WO2010113892A1 - メタライズド基板を製造する方法、メタライズド基板 - Google Patents

メタライズド基板を製造する方法、メタライズド基板 Download PDF

Info

Publication number
WO2010113892A1
WO2010113892A1 PCT/JP2010/055600 JP2010055600W WO2010113892A1 WO 2010113892 A1 WO2010113892 A1 WO 2010113892A1 JP 2010055600 W JP2010055600 W JP 2010055600W WO 2010113892 A1 WO2010113892 A1 WO 2010113892A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
substrate
layer
mass
metal
Prior art date
Application number
PCT/JP2010/055600
Other languages
English (en)
French (fr)
Inventor
高橋 直人
三鍋 雄一郎
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN201080013918.XA priority Critical patent/CN102365733B/zh
Priority to JP2011507191A priority patent/JP5492191B2/ja
Priority to KR1020117021361A priority patent/KR101336902B1/ko
Priority to US13/258,185 priority patent/US9301390B2/en
Priority to EP10758663A priority patent/EP2416356A1/en
Publication of WO2010113892A1 publication Critical patent/WO2010113892A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/06Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49883Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials the conductive materials containing organic materials or pastes, e.g. for thick films
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Definitions

  • the present invention relates to a metallized substrate for mounting a semiconductor element and a manufacturing method thereof.
  • the wiring board is desired to be formed of a material having higher thermal conductivity and heat dissipation.
  • an alumina sintered body has been used as a wiring board material.
  • an aluminum nitride sintered body with higher thermal conductivity may be used. It is being considered.
  • a metal wiring board using a nitride ceramics sintered body substrate using this aluminum nitride sintered body as a representative example it is necessary to form a metal wiring on the surface of the nitride ceramics sintered body.
  • a method for forming the metal wiring there is a thick film method in which a metal paste is applied, a thin film method in which a metal thin film is formed by vapor deposition, or the like.
  • the thick film method is suitably employed.
  • the thick film method has a problem that the wiring resistance is high because a metal wiring mainly composed of a refractory metal such as tungsten or molybdenum is formed.
  • metal wiring As a material for the metal wiring, it is conceivable to use Cu, Ag, Au, alloys thereof, and the like from the viewpoint of reducing the wiring resistance. Further, noble metals such as Au are expensive, and it is disadvantageous in cost to use only Ag as a material, and it is disadvantageous in terms of wiring resistance to use only Cu as a material. Therefore, it is most desirable to use a mixture of Cu and Ag as the metal wiring material in terms of the balance of cost, availability, and reduction in resistance of the metal wiring. In addition, since metals, such as Cu and Ag, can be sintered at a low temperature as compared with the above-described high melting point metals, there is an advantage that the energy cost at the time of sintering can be reduced.
  • a simultaneous firing method cofire method
  • a post-fire method postfire method using a paste containing a refractory metal powder
  • the cofire method is a method in which a high melting point metal paste is applied onto an aluminum nitride green sheet and fired to sinter aluminum nitride and refractory metal at the same time, while a tightly adhered metal layer can be formed.
  • the metal pattern is difficult to form with high dimensional accuracy due to shrinkage accompanying aluminum nitride sintering.
  • Cu, Ag, or the like is used as the wiring material, the cofiring method cannot be adopted because the sintering temperature of aluminum nitride and the sintering temperature of the metal paste are greatly different.
  • the post-fire method is a method in which a refractory metal paste is applied on a pre-sintered aluminum nitride substrate and then baked, and the above-mentioned problems in dimensional accuracy do not basically occur.
  • it was difficult to increase the bonding strength (adhesion strength) of the metal layer with the post-fire method but a post-fire method that can form a refractory metal layer with high bonding strength has been developed. (See Patent Document 1).
  • a technique for forming a metal layer on a nitride ceramics sintered body substrate by a post-fire method using other metal pastes such as Cu and Ag, which can lower the wiring resistance, is still industrially established. Not.
  • Patent Document 2 discloses a conductive metallization comprising an alloy containing, as an essential component, at least one element selected from titanium, zirconium and hafnium on an aluminum nitride sintered body.
  • An aluminum nitride substrate on which a layer is formed is described.
  • Patent Document 3 discloses a metallized metal powder composition for forming a metallized film on a ceramic substrate, the main component of which is Cu and Ti powder, and at least one of Ag, Al and Zr as a subcomponent.
  • a method for producing a metallized substrate using a powder composition is described.
  • Patent Document 4 mainly uses at least one metal powder selected from Cu, Ag, Au, and Ag—Pd and a metal hydride powder.
  • Patent Document 5 discloses an aluminum nitride substrate having a metallized layer obtained by applying a paste containing an Ag—Cu alloy as a main component and titanium hydride as a subcomponent to an aluminum nitride sintered substrate and firing the paste. Is described.
  • Patent Documents 4 and 5 do not specifically describe reducing the particle size of titanium hydride, but it is technically possible to reduce the particle size with titanium hydride.
  • the surface roughness of the metal layer is somewhat improved by reducing the particle size of titanium hydride, the above problems i), ii), and iv) are not solved. Further, the above problem iii) has not been sufficiently improved, and the surface plating property of the metal layer remains poor.
  • the inventors of the present invention have intensively studied the above-mentioned problems to find the cause of the above-mentioned problems and have found a preventive measure.
  • the following is a summary.
  • the present inventors analyzed the surface of the metal layer of a sample prepared by vacuum firing using an energy dispersive X-ray analyzer (EDS). As a result, a relatively high concentration of titanium (Ti) and oxygen (O) was detected for the sample in which the above problem occurred.
  • EDS energy dispersive X-ray analyzer
  • the causes of the above problems i) to iii) are that the titanium component in the metal paste composition is concentrated on the metal layer, particularly on the surface of the metal layer, when vacuum baking is performed in an atmosphere in which the oxidizing gas is contaminated. I thought it would be. That is, the titanium component in the metal paste composition is in a state of being easily diffused and transferred during firing, and preferentially reacts with nitrogen of aluminum nitride in the underlayer when there is no oxidation gas contamination (contamination). Then, a titanium nitride layer is formed at the interface between the metal layer and the aluminum nitride sintered body.
  • the reactivity with the oxidizing gas is very high. It was considered that the high titanium component was attracted by the oxidizing gas, and the titanium component moved toward the metal layer surface.
  • the problem of i) that the formation of the titanium nitride layer becomes insufficient and the adhesion strength becomes insufficient occurs. Further, since the titanium component remains in the metal layer, the resistance is not lowered and the problem of ii) occurs. In addition, when a titanium component is present on the surface of the metal layer, the adhesion of plating is deteriorated. Therefore, even if the titanium hydride powder is refined to improve the surface roughness, the problem of iii) regarding the plating property still occurs.
  • the organic components and decomposition products contained in the metal paste are volatilized as a gas (including a part of the oxidizing gas) at a relatively low temperature, although it adheres (or is adsorbed) to the wall surface of the low temperature part, the temperature of the wall surface to which these gases adhere (adsorbed) also rises when the temperature of the furnace is further raised for sample firing, and these gases are desorbed, resulting in a considerably low pressure. It was considered that a part of these diffused gases was in contact with the surface of the sample even in the atmosphere.
  • a furnace used for firing is often cooled by flowing cooling water to the outside of the furnace for equipment maintenance.
  • the cause of problem ii) is that the metal layer is not sufficiently densified when the metal paste layer containing the titanium component is sintered.
  • the present inventors decided to use a mixed powder of a large particle size and a small particle size as the Cu powder.
  • a nitride ceramic sintered body substrate (10) and a metal layer (30) having a predetermined shape covering a part of the surface of the substrate (10) have a thickness of 0.2 ⁇ m or more.
  • a metal paste composition that is: And a metal paste layer (10) made of the metal paste composition (10), which is formed on the substrate (10) and has the shape that becomes the predetermined shape after firing. 50) and a first precursor substrate (110) production step of producing the first precursor substrate (110) by applying the metal paste composition on the substrate (10), and the first Firing in which the precursor substrate (110) is housed in a heat-resistant container and fired at a temperature of 800 ° C. or higher and 950 ° C. or lower under a pressure condition of 1.33 ⁇ 10 ⁇ 5 Pa to 1.33 ⁇ 10 ⁇ 2 Pa.
  • the titanium component contained in the metal paste layer is preferentially reacted with the nitride ceramics constituting the nitride ceramic sintered substrate (10). While forming a titanium nitride layer (20), content of titanium contained in the metal layer (30) obtained after firing is 2.0 mass% or less, and the amount of titanium contained in the metal paste layer It is a method characterized by setting it to 1/2 or less.
  • the mass (a) of silver powder having an average particle size of 0.1 ⁇ m or more and 1.0 ⁇ m or less and the mass of copper powder having an average particle size of 0.2 ⁇ m or more and 0.6 ⁇ m or less (b
  • the mass ratio (a / b) is preferably 0.4 or more and 5.0 or less
  • the mass ratio (c / b) to the mass (b) of the copper powder of 2 ⁇ m or more and 0.6 ⁇ m or less is preferably 0.5 or more and 15.0 or less.
  • the second aspect of the present invention is a metallized substrate (100) manufactured by the method of the first aspect of the present invention.
  • a nitride ceramic sintered body substrate (10) and a metal layer (32) having a predetermined shape covering a part of the surface of the substrate (10) have a thickness of 0.2 ⁇ m or more.
  • a first metal paste composition that is The step of preparing a second metal paste composition containing copper powder and silver powder and not containing a titanium component, the nitride ceramic sintered body substrate (10), and firing formed on the substrate (10)
  • a second precursor substrate (112) having a metal paste layer made of a laminate of the first metal paste composition and the second metal paste composition are sequentially applied on the substrate (10).
  • the titanium component contained in the first metal paste layer is transformed into the nitride ceramic sintered body substrate (
  • the titanium nitride layer (22) is formed by preferentially reacting with the nitride ceramic constituting 10), and the titanium content in the metal layer (32) obtained after firing is 2.0% by mass or less. And it is the method of making it 1/2 or less of the amount of titanium contained in said 1st metal paste layer.
  • the mass ratio (a / b) to (b) is preferably 0.4 or more and 5.0 or less, and the mass (c) of copper powder having an average particle size of 1.0 ⁇ m or more and 5.0 ⁇ m or less and the average particle size.
  • the mass ratio (c / b) to the mass (b) of the copper powder of 0.2 ⁇ m or more and 0.6 ⁇ m or less is preferably 0.5 or more and 15.0 or less.
  • the fourth aspect of the present invention is a metallized substrate (102) manufactured by the method of the second aspect of the present invention.
  • the titanium component is diffused into the metal layer (30) by firing the metal paste layer (50) in a contamination-free atmosphere.
  • the titanium nitride layer (20) is sufficiently formed at the interface between the metal layer (30) and the nitride ceramic sintered body (10), and the adhesion of the metal layer (30) can be improved.
  • the resistance value of the layer (30) is lowered, and the surface plating property is improved.
  • the metal layer (30) is sufficiently densified by firing, so that the conductivity of the metal layer (30) is improved. .
  • content of the titanium hydride powder in a metal paste composition is prescribed
  • the second metal paste layer (54) not containing the titanium component is used as the first metal containing the titanium component. Since it is formed on the paste layer (52) and fired, the titanium component can be more effectively prevented from moving toward the surface of the metal layer (32). Therefore, the conductivity of the metal layer (32) can be further improved, and the surface roughness and plating properties of the metal layer (32) can be further improved.
  • Second metal Paste layer 100, 102 Metallized substrate 110 First precursor substrate 112 Second precursor substrate 10 Nitride ceramic sintered substrate 20, 22 Titanium nitride layer 30, 32 Metal layer 50 Metal paste layer 52 First metal paste layer 54 Second metal Paste layer
  • a predetermined metal paste composition is applied onto a nitride ceramics sintered body substrate to form a first precursor substrate, which is fired under predetermined conditions to obtain a metallized substrate (
  • a second method of manufacturing the present invention a first metal paste composition and a second metal paste composition are sequentially applied onto a nitride ceramics sintered body substrate to obtain a second precursor substrate, which is predetermined. It is a method for producing a metallized substrate (fourth invention) by firing under conditions.
  • the metallized substrates 100 and 102 manufactured by the first and third methods of the present invention will be described.
  • the metallized substrate 100 includes a titanium nitride layer 20 and a metal layer 30 in this order on a nitride ceramic sintered substrate 10.
  • the metallized substrate 102 is configured by including a titanium nitride layer 22 and a metal layer 32 in this order on the nitride ceramic sintered substrate 10.
  • the nitride ceramic sintered body substrate 10 can be produced by a known method of firing a pressure-formed body obtained by pressure-forming nitride ceramic green sheets or nitride ceramic granules having a predetermined shape.
  • the shape, thickness, etc. are not particularly limited.
  • the sintered body raw material may contain a sintering aid such as a commonly used rare earth oxide.
  • the surface of the nitride ceramic sintered body substrate 10 may be polished as necessary to smooth the surface.
  • nitride ceramics include aluminum nitride, silicon nitride, boron nitride, zirconium nitride, titanium nitride, tantalum nitride, and niobium nitride. Among these, it is preferable to use aluminum nitride having characteristics such as high thermal conductivity.
  • the titanium nitride layer 20 formed in the method of the first aspect of the present invention is formed by applying and firing a metal paste composition containing a titanium component on the nitride ceramic sintered substrate 10, thereby firing the nitride ceramic sintered substrate 10. And a metal layer 30.
  • the titanium nitride layer 20 is an interface between the nitride ceramic sintered body substrate 10 and the metal layer 30 by the reaction between the titanium component in the metal paste composition and the nitrogen component in the nitride ceramic sintered body substrate 10. Formed in.
  • the titanium nitride layer 22 formed in the method of the third aspect of the invention is formed by reacting the titanium component in the first metal paste layer 52 with the nitrogen component in the nitride ceramic sintered body substrate 10 to react with the nitride. It is formed at the interface between the ceramic sintered body substrate 10 and the metal layer 32.
  • the effect obtained by forming the titanium nitride layer 22 is the same as that of the titanium nitride layer 20.
  • the titanium nitride layers 20 and 22 may contain copper, silver, a ceramic component, etc. in addition to titanium nitride, and 50 masses of titanium nitride based on the mass of the entire titanium nitride layers 20 and 22 (100 mass%). % Or more, preferably 70% by mass or more.
  • the thickness of the titanium nitride layers 20 and 22 is not particularly limited, but the lower limit is 0.05 ⁇ m or more, preferably 0.10 ⁇ m or more, more preferably 0.20 ⁇ m or more from the viewpoint of improving the adhesion of the metallized layer.
  • the upper limit is not particularly limited, but is usually 3.0 ⁇ m or less, preferably 2.0 ⁇ m or less, more preferably 0.7 ⁇ m or less in actual production.
  • the thickness of the titanium nitride layers 20 and 22 can be confirmed by observing the cross section of the metallized substrates 100 and 102 with an electron microscope.
  • Metal layers 30, 32 In the method of the first aspect of the present invention, a metal paste composition is applied onto the nitride ceramic sintered substrate 10 and the obtained first precursor substrate 110 is baked to form a titanium nitride layer 20 on the titanium nitride layer 20. A metal layer 30 is formed.
  • the first metal paste layer 52 is laminated on the nitride ceramic sintered body substrate 10, and the second metal paste layer 54 is further laminated on the first metal paste layer 52. By firing the obtained second precursor substrate 112, the metal layer 32 is formed on the titanium nitride layer 22.
  • the metal layers 30 and 32 contain 15 parts by weight or more and 80 parts by weight or less, preferably 20 parts by weight or more and 60 parts by weight or less of silver, and 5.0 parts by weight or less of titanium, preferably 3 parts by weight with respect to 100 parts by weight of copper. It is comprised including 0.0 mass part or less. Further, the titanium content in the metal layers 30 and 32 is 2.0 mass% or less, preferably 1.5 mass% or less, and is contained in the metal paste layer 50 or the first metal paste layer 52. It is 1/2 or less of titanium amount (mass), Preferably it is 1/3 or less. If the silver content is too low, the resistance of the metal layers 30 and 32 may be increased.
  • the silver content is too high, the material price is increased, and the melting points of the metal layers 30 and 32 are high. Although it is considered that it is lowered, there is a possibility that a precise wiring pattern cannot be formed. Within the above range, increasing the silver content has the effect of reducing the voids in the metal layers 30 and 32 and lowering the resistance values of the metal layers 30 and 32.
  • the first precursor substrate 110 composed of the nitride ceramic sintered substrate 10 and the metal paste layer 50, or the nitride ceramic sintered substrate 10, the first metal paste layer 52, and the second metal paste layer.
  • the second precursor substrate 112 made of 54 is baked in a heat-resistant container under conditions free from oxidizing gas, thereby restricting the movement of the titanium component toward the surface of the metal layers 30 and 32. .
  • the titanium content in the metal layers 30 and 32 can be reduced as described above. If the titanium content is too high, the resistance of the metal layers 30 and 32 is increased, and the liquid phase component protrudes from the wiring pattern because the wettability of the liquid phase generated during firing is excessively improved. There is a possibility that a precise wiring pattern cannot be formed.
  • the lower limit of the titanium content is not particularly limited and is preferably 0% by mass. However, when actually produced, it is usually 0.2% by mass or more, and in some cases 0.5% by mass or more.
  • the mass ratio of the constituent components of the metal layers 30 and 32 described above is based on values calculated by analyzing the manufactured metallized substrates 100 and 102. In order to analyze the mass ratio from the metallized substrates 100 and 102, only the metal layers 30 and 32 (excluding the portions of the titanium nitride layers 20 and 22) are dissolved by etching treatment with acid or the like, and the obtained solution is analyzed. Can be implemented.
  • the lower limit of the thickness of the metal layers 30 and 32 is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more from the viewpoint of improving the conductivity of the wiring pattern, and the upper limit is not particularly limited, but the metal layers 30 and 32 are too thick. Then, the effect of improving the conductivity is saturated, and it may be difficult to obtain a precise wiring. Therefore, the thickness is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the metal layer 30 , 32 in the surface layer portion can be lowered.
  • the titanium concentration in the surface layer part of the metal layers 30 and 32 is the sum (A) of the mass concentrations of copper and silver when the electron beam acceleration voltage is measured at 10 kV using an energy dispersive X-ray analysis (EDS) method.
  • the ratio (B / A) to the mass concentration (B) of titanium is 0.20 or less, preferably 0.15 or less, more preferably 0.13 or less.
  • the titanium concentration in the surface layer part of the metal layers 30 and 32 is out of the above range and is too high, the surfaces of the metal layers 30 and 32 are discolored, and the adhesion between the plating layer and the metal layers 30 and 32 is lowered.
  • substrate was employ
  • the normal plating pretreatment method cannot obtain sufficient adhesion between the metal layer and the plating layer, and in order to form a plating layer having good adhesion, the surface of the metal layer is physically It was necessary to process by an appropriate polishing or the like.
  • the value of B / A is preferably as close to zero as possible, but as a manufacturing limit, the lower limit is 0.01 or more, and in some cases, 0.03 or more.
  • the value of B / A can be set within the preferable range.
  • the discoloration of the surfaces of the metal layers 30 and 32 is considered to occur due to oxidation of titanium present on the surfaces of the metal layers 30 and 32. Therefore, in the conventional method for manufacturing a metallized substrate, titanium in the metal layer moves to the surface of the metal layer during the firing process, and is oxidized by a trace amount of impurities in the atmosphere on the substrate surface, so that the surface of the metal layer has titanium. Since the oxide is segregated, the titanium concentration in the vicinity of the metal layer surface is increased, which is considered to increase the B / A value.
  • the adhesion of the metal layers 30 and 32 is better than that of the conventional metallized substrate.
  • the B / A value on the surface of the metal layer can be adjusted to the above preferred range by treating the discolored surface by etching, polishing, or the like.
  • the adhesion strength of the metal layers 30 and 32 remains insufficient.
  • the B / A value can be within the above-mentioned preferable range without forming the surfaces of the metal layers 30 and 32 as they are and after the metal layers 30 and 32 are formed.
  • the metallized substrates 100 and 102 of the present invention further reduce the titanium concentration on the surfaces of the metal layers 30 and 32 in order to further improve the surface plating properties by treating the surfaces of the metal layers 30 and 32 by etching or polishing. You can also.
  • the second metal paste layer 54 not containing titanium hydride powder is formed on the first metal paste layer 52, and this is fired to form the metal layer 32. Further, the movement of titanium to the surface of the metal layer 32 is further suppressed. For this reason, B / A value can be made smaller, Preferably it can be set to 0.10 or less.
  • the metallized substrates 100 and 102 manufactured by the first and third methods of the present invention have the titanium nitride layer 20, between the nitride ceramic sintered substrate 10 and the metal layers 30 and 32, as described above. 22, the adhesion strength of the metal layers 30 and 32 can be increased, and the metallized substrate 100 having an adhesion strength of 50 N or more, preferably 80 N or more, more preferably 90 N or more, and even more preferably 100 N or more, 102.
  • the metallized substrate 102 manufactured by the method of the third present invention forms the second metal paste layer 54 not containing titanium hydride powder on the first metal paste layer 52, and Since the metal layer 32 is formed by firing, the movement of titanium to the surface of the metal layer 32 is further suppressed. For this reason, the titanium nitride layer 22 can be sufficiently formed, and the adhesion strength of the metal layer 32 can be further increased. For this reason, the adhesion strength of the metal layer 32 in the metallized substrate 102 can be particularly 110 N or more.
  • the bonding strength of the wiring pattern is a 42 alloy nail head pin with a tip diameter of ⁇ 1.1 mm and a nickel plated surface of the tip, and the metal layers 30 and 32 of the metallized substrates 100 and 102 are used.
  • Ni / Au plating is applied to the surface, the nail head pin is soldered vertically with Pb-Sn solder on this plating film, and the nail head pin is pulled vertically at a speed of 10 mm / min.
  • the strength was defined as the bonding strength.
  • the metallized substrates 100 and 102 of the present invention include a predetermined amount of titanium in the metal layers 30 and 32, a predetermined amount of silver, and a reduction in voids in the metal layers 30 and 32.
  • the volume resistivity measured by the four probe method can be 10.0 ⁇ 10 ⁇ 8 ⁇ ⁇ m or less, preferably 7.5 ⁇ 10 ⁇ 8 ⁇ ⁇ m or less, more preferably Can be 7.0 ⁇ 10 ⁇ 8 ⁇ ⁇ m or less.
  • the presence of the second metal paste layer 54 further reduces the titanium component in the metal layer 32 and improves the conductivity of the metal layer 32. Therefore, the volumetric efficiency can be more preferably 6.0 ⁇ 10 ⁇ 8 ⁇ ⁇ m or less, and particularly preferably 5.0 ⁇ 10 ⁇ 8 ⁇ ⁇ m or less.
  • FIG. 2 shows an outline of the steps of the first method according to the present invention.
  • the method of the first aspect of the present invention includes a step of preparing a metal paste composition, and a step of applying the metal paste composition onto the nitride ceramic sintered substrate 10 to produce a first precursor substrate 110; A step of firing the first precursor substrate.
  • the metal paste composition for forming the metal paste layer 50 includes copper powder, silver powder, and titanium hydride powder, and preferably includes a binder and a solvent.
  • Aluminum nitride powder is added to the refractory metal paste conventionally used to form an AlN metallized substrate, thereby improving the adhesion between the refractory metal layer and the aluminum nitride sintered substrate.
  • ceramic powder it is not necessary to add ceramic powder to the paste composition of the present invention. Thereby, since the ceramic component which is an insulating component is eliminated, the conductivity of the formed metal layer 30 becomes better.
  • the metal paste composition contains 15 parts by weight or more and 80 parts by weight or less, preferably 20 parts by weight or more and 60 parts by weight or less of silver powder with respect to 100 parts by weight of copper powder, and the lower limit of titanium hydride powder is 1.0 part by weight. Part or more, preferably 2.0 parts by weight or more, and the upper limit is 13.0 parts by weight or less, preferably 10.0 parts by weight or less, more preferably 7.5 parts by weight or less, particularly 7.0 parts by weight or less. .
  • the copper powder in the metal paste composition is preferably a mixture of two types of large and small average particle sizes, and the average particle size of the large particle size copper powder is preferably 1.0 ⁇ m or more and 5.0 ⁇ m or less, More preferably, it is 1.5 ⁇ m or more and 3.0 ⁇ m or less, and the average particle diameter of the small-sized copper powder is preferably 0.1 or more and less than 1.0 ⁇ m, more preferably 0.2 ⁇ m or more and 0.6 ⁇ m or less. . Moreover, the average particle diameter of silver powder becomes like this. Preferably they are 0.1 micrometer or more and 1.0 micrometer or less, More preferably, they are 0.2 micrometer or more and 0.8 micrometer or less.
  • the average particle diameter of the titanium hydride powder is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 1.0 ⁇ m or more, and the upper limit is preferably 20.0 ⁇ m or less. More preferably, it is 10.0 micrometers or less, More preferably, it is 7.0 micrometers or less.
  • the metal paste layer 50 can be made to have a structure filled with metal powder at a high density and rapidly and uniformly during firing.
  • a dense metal layer 30 can be formed by generating a liquid phase. Accordingly, if the metal layer 30 can be made dense, when the plating layer is formed on the metal layer 30, the discoloration of the metal layer 30 that occurs when the plating solution penetrates the metal layer 30 and remains in the metal layer 30. And problems such as swelling of the plating film during heating can be prevented.
  • the average particle diameter is a median diameter measured by a laser diffraction / scattering method using Microtrack HRA manufactured by Nikkiso Co., Ltd. (The same applies to other average particle diameters in this specification).
  • the mass ratio (a / b) to the mass (b) of the powder is preferably 0.4 or more and 5.0 or less.
  • a dense metal layer 30 can be formed.
  • printability and the characteristics of the metallized substrate 100 to be obtained are taken into consideration, it is preferably 0.5 or more and 4.5 or less, more preferably 0.5 or more and 4.0 or less.
  • the mass ratio (c / b) to (b) is preferably from 0.5 to 15.0, more preferably from 1.0 to 12.0.
  • binders can be used without particular limitation.
  • acrylic resins such as polyacrylic acid esters and polymethacrylic acid esters
  • cellulose resins such as methylcellulose, hydroxymethylcellulose, ethylcellulose, nitrocellulose, and cellulose acetate butyrate
  • vinyl groups such as polyvinyl butyral, polyvinyl alcohol, and polyvinyl acetate Resin
  • acrylic resin is most preferable because there are few residues in baking in an inert atmosphere.
  • solvents can be used without any particular limitation.
  • toluene, ethyl acetate, terpineol, butyl carbitol acetate, texanol and the like can be used.
  • surfactants, plasticizers and the like can be added.
  • the dispersant that can be suitably used include a phosphate ester type and a polycarboxylic acid type.
  • the metal paste composition prepared in the above process is applied on the nitride ceramics sintered substrate 10 in a shape that becomes the desired metal layer 30 after firing to form the metal paste layer 50, and the substrate 10 And the 1st precursor board
  • the metal paste composition is preferably applied by printing from the viewpoint of forming precision wiring. As printing, screen printing, inkjet printing, offset printing, or the like can be employed.
  • the paste may be appropriately adjusted to an optimum viscosity according to the printing method to be employed. However, when the screen printing method is used, the viscosity is 50 to 400 Pa ⁇ at 25 ° C. in consideration of operability and pattern reproducibility. It is preferable to use what adjusted the quantity of each component in a metal paste so that it may become s.
  • the firing step the first precursor substrate 110 made of the nitride ceramic sintered body substrate 10 and the metal paste layer 50 produced as described above is housed in a heat resistant container and fired in a non-oxidizing atmosphere. Thereby, the titanium nitride layer 20 and the metal layer 30 are formed on the nitride ceramic sintered body substrate 10.
  • an inert gas such as argon gas or helium gas, or a hydrogen gas atmosphere can be given under vacuum.
  • the mixed atmosphere of an inert gas and hydrogen gas may be sufficient.
  • the degree of vacuum should be as high as possible for the purpose of preventing reactive gases such as oxygen and nitrogen in the atmosphere from reacting with titanium.
  • the lower limit of the degree of vacuum (upper limit of pressure) Preferably, it is 1.33 ⁇ 10 ⁇ 1 Pa, more preferably 1.33 ⁇ 10 ⁇ 2 Pa.
  • the upper limit of the degree of vacuum (lower limit of pressure) is not particularly limited, but is 1.33 ⁇ 10 ⁇ 5 Pa in view of industrial production.
  • firing is preferably performed in a heat-resistant container in a non-oxidizing atmosphere.
  • the heat-resistant container may be formed of a material that can sufficiently withstand the temperature when the first precursor substrate 110 is fired, and does not transmit gas even at a high temperature during firing. It is preferable that the gas is not generated and is highly airtight.
  • Specific examples of materials that can be suitably used for this heat-resistant container include nitride sintered bodies such as aluminum nitride, boron nitride, and silicon nitride, oxide sintered bodies such as alumina, magnesia, and zirconia, incoloy, and hastelloy. Examples thereof include heat-resistant alloys such as quartz glass or quartz glass. Among these, a nitride sintered body excellent in thermal conductivity is preferable in terms of ensuring the soaking in the container during firing.
  • the atmosphere in the vicinity of the first precursor substrate 110 in the firing process is blocked from the atmosphere in other firing furnaces, and the binder in the metal paste composition decomposes and scatters and reattaches to the furnace walls and the like. It is considered that the decomposition product and other contamination sources play a role of suppressing re-scattering and reaction with the titanium component in the paste layer 50 as the temperature in the baking furnace rises. Therefore, it is preferable to use a heat-resistant container having a structure that can be covered so that the atmosphere in the vicinity of the first precursor 110 in the firing step can be shielded from the atmosphere in another firing furnace.
  • the heat-resistant container may be a completely sealed state, but may have a gap enough to discharge the gas generated by thermal decomposition of the binder in the paste layer 50 to the outside of the container.
  • the shape of the heat-resistant container is preferably such a size that there is no temperature distribution in the heat-resistant container in the firing furnace.
  • the heat-resistant container is preferably a container made of a nitride sintered body having excellent thermal conductivity.
  • the first precursor 110 is housed in a heat-resistant container and is preferably 1.33 ⁇ 10 ⁇ 1 Pa to 1.33 ⁇ 10 ⁇ 5 Pa, more preferably 1. Titanium in the metal paste layer 50 moves to the surface of the metal layer 30 by performing vacuum firing under the pressure of 33 ⁇ 10 ⁇ 2 Pa to 1.33 ⁇ 10 ⁇ 5 Pa while preventing mixing of oxidizing gas.
  • the titanium component contained in the metal paste layer is preferentially reacted with the nitride ceramics constituting the nitride ceramic sintered body substrate to form the titanium nitride layer and obtained after firing.
  • the content of titanium contained in the metal layer can be 2.0% by mass or less, and can be 1 ⁇ 2 or less of the amount of titanium contained in the metal paste layer.
  • the titanium nitride layer 20 is sufficiently formed, and the adhesion of the metal layer 30 is good.
  • firing in a heat-resistant container made of an aluminum nitride sintered body reduces the titanium concentration on the surface of the metal layer 30.
  • the volume resistivity of the metal layer 30 can be reduced, and the bonding strength can be improved.
  • the firing can be performed at a temperature lower than the melting point of copper (1083 ° C.), and 800 ° C. or higher in order to form a highly accurate precision wiring pattern. It is preferable to carry out at a temperature of 950 ° C. or lower. Increasing the firing temperature within the above firing temperature range has the effect of reducing voids in the metal layer 30. Further, the firing time may be appropriately determined according to the wiring pattern, film thickness, etc., and it is sufficient if the firing time is maintained within the above temperature range for several tens of seconds to 1 hour.
  • ⁇ Method for Manufacturing Metallized Substrate 102 of Third Invention> As shown schematically in FIG. 3 in the method of manufacturing the metallized substrate 102, in the method of manufacturing the metallized substrate 102 of the third aspect of the present invention, first, the first metal paste composition and the second metal paste composition are respectively prepared. The first metal paste composition and the second metal paste composition are sequentially applied on the nitride ceramic sintered body substrate 10 to form the first metal paste layer 52 and the second metal paste layer 54. Then, the second precursor substrate 112 is manufactured, and the second precursor substrate 112 is baked to obtain the metallized substrate 102.
  • the same one as in the above-described method for manufacturing the metallized substrate 100 of the first invention can be used.
  • the first metal paste composition for forming the first metal paste layer 52 contains copper powder, silver powder, and titanium hydride powder, and preferably contains a binder, a dispersant, and a solvent.
  • the second metal paste composition for forming the second metal paste layer 54 contains copper powder and silver powder, and similarly, preferably contains a binder, a dispersant, and a solvent.
  • the second metal paste composition does not contain a titanium component.
  • aluminum nitride powder is added to the refractory metal paste conventionally used to form the AlN metallized substrate, thereby improving the adhesion between the refractory metal layer and the aluminum nitride sintered substrate.
  • the titanium hydride powder in the composition is preferably 1 to 10 parts by mass, particularly preferably 1 to 5 parts by mass. If the amount of titanium hydride powder is too small, the adhesion of the fired metal layer 32 may be poor. On the other hand, if the amount of titanium hydride powder is too large, the effect of improving adhesion is saturated, the resistance of the metal layer 32 is increased, and the wettability of the liquid phase generated during firing is excessively improved. In addition, since the liquid phase component protrudes from the wiring pattern, a precise wiring pattern may not be formed.
  • the second metal paste layer 54 is formed thickly based on the total amount of copper powder and silver powder in all paste compositions forming the first metal paste layer 52 and the second metal paste layer 54. This is because the compounding amount of the titanium hydride powder in the first metal paste layer 52 can be increased.
  • the mass ratio of silver powder and copper powder is preferably 0.15 or more and 0.8 or less (silver powder / copper powder). If the amount of silver powder is too small, the resistance of the metal layer 32 may increase. Conversely, if the silver content is too large, the material price increases, and the melting point of the metal layer 32 decreases. Although it is conceivable, there is a possibility that a precise wiring pattern cannot be formed. Within the above range, increasing the silver content has the effect of reducing voids in the metal layer 32 and lowering the resistance value of the metal layer 32.
  • the mass ratio of silver powder and copper powder in the first metal paste layer 52 and the second metal paste layer 54 may be different from each other as long as they are within the above ranges. If the second metal paste layer 54 is made of only copper and is out of the above range, voids may be generated in the metal layer 32. This is considered to be because silver in the first metal paste layer 52 is moved to the second metal paste layer 54 side, that is, the surface side of the metal layer 32 by firing.
  • the first metal paste composition contains 15 parts by weight or more and 80 parts by weight or less, more preferably 20 parts by weight or more and 60 parts by weight or less of silver powder with respect to 100 parts by weight of copper powder, and hydrogenation.
  • the lower limit of the titanium powder is preferably 1.0 part by mass or more, more preferably 2.0 parts by mass or more, and the upper limit is preferably 20.0 parts by mass or less, more preferably 15.0 parts by mass or less, and even more preferably 10. Contains 0 parts by mass or less.
  • the second metal paste composition preferably contains 15 parts by weight or more and 80 parts by weight or less, more preferably 20 parts by weight or more and 60 parts by weight or less, with respect to 100 parts by weight of the copper powder.
  • the average particle size of the copper powder in the first and second metal paste compositions is not particularly limited as long as it is the same as that used in conventional pastes.
  • the copper powder having an average particle size of 0.1 ⁇ m or more and 5.0 ⁇ m or less can be used.
  • the copper powder preferably has a mean particle size of preferably 1.0 ⁇ m or more and 5.0 ⁇ m or less, more preferably 1.5 ⁇ m or more and 3.0 ⁇ m or less.
  • the main particle is copper powder having an average particle diameter of 1.0 ⁇ m or more and 5.0 ⁇ m or less
  • the average particle diameter is preferably 0.1 ⁇ m or more and less than 1.0 ⁇ m in a range of less than 50% by mass of the total copper powder. More preferably, copper powder of 0.2 ⁇ m or more and 0.6 ⁇ m or less can be blended.
  • the copper powder in the first and second metal paste compositions is a mixture of those having two kinds of average particle sizes of large and small, and particularly the copper powder of the first metal paste composition containing a titanium component is A mixture of two kinds of large and small average particle diameters is preferred.
  • the preferable particle diameter of each copper powder of a large particle diameter and a small particle diameter, and the effect of using copper powder of these two large and small particle diameters, in the metal paste composition in the method of the first invention The same as in the case of copper powder.
  • the average particle diameter of the silver powder is not particularly limited, and may be the same particle diameter as that used in the conventional paste. Specifically, the average particle diameter of the silver powder is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and the upper limit is preferably 5.0 ⁇ m or less, more preferably 4.0 ⁇ m or less.
  • the printability of screen printing is improved and the protrusion of the pattern (metal layer 32) can be suppressed.
  • a dense metal layer 32 can be formed. If the metal layer 32 can be made dense, when the plating layer is formed on the metal layer 32, the plating solution penetrates the metal layer 32 and remains in the metal layer 32. Problems such as swelling of the plating film can be prevented.
  • the average particle size of the titanium hydride powder in the first metal paste composition is the same as that of the titanium hydride powder in the metal paste composition in the first method of the present invention.
  • the same binder as the binder in the metal paste composition in the method of the first present invention can be used.
  • the same solvent as the solvent in the metal paste composition in the first method of the present invention can be used.
  • the first metal paste composition and the second metal paste composition prepared above are sequentially applied onto the nitride ceramic sintered substrate 10 to sinter the nitride ceramics.
  • a first metal paste layer 52 and a second metal paste layer 54 are laminated in this order on the body substrate 10 to produce a second precursor substrate 112.
  • the first and second metal paste layers 52 and 54 are formed by applying the first and second metal paste compositions on the substrate 10 so as to have the shape of the desired metal layer 32 after firing.
  • the metal paste composition is preferably applied by printing from the viewpoint of forming precision wiring.
  • the printing method is the same as in the first method of the present invention. After forming the first metal paste layer 52, it may be dried, then the second metal paste layer 54 may be formed, and then the second metal paste layer 54 may be dried, or the first metal paste layer 52 may be dried. And after forming the 2nd metal paste layer 54, you may dry these collectively.
  • the drying method is not particularly limited as long as the solvent in the paste layer can be volatilized. An example is a method of drying at about 80 to 120 ° C. for about 1 minute to 1 hour.
  • the first metal paste layer 52 containing titanium hydride powder and the second metal paste layer 54 not containing this are laminated and fired to form the titanium nitride layer 22 and the metal layer. 32 is formed.
  • the titanium nitride layer 22 reacts with the titanium component in the first metal paste layer 52 and the nitrogen component in the nitride ceramic sintered substrate 10, thereby causing the nitride ceramic sintered body 10 and the metal layer 32 to react. Formed at the interface.
  • the presence of the second metal paste layer 54 that does not contain titanium hydride powder prevents the titanium component from moving to the surface of the metal layer 32. Therefore, similar to the method of the first aspect of the present invention, the movement of the titanium component to the surface of the metal layer 32 is further suppressed in combination with the effect of firing under a specific contamination-free firing condition.
  • the plating property on the surface of the layer 32 is further improved, and the craters on the surface of the metal layer 32 can be further reduced.
  • the adhesion of the metal layer 32 is further improved.
  • the thickness of the first metal paste layer 52 is preferably 3 ⁇ m or more and 150 ⁇ m or less, more preferably 5 ⁇ m or more and 70 ⁇ m or less.
  • the thickness of the second metal paste layer 54 is preferably 3 ⁇ m or more and 150 ⁇ m or less, more preferably 5 ⁇ m or more and 70 ⁇ m or less.
  • the thickness ratio between the first metal paste layer 52 and the second metal paste layer 54 is preferably 0.1 or more and 10.0 or less (first metal paste layer 52 / second metal paste layer 54), more preferably. Is 0.2 or more and 5.0 or less.
  • the second precursor substrate 112 composed of the nitride ceramic sintered body substrate 10, the first metal paste layer 52, and the second metal paste layer 54 produced above is fired. Thereby, the titanium nitride layer 22 and the metal layer 32 are formed on the nitride ceramic sintered body substrate 10.
  • the second precursor 112 is housed in a heat resistant container, and is preferably 1.33 ⁇ 10 ⁇ 1 Pa to 1.33 ⁇ 10 ⁇ 5 Pa, more preferably 1.
  • the titanium component contained in the first metal paste layer 52 is nitrided by vacuum firing under pressure of 33 ⁇ 10 ⁇ 2 Pa to 1.33 ⁇ 10 ⁇ 5 Pa while preventing the mixing of oxidizing gas.
  • the titanium nitride layer 22 is formed by preferentially reacting with the nitride ceramic constituting the sintered ceramic substrate 10 and the titanium content in the metal layer 32 obtained after firing is 2.0 mass%.
  • the amount of titanium contained in the first metal paste layer 52 may be 1 ⁇ 2 or less.
  • the non-oxidizing atmosphere and the heat-resistant container are the same as in the firing step of the first method of the present invention. Moreover, the effect by employ
  • the presence of the second metal paste layer 54 not containing titanium hydride powder causes titanium in the first metal paste layer 52 to move to the surface of the metal layer 32.
  • the titanium nitride layer 22 is sufficiently formed, the adhesion of the metal layer 32 becomes good, the titanium concentration on the surface of the metal layer 32 is suppressed, the plating property on the surface of the metal layer 32 becomes good, and the metal The effect of the present invention that the craters on the surface of the layer 32 are reduced is more remarkably exhibited.
  • the firing can be performed at a temperature below the melting point of copper (1083 ° C.) to form a highly accurate precision wiring pattern. Is preferably performed at a temperature of 800 ° C. or higher and 950 ° C. or lower. Increasing the firing temperature within the above firing temperature range has the effect of reducing voids in the metal layer 32. Further, the firing time may be appropriately determined according to the wiring pattern, film thickness, etc., and it is sufficient if the firing time is maintained within the above temperature range for several tens of seconds to 1 hour.
  • Example 1 [Method of First Invention, Example of Metalized Substrate of Second Invention and Comparative Example] ⁇ Example 1> (Preparation of paste composition) 9 parts by mass of copper powder (copper powder (b)) having an average particle size of 0.3 ⁇ m, 91 parts by mass of copper powder (copper powder (c)) having an average particle size of 2 ⁇ m, and an average particle size of 0.6 ⁇ m After premixing 23 parts by mass of silver powder (a) and 3.8 parts by mass of titanium hydride powder having an average particle diameter of 5 ⁇ m and a vehicle in which polyalkyl methacrylate is dissolved in terpineol using a mortar, three A metal paste composition was prepared by performing a dispersion treatment using a roll mill.
  • the prepared metal paste composition is printed on a 0.64 mm thick aluminum nitride sintered substrate (trade name SH-30, manufactured by Tokuyama Corporation) by screen printing, and dried at 100 ° C. for 10 minutes. It was.
  • a metallized substrate was obtained by baking at 850 ° C. for 30 minutes in a vacuum (degree of vacuum: 4 ⁇ 10 ⁇ 3 Pa to 8 ⁇ 10 ⁇ 3 Pa). Under the present circumstances, the board
  • the color tone of the metallized surface of the obtained metallized substrate was light orange.
  • the thickness of the metallized layer was 15 ⁇ m.
  • the composition of the above paste is shown in Table 1, and the firing temperature, firing time, and color tone of the metallized surface of the metallized substrate are shown in Table 2.
  • the obtained metallized substrate was subjected to the following analysis and evaluation.
  • the metallized substrate was embedded in a resin and polished to prepare an observation sample of a cross section of the metallized substrate.
  • the obtained observation sample was observed with the scanning electron microscope, and the thickness of the titanium nitride layer at the interface between the substrate and the metallized layer was confirmed.
  • the results are shown in Table 3.
  • ⁇ Evaluation of metallized substrate> (Evaluation of protrusion of metallized edge) Based on the boundary position between the paste layer pattern after printing and drying and the substrate, the amount of protrusion of the metallized component protruding from the end of the metallized after firing was evaluated according to the following criteria. The amount of protrusion was determined to be less than 15 ⁇ m, ⁇ , 15 ⁇ m or more and less than 50 ⁇ m as ⁇ , and 50 ⁇ m or more as ⁇ . The results are shown in Table 3.
  • the obtained metallized substrate was subjected to nickel electroless plating of about 2.5 ⁇ m and then gold electroless plating of about 0.4 ⁇ m, and then a metallized layer bonding test was performed.
  • a 42 alloy nail head pin with a tip diameter of 1.1 mm on a 2 mm square metallized pattern and nickel-plated on the tip surface is soldered with Pb-Sn solder so as to be perpendicular to the substrate, The pin was pulled vertically at a speed of 10 mm / min, and the load when breaking from the substrate was recorded. The same test was performed 5 times, and the average value of the load was calculated. The results are shown in Table 3. Moreover, the failure mode when it broke was confirmed. The results are shown in Table 3.
  • Example 2-6 and 9 In Example 1, except that the raw material composition of the paste was changed to the composition shown in Table 1, a metallized substrate was produced in the same manner as in Example 1 and analyzed and evaluated. The results are shown in Tables 1, 2 and 3.
  • Example 7 In Example 1, the material composition of the paste was changed to the composition shown in Table 1, and a metallized substrate was prepared and analyzed and evaluated in the same manner as in Example 1 except that the firing temperature was 900 ° C. The results are shown in Tables 1, 2 and 3.
  • Example 8 In Example 1, the material composition of the paste was set to the composition shown in Table 1, and a metallized substrate was produced in the same manner as in Example 1 except that the atmosphere during firing was a mixed gas atmosphere of 95 vol% argon and 5 vol% hydrogen. Analyzed and evaluated. The results are shown in Tables 1, 2 and 3.
  • Example 1 ⁇ Comparative Example 1-3>
  • Example 1 except that the raw material composition of the paste was changed to the composition shown in Table 1, a metallized substrate was produced in the same manner as in Example 1 and analyzed and evaluated. The results are shown in Tables 1, 2 and 3.
  • Example 4 In Example 1, 90 parts by mass of Ag—Cu powder (BAg-8, composition: silver 72 wt% -copper 28 wt%) having an average particle diameter of 5.7 ⁇ m and 10 parts by mass of titanium hydride powder having an average particle diameter of 5 ⁇ m Parts and a vehicle in which polyalkyl methacrylate was dissolved in terpineol were premixed using a mortar and then dispersed using a three-roll mill to produce a paste composition, which was the same as in Example 1. A metallized substrate was prepared and analyzed and evaluated. The results are shown in Tables 1, 2 and 3.
  • Example 5 100 parts by mass of copper powder (copper powder (c)) having an average particle diameter of 2 ⁇ m, 23 parts by mass of silver powder having an average particle diameter of 3 ⁇ m, and titanium hydride powder having an average particle diameter of 5 ⁇ m
  • Example 1 except that 5 parts by mass and a vehicle in which polyalkyl methacrylate was dissolved in terpineol were preliminarily mixed using a mortar and then dispersed using a three-roll mill to prepare a paste composition.
  • a metallized substrate was prepared in the same manner as described above, and analyzed and evaluated. The results are shown in Tables 1, 2 and 3.
  • Example 6 when firing the aluminum nitride sintered body substrate on which the paste was printed, without using an aluminum nitride setter, it was directly placed in a firing furnace and fired. Similarly, a metallized substrate was produced, and analyzed and evaluated. The color tone of the metallized surface of the obtained metallized substrate was changed to brown. The results of analysis and evaluation are shown in Tables 1, 2 and 3.
  • the paste composition of Comparative Example 1 has a low silver powder content and a low silver content in the metal layer of the metallized substrate. For this reason, the volume low efficiency of the metallized pattern of the obtained metallized substrate was high.
  • the content of titanium hydride powder was small, and formation of a titanium nitride layer was not observed in the obtained metallized substrate. For this reason, the bonding strength of the metallized substrate was low.
  • the paste composition of Comparative Example 3 had a high content of titanium hydride powder, and the content of titanium in the metal layer in the obtained metallized substrate was high. For this reason, there were many protrusions from the metallized pattern.
  • the paste composition of Comparative Example 4 uses Ag—Cu powder (silver 72 wt% ⁇ copper 28 wt%), and the content of silver in the metal layer in the obtained metallized substrate was very large. For this reason, there are many protrusions from the metallized pattern.
  • the metal paste composition of Comparative Example 5 is composed only of silver powder having a large particle size and copper powder having a large particle size. For this reason, it is considered that the metal layer is not sufficiently fired, and the volumetric low efficiency is larger than the value of the example of the present application. In Comparative Example 6, firing is performed without using a setter made of aluminum nitride.
  • the movement of the titanium component to the surface of the metal layer occurred, the content ratio of titanium in the metal layer was large, the thickness of the titanium nitride layer was thin, the B / A value was large, and the bonding strength of the metal layer was small. .
  • Example 10> (Preparation of paste composition 1) 16 parts by mass of copper powder having an average particle diameter of 0.3 ⁇ m, 84 parts by mass of copper powder having an average particle diameter of 2 ⁇ m, 41 parts by mass of silver powder having an average particle diameter of 0.6 ⁇ m, and hydrogen having an average particle diameter of 5 ⁇ m
  • a paste composition 1 was prepared by premixing 4.4 parts by mass of titanium fluoride powder and a vehicle in which polyalkyl methacrylate was dissolved in talpineol using a mortar and then dispersing the mixture using a three-roll mill. .
  • paste composition 2 16 parts by mass of copper powder with an average particle size of 0.3 ⁇ m, 84 parts by mass of copper powder with an average particle size of 2 ⁇ m, 41 parts by mass of silver powder with an average particle size of 0.6 ⁇ m, and polyalkylmethacrylate dissolved in talpineol
  • a paste composition 2 was prepared by preliminarily mixing the prepared vehicle with a mortar and then performing a dispersion treatment using a three-roll mill.
  • the prepared paste composition 1 is printed on a 0.64 mm thick aluminum nitride sintered substrate (trade name SH-30, manufactured by Tokuyama Corporation) by screen printing, and dried at 100 ° C. for 10 minutes. A first paste layer was formed. At this time, the mass of the first paste layer formed on the substrate was calculated from the mass change of the substrate before and after the formation of the first paste layer.
  • the paste composition 2 was printed on the first paste layer by screen printing, and dried at 100 ° C. for 10 minutes to form a second paste layer. At this time, the mass of the second paste layer formed on the substrate was calculated from the mass change of the substrate before and after the formation of the second paste layer.
  • the amount of titanium hydride powder when the total amount of copper powder and silver powder combined with the first paste layer and the second paste layer is 100 parts by mass is calculated. As a result, it was 1.5 parts by mass.
  • a metallized substrate was obtained by baking at 850 ° C. for 30 minutes in a vacuum (degree of vacuum: 4 ⁇ 10 ⁇ 3 Pa to 8 ⁇ 10 ⁇ 3 Pa).
  • substrate was baked in the state which accommodated the board
  • the color tone of the metallized surface of the obtained metallized substrate was light orange.
  • the thickness of the metallized layer (metal layer) was 25 ⁇ m.
  • the composition of the above paste composition 1 and paste composition 2 is shown in Table 4, and the firing temperature of the metallized substrate, the firing time, and the color tone of the metallized surface are shown in Table 5.
  • the obtained metallized substrate was subjected to the following analysis and evaluation.
  • Example 10 a metallized substrate was produced in the same manner as in Example 10 except that the raw material composition of the paste was changed to the composition shown in Table 4, and the following analysis and evaluation were performed. The results are shown in Tables 4, 5 and 6.
  • Example 10 when the sintered aluminum nitride substrate on which the paste was printed was fired, without using an aluminum nitride setter, it was directly placed in a firing furnace and fired. Similarly, a metallized substrate was prepared, and the following analysis and evaluation were performed. The results are shown in Tables 4, 5 and 6.
  • Example 10 a metallized substrate was produced in the same manner as in Example 10 except that the raw material composition of the paste was changed to the composition shown in Table 4, and the following analysis and evaluation were performed. The results are shown in Tables 4, 5 and 6.
  • the prepared paste composition is printed on a 0.64 mm thick aluminum nitride sintered substrate (trade name SH-30, manufactured by Tokuyama Corporation) by screen printing, and dried at 100 ° C. for 10 minutes to obtain a paste. A layer was formed. Thereafter, a metallized substrate was produced by firing in the same manner as in Example 10, and analysis and evaluation were performed in the same manner as in Example 10. The results are shown in Tables 4, 5 and 6.
  • composition analysis of metal layer The composition of the metal layer was analyzed in the same manner as in the first embodiment of the present invention. The obtained analysis results are shown in Table 6 (content per 100 parts by mass of Cu).
  • Comparative Example 7 firing was performed without using a setter made of aluminum nitride. Therefore, the movement of the titanium component to the surface of the metal layer occurred, the content ratio of titanium in the metal layer was large, the thickness of the titanium nitride layer was thin, the B / A value was large, and the bonding strength of the metal layer was small. .
  • the paste composition 1 did not contain titanium hydride powder, formation of a titanium nitride layer was not observed in the obtained metallized substrate.
  • the bonding strength of the metallized substrate was extremely small, and when the nickel electroless plating was applied to the metallized substrate, the metallized layer was peeled off in the pretreatment step of plating, so the bonding strength test could not be performed.
  • the content of titanium hydride powder in the paste composition 1 was large, and the content ratio of titanium in the metal layer in the obtained metallized substrate was large. For this reason, there were many protrusions from the metallized pattern, and the volume resistivity was also high.
  • the silver paste was not contained in the second paste layer, so that the bonding strength was reduced, and the failure mode was also broken in the metallized layer. Moreover, the volume low efficiency became high.
  • the metallized substrates 100 and 102 manufactured by the first and third methods of the present invention are used as substrates for mounting semiconductor elements.

Abstract

 窒化物セラミックス焼結体基板(10)上に、所定の金属ペースト組成物を塗布して、これを所定の条件、耐熱性容器内で焼成して、基板(10)と金属層(30)とが窒化チタン層(20)を介して接合されたメタライズド基板を製造する方法。

Description

メタライズド基板を製造する方法、メタライズド基板
 本発明は、半導体素子を搭載するためのメタライズド基板、および、その製造方法に関する。
 配線基板に搭載する半導体素子の発熱量は、半導体素子の高性能化に伴って増大している。このため、配線基板は、より熱伝導率が高く、放熱性を有する材料により形成することが望まれている。従来、配線基板材料として、アルミナ焼結体が使用されてきたが、アルミナ焼結体は、熱伝導率が不十分であるため、より熱伝導率が高い窒化アルミニウム焼結体を使用することが検討されている。
 この窒化アルミニウム焼結体を代表例とする、窒化物セラミックス焼結体基板を用いて配線基板を製造するためには、窒化物セラミックス焼結体の表面に金属配線を形成する必要がある。金属配線を形成する方法としては、金属ペーストを塗布する厚膜法、または、金属薄膜を蒸着により形成する薄膜法等がある。中でも、放熱性を必要とする用途においては、大量の電流を必要とする場合が多く、薄膜法で形成される膜厚では流せる電流に制限があるため、厚膜法が好適に採用されている。一方で、厚膜法ではタングステンやモリブデンなどの高融点金属を主とする金属配線を形成するため、配線抵抗が高いという問題があった。
 金属配線の材料としては、配線抵抗を低くするという点からは、Cu、Ag、Au、これらの合金等を用いることが考えられる。また、Auなどの貴金属は高価であり、また、Agのみを材料とするのはコスト的に不利であり、Cuのみを材料とするのは、配線抵抗の点から不利である。よって、金属配線の材料としては、CuおよびAgを混合して用いることが、コスト、入手し易さ、および、金属配線の低抵抗化のバランスからすると、最も望ましい。なお、Cu、Ag等の金属は、上記した高融点金属に比べて、低温で焼結することができるので、焼結の際のエネルギーコストが低減できるという利点もある。
 また、厚膜法により金属配線を形成する工業的な方法として、高融点金属粉末を含むペーストを用いた同時焼成法(コファイア法)および後焼成法(ポストファイア法)が知られている。コファイア法とは窒化アルミニウムグリーンシート上に高融点金属ペーストを塗布して焼成することにより窒化アルミニウムの焼結と高融点金属の焼付けを同時に行う方法であり、強固に密着した金属層が形成できる反面、窒化アルミニウム焼結に伴う収縮により高い寸法精度で金属パターン形成を行うのが難しいという特徴がある。また、配線材料として、上記Cu、Ag等を使用した場合には、窒化アルミニウムの焼結温度と金属ペーストの焼結温度が大きく異なるため、コファイア法は採用できない。
 ポストファイア法とはあらかじめ焼結された窒化アルミニウム基板上に高融点金属ペーストを塗布してから、これを焼き付ける方法であり、上記のような寸法精度上の問題は基本的に起こらない。これまでポストファイア法では金属層の接合強度(密着強度)を高くすることが難しいとされていたが、高い接合強度で密着した高融点金属層を形成することのできるポストファイア法も開発されている(特許文献1参照)。しかしながら、より配線抵抗を低くできる、Cu、Ag等の他の金属ペーストを用いて、ポストファイア法によって窒化物セラミックス焼結体基板上に金属層を形成する技術は、未だ工業的には確立されていない。
 この問題を解決することを目的とするものとして、特許文献2には、窒化アルミニウム焼結体上にチタン、ジルコニウムおよびハフニウムから選ばれる少なくとも一種の元素を必須成分として含有する合金からなる導電性メタライズ層が形成されている窒化アルミニウム基板が記載されている。また、特許文献3には、セラミックス基板上に金属化膜を形成するためのメタライズ用金属粉末組成物において、Cu及びTi粉末を主成分とし、Ag,Al,Zrのうち、少なくとも一種を副成分とする金属粉末組成物であって、前記主成分が重量%で90~99.5%、副成分が0.5~10%からなる、メタライズ用金属粉末組成物が記載され、このメタライズ用金属粉末組成物を用いたメタライズ基板の製造方法が記載されている。
 しかしながら、上記の技術では、i)金属層の密着強度が不十分である、ii)金属層の抵抗が思ったほど低くならない、iii)金属層の表面荒れのため、金属層のメッキ性が低下する、iv)パターン滲みが生じ、ファインパターンに対応できない、といった問題があった。
 上記iii)の金属層の表面荒れの問題を解決する技術として、特許文献4には、Cu、Ag、AuおよびAg-Pdから選ばれた少なくとも1種の金属粉末と金属水素化合物粉末とを主成分とするメタライズ用金属粉末組成物であって、前記金属水素化合物粉末がNb,V,HfおよびTaの水素化物から選ばれた少なくとも1種である、メタライズ用金属および金属化合物粉末組成物が記載されており、金属化層の平滑度を高くすることができないのはTi粉末を微細化できないのが原因であることが示唆されている(段落[0009])。
 また、特許文献5には、Ag-Cu合金を主成分とし副成分として水素化チタンを含有するペーストを、窒化アルミニウム焼結体基板に塗布して焼成してなる、メタライズ層を有する窒化アルミニウム基板が記載されている。
WO2006/051881パンフレット 特開昭62-197376号公報 特開平7-207452号公報 特開平7-126701号公報 特開平5-226515号公報
 特許文献4、5には、水素化チタンの粒子径を小さくすることについて、特に記載されていないが、水素化チタンであれば、粒子径を小さくすることは技術的には可能である。しかしながら、水素化チタンの粒子径を小さくすることで、金属層の表面荒れは多少改善するが、上記i)、ii)、iv)の問題は解決しない。また、上記iii)の問題についても改善は不十分であり、金属層の表面メッキ性は悪いままであった。
 本発明者らは、上記問題点について鋭意検討することで、上記問題点の原因を究明し、その防止策を見出した。以下に、まとめる。
 (1)本発明者等は、前記した問題発生の原因を調べるために、真空焼成により作製した試料の金属層表面についてエネルギー分散型X線分析装置(EDS)による分析を行った。その結果、前記問題が発生した試料についてはチタン(Ti)及び酸素(O)が比較的高濃度検出された。このことから、前記問題i)~iii)の原因は、酸化性ガスがコンタミする雰囲気下で真空焼成した場合、金属ペースト組成物中のチタン成分が、金属層中、特に、金属層表面に濃縮されてしまうことであると考えた。すなわち、金属ペースト組成物中のチタン成分は、焼成時には極めて拡散移動し易い状態になっており、酸化性ガスのコンタミ(汚染)がない場合には下地層の窒化アルミニウムの窒素と優先的に反応して、金属層と窒化アルミニウム焼結体との界面において窒化チタン層を形成するのであるが、焼成雰囲気中に僅かでも酸化性ガスが混入した場合には、酸化性ガスとの反応性が非常に高いチタン成分は該酸化性ガスに引きつられ、チタン成分が金属層表面方向へも移動してしまうと考えた。
 チタン成分が金属層表面方向へ移動すれば、窒化チタン層の形成が不十分となり、密着強度が不十分となるというi)の問題が生じる。また、金属層中にチタン成分が残ることにより、抵抗が低くならず、ii)の問題が生じる。また、金属層表面にチタン成分が存在すると、メッキの付着性が悪くなる。よって、たとえ水素化チタン粉末を微細化して、表面荒れを改善したとしても、メッキ性についてのiii)の問題が依然として生じる。
 本発明者等は、真空焼成時に酸化性ガスが混入する原因を次のように考えた。すなわち、炉内で真空下に昇温して焼成を行う場合、比較的低温で金属ペーストに含まれる有機成分やその分解物がガス(一部酸化性ガスを含む)として揮発し、炉内の低温部の壁面に付着する(あるいは吸着される)が、試料焼成のため炉の温度を更に上げるとこれらガスが付着した(吸着した)壁面の温度も上昇し、これらガスが脱離し、かなり低圧の雰囲気下においても拡散したこれらガスの一部が試料の表面と接触すると考えた。一般に焼成に用いる炉では、装置保全のために炉の外側に冷却水を流して冷却することが多い。その結果、炉内に温度分布が発生し、上記のようなガスの付着(吸着)、脱離現象が発生する。このようなガスの付着(吸着)、脱離現象が起こっていることは、真空焼成時における炉内の圧力経時変化、具体的には、昇温に伴い、「金属ペーストに含まれる有機成分やその分解物がガスとして揮発すること」により圧力は一時的に高くなった後に低下するが、その後更に昇温を続けると、圧力が再び一時的に上昇するという変化からも確認される。
 本発明者らは、これらの推定機構に基づき、これら問題を解決する手段として、コンタミが発生しない耐熱性容器中で焼成することを着想し、実際に試みた。その結果、真空焼成を外部から酸化性ガスが混入し難い耐熱性容器中で行った場合には、前記問題が起こり難くなっていると共に、金属層表面についてのEDS分析でTiおよびOの検出値が著しく低下することを確認し、上記方法を採用することとした。
 (2)問題ii)の原因として、チタン成分を含む金属ペースト層を焼結する時に金属層が十分に緻密化しないことが挙げられる。この問題を解決すべく、本発明者らは、Cu粉末として、大粒径と小粒径との混合粉末を使用することとした。
 (3)問題iv)の原因として、水素化チタン粉末を過剰に使用することが挙げられる。この問題を解決すべく、本発明者らは、水素化チタン粉末の配合量を最適化した。
 以上の検討事項を基に、本発明者らは以下の発明を完成させた。なお、本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものではない。
 第1の本発明は、窒化物セラミックス焼結体基板(10)と、該基板(10)表面の一部を被覆する所定の形状を有する金属層(30)とが、厚さ0.2μm以上0.7μm以下の窒化チタン層(20)を介して接合されたメタライズド基板(100)を製造する方法であって、100質量部の銅粉末、20質量部以上60質量部以下の銀粉末、および、2.0質量部以上7.5質量部以下の水素化チタン粉末を含有してなり、前記銅粉末が平均粒子径1.0μm以上5.0μm以下の銅粉末と平均粒子径0.2μm以上0.6μm以下の銅粉末との混合粉末であり、前記銀粉末の平均粒子径が0.1μm以上1.0μm以下であり、前記水素化チタン粉末の平均粒子径が1.0μm以上7.0μm以下である金属ペースト組成物を準備する工程、前記窒化物セラミックス焼結体基板(10)と、該基板(10)上に形成された、焼成後において前記所定の形状となるような形状を有する、前記金属ペースト組成物からなる金属ペースト層(50)とを有する第一前駆体基板(110)を、該基板(10)上に前記金属ペースト組成物を塗布することによって作製する第一前駆体基板(110)作製工程、および、前記第一前駆体基板(110)を耐熱性容器内に収容し、1.33×10-5Pa以上1.33×10-2Pa以下の圧力条件下で800℃以上950℃以下の温度で焼成する焼成工程、を含んでなり、前記焼成工程において、前記金属ペースト層に含まれるチタン成分を、前記窒化物セラミックス焼結体基板(10)を構成する窒化物セラミックスと優先的に反応させて前記窒化チタン層(20)を形成すると共に、焼成後に得られる前記金属層(30)中に含まれるチタンの含有量を2.0質量%以下、かつ、前記金属ペースト層中に含まれるチタン量の1/2以下とすることを特徴とする方法である。
 第1の本発明の金属ペースト組成物において、平均粒子径0.1μm以上1.0μm以下の銀粉末の質量(a)と平均粒子径0.2μm以上0.6μm以下の銅粉末の質量(b)との質量比(a/b)は0.4以上5.0以下であることが好ましく、平均粒子径1.0μm以上5.0μm以下の銅粉末の質量(c)と平均粒子径0.2μm以上0.6μm以下の銅粉末の質量(b)との質量比(c/b)は0.5以上15.0以下であることが好ましい。
 第2の本発明は、第1の本発明の方法で製造されるメタライズド基板(100)である。
 第3の本発明は、窒化物セラミックス焼結体基板(10)と、該基板(10)表面の一部を被覆する所定の形状を有する金属層(32)とが、厚さ0.2μm以上0.7μm以下の窒化チタン層(22)を介して接合されたメタライズド基板(102)を製造する方法であって、100質量部の銅粉末、20質量部以上60質量部以下の銀粉末、および、2.0質量部以上10.0質量部以下の水素化チタン粉末を含有してなり、前記銅粉末が平均粒子径1.0μm以上5.0μm以下の銅粉末と平均粒子径0.2μm以上0.6μm以下の銅粉末との混合粉末であり、前記銀粉末の平均粒子径が0.1μm以上1.0μm以下であり、前記水素化チタン粉末の平均粒子径が1.0μm以上7.0μm以下である第一金属ペースト組成物を準備する工程、銅粉末および銀粉末を含みチタン成分を含まない第二金属ペースト組成物を準備する工程、前記窒化物セラミックス焼結体基板(10)と、該基板(10)上に形成された、焼成後において前記所定の形状となるような形状を有する、前記第一金属ペースト組成物からなる第一金属ペースト層(52)と前記第二金属ペースト組成物からなる第二金属ペースト層(54)との積層体からなる金属ペースト層とを有する第二前駆体基板(112)を、該基板(10)上に前記第一金属ペースト組成物および前記第二金属ペースト組成物を順次塗布することによって作製する第二前駆体基板(112)作製工程、および、前記第二前駆体基板(112)を耐熱性容器内に収容し、1.33×10-5Pa以上1.33×10-2Pa以下の圧力条件下で800℃以上950℃以下の温度で焼成する焼成工程、を含んでなり、前記焼成工程において、前記第一金属ペースト層に含まれるチタン成分を、前記窒化物セラミックス焼結体基板(10)を構成する窒化物セラミックスと優先的に反応させて前記窒化チタン層(22)を形成すると共に、焼成後に得られる前記金属層(32)中のチタンの含有量を2.0質量%以下、かつ、前記第一金属ペースト層中に含まれるチタン量の1/2以下とすることを特徴とする方法である。
 第3の本発明の第一金属ペースト組成物において、平均粒子径0.1μm以上1.0μm以下の銀粉末の質量(a)と平均粒子径0.2μm以上0.6μm以下の銅粉末の質量(b)との質量比(a/b)は0.4以上5.0以下であることが好ましく、平均粒子径1.0μm以上5.0μm以下の銅粉末の質量(c)と平均粒子径0.2μm以上0.6μm以下の銅粉末の質量(b)との質量比(c/b)は0.5以上15.0以下であることが好ましい。
 第4の本発明は、第2の本発明の方法で製造されるメタライズド基板(102)である。
 第1の本発明のメタライズド基板(100)を製造する方法によると、コンタミのない雰囲気下において金属ペースト層(50)を焼成することにより、チタン成分が金属層(30)中に拡散することを防ぎ、金属層(30)と窒化物セラミックス焼結体(10)との界面において窒化チタン層(20)を十分に形成させ、該金属層(30)の密着性を良好することができ、金属層(30)の抵抗値が低くなり、表面のメッキ性が良好となる。また、大小二種類の粒径を有する銅粉末を備えた金属ペースト組成物を用いることにより、金属層(30)が焼成により十分に緻密化するので金属層(30)の導電性が良好になる。また、金属ペースト組成物中の水素化チタン粉末の含有量を所定量に規定しているので、金属層(30)をファインパターンとすることができる。
 第3の本発明のメタライズ基板(102)を製造する方法によると、上記第1の方法による効果に加え、チタン成分を含まない第二金属ペースト層(54)を、チタン成分を含む第一金属ペースト層(52)の上に形成して、これを焼成しているので、チタン成分が金属層(32)の表面方向へ移動するのをより効果的に防止できる。よって、金属層(32)の導電性をより向上できると共に、金属層(32)の表面荒れ、メッキ性をより改善することができる。
本発明のメタライズド基板100、102の層構成を示す概念図である。 第1の本発明のメタライズド基板100の製造方法の工程を示す概念図である。 第3の本発明のメタライズド基板102の製造方法の工程を示す概念図である。
 100、102 メタライズド基板
 110 第一前駆体基板
 112 第二前駆体基板
 10 窒化物セラミックス焼結体基板
 20、22 窒化チタン層
 30、32 金属層
 50 金属ペースト層
 52 第一金属ペースト層
 54 第二金属ペースト層
 第1の本発明の方法は、窒化物セラミックス焼結体基板上に、所定の金属ペースト組成物を塗布して、第一前駆体基板とし、これを所定条件にて焼成して、メタライズド基板(第2の本発明)を製造する方法である。また、第3の本発明の方法は、窒化物セラミックス焼結体基板上に、第一金属ペースト組成物および第二金属ペースト組成物を順次塗布して、第二前駆体基板とし、これを所定条件にて焼成して、メタライズド基板(第4の本発明)を製造する方法である。
 <メタライズド基板100、102>
 まず、これらの第1および第3の本発明の方法により製造されるメタライズド基板100、102について説明する。図1に層構成の概念図を示すように、メタライズド基板100は、窒化物セラミックス焼結体基板10上に、窒化チタン層20および金属層30をこの順で備えて構成される。また、メタライズド基板102は、窒化物セラミックス焼結体基板10上に、窒化チタン層22および金属層32をこの順で備えて構成される。
 (窒化物セラミックス焼結体基板10)
 窒化物セラミックス焼結体基板10は、所定形状の窒化物セラミックスグリーンシートあるいは窒化物セラミックス顆粒を加圧成形した加圧成形体を焼成する公知の方法により作製することができる。その形状、厚み等は特に制限されない。焼結体原料には、通常用いられる希土類酸化物等の焼結助剤を含んでいてもよい。窒化物セラミックス焼結体基板10の表面は、必要に応じて研磨して表面を平滑にしてもよい。窒化物セラミックスとしては、例えば、窒化アルミニウム、窒化珪素、窒化ホウ素、窒化ジルコニウム、窒化チタン、窒化タンタル、窒化ニオブ等が挙げられる。中でも、高熱伝導率等の特性を有する窒化アルミニウムを用いることが好ましい。
 (窒化チタン層20、22)
 第1の本発明の方法において形成される窒化チタン層20は、窒化物セラミックス焼結体基板10上にチタン成分を含む金属ペースト組成物を塗布焼成することにより、窒化物セラミックス焼結体基板10と金属層30との間に形成される層である。窒化チタン層20は、金属ペースト組成物中のチタン成分と、窒化物セラミックス焼結体基板10中の窒素成分とが反応することにより、窒化物セラミックス焼結体基板10と金属層30との界面において形成される。チタンと窒化物アルミニウム焼結体との反応は極めて高速で進行し、濡れ性が良いことが確認されており、該窒化チタン層20が形成されることにより、金属層30の密着性が強固なものとなると考えられる。
 第3の本発明の方法において形成される窒化チタン層22は、第一金属ペースト層52中のチタン成分と、窒化物セラミックス焼結体基板10中の窒素成分とが反応することにより、窒化物セラミックス焼結体基板10と金属層32との界面において形成される。窒化チタン層22が形成されることによる効果については、窒化チタン層20と同様である。
 窒化チタン層20、22は、窒化チタン以外に、銅、銀、セラミックス成分等を含んでいてもよく、窒化チタン層20、22全体の質量を基準(100質量%)として、窒化チタンを50質量%以上、好ましくは70質量%以上含んでいる。窒化チタン層20、22の厚みは特に限定されないが、メタライズ層の密着性を良好なものとする点から、下限は0.05μm以上、好ましくは0.10μm以上、より好ましくは0.20μm以上であり、上限は特に限定されないが、実際の製造上、通常3.0μm以下、好ましくは2.0μm以下、より好ましくは0.7μm以下となる。なお、この窒化チタン層20、22の厚みは、メタライズド基板100、102の断面を電子顕微鏡で観察することにより確認できる。
 (金属層30、32)
 第1の本発明の方法において、窒化物セラミックス焼結体基板10上に、金属ペースト組成物を塗布し、得られた第一前駆体基板110を焼成することにより、窒化チタン層20上に、金属層30が形成される。
 第3の本発明の方法において、窒化物セラミック焼結体基板10上に第一金属ペースト層52を積層し、さらに、該第一金属ペースト層52上に第二金属ペースト層54を積層し、得られた第二前駆体基板112を焼成することにより、窒化チタン層22上に、金属層32が形成される。
 金属層30、32は、銅100質量部に対して、銀を15質量部以上80質量部以下、好ましくは20質量部以上60質量部以下含み、チタンを5.0質量部以下、好ましくは3.0質量部以下含んで構成される。
 また、金属層30、32中のチタンの含有量は、2.0質量%以下、好ましくは1.5質量%以下であり、かつ、金属ペースト層50または第一金属ペースト層52中に含まれるチタン量(質量)の1/2以下、好ましくは1/3以下である。
 銀の含有量が少なすぎると、金属層30、32の抵抗が高くなる虞があり、逆に銀の含有量が多すぎると、材料価格が高くなり、また、金属層30、32の融点が低くなることによると考えられるが、精密な配線パターンが形成できない虞がある。なお、上記範囲内において、銀の含有量を多くすれば、金属層30、32中のボイドを減少させる、金属層30、32の抵抗値を下げるという効果がある。
 本発明においては、窒化物セラミックス焼結体基板10および金属ペースト層50からなる第一前駆体基板110、あるいは、窒化物セラミックス焼結体基板10、第一金属ペースト層52および第二金属ペースト層54からなる第二前駆体基板112を、耐熱性容器内において、酸化性ガスのコンタミのない条件下で焼成することにより、チタン成分が金属層30、32の表面方向へ移動することを制限する。このため、金属層30、32中のチタン含有量を上記のように低減することができる。なお、チタンの含有量が多すぎると、金属層30、32の抵抗が高くなる上に、焼成時に生成する液相の濡れ性が過度に向上するために配線パターンから液相成分がはみ出す為、精密な配線パターンが形成できない虞がある。チタンの含有量の下限は特に限定されず、0質量%とすることが好ましいのであるが、実際に製造した場合、通常0.2質量%以上、場合によっては0.5質量%以上となる。
 上記した金属層30、32の構成成分の質量比は、製造されたメタライズド基板100、102を分析して算出した値に基づいている。メタライズド基板100、102から質量比を分析するには、酸等によるエッチング処理により金属層30、32のみ(窒化チタン層20、22の部分を除く)を溶解させ、得られた溶液を分析することにより実施することができる。金属層30、32の厚みは、下限は配線パターンの導電性を良好にする観点から好ましくは3μm以上、より好ましくは5μm以上であり、上限は特に限定されないが、金属層30、32が厚すぎると、導電性を向上させる効果が飽和すると共に、精密配線とすることが難しくなる虞があることから、好ましくは200μm以下、より好ましくは100μm以下である。
 本発明においては、耐熱性容器内において、酸化性ガスのコンタミのない条件下で焼成することにより、チタン成分が金属層30、32の表面方向へ移動することが制限されるので、金属層30、32の表層部におけるチタン濃度を低くすることができる。金属層30、32の表層部におけるチタン濃度は、エネルギー分散型X線分析(EDS)法を用い、電子線の加速電圧を10kVで測定したときの銅及び銀の質量濃度の和(A)とチタンの質量濃度(B)との比(B/A)で、0.20以下、好ましくは0.15以下、より好ましくは0.13以下となる濃度である。金属層30、32の表層部におけるチタン濃度が上記範囲を外れて高すぎると、金属層30、32の表面が変色し、メッキ層と金属層30、32との密着性が低下する。なお、従来のメタライズド基板の製造方法における一般的な焼成方法を採用して、焼結体基板上の金属ペースト層を焼成した場合は、金属層の表面は変色していた。このため、通常のメッキの前処理方法では金属層とメッキ層との十分な密着性を得ることができず、良好な密着性を有するメッキ層を形成するためには、金属層表面を物理的な研磨等により処理する必要があった。なお、上記B/Aの値は、限りなくゼロに近い方が好ましいのであるが、製造上の限界として、下限が0.01以上、場合によっては0.03以上となる。
 第1および第3の本発明の方法においては、後に説明するように、特定の焼成方法を採用している。これにより、上記B/Aの値を上記好ましい範囲にすることができる。本発明者らの見解によると、金属層30、32表面の変色は、金属層30、32の表面に存在するチタンが酸化されるために起こるものであると考えられる。よって、従来のメタライズ基板の製造方法においては、焼成過程において金属層中のチタンが金属層の表面に移動し、基板表面において雰囲気中の微量不純物によって酸化を受けることにより金属層の表面にチタンの酸化物が偏析するため、金属層表面近傍のチタン濃度が高くなり、これによりB/A値が高くなっていると考えられる。
 第1および第3の本発明の方法においては、特定の焼成方法を採用することにより、金属層30、32表面へのチタンの移動を防ぎ、これにより、窒化チタン層20、22が十分に形成されるため、従来のメタライズ基板に比べて、金属層30、32の密着性が良好となる。なお、従来の方法によって得られたメタライズ基板であっても、変色した表面をエッチング、研磨等により処理すれば、金属層表面のB/A値を上記した好ましい範囲に調整することはできる。しかしながら、このような基板では、窒化チタン層20、22が十分に形成されていないため、金属層30、32の密着強度は不十分なままである。
 なお、本発明の方法では、金属層30、32の表面を研磨等しないで、金属層30、32を形成後そのままの状態にてB/A値を前記好ましい範囲とすることができる。また、本発明のメタライズド基板100、102は、金属層30、32の表面をエッチングまたは研磨により処理して、表面メッキ性をさらに向上させるべく、金属層30、32表面のチタン濃度をさらに低減させることもできる。
 第3の本発明の方法においては、第一金属ペースト層52上に水素化チタン粉を含まない第二金属ペースト層54を形成して、これを焼成して金属層32を形成しているので、金属層32表面へのチタンの移動がさらに抑制される。このため、B/A値をより小さくすることができ、好ましくは0.10以下とすることができる。
 (メタライズド基板100、102の密着強度および導電性)
 第1および第3の本発明の方法により製造されるメタライズド基板100、102は、上記したように、窒化物セラミックス焼結体基板10と金属層30、32との間に、窒化チタン層20、22を備えているため、金属層30、32の密着強度を高くすることができ、50N以上、好ましくは80N以上、より好ましくは90N以上、さらに好ましくは100N以上の密着強度を有するメタライズド基板100、102とすることができる。
 また、第3の本発明の方法により製造されるメタライズド基板102は、上記したように、第一金属ペースト層52上に水素化チタン粉を含まない第二金属ペースト層54を形成して、これを焼成して金属層32を形成しているので、金属層32表面へのチタンの移動がさらに抑制される。このため、窒化チタン層22を十分に形成することができ、金属層32の密着強度をより高くすることができる。このため、メタライズド基板102における金属層32の密着強度は、特に、110N以上とすることができる。
 なお、配線パターンの接合強度は、42アロイ製ネイルヘッドピンで先端部の径がφ1.1mmで、且つ先端部表面にニッケルメッキを施したものを用い、メタライズド基板100、102の金属層30、32表面にNi/Auメッキを施し、このメッキ膜にネイルヘッドピンをPb-Sn半田にて垂直に半田付けし、このネイルヘッドピンを10mm/minの速度で垂直方向に引っ張り、ネイルヘッドピンが剥がれた時の強度を接合強度とした。
 また、本発明のメタライズド基板100、102は、金属層30、32のチタンの含有量を所定量以下とし、所定量の銀を含み、また、金属層30、32中のボイドを減少させることにより、導電性を向上させることができ、四端子法にて測定した体積抵抗率で、10.0×10-8Ω・m以下、好ましくは7.5×10-8Ω・m以下、より好ましくは7.0×10-8Ω・m以下とすることができる。
 また、上記したように、第3の本発明の方法では、第二金属ペースト層54の存在により、さらに金属層32中のチタン成分が低減され、金属層32の導電性が向上する。このため、体積低効率を、さらに好ましくは6.0×10-8Ω・m以下、特に好ましくは5.0×10-8Ω・m以下とすることができる。
 <第1の本発明のメタライズド基板の製造方法>
 以下、第1の本発明のメタライズド基板100の製造方法について、その工程順に説明する。図2に第1の本発明の方法の工程の概要を示した。第1の本発明の方法は、金属ペースト組成物を準備する工程、および、該金属ペースト組成物を窒化物セラミックス焼結体基板10上に塗布して第一前駆体基板110を作製する工程、該第一前駆体基板を焼成する工程、を備えて構成される。
 (金属ペースト組成物を準備する工程)
 金属ペースト層50を形成するための金属ペースト組成物は、銅粉、銀粉、水素化チタン粉を含んでおり、その他、バインダー、溶媒を含むものであることが好ましい。AlNメタライズ基板を形成するために従来用いていた高融点金属ペーストには、窒化アルミニウム粉末が加えられており、これにより、高融点金属層と窒化アルミニウム焼結体基板との密着性を向上させていたが、本発明のペースト組成物には、セラミック粉末を添加する必要はない。これにより、絶縁成分であるセラミック成分がなくなるため、形成される金属層30の導電性がより良好なものとなる。
 金属ペースト組成物は、銅粉100質量部に対して、銀粉を15質量部以上80質量部以下、好ましくは20質量部以上60質量部以下を含み、水素化チタン粉を下限が1.0質量部以上、好ましくは2.0質量部以上、上限が13.0質量部以下、好ましくは10.0質量部以下、より好ましくは7.5質量部以下、特に7.0質量部以下含んでいる。
 金属ペースト組成物中の銅粉は、大小二種類の平均粒子径を有するものの混合物であることが好ましく、大粒径の銅粉の平均粒子径は、好ましくは1.0μm以上5.0μm以下、より好ましくは1.5μm以上3.0μm以下であり、小粒径の銅粉の平均粒子径は、好ましくは0.1以上1.0μm未満、より好ましくは0.2μm以上0.6μm以下である。また、銀粉の平均粒子径は、好ましくは0.1μm以上1.0μm以下、より好ましくは0.2μm以上0.8μm以下である。また、水素化チタン粉の平均粒子径は、下限が好ましくは0.1μm以上、より好ましくは0.5μm以上であり、さらに好ましくは1.0μm以上であり、上限が好ましくは20.0μm以下、より好ましくは10.0μm以下、さらに好ましくは7.0μm以下である。
 このような粒子径を有する銅粉および銀粉を含有する金属ペースト組成物を用いることにより、金属ペースト層50を金属粉が高密度に充填された構造とすることができるとともに焼成時に急速且つ均一に液相が生成することによって、緻密な金属層30を形成できる。これにより、金属層30を緻密にできれば、金属層30上にメッキ層を形成する場合において、めっき液が金属層30に浸透し金属層30内に残留することによって発生する、金属層30の変色や加熱時のメッキ膜の膨れ等の不具合を防ぐことができる。なお、上記平均粒子径は、日機装株式会社製マイクロトラックHRAを用いてレーザー回折・散乱法によって測定したメジアン径である(本明細書において、他の平均粒子径についても同様である。)。
 金属ペースト組成物において、平均粒子径0.1μm以上1.0μm以下の銀粉の質量(a)と平均粒子径0.1μm以上1.0μm未満(好ましくは0.2μm以上0.6μm以下)の銅粉の質量(b)との質量比(a/b)は、0.4以上5.0以下であることが好ましい。a/bをこの範囲とすることにより、緻密な金属層30を形成することができる。さらに、印刷性、得られるメタライズド基板100の特性を考慮すると、好ましくは0.5以上4.5以下、より好ましくは0.5以上4.0以下である。
 また、平均粒子径1.0μm以上5.0μm以下の銅粉の質量(c)と平均粒子径0.1μm以上1.0μm未満(好ましくは0.2μm以上0.6μm以下)の銅粉の質量(b)との質量比(c/b)は、好ましくは0.5以上15.0以下、より好ましくは1.0以上12.0以下である。c/bをこの範囲とすることにより、緻密な金属層30を形成でき、微細な配線パターンを形成できる。
 金属ペースト組成物に含まれるバインダーとしては、公知のものが特に制限無く使用可能である。たとえば、ポリアクリル酸エステル、ポリメタクリル酸エステル等のアクリル樹脂、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ニトロセルロース、セルロースアセテートブチレート等のセルロース樹脂、ポリビニルブチラール、ボリビニルアルコール、ポリ酢酸ビニル等のビニル基含有樹脂などを使用できる。また、印刷性等を改善する目的で、二種以上の樹脂を混合して使用することもできる。これらの中でも、不活性雰囲気中の焼成において残渣が少ないことから、アクリル樹脂が最も好ましい。
 金属ペースト組成物に含まれる溶媒としては、公知のものが特に制限無く使用可能である。たとえば、トルエン、酢酸エチル、テルピネオール、ブチルカルビトールアセテート、テキサノール等を使用できる。また、印刷適性や保存安定性等を向上する目的で、公知の界面活性剤、可塑剤等を添加することができる。好適に使用できる分散剤としては、リン酸エステル系、ポリカルボン酸系などを例示することができる。
 (第一前駆体基板110作製工程)
 上記工程で準備した金属ペースト組成物を、焼成後において所望する金属層30となるような形状で、窒化物セラミックス焼結体基板10上に塗布して、金属ペースト層50を形成し、基板10および金属ペースト層50からなる第一前駆体基板110を作製する。金属ペースト組成物の塗布は、精密配線を形成する観点から、印刷により行うことが好ましい。印刷としては、スクリーン印刷、インクジェット印刷、オフセット印刷等を採用することができる。ペーストは、採用する印刷法に応じて適宜最適な粘度に調整すればよいが、スクリーン印刷法を用いる場合には、操作性及びパターン再現性を考慮すると、25℃において、粘度が50~400Pa・sとなるように金属ペースト中の各成分の量を調整したものを使用することが好ましい。
 (焼成工程)
 焼成工程においては、上記で作製した窒化物セラミックス焼結体基板10および金属ペースト層50からなる第一前駆体基板110を、耐熱性容器内に収容し、非酸化性雰囲気下で焼成する。これにより、窒化物セラミックス焼結体基板10上に窒化チタン層20および金属層30が形成される。
 非酸化性雰囲気としては、真空下、あるいはアルゴンガス、ヘリウムガス等の不活性ガス、または水素ガス雰囲気が挙げられる。また、不活性ガス、および水素ガスの混合雰囲気であってもよい。これらの非酸化性雰囲気の中でも、好ましくは真空下、または不活性ガスと水素ガスの混合ガス雰囲気を採用することが好ましい。真空下で焼成を行う場合、真空度は、雰囲気中の酸素や窒素等の反応性ガスがチタンと反応するのを防ぐ目的からできるだけ高い方がよく、真空度の下限(圧力の上限)は、好ましくは、1.33×10-1Pa、より好ましくは1.33×10-2Paである。なお、真空度の上限(圧力の下限)は、特に制限されるものではないが、工業的な生産を考慮すると1.33×10-5Paである。
 本発明においては、非酸化性雰囲気下、耐熱性容器内で焼成を行うことが好ましい。この耐熱性容器は、第一前駆体基板110を焼成する際に温度に十分耐え得る材質で形成されるものであればよく、焼成時の高温下においても、ガスを透過せず、容器自体からガス発生が無く、且つ気密性の高いものであることが好ましい。この耐熱性容器に好適に使用できる材質を具体的に例示すれば、窒化アルミニウム、窒化ホウ素、窒化ケイ素等の窒化物焼結体、アルミナ、マグネシア、ジルコニア等の酸化物焼結体、インコロイ、ハステロイ等の耐熱合金類、又は石英ガラス等を例示できる。このうち、焼成時の容器内の均熱性を確保するという点で、熱伝導性に優れる窒化物焼結体が好ましい。
 この耐熱性容器は、焼成工程における第一前駆体基板110近傍の雰囲気を他の焼成炉内の雰囲気から遮断し、金属ペースト組成物中のバインダーが分解・飛散して炉壁等に再付着した分解物やその他の汚染源が、焼成炉内の温度上昇に伴い再飛散してペースト層50中のチタン成分と反応するのを抑制する役割を果しているものと考えられる。そのため、この耐熱性容器は、焼成工程における第一前駆体110近傍の雰囲気を他の焼成炉内の雰囲気から遮断できるように蓋ができる構造のものを使用することが好ましい。また、耐熱性容器は、完全な密閉状態にできるものでもよいが、ペースト層50中のバインダーが熱分解して発生するガスを容器外へ放出するできる程度の隙間を有するものであってもよい。また、耐熱性容器の形状は、焼成炉内において、耐熱性容器内の温度分布がないような大きさのものが好ましい。このことからも、耐熱性容器は、熱伝導性に優れる窒化物焼結体からなる容器であることが好ましい。
 本発明においては、第一前駆体110を耐熱性容器内に収納し、非酸化性雰囲気下、好ましくは1.33×10-1Pa~1.33×10-5Pa、より好ましくは1.33×10-2Pa~1.33×10-5Paという圧力下で酸化性ガスの混入を防止しながら真空焼成することにより、金属ペースト層50中におけるチタンが金属層30の表面に移動することを防止し、前記金属ペースト層に含まれるチタン成分を、前記窒化物セラミックス焼結体基板を構成する窒化物セラミックスと優先的に反応させて前記窒化チタン層を形成すると共に、焼成後に得られる前記金属層中に含まれるチタンの含有量を2.0質量%以下、かつ、前記金属ペースト層中に含まれるチタン量の1/2以下とすることができる。これにより、窒化チタン層20が十分に形成され、金属層30の密着性が良好なものとなる。下記の実施例で示すが、同じ組成の金属ペースト組成物を使用したとしても、窒化アルミニウム焼結体よりなる耐熱性容器内で焼成したものは、金属層30の表面のチタン濃度を低減させることができ、金属層30の体積抵抗率を低減することができ、接合強度を向上させることができる。
 焼成は、金属ペースト組成物が銀成分を含んでいることから、銅の融点(1083℃)以下の温度で実施することができ、高い精度の精密配線パターンを形成するためには、800℃以上950℃以下の温度で実施することが好ましい。上記焼成温度範囲の中で焼成温度を高くすると、金属層30中のボイドが減少するという効果がある。また、焼成時間は、配線パターン、膜厚等に応じて適宜決定してやればよく、上記温度範囲で数十秒以上1時間以下保持してやれば十分である。
 <第3の本発明のメタライズド基板102の製造方法>
 図3にメタライズド基板102の製造方法の概略を示したように、第3の本発明のメタライズド基板102の製造方法においては、まず、第一金属ペースト組成物および第二金属ぺースト組成物をそれぞれ準備し、窒化物セラミック焼結体基板10上に、該第一金属ペースト組成物および第二金属ペースト組成物を順次塗布して、第一金属ペースト層52および第二金属ペースト層54を形成して、第二前駆体基板112を作製し、該第二前駆体基板112を焼成することにより、メタライズド基板102とする。
 窒化物セラミックス焼結体基板10としては、上記した第1の本発明のメタライズド基板100の製造方法におけるものと同様のものを使用できる。
 (第一金属ペースト組成物および第二金属ペースト組成物を準備する工程)
 第一金属ペースト層52を形成するための第一金属ペースト組成物は、銅粉、銀粉、水素化チタン粉を含んでおり、その他、バインダー、分散剤、溶媒を含むものであることが好ましい。また、第二の金属ペースト層54を形成するための第二の金属ペースト組成物は、銅粉および銀粉を含んでおり、同様に、その他、バインダー、分散剤、溶媒を含むものであることが好ましく、第二金属ペースト組成物は、チタン成分を含まない。なお、AlNメタライズ基板を形成するために従来用いていた高融点金属ペーストには、窒化アルミニウム粉末が加えられており、これにより、高融点金属層と窒化アルミニウム焼結体基板との密着性を向上させていたが、本発明のペースト組成物には、セラミック粉末を添加する必要はない。これにより、絶縁成分であるセラミック成分がなくなるため、形成される金属層32の導電性がより良好なものとなる。
 第一金属ペースト層52および第二金属ペースト層54を形成する総ての金属ペースト組成物における銅粉および銀粉の合計量を100質量部として、第一金属ペースト層20を形成する第一金属ペースト組成物中の水素化チタン粉を1質量部以上10質量部以下、特に1質量部以上5質量部以下とすることが好ましい。水素化チタン粉の量が少なすぎると、焼成後の金属層32の密着性が劣る虞がある。一方、水素化チタン粉の量が多すぎると、密着性を向上させる効果が飽和すると共に、金属層32の抵抗が高くなる上に、焼成時に生成する液相の濡れ性が過度に向上するために配線パターンから液相成分がはみ出す為、精密な配線パターンが形成できない虞がある。なお、第一金属ペースト層52および第二金属ペースト層54を形成する総てのペースト組成物における銅粉および銀粉の合計量を基準としたのは、第二金属ペースト層54を厚く形成することができれば、第一金属ペースト層52中の水素化チタン粉の配合量を増加することができるからである。
 第一金属ペースト層52および第二金属ペースト層54それぞれの層において、銀粉および銅粉の質量比は、0.15以上0.8以下(銀粉/銅粉)とすることが好ましい。銀粉の量が少なすぎると、金属層32の抵抗が高くなる虞があり、逆に銀の含有量が多すぎると、材料価格が高くなり、また、金属層32の融点が低くなることによると考えられるが、精密な配線パターンが形成できない虞がある。なお、上記範囲内において、銀の含有量を多くすれば、金属層32中のボイドを減少させる、金属層32の抵抗値を下げるという効果がある。
 第一金属ペースト層52および第二金属ペースト層54における、銀粉および銅粉の質量比は、それぞれ上記範囲内であれば、互いに異なっていてもよい。なお、第二金属ペースト層54を、上記範囲から外れて、銅のみにより構成した場合は、金属層32中にボイドが発生する虞がある。これは、焼成により第一金属ペースト層52中の銀が第二金属ペースト層54側つまり金属層32の表面側に移行することによるためであると考えられる。
 具体的には、第一金属ペースト組成物は、銅粉100質量部に対して、好ましくは銀粉を15質量部以上80質量部以下、より好ましくは20質量部以上60質量部以下含み、水素化チタン粉を下限が好ましくは1.0質量部以上、より好ましくは2.0質量部以上、上限が好ましくは20.0質量部以下、より好ましくは15.0質量部以下、さらに好ましくは10.0質量部以下含んでいる。
 また、第二金属ペースト組成物は、銅粉100質量部に対して、銀粉を好ましくは15質量部以上80質量部以下、より好ましくは20質量部以上60質量部以下含んでいる。
 第一および第二金属ペースト組成物中の銅粉の平均粒子径は、特に制限されるものではなく、従来のペーストに使用されるものと同様の粒子径であればよい。具体的には、該銅粉は、平均粒子径が0.1μm以上5.0μm以下のものを使用することができる。特に、該銅粉は、平均粒子径が好ましくは1.0μm以上5.0μm以下、より好ましくは1.5μm以上3.0μm以下のものを主成分として使用することが好ましい。平均粒子径が1.0μm以上5.0μm以下の銅粉を主成分とする場合には、全銅粉の50質量%未満の範囲で、平均粒子径が好ましくは0.1μm以上1.0μm未満、より好ましくは0.2μm以上0.6μm以下の銅粉を配合することもできる。
 なお、第一および第二金属ペースト組成物中の銅粉は、大小二種類の平均粒子径を有するものの混合物であることが好ましく、特にチタン成分を含む第一金属ペースト組成物の銅粉は、大小二種類の平均粒子径を有するものの混合物であることが好ましい。大粒径および小粒径のそれぞれの銅粉の、好ましい粒子径、および、これら大小二種類の粒径の銅粉を用いる効果については、第一の本発明の方法における金属ペースト組成物中の銅粉の場合と同様である。
 また、銀粉の平均粒子径も、特に制限されるものではなく、従来のペーストに使用されるものと同様の粒子径であればよい。具体的には、銀粉は、平均粒子径が下限が好ましくは0.1μm以上、より好ましくは0.5μm以上であり、上限が好ましくは5.0μm以下、より好ましくは4.0μm以下である。
 上記範囲の平均粒子径を満足する銅粉、銀粉を使用することにより、スクリーン印刷の印刷性がよくなり、パターン(金属層32)のはみ出しを抑制することができる。さらに、緻密な金属層32を形成できる。金属層32を緻密にできれば、金属層32上にメッキ層を形成する場合において、めっき液が金属層32に浸透し金属層32内に残留することによって発生する、金属層32の変色や加熱時のメッキ膜の膨れ等の不具合を防ぐことができる。
 また、第一金属ペースト組成物中の水素化チタン粉の平均粒径は、第1の本発明の方法における金属ペースト組成物中の水素化チタン粉の場合と同様である。
 本発明のペースト組成物に含まれるバインダーとしては、第一の本発明の方法における金属ペースト組成物中のバインダーと同様のものを用いることができる。
 本発明のペースト組成物に含まれる溶媒としては、第一の本発明の方法における金属ペースト組成物中の溶媒と同様のものを用いることができる。
 (第二前駆体基板112作製工程)
 第二前駆体基板112作製工程においては、窒化物セラミックス焼結体基板10上に、上記で準備した第一金属ペースト組成物および第二金属ペースト組成物を順次塗布して、窒化物セラミックス焼結体基板10上に、第一金属ペースト層52および第二金属ペースト層54をこの順で積層して、第二前駆体基板112を作製する。
 第一および第二金属ペースト層52、54は、焼成後に所望の金属層32の形状となるような形状で、基板10上に第一および第二金属ペースト組成物を塗布して形成する。金属ペースト組成物の塗布は、精密配線を形成する観点から、印刷により行うことが好ましい。印刷方法は、第1の本発明の方法における場合と同様である。第一金属ぺースト層52を形成後にこれを乾燥させてから、第二金属ペースト層54を形成して、その後、第二金属ペースト層54を乾燥させてもよいし、第一金属ペースト層52および第二金属ペースト層54を形成後に、これらをまとめて乾燥させてもよい。乾燥方法は、特に限定されず、ペースト層中の溶媒を揮発させることができる方法であればよい。例えば、80~120℃程度で1分から1時間程度乾燥させる方法が挙げられる。
 本発明のメタライズド基板102の製造方法においては、水素化チタン粉を含む第一金属ペースト層52とこれを含まない第二金属ペースト層54とを積層し焼成して、窒化チタン層22および金属層32を形成する。この窒化チタン層22は、第一金属ペースト層52中のチタン成分と、窒化物セラミックス焼結体基板10中の窒素成分とが反応することにより、窒化物セラミックス焼結体10と金属層32との界面に形成される。
 さらに、第3の本発明の方法においては、水素化チタン粉を含まない第二金属ペースト層54が存在することにより、チタン成分が金属層32の表面に移動することが抑制されている。よって、第1の本発明の方法と同様に、特定のコンタミのない焼成条件において焼成することによる効果と相俟って、チタン成分の金属層32表面への移動がさらに抑制されるので、金属層32表面のメッキ性がさらに良好なものとなり、金属層32の表面のクレーターをさらに低減できる。また、窒化チタン層22が、窒化物セラミックス焼結体基板10と金属層32との界面において十分に形成されることにより、金属層32の密着性がさらに良好なものとなる。
 第一金属ペースト層52の厚さは、好ましくは3μm以上150μm以下、より好ましくは5μm以上70μm以下である。第二金属ペースト層54の厚さは、好ましくは3μm以上150μm以下、より好ましくは5μm以上70μm以下である。第一金属ペースト層52と第二の金属ペースト層54の厚さの比は、好ましくは0.1以上10.0以下(第一金属ぺースト層52/第二金属ペースト層54)、より好ましくは0.2以上5.0以下である。
 (焼成工程)
 焼成工程においては、上記で作製した窒化物セラミックス焼結体基板10、第一金属ペースト層52、および、第二金属ペースト層54からなる第二前駆体基板112を焼成する。これにより、窒化物セラミックス焼結体基板10上に窒化チタン層22および金属層32が形成される。
 本発明においては、第二前駆体112を耐熱性容器内に収納し、非酸化性雰囲気下、好ましくは1.33×10-1Pa~1.33×10-5Pa、より好ましくは1.33×10-2Pa~1.33×10-5Paという圧力下で酸化性ガスの混入を防止しながら真空焼成することにより、前記第一金属ペースト層52に含まれるチタン成分を、前記窒化物セラミックス焼結体基板10を構成する窒化物セラミックスと優先的に反応させて前記窒化チタン層22を形成すると共に、焼成後に得られる前記金属層32中のチタンの含有量を2.0質量%以下、かつ、前記第一金属ペースト層52中に含まれるチタン量の1/2以下とすることができる。
 非酸化性雰囲気、耐熱性容器については、第一の本発明の方法の焼成工程における場合と同様である。また、非酸化性雰囲気、耐熱性容器を採用することによる効果も同様である。
 第3の本発明の方法においては、水素化チタン粉を含まない第二金属ペースト層54が存在していることにより、第一金属ペースト層52中におけるチタンが金属層32の表面に移動することが防がれているのであるが、上記した特殊な焼成条件を採用することで、第一の金属ペースト層52中におけるチタンが金属層32の表面に移動することがより効果的に防がれる。これにより、窒化チタン層22が十分に形成され、金属層32の密着性が良好なものとなると共に、金属層32表面のチタン濃度が抑えられ、金属層32表面のメッキ性が良好となり、金属層32表面のクレーターが低減する、という本発明の効果がより顕著に発揮される。
 焼成は、第一および第二金属ペースト組成物が銀成分を含んでいることから、銅の融点(1083℃)以下の温度で実施することができ、高い精度の精密配線パターンを形成するためには、800℃以上950℃以下の温度で実施することが好ましい。上記焼成温度範囲の中で焼成温度を高くすると、金属層32中のボイドが減少するという効果がある。また、焼成時間は、配線パターン、膜厚等に応じて適宜決定してやればよく、上記温度範囲で数十秒以上1時間以下保持してやれば十分である。
[第1の本発明の方法、第2の本発明のメタライズド基板の実施例および比較例]
 <実施例1>
 (ペースト組成物の作製)
 平均粒子径が0.3μmである銅粉末(銅粉末(b))9質量部、平均粒子径が2μmである銅粉末(銅粉末(c))91質量部、平均粒子径が0.6μmの銀粉末(a)23質量部及び平均粒子径が5μmである水素化チタン粉末3.8質量部と、ポリアルキルメタクリレートをテルピネオールに溶解させたビヒクルとを乳鉢を用いて予備混合した後、3本ロールミルを用いて分散処理することにより、金属ペースト組成物を作製した。
 (メタライズド基板の製造)
 作製した前記金属ペースト組成物をスクリーン印刷法にて厚さ0.64mmの窒化アルミニウム焼結体基板上((株)トクヤマ製、商品名SH-30)に印刷し、100℃で10分間乾燥させた。次いで、真空中(真空度4×10-3Pa~8×10-3Pa)、850℃にて30分間焼成することにより、メタライズド基板を得た。この際、窒化アルミニウム製のセッター内(耐熱性容器内)に基板を収容した状態にて基板の焼成をおこなった。
 得られたメタライズド基板のメタライズ表面の色調は、淡橙色であった。メタライズ層(金属層)の厚みは15μmであった。以上のペーストの組成を表1に示し、メタライズド基板の焼成温度、焼成時間、及びメタライズ表面の色調を表2に示す。得られたメタライズド基板は、以下の分析、評価を行った。
 <メタライズ層(金属層)の分析>
 (金属層の組成分析)
 メタライズド基板を50%硝酸水溶液中に浸漬し、金属層を溶解し、得られた溶液及び黒色の沈殿物を全て回収した。この際、金属層を除去した基板には、黄金色の窒化チタン層が残存していた。回収した溶液に更にフッ化水素酸及び過酸化水素を加え、黒色の沈殿物を全て溶解した後、誘導結合プラズマ(ICP)発光分析により溶液中の銅、銀、チタン成分の定量をおこなった。得られた分析結果を表3に示す(Cu100質量部当りの含有量)。
 (金属層表面のチタン量の分析)
 金属層表面をエネルギー分散型X線分析装置(Oxford Instruments社製INCA Energy350)を備えた走査型電子顕微鏡(日立ハイテクノロジーズ社製S-3400N)にて分析をおこなった。分析時の電子の加速電圧は10kVとし、検出された元素の質量濃度より銅及び銀の質量濃度の和(A)に対するチタンの質量濃度(B)の比(B/A)を算出した。結果を表3に示す。
 (窒化チタン層形成の有無の確認)
 メタライズド基板を樹脂に包埋して研磨し、メタライズド基板断面の観察試料を作製した。得られた観察試料を前記走査型電子顕微鏡にて観察し、基板とメタライズ層との界面における窒化チタン層の厚みを確認した。結果を表3に示す。
 <メタライズド基板の評価>
 (メタライズ端部のはみ出し量の評価)
 印刷・乾燥後のペースト層パターンと基板との境界位置を基準としたときに、焼成後にメタライズ端部からはみ出したメタライズ成分のはみ出し量を以下基準にて評価した。はみ出し量が15μm未満を○、15μm以上50μm未満を△、50μm以上を×として判定した。結果を表3に示す。
 (メタライズの体積抵抗率の評価)
 メタライズド基板に形成したメタライズパターンの体積抵抗率を4端子法により測定した。結果を表3に示す。
 (接合強度の評価)
 得られたメタライズド基板にニッケル無電解メッキを約2.5μm、次いで金無電解メッキを約0.4μm施した後、メタライズ層の接合試験を行った。2mm角のメタライズパターン上に先端部の径がφ1.1mmで、且つ先端部表面にニッケルメッキを施した42アロイ製ネイルヘッドピンを基板と垂直となるようにPb-Sn半田にて半田付けし、ピンを10mm/minの速度で垂直に引張り、基板から破断した際の荷重を記録した。
同様の試験を5回実施して荷重の平均値を算出した。結果を表3に示す。また、破断した際の破壊モードを確認した。結果を表3に示す。
 <実施例2-6、9>
 実施例1において、ペーストの原料組成を表1に示した組成とした以外は、実施例1と同様にしてメタライズド基板を作製し、分析・評価をおこなった。結果を表1、2及び3に示す。
 <実施例7>
 実施例1において、ペーストの原料組成を表1に示した組成とし、焼成温度を900℃とした以外は、実施例1と同様にしてメタライズド基板を作製し、分析・評価をおこなった。結果を表1、2及び3に示す。
 <実施例8>
 実施例1において、ペーストの原料組成を表1に示した組成とし、焼成時の雰囲気をアルゴン95vol%、水素5vol%の混合気体雰囲気とした以外は、実施例1と同様にしてメタライズド基板を作製し、分析・評価をおこなった。結果を表1、2及び3に示す。
 <比較例1-3>
 実施例1において、ペーストの原料組成を表1に示した組成とした以外は、実施例1と同様にしてメタライズド基板を作製し、分析・評価をおこなった。結果を表1、2及び3に示す。
 <比較例4>
 実施例1において、平均粒子径が5.7μmであるAg-Cu粉末(BAg-8、組成:銀72wt%-銅28wt%)90質量部及び平均粒子径が5μmである水素化チタン粉末10質量部と、ポリアルキルメタクリレートをターピネオールに溶解させたビヒクルとを乳鉢を用いて予備混合した後、3本ロールミルを用いて分散処理することにより、ペースト組成物を作製した以外は、実施例1と同様にしてメタライズド基板を作製し、分析・評価をおこなった。結果を表1、2及び3に示す。
 <比較例5>
 実施例1において、平均粒子径が2μmである銅粉末(銅粉末(c))100質量部、平均粒子径が3μmの銀粉末23質量部及び平均粒子径が5μmである水素化チタン粉末6.5質量部と、ポリアルキルメタクリレートをテルピネオールに溶解させたビヒクルとを乳鉢を用いて予備混合した後、3本ロールミルを用いて分散処理することにより、ペースト組成物を作製した以外は、実施例1と同様にしてメタライズド基板を作製し、分析・評価をおこなった。結果を表1、2及び3に示す。
 <比較例6>
 実施例1において、ペーストを印刷した窒化アルミニウム焼結体基板を焼成する際に窒化アルミニウム製のセッターを使用せずに、焼成炉内に直接設置して焼成をおこなった以外は、実施例1と同様にしてメタライズド基板を作製し、分析・評価をおこなった。得られたメタライズド基板のメタライズ表面の色調は、茶色に変色していた。分析・評価の結果を表1、2及び3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 比較例1のペースト組成物は、銀粉の含有量が少なく、また、メタライズド基板における金属層中の銀の含有割合が少ない。このため、得られたメタライズド基板のメタライズパターンの体積低効率が高かった。比較例2のペースト組成物は、水素化チタン粉の含有量が少なく、得られたメタライズド基板において窒化チタン層の形成が認められなかった。このため、メタライズド基板の接合強度が小さかった。比較例3のペースト組成物は、水素化チタン粉の含有量が多く、得られたメタライズド基板における金属層中のチタンの含有割合が多かった。このためメタライズパターンからのはみ出しが多かった。比較例4のペースト組成物は、Ag-Cu粉末(銀72wt%-銅28wt%)を用いたものであり、得られたメタライズド基板における金属層中の銀の含有量が非常に多くなった。このため、このためメタライズパターンからのはみ出しが多かった。比較例5の金属ペースト組成物は、銀粉の粒子径が大きく、銅粉が大粒径のもののみで構成されている。このため、金属層が十分に焼成されていないと考えられ、体積低効率が、本願実施例の値に比べて大きくなった。比較例6では、焼成を窒化アルミニウム製のセッターを使用せずに行っている。よって、金属層表面へのチタン成分の移動が生じ、金属層中のチタンの含有割合が大きく、窒化チタン層の厚さが薄く、B/A値が大きくなり、金属層の接合強度が小さかった。
[第3の本発明の方法、第4の本発明のメタライズド基板の実施例および比較例]
 <実施例10>
 (ペースト組成物1の作製)
 平均粒子径が0.3μmである銅粉末16質量部、平均粒子径が2μmである銅粉末84質量部、平均粒子径が0.6μmの銀粉末41質量部及び平均粒子径が5μmである水素化チタン粉末4.4質量部と、ポリアルキルメタクリレートをタルピネオールに溶解させたビヒクルとを乳鉢を用いて予備混合した後、3本ロールミルを用いて分散処理することにより、ペースト組成物1を作製した。
 (ペースト組成物2の作製)
 平均粒子径が0.3μmである銅粉末16質量部、平均粒子径が2μmである銅粉末84質量部及び平均粒子径が0.6μmの銀粉末41質量部と、ポリアルキルメタクリレートをタルピネオールに溶解させたビヒクルとを乳鉢を用いて予備混合した後、3本ロールミルを用いて分散処理することにより、ペースト組成物2を作製した。
 (メタライズド基板の製造)
 作製した前記ペースト組成物1をスクリーン印刷法にて厚さ0.64mmの窒化アルミニウム焼結体基板上((株)トクヤマ製、商品名SH-30)に印刷し、100℃で10分間乾燥させ第一ペースト層を形成した。この際、第一ペースト層形成前後の基板の質量変化より、基板上に形成された第一ペースト層の質量を算出した。次いで、前記ペースト組成物2をスクリーン印刷法にて第一ペースト層上に重ねて印刷し、100℃で10分間乾燥させ第二ペースト層を形成した。この際、第二ペースト層形成前後の基板の質量変化より、基板上に形成された第二ペースト層の質量を算出した。算出した第一ペースト層および第二ペースト層の質量より、第一ペースト層および第二ペースト層を併せた銅粉と銀粉の合計量を100質量部としたときの水素化チタン粉の量を算出したところ、1.5質量部であった。
 次いで、真空中(真空度4×10-3Pa~8×10-3Pa)、850℃にて30分間焼成することにより、メタライズド基板を得た。この際、窒化アルミニウム製のセッター内(密閉容器内)に基板を収容した状態にて基板の焼成をおこなった。得られたメタライズド基板のメタライズ表面の色調は、淡橙色であった。メタライズ層(金属層)の厚みは25μmであった。以上のペースト組成物1及びペースト組成物2の組成を表4に示し、メタライズド基板の焼成温度、焼成時間、及びメタライズ表面の色調を表5に示す。得られたメタライズド基板は、以下の分析、評価を行った。
 <実施例11~16>
 実施例10において、ペーストの原料組成を表4に示した組成とした以外は、実施例10と同様にしてメタライズド基板を作製し、以下の分析・評価をおこなった。結果を表4、5及び6に示す。
 <比較例7>
 実施例10において、ペーストを印刷した窒化アルミニウム焼結体基板を焼成する際に窒化アルミニウム製のセッターを使用せずに、焼成炉内に直接設置して焼成をおこなった以外は、実施例10と同様にしてメタライズド基板を作製し、以下の分析・評価をおこなった。結果を表4、5及び6に示す。
 <比較例8~10>
 実施例10において、ペーストの原料組成を表4に示した組成とした以外は、実施例10と同様にしてメタライズド基板を作製し、以下の分析・評価をおこなった。結果を表4、5及び6に示す。
 <比較例11>
 (ペースト組成物の作製)
平均粒子径が5.7μmであるAg-Cu粉末(BAg-8、組成:銀72wt%-銅28wt%)90質量部及び平均粒子径が5μmである水素化チタン粉末10質量部と、ポリアルキルメタクリレートをテルピネオールに溶解させたビヒクルとを乳鉢を用いて予備混合した後、3本ロールミルを用いて分散処理することにより、ペースト組成物を作製した。
 (メタライズド基板の製造)
 作製した前記ペースト組成物をスクリーン印刷法にて厚さ0.64mmの窒化アルミニウム焼結体基板上((株)トクヤマ製、商品名SH-30)に印刷し、100℃で10分間乾燥させペースト層を形成した。以降、実施例10と同様にして焼成してメタライズド基板を作製し、実施例10と同様にして分析・評価をおこなった。結果を表4、5及び6に示す。
 <メタライズ層(金属層)の分析>
 (金属層の組成分析)
 金属層の組成は、上記第1の本発明の実施例における場合と同様にして分析した。得られた分析結果を表6に示す(Cu100質量部当りの含有量)。
 (金属層表面のチタン量の分析)
 金属層表面のチタン量は、上記第1の本発明の実施例における場合と同様にして分析した。結果を表6に示す。
 (窒化チタン層形成の有無の確認)
 窒化チタン層形成の有無は、上記第1の本発明の実施例における場合と同様にして確認した。結果を表6に示す。
 <メタライズド基板の評価>
 (金属層表面のクレーターの評価)
 メタライズド基板の金属層表面をレーザー走査顕微鏡にて観察し、金属層表面のクレーター状の欠陥(以下、単にクレーターともいう)の発生頻度を評価した。クレーターを内部に含む最小の円の直径をクレーターの大きさと定義し、その大きさと発生数を計測した。クレーターの大きさが10μm以上であるものの数が、1mm辺り、5個未満を○、5個以上20個未満を△、20個以上を×とした。結果を表6に示す。
 (金属層端部のはみ出し量の評価)
 金属層端部のはみ出し量は、上記第1の本発明の実施例における場合と同様にして評価した。結果を表6に示す。
 (メタライズの体積抵抗率の評価)
 メタライズの体積抵抗率は、上記第1の本発明の実施例における場合と同様にして測定した。結果を表6に示す。
 (接合強度の評価)
 接合強度は、上記第1の本発明の実施例における場合と同様にして評価した。結果を表6に示す。また、破断した際の破壊モードを確認した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 比較例7では、焼成を窒化アルミニウム製のセッターを使用せずに行っている。よって、金属層表面へのチタン成分の移動が生じ、金属層中のチタンの含有割合が大きく、窒化チタン層の厚さが薄く、B/A値が大きくなり、金属層の接合強度が小さかった。比較例8の製造方法では、ペースト組成物1に水素化チタン粉を含有していない為、得られたメタライズド基板において窒化チタン層の形成が認められなかった。このため、メタライズド基板の接合強度が極めて小さく、メタライズド基板にニッケル無電解メッキを施す際、メッキの前処理工程においてメタライズ層が剥離したため、接合強度の試験ができなかった。比較例9の製造方法では、ペースト組成物1中の水素化チタン粉の含有量が多く、得られたメタライズド基板における金属層中のチタンの含有割合が多かった。このためメタライズパターンからのはみ出しが多く体積抵抗率も高くなった。比較例10の製造方法では、第二ペースト層に銀粉が含まれない為、接合強度が小さくなり、破壊モードもメタライズ層内での破壊となった。また、体積低効率が高くなった。比較例11の製造方法では、ペースト組成物としてAg-Cu粉末(銀72wt%-銅28wt%)を用いたものであり、得られたメタライズド基板における金属層中の銀の含有量が非常に多くなった。このため、このためメタライズパターンからのはみ出しが多かった。
 第1および第3の本発明の方法により製造されるメタライズド基板100、102は、半導体素子を搭載するための基板として使用される。

Claims (6)

  1. 窒化物セラミックス焼結体基板と、該基板表面の一部を被覆する所定の形状を有する金属層とが、厚さ0.2μm以上0.7μm以下の窒化チタン層を介して接合されたメタライズド基板を製造する方法であって、
     100質量部の銅粉末、20質量部以上60質量部以下の銀粉末、および、2.0質量部以上7.5質量部以下の水素化チタン粉末を含有してなり、前記銅粉末が平均粒子径1.0μm以上5.0μm以下の銅粉末と平均粒子径0.2μm以上0.6μm以下の銅粉末との混合粉末であり、前記銀粉末の平均粒子径が0.1μm以上1.0μm以下であり、前記水素化チタン粉末の平均粒子径が1.0μm以上7.0μm以下である金属ペースト組成物を準備する工程、
     前記窒化物セラミックス焼結体基板と、該基板上に形成された、焼成後において前記所定の形状となるような形状を有する、前記金属ペースト組成物からなる金属ペースト層とを有する第一前駆体基板を、該基板上に前記金属ペースト組成物を塗布することによって作製する第一前駆体基板作製工程、および、
     前記第一前駆体基板を耐熱性容器内に収容し、1.33×10-5Pa以上1.33×10-2Pa以下の圧力条件下で800℃以上950℃以下の温度で焼成する焼成工程、
    を含んでなり、
     前記焼成工程において、前記金属ペースト層に含まれるチタン成分を、前記窒化物セラミックス焼結体基板を構成する窒化物セラミックスと優先的に反応させて前記窒化チタン層を形成すると共に、焼成後に得られる前記金属層中に含まれるチタンの含有量を2.0質量%以下、かつ、前記金属ペースト層中に含まれるチタン量の1/2以下とすることを特徴とする方法。
  2. 前記金属ペースト組成物において、平均粒子径0.1μm以上1.0μm以下の銀粉末の質量(a)と平均粒子径0.2μm以上0.6μm以下の銅粉末の質量(b)との質量比(a/b)が0.4以上5.0以下であり、平均粒子径1.0μm以上5.0μm以下の銅粉末の質量(c)と平均粒子径0.2μm以上0.6μm以下の銅粉末の質量(b)との質量比(c/b)が0.5以上15.0以下である、請求の範囲第1項に記載の方法。
  3. 請求の範囲第1項又は第2項に記載の方法で製造されるメタライズド基板。
  4. 窒化物セラミックス焼結体基板と、該基板表面の一部を被覆する所定の形状を有する金属層とが、厚さ0.2μm以上0.7μm以下の窒化チタン層を介して接合されたメタライズド基板を製造する方法であって、
     100質量部の銅粉末、20質量部以上60質量部以下の銀粉末、および、2.0質量部以上10.0質量部以下の水素化チタン粉末を含有してなり、前記銅粉末が平均粒子径1.0μm以上5.0μm以下の銅粉末と平均粒子径0.2μm以上0.6μm以下の銅粉末との混合粉末であり、前記銀粉末の平均粒子径が0.1μm以上1.0μm以下であり、前記水素化チタン粉末の平均粒子径が1.0μm以上7.0μm以下である第一金属ペースト組成物を準備する工程、
     銅粉末および銀粉末を含みチタン成分を含まない第二金属ペースト組成物を準備する工程、
     前記窒化物セラミックス焼結体基板と、該基板上に形成された、焼成後において前記所定の形状となるような形状を有する、前記第一金属ペースト組成物からなる第一金属ペースト層と前記第二金属ペースト組成物からなる第二金属ペースト層との積層体からなる金属ペースト層とを有する第二前駆体基板を、該基板上に前記第一金属ペースト組成物および前記第二金属ペースト組成物を順次塗布することによって作製する第二前駆体基板作製工程、および、
     前記第二前駆体基板を耐熱性容器内に収容し、1.33×10-5Pa以上1.33×10-2Pa以下の圧力条件下で800℃以上950℃以下の温度で焼成する焼成工程、
    を含んでなり、
     前記焼成工程において、前記第一金属ペースト層に含まれるチタン成分を、前記窒化物セラミックス焼結体基板を構成する窒化物セラミックスと優先的に反応させて前記窒化チタン層を形成すると共に、焼成後に得られる前記金属層中のチタンの含有量を2.0質量%以下、かつ、前記第一金属ペースト層中に含まれるチタン量の1/2以下とすることを特徴とする方法。
  5. 前記第一金属ペースト組成物において、平均粒子径0.1μm以上1.0μm以下の銀粉末の質量(a)と平均粒子径0.2μm以上0.6μm以下の銅粉末の質量(b)との質量比(a/b)が0.4以上5.0以下であり、平均粒子径1.0μm以上5.0μm以下の銅粉末の質量(c)と平均粒子径0.2μm以上0.6μm以下の銅粉末の質量(b)との質量比(c/b)が0.5以上15.0以下である、請求の範囲第4項に記載の方法。
  6. 請求の範囲第4項又は第5項に記載の方法で製造されるメタライズド基板。
PCT/JP2010/055600 2009-03-30 2010-03-29 メタライズド基板を製造する方法、メタライズド基板 WO2010113892A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080013918.XA CN102365733B (zh) 2009-03-30 2010-03-29 制造金属化基板的方法、金属化基板
JP2011507191A JP5492191B2 (ja) 2009-03-30 2010-03-29 メタライズド基板を製造する方法、メタライズド基板
KR1020117021361A KR101336902B1 (ko) 2009-03-30 2010-03-29 메탈라이즈드 기판을 제조하는 방법, 메탈라이즈드 기판
US13/258,185 US9301390B2 (en) 2009-03-30 2010-03-29 Process for producing metallized substrate, and metallized substrate
EP10758663A EP2416356A1 (en) 2009-03-30 2010-03-29 Process for producing metallized substrate and metallized substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-083430 2009-03-30
JP2009083430 2009-03-30
JP2009278658 2009-12-08
JP2009-278658 2009-12-08

Publications (1)

Publication Number Publication Date
WO2010113892A1 true WO2010113892A1 (ja) 2010-10-07

Family

ID=42828181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055600 WO2010113892A1 (ja) 2009-03-30 2010-03-29 メタライズド基板を製造する方法、メタライズド基板

Country Status (6)

Country Link
US (1) US9301390B2 (ja)
EP (1) EP2416356A1 (ja)
JP (1) JP5492191B2 (ja)
KR (1) KR101336902B1 (ja)
CN (1) CN102365733B (ja)
WO (1) WO2010113892A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090647A1 (ja) * 2010-12-28 2012-07-05 株式会社トクヤマ メタライズド基板、金属ペースト組成物、および、メタライズド基板の製造方法
CN103282546A (zh) * 2010-11-19 2013-09-04 日本发条株式会社 层叠体和层叠体的制造方法
JP2015070050A (ja) * 2013-09-27 2015-04-13 京セラ株式会社 回路基板と、その製造方法
CN105517324A (zh) * 2015-11-30 2016-04-20 卢美珍 印刷电路板的覆金属层基板结构
CN105517325A (zh) * 2015-11-30 2016-04-20 卢美珍 印刷电路板的覆金属层叠板结构
CN105517323A (zh) * 2015-11-30 2016-04-20 卢美珍 印刷电路板的负载导体图案的叠层板
CN105517321A (zh) * 2015-11-30 2016-04-20 卢美珍 电子元件封装体的覆金属层基板结构
CN105517322A (zh) * 2015-11-30 2016-04-20 卢美珍 印刷电路板的织物基层覆金属的叠板结构
CN110248465A (zh) * 2019-06-20 2019-09-17 天津荣事顺发电子有限公司 一种厚膜和覆铜一体陶瓷电路板及其制备方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066779A1 (en) 2006-11-28 2010-03-18 Hanan Gothait Method and system for nozzle compensation in non-contact material deposition
US9381759B2 (en) 2008-11-30 2016-07-05 Xjet Ltd Method and system for applying materials on a substrate
CN104827774B (zh) 2009-05-18 2017-08-08 Xjet有限公司 在经加热的基材上打印的方法及装置
EP2566697B1 (en) 2010-05-02 2020-12-09 Xjet Ltd. Printing system with self-purge, sediment prevention and fumes removal arrangements
CN103097141A (zh) 2010-07-22 2013-05-08 迅捷有限公司 打印头喷嘴评价
CN103534097B (zh) 2010-10-18 2016-06-01 Xjet有限公司 打印系统
WO2013061727A1 (ja) * 2011-10-28 2013-05-02 京セラ株式会社 回路基板およびこれを備える電子装置
US9504144B2 (en) * 2012-02-01 2016-11-22 Mitsubishi Materials Corporation Power module substrate, power module substrate with heat sink, power module, method of manufacturing power module substrate, and copper member-bonding paste
CN103373860A (zh) * 2012-04-27 2013-10-30 比亚迪股份有限公司 陶瓷基体表面金属化涂层组合物、陶瓷基体表面金属化方法及其制备的涂层和陶瓷
JP5598739B2 (ja) * 2012-05-18 2014-10-01 株式会社マテリアル・コンセプト 導電性ペースト
US8887197B2 (en) * 2012-11-29 2014-11-11 At&T Intellectual Property I, Lp Method and apparatus for managing advertisements using social media data
US9234112B2 (en) * 2013-06-05 2016-01-12 Korea Institute Of Machinery & Materials Metal precursor powder, method of manufacturing conductive metal layer or pattern, and device including the same
CN116377301A (zh) 2013-10-17 2023-07-04 Xjet有限公司 用于3d喷墨打印的碳化钨/钴油墨组合物
CN104411086A (zh) * 2014-11-04 2015-03-11 广东明路电力电子有限公司 功率pcb板及其加工方法
JP6675989B2 (ja) * 2014-12-25 2020-04-08 住友電気工業株式会社 プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法
US11059984B2 (en) * 2015-02-16 2021-07-13 Xjet Ltd. Titanium inks, methods of making and using the same to make titanium articles
WO2017057341A1 (ja) * 2015-09-30 2017-04-06 住友電気工業株式会社 導電材用粉末、導電材用インク及び導電性ペースト並びに導電材用粉末の製造方法
JP2017135374A (ja) * 2016-01-22 2017-08-03 三菱マテリアル株式会社 接合体、パワーモジュール用基板、パワーモジュール、接合体の製造方法及びパワーモジュール用基板の製造方法
CN105959790A (zh) * 2016-06-17 2016-09-21 青岛海信电器股份有限公司 一种电视频道切换方法及电视
CN106887424B (zh) * 2017-03-17 2020-11-24 京东方科技集团股份有限公司 导电图案结构及其制备方法、阵列基板和显示装置
US11222878B2 (en) 2019-04-30 2022-01-11 Ab Mikroelektronik Gesellschaft Mit Beschraenkter Haftung Electronic power module
CN117587357B (zh) * 2024-01-19 2024-04-09 北京开元新能科技有限公司 一种可用于质子交换膜燃料电池的金属双极板及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197376A (ja) 1986-02-20 1987-09-01 株式会社東芝 窒化アルミニウム基板
JPH05221759A (ja) * 1992-02-14 1993-08-31 Kawasaki Steel Corp メタライズ層を有する窒化アルミニウム基板とそのメタライズ方法
JPH05226515A (ja) 1992-02-14 1993-09-03 Kawasaki Steel Corp メタライズ層を有する窒化アルミニウム基板とそのメタライズ方法
JPH06342853A (ja) * 1993-04-06 1994-12-13 Tokuyama Soda Co Ltd 半導体素子用パッケージ
JPH07126701A (ja) 1993-10-28 1995-05-16 Tokin Corp メタライズ用金属粉末組成物、メタライズ基板およびその製造方法
JPH07207452A (ja) 1994-01-24 1995-08-08 Tokin Corp 金属粉末組成物及びそれを用いたメタライズ基板の製造方法
WO2006051881A1 (ja) 2004-11-12 2006-05-18 Tokuyama Corporation メタライズド窒化アルミニウム基板の製造方法及びそれによって得られる基板

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2570248A (en) 1948-06-30 1951-10-09 Gen Electric Method of metalizing and bonding nonmetallic bodies
US3641298A (en) 1967-07-19 1972-02-08 Mallory & Co Inc P R Electrically conductive material and electrical contact
US3681135A (en) 1970-06-24 1972-08-01 Lucas Industries Ltd Printed circuits and method of making same
JPH0810710B2 (ja) * 1984-02-24 1996-01-31 株式会社東芝 良熱伝導性基板の製造方法
US4729504A (en) 1985-06-01 1988-03-08 Mizuo Edamura Method of bonding ceramics and metal, or bonding similar ceramics among themselves; or bonding dissimilar ceramics
JPH0714015B2 (ja) 1989-09-13 1995-02-15 電気化学工業株式会社 銅回路を有する窒化アルミニウム基板の製法
DE69031039T2 (de) 1990-04-16 1997-11-06 Denki Kagaku Kogyo Kk Keramische leiterplatte
DE4101630A1 (de) 1990-06-08 1991-12-12 Fraunhofer Ges Forschung Verfahren zur herstellung aufschaeumbarer metallkoerper und verwendung derselben
JPH04168792A (ja) 1990-11-01 1992-06-16 Kawasaki Steel Corp 耐熱衝撃性に優れた高放熱性セラミックス回路基板の製造方法
JPH05170552A (ja) 1991-12-19 1993-07-09 Kawasaki Steel Corp メタライズ層を有する窒化アルミニウム基板とそのメタライズ方法
WO2004074210A1 (ja) 1992-07-03 2004-09-02 Masanori Hirano セラミックス-金属複合体およびその製造方法
JPH06196831A (ja) * 1992-12-24 1994-07-15 Tokin Corp AlN基板用導電パターンの製造方法
KR950702068A (ko) 1993-04-06 1995-05-17 쓰지 가오루 반도체 소자용 패키지(package for semiconductor chip)
JPH06349315A (ja) 1993-06-02 1994-12-22 Denki Kagaku Kogyo Kk ペースト及びその用途
US5678168A (en) 1995-11-13 1997-10-14 National Starch And Chemical Investment Holding Corporation Two-layer solderable gold for thick film circuits
JPH10188671A (ja) 1996-10-29 1998-07-21 Mitsuboshi Belting Ltd 銅導体ペースト及び該銅導体ペーストを印刷した基板
US5955686A (en) 1996-10-30 1999-09-21 Dowa Mining Co., Ltd. Brazing materials for producing metal-ceramics composite substrates
JP3729637B2 (ja) 1998-04-17 2005-12-21 電気化学工業株式会社 電子部品
JP2000281460A (ja) 1999-03-31 2000-10-10 Tokuyama Corp 金属粉末ろう材および窒化アルミニウム部材と金属部材との接合方法
JP4394477B2 (ja) * 2003-03-27 2010-01-06 Dowaホールディングス株式会社 金属−セラミックス接合基板の製造方法
KR100719993B1 (ko) * 2003-09-26 2007-05-21 히다치 가세고교 가부시끼가이샤 혼합 도전 분말 및 그의 이용
JP4140593B2 (ja) 2004-09-21 2008-08-27 住友電気工業株式会社 メタライズ基板
JP4372669B2 (ja) 2004-11-25 2009-11-25 株式会社トクヤマ 素子搭載用基板の製造方法
WO2006086037A1 (en) 2004-11-30 2006-08-17 The Regents Of The University Of California Braze system with matched coefficients of thermal expansion
JP4731976B2 (ja) 2004-12-15 2011-07-27 株式会社トクヤマ メタライズドセラミック基板の製造方法
US20080131673A1 (en) 2005-12-13 2008-06-05 Yasuyuki Yamamoto Method for Producing Metallized Ceramic Substrate
JP4736901B2 (ja) 2006-03-31 2011-07-27 大日本印刷株式会社 導電性ペースト組成物およびプリント配線板
JP4750670B2 (ja) 2006-10-26 2011-08-17 電気化学工業株式会社 セラミックス回路基板の製造方法
JP5376808B2 (ja) 2008-01-25 2013-12-25 Dic株式会社 透明導電性フィルムの製造方法、透明導電性フィルム及びタッチパネル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197376A (ja) 1986-02-20 1987-09-01 株式会社東芝 窒化アルミニウム基板
JPH05221759A (ja) * 1992-02-14 1993-08-31 Kawasaki Steel Corp メタライズ層を有する窒化アルミニウム基板とそのメタライズ方法
JPH05226515A (ja) 1992-02-14 1993-09-03 Kawasaki Steel Corp メタライズ層を有する窒化アルミニウム基板とそのメタライズ方法
JPH06342853A (ja) * 1993-04-06 1994-12-13 Tokuyama Soda Co Ltd 半導体素子用パッケージ
JPH07126701A (ja) 1993-10-28 1995-05-16 Tokin Corp メタライズ用金属粉末組成物、メタライズ基板およびその製造方法
JPH07207452A (ja) 1994-01-24 1995-08-08 Tokin Corp 金属粉末組成物及びそれを用いたメタライズ基板の製造方法
WO2006051881A1 (ja) 2004-11-12 2006-05-18 Tokuyama Corporation メタライズド窒化アルミニウム基板の製造方法及びそれによって得られる基板

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282546A (zh) * 2010-11-19 2013-09-04 日本发条株式会社 层叠体和层叠体的制造方法
WO2012090647A1 (ja) * 2010-12-28 2012-07-05 株式会社トクヤマ メタライズド基板、金属ペースト組成物、および、メタライズド基板の製造方法
CN103238380A (zh) * 2010-12-28 2013-08-07 株式会社德山 金属化基板、金属糊剂组合物、以及金属化基板的制造方法
KR101787390B1 (ko) 2010-12-28 2017-10-19 가부시끼가이샤 도꾸야마 메탈라이즈드 기판, 금속 페이스트 조성물, 및 메탈라이즈드 기판의 제조 방법
US9462698B2 (en) 2010-12-28 2016-10-04 Tokuyama Corporation Metallized substrate, metal paste composition, and method for manufacturing metallized substrate
JP2015070050A (ja) * 2013-09-27 2015-04-13 京セラ株式会社 回路基板と、その製造方法
CN105517322A (zh) * 2015-11-30 2016-04-20 卢美珍 印刷电路板的织物基层覆金属的叠板结构
CN105517321A (zh) * 2015-11-30 2016-04-20 卢美珍 电子元件封装体的覆金属层基板结构
CN105517323A (zh) * 2015-11-30 2016-04-20 卢美珍 印刷电路板的负载导体图案的叠层板
CN105517325A (zh) * 2015-11-30 2016-04-20 卢美珍 印刷电路板的覆金属层叠板结构
CN105517324A (zh) * 2015-11-30 2016-04-20 卢美珍 印刷电路板的覆金属层基板结构
CN105517321B (zh) * 2015-11-30 2018-06-19 燕山大学里仁学院 电子元件封装体的覆金属层基板结构
CN105517325B (zh) * 2015-11-30 2018-07-24 卢美珍 印刷电路板的覆金属层叠板结构
CN105517324B (zh) * 2015-11-30 2018-07-24 卢美珍 印刷电路板的覆金属层基板结构
CN105517322B (zh) * 2015-11-30 2018-08-14 卢美珍 印刷电路板的织物基层覆金属的叠板结构
CN105517323B (zh) * 2015-11-30 2018-09-18 赣州市金顺科技有限公司 印刷电路板的负载导体图案的叠层板
CN110248465A (zh) * 2019-06-20 2019-09-17 天津荣事顺发电子有限公司 一种厚膜和覆铜一体陶瓷电路板及其制备方法
CN110248465B (zh) * 2019-06-20 2024-03-19 上海铠琪科技有限公司 一种厚膜和覆铜一体陶瓷电路板及其制备方法

Also Published As

Publication number Publication date
US9301390B2 (en) 2016-03-29
US20120015152A1 (en) 2012-01-19
KR101336902B1 (ko) 2013-12-04
KR20120006487A (ko) 2012-01-18
JP5492191B2 (ja) 2014-05-14
JPWO2010113892A1 (ja) 2012-10-11
CN102365733A (zh) 2012-02-29
CN102365733B (zh) 2015-07-01
EP2416356A1 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP5492191B2 (ja) メタライズド基板を製造する方法、メタライズド基板
JP6244405B2 (ja) 配線パターンを形成するための組成物
JP5693940B2 (ja) セラミックスビア基板、メタライズドセラミックスビア基板、これらの製造方法
JP5431598B2 (ja) メタライズド基板、金属ペースト組成物、および、メタライズド基板の製造方法
JP5752504B2 (ja) 配線基板のめっき方法、めっき配線基板の製造方法、及び銀エッチング液
JP6541530B2 (ja) ビア充填基板並びにその製造方法及び前駆体
EP3661337A1 (en) Ceramic circuit board and production method therefor
JP3629783B2 (ja) 回路基板
JP5922739B2 (ja) セラミックスビア基板、メタライズドセラミックスビア基板、これらの製造方法
JP6774898B2 (ja) 貫通電極を有する両面配線基板及びその製造方法
JP6936040B2 (ja) メタライズ基板及びその製造方法
JP3411140B2 (ja) メタライズ組成物およびそれを用いた配線基板の製造方法
CN114080868A (zh) 通孔填充基板的制造方法以及导电糊的套装
JP5201974B2 (ja) メタライズド基板の製造方法
JP7208619B2 (ja) 電子部品の製造方法
JP2010225627A (ja) 抵抗体膜の製造方法、抵抗体膜、及び抵抗器
CN117524730A (zh) 导电性膏以及层叠型电子部件
JP2002128581A (ja) 銅メタライズ組成物ならびにそれを用いたセラミック配線基板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013918.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011507191

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117021361

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13258185

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010758663

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010758663

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE