立して水素原子または有機基を示し、Xは単結合または結合鎖を示し、R4、R5及びR6はそれぞれ独立して水素原子または有機基を示す。〕
[2] 一般式(1)で示される構造単位を有するポリビニルアルコール系樹脂が、ビニルエステル系モノマーと下記一般式(2)で示される1,2-ジオール構造を有する化合物またはその誘導体とを、重合開始剤として60℃における半減期が10~300分である有機過酸化物を用いて、共重合させた共重合物をケン化して得られたものである[1]記載のポリビニルアルコール系樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
〔式中、R1、R2及びR3はそれぞれ独立して水素原子または有機基を示し、Xは単結合または結合鎖を示し、R4、R5及びR6はそれぞれ独立して水素原子または有機基を示す。〕
[3] 押出機を用い、樹脂温度210℃、滞留時間3分間の条件で押出し物としたときのYI値が50以下であり、プラストグラフにて樹脂温度230℃で溶融混練したときの混練開始後10分後のトルクに対する60分後のトルクの比が3以下であるポリビニルアルコール系樹脂組成物。
 本発明のPVOH系樹脂組成物は、溶融成形による着色が少なく、溶融粘度の経時安定性が高いので、溶融成形に好適に用いることができる。
 以下に、本発明を詳細に述べる。
 本発明のPVOH系樹脂組成物は、下記一般式(1)で示される構造単位を有し、かつ4質量%水溶液としたときの紫外線吸収スペクトルにおける280nmの吸光度が0.1~0.3であるPVOH系樹脂、カルボン酸、およびアルカリ(土類)金属塩を含有する。まず、本発明で用いるPVOH系樹脂について説明する。
 本発明で用いるPVOH系樹脂は、下記一般式(1)で示される1,2-ジオール構造単位を有するもので、一般式(1)におけるR1、R2及びR3はそれぞれ独立して水素原子または有機基を示し、Xは単結合または結合鎖を示し、R4、R5及びR6はそれぞれ独立して水素原子または有機基を示す。
Figure JPOXMLDOC01-appb-C000007
 一般式(1)で表わされる構造単位中のR1~R3及びR4~R6は、すべて水素原子であることが望ましく、下記一般式(1’)で表わされる構造単位を有するPVOH系樹脂が好適に用いられる。
Figure JPOXMLDOC01-appb-C000008
 かかる一般式(1)で表わされる構造単位中のR1~R3及びR4~R6は、それぞれ、樹脂特性を大幅に損なわない程度の量であれば、有機基であってもよく、その有機基としては特に限定されないが、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の炭素数1~4のアルキル基が好ましく、必要に応じて、これらアルキル基がハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等の置換基を有していてもよい。
 また、一般式(1)で表わされる構造単位中のXは、熱安定性の点や高温下/酸性条件下での構造安定性の点で、単結合であることが最も好ましいが、本発明の効果を阻害しない範囲であれば結合鎖であってもよい。かかる結合鎖としては特に限定されないが、アルキレン、アルケニレン、アルキニレン、フェニレン、ナフチレン等の炭化水素基(これらの炭化水素基はフッ素、塩素、臭素等のハロゲン等を有していても良い)の他、-O-、-(CH2O)m  -、-(OCH2m  -、-(CH2O)CH2-、-CO-、-COCO-、-CO(CH2CO-、-CO(C64)CO-、-S-、-CS-、-SO-、-SO-、-NR-、-CONR-、-NRCO-、-CSNR-、-NRCS-、-NRNR-、-HPO-、-Si(OR)2-、-OSi(OR)2-、-OSi(OR)O-、-Ti(OR)-、-OTi(OR)-、-OTi(OR)O-、-Al(OR)-、-OAl(OR)-、-OAl(OR)O-等(Rは各々独立して任意の置換基であり、水素原子、アルキル基が好ましく、またmは自然数である)が挙げられる。中でも製造時あるいは使用時の安定性の点で炭素数6以下のアルキレン基、特にメチレン基、あるいは-CH2OCH2-が好ましい。
 本発明で用いられるPVOH系樹脂は、上記一般式(1)で示される構造単位を通常1~15モル%、好ましくは2~10モル%、さらに好ましくは3~9モル%を含有する。上記一般式(1)で示される構造単位のモル分率を過度に高くすると、所望の重合度のPVOH系樹脂を得ることが困難となる傾向がある。一方、モル分率が低すぎると、融点が高くなり、熱分解温度に近くなるので、溶融成形時の熱分解による焦げやゲル、フィッシュアイができ易くなる傾向がある。
 PVOH系樹脂中、一般式(1)で示される1,2-ジオール構造単位の含有率(モル分率)は、PVOH系樹脂を完全にケン化したものの1H-NMRスペクトル(溶媒:DMSO-d6、内部標準:テトラメチルシラン)から求めることができ、具体的には1,2-ジオール単位中の水酸基プロトン、メチンプロトン、およびメチレンプロトン、主鎖のメチレンプロトン、主鎖に連結する水酸基のプロトンなどに由来するピーク面積から算出することができる。
 本発明で用いられるPVOH系樹脂のケン化度(JIS K6726に準拠して測定)は、通常80~100モル%、好ましくは85~99.9モル%、さらに好ましくは88~99.5モル%である。ケン化度が低すぎると、溶融成形時に、溶融粘度の安定性が不充分となる傾向があり、また、酢酸ビニル構造単位部分の分解によって生じる酢酸の臭気が著しくなる傾向がある。
 また、PVOH系樹脂の平均重合度(JIS K6726に準拠して測定)は、通常200~1800、好ましくは300~1500、さらに好ましくは300~1000である。平均重合度が高すぎると、溶融粘度が高くなり、成形性が低下する傾向がある。一方、平均重合度が低すぎると、成形物の機械的強度が不足する傾向がある。
 本発明で用いられるPVOH系樹脂は、4質量%水溶液としたときの紫外線吸収スペクトルにおける280nmの吸光度が通常0.1~0.3であり、好ましくは0.1~0.28、さらに好ましくは0.1~0.25である。280nmの吸収は、PVOH系樹脂に含まれる-CO-(CH=CH)n -構造中のn=0の場合の孤立カルボニル基とn=2の場合の共役カルボニル基による。かかる吸光度が大きすぎると、共役系が長波長側に伸び、着色しやすくなり、熱安定性が低下する傾向がある。一方、一般的な工業的製造方法では吸光度が0.1を下回るものは得られず、吸光度が小さいPVOH系樹脂は、極低温重合などの生産効率の悪い製造方法を採用する必要があるため、かかるPVOH系樹脂は生産性、およびコスト面で好ましくない。なお、吸光度は、PVOH系樹脂の4質量%水溶液を調製し、UV分光光度計を用いて測定することができるが、カルボン酸およびアルカリ(土類)金属塩を含有するPVOH系樹脂組成物を用いて、PVOH系樹脂を4質量%含む水溶液を調製し、UV分光光度計を用いて測定しても良い。
