WO2010119862A1 - 加熱調理器 - Google Patents

加熱調理器 Download PDF

Info

Publication number
WO2010119862A1
WO2010119862A1 PCT/JP2010/056583 JP2010056583W WO2010119862A1 WO 2010119862 A1 WO2010119862 A1 WO 2010119862A1 JP 2010056583 W JP2010056583 W JP 2010056583W WO 2010119862 A1 WO2010119862 A1 WO 2010119862A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
water
steam generation
heater
exhaust
Prior art date
Application number
PCT/JP2010/056583
Other languages
English (en)
French (fr)
Inventor
安昭 坂根
敏明 植木
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201080013187.9A priority Critical patent/CN102362121B/zh
Priority to SG2011074861A priority patent/SG175216A1/en
Priority to US13/259,044 priority patent/US8695487B2/en
Publication of WO2010119862A1 publication Critical patent/WO2010119862A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/32Arrangements of ducts for hot gases, e.g. in or around baking ovens
    • F24C15/322Arrangements of ducts for hot gases, e.g. in or around baking ovens with forced circulation
    • F24C15/327Arrangements of ducts for hot gases, e.g. in or around baking ovens with forced circulation with air moisturising

Definitions

  • This invention relates to a cooking device.
  • a heating cooker there is one that heats water supplied from a water tank by a steam generator to generate water vapor, and supplies the generated water vapor to a heating chamber (for example, JP 2009-41822 A). Publication (refer patent document 1)).
  • the heating cooker includes a water level sensor in which a plurality of electrodes having different lengths are combined, and by detecting which of the detection electrodes of the water level sensor is immersed in water, the water tank The inside water level is detected, and when none of the detection electrodes is immersed in water, it is regarded as waterless.
  • the above-described cooking device has a problem that the configuration of the water level sensor is complicated and the cost becomes high.
  • the main body size is increased.
  • the water tank is reduced by the space for the water level sensor. The capacity of will become smaller.
  • an object of the present invention is to provide a cooking device capable of detecting the stop of the steam generation function including the absence of water in the water tank with a simple configuration without a water level sensor and reducing the cost.
  • the heating cooker of the present invention is: A body casing; A water tank disposed in the main body casing; A steam generator that generates water vapor by heating water supplied from the water tank; A heating chamber to which water vapor from the steam generator is supplied; In the cooking in which the steam from the steam generator is supplied into the heating chamber, the steam generating function including the absence of water in the water tank is based on information relating to a physical quantity that correlates with the presence or absence of water in the steam generator.
  • a steam generation function determination unit that determines whether or not to stop is provided.
  • the steam generating function determining unit determines whether the water in the water tank is based on information on a physical quantity that indirectly indicates the presence or absence of water in the steam generating device. It is determined whether or not the steam generation function including no water is stopped.
  • the information on the physical quantity that indirectly represents the presence or absence of water in the steam generator is information on the temperature of the steam generator container of the steam generator and the atmosphere in the exhaust passage exhaust passage provided in the main body casing. Information on exhaust temperature (or exhaust humidity).
  • the heating cooker of one embodiment is The steam generation device has a steam generation container to which water is supplied from the water tank, and a steam generation heater for heating water in the steam generation container, A steam generation container temperature sensor for detecting the temperature of the steam generation container; In cooking in which steam from the steam generator is supplied into the heating chamber, the steam generating heater is repeatedly turned on and off based on the temperature of the steam generating container detected by the steam generating container temperature sensor.
  • a steam generating heater control unit for controlling the generating heater Information on the physical quantity that indirectly represents the presence or absence of water in the steam generator includes at least a ratio of an off time to an on time in an on / off operation of the steam generating heater,
  • the steam generation function determination unit is configured such that when the ratio of the off time to the on time in the on / off operation of the steam generation heater is greater than a predetermined value, It is determined that the steam generation function including no water in the water tank is stopped.
  • the steam generating heater control unit in the cooking in which the steam from the steam generating device is supplied into the heating chamber, the steam generating heater control unit generates steam based on the temperature of the steam generating container detected by the steam generating container temperature sensor.
  • the steam generating heater is controlled so that the heater is repeatedly turned on and off.
  • the temperature of the steam generation container is set within the target temperature range. If the water in the water tank runs out or a steam generator failure (heater failure, pump failure, etc.) occurs, water is not supplied to the steam generation container, and the on-time of the steam generator heater is turned on and off.
  • the steam generation function determination unit determines that the steam generation function including the absence of water in the water tank is stopped. To do. Thereby, the stop of the steam generation function including the absence of water in the water tank can be easily detected with a simple configuration.
  • the heating cooker of one embodiment is An exhaust passage which is provided in the main body casing and exhausts from the heating chamber to the outside of the main body casing; An exhaust passage sensor for detecting the exhaust temperature or the exhaust humidity of the atmosphere in the exhaust passage,
  • the physical quantity that indirectly represents the presence or absence of water in the steam generator includes at least the exhaust temperature or the exhaust humidity of the atmosphere in the exhaust passage,
  • the steam generation function determination unit is configured to determine whether the steam generation function determination unit is in the water tank based on the exhaust temperature or the exhaust humidity detected by the exhaust passage sensor. It is determined whether or not the steam generation function including no water is stopped.
  • the steam from the steam generator is continuously supplied to the heating chamber via the exhaust passage provided in the main body casing.
  • the atmosphere containing water vapor is gradually discharged from the heating chamber to the outside of the main casing.
  • the steam generator stops generating steam the steam is no longer supplied to the heating chamber and the exhaust is exhausted. Since there is almost no exhaust through the passage, the fluctuation of the exhaust temperature (or exhaust humidity) of the atmosphere in the exhaust passage is reduced.
  • the steam generation function determination unit is based on the exhaust temperature (or exhaust humidity) detected by the exhaust passage sensor, which is a physical quantity that indirectly represents the presence or absence of water in the steam generator. It is determined whether or not the steam generation function including the absence of water in the water tank is stopped. Thereby, the stop of the steam generation function including the absence of water in the water tank can be easily detected with a simple configuration.
  • the steam generator has a steam generator heater for heating water from the water tank, A steam generation heater control unit for controlling the steam generation heater;
  • the steam generating heater control unit turns on and off the steam generating heater in cooking in which steam from the steam generating device is supplied into the heating chamber,
  • the steam generation function determination unit determines whether there is no water in the water tank when the exhaust temperature or the exhaust humidity detected by the exhaust passage sensor does not fluctuate. It is determined that the steam generation function including is stopped.
  • the steam generation function judgment unit turns on the steam generation heater.
  • the exhaust temperature (or exhaust humidity) detected by the exhaust passage sensor does not fluctuate in the higher direction, it can be determined that the steam generation function including the absence of water in the water tank is stopped.
  • the stop of the steam generation function including the absence of water in the water tank can be reliably detected by using the characteristics of the exhaust temperature (or exhaust humidity) of the atmosphere in the exhaust passage in conjunction with the turning on of the steam generation heater.
  • the steam generation heater control unit repeatedly turns on and off the steam generation heater in cooking in which steam from the steam generation device is supplied into the heating chamber
  • the steam generation function determination unit is configured to switch water in the water tank when the exhaust temperature or the exhaust humidity detected by the exhaust passage sensor does not periodically fluctuate depending on whether the steam generation heater is on or off. It is determined that the steam generation function including nothing is stopped.
  • the inside of the exhaust passage is changed according to the on / off of the steam generating heater.
  • the exhaust temperature (or exhaust humidity) of the atmosphere periodically fluctuates between high and low. Therefore, when water in the water tank is exhausted or when steam generation by the steam generator stops due to a failure of the steam generator (heater failure, pump failure, etc.), the exhaust passage sensor is turned on and off according to the on / off status of the steam generator heater.
  • the steam generation function determination unit can determine that the steam generation function including the absence of water in the water tank is stopped. Become. The stop of the steam generation function including the absence of water in the water tank can be detected more reliably by utilizing the characteristics of the exhaust temperature (or exhaust humidity) of the atmosphere in the exhaust passage linked with the on / off of the steam generation heater.
  • the stop of the steam generation function including the absence of water in the water tank includes a failure of the steam generation heater of the steam generation device.
  • Stopping the steam generation function including the absence of water in the water tank includes a failure of a pump for supplying water from the water tank to the steam generator.
  • a heater for heating the heating chamber includes information on a physical quantity that indirectly represents the presence or absence of water in the steam generation apparatus in cooking in which the heating chamber to which the steam from the steam generation apparatus is supplied is heated by the heater. Based on this, it is determined whether or not the steam generation function including the absence of water in the water tank is stopped.
  • the steam generation function determination unit is a physical quantity that indirectly represents the presence or absence of water in the steam generator. Based on the information regarding this, it can be determined whether or not the steam generation function including the absence of water in the water tank is stopped.
  • the heating cooker of the present invention it is possible to detect the stop of the steam generation function including the absence of water in the water tank with a simple configuration without a water level sensor, and realize a heating cooker that can reduce the cost. can do.
  • FIG. 1A is a schematic cross-sectional view seen from the front of the heating cooker according to the first embodiment of the present invention.
  • FIG. 1B is an enlarged view of the steam generator of the cooking device.
  • FIG. 2 is a schematic cross-sectional view seen from the side of the cooking device.
  • FIG. 3 is a control block diagram of the cooking device.
  • FIG. 4 is a diagram showing changes in the internal temperature and the exhaust temperature according to on / off of the steam generating heater during oven cooking using the superheated steam of the heating cooker.
  • FIG. 5 is a diagram showing changes in the internal temperature and the exhaust temperature according to the on / off of the steam generating heater during steam cooking using steam of the heating cooker.
  • FIG. 1A is a schematic cross-sectional view seen from the front of the heating cooker according to the first embodiment of the present invention.
  • FIG. 1B is an enlarged view of the steam generator of the cooking device.
  • FIG. 2 is a schematic cross-sectional view seen from the side of the cooking device.
  • FIG. 6 is a diagram showing a change in the number of output bits of the exhaust humidity sensor in accordance with on / off of the steam generating heater during oven cooking using the superheated steam of the heating cooker according to the second embodiment of the present invention.
  • FIG. 7 is a diagram showing a change in the number of output bits of the exhaust humidity sensor according to on / off of the steam generating heater during steam cooking using steam of the heating cooker.
  • FIG. 8 is a diagram showing changes in the on-time and off-time of the steam generating heater during steam cooking using steam in the heating cooker according to the third embodiment of the present invention.
  • FIG. 9 is a diagram showing data of a specific example of the on time and the off time of the steam generating heater during steam cooking using steam of the heating cooker.
  • FIG. 1A shows a schematic sectional view seen from the front of the heating cooker according to the first embodiment of the present invention.
  • this heating cooker is provided with a rectangular parallelepiped heating chamber 20 in a rectangular parallelepiped main body casing 10.
  • the heating chamber 20 has an opening on the front side, and a heat shield 14 made of stainless steel is provided on the side, bottom and top surfaces of the heating chamber 20.
  • a heat insulating material (not shown) is arranged around the heating chamber 20 and inside the door 11 (shown in FIG. 2), and the inside of the heating chamber 20 and the outside are insulated.
  • a stainless steel square dish 21 is installed in the heating chamber 20, and a stainless steel wire grill net 22 for placing the article to be heated 90 is installed on the square dish 21.
  • the upper side plate tray receiving portions 23, 24 and the lower side plate tray receivers 25, 26 having a two-stage upper and lower structure are provided on the inner sides of both sides in the heating chamber 20.
  • the square plate 21 is received by the upper square plate receiving portions 23 and 24.
  • the heating cooker evaporates water supplied from the water tank 30 from the water tank 30, the pump 31, and the pump 31 in the main body casing 10 and on the right side of the heating chamber 20.
  • a steam generator 40 that generates steam.
  • a connecting portion 30b (shown in FIG. 2) provided on the lower side of the water tank 30 can be connected to a receiving port 32a (shown in FIG. 2) provided at one end of the first water supply pipe 32. .
  • the other end of the first water supply pipe 32 is connected to one end of the pump 31.
  • the other end of the pump 31 is connected to one end of the second water supply pipe 33, and the other end of the second water supply pipe 33 is connected to the steam generator 40.
  • a circular suction part 20a is provided in the center of the rear surface of the heating chamber 20, and an upper left blowing part 20b and an upper right blowing part 20c are provided in the vicinity of the left and right corners on the upper rear surface of the heating chamber 20.
  • a left middle blowing portion 20d and a right middle blowing portion 20e are provided on the left and right of the suction portion 20a on the rear surface of the heating chamber 20, and a lower upper blowing portion 20f and a lower upper blowing portion are disposed in the vicinity of the left and right corners on the lower rear side of the heating chamber 20.
  • 20 g is provided.
  • An internal temperature sensor 76 that detects the temperature of the atmosphere in the heating chamber 20 is disposed on the upper right side of the heating chamber 20.
  • a soup bowl 34 is arranged below the water tank 30.
  • an electrical component part 50, a cooling fan 53, and a cooling fan motor 54 that drives the cooling fan 53 are disposed below the heating chamber 20 in the main body casing 10.
  • the cooling fan 53 cools the electrical component part 50 and the like in the main body casing 10 by air sucked from the opening 62 on the bottom side.
  • an air supply fan 55 for supplying air from the outside into the heating chamber 20 through the air inlet 57 is disposed on the right side of the heating chamber 20 in the main body casing 10.
  • a rotating antenna 51 and a rotating antenna motor 52 for driving the rotating antenna 51 are arranged in the lower part of the heating chamber 20.
  • the microwave generated in the magnetron 61 (shown in FIG. 2) is guided to the lower center of the heating chamber 20 by the waveguide 60 and is rotated by the rotating antenna 51 driven by the rotating antenna motor 52 while being heated.
  • the object to be heated 90 is heated by being radiated upward in the interior 20.
  • FIG. 1B shows an enlarged view of the steam generator 40 of the heating cooker.
  • the steam generator 40 includes a steam generation box 41 as an example of a steam generation container having one end of the second water supply pipe 33 connected to the lower side, and a steam generation heater 42 disposed on the lower side in the steam generation box 41.
  • a steam temperature raising heater 43 disposed on the upper side in the steam generation box 41; a steam temperature raising portion 45 provided in the steam generation box 41 and surrounding the steam temperature raising heater 43;
  • One end is connected to the lower side of the warm part 45, and the steam outlet 44 at the other end has a plurality of steam pipes 46 opened into the heating chamber 20.
  • a steam generation box temperature sensor 47 as an example of a steam generation container temperature sensor for detecting the temperature of the steam generation box 41 is disposed in the vicinity of the steam generation heater 42 of the steam generation box 41.
  • an exhaust duct 72 as an example of an exhaust passage is connected to an exhaust port 71 (shown in FIG. 2) provided on the right side surface of the heating chamber 20.
  • An external exhaust port 73 is provided at the other end.
  • An exhaust temperature sensor 74 as an example of an exhaust passage sensor in the exhaust duct 72 is arranged, and an exhaust humidity sensor as an example of an exhaust passage sensor on the heating chamber 20 side of the exhaust temperature sensor 74 in the exhaust duct 72. 75 is arranged.
  • FIG. 2 is a schematic cross-sectional view as seen from the side of the heating cooker.
  • the same reference numerals are assigned to the same components of the heating cooker shown in FIG. 1A.
  • a door 11 that rotates about a lower end side is provided on the front surface of the main casing 10.
  • a handle 12 is provided at the top of the door 11, and a heat-resistant glass window (not shown) is fitted into the door 11.
  • a convection fan casing 80 is attached to the rear surface side of the heating chamber 20, and the convection fan 81 is disposed in the convection fan casing 80, and as an example of a heater so as to surround the convection fan 81.
  • a convection heater 82 is disposed.
  • the convection fan 81 is driven by a convection fan motor 83. Air in the heating chamber 20 is sucked by the convection fan 81 through the suction part 20a shown in FIG. 1A and heated by the convection heater 82, and then the upper left outlet part 20b, upper right outlet part 20c, middle left outlet shown in FIG. 1A. It blows out again into the heating chamber 20 from the part 20d, the right middle blowing part 20e, the lower upper blowing part 20f, and the lower upper blowing part 20g.
  • a magnetron 61 is disposed at the lower portion of the heating chamber 20.
  • the microwave generated by the magnetron 61 is guided to the lower center of the heating chamber 20 by the waveguide 60.
  • FIG. 3 shows a control block diagram of the cooking device.
