WO2010125251A1 - Installation et procédé d' éliminations des xenobiotiques dans l'eau par rayonnement uv-v - Google Patents

Installation et procédé d' éliminations des xenobiotiques dans l'eau par rayonnement uv-v Download PDF

Info

Publication number
WO2010125251A1
WO2010125251A1 PCT/FR2009/050800 FR2009050800W WO2010125251A1 WO 2010125251 A1 WO2010125251 A1 WO 2010125251A1 FR 2009050800 W FR2009050800 W FR 2009050800W WO 2010125251 A1 WO2010125251 A1 WO 2010125251A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
radiation
reactor
wavelength
nanometers
Prior art date
Application number
PCT/FR2009/050800
Other languages
English (en)
Inventor
Esther Oliveros
André Braun
Marie-Thérèse MAURETTE
Florence Benoit Marquie
Jacques Debuire
Original Assignee
Loïra
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Loïra filed Critical Loïra
Priority to PCT/FR2009/050800 priority Critical patent/WO2010125251A1/fr
Priority to PT107278285T priority patent/PT2451747E/pt
Priority to CA2760258A priority patent/CA2760258C/fr
Priority to US13/318,303 priority patent/US20120138531A1/en
Priority to KR1020117028375A priority patent/KR20120027275A/ko
Priority to SG2011077930A priority patent/SG175336A1/en
Priority to EP10727828.5A priority patent/EP2451747B1/fr
Priority to NZ596489A priority patent/NZ596489A/en
Priority to ES10727828.5T priority patent/ES2549163T3/es
Priority to RU2011148456/05A priority patent/RU2541071C2/ru
Priority to DK10727828.5T priority patent/DK2451747T3/en
Priority to JP2012507840A priority patent/JP5717203B2/ja
Priority to AU2010243319A priority patent/AU2010243319B2/en
Priority to BRPI1007617A priority patent/BRPI1007617A2/pt
Priority to CN201080021495.6A priority patent/CN102428033B/zh
Priority to PCT/IB2010/000982 priority patent/WO2010125450A2/fr
Publication of WO2010125251A1 publication Critical patent/WO2010125251A1/fr
Priority to IL215918A priority patent/IL215918A0/en
Priority to TNP2011000549A priority patent/TN2011000549A1/en
Priority to ZA2011/08757A priority patent/ZA201108757B/en
Priority to US15/336,164 priority patent/US20170137310A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/18Specific valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/305Endocrine disruptive agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/343Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3223Single elongated lamp located on the central axis of a turbular reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3225Lamps immersed in an open channel, containing the liquid to be treated
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3227Units with two or more lamps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/324Lamp cleaning installations, e.g. brushes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Definitions

  • the present invention relates to the field of water treatment. More specifically, it relates to a process for removing active chemical compounds grouped under the term of xenobiotics present in wastewater discharged into the natural environment after purification, or in certain water intended for human consumption, by application of UV radiation.
  • -V ultraviolet vacuum or far ultraviolet
  • UV-C radiation ultraviolet C
  • Water treatment is carried out in treatment plants that treat water for recycling or before discharge into the natural environment, or to transform natural water into drinking water.
  • Several techniques are used in successive or independent stages, using biological methods based on the use of natural microorganisms, or physico-chemical methods using physical separation means (decantation, filters, membranes, etc.) sometimes. associated with chemical treatments, including coagulants and flocculants.
  • Purification is commonly obtained by intensive biological processes (free cultures: activated sludge, fixed cultures: biological disks, bacterial beds, etc.), sometimes more extensive especially for small installations (filtration on sand or beds planted with reeds, lagooning ).
  • the treatment is completed by a disinfection step to rid the rejected water of bacteria, viruses and spores likely to persist and develop.
  • This additional treatment is usually carried out by filtration on sand or membrane (to strongly lower the contents of MES), followed by irradiation with UV-C radiation with a wavelength of 254 nm (effective if the concentrations of MES are low ) using mercury vapor lamps of low or medium pressure and natural quartz.
  • Pollution control systems do not include any provision for the disposal of other compounds, present in small quantities (a few ng / 1) in wastewater, but whose impact even at low dose is now observed on the environment.
  • some xenobiotics of contraceptive origin (hormones) or medical (antibiotics, anti-cancer molecules) and their metabolites have been detected in wastewater treatment plant discharges or in water intended for human consumption, and also in some surface waters or some groundwater. This is particularly the case of estradiol and ethynyl estradiol molecules, derived from contraceptive pills.
  • the present invention aims to meet this need by proposing a process for removing xenobiotics present in water during its treatment by an additional step, whether:
  • this device may be particularly suitable for units intended to clean up wastewater generated by health facilities but also implemented on any depollution plant;
  • the present invention consists in a process for the elimination of xenobiotics present in the waters during the treatment thereof in a purification plant or in a drinking water production plant, characterized in that it comprises application of UV-V radiation of wavelength between 100 and 200 nanometers.
  • the wavelength of the UV-V radiation applied is between 170 and 190 nm. This radiation has the effect of producing hydroxyl radicals (HO °) by photolysis of water.
  • the UV-V radiation is applied to the treated water in combination with UV-C radiation having a wavelength of between 200 and 280 nanometers, optionally in the presence of hydrogen peroxide beforehand. introduced into the water to be treated.
  • the UV-C radiation has the effect of producing additional hydroxyl radicals (HO °) by photolysis of the hydrogen peroxide, accentuating the efficiency of the process that is the subject of the present invention.
  • UV-C radiation can increase the efficiency of the process by photolysis of the hydrogen peroxide produced by secondary reaction during water treatment by a process using UV-V radiation. .
  • Hydroxyl radicals produced by photolysis of water (and possibly hydrogen peroxide) have a high oxidizing power. They initiate the oxidation of organic molecules, even in very low concentrations, and their mineralization in the presence of dissolved oxygen.
  • the combination of UV-V and UV-C radiation is thus very effective in terms of detoxification of water containing xenobiotic micro-pollutants.
  • Xenobiotic any molecule of low molecular weight foreign to the body.
  • This type of compound can come from various sources, including drugs, water or air pollutants, food additives, plant protection products.
  • the process according to the present invention is particularly suitable for any type of industry requiring process water to have zero TOC.
  • the end products of xenobiotic degradation under the effect of the presence of hydroxyl (HO °) and oxygen radicals are found to be perfectly harmless and no longer present any danger for the environment or for the health of potential consumers of water as well. treated.
  • the process according to the present invention can be carried out continuously or discontinuously (batch).
  • the UV-V radiation source consists of all lamps emitting between 100 and 200 nm, in particular a low-pressure mercury vapor lamp with a synthetic quartz envelope emitting in the UV-V at 185 nm, or a fluorescent lamp.
  • excimer gas containing a gas or a mixture of gases selected from Xenon (172 nm), Argon fluoride (193 nm), Argon chloride (175 nm) or Krypton iodide (190 nm) .
  • the UV-C radiation source consists of all lamps emitting between 200 and 280 nm, in particular a low-pressure mercury vapor lamp with a natural or synthetic quartz envelope, emitting mainly at 254 nm, or an excimer lamp at Krypton chloride emitting at 222 nm.
  • Low-pressure mercury vapor lamps have a long history of application for the disinfection of drinking water, but their low power demands a heavy investment in large-scale wastewater treatment.
  • the use of medium-pressure mercury vapor lamps is considered, in most cases, economically disadvantageous because of their insufficient luminous efficiency in the UV-C spectral range.
  • the power of low-pressure Hg lamps has been increased by a factor of 3 and their emission spectrum expanded to the UV-V spectral range thanks to the use of synthetic quartz.
  • the excimer lamps have a quasi-monochromatic emission, with a great deal of shape flexibility.
  • their use was not considered in the treatment of water, especially for the removal of toxic products such as xenobiotics due to fears related to the "scale-up" (increase in scale) of such processes .
  • the treatment of wastewater by photochemical processes is generally the action of lamps immersed in an open channel, a tube or more generally a reactor of variable shape.
  • the lamps can be implanted in a horizontal or vertical position, parallel or perpendicular to the flow, the reactor / lamp assembly (s) constituting a photochemical reactor.
  • These configurations are also used, for high flow rates, in application of UV-C radiation for the disinfection of drinking water before pumping to the network.
  • a device for carrying out a process for removing xenobiotics present in the water during the treatment thereof in a treatment plant or in a drinking water production plant comprises: at least one reactor where transits the water to be treated,
  • At least one lamp module capable of emitting radiation of wavelength between 100 and 200 nanometers, operating in series and / or in parallel; said at least one lamp module can be installed in the direction of the flow or transversely,
  • At least one system for regulating the level in the reactor or the reactors at least one device for supplying, controlling and controlling the lamps, if necessary, at least one manual or automatic cleaning device for the quartz sheaths; at least one device for supplying compressed air or oxygen.
  • a type of lamp capable of emitting radiation of wavelength between 100 and 200 nm suitable for the device according to the invention comprises a low-pressure mercury vapor lamp with a synthetic quartz envelope emitting in the UV V at 185 nm, or an excimer lamp containing a gas or a mixture of gases selected from xenon (172 nm), argon fluoride (193 nm), argon chloride (175 nm) or Krypton iodide (190 nm).
  • the device according to the invention comprises inside the reactor or reactors, cumulatively with the lamps emitting UV-V radiation, at least one lamp module capable of emitting radiation of wavelength included between 200 and 280 nanometers, operating in series and / or in parallel.
  • a type of lamp capable of emitting radiation of wavelength between 200 and 280 nm suitable for positive embodiment according to the invention comprises a low-pressure mercury vapor lamp with a natural or synthetic quartz shell, emitting mainly at 254 nm, or a Krypton chloride excimer lamp emitting at 222 nm.
  • a mechanical washing installation and / or chemical modules may be added.
  • the complementary treatments for the elimination of xenobiotics based on the UV-V radiation irradiation technique, possibly coupled with UV-C radiation, can be implemented on all sizes of water treatment plant.
  • This process is compatible with the various processes currently used for the depollution of wastewater and for water purification.
  • the process according to the present invention can be advantageously used for the production of water completely free of total organic carbon (TOC).
  • TOC total organic carbon
  • FIG. 1 schematic representation of a device according to the invention in an open channel.
  • FIG. 2 schematic representation of a device according to the invention in a "batch" photochemical reactor.
  • Example 1 Degradation of 2,4-dihydroxybenzoic acid during the treatment of water in a treatment plant by a Xenon excimer lamp.
  • 2,4-Dihydroxybenzoic acid is a degradation product of salicylic acid commonly found in wastewater. Its presence gives rise to phenomena of toxicity all the more important as its concentration is high in water. At these high concentrations, this compound proves all the more difficult to degrade.
  • Example 2 Degradation of dichlorvos, organophosphorus insecticide, during the treatment of water in a treatment plant by a low pressure mercury vapor lamp with a synthetic quartz envelope.
  • Dichlorvos is an external insecticide that acts by contact, ingestion or inhalation on insects and mites. It is used as a household and agricultural insecticide. This molecule is very stable in aqueous medium at acidic pH and its hydrolysis rate increases with pH and temperature leading to the formation of dimethylphosphoric acid and dichloroacetaldehyde.
  • Example 3 Degradation of 2,3,4-trihydroxybenzoic acid during treatment of water in a treatment plant with a Xenon excimer lamp.
  • the initial concentration of 400 mg / L of this compound is reduced to zero in 60 minutes, in a batch reactor of 350 mL.
  • the concentration is 10 times lower, the total degradation is obtained in less than 10 minutes.
  • Glycerol trinitrate is a product of the manufacture of explosives. Wastewater from the manufacturing process must be treated to eliminate the hazards of pollutant toxicity from this manufacturing process and a potential explosion.
  • the UV-C / H 2 O 2 process was found to be moderately satisfactory mainly because of the nitrite production by photolysis of the nitrate in UV-C.
  • the photochemical reduction of nitrate can be excluded by the exclusive UV-V photolysis of water which produces the hydroxyl radicals (HO °) necessary to initiate the oxidation and mineralization of glycerol nitrate.
  • the glycerol nitrate dissolved in water (1.2 g / L) is removed with a speed of 4 mg / s, under condition of permanent saturation of the solution with air. After the total mineralization of the pollutant, no trace of nitrite could be detected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

La présente invention concerne un procédé d'élimination des xénobiotiques présents dans les eaux au cours du traitement de celles-ci en station d'épuration ou en usine de production d'eau potable, comprenant l'application d'un rayonnement UV-V de longueur d'onde comprise entre 100 et 200 nanomètres. Un rayonnement UV-C de longueur d'onde comprise entre 200 et 280 nanomètres peut également être appliqué en combinaison avec le rayonnement UV-V. Un dispositif pour la mise en œuvre d'un procédé selon l'invention est également revendiqué. Il comprend : -au moins un réacteur, -à l'intérieur du ou des réacteurs, au moins un module de lampe capable d'émettre un rayonnement de longueur d'onde comprise entre 100 et 200 nanomètres, fonctionnant en série et/ou en parallèle, éventuellement couplé à au moins un module de lampe capable d'émettre un rayonnement de longueur d'onde comprise entre 200 et 280 nanomètres, -au moins un système de régulation du niveau d'eau dans le réacteur ou les réacteurs, -au moins un dispositif d'alimentation, de commande et de contrôle des lampes, -au moins un dispositif d'alimentation en air comprimé ou en dioxygène.

Description

INSTALLATION ET PROCEDE D ' ELIMINATION DES XENOBIOTIQUES DANS L 1 EAU PAR RAYONNEMENT UV-V
La présente invention se rapporte au domaine du traitement des eaux. Plus précisément, elle concerne un procédé d'élimination de composés actifs chimiques regroupés sous le terme de xénobiotiques présents dans les eaux usées rejetées dans le milieu naturel après épuration, ou dans certaines eaux destinées à la consommation humaine, par application d'un rayonnement UV-V (ultraviolet du vide ou ultraviolet lointain) éventuellement couplé à un rayonnement UV-C (ultraviolet C).
Le traitement des eaux est réalisé dans des usines de traitement qui visent à traiter l'eau en vue de son recyclage ou avant son rejet dans le milieu naturel, ou à transformer les eaux naturelles en eau potable. Plusieurs techniques sont utilisées dans des étapes successives ou indépendantes, mettant en œuvre des méthodes biologiques basées sur l'utilisation de microorganismes naturels, ou des méthodes physico-chimiques utilisant des moyens de séparation physiques (décantation, filtres, membranes, etc ..) parfois associés à des traitements chimiques, notamment des coagulants et des floculants.
Dans le cas de la dépollution des eaux usées, les stations d'épuration sont conçues, en conformité avec les réglementations en vigueur, européenne et française, pour éliminer quelques grandes familles de composés chimiques. De manière systématique, les matières en suspension (MES) et les pollutions carbonées (caractérisées en France par les paramètres DCO : Demande Chimique en Oxygène, et DBO5 : Demande Biochimique en Oxygène à 5 jours) sont toujours éliminées. En fonction des caractéristiques du milieu récepteur, les pollutions azotées (mesurées le plus souvent par l'azote global : NGL), les pollutions phosphorées (en général quantifiées par le phosphore total : Ptotal) ainsi que les composés halogènes analysés par AOX (« adsorbed organic halogen ») peuvent également être traitées.
L'épuration est couramment obtenue par des procédés biologiques intensifs (cultures libres : boues activées ; cultures fixées : disques biologiques, lits bactériens...), parfois plus ex- tensifs notamment pour les petites installations (filtration sur sable ou sur lits plantés de roseaux, lagunage...). Dans quelques cas, le traitement est complété par une étape de désinfection destinée à débarrasser les eaux rejetées des bactéries, virus et spores susceptibles d'y persister et de s'y développer. Ce traitement complémentaire est usuellement pratiqué par une filtration sur sable ou membranaire (pour abaisser fortement les teneurs en MES), suivie d'une irradiation au rayonnement UV-C de longueur d'onde de 254 nm (efficace si les concentrations en MES sont faibles) à l'aide de lampes à vapeur de mercure de basse ou moyenne pression et quartz naturel.
Les filières de dépollution n'intègrent aucune disposition pour l'élimination d'autres composés, présents en faibles quantités (quelques ng/1) dans les eaux usées, mais dont l'impact même à faible dose est maintenant constaté sur l'environnement. Ainsi, certains xénobioti- ques d'origine contraceptive (hormones) ou médicale (antibiotiques, molécules anticancéreuses) et leurs métabolites ont pu être mis en évidence dans des rejets de stations d'épuration ou dans l'eau destinée à la consommation humaine, et également dans certaines eaux de surface ou de certaines nappes phréatiques. C'est le cas notamment des molécules d'oestradiol et d'éthynyl-oestradiol, provenant des pilules contraceptives.
Leur apport dans le milieu aquatique perturbe le fonctionnement du système hormonal des poissons : phénomènes d'intersexe, diminution de la fertilité des adultes, mauvais développement des juvéniles, et peuvent également modifier leur comportement : nourrissage altéré, inhibition du comportement de fuite face aux prédateurs, non repérage des zones polluées... Certaines populations peuvent alors être fortement affectées, provoquant un déséquilibre de l'écosystème.
Ainsi, une liste de produits pharmaceutiques établie par le réseau européen d'experts "Norman" identifie les substances émergentes susceptibles de provoquer un impact négatif sur l'environnement.
Il devient nécessaire d'améliorer fortement l'efficacité des stations d'épuration des eaux usées urbaines vis-à-vis de la réduction des rejets de ces substances et des filières de traitement des eaux destinées à la consommation humaine. Par ailleurs il est observé depuis plusieurs années dans les pays occidentaux une baisse de la fécondité humaine masculine. La production d'eau potable étant couramment réalisée par traitement d'eaux de rivières recevant en amont des rejets de stations d'épuration, il est probable qu'une des origines soit la présence de ces mêmes xénobiotiques dans les eaux consommées par les populations. Des constatations similaires ont pu être faites sur des eaux issues de certaines nappes phréatiques.
Un procédé efficace d'élimination de ces substances dans les chaînes de potabilisation représente donc une avancée importante en termes de santé publique.
La présente invention vise à répondre à ce besoin en proposant un procédé d'élimination des xénobiotiques présents dans l'eau au cours de son traitement par une étape supplémentaire, qu'il s'agisse :
- des eaux usées, par l'élimination d'un spectre large de micro-polluants xénobiotiques notamment ceux d'origine pharmaceutique, afin de réduire l'impact de leurs rejets ; ce dispositif pourra être particulièrement approprié aux unités destinées à dépolluer des eaux usées engendrées par des établissements de santé mais aussi mis en œuvre sur n'importe quelle usine de dépollution ;
- ou bien des eaux naturelles destinées à la consommation humaine, après traitement dans les usines de production, par l'élimination des xénobiotiques présents dans les eaux brutes, en particulier dans le cas des eaux de surface.
Dans les deux cas, le principe de traitement complémentaire est identique et peut s'appliquer indifféremment à la dépollution des eaux usées comme à la potabilisation des eaux brutes.
Plus précisément, la présente invention consiste en un procédé d'élimination des xénobiotiques présents dans les eaux au cours du traitement de celles-ci en station d'épuration ou en usine de production d'eau potable, caractérisé en ce qu'il comprend l'application d'un rayonnement UV-V de longueur d'onde comprise entre 100 et 200 nanomètres. De préférence, la longueur d'onde du rayonnement UV-V appliqué se situe entre 170 et 190 nm. Ce rayonnement a pour effet de produire des radicaux hydroxyle (HO°) par photolyse de l'eau.
Dans un mode particulier de réalisation de l'invention, le rayonnement UV-V est appliqué aux eaux traitées en combinaison avec un rayonnement UV-C de longueur d'onde comprise entre 200 et 280 nanomètres, éventuellement en présence de peroxyde d'hydrogène préalablement introduit dans l'eau à traiter. Le rayonnement UV-C a pour effet de produire des radicaux hydroxyle (HO°) supplémentaires par photolyse du peroxyde d'hydrogène, accentuant l'efficacité du procédé objet de la présente invention. Même sans addition de peroxyde d'hydrogène, le rayonnement UV-C peut augmenter l'efficacité du procédé grâce à la photolyse du peroxyde d'hydrogène produit par réaction secondaire pendant le traitement de l'eau par un procédé utilisant un rayonnement UV-V.)
Les radicaux hydroxyle (HO°) produits par photolyse de l'eau (et éventuellement du peroxyde d'hydrogène) présentent un fort pouvoir oxydant. Ils initient l'oxydation des molécules organiques, même en très faibles concentrations, et leur minéralisation en présence de dioxygène dissous. La combinaison des rayonnements UV-V et UV-C se révèle ainsi très efficace en terme de détoxification des eaux contenant des micro-polluants xénobioti- ques.
Par Xénobiotique, on entend toute molécule de faible masse moléculaire étrangère à l'organisme. Ce type de composé peut provenir de différentes sources, on peut notamment citer les médicaments, les polluants de l'eau ou de l'atmosphère, les additifs alimentaires, les produits phytosanitaires.
En ce qui concerne l'élimination du COT (carbone organique total), le procédé selon la présente invention conviendra particulièrement à tout type d'industrie nécessitant une eau de process devant présenter un COT nul.
Les produits finaux de dégradation des xénobiotiques sous l'effet de la présence des radicaux hydroxyle (HO°) et de dioxygène se révèlent parfaitement inoffensifs et ne présentent plus aucun danger pour l'environnement ou pour la santé des éventuels consommateurs de l'eau ainsi traitée. Le procédé selon la présente invention peut être réalisé de manière continue ou discontinue (batch).
La source de rayonnement UV-V est constituée de toutes lampes émettant entre 100 et 200 nm, notamment une lampe à vapeur de mercure de basse pression avec une enveloppe en quartz synthétique émettant dans l'UV-V à 185 nm, ou une lampe à excimère contenant un gaz ou un mélange de gaz choisi(s) parmi le Xénon (172 nm), le fluorure d'Argon (193 nm), le chlorure d'Argon (175 nm) ou l'iodure de Krypton (190 nm).
La source de rayonnement UV-C est constituée de toutes lampes émettant entre 200 et 280 nm, notamment une lampe à vapeur de mercure de basse pression avec une enveloppe en quartz naturel ou synthétique, émettant principalement à 254 nm, ou une lampe à excimère au chlorure de Krypton émettant à 222 nm.
La mise au point depuis quelques années de ces deux types de lampes a ouvert la possibilité d'applications industrielles diverses en raison de leurs caractéristiques avantageuses.
Les lampes à vapeur de mercure de basse pression ont une longue histoire d'application pour la désinfection de l'eau potable, mais leur faible puissance demande un lourd investissement pour un traitement des eaux usées en grande échelle. Alternativement, l'utilisation des lampes à vapeur de mercure de moyenne pression est considérée, dans la plupart des cas, économiquement désavantageux de part leur insuffisante efficacité lumineuse dans le domaine spectral UV-C. Depuis peu de temps, la puissance des lampes à Hg basse pression a pu être augmentée par un facteur de 3 et leur spectre d'émission élargi vers le domaine spectral UV-V grâce à l'utilisation du quartz synthétique.
Les lampes à excimère présentent une émission quasi-monochromatique, avec en plus une grande souplesse de forme. Cependant, leur utilisation n'était pas envisagée dans le traitement des eaux, notamment pour l'élimination de produits toxiques tels que les xénobioti- ques en raison d'appréhensions liées au « scale-up » (augmentation d'échelle) de tels procédés.
Le traitement des eaux usées par les procédés photochimiques se fait généralement par l'action de lampes immergées dans un canal ouvert, un tube ou plus généralement un réacteur de forme variable. Les lampes peuvent être implantées en position horizontale ou verticale, parallèle ou perpendiculaire à l'écoulement, l'ensemble réacteur/lampe(s) constituant un réacteur photochimique. Ces configurations sont également utilisées, pour des débits importants, en application du rayonnement UV-C pour la désinfection des eaux potables avant pompage vers le réseau.
Un dispositif pour la mise en œuvre d'un procédé d'élimination des xénobiotiques présents dans les eaux au cours du traitement de celles-ci en station d'épuration ou en usine de production d'eau potable comprend : -au moins un réacteur où transite l'eau à traiter,
-à l'intérieur du réacteur ou des réacteurs, au moins un module de lampe capable d'émettre un rayonnement de longueur d'onde comprise entre 100 et 200 nanomètres, fonctionnant en série et/ou en parallèle ; ledit au moins un module de lampe pouvant être installé dans le sens de l'écoulement ou transversalement,
-au moins un système de régulation du niveau dans le réacteur ou les réacteurs, -au moins un dispositif d'alimentation, de commande et de contrôle des lampes, -si nécessaire, au moins un dispositif de nettoyage manuel ou automatique des gaines de quartz, -au moins un dispositif d'alimentation en air comprimé ou en dioxygène.
Un type de lampes capable d'émettre un rayonnement de longueur d'onde comprise entre 100 et 200 nm convenant pour le dispositif selon l'invention comprend une lampe à vapeur de mercure de basse pression avec une enveloppe en quartz synthétique émettant dans l'UV-V à 185 nm, ou une lampe à excimère contenant un gaz ou un mélange de gaz choisis) parmi le Xénon (172 nm), le fluorure d'Argon (193 nm), le chlorure d'Argon (175 nm) ou l'iodure de Krypton (190 nm).
De préférence, le dispositif selon l'invention comprend à l'intérieur du ou des réacteurs, de manière cumulative avec les lampes émettant un rayonnement UV-V, au moins un module de lampe capable d'émettre un rayonnement de longueur d'onde comprise entre 200 et 280 nanomètres, fonctionnant en série et/ou en parallèle. Un type de lampes capable d'émettre un rayonnement de longueur d'onde comprise entre 200 et 280 nm convenant pour le dis- positif selon l'invention comprend une lampe à vapeur de mercure de basse pression avec une enveloppe en quartz naturel ou synthétique, émettant principalement à 254 nm, ou une lampe à excimère au chlorure de Krypton émettant à 222 nm.
Une installation de lavage mécanique et/ou chimique des modules pourra être ajoutée.
Compte tenu de la grande diversité de puissances et de géométries des lampes aujourd'hui disponibles sur le marché, les traitements complémentaires d'élimination des xénobioti- ques reposant sur la technique d'irradiation des eaux par le rayonnement UV-V, éventuellement couplé à un rayonnement UV-C, peuvent être mis en oeuvre sur toutes les tailles d'installation de traitement des eaux.
Ce processus est compatible avec les différents procédés actuellement utilisés pour la dépollution des eaux usées et pour la potabilisation des eaux.
Il peut donc intervenir, en tant que complément de traitement, dans la quasi-totalité des configurations présentées par les stations d'épuration d'eaux usées et les usines de production d'eau potable.
En particulier, le procédé selon la présente invention peut être utilisé de manière avantageuse pour la production d'une eau entièrement dépourvue de carbone organique total (COT).
Les propriétés et avantages du procédé objet de la présente invention apparaîtront plus clairement à la lueur des exemples qui suivent. Ceux-ci sont donnés à titre purement illustratif et ne doivent pas être interprétés comme une quelconque limitation à la portée du procédé selon l'invention qui s'étend notamment aux moyens équivalents à ceux qui sont décrits dans la présente demande.
Les figures suivantes servent également à illustrer la présente invention : -Figure 1 : représentation schématique d'un dispositif selon l'invention en canal ouvert. -Figure 2 : représentation schématique d'un dispositif selon l'invention en réacteur photochimique « batch ». EXEMPLES
Exemple 1 : Dégradation de l'acide 2,4-dihydroxybenzoïque au cours du traitement des eaux dans une station d'épuration par une lampe à excimère au Xénon.
L'acide 2,4-dihydroxybenzoïque est un produit de dégradation de l'acide salicylique couramment retrouvé dans les eaux usées. Sa présence engendre des phénomènes de toxicité d'autant plus importants que sa concentration est élevée dans l'eau. A ces concentrations élevées, ce composé s'avère d'autant plus difficile à dégrader.
Sous l'effet d'un rayonnement UV-V (lampe excimère Xe, flux de photons : Pa = (5,0 ± 0.5) 1017 photon.s'1) selon l'invention, la concentration initiale de 400 mg/L de ce composé est ramenée à zéro en 70 minutes, dans un réacteur batch de 350 mL. Lorsque la concentration est 10 fois plus faible, la dégradation totale est obtenue en moins de 10 minutes.
Exemple 2 : Dégradation du dichlorvos, insecticide organophosphoré, au cours du traitement des eaux dans une station d'épuration par une lampe à vapeur de mercure de basse pression avec une enveloppe en quartz synthétique.
Le dichlorvos fait partie des insecticides externes agissant par contact, ingestion ou inhalation sur les insectes et les acariens. Il est utilisé comme insecticide ménager et agricole. Cette molécule est très stable en milieu aqueux à pH acide et sa vitesse d'hydrolyse augmente avec le pH et la température conduisant à la formation d'acide diméthylphosphori- que et de dichloroacétaldéhyde.
Sous l'effet d'un rayonnement UV-V combiné à un rayonnement UV-C (lampe à vapeur de mercure de basse pression avec enveloppe en quartz synthétique, 40 W) selon l'invention, la concentration initale de 10'3 mol L'1 de ce composé est ramenée à zéro en 50 minutes, dans un réacteur "batch" de 350 mL. Exemple 3 : Dégradation de l'acide 2,3,4-trihydroxybenzoïque au cours du traitement des eaux dans une station d'épuration par une lampe à excimère au Xénon.
Sous l'effet d'un rayonnement UV-V (lampe excimère au Xe , flux de photons : Pa = (5,0 ± 0.5) 1017 photon s'1) selon l'invention, la concentration initale de 400 mg/L de ce composé est ramenée à zéro en 60 minutes, dans un réacteur batch de 350 mL. Lorsque la concentration est 10 fois plus faible, la dégradation totale est obtenue en moins de 10 minutes.
Exemple 4 : Dégradation du trinitrate de glycérol au cours du traitement des eaux dans une station d'épuration par une lampe à excimère au Xénon.
Le trinitrate de glycérol est un produit de la fabrication d'explosifs. Les eaux usées de la fabrication doivent être traitées pour éliminer les dangers de la toxicité des polluants provenant de cette fabrication et d'une explosion potentielle. Le procédé UV-C/H2O2 s'est avéré moyennement satisfaisant principalement à cause de la production de nitrite par photolyse du nitrate dans l'UV-C. La réduction photochimique du nitrate peut être exclue par la photolyse UV-V exclusive de l'eau qui produit les radicaux hydroxyle (HO°) nécessaires pour initier l'oxydation et la minéralisation du nitrate de glycérol.
Ainsi, sous l'effet d'un rayonnement UV-V (lampe à excimère au Xe, 120 W) selon l'invention, le nitrate de glycérol dissous dans l'eau (1,2 g/L) est éliminé avec une vitesse de 4 mg/s, sous condition d'une saturation permanente de la solution avec de l'air. Après la minéralisation totale du polluant, aucune trace de nitrite n'a pu être détectée.

Claims

REVENDICATIONS
1- Procédé d'élimination des xénobiotiques présents dans les eaux au cours du traitement de celles-ci en station d'épuration ou en usine de production d'eau potable, caractérisé en ce qu'il comprend l'application d'un rayonnement UV-V de longueur d'onde comprise entre 100 et 200 nanomètres.
2- Procédé selon la revendication 1, caractérisé en ce qu'il produit des radicaux hydroxyle (HO°) par photolyse de l'eau traitée.
3- Procédé selon la revendication 1, caractérisé en ce qu'un rayonnement UV-C de longueur d'onde comprise entre 200 et 280 nanomètres est appliqué en combinaison avec le rayonnement UV-V.
4- Procédé selon la revendication 3, caractérisé en ce qu'mxe, partie des radicaux hydroxyle (HO°) est produite par photolyse du peroxyde d'hydrogène, ajouté à l'eau traitée et/ou produit par réaction secondaire de la photolyse UV-V.
5- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les xénobiotiques sont des molécules de faible masse moléculaire, étrangères à l'organisme.
6- Procédé selon la revendication 5, caractérisé en ce que les xénobiotiques sont choisis parmi des médicaments, des polluants de l'eau ou de l'atmosphère, des additifs alimentaires, des produits phytosanitaires, ou un mélange de ceux-ci.
7- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est réalisé de manière continue ou discontinue.
8- Procédé selon la revendication 1, caractérisé en ce qu'il comprend l'utilisation une lampe à vapeur de mercure de basse pression avec une enveloppe en quartz synthétique, ou d'une lampe à excimère contenant un gaz ou un mélange de gaz choisi(s) parmi le Xénon, le fluorure d'Argon, le chlorure d'Argon ou l'iodure de Krypton.
9- Procédé selon la revendication 3, caractérisé en ce qu'il comprend l'utilisation d'une lampe à vapeur de mercure de basse pression avec une enveloppe en quartz naturel ou synthétique ou une lampe à excimère au chlorure de Krypton.
10- Dispositif pour la mise en œuvre d'un procédé d'élimination des xénobiotiques présents dans les eaux au cours du traitement de celles-ci en station d'épuration ou en usine de production d'eau potable caractérisé en ce qu'il comprend :
-au moins un réacteur,
-à l'intérieur du ou des réacteurs, au moins un module de lampe capable d'émettre un rayonnement de longueur d'onde comprise entre 100 et 200 nanomètres, fonctionnant en série et/ou en parallèle,
-au moins un système de régulation du niveau d'eau dans le réacteur ou les réacteurs,
-au moins un dispositif d'alimentation, de commande et de contrôle des lampes,
-au moins un dispositif d'alimentation en air comprimé ou en dioxygène.
11 -Dispositif selon la revendication 10, caractérisé en ce que les lampes sont installées à l'intérieur du réacteur ou des réacteurs dans le sens de l'écoulement ou transversalement.
12-Dispositif selon la revendication 10 ou 11, caractérisé en ce qu'il comprend des moyens de lavage mécanique et/ou chimique des modules de lampes.
13-Dispositif selon l'une quelconque des revendications 10 à 12, caractérisé en ce qu'il comprend à l'intérieur du ou des réacteurs, au moins un module de lampe capable d'émettre un rayonnement de longueur d'onde comprise entre 200 et 280 nanomètres, fonctionnant en série et/ou en parallèle.
14-Dispositif selon la revendication précédente, caractérisé en ce qu'il comprend au moins un moyen de nettoyage manuel ou automatique des gaines de quartz.
15-Utilisation du procédé selon l'une des revendications 1 à 9 pour la production d'une eau entièrement dépourvue de carbone organique total (COT).
PCT/FR2009/050800 2009-04-30 2009-04-30 Installation et procédé d' éliminations des xenobiotiques dans l'eau par rayonnement uv-v WO2010125251A1 (fr)

Priority Applications (20)

Application Number Priority Date Filing Date Title
PCT/FR2009/050800 WO2010125251A1 (fr) 2009-04-30 2009-04-30 Installation et procédé d' éliminations des xenobiotiques dans l'eau par rayonnement uv-v
RU2011148456/05A RU2541071C2 (ru) 2009-04-30 2010-04-30 Очистительное устройство и способ удаления ксенобиотиков из воды
DK10727828.5T DK2451747T3 (en) 2009-04-30 2010-04-30 Cleaning apparatus and method for elimination of xenobiotics in water
US13/318,303 US20120138531A1 (en) 2009-04-30 2010-04-30 Purifying device and method for elimination of xenobiotics in water
KR1020117028375A KR20120027275A (ko) 2009-04-30 2010-04-30 물 중의 제노바이오틱스를 제거하는 방법 및 정제 장치
SG2011077930A SG175336A1 (en) 2009-04-30 2010-04-30 Purifying device and method for elimination of xenobiotics in water
EP10727828.5A EP2451747B1 (fr) 2009-04-30 2010-04-30 Dispositif d'épuration et procédé d'élimination de substances xénobiotiques présentes dans l'eau
NZ596489A NZ596489A (en) 2009-04-30 2010-04-30 Purifying device and method for elimination of xenobiotics in water
ES10727828.5T ES2549163T3 (es) 2009-04-30 2010-04-30 Dispositivo de purificación y método para la eliminación de xenobióticos en agua
PT107278285T PT2451747E (pt) 2009-04-30 2010-04-30 Dispositivo de purificação e método para eliminar xenobióticos em água
CA2760258A CA2760258C (fr) 2009-04-30 2010-04-30 Dispositif d'epuration et procede d'elimination de substances xenobiotiques presentes dans l'eau
JP2012507840A JP5717203B2 (ja) 2009-04-30 2010-04-30 水中の生体異物を除去するための浄化方法および装置
AU2010243319A AU2010243319B2 (en) 2009-04-30 2010-04-30 Purifying device and method for elimination of xenobiotics in water
BRPI1007617A BRPI1007617A2 (pt) 2009-04-30 2010-04-30 dispositivo de purificação adaptado para executar um método de degradação fotoquímica e eliminação de xenobióticos presentes na água e método para a eliminação de xenobióticos na água utilizando um dispositivos de purificação
CN201080021495.6A CN102428033B (zh) 2009-04-30 2010-04-30 用于消除水中的生物异源物质的纯化装置和方法
PCT/IB2010/000982 WO2010125450A2 (fr) 2009-04-30 2010-04-30 Dispositif d'épuration et procédé d'élimination de substances xénobiotiques présentes dans l'eau
IL215918A IL215918A0 (en) 2009-04-30 2011-10-25 Purifying device and method for elimination of xenobiotics in water
TNP2011000549A TN2011000549A1 (en) 2009-04-30 2011-10-28 Purifying device and method for elimination of xenobiotics in water
ZA2011/08757A ZA201108757B (en) 2009-04-30 2011-11-29 Purifying device and method for elimination of xenobiotics in water
US15/336,164 US20170137310A1 (en) 2009-04-30 2016-10-27 Purifying device and method for elimination of xenobiotics in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2009/050800 WO2010125251A1 (fr) 2009-04-30 2009-04-30 Installation et procédé d' éliminations des xenobiotiques dans l'eau par rayonnement uv-v

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/318,303 Continuation-In-Part US20120138531A1 (en) 2009-04-30 2010-04-30 Purifying device and method for elimination of xenobiotics in water
PCT/IB2010/000982 Continuation-In-Part WO2010125450A2 (fr) 2009-04-30 2010-04-30 Dispositif d'épuration et procédé d'élimination de substances xénobiotiques présentes dans l'eau

Publications (1)

Publication Number Publication Date
WO2010125251A1 true WO2010125251A1 (fr) 2010-11-04

Family

ID=41171084

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2009/050800 WO2010125251A1 (fr) 2009-04-30 2009-04-30 Installation et procédé d' éliminations des xenobiotiques dans l'eau par rayonnement uv-v
PCT/IB2010/000982 WO2010125450A2 (fr) 2009-04-30 2010-04-30 Dispositif d'épuration et procédé d'élimination de substances xénobiotiques présentes dans l'eau

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/000982 WO2010125450A2 (fr) 2009-04-30 2010-04-30 Dispositif d'épuration et procédé d'élimination de substances xénobiotiques présentes dans l'eau

Country Status (18)

Country Link
US (2) US20120138531A1 (fr)
EP (1) EP2451747B1 (fr)
JP (1) JP5717203B2 (fr)
KR (1) KR20120027275A (fr)
CN (1) CN102428033B (fr)
AU (1) AU2010243319B2 (fr)
BR (1) BRPI1007617A2 (fr)
CA (1) CA2760258C (fr)
DK (1) DK2451747T3 (fr)
ES (1) ES2549163T3 (fr)
IL (1) IL215918A0 (fr)
NZ (1) NZ596489A (fr)
PT (1) PT2451747E (fr)
RU (1) RU2541071C2 (fr)
SG (1) SG175336A1 (fr)
TN (1) TN2011000549A1 (fr)
WO (2) WO2010125251A1 (fr)
ZA (1) ZA201108757B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109956519A (zh) * 2019-04-21 2019-07-02 贵州大学 一种光化学协同去除水中六价铬和有机酚类污染物的方法
CN110642440A (zh) * 2019-10-12 2020-01-03 上海城市水资源开发利用国家工程中心有限公司 一种去除水厂工艺流程中难去除的抗生素的系统及方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029148A1 (fr) * 2013-08-28 2015-03-05 株式会社日立製作所 Système et procédé de production d'une substance chimique
CN203568880U (zh) * 2013-10-12 2014-04-30 星达(姜堰)膜科技有限公司 一种杀菌复合型滤芯
CN103601325B (zh) * 2013-11-08 2016-08-24 同济大学 一种实现去除水中罗硝唑的方法的装置
DE102014108798A1 (de) * 2014-06-24 2015-12-24 Krones Ag Pasteurisationssystem mit Reinigung der Prozessflüssigkeit
KR101438703B1 (ko) * 2014-07-21 2014-09-12 (주)선일 엔바이로 초고도처리 방법 및 이에 사용되는 장치
CN104860372B (zh) * 2015-05-21 2017-12-01 金昌元 具有两种波长紫外灯的适用于任何污水处理的水处理消毒设备
CN107162098B (zh) * 2017-06-12 2020-12-25 北京建筑大学 水中螺旋鱼腥藻的去除方法
DE102017007148A1 (de) * 2017-07-27 2019-03-07 Reinhard Boller Verfahren und Vorrichtung zur genauen Dosierung von Flüssigkeiten mit weitergehender Behandlung
CN110734193A (zh) * 2019-10-16 2020-01-31 昆明金泽实业有限公司 一种组合式的烟草香料废水处理方法
CN110790434B (zh) * 2019-12-02 2021-12-31 中国有色桂林矿产地质研究院有限公司 一种同时降低选矿回用尾矿废水中铜离子、锌离子、铅离子浓度的方法
WO2021230192A1 (fr) * 2020-05-11 2021-11-18 ウシオ電機株式会社 Procédé de décomposition d'un agent anticancéreux
DE102021202957A1 (de) * 2021-03-25 2022-09-29 Osram Gmbh Vorrichtung und verfahren zum bestrahlen einer flüssigkeit
CN114380438A (zh) * 2022-02-18 2022-04-22 清华大学深圳国际研究生院 水体原位移动式处理装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999055622A1 (fr) * 1998-04-24 1999-11-04 United States Filter Corporation Dispositif et procede d'enlevement d'agents fortement oxydants a partir de liquides
EP1160203A1 (fr) * 2000-05-24 2001-12-05 Electricite De France Procédé et dispositif pour la dégradation de composés organiques en solution aqueuse par photolyse vuv de l'eau et production électrochimique de dioxigène

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA966608A (en) * 1972-11-20 1975-04-29 Naturvard Research (Canada) Ltd. Automatic tube cleaner for water sterilizer
AT388365B (de) * 1986-11-17 1989-06-12 Venturama Ag Vorrichtung zur aufbereitung von wasser
US5118422A (en) * 1990-07-24 1992-06-02 Photo-Catalytics, Inc. Photocatalytic treatment of water
JPH0490890A (ja) * 1990-08-07 1992-03-24 Toshiba Corp 水処理装置
JPH0818040B2 (ja) * 1991-05-17 1996-02-28 株式会社荏原総合研究所 純水又は超純水の精製方法及び装置
US5393419A (en) * 1993-02-10 1995-02-28 Amway Corporation Ultraviolet lamp assembly for water purification
JPH09276858A (ja) * 1996-04-16 1997-10-28 Nippon Photo Sci:Kk 紫外線toc分解装置
US5935441A (en) * 1996-09-05 1999-08-10 Millipore Corporation Water purification process
RU6282U1 (ru) * 1997-03-05 1998-03-16 Овчаров Александр Тимофеевич Лампа разрядная ртутная низкого давления для фотохимических процессов
RU2109688C1 (ru) * 1997-03-21 1998-04-27 Афанасий Афанасьевич Райлян Установка для очистки воды
JPH11347591A (ja) * 1998-06-09 1999-12-21 Ebara Corp 生物難分解性有機物含有汚水の処理方法
JP3529284B2 (ja) * 1998-11-12 2004-05-24 株式会社クボタ 難分解性有機物の分解方法
CN1081166C (zh) * 1998-12-07 2002-03-20 南京化工大学 光催化与膜分离集成的水处理方法
JP2000279952A (ja) * 1999-03-31 2000-10-10 Toto Ltd 浄化装置
JP4174783B2 (ja) * 1999-05-10 2008-11-05 千代田工販株式会社 紫外線照射装置
RU2142915C1 (ru) * 1999-06-30 1999-12-20 Общество с ограниченной ответственностью Научно-производственное предприятие "ЭКОНИКС" Способ обработки водных сред, содержащих органические примеси
JP3920504B2 (ja) * 1999-08-10 2007-05-30 株式会社荏原製作所 紫外線殺菌装置
JP2001047044A (ja) * 1999-08-11 2001-02-20 Kurita Water Ind Ltd 内分泌撹乱性物質含有水の処理方法
JP2001047091A (ja) * 1999-08-12 2001-02-20 Nkk Corp 難分解性有機物含有水の処理装置
AU7722500A (en) * 1999-11-19 2001-05-30 Advanced Microbial Solutions, L.L.C. Process and system for treatment of waste streams containing water-soluble polymers
JP2001300557A (ja) * 2000-02-16 2001-10-30 Kubota Corp 難分解性有機物の分解方法および装置
CN1125782C (zh) * 2000-03-17 2003-10-29 清华大学 与膜分离设备相组合的悬浮光催化氧化水处理方法及其装置
JP2001259621A (ja) * 2000-03-23 2001-09-25 Toto Ltd 水処理装置
JP2003190976A (ja) * 2001-12-27 2003-07-08 Toray Ind Inc 廃水処理装置および方法
JP3733482B2 (ja) * 2002-02-13 2006-01-11 千代田工販株式会社 紫外線照射装置
JP2003266090A (ja) * 2002-03-18 2003-09-24 Maezawa Ind Inc 排水処理方法
JP2004057934A (ja) * 2002-07-29 2004-02-26 Chiyoda Kohan Co Ltd 有機塩素化合物の無害化方法
CN1477063A (zh) * 2002-08-21 2004-02-25 中国科学院生态环境研究中心 超滤-射流补臭氧-紫外二次激发产生自由基净化微污染水源水的技术和工艺
WO2004046038A2 (fr) * 2002-11-20 2004-06-03 Povl Kaas Procede et appareil de purification d'eau par oxydation photochimique
RU35111U1 (ru) * 2003-07-23 2003-12-27 Закрытое акционерное общество "Центральный научно-исследовательский институт судового машиностроения" Бактерицидный аппарат для обеззараживания воды
JP4305905B2 (ja) * 2003-10-28 2009-07-29 オルガノ株式会社 排水処理方法および装置
EP1586539A1 (fr) * 2004-04-13 2005-10-19 Araiza, Rafael Dispositif de traitement d'un milieu liquide et/ou gazeux par radiations uv
US7118674B2 (en) * 2004-10-14 2006-10-10 Itt Manufacturing Enterprises, Inc. Energy-efficient biological treatment with membrane filtration
US7255789B2 (en) 2004-12-13 2007-08-14 Fite Jr Robert D Method and apparatus for liquid purification
GB0501688D0 (en) * 2005-01-27 2005-03-02 Univ Cranfield Method and apparatus
CN1290774C (zh) * 2005-03-14 2006-12-20 天津大学 去除水中天然有机物的连续浸没式光催化膜处理装置
CN1865159A (zh) * 2005-05-19 2006-11-22 孟广桢 輕微污染污水的处理方法
JP2007160165A (ja) * 2005-12-12 2007-06-28 Nippon Steel Corp 水中のウイルスの除去及び分解方法
US20070158276A1 (en) * 2006-01-10 2007-07-12 Navalis Environmental Systems, Llc Method and Apparatus for Sequenced Batch Advanced Oxidation Wastewater Treatment
JP2008023491A (ja) * 2006-07-25 2008-02-07 Meidensha Corp 促進酸化処理法による廃水処理装置
JP4688069B2 (ja) * 2007-03-14 2011-05-25 岩崎電気株式会社 1,4−ジオキサンの分解方法及び分解装置
CN201161940Y (zh) * 2008-02-01 2008-12-10 浙江森森实业有限公司 水处理系统中的紫外线杀菌器
CN201175714Y (zh) * 2008-03-13 2009-01-07 武汉达阳机械制造有限公司 一种专用于污水紫外消毒设备的清洗装置
JP2009262122A (ja) * 2008-03-31 2009-11-12 Panasonic Corp 水処理装置
KR100907905B1 (ko) * 2008-06-12 2009-07-16 유네코개발 주식회사 연속 흐름식 복합 수처리 장치
JPWO2010035421A1 (ja) * 2008-09-26 2012-02-16 株式会社山田エビデンスリサーチ 水処理装置
CN101423310A (zh) * 2008-11-14 2009-05-06 钱志刚 电子超纯水的循环回用处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999055622A1 (fr) * 1998-04-24 1999-11-04 United States Filter Corporation Dispositif et procede d'enlevement d'agents fortement oxydants a partir de liquides
EP1160203A1 (fr) * 2000-05-24 2001-12-05 Electricite De France Procédé et dispositif pour la dégradation de composés organiques en solution aqueuse par photolyse vuv de l'eau et production électrochimique de dioxigène

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOSNIN ET AL: "Applications of capacitive and barrier discharge excilamps in photoscience", JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS, ELSEVIER, vol. 7, no. 4, 6 March 2007 (2007-03-06), pages 145 - 163, XP005917158, ISSN: 1389-5567 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109956519A (zh) * 2019-04-21 2019-07-02 贵州大学 一种光化学协同去除水中六价铬和有机酚类污染物的方法
CN109956519B (zh) * 2019-04-21 2021-11-12 贵州大学 一种光化学协同去除水中六价铬和有机酚类污染物的方法
CN110642440A (zh) * 2019-10-12 2020-01-03 上海城市水资源开发利用国家工程中心有限公司 一种去除水厂工艺流程中难去除的抗生素的系统及方法

Also Published As

Publication number Publication date
CN102428033B (zh) 2015-12-16
RU2011148456A (ru) 2013-06-10
WO2010125450A2 (fr) 2010-11-04
RU2541071C2 (ru) 2015-02-10
IL215918A0 (en) 2011-12-29
BRPI1007617A2 (pt) 2016-02-23
AU2010243319A1 (en) 2011-11-17
JP2012525247A (ja) 2012-10-22
NZ596489A (en) 2014-03-28
EP2451747A2 (fr) 2012-05-16
AU2010243319B2 (en) 2014-07-03
DK2451747T3 (en) 2015-09-28
TN2011000549A1 (en) 2013-05-24
ES2549163T3 (es) 2015-10-23
CA2760258C (fr) 2017-08-01
EP2451747B1 (fr) 2015-07-08
ZA201108757B (en) 2012-09-26
US20170137310A1 (en) 2017-05-18
WO2010125450A3 (fr) 2011-04-21
CA2760258A1 (fr) 2010-11-04
KR20120027275A (ko) 2012-03-21
CN102428033A (zh) 2012-04-25
US20120138531A1 (en) 2012-06-07
JP5717203B2 (ja) 2015-05-13
PT2451747E (pt) 2015-10-26
SG175336A1 (en) 2011-11-28

Similar Documents

Publication Publication Date Title
WO2010125251A1 (fr) Installation et procédé d' éliminations des xenobiotiques dans l'eau par rayonnement uv-v
US7462288B2 (en) Ozone/UV combination for the decomposition of endocrine substances
Matafonova et al. Recent progress on application of UV excilamps for degradation of organic pollutants and microbial inactivation
US6991735B2 (en) Free radical generator and method
JP2007000767A (ja) 水処理方法および水処理装置
Ricardo et al. A critical review of trends in advanced oxidation processes for the removal of benzophenone-3, fipronil, and propylparaben from aqueous matrices: Pathways and toxicity changes
Yin et al. Technologies for bHRPs and risk control
Sandre et al. Occurrence and fate of an emerging drug pollutant and its by-products during conventional and advanced wastewater treatment: Case study of furosemide
WO2012080673A1 (fr) Procédé et appareillage pour la désinfection de l'eau
EP0148940A1 (fr) Procede et appareil pour le traitement sur place d'eaux usees au moyen d'un fluide active par irradiation
Alonso et al. Micro-organism re-growth in wastewater disinfected by UV radiation and ozone: a micro-biological study
EP2678277B1 (fr) Procede de depollution des fluides
JPH11347591A (ja) 生物難分解性有機物含有汚水の処理方法
CN219991344U (zh) 一种污水处理系统
JPH1133570A (ja) ダイオキシンを含有する汚水の処理方法
Das et al. Ozone-based oxidation processes for the removal of pharmaceutical products from wastewater
JP2003251343A (ja) 凝集消毒装置
Gmurek et al. Endocrine disrupting compounds (EDCs)-environmental hazards and their photochemical degradation
JP2007260495A (ja) 水処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09784379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09784379

Country of ref document: EP

Kind code of ref document: A1