 PVOH系樹脂水溶液の上記吸光度を本発明の規定範囲にする方法としては、特に限定されないが、例えば、a)酒石酸やクエン酸などのヒドロキシカルボン酸、あるいは多価カルボン酸、L-スコルビン酸、D-アラボアスコルビン酸、D-グルコノ-1,5-ラクトンなどのヒドロキシラクトン、D-ソルビトール、D-キシロースなどの多価アルコール、テトラメチルエチレンジアミンなどの多価アミンなどのキレート剤の存在下で重合を行うことで、重合系中のアルデヒド化合物量を低減する方法、b)半減期が短い重合開始剤を使用する方法、c)低温活性な重合開始剤を用いて、低温で重合する方法、d)酸化力が弱い重合開始剤を使用する方法、e)回収された酢酸ビニルなどのビニルエステルモノマーを使用しない、あるいは使用する場合には蒸留等によりアルデヒド化合物の含有量を極力低減させる方法、f)重合禁止剤として、p-メトキシフェノールやα-メチルスチレン2量体などのPVOH系樹脂末端の共役系の長波長側への伸びを促進させないものを使用する、あるいは禁止剤の使用量を極力少なくする方法などが挙げられる。中でも、生産性に優れ、他の樹脂物性に与える影響が小さい点などから、b)の方法が好ましく用いられる。
 次に、一般式(1)で示される構造単位を有するPVOH系樹脂の製造方法について説明する。かかるPVOH系樹脂の製造方法は、特に限定されないが、例えば、ビニルエステル系モノマーと下記一般式(2)で示される1,2-ジオール構造を有する化合物またはその誘導体とを共重合させた共重合物をケン化する方法が挙げられる。なお、2種以上のビニルエステル系モノマーと2種以上の一般式(2)の化合物またはその誘導体とを共重合させても良い。
Figure JPOXMLDOC01-appb-C000009
 一般式(2)で表わされる構造単位中のR1、R2、R3、X、R4、R5、R6は、いずれも一般式(1)の場合と同様である。
 PVOH系樹脂の製造に用いられるビニルエステル系モノマーとしては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル、トリフロロ酢酸ビニル等が挙げられるが、経済的にみて、中でも酢酸ビニルが好ましく用いられる。
 一般式(2)で示される1,2-ジオール構造を有する化合物またはその誘導体とビニルエステル系モノマーとからPVOH系樹脂を製造する方法としては、特に限定されないが、(i)ビニルエステル系モノマーと下記一般式(3)で示される化合物との共重合物をケン化する方法や、(ii)ビニルエステル系モノマーと下記一般式(4)で示される化合物との共重合物をケン化及び脱炭酸する方法や、(iii)ビニルエステル系モノマーと下記一般式(5)で示される化合物との共重合物をケン化及び脱ケタール化する方法が好ましく用いられる。なお、(i)、(ii)、及び(iii)の方法については、例えば、特開2006-95825号公報に説明されている方法を採用できる。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 上記一般式(3)、(4)、(5)中のR1、R2、R3、X、R4、R5、R6は、いずれも一般式(1)の場合と同様である。R7及びR8はそれぞれ独立して水素原子またはR9-CO-(式中、R9はアルキル基である)である。R10及びR11はそれぞれ独立して水素原子またはR1~R6と同様の有機基である。
 一般式(3)で示される化合物としては、3,4-ジヒドロキシ-1-ブテン、3,4-ジアシロキシ-1-ブテン、3-アシロキシ-4-ヒドロキシ-1-ブテン、4-アシロキシ-3-ヒドロキシ-1-ブテン、3,4-ジアシロキシ-2-メチル-1-ブテン、4,5-ジヒドロキシ-1-ペンテン、4,5-ジアシロキシ-1-ペンテン、4,5-ジヒドロキシ-3-メチル-1-ペンテン、4,5-ジアシロキシ-3-メチル-1-ペンテン、5,6-ジヒドロキシ-1-ヘキセン、5,6-ジアシロキシ-1-ヘキセン、グリセリンモノアリルエーテルなどが挙げられる。なかでも、共重合反応性および工業的な取り扱い性に優れるという点から、上記一般式(3)においてR1~R6が水素、Xが単結合、R7~R8がR9-CO-であり、R9がアルキル基である、3,4-ジアシロキシ-1-ブテンが好ましく、さらにそのなかでも特にR9がメチル基である3,4-ジアセトキシ-1-ブテンが好ましく用いられる。
 上記(i)の方法において、ビニルエステル系モノマーとして酢酸ビニルを用い、これと3,4-ジアセトキシ-1-ブテンを共重合させた際の各モノマーの反応性比は、r(酢酸ビニル)=0.710、r(3,4-ジアセトキシ-1-ブテン)=0.701であり、これは(ii)の方法で用いられる一般式(4)で表される化合物であるビニルエチレンカーボネートの場合の、r(酢酸ビニル)=0.85、r(ビニルエチレンカーボネート)=5.4と比較して、3,4-ジアセトキシ-1-ブテンが酢酸ビニルとの共重合反応性に優れることを示すものである。
 また、酢酸ビニルとの共重合時の3,4-ジアセトキシ-1-ブテンの連鎖移動定数は、Cx(3,4-ジアセトキシ-1-ブテン)=0.003(65℃)であり、これはビニルエチレンカーボネートの場合の、Cx(ビニルエチレンカーボネート)=0.005(65℃)や、(iii)の方法で用いられる一般式(5)で表される化合物である2,2-ジメチル-4-ビニル-1,3-ジオキソランの場合のCx(2,2-ジメチル-4-ビニル-1,3-ジオキソラン)=0.023(65℃)と比較して、重合度が上がりにくくなったり、重合速度が低下したりする原因となり難いことを示すものである。
 かかる3,4-ジアセトキシ-1-ブテンは、その共重合物をケン化する際に発生する副生物が、ビニルエステル系モノマーとして多用される酢酸ビニルに由来する構造単位からケン化時に副生する化合物と同一であり、その後処理や溶剤回収系に敢えて特別な装置や工程を設ける必要がなく、従来からの設備を利用出来るという点も、工業的に大きな利点である。
 なお、上記3,4-ジアセトキシ-1-ブテンは、例えば、国際公開第00/24702号に記載の1,3-ブタジエンを出発物質とした合成ルートで製造された製品や、USP5623086、USP6072079に記載の技術によるエポキシブテン誘導体を中間体として製造された製品を入手することができ、また試薬レベルではアクロス社の製品をそれぞれ市場から入手することができる。また、1,4-ブタンジオール製造工程中の副生成物として得られる粗3,4-ジアセトキシ-1-ブテンを精製して利用することもできる。
 また、1,4-ブタンジオール製造工程の中間生成物である1,4-ジアセトキシ-1-ブテンを、塩化パラジウムなどの金属触媒を用いた公知の異性化反応で異性化することによって、3,4-ジアセトキシ-1-ブテンに変換して用いることもできる。また、国際公開第00/24702号に記載の有機ジエステルの製造方法に準じて製造することも可能である。