  • the control device 100 includes a microcomputer, an input / output circuit, and the like, and is arranged in the electrical component section 50 shown in FIGS. 1A and 2.
  • the control device 100 includes a steam generation function determination unit 100a that determines whether or not the steam generation function including the absence of water in the water tank 30 is stopped, a steam generation heater 42, a steam temperature raising heater 43, and a convection heater 82.
  • a heater control unit 100b for controlling.
  • the heater control unit 100b includes a steam generation heater control unit.
  • the control device 100 includes a steam generating heater 42, a steam heating heater 43, a magnetron 61, a convection heater 82, a convection fan motor 83, a cooling fan motor 54, a rotating antenna motor 52, and an operation.
  • the panel 13, the exhaust temperature sensor 74, the exhaust humidity sensor 75, the internal temperature sensor 76, the steam generation box temperature sensor 47, the pump 31, and the supply fan motor 56 are connected.
  • the control device 100 detects the steam generation heater 42, the steam temperature increase heater 43, and the magnetron 61 based on detection signals from the exhaust temperature sensor 74, the exhaust humidity sensor 75, the internal temperature sensor 76, and the steam generation box temperature sensor 47.
  • the convection heater 82, the convection fan motor 83, the cooling fan motor 54, the rotary antenna motor 52, the pump 31, and the air supply fan motor 56 are controlled in accordance with a predetermined program.
  • the control device 100 detects whether or not the water tank 30 is normally attached by a water tank detection unit (not shown), and if the water tank 30 is normally attached, the pump 31. Start driving. Then, water is supplied from the water tank 30 into the steam generation box 41 of the steam generator 40 via the second water supply pipe 33 by the pump 31. Thereafter, when a predetermined amount of water is supplied into the steam generation box 41, the pump 31 is stopped to stop water supply.
  • the steam generating heater 42 is energized, and a predetermined amount of water accumulated in the steam generating box 41 is heated by the steam generating heater 42.
  • the convection fan motor 83 is driven by the convection fan motor 83, and The convection heater 82 is energized.
  • the convection fan 81 sucks the gas (including steam) in the heating chamber 20 from the suction portion 20a, and sends the gas (including steam) heated by the convection heater 82 into the heating chamber 20.
  • the superheated steam is sucked from the suction portion 20a by the convection fan 81 together with the air in the heating chamber 20, and is heated by the convection heater 82, and the upper left blow portion 20b, the upper right blow portion 20c, the left middle blow portion 20d, the right A convection that blows into the heating chamber 20 from the middle blowing portion 20e, the lower upper blowing portion 20f, and the lower upper blowing portion 20g and wraps the article 90 to be heated in the heating chamber 20 is formed.
  • the convection steam is sequentially sucked into the suction part 20a and repeatedly circulated through the convection fan casing 80 and back into the heating chamber 20 again.
  • the superheated steam can be efficiently collided with the superheated steam, and the heated object 90 is heated by the collision of the superheated steam.
  • the superheated steam that has contacted the surface of the object to be heated 90 also heats the object to be heated 90 by releasing latent heat when dew condensation occurs on the surface of the object to be heated 90.
  • a large amount of heat of the superheated steam can be reliably and promptly applied to the entire surface of the article 90 to be heated. Therefore, it is possible to realize heat cooking with no spots and good finish.
  • the control device 100 displays a cooking end message on the operation panel 13, and further sounds a signal by a buzzer (not shown) provided on the operation panel 13.
  • the microwave heating cooking is performed. Operation starts. Then, the control device 100 drives the magnetron 61 to supply the microwave to the object to be heated 90 via the waveguide 60 and the rotating antenna 51, thereby heating the object to be heated 90. In that case, a non-metal receiving tray through which the microwave on which the article to be heated 90 is placed is laid, for example, on the bottom plate of the heating chamber 20.
  • FIG. 4 is a diagram showing changes in the internal temperature and the exhaust temperature according to the on / off of the steam generating heater 42 during oven cooking using the superheated steam of the heating cooker.
  • the horizontal axis represents time (minutes), and the vertical axis represents temperature (° C.) and steam generation heater input (kW).
  • the steam generating heater 42 is turned on for 10 seconds per minute for 15 minutes from the start. After 15 minutes, the system is turned on for 7 seconds per minute, and the steam generating heater 42 is repeatedly turned on and off.
  • the internal temperature detected by the internal temperature sensor 76 and the exhaust temperature detected by the exhaust temperature sensor 74 gradually increase to near 250 ° C.
  • the internal temperature and the exhaust temperature are turned on. Fluctuates in a higher direction, and when the steam generating heater 42 is turned off, the internal temperature and the exhaust temperature fluctuate in a lower direction. That is, the internal temperature and the exhaust gas temperature periodically fluctuate depending on whether the steam generating heater 42 is turned on or off.
  • FIG. 5 is a diagram showing changes in the internal temperature and the exhaust temperature according to the on / off of the steam generating heater during steam cooking using steam of the heating cooker.
  • the horizontal axis represents time (minutes), and the vertical axis represents temperature (° C.) and steam generation heater input (kW).
  • the steam generating heater 42 is continuously turned on for 4 minutes from the start, and is turned on for 80 seconds per minute after 4 minutes and after 15 minutes, After 15 minutes, it is turned on for 40 seconds per minute, and the steam generating heater 42 is repeatedly turned on and off.
  • the internal temperature detected by the internal temperature sensor 76 and the exhaust temperature detected by the exhaust temperature sensor 74 rise to near 100 ° C. in several seconds, and when the steam generating heater 42 is turned on, the internal temperature and the exhaust temperature. Fluctuates in a higher direction, and when the steam generating heater 42 is turned off, the internal temperature and the exhaust temperature fluctuate in a lower direction. That is, the internal temperature and the exhaust gas temperature periodically fluctuate depending on whether the steam generating heater 42 is turned on or off.
  • the internal temperature sensor 76 detects it as shown in FIG. Both the internal temperature and the exhaust temperature detected by the exhaust temperature sensor 74 have almost no periodic fluctuations.
  • the steam from the steam generating device 40 enters the heating chamber 20. Supplied.
  • the steam containing the steam from the steam generating device 40 is continuously supplied to the heating chamber 20, so that the atmosphere containing the steam gradually from the heating chamber 20 through the exhaust duct 72 provided in the main body casing 10. It is exhausted to the outside of the casing 10.
  • the steam generation function determination unit 100a determines whether or not the steam generation function including the absence of water in the water tank 30 is stopped based on the exhaust temperature detected by the exhaust temperature sensor 74.
  • the stop of the steam generation function including the absence of water in the water tank 30 can be detected with a simple configuration without a water level sensor, and the cost can be reduced. Further, the stop of the steam generation function due to factors other than the absence of water in the water tank 30 (heater failure, pump failure, etc.) can also be detected.
  • the water in the water tank 30 disappears or the steam generator 40 fails (the steam generator heater 42 fails).
  • the exhaust temperature detected by the exhaust temperature sensor 74 is periodically increased or decreased even if the steam generation heater 42 is turned on / off by the heater control unit 100b.
  • the steam generation function determination unit 100a determines that the steam generation function including the absence of water in the water tank 30 is stopped. The stop of the steam generation function including the absence of water in the water tank 30 can be detected more reliably by utilizing the characteristics of the exhaust temperature of the atmosphere in the exhaust duct 72 interlocked with the on / off of the steam generation heater 42.
  • the steam generating function determination When the exhaust gas temperature detected by the exhaust gas temperature sensor 74 does not fluctuate according to the steam generator heater 42 being turned on by the unit 100a, the steam generation function including the absence of water in the water tank 30 is stopped. It is also possible to determine. Also in this case, it is possible to reliably detect the stop of the steam generation function including the absence of water in the water tank 30 by utilizing the exhaust temperature characteristic of the atmosphere in the exhaust duct 72 that is interlocked with the ON of the steam generation heater 42. it can.
  • the stop of the steam generation function can be detected even when the steam generation by the steam generation device 40 stops due to the failure of the steam generation heater 42 of the steam generation device 40. Further, when the generation of water vapor by the steam generator 40 is stopped due to a failure of the pump 31 for supplying water from the water tank 30 to the steam generator 40, it is possible to detect the stop of the steam generation function.
  • the steam generation function determination unit 100a can determine whether the steam generation function including the absence of water in the water tank 30 is stopped based on the exhaust temperature detected by the exhaust temperature sensor 74.
  • FIG. 6 is a diagram showing a change in the number of output bits of the exhaust humidity sensor 75 according to on / off of the steam generating heater 42 during oven cooking using superheated steam of the heating cooker according to the second embodiment of the present invention.
  • the cooking device of the second embodiment has the same configuration as the cooking device of the first embodiment except for the operation of the control device 100, and uses FIGS. 1A, 1A, and 2.
  • the horizontal axis represents time (minutes), and the vertical axis represents the number of output bits of the exhaust humidity sensor 75.
  • the number of output bits of the exhaust humidity sensor 75 when the number of output bits of the exhaust humidity sensor 75 is zero, it indicates the absolute humidity at the indoor air level. As the number of bits increases, the moisture in the exhaust increases and the absolute humidity increases. Represents that
  • the exhaust humidity detected by the exhaust humidity sensor 75 gradually increases.
  • the steam generating heater 42 is turned on, the exhaust humidity is increased.
  • the steam generating heater 42 is turned off, the exhaust humidity is decreased. Fluctuates towards. That is, according to the on / off of the steam generating heater 42, the exhaust humidity periodically varies between high and low.
  • FIG. 7 is a diagram showing a change in the number of output bits of the exhaust humidity sensor 75 in accordance with on / off of the steam generating heater during steam cooking using steam of the heating cooker.
  • the steam generating heater 42 is continuously turned on for 4 minutes from the start, turned on for 50 seconds per minute from 4 minutes to 15 minutes, and after 15 minutes.
  • the steam generation heater 42 is repeatedly turned on and off at 40 seconds per minute.
  • the exhaust humidity detected by the exhaust humidity sensor 75 gradually increases.
  • the steam generating heater 42 is turned on, the exhaust humidity is increased.
  • the steam generating heater 42 is turned off, the exhaust humidity is decreased. Fluctuates towards. That is, according to the on / off of the steam generating heater 42, the exhaust humidity periodically varies between high and low.
  • the steam generation function determination unit 100a is based on the exhaust humidity detected by the exhaust humidity sensor 75, which is a physical quantity correlated with the presence or absence of water in the steam generation box 41. It is determined whether or not the steam generation function including no water is stopped. Therefore, the stop of the steam generation function including the absence of water in the water tank 30 can be detected with a simple configuration without a water level sensor, and the cost can be reduced. Further, the stop of the steam generation function due to factors other than the absence of water in the water tank 30 (heater failure, pump failure, etc.) can also be detected.
  • the steam generation heater 42 when the water in the water tank 30 is exhausted or the steam generator 40 stops generating steam due to a failure of the steam generator 40 (failure of the steam generator heater 42, failure of the pump 31, etc.). Even if the steam generation heater 42 is turned on / off by the heater control unit 100b, the exhaust humidity detected by the exhaust humidity sensor 75 does not periodically fluctuate between high and low, so that the water in the water tank 30 is detected by the steam generation function determination unit 100a. It is determined that the steam generation function including nothing is stopped. The stop of the steam generation function including the absence of water in the water tank 30 can be detected more reliably by utilizing the exhaust humidity characteristic of the atmosphere in the exhaust duct 72 that is linked to the on / off of the steam generation heater 42.
  • the steam generation function determination unit 100a stops the steam generation function including the absence of water in the water tank 30. It is also possible to determine. Also in this case, it is possible to reliably detect the stop of the steam generation function including the absence of water in the water tank 30 by utilizing the exhaust humidity characteristic of the atmosphere in the exhaust duct 72 that is interlocked with the ON of the steam generation heater 42. it can.
  • the stop of the steam generation function can be detected. Further, when the generation of water vapor by the steam generator 40 is stopped due to a failure of the pump 31 for supplying water from the water tank 30 to the steam generator 40, it is possible to detect the stop of the steam generation function.
  • the steam generation function determination part 100a also in the oven cooking which heats the inside of the heating chamber 20 to which the water vapor
  • a cooking device according to a third embodiment of the present invention will be described below.
  • the cooking device of the third embodiment has the same configuration as that of the cooking device of the first embodiment except for the operation of the control device 100, and uses FIGS. 1A, 1A, and 2.
  • the temperature of the steam generation box 41 detected by the steam generation box temperature sensor 47 by the heater control unit 100b of the control device 100 is the upper limit temperature (for example, 120).
  • the steam generating heater 42 is turned off.
  • the temperature of the steam generating box 41 falls below the lower limit temperature (for example, 105 ° C.) from the state where the steam generating heater 42 is turned off, the steam generating heater 42 is turned on.
  • the upper limit temperature and the lower limit temperature may be appropriately set according to the configuration of the steam generator.
  • the heating cooker is a first operation mode in which the steam generating heater 42 is operated by temperature control based on the temperature of the steam generation box 41 described above for a predetermined time (for example, 15 minutes) from the start of steam cooking using steam.
  • a second operation mode for controlling the heater output by alternately repeating the on period and the off period of the steam generating heater 42 at a duty ratio corresponding to a desired heater output after the predetermined time has elapsed.
  • the steam generation heater 42 is operated by temperature control based on the temperature of the steam generation box 41 described above during the ON-enabled period.
  • the pump 31 performs continuous operation, while in the second operation mode, the pump 31 operates only during the on-time period.
  • the steam generation function determination unit 100a of the control device 100 measures the on time and the subsequent off time of the steam generation heater 42 after the start of operation, and whether or not on time> off time. Determine whether. That is, it is determined whether or not the ratio of the off time to the on time exceeds 1.
  • the control device 100 causes the “WATER” message to blink on the operation panel 13. However, even if the pump 31 is operated, water may not be immediately supplied into the steam generation box 41, so the first determination of the on time and the off time is ignored.
  • the steam generation function determination unit 100a determines that there is no water, and the heater control unit 100b of the control device 100 performs heating by the steam generation heater 42. Stop.
  • the number of determinations is not limited to five, and a changeable set value stored in an EEPROM (electrically erasable / writable read-only memory) or the like may be used.
  • heating by the steam generating heater 42 is continued without measuring and judging the on time and the off time.
  • FIG. 8 shows changes in the on-time and off-time of the steam generating heater 42 during steam cooking using steam of the heating cooker.
  • FIG. 9 shows data of a specific example of the on time and off time of the steam generating heater 42 during steam cooking using the steam of the heating cooker.
  • the control device 100 causes the “WATER” message to blink on the operation panel 13.
  • the relationship of on time> off time continues twice in the second and third on / off operations, and the message “WATER” is flashed on the operation panel 13 by the control device 100. The Then, in the second to sixth on / off operations, the relationship of on time> off time continues five times continuously. Therefore, the steam generation function determining unit 100a determines that there is no water, and the heater control unit of the control device 100 100b stops heating by the steam generating heater 42.
  • the temperature of the steam generation box 41 is warmed higher than in (2) of FIG. 9, but since there is water in the steam generation box 41, the first on time of the on / off operation is turned on. Is longer than the first on time in (2) of FIG. 9 (on time 37 seconds in (2)> on time 49 seconds in (3)).
  • the relationship of on time> off time continues continuously twice, and the control device 100 causes the “WATER” message to blink on the operation panel 13. Then, in the second to sixth on / off operations, the relationship of on time> off time continues five times continuously. Therefore, the steam generation function determining unit 100a determines that there is no water, and the heater control unit of the control device 100 100b stops heating by the steam generating heater 42.
  • the steam generation function determination unit 100a indirectly determines the presence or absence of water in the steam generator 40. It is determined whether or not the steam generation function including the absence of water in the water tank 30 is stopped based on the information on the physical quantity expressed in (the ratio of the off time to the on time in the on / off operation of the steam generating heater 42).
  • the stop of the steam generation function including the absence of water in the water tank 30 can be detected with a simple configuration, and the cost can be reduced. It is also possible to detect the stop of the steam generation function due to factors other than the absence of water in the water tank (heater failure, pump failure, etc.).
  • the steam generation function determination unit 100a determines that the steam generation function including the absence of water in the water tank 30 is stopped. Thereby, the stop of the steam generation function including the absence of water in the water tank 30 can be easily detected with a simple configuration.
  • the predetermined value for determining the ratio of the off time to the on time is set to “1”, but may be set as appropriate according to the configuration of the steam generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Ovens (AREA)
  • Cookers (AREA)

Abstract

 本体ケーシング10内に配置された水タンク30と、水タンク30から供給された水を加熱して水蒸気を発生させる蒸気発生装置40と、蒸気発生装置40からの水蒸気が供給される加熱室20と、本体ケーシング10内に設けられ、加熱室20内から本体ケーシング10の外部に排気するための排気ダクト72と、排気ダクト72内の雰囲気の排気温度を検出する排気温度センサ74と、蒸気発生装置40からの水蒸気が加熱室20内に供給される調理において、蒸気発生装置40内の水の有無を間接的に表す物理量に関する情報(排気温度センサ74により検出された排気温度)に基づいて、水タンク30内の水無を含む蒸気発生機能の停止か否かを判定する蒸気発生機能判定部を備える。

Description

加熱調理器
 この発明は、加熱調理器に関する。
 従来、加熱調理器としては、水タンク内から供給された水を蒸気発生装置で加熱して水蒸気を発生させ、発生した水蒸気を加熱室に供給するものがある(例えば、特開2009-41822号公報(特許文献1)参照)。
 上記加熱調理器では、長さが異なる複数の電極が組み合わされた水位センサを備え、その水位センサの検出用の電極のうちの何れが水に浸漬しているのかを検出することによって、水タンク内の水位を検出し、検出用の電極のいずれも水に浸漬していないときは水無としている。
 しかしながら、上記加熱調理器では、水位センサの構成が複雑なためにコストが高くなるという問題がある。上記加熱調理器では、水タンク近傍に水位センサ用のスペースが必要なため、本体サイズが大きくなる一方、本体サイズが同じ条件では、水位センサ用のスペース分だけ水タンクが小さくなるため、水タンクの容量が小さくなってしまう。
 また、上記加熱調理器では、水タンク内の水無し以外の要因(ヒータ故障やポンプ故障)により蒸気発生装置からの蒸気発生が止まった場合は、水位センサを備えていても検出することができない。
特開2009-41822号公報
 そこで、この発明の課題は、水位センサなしに簡単な構成で水タンクの水無を含む蒸気発生機能の停止を検出でき、コストを低減できる加熱調理器を提供することにある。
 上記課題を解決するため、この発明の加熱調理器は、
 本体ケーシングと、
 上記本体ケーシング内に配置された水タンクと、
 上記水タンクから供給された水を加熱して水蒸気を発生させる蒸気発生装置と、
 上記蒸気発生装置からの水蒸気が供給される加熱室と、
 上記蒸気発生装置からの水蒸気が上記加熱室内に供給される調理において、上記蒸気発生装置内の水の有無に相関する物理量に関する情報に基づいて、上記水タンク内の水無を含む蒸気発生機能の停止か否かを判定する蒸気発生機能判定部と
を備えたことを特徴とする。
 上記構成によれば、蒸気発生装置からの水蒸気が加熱室内に供給される調理(例えばオーブン料理や蒸し料理など)において、蒸気発生装置からの水蒸気が加熱室に供給される。そして、調理中、加熱室に蒸気発生装置からの水蒸気が供給され続けるが、蒸気発生機能判定部は、蒸気発生装置内の水の有無を間接的に表す物理量に関する情報に基づいて、水タンク内の水無を含む蒸気発生機能の停止か否かを判定する。ここで、上記蒸気発生装置内の水の有無を間接的に表す物理量に関する情報は、蒸気発生装置の蒸気発生容器の温度に関する情報や、本体ケーシング内に設けられた排気通路排気通路内の雰囲気の排気温度(または排気湿度)に関する情報などである。
 したがって、水位センサなしに簡単な構成で水タンクの水無を含む蒸気発生機能の停止を検出でき、コストを低減できる。また、水タンクの水無し以外の要因(ヒータ故障やポンプ故障など)による蒸気発生機能の停止も検出することができる。
 また、一実施形態の加熱調理器は、
 上記蒸気発生装置は、上記水タンクから水が供給される蒸気発生容器と、上記蒸気発生容器内の水を加熱する蒸気発生ヒータとを有し、
 上記蒸気発生容器の温度を検出する蒸気発生容器温度センサと、
 上記蒸気発生装置からの水蒸気が上記加熱室内に供給される調理において、上記蒸気発生容器温度センサにより検出された上記蒸気発生容器の温度に基づいて、上記蒸気発生ヒータのオンオフを繰り返すように上記蒸気発生ヒータを制御する蒸気発生ヒータ制御部と
を備え、
 上記蒸気発生装置内の水の有無を間接的に表す物理量に関する情報は、上記蒸気発生ヒータのオンオフ動作におけるオン時間に対するオフ時間の比を少なくとも含み、
 上記蒸気発生機能判定部は、上記蒸気発生装置からの水蒸気が上記加熱室内に供給される調理において、上記蒸気発生ヒータのオンオフ動作におけるオン時間に対するオフ時間の比が所定値よりも大きいとき、上記水タンク内の水無を含む蒸気発生機能の停止であると判定する。
 上記実施形態によれば、蒸気発生装置からの水蒸気が加熱室内に供給される調理において、蒸気発生ヒータ制御部は、蒸気発生容器温度センサにより検出された蒸気発生容器の温度に基づいて、蒸気発生ヒータのオンオフを繰り返すように蒸気発生ヒータを制御する。これによって、蒸気発生容器の温度が目標とする温度範囲内になるようにする。そして、水タンク内の水が無くなるかまたは蒸気発生装置の故障(ヒータ故障やポンプ故障など)が発生すると、蒸気発生容器への水の供給がされなくなって、蒸気発生ヒータのオンオフ動作におけるオン時間に対するオフ時間の比が大きくなるので、予め設定された所定値よりも上記比が大きくなったとき、蒸気発生機能判定部により、水タンク内の水無を含む蒸気発生機能の停止であると判定する。これにより、簡単な構成で水タンクの水無を含む蒸気発生機能の停止を容易に検出できる。
 また、一実施形態の加熱調理器は、
 上記本体ケーシング内に設けられ、上記加熱室内から上記本体ケーシングの外部に排気するための排気通路と、
 上記排気通路内の雰囲気の排気温度または排気湿度を検出する排気通路用センサと
を備え、
 上記蒸気発生装置内の水の有無を間接的に表す物理量は、上記排気通路内の雰囲気の上記排気温度または上記排気湿度を少なくとも含み、
 上記蒸気発生機能判定部は、上記蒸気発生装置からの水蒸気が上記加熱室内に供給される調理において、上記排気通路用センサにより検出された上記排気温度または上記排気湿度に基づいて、上記水タンク内の水無を含む蒸気発生機能の停止か否かを判定する。
 上記実施形態によれば、蒸気発生装置からの水蒸気が加熱室内に供給される調理中、加熱室に蒸気発生装置からの水蒸気が供給され続けることにより、本体ケーシング内に設けられた排気通路を介して加熱室内から水蒸気を含む雰囲気が少しずつ本体ケーシングの外部に排気される。このとき、水タンク内の水が無くなるかまたは蒸気発生装置の故障(ヒータ故障やポンプ故障など)により蒸気発生装置による水蒸気の発生が止まると、加熱室への水蒸気の供給がされなくなって、排気通路を介した排気がほとんどなくなるので、排気通路内の雰囲気の排気温度(または排気湿度)の変動が小さくなる。このような特性を利用して、蒸気発生機能判定部は、蒸気発生装置内の水の有無を間接的に表す物理量である排気通路用センサにより検出された排気温度(または排気湿度)に基づいて、水タンク内の水無を含む蒸気発生機能の停止か否かを判定する。これにより、簡単な構成で水タンクの水無を含む蒸気発生機能の停止を容易に検出できる。
 また、一実施形態の加熱調理器では、
 上記蒸気発生装置は、上記水タンクからの水を加熱する蒸気発生ヒータを有し、
 上記蒸気発生ヒータを制御する蒸気発生ヒータ制御部を備え、
 上記蒸気発生ヒータ制御部は、上記蒸気発生装置からの水蒸気が上記加熱室内に供給される調理において上記蒸気発生ヒータをオンオフし、
 上記蒸気発生機能判定部は、上記蒸気発生ヒータのオンに応じて、上記排気通路用センサにより検出された上記排気温度または上記排気湿度が高くなる方に変動しないとき、上記水タンク内の水無を含む蒸気発生機能の停止であると判定する。
 上記実施形態によれば、蒸気発生装置からの水蒸気が加熱室内に供給される調理において、蒸気発生ヒータ制御部により蒸気発生ヒータをオンオフするとき、蒸気発生ヒータのオンに応じて、加熱室に蒸気発生装置から水蒸気が供給されることにより排気通路内の雰囲気の排気温度(または排気湿度)が高くなる方に変動する。したがって、水タンク内の水が無くなるかまたは蒸気発生装置の故障(ヒータ故障やポンプ故障など)により蒸気発生装置による水蒸気の発生が止まったとき、蒸気発生機能判定部によって、蒸気発生ヒータのオンに応じて、排気通路用センサにより検出された排気温度(または排気湿度)が高くなる方に変動しないとき、水タンク内の水無を含む蒸気発生機能の停止であると判定することが可能となる。この蒸気発生ヒータのオンに連動する排気通路内の雰囲気の排気温度(または排気湿度)の特性を利用して、水タンク内の水無を含む蒸気発生機能の停止を確実に検出できる。
 また、一実施形態の加熱調理器では、
 上記蒸気発生ヒータ制御部は、上記蒸気発生装置からの水蒸気が上記加熱室内に供給される調理において上記蒸気発生ヒータを繰り返しオンオフし、
 上記蒸気発生機能判定部は、上記蒸気発生ヒータのオンオフに応じて、上記排気通路用センサにより検出された上記排気温度または上記排気湿度が高低に周期的に変動しないとき、上記水タンク内の水無を含む蒸気発生機能の停止であると判定する。
 上記実施形態によれば、蒸気発生装置からの水蒸気が加熱室内に供給される調理において、蒸気発生ヒータ制御部により蒸気発生ヒータを繰り返しオンオフするとき、蒸気発生ヒータのオンオフに応じて、排気通路内の雰囲気の排気温度(または排気湿度)が高低に周期的に変動する。したがって、水タンク内の水が無くなるかまたは蒸気発生装置の故障(ヒータ故障やポンプ故障など)により蒸気発生装置による水蒸気の発生が止まったとき、蒸気発生ヒータのオンオフに応じて、排気通路用センサにより検出された排気温度(または排気湿度)が高低に周期的に変動しないので、蒸気発生機能判定部によって、水タンク内の水無を含む蒸気発生機能の停止であると判定することが可能となる。この蒸気発生ヒータのオンオフに連動する排気通路内の雰囲気の排気温度(または排気湿度)の特性を利用して、水タンク内の水無を含む蒸気発生機能の停止をより確実に検出できる。
 また、一実施形態の加熱調理器では、
 上記水タンク内の水無を含む蒸気発生機能の停止は、上記蒸気発生装置の上記蒸気発生ヒータの故障を含む。
 上記実施形態によれば、蒸気発生装置の蒸気発生ヒータの故障により蒸気発生装置による水蒸気の発生が止まったときも、蒸気発生機能の停止を検出することができる。
 また、一実施形態の加熱調理器では、
 上記水タンク内の水無を含む蒸気発生機能の停止は、上記水タンクからの水を上記蒸気発生装置に供給するためのポンプの故障を含む。
 上記実施形態によれば、水タンクからの水を蒸気発生装置に供給するためのポンプの故障により蒸気発生装置による水蒸気の発生が止まったときも、蒸気発生機能の停止を検出することができる。
 また、一実施形態の加熱調理器では、
 上記加熱室内を加熱する加熱ヒータを備え、
 上記蒸気発生機能判定部は、上記蒸気発生装置からの水蒸気が供給された上記加熱室内を上記加熱ヒータにより加熱する調理において、上記蒸気発生装置内の水の有無を間接的に表す物理量に関する情報に基づいて、上記水タンク内の水無を含む蒸気発生機能の停止か否かを判定する。
 上記実施形態によれば、蒸気発生装置からの水蒸気が供給された加熱室内を加熱ヒータにより加熱する調理においても、蒸気発生機能判定部は、蒸気発生装置内の水の有無を間接的に表す物理量に関する情報に基づいて、水タンク内の水無を含む蒸気発生機能の停止か否かを判定することができる。
 以上より明らかなように、この発明の加熱調理器によれば、水位センサなしに簡単な構成で水タンクの水無を含む蒸気発生機能の停止を検出でき、コストを低減できる加熱調理器を実現することができる。
図1Aはこの発明の第1実施形態の加熱調理器の正面から見た断面模式図である。 図1Bは上記加熱調理器の蒸気発生装置の拡大図である。 図2は上記加熱調理器の側面から見た断面模式図である。 図3は上記加熱調理器の制御ブロック図である。 図4は上記加熱調理器の過熱水蒸気を用いたオーブン調理時の蒸気発生ヒータのオンオフに応じた庫内温度と排気温度の変化を示す図である。 図5は上記加熱調理器の水蒸気を用いた蒸し調理時の蒸気発生ヒータのオンオフに応じた庫内温度と排気温度の変化を示す図である。 図6はこの発明の第2実施形態の加熱調理器の過熱水蒸気を用いたオーブン調理時の蒸気発生ヒータのオンオフに応じた排気湿度センサの出力ビット数の変化を示す図である。 図7は上記加熱調理器の水蒸気を用いた蒸し調理時の蒸気発生ヒータのオンオフに応じた排気湿度センサの出力ビット数の変化を示す図である。 図8はこの発明の第3実施形態の加熱調理器の水蒸気を用いた蒸し調理時の蒸気発生ヒータのオン時間とオフ時間の変化を示す図である。 図9は上記加熱調理器の水蒸気を用いた蒸し調理時の蒸気発生ヒータのオン時間とオフ時間の具体例のデータを示す図である。
 以下、この発明の加熱調理器を図示の実施の形態により詳細に説明する。
 〔第1実施形態〕
 図1Aはこの発明の第1実施形態の加熱調理器の正面から見た断面模式図を示している。
 この加熱調理器は、図1Aに示すように、直方体形状の本体ケーシング10内に、直方体形状の加熱室20が設けられている。加熱室20は、正面側に開口部を有し、加熱室20の側面,底面および天面にステンレス鋼製の遮熱板14が設けられている。加熱室20の周囲および扉11(図2に示す)の内側に断熱材(図示せず)が配置されており、加熱室20内と外部とが断熱されている。また、加熱室20内には、ステンレス製の角皿21が設置され、角皿21上には、被加熱物90を載置するためのステンレス鋼線製の焼き網22が設置される。
 上記加熱室20内の両側面内側に、上下2段構造の上側角皿受部23,24と下側角皿受25,26とを設けている。図1Aでは、上側角皿受部23,24により角皿21を受けている。
 また、この加熱調理器は、本体ケーシング10内かつ加熱室20の右側に、蒸気発生用の水を給水する水タンク30と、ポンプ31と、ポンプ31より水タンク30から供給された水を蒸発させて蒸気を発生させる蒸気発生装置40とを備えている。
 また、水タンク30の下側に設けられた接続部30b(図2に示す)は、第1給水パイプ32の一端に設けられた受入口32a(図2に示す)に接続可能になっている。第1給水パイプ32の他端をポンプ31の一端に接続している。このポンプ31の他端を第2給水パイプ33の一端に接続し、第2給水パイプ33の他端を蒸気発生装置40に接続している。
 また、加熱室20の後面の中央に円形の吸込部20aを設けると共に、加熱室20の後面上側の左右コーナー近傍に左上吹出部20bと右上吹出部20cを設けている。また、加熱室20の後面の吸込部20aの左右に左中吹出部20dと右中吹出部20eを設け、加熱室20の後面下側の左右コーナー近傍に下上吹出部20fと下上吹出部20gを設けている。また、加熱室20の右上側には、加熱室20内の雰囲気の温度を検出する庫内温度センサ76を配置している。
 上記水タンク30の下側には、つゆ戻し桶34を配置している。また、本体ケーシング10内の加熱室20の下側に、電装品部50と、冷却ファン53と、その冷却ファン53を駆動する冷却ファン用モータ54とを配置している。この冷却ファン53は、底側の開口62から吸い込んだ空気により本体ケーシング10内の電装品部50等を冷却する。また、本体ケーシング10内の加熱室20の右側に、外部からの空気を吸気口57を介して加熱室20内に供給するための給気ファン55を配置している。
 また、加熱室20の下部には、回転アンテナ51と、その回転アンテナ51を駆動する回転アンテナ用モータ52とが配置されている。そして、マグネトロン61(図2に示す)で発生したマイクロ波は、導波管60によって加熱室20の下部中央に導かれ、回転アンテナ用モータ52によって駆動される回転アンテナ51によって回転されながら加熱室20内の上方に向かって放射されて被加熱物90を加熱するようになっている。
 図1Bは上記加熱調理器の蒸気発生装置40の拡大図を示している。この蒸気発生装置40は、下側に第2給水パイプ33の一端が接続された蒸気発生容器の一例として蒸気発生ボックス41と、蒸気発生ボックス41内の下側に配置された蒸気発生ヒータ42と、蒸気発生ボックス41内の上側に配置された蒸気昇温ヒータ43と、蒸気発生ボックス41内かつ蒸気昇温ヒータ43を囲うように設けられ、上側が開口する蒸気昇温部45と、蒸気昇温部45の下側に一端が接続され、他端の蒸気吹出口44が加熱室20内に開口する複数の蒸気パイプ46とを有している。また、蒸気発生ボックス41内の下側に第2給水パイプ33を介して供給された水が溜まり、溜まった水を蒸気発生ヒータ42により加熱する。蒸気発生ボックス41の蒸気発生ヒータ42近傍に、蒸気発生ボックス41の温度を検出する蒸気発生容器温度センサの一例としての蒸気発生ボックス温度センサ47を配置している。
 また、図1Aに示すように、加熱室20の右側面に設けられた排気口71(図2に示す)には、排気通路の一例としての排気ダクト72の一端が接続され、この排気ダクト72の他端には外部排気口73が設けられている。この排気ダクト72内の排気通路用センサの一例としての排気温度センサ74を配置すると共に、排気ダクト72内の排気温度センサ74よりも加熱室20側に排気通路用センサの一例としての排気湿度センサ75を配置している。
 また、図2は上記加熱調理器の側面から見た断面模式図を示している。図2では、図1Aに示す加熱調理器の同一構成部に同一参照番号を付している。
 図2に示すように、本体ケーシング10の正面には、下端側の辺を中心に回動する扉11を設けて概略構成されている。そして、扉11の上部にはハンドル12が設けられ、扉11には耐熱ガラス製の窓(図示せず)が嵌め込まれている。
 また、上記加熱室20の後面側には、コンベクションファンケーシング80が取り付けられ、そのコンベクションファンケーシング80内に、コンベクションファン81を配置すると共に、そのコンベクションファン81を囲うように加熱ヒータの一例としてのコンベクションヒータ82を配置している。このコンベクションファン81は、コンベクションファン用モータ83により駆動される。コンベクションファン81により加熱室20内の空気を、図1Aに示す吸込部20aを介して吸い込んで、コンベクションヒータ82で加熱した後、図1Aに示す左上吹出部20b,右上吹出部20c,左中吹出部20d,右中吹出部20e,下上吹出部20f,下上吹出部20gから再び加熱室20内に吹き出す。
 また、上記加熱室20の下部には、マグネトロン61が配置されている。そのマグネトロン61で発生したマイクロ波は、導波管60によって加熱室20の下部中央に導かれる。
 図3は上記加熱調理器の制御ブロック図を示している。図3に示すように、制御装置100は、マイクロコンピュータおよび入出力回路等から構成され、図1A,図2に示す電装品部50内に配置されている。この制御装置100は、水タンク30内の水無を含む蒸気発生機能の停止か否かを判定する蒸気発生機能判定部100aと、蒸気発生ヒータ42と蒸気昇温ヒータ43とコンベクションヒータ82とを制御するヒータ制御部100bとを備えている。ヒータ制御部100bは、蒸気発生ヒータ制御部を含む。
 上記制御装置100は、蒸気発生ヒータ42と、蒸気昇温ヒータ43と、マグネトロン61と、コンベクションヒータ82と、コンベクションファン用モータ83と、冷却ファン用モータ54と、回転アンテナ用モータ52と、操作パネル13と、排気温度センサ74と、排気湿度センサ75と、庫内温度センサ76と、蒸気発生ボックス温度センサ47と、ポンプ31と、給気ファン用モータ56とが接続されている。そして、制御装置100は、排気温度センサ74,排気湿度センサ75,庫内温度センサ76および蒸気発生ボックス温度センサ47からの検出信号に基づいて、蒸気発生ヒータ42,蒸気昇温ヒータ43,マグネトロン61,コンベクションヒータ82,コンベクションファン用モータ83,冷却ファン用モータ54,回転アンテナ用モータ52,ポンプ31および給気ファン用モータ56を所定のプログラムに従って制御する。
 以下、上記構成の加熱調理器の蒸気加熱動作について、図1A,図2および図3に従って説明する。操作パネル13の電源スイッチ(図示せず)が押圧されると電源がオンし、操作パネル13の操作によって、過熱水蒸気を用いたオーブン調理の運転が開始される。そうすると、先ず、制御装置100は、水タンク検知部(図示せず)により水タンク30が正常に装着されているか否かを検知して、水タンク30が正常に装着されていれば、ポンプ31の運転を開始する。そして、ポンプ31によって、水タンク30から蒸気発生装置40の蒸気発生ボックス41内に第2給水パイプ33を介して給水される。その後、蒸気発生ボックス41内に所定水量の水を給水すると、ポンプ31を停止して給水を止める。
 次に、蒸気発生ヒータ42に通電し、蒸気発生ボックス41内に溜まった所定量の水を蒸気発生ヒータ42によって加熱する。そして、蒸気発生ヒータ42の通電と同時に、または、蒸気発生ボックス温度センサ47により検出された蒸気発生ボックス41の温度が所定温度に達すると、コンベクションファン用モータ83によりコンベクションファン81を駆動すると共に、コンベクションヒータ82に通電する。そうすると、コンベクションファン81は、加熱室20内の気体(蒸気を含む)を吸込部20aから吸い込んで、コンベクションヒータ82により加熱された気体(蒸気を含む)を加熱室20内に送り出す。
 次に、蒸気発生装置40の蒸気発生ボックス41内の水が沸騰すると飽和蒸気が発生し、発生した飽和蒸気は、蒸気昇温部45内の蒸気昇温ヒータ43により加熱されて100℃以上(調理内容により異なる)の過熱水蒸気となって蒸気パイプ46を介して蒸気吹出口44から加熱室20内に供給される。
 この過熱水蒸気は、加熱室20内の空気と共に、コンベクションファン81により吸込部20aから吸い込まれて、コンベクションヒータ82により加熱されて、左上吹出部20b,右上吹出部20c,左中吹出部20d,右中吹出部20e,下上吹出部20f,下上吹出部20gから加熱室20内に吹き出し、加熱室20内の被加熱物90を包むような対流が形成される。こうして、対流する蒸気は、順次吸込部20aに吸い込まれて、コンベクションファンケーシング80を通って再び加熱室20内に戻るという循環を繰り返す。
 このようにして、上記加熱室20内で過熱蒸気の対流を形成することによって、加熱室20内の温度・湿度分布を均一に維持しつつ、焼き網22上に載置された被加熱物90に効率よく過熱蒸気を衝突させることが可能になり、過熱蒸気の衝突によって被加熱物90が加熱される。その場合、被加熱物90の表面に接触した過熱蒸気は、被加熱物90の表面で結露する際に潜熱を放出することによっても被加熱物90を加熱する。これにより、過熱蒸気の大量の熱を確実に且つ速やかに被加熱物90全面に均等に与えることができる。したがって、斑がなくて仕上がりのよい加熱調理を実現することができる。
 また、上記加熱調理運転時において、時間が経過すると、加熱室20内の蒸気量が増加し、量的に余剰となった分の蒸気は、排気口71から排気ダクト72を介して外部排気口73から外部に放出される。
 調理終了後、制御装置100によって操作パネル13に調理終了のメッセージが表示され、さらに操作パネル13に設けられたブザー(図示せず)によって合図の音を鳴らす。
 以上の説明は、過熱水蒸気を用いたオーブン料理の場合である。なお、水蒸気を用いた蒸し料理の場合は、コンベクションファン81を駆動せず、コンベクションヒータ82を通電しないで、上記と同様の動作を行う。
 これに対して、マイクロ波加熱動作の場合には、使用者によって操作パネル13が操作され、マイクロ波調理メニューが決定された後にスタートキー(図示せず)が押圧されると、マイクロ波加熱調理の運転が開始される。そうすると、制御装置100は、マグネトロン61を駆動して、導波管60および回転アンテナ51を介して被加熱物90にマイクロ波を供給し、被加熱物90を加熱する。なお、その場合には、被加熱物90が載置されたマイクロ波を透過させる非金属の受皿が、例えば、加熱室20の底板上に敷設される。
 図4は上記加熱調理器の過熱水蒸気を用いたオーブン調理時の蒸気発生ヒータ42のオンオフに応じた庫内温度と排気温度の変化を示す図を示している。図4において、横軸は時間(分)を表し、縦軸は温度(℃)と蒸気発生ヒータ入力(kW)を表している。
 この第1実施形態では、過熱水蒸気を用いたオーブン調理(庫内温度設定250℃)において、図4に示すように、蒸気発生ヒータ42は、開始から15分間は、1分あたり10秒オンし、15分後は1分あたり7秒オンして、蒸気発生ヒータ42を繰り返しオンオフしている。
 このとき、庫内温度センサ76により検出された庫内温度および排気温度センサ74により検出された排気温度は徐々に250℃近くに上昇し、蒸気発生ヒータ42がオンすると、庫内温度および排気温度は高くなる方に変動し、蒸気発生ヒータ42がオフすると、庫内温度および排気温度は低くなる方に変動する。すなわち、蒸気発生ヒータ42のオンオフに応じて、庫内温度および排気温度は、高低に周期的に変動する。
 そして、水タンク30内の水が無くなるか、または、蒸気発生ヒータ42の故障やポンプ31の故障などにより蒸気発生機能が停止すると、図4に示すように、庫内温度センサ76により検出された庫内温度および排気温度センサ74により検出された排気温度は、いずれも周期的な変動がほとんどなくなる。
 図5は上記加熱調理器の水蒸気を用いた蒸し調理時の蒸気発生ヒータのオンオフに応じた庫内温度と排気温度の変化を示す図を示している。図5において、横軸は時間(分)を表し、縦軸は温度(℃)と蒸気発生ヒータ入力(kW)を表している。
 水蒸気を用いた蒸し調理において、図5に示すように、蒸気発生ヒータ42は、開始から4分間は、連続してオンし、4分以降かつ15分後までは1分あたり80秒オンし、15分以降は1分あたり40秒オンして、蒸気発生ヒータ42を繰り返しオンオフしている。
 このとき、庫内温度センサ76により検出された庫内温度および排気温度センサ74により検出された排気温度は数秒で100℃近くに上昇し、蒸気発生ヒータ42がオンすると、庫内温度および排気温度は高くなる方に変動し、蒸気発生ヒータ42がオフすると、庫内温度および排気温度は低くなる方に変動する。すなわち、蒸気発生ヒータ42のオンオフに応じて、庫内温度および排気温度は、高低に周期的に変動する。
 そして、水タンク30内の水が無くなるか、または、蒸気発生ヒータ42の故障やポンプ31の故障などにより蒸気発生機能が停止すると、図5に示すように、庫内温度センサ76により検出された庫内温度および排気温度センサ74により検出された排気温度は、いずれも周期的な変動がほとんどなくなる。
 上記構成の加熱調理器によれば、蒸気発生装置40からの水蒸気が加熱室20内に供給される調理(例えばオーブン料理や蒸し料理など)において、蒸気発生装置40からの水蒸気が加熱室20に供給される。そして、調理中、加熱室20に蒸気発生装置40からの水蒸気が供給され続けることにより、本体ケーシング10内に設けられた排気ダクト72を介して加熱室20内から水蒸気を含む雰囲気が少しずつ本体ケーシング10の外部に排気される。このとき、水タンク30内の水が無くなるかまたは蒸気発生装置40の故障(ヒータ故障やポンプ故障など)により蒸気発生装置40による水蒸気の発生が止まると、加熱室20への水蒸気の供給がされなくなって、排気ダクト72を介した排気がほとんどなくなるので、蒸気発生ボックス41内の水の有無に相関する物理量である排気ダクト72内の雰囲気の排気温度の変動が小さくなる。このような特性を利用して、蒸気発生機能判定部100aは、排気温度センサ74により検出された排気温度に基づいて、水タンク30内の水無を含む蒸気発生機能の停止か否かを判定するので、水位センサなしに簡単な構成で水タンク30の水無を含む蒸気発生機能の停止を検出でき、コストを低減することができる。また、水タンク30の水無し以外の要因(ヒータ故障やポンプ故障など)による蒸気発生機能の停止も検出することができる。
 この第1実施形態では、蒸気発生装置40からの水蒸気が加熱室20内に供給される調理において、水タンク30内の水が無くなるかまたは蒸気発生装置40の故障(蒸気発生ヒータ42の故障やポンプ31の故障など)により蒸気発生装置40による水蒸気の発生が止まったとき、ヒータ制御部100bにより蒸気発生ヒータ42をオンオフしても、排気温度センサ74により検出された排気温度が高低に周期的に変動しないとき、蒸気発生機能判定部100aによって、水タンク30内の水無を含む蒸気発生機能の停止であると判定する。この蒸気発生ヒータ42のオンオフに連動する排気ダクト72内の雰囲気の排気温度の特性を利用して、水タンク30内の水無を含む蒸気発生機能の停止をより確実に検出することができる。
 なお、水タンク30内の水が無くなるかまたは蒸気発生装置40の故障(蒸気発生ヒータ42の故障やポンプ31の故障など)により蒸気発生装置40による水蒸気の発生が止まったとき、蒸気発生機能判定部100aによって、蒸気発生ヒータ42のオンに応じて、排気温度センサ74により検出された排気温度が高くなる方に変動しないとき、水タンク30内の水無を含む蒸気発生機能の停止であると判定することも可能である。この場合も、蒸気発生ヒータ42のオンに連動する排気ダクト72内の雰囲気の排気温度の特性を利用して、水タンク30内の水無を含む蒸気発生機能の停止を確実に検出することができる。
 また、上記第1実施形態では、蒸気発生装置40の蒸気発生ヒータ42の故障により蒸気発生装置40による水蒸気の発生が止まったときも、蒸気発生機能の停止を検出することができる。また、水タンク30からの水を蒸気発生装置40に供給するためのポンプ31の故障により蒸気発生装置40による水蒸気の発生が止まったときも、蒸気発生機能の停止を検出することができる。
 このように、上記第1実施形態の加熱調理器によれば、蒸気発生装置40からの水蒸気が供給された加熱室20内をコンベクションヒータ82により加熱するオーブン調理や水蒸気を用いた蒸し料理において、蒸気発生機能判定部100aは、排気温度センサ74により検出された排気温度に基づいて、水タンク30内の水無を含む蒸気発生機能の停止か否かを判定することができる。
 〔第2実施形態〕
 図6はこの発明の第2実施形態の加熱調理器の過熱水蒸気を用いたオーブン調理時の蒸気発生ヒータ42のオンオフに応じた排気湿度センサ75の出力ビット数の変化を示す図を示している。この第2実施形態の加熱調理器は、制御装置100の動作を除いて第1実施形態の加熱調理器と同一の構成をしており、図1A,図1A,図2を援用する。
 図6において、横軸は時間(分)を表し、縦軸は排気湿度センサ75の出力ビット数を表している。この第2実施形態では、排気湿度センサ75の出力ビット数がゼロのときは、室内空気レベルの絶対湿度であること表し、ビット数が大きくなると排気中の水分が多くなり絶対湿度が増大していることを表す。
 この第2実施形態の加熱調理器では、過熱水蒸気を用いたオーブン調理(庫内温度設定200℃)において、図4に示すように、蒸気発生ヒータ42は、開始から15分間は、1分あたり12秒オンし、15分以降は1分あたり9秒オンして、蒸気発生ヒータ42を繰り返しオンオフしている。
 このとき、排気湿度センサ75により検出された排気湿度は徐々に上昇し、蒸気発生ヒータ42がオンすると、排気湿度は高くなる方に変動し、蒸気発生ヒータ42がオフすると、排気湿度は低くなる方に変動する。すなわち、蒸気発生ヒータ42のオンオフに応じて、排気湿度は高低に周期的に変動する。
 そして、水タンク30内の水が無くなるか、または、蒸気発生ヒータ42の故障やポンプ31の故障などにより蒸気発生機能が停止すると、図4に示すように、排気湿度センサ75により検出された排気湿度は、周期的な変動がほとんどなくなる。
 図7は上記加熱調理器の水蒸気を用いた蒸し調理時の蒸気発生ヒータのオンオフに応じた排気湿度センサ75の出力ビット数の変化を示す図を示している。
 水蒸気を用いた蒸し調理において、図4に示すように、蒸気発生ヒータ42は、開始から4分間は連続してオンし、4分から15分までは1分あたり50秒オンし、15分以降は1分当たり40秒オンして、蒸気発生ヒータ42を繰り返しオンオフしている。
 このとき、排気湿度センサ75により検出された排気湿度は徐々に上昇し、蒸気発生ヒータ42がオンすると、排気湿度は高くなる方に変動し、蒸気発生ヒータ42がオフすると、排気湿度は低くなる方に変動する。すなわち、蒸気発生ヒータ42のオンオフに応じて、排気湿度は高低に周期的に変動する。
 そして、水タンク30内の水が無くなるか、または、蒸気発生ヒータ42の故障やポンプ31の故障などにより蒸気発生機能が停止すると、図4に示すように、排気湿度センサ75により検出された排気湿度は、周期的な変動がほとんどなくなる。
 上記構成の加熱調理器によれば、蒸気発生機能判定部100aは、蒸気発生ボックス41内の水の有無に相関する物理量である排気湿度センサ75により検出された排気湿度に基づいて、水タンク30内の水無を含む蒸気発生機能の停止か否かを判定する。したがって、水位センサなしに簡単な構成で水タンク30の水無を含む蒸気発生機能の停止を検出でき、コストを低減することができる。また、水タンク30の水無し以外の要因(ヒータ故障やポンプ故障など)による蒸気発生機能の停止も検出することができる。
 この第2実施形態では、水タンク30内の水が無くなるかまたは蒸気発生装置40の故障(蒸気発生ヒータ42の故障やポンプ31の故障など)により蒸気発生装置40による水蒸気の発生が止まったとき、ヒータ制御部100bにより蒸気発生ヒータ42をオンオフしても、排気湿度センサ75により検出された排気湿度が高低に周期的に変動しないので、蒸気発生機能判定部100aによって、水タンク30内の水無を含む蒸気発生機能の停止であると判定する。この蒸気発生ヒータ42のオンオフに連動する排気ダクト72内の雰囲気の排気湿度の特性を利用して、水タンク30内の水無を含む蒸気発生機能の停止をより確実に検出することができる。
 なお、水タンク30内の水が無くなるかまたは蒸気発生装置40の故障(蒸気発生ヒータ42の故障やポンプ31の故障など)により蒸気発生装置40による水蒸気の発生が止まったとき、蒸気発生ヒータ42のオンに応じて、排気湿度センサ75により検出された排気湿度が高くなる方に変動しないので、蒸気発生機能判定部100aによって、水タンク30内の水無を含む蒸気発生機能の停止であると判定することも可能である。この場合も、蒸気発生ヒータ42のオンに連動する排気ダクト72内の雰囲気の排気湿度の特性を利用して、水タンク30内の水無を含む蒸気発生機能の停止を確実に検出することができる。
 また、蒸気発生装置40の蒸気発生ヒータ42の故障により蒸気発生装置40による水蒸気の発生が止まったときも、蒸気発生機能の停止を検出することができる。また、水タンク30からの水を蒸気発生装置40に供給するためのポンプ31の故障により蒸気発生装置40による水蒸気の発生が止まったときも、蒸気発生機能の停止を検出することができる。
 このように、上記第2実施形態の加熱調理器によれば、蒸気発生装置40からの水蒸気が供給された加熱室20内をコンベクションヒータ82により加熱するオーブン調理においても、蒸気発生機能判定部100aは、排気湿度センサ75により検出された排気湿度に基づいて、水タンク30内の水無を含む蒸気発生機能の停止か否かを判定することができる。
 〔第3実施形態〕
 この発明の第3実施形態の加熱調理器について以下に説明する。この第3実施形態の加熱調理器は、制御装置100の動作を除いて第1実施形態の加熱調理器と同一の構成をしており、図1A,図1A,図2を援用する。
 この第3実施形態の加熱調理器の水蒸気を用いた蒸し調理において、制御装置100のヒータ制御部100bによって、蒸気発生ボックス温度センサ47により検出された蒸気発生ボックス41の温度が上限温度(例えば120℃)を越えると蒸気発生ヒータ42をオフし、蒸気発生ヒータ42をオフした状態から蒸気発生ボックス41の温度が下限温度(例えば105℃)以下になると蒸気発生ヒータ42をオンする。なお、この上限温度および下限温度は、蒸気発生装置の構成などに応じて適宜設定してよい。
 また、この加熱調理器は、水蒸気を用いた蒸し調理の運転開始から所定時間(例えば15分)、上述の蒸気発生ボックス41の温度に基づく温度制御により蒸気発生ヒータ42を運転する第1運転モードと、上記所定時間が経過した後に、蒸気発生ヒータ42のオン可能期間とオフ期間を所望のヒータ出力に応じたデューティー比で交互に繰り返して、ヒータ出力を制御する第2運転モードとを有する。この第2運転モードでは、オン可能期間において上述の蒸気発生ボックス41の温度に基づく温度制御により蒸気発生ヒータ42を運転する。そして、第1運転モードでは、ポンプ31は連続運転を行う一方、第2運転モードでは、ポンプ31は上記オン可能期間のみ運転を行う。
 このような水蒸気を用いた蒸し調理時、制御装置100の蒸気発生機能判定部100aは、運転開始後の蒸気発生ヒータ42のオン時間とそれに続くオフ時間を測定し、オン時間>オフ時間か否かを判定する。すなわち、オン時間に対するオフ時間を比が1を越えるか否かを判定する。
 蒸気発生機能判定部100aによる判定において、オン時間>オフ時間の関係が2回連続で続くと、制御装置100によって操作パネル13に「WATER」のメッセージが点滅表示される。ただし、ポンプ31を運転しても、すぐに蒸気発生ボックス41内に水が供給されない場合があるので、1回目のオン時間とオフ時間の判定は無視する。
 そして、5回連続でオン時間>オフ時間の関係が続くと、蒸気発生機能判定部100aが水無しであると判定して、制御装置100のヒータ制御部100bは、蒸気発生ヒータ42による加熱を停止する。ここで、判定回数は、5回に限らず、EEPROM(電気的消去書込み可能な読出し専用メモリ)等に記憶された変更可能な設定値を用いてもよい。
 なお、運転開始から所定時間(例えば5分)経過後は、オン時間とオフ時間は測定および判定はせずに蒸気発生ヒータ42による加熱を継続する。
 また、過熱水蒸気を用いたオーブン調理やグリル調理では、蒸気発生ヒータ42のオン時間に対するオフ時間を比を用いた水無しの判定は実施しない。
 図8は上記加熱調理器の水蒸気を用いた蒸し調理時の蒸気発生ヒータ42のオン時間とオフ時間の変化を示している。
 また、図9は上記加熱調理器の水蒸気を用いた蒸し調理時の蒸気発生ヒータ42のオン時間とオフ時間の具体例のデータを示している。
 図9では、水蒸気を用いた蒸し調理の開始時に蒸気発生ボックス41が冷えていて蒸気発生ボックス41内に水が無い状態において、給水有り(1)と給水無し(2)の場合の蒸気発生ヒータのオン時間とオフ時間を示すと共に、水蒸気を用いた蒸し調理の開始時に蒸気発生ボックス41が暖まっていて蒸気発生ボックス41内に水が有る状態において、給水無し(3)の場合の蒸気発生ヒータ42のオン時間とオフ時間を示している。
 図9では、水蒸気を用いた蒸し調理の開始からの経過時間が「分秒」単位と「秒」単位に示され、その右側に蒸気発生ヒータ42のオン時間とオフ時間が示されている。ここで、オン時間>オフ時間の関係が2回連続で続くと、制御装置100によって操作パネル13に「WATER」のメッセージが点滅表示される。
 図9の(1)では、オンオフ動作の2回目のみがオン時間>オフ時間であり、1回目と3回目~5回目はオン時間>オフ時間とならないので、「WATER」のメッセージの点滅および水無し判定は行わない。そうして、オンオフ動作の6回目は、調理が終了する。このオンオフ動作の6回目は、所定時間の5分を経過しているので、蒸気発生機能判定部100aによる水無し判定は行われない。
 また、図9の(2)では、オンオフ動作の2回目と3回目でオン時間>オフ時間の関係が2回連続で続き、制御装置100によって操作パネル13に「WATER」のメッセージが点滅表示される。そして、オンオフ動作の2回目~6回目において、オン時間>オフ時間の関係が5回連続で続くので、蒸気発生機能判定部100aが水無しであると判定して、制御装置100のヒータ制御部100bは、蒸気発生ヒータ42による加熱を停止する。
 また、図9の(3)では、図9の(2)よりも蒸気発生ボックス41の温度が高く暖まっているが、蒸気発生ボックス41内に水があるので、オンオフ動作の1回目のオン時間は、図9の(2)の1回目のオン時間よりも長くなっている((2)のオン時間37秒>(3)のオン時間49秒)。次のオンオフ動作の2回目と3回目でオン時間>オフ時間の関係が2回連続で続き、制御装置100によって操作パネル13に「WATER」のメッセージが点滅表示される。そして、オンオフ動作の2回目~6回目において、オン時間>オフ時間の関係が5回連続で続くので、蒸気発生機能判定部100aが水無しであると判定して、制御装置100のヒータ制御部100bは、蒸気発生ヒータ42による加熱を停止する。
 上記構成の加熱調理器によれば、蒸気発生装置40からの水蒸気が加熱室20内に供給される蒸し調理において、蒸気発生機能判定部100aは、蒸気発生装置40内の水の有無を間接的に表す物理量に関する情報(蒸気発生ヒータ42のオンオフ動作におけるオン時間に対するオフ時間の比)に基づいて、水タンク30内の水無を含む蒸気発生機能の停止か否かを判定するので、水位センサなしに簡単な構成で水タンク30の水無を含む蒸気発生機能の停止を検出でき、コストを低減することができる。また、水タンクの水無し以外の要因(ヒータ故障やポンプ故障など)による蒸気発生機能の停止も検出することができる。
 また、水タンク30内の水が無くなるかまたは蒸気発生装置40の故障(ヒータ故障やポンプ故障など)により蒸気発生装置40による水蒸気の発生が止まると、蒸気発生ボックス41への水の供給がされなくなって、蒸気発生ヒータ42のオンオフ動作におけるオン時間に対するオフ時間の比が大きくなるので、オン時間に対するオフ時間の比が予め設定された所定値(この第3実施形態では「1」)よりも大きくなったとき、蒸気発生機能判定部100aにより、水タンク30内の水無を含む蒸気発生機能の停止であると判定する。これにより、簡単な構成で水タンク30の水無を含む蒸気発生機能の停止を容易に検出することができる。
 なお、この第3実施形態では、オン時間に対するオフ時間の比を判定するための所定値を「1」としたが、蒸気発生装置の構成などに応じて適宜設定すればよい。
 この発明の具体的な実施の形態について説明したが、この発明は上記実施の形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。
 10…本体ケーシング
 11…扉
 12…ハンドル
 13…操作パネル
 14…遮熱板
 20…加熱室
 20a…吸込部
 20b…左上吹出部
 20c…右上吹出部
 20d…左中吹出部
 20e…右中吹出部
 20f…下上吹出部
 20g…下上吹出部
 21…角皿
 22…焼き網
 23,24…上側角皿受部
 25,26…下側角皿受部
 30…水タンク
 31…ポンプ
 32…第1給水パイプ
 33…第2給水パイプ
 34…つゆ戻し桶
 40…蒸気発生装置
 41…蒸気発生ボックス
 42…蒸気発生ヒータ
 43…蒸気昇温ヒータ
 45…蒸気昇温部
 44…蒸気吹出口
 46…蒸気パイプ
 47…蒸気発生ボックス温度センサ
 50…電装品部
 51…回転アンテナ
 52…回転アンテナ用モータ
 53…冷却ファン
 54…冷却ファン用モータ
 55…給気ファン
 56…給気ファン用モータ
 57…給気口
 60…導波管
 61…マグネトロン
 71…排気口
 72…排気ダクト
 73…外部排気口
 74…排気温度センサ
 75…排気湿度センサ
 76…庫内温度センサ
 80…コンベクションファンケーシング
 81…コンベクションファン
 82…コンベクションヒータ
 83…コンベクションファン用モータ
 90…被加熱物
 100…制御装置
 100a…蒸気発生機能判定部
 100b…ヒータ制御部

Claims (8)

  1.  本体ケーシングと、
     上記本体ケーシング内に配置された水タンクと、
     上記水タンクから供給された水を加熱して水蒸気を発生させる蒸気発生装置と、
     上記蒸気発生装置からの水蒸気が供給される加熱室と、
     上記蒸気発生装置からの水蒸気が上記加熱室内に供給される調理において、上記蒸気発生装置内の水の有無を間接的に表す物理量に関する情報に基づいて、上記水タンク内の水無を含む蒸気発生機能の停止か否かを判定する蒸気発生機能判定部と
    を備えたことを特徴とする加熱調理器。
  2.  請求項1に記載の加熱調理器において、
     上記蒸気発生装置は、上記水タンクから水が供給される蒸気発生容器と、上記蒸気発生容器内の水を加熱する蒸気発生ヒータとを有し、
     上記蒸気発生容器の温度を検出する蒸気発生容器温度センサと、
     上記蒸気発生装置からの水蒸気が上記加熱室内に供給される調理において、上記蒸気発生容器温度センサにより検出された上記蒸気発生容器の温度に基づいて、上記蒸気発生ヒータのオンオフを繰り返すように上記蒸気発生ヒータを制御する蒸気発生ヒータ制御部と
    を備え、
     上記蒸気発生装置内の水の有無を間接的に表す物理量に関する情報は、上記蒸気発生ヒータのオンオフ動作におけるオン時間に対するオフ時間の比を少なくとも含み、
     上記蒸気発生機能判定部は、上記蒸気発生装置からの水蒸気が上記加熱室内に供給される調理において、上記蒸気発生ヒータのオンオフ動作におけるオン時間に対するオフ時間の比が所定値よりも大きいとき、上記水タンク内の水無を含む蒸気発生機能の停止であると判定することを特徴とする加熱調理器。
  3.  請求項1に記載の加熱調理器において、
     上記本体ケーシング内に設けられ、上記加熱室内から上記本体ケーシングの外部に排気するための排気通路と、
     上記排気通路内の雰囲気の排気温度または排気湿度を検出する排気通路用センサと
    を備え、
     上記蒸気発生装置内の水の有無を間接的に表す物理量は、上記排気通路内の雰囲気の上記排気温度または上記排気湿度を少なくとも含み、
     上記蒸気発生機能判定部は、上記蒸気発生装置からの水蒸気が上記加熱室内に供給される調理において、上記排気通路用センサにより検出された上記排気温度または上記排気湿度に基づいて、上記水タンク内の水無を含む蒸気発生機能の停止か否かを判定することを特徴とする加熱調理器。
  4.  請求項3に記載の加熱調理器において、
     上記蒸気発生装置は、上記水タンクからの水を加熱する蒸気発生ヒータを有し、
     上記蒸気発生ヒータを制御する蒸気発生ヒータ制御部を備え、
     上記蒸気発生ヒータ制御部は、上記蒸気発生装置からの水蒸気が上記加熱室内に供給される調理において上記蒸気発生ヒータをオンオフし、
     上記蒸気発生機能判定部は、上記蒸気発生ヒータのオンに応じて、上記排気通路用センサにより検出された上記排気温度または上記排気湿度が高くなる方に変動しないとき、上記水タンク内の水無を含む蒸気発生機能の停止であると判定することを特徴とする加熱調理器。
  5.  請求項4に記載の加熱調理器において、
     上記蒸気発生ヒータ制御部は、上記蒸気発生装置からの水蒸気が上記加熱室内に供給される調理において上記蒸気発生ヒータを繰り返しオンオフし、
     上記蒸気発生機能判定部は、上記蒸気発生ヒータのオンオフに応じて、上記排気通路用センサにより検出された上記排気温度または上記排気湿度が高低に周期的に変動しないとき、上記水タンク内の水無を含む蒸気発生機能の停止であると判定することを特徴とする加熱調理器。
  6.  請求項2または4または5に記載の加熱調理器において、
     上記水タンク内の水無を含む蒸気発生機能の停止は、上記蒸気発生装置の上記蒸気発生ヒータの故障を含むことを特徴とする加熱調理器。
  7.  請求項1から6までのいずれか1つに記載の加熱調理器において、
     上記水タンク内の水無を含む蒸気発生機能の停止は、上記水タンクからの水を上記蒸気発生装置に供給するためのポンプの故障を含むことを特徴とする加熱調理器。
  8.  請求項1から7までのいずれか1つに記載の加熱調理器において、
     上記加熱室内を加熱する加熱ヒータを備え、
     上記蒸気発生機能判定部は、上記蒸気発生装置からの水蒸気が供給された上記加熱室内を上記加熱ヒータにより加熱する調理において、上記蒸気発生装置内の水の有無を間接的に表す物理量に関する情報に基づいて、上記水タンク内の水無を含む蒸気発生機能の停止か否かを判定することを特徴とする加熱調理器。
PCT/JP2010/056583 2009-04-16 2010-04-13 加熱調理器 WO2010119862A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080013187.9A CN102362121B (zh) 2009-04-16 2010-04-13 加热烹调器
SG2011074861A SG175216A1 (en) 2009-04-16 2010-04-13 Cooking appliance
US13/259,044 US8695487B2 (en) 2009-04-16 2010-04-13 Cooking appliance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009099993 2009-04-16
JP2009-099993 2009-04-16
JP2010-085322 2010-04-01
JP2010085322A JP4586111B1 (ja) 2009-04-16 2010-04-01 加熱調理器

Publications (1)

Publication Number Publication Date
WO2010119862A1 true WO2010119862A1 (ja) 2010-10-21

Family

ID=42982524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056583 WO2010119862A1 (ja) 2009-04-16 2010-04-13 加熱調理器

Country Status (5)

Country Link
US (1) US8695487B2 (ja)
JP (1) JP4586111B1 (ja)
CN (1) CN102362121B (ja)
SG (2) SG175216A1 (ja)
WO (1) WO2010119862A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113384136A (zh) * 2021-06-30 2021-09-14 广东美的厨房电器制造有限公司 底板组件及烹饪器具

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8900069B2 (en) 2010-12-28 2014-12-02 Taylor Made Golf Company, Inc. Fairway wood center of gravity projection
US9943734B2 (en) 2004-11-08 2018-04-17 Taylor Made Golf Company, Inc. Golf club
US8888607B2 (en) * 2010-12-28 2014-11-18 Taylor Made Golf Company, Inc. Fairway wood center of gravity projection
US9707457B2 (en) 2010-12-28 2017-07-18 Taylor Made Golf Company, Inc. Golf club
US10639524B2 (en) 2010-12-28 2020-05-05 Taylor Made Golf Company, Inc. Golf club head
JP6074724B2 (ja) * 2012-03-15 2017-02-08 パナソニックIpマネジメント株式会社 蒸気発生装置および蒸気発生装置を備えた加熱調理器
JP6128341B2 (ja) * 2012-03-19 2017-05-17 パナソニックIpマネジメント株式会社 加熱調理器
US9872581B2 (en) * 2012-05-16 2018-01-23 Bsh Home Appliances Corporation Home appliance with recessed water vessel housing
US10364992B2 (en) * 2013-09-05 2019-07-30 Alto-Shaam, Inc. Ventless oven hood for combination oven providing rapid access
EP3049727A1 (en) * 2013-09-27 2016-08-03 Arçelik Anonim Sirketi Cooking oven having a cooling fan and improved method of controlling the cooling fan of the cooking oven
CN103654371A (zh) * 2013-12-13 2014-03-26 黄家亨 一种具有双重加热装置的蒸具
WO2016010074A1 (ja) * 2014-07-16 2016-01-21 株式会社ジーエスコマース 過熱水蒸気の生成装置
US20160061458A1 (en) * 2014-09-02 2016-03-03 B/E Aerospace, Inc. Steam Injection System and Method
JP2017531463A (ja) * 2014-10-23 2017-10-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 食品を調理するための装置及び方法
US10357126B2 (en) * 2015-03-25 2019-07-23 Illinois Tool Works Inc. Steam generator
US10973360B2 (en) 2015-03-25 2021-04-13 Illinois Tool Works Inc. Steam generator
US10337745B2 (en) 2015-06-08 2019-07-02 Alto-Shaam, Inc. Convection oven
US9879865B2 (en) 2015-06-08 2018-01-30 Alto-Shaam, Inc. Cooking oven
US10088172B2 (en) 2016-07-29 2018-10-02 Alto-Shaam, Inc. Oven using structured air
US10890336B2 (en) 2015-06-08 2021-01-12 Alto-Shaam, Inc. Thermal management system for multizone oven
US9677774B2 (en) 2015-06-08 2017-06-13 Alto-Shaam, Inc. Multi-zone oven with variable cavity sizes
JP6589127B2 (ja) * 2015-06-09 2019-10-16 パナソニックIpマネジメント株式会社 加熱調理器
DE102016215650A1 (de) * 2016-08-19 2018-02-22 BSH Hausgeräte GmbH Haushaltsgargerät
JP6796771B2 (ja) * 2017-02-24 2020-12-09 パナソニックIpマネジメント株式会社 加熱調理器およびスチーム加熱方法
CN109199083B (zh) * 2017-06-30 2023-12-15 宁波方太厨具有限公司 一种蒸箱及其工作控制方法
AU2018316266A1 (en) 2017-08-09 2020-02-20 Sharkninja Operating Llc Cooking device and components thereof
US10731869B2 (en) * 2017-09-12 2020-08-04 Whirlpool Corporation Automatic oven with humidity sensor
CN110115487B (zh) * 2018-02-05 2021-08-27 佛山市顺德区美的电热电器制造有限公司 烹饪控制方法、控制装置、烹饪器具及可读存储介质
CN108826382B (zh) * 2018-03-27 2020-11-13 嘉兴鼎尚信息科技有限公司 一种自动调节的微波炉控制系统
CN110608430A (zh) * 2018-06-15 2019-12-24 广东美的生活电器制造有限公司 食物料理机及蒸汽发生器控制装置、方法、可读存储介质
US10653926B2 (en) 2018-07-23 2020-05-19 Taylor Made Golf Company, Inc. Golf club heads
CN108670020A (zh) * 2018-07-26 2018-10-19 杭州老板电器股份有限公司 蒸汽炉及蒸汽炉控制方法
EP3931493A1 (en) 2019-02-25 2022-01-05 SharkNinja Operating LLC Cooking system with guard
US20190254476A1 (en) 2019-02-25 2019-08-22 Sharkninja Operating Llc Cooking device and components thereof
CN109717729B (zh) * 2019-03-11 2020-10-30 三门康创电子科技有限公司 一种蒸箱无水检测方法
US11825976B2 (en) 2019-05-10 2023-11-28 Electrolux Home Products, Inc. Reservoir for steam cooking
JP7312041B2 (ja) * 2019-06-28 2023-07-20 エスペック株式会社 調理環境形成装置及び調理器
CA3154142A1 (en) * 2019-09-11 2021-03-18 Yo-Kai Express Inc. Food warming device
CN111035222B (zh) * 2019-10-24 2021-11-09 九阳股份有限公司 一种炒菜机的烹饪控制方法及炒菜机
US11647861B2 (en) 2020-03-30 2023-05-16 Sharkninja Operating Llc Cooking device and components thereof
CN111631613B (zh) * 2020-05-14 2022-05-20 华帝股份有限公司 一种具有绝对湿度传感器的烹饪设备及其控制方法
US11406881B2 (en) 2020-12-28 2022-08-09 Taylor Made Golf Company, Inc. Golf club heads
US11759685B2 (en) 2020-12-28 2023-09-19 Taylor Made Golf Company, Inc. Golf club heads
CN113693433A (zh) * 2021-08-12 2021-11-26 宁波方太厨具有限公司 蒸箱的排气控制方法、蒸箱及计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011995A (ja) * 2002-06-05 2004-01-15 Matsushita Electric Ind Co Ltd 高周波加熱装置の給水制御方法及び高周波加熱装置
JP2004020005A (ja) * 2002-06-14 2004-01-22 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2004061011A (ja) * 2002-07-30 2004-02-26 Matsushita Electric Ind Co Ltd 蒸気発生装置及び蒸気発生装置を備えた加熱調理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185738A (ja) 1992-12-18 1994-07-08 Sharp Corp 加熱機器
US6323464B1 (en) * 1998-11-16 2001-11-27 Robert J. Cohn Module for producing hot humid air for a proofing or holding operation
AU7726100A (en) * 1999-09-28 2001-04-30 Henny Penny Corporation Holding cabinet with closed-loop humidity control system and method for controlling humidity in a holding cabinet
JP4631042B2 (ja) 2001-08-30 2011-02-16 パロマ工業株式会社 複合加熱調理装置
US7326893B2 (en) * 2003-05-20 2008-02-05 Matsushita Electric Industrial Co., Ltd. High frequency heating apparatus having steam generating function
JP3714339B2 (ja) * 2003-05-20 2005-11-09 松下電器産業株式会社 蒸気発生機能付き高周波加熱装置
JP2009041822A (ja) 2007-08-08 2009-02-26 Sharp Corp 加熱調理器
US8171843B1 (en) * 2008-03-03 2012-05-08 Heffington Matthew A Coffee maker with automatic metered filling means

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011995A (ja) * 2002-06-05 2004-01-15 Matsushita Electric Ind Co Ltd 高周波加熱装置の給水制御方法及び高周波加熱装置
JP2004020005A (ja) * 2002-06-14 2004-01-22 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2004061011A (ja) * 2002-07-30 2004-02-26 Matsushita Electric Ind Co Ltd 蒸気発生装置及び蒸気発生装置を備えた加熱調理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113384136A (zh) * 2021-06-30 2021-09-14 广东美的厨房电器制造有限公司 底板组件及烹饪器具

Also Published As

Publication number Publication date
SG10201401534XA (en) 2014-08-28
JP4586111B1 (ja) 2010-11-24
US20120017770A1 (en) 2012-01-26
CN102362121B (zh) 2014-11-05
SG175216A1 (en) 2011-11-28
US8695487B2 (en) 2014-04-15
JP2010266187A (ja) 2010-11-25
CN102362121A (zh) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4586111B1 (ja) 加熱調理器
JP3781759B2 (ja) 蒸気調理器
JP4589819B2 (ja) 加熱調理装置
US7802564B2 (en) Steam cooking apparatus
JP2019020122A (ja) 加熱調理器
JP6446672B2 (ja) 加熱調理器
JP5767901B2 (ja) 加熱調理器
KR20200074079A (ko) 스팀 공급 장치가 구비된 전자 조리 기기
JP5094924B2 (ja) 加熱調理器
JP2008032286A (ja) 加熱調理器
JP2009041813A (ja) 蒸気吹出方向変更装置および蒸気調理器
JP2008051346A (ja) 加熱調理器
JP2005077019A (ja) 加熱調理器
JP4563270B2 (ja) 加熱調理器
JP5923406B2 (ja) 加熱調理器
JP4403092B2 (ja) 加熱調理器
JP2006284015A (ja) 加熱調理器および蒸気発生装置
KR20120016697A (ko) 조리기기의 제어방법
KR101189386B1 (ko) 조리기기의 제어방법
JP2008175497A (ja) 加熱調理装置
JP5982196B2 (ja) 加熱調理器
JP4664250B2 (ja) 加熱調理器
JP5066218B2 (ja) 加熱調理装置
JP2009024972A (ja) 加熱調理器
JP4545511B2 (ja) 蒸気調理器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013187.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764446

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13259044

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 7488/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764446

Country of ref document: EP

Kind code of ref document: A1