 上記(ii)や(iii)の方法によって得られたPVOH系樹脂は、ケン化度が低い場合や、脱炭酸あるいは脱アセタール化が不充分な場合には、側鎖にカーボネート環あるいはアセタール環が残存する場合があり、その結果、かかるPVOH系樹脂を溶融成形に用いた場合に、ゲルや架橋による異物が発生する傾向があり、これらの点からも、(i)の方法によって得られたPVOH系樹脂が好適である。
 また上述のモノマー(ビニルエステル系モノマー、一般式(2)~(5)で示される化合物)の他に、樹脂物性に大幅な影響を及ぼさない範囲であれば、共重合成分として、エチレンやプロピレン等のαーオレフィン;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1,2-ジオール等のヒドロキシ基含有α-オレフィン類、およびそのアシル化物などの誘導体;イタコン酸、マレイン酸、アクリル酸等の不飽和酸類あるいはその塩あるいはモノ又はジアルキルエステル;アクリロニトリル等のニトリル類;メタクリルアミド、ジアセトンアクリルアミド等のアミド類;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸、AMPS(2-アクリルアミド-2-メチルプロパンスルホン酸)等のオレフィンスルホン酸あるいはその塩などの化合物、エチレンオキサイドモノアリルエーテルなどのアリル化合物類などが共重合されていてもよい。
 また、ビニレンカーボネートとの共重合や、重合時の温度条件を高温にすることで、主鎖の1,2-グリコール結合量を1.5~3モル%としたものを使用することもできる。
 上記のモノマーを共重合する方法としては、特に制限はなく、塊状重合、溶液重合、懸濁重合、分散重合、またはエマルジョン重合等の公知の方法を採用することができるが、直鎖状ポリマーが得られやすいという点から、通常は溶液重合が行われる。共重合時のモノマー成分の仕込み方法としては、特に制限されず、一括仕込み、分割仕込み、連続仕込み等の任意の方法が採用されるが、一般式(2)~(5)で示される化合物をポリビニルエステル系ポリマーの分子鎖中に均一に分布させられる点から滴下重合が好ましく、特にはHANNA法に基づく重合方法が好ましい。
 かかる共重合で用いられる溶媒としては、通常、メタノール、エタノール、イソプロピルアルコール、n-プロパノール、ブタノール等の低級アルコール、アセトン、メチルエチルケトン等のケトン類、またはこれらの混合溶媒が挙げられ、工業的には、メタノールが好適に使用される。溶媒の使用量は、目的とする共重合物の重合度に合わせて、溶媒の連鎖移動定数を考慮して適宜選択すればよく、例えば、溶媒がメタノールの時は、S(溶媒)/M(モノマー)=0.01~10(重量比)、好ましくは0.05~3(重量比)程度の範囲から選択される。
 共重合に際しては、通常、重合開始剤が用いられる。重合開始剤としては、特に限定されず、例えばアゾビスイソブチロニトリル、過酸化アセチル、過酸化ベンゾイル、過酸化ラウリル等の公知のラジカル重合開始剤やアゾビスジメチルバレロニトリル、アゾビスメトキシジメチルバレロニトリル等の低温活性ラジカル重合開始剤等が挙げられる。しかし、PVOH系樹脂中のカルボニル基の含有量を低減し、本発明で規定する吸光度に調整するために、半減期の短い重合開始剤を用いることが好ましい。具体的には、60℃における半減期が通常10~300分、好ましくは15~250分、さらに好ましくは20~200分である有機過酸化物を用いることが好ましい。重合開始剤の半減期が長すぎると、製造されたPVOH系樹脂のYI値が高くなる傾向があり、半減期が短すぎると、重合のコントロールが難しくなる傾向がある。なお、ここで言う半減期とは、60℃のトルエン(アゾ化合物)またはベンゼン(他の重合開始剤)等の中で測定されるものである。
 60℃における半減期が10~300分である有機過酸化物の具体例としては、2,2′-アゾビス-(2,4-ジメチルバレロニトリル)〔半減期150分〕、2,2′-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)〔半減期11分〕等のアゾ化合物、t-ブチルパーオキシネオデカノエート〔半減期102分時間〕、t-ブチルパーオキシピバレート〔半減期288分〕、t-ヘキシルパーオキシピバレート〔半減期222分〕等のパーオキシエステル類、ビス-(4-t-ブチルシクロヘキシル)パーオキシ-ジ-カーボネート〔半減期40分〕、ジ-2-エチルヘキシルパーオキシ-ジ-カーボネート〔半減期50分〕、ジ-イソプロピルパーオキシ-ジ-カーボネート〔半減期36分〕、ジ-n-プロピルパーオキシジカーボネート〔半減期42分〕等のパーオキシ-ジ-カーボネート類、イソブチラルパーオキサイド〔半減期16分〕等のジアシルパーオキシド類が挙げられる。
 重合開始剤の使用量は、重合開始剤の種類により異なり一概には決められないが、重合速度に応じて任意に選択される。例えば、60℃における半減期が10~300分である有機過酸化物を用いる場合、ビニルエステル系モノマーに対して、通常1×10-7~1×10-2モル%、好ましくは1×10-6~1×10-3モル%である。重合開始剤の使用量が多すぎると、重合速度や発熱量などのコントロールが難しくなる傾向があり、少なすぎると、重合に長時間を要し、生産性が低下する傾向がある。重合反応の反応温度は、使用する溶媒や圧力、重合缶の除熱能力により異なり一概には決められないが、通常50~130℃、特に常圧下での55℃~沸点が好ましい。反応温度が高すぎると、重合のコントロールが難しくなる傾向があり、低すぎると、重合が進行し難くなる傾向がある。なお、半減期の異なる2種以上の重合開始剤を用いても良く、2種以上の重合開始剤を順次または同時に仕込むことができる。
 共重合により得られた共重合物は、次いでケン化される。かかるケン化は、上記で得られた共重合物をアルコール又は含水アルコールに溶解し、アルカリ触媒又は酸触媒を用いて行われる。アルコールとしては、メタノール、エタノール、プロパノール、tert-ブタノール、メタノール/酢酸メチルやメタノール/ベンゼンなどの混合溶媒等が挙げられるが、メタノールが特に好ましく用いられる。アルコール中の共重合物の濃度は系の粘度により適宜選択されるが、通常は10~60重量%の範囲から選ばれる。ケン化に使用される触媒としては、水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、リチウムメチラート等のアルカリ金属の水酸化物やアルコラートの如きアルカリ触媒、硫酸、塩酸、硝酸、メタスルフォン酸、ゼオライト、カチオン交換樹脂等の酸触媒が挙げられる。
 かかるケン化反応に用いられる装置としては、ニーダーやベルト状の連続ケン化装置、2軸押出機等を挙げることができる。
 かかるケン化触媒の使用量については、ケン化方法、目標とするケン化度等により適宜選択されるが、アルカリ触媒を使用する場合は通常、ビニルエステル系モノマー及び一般式(2)~(5)で示される化合物の合計量1モルに対して通常0.1~30ミリモル、好ましくは2~17ミリモルが適当である。また、ケン化反応の反応温度は、特に限定されないが、10~60℃が好ましく、より好ましくは20~50℃である。
 本発明のPVOH系樹脂組成物は、上記PVOH系樹脂とともに、カルボン酸、およびアルカリ(土類)金属塩を含有する。カルボン酸としては、脂肪族カルボン酸や芳香族カルボン酸などが挙げられ、中でも脂肪族カルボン酸が好ましく用いられ、またモノカルボン酸やジカルボン酸が挙げられ、好ましくはモノカルボン酸が用いられる。また、その炭素数は通常2~18、好ましくは2~10、さらに好ましくは2~5であるものが用いられ、特に水溶性であるものが好ましく用いられる。具体的には、酢酸、プロピオン酸、酪酸、吉草酸、シュウ酸、マロン酸、コハク酸が例示され、中でも酢酸が好適に用いられる。
 カルボン酸の含有量は、PVOH系樹脂100質量部に対して、通常0.001~0.2質量部、好ましくは0.002~0.15質量部、さらに好ましくは0.002~0.1質量部である。カルボン酸を含有させる方法は、特に限定されないが、PVOH系樹脂の製造工程において添加することが効率的であり、特に上記共重合物をアルカリ触媒を用いてケン化した後に添加する場合には、中和による消費分を適宜調整して含有させることが好ましい。なお、2種以上のカルボン酸を含有させても良い。
 アルカリ(土類)金属塩は、アルカリ金属及び/又はアルカリ土類金属の有機酸塩あるいは無機酸塩である。アルカリ金属としては、カリウム、ナトリウム等が挙げられ、アルカリ土類金属としては、カルシウム、マグネシウム等が挙げられる。中でも、使用量に対する効果が大きい点からアルカリ金属が好ましく、特にナトリウム塩が好適に用いられる。
 有機酸塩としては、酢酸、プロピオン酸、酪酸、ラウリル酸、ステアリン酸、オレイン酸、ベヘニン酸等のカルボン酸塩が挙げられ、無機酸としては、硫酸、亜硫酸、炭酸、リン酸等の塩が挙げられる。中でも遊離酸となった場合に樹脂や成形機器に対する影響が小さい点で有機酸塩が好ましく用いられる。なお、かかるアルカリ(土類)金属塩に用いられる酸は、上述のカルボン酸と同じものでも異なっていてもよいが、同じものであることが好ましい。
 アルカリ(土類)金属塩の含有量は、PVOH系樹脂に対して金属換算で、通常0.0002~1モル%、好ましくは0.001~0.6モル%、さらに好ましくは0.002~0.2モル%である。なお、2種以上のアルカリ(土類)金属塩を含有させても良い。なお、上記含有量は、アルカリ金属塩とアルカリ土類金属塩を両方含む場合には、その合計量を表す。
 アルカリ(土類)金属塩を含有させる方法は、特に限定されず、例えば、PVOH系樹脂の製造(ケン化)時にケン化触媒としてアルカリ金属を含有するアルカリ性物質を使用し、ケン化後のPVOH系樹脂を洗浄、および酸によって中和して該樹脂中に含まれるアルカリ金属塩の量を制御する方法、PVOH系樹脂の製造における乾燥工程前に金属塩水溶液をPVOH系樹脂に混合する方法、溶融状態のPVOH系樹脂に金属塩を混合する方法等が挙げられる。中でも、ケン化触媒としてアルカリ金属を含有するアルカリ性物質を使用して、これを酸によって中和する際にカルボン酸を用いる方法は、樹脂組成物中のカルボン酸及びアルカリ(土類)金属塩の各含有量を同時に制御できることから、本発明の樹脂組成物の製造法として好適である。
 なお、PVOH系樹脂中のアルカリ(土類)金属塩の含有量は、原子吸光分析法で求めることができる。
 本発明のPVOH系樹脂組成物は、PVOH系樹脂の含有量が4質量%となるように水溶液を調製した時の、20℃における該水溶液のpHが通常5.5~7であり、特に6~7、殊に6.2~6.8が好ましい。水溶液のpHが高すぎると、溶融粘度の安定性が不充分になったり、着色し易くなる傾向があり、pHが低すぎると、溶融粘度の安定性が不充分になる傾向がある。水溶液のpHは、例えば、上記カルボン酸とアルカリ(土類)金属塩との含有量比を制御することにより調整することができる。なお、水溶液のpHは、上記カルボン酸及びアルカリ(土類)金属塩を含有するPVOH系樹脂組成物を用いて、PVOH系樹脂の含有量が4質量%となるように調製された水溶液にて測定される。
 本発明のPVOH系樹脂組成物は、可塑剤を配合しなくても良好な溶融成形性を得ることができるが、別段必要に応じて、可塑剤を配合することも可能である。かかる可塑剤としては、脂肪族多価アルコール(例えば、エチレングリコール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ジグリセリン等)、グリセリン等の多価アルコールへエチレンオキサイドを付加した化合物、各種アルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、エチレンオキサイドとプロピレンオキサイドの混合付加体等)、糖類(例えば、ソルビトール、マンニトール、ペンタエリスリトール、キシロール、アラビノース、リブロース等)、ビスフェノールAやビスフェノールS等のフェノール誘導体、N-メチルピロリドン等のアミド化合物、α-メチル-D-グルコシド等のグルコシド類、水等が挙げられる。なお、その配合量としては、PVOH系樹脂100質量部に対して、好ましくは100質量部以下、さらに好ましくは20質量部以下、特に好ましくは10質量部以下とする。
 また、熱可塑性樹脂(例えば、相溶化剤存在下でポリエチレン、ポリプロピレン、ポリエステル)、香料、発泡剤、消臭剤、増量剤、充填剤(タルク、クレー、モンモリロナイト、炭酸カルシウム、ガラスビーズ、ガラス繊維、シリカ、マイカ、アルミナ、ハイドロタルサイト、酸化チタン、酸化ジルコニウム、窒化硼素、窒化アルミニウム等の無機充填剤、メラミンーホルマリン系樹脂等の有機充填材)、剥離剤、紫外線吸収剤、酸化防止剤、加工安定剤、耐候性安定剤、防かび剤、防腐剤等の添加剤を適宜配合することができる。なお、充填材は、PVOH系樹脂の水解性や生分解性の速度を調整したり、該樹脂にブロッキング防止性や印刷適性の具備させる目的に好適に使用される。
 上記の如くして得られたPVOH系樹脂組成物は、そのまま溶融成形に供することも可能であるが、溶融成形時の作業性や吐出安定性を考慮すれば、一度溶融状態で混練した後、冷却固化させてペレット状等にすることが好ましい。
 かかる手段としては、たとえば、ニーダールーダー、押出機、ミキシングロール、バンバリーミキサー、ブラストミルなどの公知の混練装置を用いて行うことができるが、通常は、単軸または二軸押出機を用いることが工業的に好ましく、また、必要に応じて、ベント吸引装置、ギヤポンプ装置、スクリーン装置、ストランド支持用ベルト、ドライフォッグ発生器等を設けることも好ましい。特に、水分や副生成物(熱分解低分子量物等)を除去するために、押出機に1個以上のベント孔を設けて減圧下に吸引したり、押出機中への酸素の混入を防止するためにホッパー内に窒素等の不活性ガスを連続的に供給したりすることにより、熱着色や熱劣化が軽減された品質に優れたPVOH系樹脂組成物のペレットを得ることができる。
 本発明のPVOH系樹脂組成物は、特異な非着色性と溶融粘度の経時安定性を具備する。具体的には、押出機を用い、樹脂温度210℃、滞留時間3分間の条件で押出し物(溶融押出しペレット)としたときのYI(Yellow Index)値が50以下、好ましくは5~48、特に好ましくは10~45である。なお、YI値は分光色差計を用いて測定することができる。また、本発明のPVOH系樹脂組成物は、プラストグラフにて樹脂温度230℃で溶融混練したときの混練開始後10分後のトルクに対する60分後のトルクの比(60分後のトルク/10分後のトルク)が3以下、好ましくは0.3~3、特に好ましくは1~2.8である。
 本発明のPVOH系樹脂組成物は溶融成形に好適に使用できる。本発明のPVOH系樹脂組成物を用いた溶融成形品としては 特に制限されることなく、フィルム、シート、ボトル、パイプ、チューブ、射出成形物、異型断面押出物等や溶融紡糸法による繊維及び不織布が例示される。かかる溶融成形品を得るための溶融成形方法としては、圧縮成型法、トランスファー成形法、押出し成型法、射出成形法、インフレーション成形法、中空成形法、ブロー成形法、カレンダー成形法、発泡成形法、真空成形法等が主として採用され、溶融温度としては、通常150~250℃の範囲から選ぶことが多いが、本発明のPVOH系樹脂組成物においては、150~220℃(さらには185~210℃)の低温で溶融成形することが可能であり、さらにPVOH系樹脂のケン化度を下げれば、より低温での成形が可能である。
 本発明のPVOH系樹脂組成物を用いて得られる溶融成形品の具体例としては、繊維、ガスバリア性フィルム、易水溶性フィルム(特に農薬、洗剤、洗濯用衣類、土木用添加材剤、殺菌剤、染料、顔料などの物品包装用の易水溶性フィルム)、農業用フィルム、シート、パイプ、チューブ、防漏膜、暫定皮膜、ケミカルレース用水溶性繊維、食品包装用PVDC代替フィルムなどが例示される。また、溶融成形品としてのシートやフィルムは、一軸又は二軸に延伸しても良く、更に必要に応じて、冷却処理、圧延処理、印刷処理、ドライラミネート処理、溶液又は溶融コート処理、製袋加工、深絞り加工、箱加工、チューブ加工、スプリット加工、切削加工等を行なっても良い。
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。なお、以下「%」「部」とあるのは、特にことわりのない限り、質量基準を意味する。
 実施例1
 〔PVOH系樹脂の製造〕
 還流冷却器、滴下漏斗、撹拌機を備えた反応缶に、酢酸ビニル321.4g、メタノール241.1g、3,4-ジアセトキシ-1-ブテン38.6gを仕込み、撹拌しながら窒素気流下で温度を上昇させ、t-ブチルパーオキシネオデカノエート(半減期102分)の4%メタノール溶液37.8gを610分かけて添加して重合を行った。また、重合開始から35分経過した時点で酢酸ビニル571.4g、3,4-ジアセトキシ-1-ブテン68.6gを480分かけて添加し、さらに105分重合を行った。酢酸ビニルの重合率が89.5%となった時点で、重合禁止剤としてp-メトキシフェノール38ppm(対仕込み酢酸ビニル)を加え、重合を終了した。続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し共重合物のメタノール溶液を得た。
 次いで、該溶液をメタノールで希釈して共重合物の濃度66%に調整してニーダーに仕込み、溶液温度を40℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を共重合物中の酢酸ビニル及び3,4-ジアセトキシ-1-ブテンの合計量1モルに対して12ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が粒子状に析出してスラリーとなった後、添加水酸化ナトリウム量に対して酢酸を0.35当量となるように加えて、さらにスラリー中の樹脂濃度が9%となるようにメタノールを添加して、15分間ニーダー内で攪拌し、濾別して熱風乾燥機中で乾燥し、酢酸、および酢酸ナトリウムを含有するPVOH系樹脂組成物(ペレット)を得た。
 得られたPVOH系樹脂組成物中のPVOH系樹脂のケン化度は、残存酢酸ビニル及び残存3,4-ジアセトキシ-1-ブテンの加水分解に要するアルカリ消費量で分析を行ったところ、99.2モル%であり、平均重合度はJIS K6726に準じて分析を行ったところ450であった。また、1,2-ジオール構造を含有する側鎖の導入量は、1H-NMRスペクトル(溶媒:DMSO-d6、内部標準:テトラメチルシラン)で測定して算出したところ6モル%であった。また、PVOH系樹脂組成物4%水溶液の紫外線吸収スペクトルにおける280nmの吸光度は0.18であり、該水溶液の20℃におけるpHは6.2であった。かかるpHは、ガラス電極式pHメーター(堀場製作所社製、F-22)、および低導電率用pH電極(堀場製作所社製、6377-10D)を用いて測定したものである。さらに、PVOH系樹脂組成物のYI値、トルク比を下記の測定法により測定した。以上の物性値を表1にまとめる。
 〔YI値測定法〕
 押出機を用いた押出し物(溶融押出しペレット)のYI値を下記条件にて測定した。
 押出機:テクノベル社製二軸押出機,KZW-15-60MG,スクリュー径15mm,L/D=60、
 スクリュー:送りセグメントのみ(混練部なし)、
 樹脂温度:210℃、
 滞留時間:3分間、
 測定機器:日本電色工業社製,分光色差計 Σ90、
 測定条件:ホッパー部は窒素シールされている。
 〔トルク比測定法〕
 プラストグラフにてPVOH系樹脂組成物のトルク比(混練開始60分後のトルク/10分後のトルク)を下記条件にて測定した。
 プラストグラフ:ブラベンダー社製,プラストグラフ EC plus,ローラミキサーR60B(チャンバ容量60mL)、
 樹脂投入量:55g、
 予熱時間:3分間、
 樹脂温度:230℃、
 混練条件:50rpm。
 実施例2、3、4
 実施例1において、酢酸/酢酸ナトリウムの含有量比を変更することにより、4%水溶液(20℃)のpHが6.8(実施例2)、6.2(実施例3)、又は5.8(実施例4)のPVOH系樹脂組成物を得た。各物性値を表1にまとめる。
 比較例1
 実施例1において、重合開始剤をアセチルパーオキサイド(半減期1920分)に変更する以外は同様にしてPVOH系樹脂組成物を得た。各物性値を表1にまとめる。
 比較例2、3
 実施例1において、酢酸/酢酸ナトリウムの含有量比を変更することにより、4%水溶液(20℃)のpHが5.3(比較例2)又は7.2(比較例3)のPVOH系樹脂組成物を得た。各物性値を表1にまとめる。
Figure JPOXMLDOC01-appb-T000013
 表1に示すように、4質量%水溶液の紫外線吸収スペクトルにおける280nmの吸光度が0.1~0.3であり、かつ該水溶液の20℃におけるpHが5.5~7である実施例1~4のPVOH系樹脂組成物は、YI値が50以下と小さく、またトルク比が3以下の低い値である。すなわち、実施例1~4のPVOH系樹脂組成物は、いずれも成形物の着色(黄変)が少なく、溶融粘度の経時安定性が高いので、溶融成形用に適している。
 一方、比較例1のPVOH系樹脂組成物は、4質量%水溶液の紫外線吸収スペクトルにおける280nmの吸光度が0.3よりも高く、YI値が50を超えている。また、比較例2のPVOH系樹脂組成物は、4質量%水溶液の20℃におけるpHが5.5よりも小さく、トルク比が3を越えている。さらに、比較例3のPVOH系樹脂組成物は、4質量%水溶液の20℃におけるpHが7よりも高く、YI値が50を超えている。したがって、比較例1~3のPVOH系樹脂組成物は、いずれも成形物が着色し易く、溶融状態で樹脂粘度が経時増大するという課題があり、溶融成形用に適しているとは言えない。
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年4月28日出願の日本特許出願(特願2009-108621)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のPVOH系樹脂組成物は、溶融成形による着色が少なく、溶融粘度の経時安定性が高いので、溶融成形に好適に用いることができる。

Claims (3)

  1.  下記一般式(1)で示される構造単位を有し、かつ4質量%水溶液とした時の紫外線吸収スペクトルにおける280nmの吸光度が0.1~0.3であるポリビニルアルコール系樹脂、カルボン酸、およびアルカリ金属塩及びアルカリ土類金属塩のうち少なくとも1つを含有するポリビニルアルコール系樹脂組成物であって、ポリビニルアルコール系樹脂の含有量が4質量%となるようにポリビニルアルコール系樹脂組成物の水溶液を調製した時の、20℃における該水溶液のpHが5.5~7であるポリビニルアルコール系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    〔式中、R1、R2及びR3はそれぞれ独立して水素原子または有機基を示し、Xは単結合または結合鎖を示し、R4、R5及びR6はそれぞれ独立して水素原子または有機基を示す。〕
  2.  一般式(1)で示される構造単位を有するポリビニルアルコール系樹脂が、ビニルエステル系モノマーと下記一般式(2)で示される1,2-ジオール構造を有する化合物またはその誘導体とを、重合開始剤として60℃における半減期が10~300分である有機過酸化物を用いて、共重合させた共重合物をケン化して得られたものである請求項1記載のポリビニルアルコール系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002

    〔式中、R1、R2及びR3はそれぞれ独立して水素原子または有機基を示し、Xは単結合または結合鎖を示し、R4、R5及びR6はそれぞれ独立して水素原子または有機基を示す。〕
  3.  押出機を用い、樹脂温度210℃、滞留時間3分間の条件で押出し物としたときのYI値が50以下であり、プラストグラフにて樹脂温度230℃で溶融混練したときの混練開始後10分後のトルクに対する60分後のトルクの比が3以下であるポリビニルアルコール系樹脂組成物。
PCT/JP2010/057463 2009-04-28 2010-04-27 ポリビニルアルコール系樹脂組成物 WO2010126041A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10769739.3A EP2426172B1 (en) 2009-04-28 2010-04-27 Polyvinyl alcohol based resin composition
US13/266,546 US8722782B2 (en) 2009-04-28 2010-04-27 Polyvinyl alcohol-based resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009108621 2009-04-28
JP2009-108621 2009-04-28

Publications (1)

Publication Number Publication Date
WO2010126041A1 true WO2010126041A1 (ja) 2010-11-04

Family

ID=43032185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057463 WO2010126041A1 (ja) 2009-04-28 2010-04-27 ポリビニルアルコール系樹脂組成物

Country Status (3)

Country Link
US (1) US8722782B2 (ja)
EP (1) EP2426172B1 (ja)
WO (1) WO2010126041A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132592A1 (ja) * 2010-04-20 2011-10-27 株式会社クラレ ポリビニルアルコール系重合体フィルム
WO2018221743A1 (ja) * 2017-06-02 2018-12-06 日本合成化学工業株式会社 ポリビニルアルコール系樹脂組成物ペレット及び該ポリビニルアルコール系樹脂組成物ペレットの製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2474415B1 (en) * 2009-08-31 2015-03-25 The Nippon Synthetic Chemical Industry Co., Ltd. Multi-layer structure
WO2011027677A1 (ja) 2009-09-03 2011-03-10 日本合成化学工業株式会社 ポリビニルアルコール樹脂組成物及びその成形品
WO2015056356A1 (en) * 2013-10-17 2015-04-23 The Nippon Synthetic Chemical Industry Co., Ltd. Crosslinkable polymer
JP6203038B2 (ja) * 2013-12-24 2017-09-27 日本合成化学工業株式会社 成形品及びその製造方法
EP3109263A4 (en) * 2014-02-17 2018-02-14 Kuraray Co., Ltd. Binder for formation of ceramic or for use in conductive paste, and use of same
CA2944701A1 (en) 2014-04-29 2015-11-05 Basf Se Anionic polyvinyl alcohol copolymer as protective colloid for pesticidal polyurea microcapsules
WO2016071151A1 (en) 2014-11-07 2016-05-12 Givaudan Sa Capsule composition
JP6735745B2 (ja) 2014-11-07 2020-08-05 ジボダン エス エー 有機化合物におけるまたは関連する改良
KR20170078805A (ko) 2014-11-07 2017-07-07 바스프 에스이 히드록시알킬 셀룰로오스를 포함하는 마이크로캡슐
WO2016071152A1 (en) 2014-11-07 2016-05-12 Basf Se Process for preparing microcapsules having a polyurea shell and a lipophilic core material
WO2017085033A1 (en) 2015-11-18 2017-05-26 Basf Se Improvements in or relating to organic compounds
EP3170552A1 (en) 2015-11-23 2017-05-24 Basf Se Microcapsule comprising a polymeric shell and a hydrophilic or hydrophobic core material
WO2017104501A1 (ja) 2015-12-18 2017-06-22 日本合成化学工業株式会社 包装袋およびそれを用いた溶融成形用ポリビニルアルコール系樹脂の保存方法
KR102304504B1 (ko) * 2016-03-31 2021-09-23 주식회사 쿠라레 폴리비닐알코올
JP7222244B2 (ja) * 2017-08-08 2023-02-15 三菱ケミカル株式会社 医薬錠剤、およびその製造方法
EP3695968A1 (en) 2019-02-13 2020-08-19 Bond high performance 3D technology B.V. Use of a copolymer as water soluble support material for additive manufacturing applications
EP3990686B1 (en) 2019-06-26 2024-01-03 3M Innovative Properties Company Method of making a nonwoven fiber web, and a nonwoven fiber web

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198509A (ja) * 1982-05-17 1983-11-18 Kuraray Co Ltd エチレン−酢酸ビニル連続共重合法
JPH04213302A (ja) * 1990-04-26 1992-08-04 Nippon Oil & Fats Co Ltd 酢酸ビニル系単量体の重合方法
JPH0687909A (ja) * 1992-09-08 1994-03-29 Kayaku Akzo Kk ビニル系単量体の重合方法
JPH0971620A (ja) * 1995-06-26 1997-03-18 Kuraray Co Ltd 酢酸ビニル系重合体の製法、酢酸ビニル系重合体ケン化物の製法および樹脂組成物
JP2002037802A (ja) * 2000-07-31 2002-02-06 Nippon Synthetic Chem Ind Co Ltd:The 酢酸ビニル系重合体の製造法
JP2006124668A (ja) * 2004-09-28 2006-05-18 Nippon Synthetic Chem Ind Co Ltd:The エチレン−ビニルアルコール共重合体組成物およびそれを用いた多層構造体
WO2007129369A1 (ja) * 2006-04-25 2007-11-15 The Nippon Synthetic Chemical Industry Co., Ltd. 樹脂組成物およびそれを用いた多層構造体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1215495A (en) 1981-07-28 1986-12-16 Kenji Satoh Method of continuous copolymerization of ethylene and vinylacetate
JP3447056B2 (ja) 1992-10-28 2003-09-16 富士通株式会社 光導波路デバイスの製造方法
CA2179555C (en) 1995-06-26 2007-02-20 Takeshi Moritani Process for producing vinyl acetate polymer and saponified product of vinyl acetate polymer and resin composition
US5623086A (en) 1995-12-29 1997-04-22 Eastman Chemical Company Process for the production of 1,2-bis (acyloxylates)
EP1044955A1 (en) 1998-10-23 2000-10-18 DAICEL CHEMICAL INDUSTRIES, Ltd. Processes for the preparation of organic diesters
US6072079A (en) 1999-03-03 2000-06-06 Eastman Chemical Company Continuous process for the production of diacetoxybutene
JP4217199B2 (ja) 2004-09-22 2009-01-28 日本合成化学工業株式会社 溶融成形用ポリビニルアルコール系樹脂及びその製造方法、並びにその用途
ATE522573T1 (de) * 2004-09-28 2011-09-15 Nippon Synthetic Chem Ind Zusammensetzung auf basis von ethylen/vinylalkohol-copolymer und diese umfassende mehrschichtstruktur
JP4968657B2 (ja) * 2005-07-28 2012-07-04 日本合成化学工業株式会社 ハイドロゲル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198509A (ja) * 1982-05-17 1983-11-18 Kuraray Co Ltd エチレン−酢酸ビニル連続共重合法
JPH04213302A (ja) * 1990-04-26 1992-08-04 Nippon Oil & Fats Co Ltd 酢酸ビニル系単量体の重合方法
JPH0687909A (ja) * 1992-09-08 1994-03-29 Kayaku Akzo Kk ビニル系単量体の重合方法
JPH0971620A (ja) * 1995-06-26 1997-03-18 Kuraray Co Ltd 酢酸ビニル系重合体の製法、酢酸ビニル系重合体ケン化物の製法および樹脂組成物
JP2002037802A (ja) * 2000-07-31 2002-02-06 Nippon Synthetic Chem Ind Co Ltd:The 酢酸ビニル系重合体の製造法
JP2006124668A (ja) * 2004-09-28 2006-05-18 Nippon Synthetic Chem Ind Co Ltd:The エチレン−ビニルアルコール共重合体組成物およびそれを用いた多層構造体
WO2007129369A1 (ja) * 2006-04-25 2007-11-15 The Nippon Synthetic Chemical Industry Co., Ltd. 樹脂組成物およびそれを用いた多層構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2426172A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132592A1 (ja) * 2010-04-20 2011-10-27 株式会社クラレ ポリビニルアルコール系重合体フィルム
JP5638533B2 (ja) * 2010-04-20 2014-12-10 株式会社クラレ ポリビニルアルコール系重合体フィルム
WO2018221743A1 (ja) * 2017-06-02 2018-12-06 日本合成化学工業株式会社 ポリビニルアルコール系樹脂組成物ペレット及び該ポリビニルアルコール系樹脂組成物ペレットの製造方法
CN110691807A (zh) * 2017-06-02 2020-01-14 三菱化学株式会社 聚乙烯醇系树脂组合物粒料和该聚乙烯醇系树脂组合物粒料的制造方法
JPWO2018221743A1 (ja) * 2017-06-02 2020-04-02 三菱ケミカル株式会社 ポリビニルアルコール系樹脂組成物ペレット及び該ポリビニルアルコール系樹脂組成物ペレットの製造方法
JP7167711B2 (ja) 2017-06-02 2022-11-09 三菱ケミカル株式会社 ポリビニルアルコール系樹脂組成物ペレット及び該ポリビニルアルコール系樹脂組成物ペレットの製造方法

Also Published As

Publication number Publication date
EP2426172A1 (en) 2012-03-07
US20120041118A1 (en) 2012-02-16
US8722782B2 (en) 2014-05-13
EP2426172B1 (en) 2014-05-14
EP2426172A4 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5641769B2 (ja) 水溶性ポリビニルアルコール系樹脂組成物
WO2010126041A1 (ja) ポリビニルアルコール系樹脂組成物
JP5940301B2 (ja) 熱成形用ポリビニルアセタール樹脂
EP3265505B1 (en) Pvoh dispersant for vcm polymerization
JP4217199B2 (ja) 溶融成形用ポリビニルアルコール系樹脂及びその製造方法、並びにその用途
US8883052B2 (en) Polyvinyl butyral resin pellet, and method for producing the same
EP3395841A1 (en) Ethylene/vinyl alcohol copolymer and process for producing said ethylene/vinyl alcohol copolymer
WO2009154179A1 (ja) ポリ塩化ビニル樹脂組成物およびその製造方法
JP6274843B2 (ja) 樹脂組成物及びその樹脂組成物から形成されるフィルム
EP2407491B1 (en) Process for manufacturing composition of solvolysis product of ethylene-vinyl ester copolymer
CN102333817B (zh) 聚氯乙烯树脂组合物及其制造方法
JP2001226414A (ja) 酢酸ビニル系重合体及びそのケン化物の製造法
ES2401246T3 (es) Composición de resina de policloruro de vinilo y método para su producción
JP2000178396A (ja) 溶融成形用ポリビニルアルコール系樹脂組成物
JP2021178951A (ja) ポリラクチドグラフト化ポリビニルアルコール系樹脂の製造方法
JP7131389B2 (ja) 樹脂組成物
JP6161531B2 (ja) 成形品及びその製造方法
JP6203038B2 (ja) 成形品及びその製造方法
JP5041693B2 (ja) ラミネート用原反フィルム
JP5501913B2 (ja) ブロック共重合体の製法
JP6253389B2 (ja) 成形品及びその製造方法
JP2017137402A (ja) 成形物、フィルム及び成形物の製造方法
JP2012046688A (ja) ポリ塩化ビニル樹脂組成物およびその製造方法
JP2021054999A (ja) 変性ポリビニルアルコール系樹脂の製造方法
JP2001019819A (ja) ポリビニルアルコール系樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010769739

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13266546

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE