WO2010113383A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2010113383A1
WO2010113383A1 PCT/JP2010/000983 JP2010000983W WO2010113383A1 WO 2010113383 A1 WO2010113383 A1 WO 2010113383A1 JP 2010000983 W JP2010000983 W JP 2010000983W WO 2010113383 A1 WO2010113383 A1 WO 2010113383A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor substrate
circuit
semiconductor
semiconductor device
signal
Prior art date
Application number
PCT/JP2010/000983
Other languages
English (en)
French (fr)
Inventor
帰山隼一
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/203,199 priority Critical patent/US8618630B2/en
Priority to JP2011506976A priority patent/JP5375952B2/ja
Publication of WO2010113383A1 publication Critical patent/WO2010113383A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/08Transformers having magnetic bias, e.g. for handling pulses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0086Printed inductances on semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/08Transformers having magnetic bias, e.g. for handling pulses
    • H01F2019/085Transformer for galvanic isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device having a first semiconductor substrate and a second semiconductor substrate that perform communication via an AC coupling element based on different power supply voltages.
  • FIGS. 29 to 31 are block diagrams of semiconductor devices for controlling the high breakdown voltage power transistor PTr.
  • a control circuit 101 that generates a control signal for the power transistor PTr and a gate drive circuit 103 that drives the power transistor PTr are connected by an insulating interface 102.
  • the control circuit 101 generates a control signal for the power transistor PTr using pulse width modulation (PWM (Pulse Width Modulation) modulation) or the like in order to adjust the amount of electric power given to the electric motor or the lighting device.
  • the control circuit 101 mainly includes a microcontroller, a PWM modulation circuit, a timer circuit, a comparator, an analog / digital conversion circuit, and the like.
  • the gate drive circuit 103 detects, for example, a change in impedance of the phototransistor on the receiving side of the photocoupler, and controls the gate terminal of the power transistor PTr.
  • the insulation interface 102 includes an AC coupling element that couples the control circuit 101 and the gate drive circuit Drv in an AC manner while electrically insulating them, and transmits only necessary information such as a control signal.
  • FIG. 29 shows a photocoupler as an AC coupling element
  • FIG. 30 shows a magnetic coupling coupler (for example, a transformer) as an AC coupling element
  • FIG. 31 shows a capacitive coupling coupler as an AC coupling element. (For example, a capacitor) is used.
  • a transformer or a capacitor is used as the AC coupling element, a modulation circuit and a demodulation circuit are used to transmit a signal through these AC coupling elements. Examples using a transformer as the insulation interface 102 are disclosed in Patent Documents 1 to 13. Further, Patent Documents 3 and 14 disclose examples in which a capacitor is used as the insulating interface 102.
  • the semiconductor substrate is hatched and the semiconductor package is surrounded by a long chain line.
  • the insulation interface needs to insulate the circuit on the control circuit 101 side from the circuit on the gate drive circuit 103 side, the two semiconductor substrates can be used regardless of which coupler is used. Need. That is, as shown in FIGS. 29 to 31, when the system is configured using the insulating interface 102, there is a problem that the number of semiconductor substrates and the number of semiconductor packages increase. This problem becomes a problem when a motor drive control system and a lighting system are constructed using an insulation interface.
  • FIG. 32 shows a block diagram of a general motor control drive system
  • FIG. 33 shows a block diagram of a lighting system.
  • the motor drive control system shown in FIG. 32 is a system for driving a three-phase motor, and six power transistors PTr are provided to drive the three-phase motor.
  • a power supply circuit 110 that supplies high voltage power to the power transistor PTr is provided.
  • the power supply circuit 110 is an AC / DC conversion circuit that generates a DC power supply of 0 to 1 kV from an AC power supply of 100 to 250V. In the power supply circuit 110, AC / DC conversion is performed by a switching operation of the power transistor PTr. That is, in the motor drive control system shown in FIG.
  • the illumination system shown in FIG. 33 uses a light emitting diode as the illumination element 122.
  • the illumination system shown in FIG. 33 has a function of adjusting the illuminance of the light emitting diode.
  • the illuminance is approximately proportional to the current flowing through the element. Therefore, a method of controlling the amount of current flowing through the light emitting diode to a desired value is used.
  • a shunt resistor Rshunt for detecting the current flowing through the light emitting diode is prepared, and negative feedback feedback control is performed so that the voltage generated at the shunt resistor Rshunt has a desired value.
  • the insulation interface 102 is used to perform this negative feedback feedback control.
  • the voltage obtained from the shunt resistor Rshunt is compared with the illuminance adjustment signal, and the PWM modulation circuit changes the duty ratio of the pulse signal according to the magnitude. For example, when the voltage obtained from the shunt resistor Rshunt is lower than the voltage of the illuminance adjustment signal, the PWM modulation circuit increases the duty ratio of the pulse signal (thickening the pulse width). As a result, the time during which a voltage is applied to the primary side coil of the transformer 121 is lengthened and the power supplied from the secondary side coil is increased, so that the voltage obtained from the shunt resistor Rshunt is increased.
  • the PWM modulation circuit decreases the duty ratio of the pulse signal (thinns the pulse width).
  • the voltage obtained from the shunt resistor Rshunt drops.
  • the power supply circuit 120 outputs a desired voltage by performing such negative feedback control.
  • the control circuit 101, the insulation interface 102, and the gate drive circuit 103 are used to control the power MOS transistor PM by the PWM modulation signal.
  • a circuit with a high breakdown voltage cannot generate a PWM control signal because the operation speed is insufficient, and therefore, the gate drive circuit 103 that requires a withstand voltage and the control circuit 101 that requires an operation speed are manufactured by different processes. This is necessary. That is, also in the illumination system shown in FIG. 33, at least three semiconductor packages and four semiconductor substrates are required to control the power MOS transistor PM.
  • Patent Document 15 proposes a hybrid IC in which a pulse control circuit, a transformer, and a gate drive circuit are contained in one package. By using this hybrid IC, the number of semiconductor packages in a system using an insulating interface can be reduced.
  • the pulse transformer is replaced with an on-chip transformer, the low-frequency signal can be transmitted because the coupling coefficient of the transformer is low and the signal amplitude transmitted to the receiving chip is small, or the inductance of the on-chip transformer is small. Therefore, a sufficient pulse width of the pulse signal transmitted to the receiving chip cannot be secured. For this reason, the hybrid IC described in Patent Document 15 has a problem that it cannot transmit a pulse signal that allows a gate driver composed of a high voltage transistor to operate sufficiently.
  • an object of the present invention is to reduce a circuit area or a mounting area of a semiconductor device including an insulating interface while ensuring operation reliability.
  • a semiconductor device includes a first semiconductor substrate having a control circuit that generates a control signal for a control target circuit, a transmission circuit that modulates the control signal and generates a transmission signal, and the transmission circuit.
  • a receiving circuit that demodulates a transmitted transmission signal and reproduces the control signal; and a driving circuit that drives the control target circuit based on the control signal output from the receiving circuit, and
  • a second semiconductor substrate electrically insulated from the semiconductor substrate; an AC coupling element formed on the semiconductor substrate for AC coupling the first semiconductor substrate and the second semiconductor substrate; And a semiconductor package on which the first semiconductor substrate, the second semiconductor substrate, and the AC coupling element are mounted.
  • the circuit area or mounting area of the semiconductor device including the insulating interface can be reduced while ensuring the reliability of the operation.
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment
  • 1 is a block diagram of a semiconductor device according to a first embodiment
  • FIG. 3 is a block diagram of a control circuit according to the first exemplary embodiment.
  • FIG. 3 is a block diagram of a level shifter according to the first exemplary embodiment.
  • 1 is a block diagram of a gate drive circuit according to a first exemplary embodiment
  • 1 is a schematic cross-sectional view of a semiconductor substrate that constitutes a semiconductor device according to a first embodiment
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment;
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment;
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment;
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment
  • 12 is a schematic cross-sectional view of a semiconductor substrate constituting the semiconductor device shown in FIGS.
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment; It is typical sectional drawing of the semiconductor substrate of the semiconductor device shown in FIG. It is typical sectional drawing of the semiconductor substrate of the semiconductor device shown in FIG.
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment
  • FIG. 3 is a schematic diagram illustrating a mounting state of the semiconductor device according to the first embodiment
  • 1 is a schematic diagram of a semiconductor package to which a semiconductor device according to a first embodiment is applied.
  • FIG. 22 is a block diagram of a motor drive control system to which the semiconductor package shown in FIG. 21 is applied.
  • FIG. 22 is a block diagram of a motor drive control system to which the semiconductor package shown in FIG. 21 is applied.
  • FIG. 1 is a schematic diagram of a semiconductor package to which a semiconductor device according to a first embodiment is applied.
  • FIG. 26 is a block diagram of a motor drive control system to which the semiconductor package shown in FIG. 25 is applied.
  • FIG. 26 is a block diagram of a motor drive control system to which the semiconductor package shown in FIG. 25 is applied.
  • 1 is a block diagram of a power supply control circuit to which a semiconductor device according to a first embodiment is applied.
  • FIG. 6 is a schematic diagram illustrating a mounting state of a semiconductor device according to a second embodiment; It is a block diagram of a general semiconductor device using an insulation interface (photocoupler). It is a block diagram of a general semiconductor device using an insulation interface (transformer). It is a block diagram of a general semiconductor device using an insulation interface (capacitor). It is a block diagram of the motor drive control system using the conventional insulation interface. It is a block diagram of the illuminating device using the conventional insulation interface.
  • FIG. 1 is a schematic diagram showing a mounting state of the semiconductor device according to the present embodiment.
  • the semiconductor device according to the present embodiment includes a first semiconductor substrate CHP1 and a second semiconductor substrate CHP2.
  • the first semiconductor substrate CHP1 and the second semiconductor substrate CHP2 are mounted on one semiconductor package.
  • the first semiconductor substrate CHP1 has a control circuit and a transmission circuit Tx.
  • the second semiconductor substrate CHP2 includes a reception circuit Rx and a gate drive circuit Drv.
  • the second semiconductor substrate CHP2 includes an AC coupling element (for example, a transformer).
  • the transformer has a primary side coil L1 and a secondary side coil L2.
  • the secondary coil L2 is connected to the output of the transmission circuit Tx provided on the first semiconductor substrate CHP1 via a pad and wire bonding.
  • This transformer functions as an insulating interface in the semiconductor device of the present embodiment.
  • an AC coupling element for example, a transformer or a capacitor formed on a semiconductor substrate is used as the insulating interface. Therefore, the transformer formed on the semiconductor substrate is sometimes referred to as an on-chip transformer, and the capacitor is referred to as an on-chip capacitor.
  • the first semiconductor substrate CHP1 is manufactured by a semiconductor process different from that of the second semiconductor substrate CHP2.
  • the first semiconductor substrate CHP1 is manufactured by a finer process than the second semiconductor substrate CHP2. As a result, the manufacturing cost can be reduced by reducing the chip area of the first semiconductor substrate CHP1, and the power consumption can be reduced.
  • the second semiconductor substrate CHP2 is required to have a breakdown voltage of about 5V to 15V in order to drive the gate terminal of the power transistor. Therefore, it is difficult to use a fine process having a minimum dimension of, for example, about 0.13 ⁇ m. Therefore, the second semiconductor substrate CHP2 may be manufactured by a manufacturing process in which the minimum processing dimension of the previous generation having a higher withstand voltage than that of the first semiconductor substrate is rougher than approximately 0.5 ⁇ m.
  • a gate driving circuit Drv and passive elements such as a transformer and a capacitor are mainly formed.
  • the area occupied by these circuits and elements is difficult to reduce even if the semiconductor manufacturing process is replaced with a finer one, and occupies a certain area regardless of the fineness of the manufacturing process. Therefore, by forming on the second semiconductor substrate CHP2 manufactured by an old generation manufacturing process, it is possible to reduce the influence on the increase in chip area.
  • the receiving circuit Rx and the gate driving circuit Drv are formed on the second semiconductor substrate CHP2.
  • the gate drive circuit Drv may require a breakdown voltage of about 15V.
  • a transistor with a withstand voltage of 15 V is used as the transistor constituting the receiving circuit Rx, disadvantages such as an increase in circuit area, an increase in power consumption, a decrease in operating frequency, or a decrease in sensitivity of an amplifier or the like occur. Therefore, in the second semiconductor substrate CHP2 according to the present embodiment, the operating voltage of the receiving circuit Rx is made lower than the operating voltage of the gate drive circuit 22.
  • a circuit element (for example, a MOS transistor) constituting the receiving circuit Rx uses a transistor having a gate length shorter than that of the circuit element (for example, a MOS transistor) constituting the gate drive circuit 22 and having a thin gate insulating film thickness.
  • the receiving circuit Rx is composed of a transistor having a minimum gate length of 0.5 ⁇ m and a gate insulating film withstand voltage of 5 V
  • the gate driving circuit Drv is a transistor having a minimum gate length of 1.2 ⁇ m and a gate insulating film withstand voltage of 15 V.
  • the receiving circuit Rx is operated with a power supply voltage of 5V
  • the gate driving circuit Drv is operated with a power supply voltage of 15V.
  • the signal is transmitted between the receiving circuit Rx and the gate driving circuit Drv. Insert a level shifter.
  • an on-chip transformer is formed on the second semiconductor substrate CHP2.
  • the power supply voltage and signal amplitude of the transmission circuit Tx of the first semiconductor substrate CHP1 are 1.0V
  • the power supply voltage and signal amplitude of the reception circuit Rx of the second semiconductor substrate CHP2 are 5V. Therefore, in order to convert the voltage into a voltage that can be easily transmitted and received between these two circuits, the inductance ratio of the transformer is adjusted in this embodiment.
  • the primary coil L1 connected to the transmission circuit Tx is 10 nH
  • the secondary coil L2 connected to the reception circuit Rx is 50 nH.
  • the 1.0 V amplitude signal output from the transmission circuit Tx can be converted to 5.0 V amplitude via the transformer and input to the reception circuit Rx.
  • the first semiconductor substrate CHP1 and the second semiconductor substrate CHP2 are manufactured by manufacturing processes having different withstand voltages, it is possible to reliably transmit signals.
  • an excessive voltage is applied to the receiving circuit by performing signal amplitude level conversion in the transformer based on the inductance ratio. Can be prevented. As a result, it is possible to prevent destruction of the receiving circuit that operates at a low power supply voltage.
  • FIG. 2 A detailed block diagram of the semiconductor device according to the present embodiment is shown in FIG.
  • the control circuit CONT and the transmission circuit Tx are mounted on the first semiconductor substrate CHP1.
  • An on-chip transformer (consisting of a primary side coil L1 and a secondary side coil L2), a reception circuit Rx, a level shifter SFT, and a gate drive circuit Drv are mounted on the second semiconductor substrate CHP2.
  • the control circuit CONT generates a control signal for controlling the control target circuit (in this embodiment, the power transistor PTr).
  • the transmission circuit Tx modulates a control signal output from the control circuit CONT to generate a transmission signal. Then, the transmission circuit Tx drives the primary side coil L1 with the transmission signal.
  • the control circuit CONT and the transmission circuit Tx operate based on a power supply voltage of 1.0V.
  • FIG. 3 shows a block diagram of the control circuit CONT.
  • the control circuit CONT includes an arithmetic circuit (MPU (Multi Processing Unit) or DSP (Digital Signal Processor)) 10, a memory 11, an oscillation circuit 12, a PWM modulation circuit 13, an ADC (analog-digital conversion circuit, Analog Digital Converter) 14.
  • the arithmetic circuit 10 performs, for example, motor rotation control and illumination output control.
  • the memory 11 stores a program used in the arithmetic circuit 10.
  • the PWM modulation circuit 13 generates a PWM-modulated control signal by converting a digital signal expressed by a binary code or the like output from the arithmetic circuit 10 into a pulse width.
  • the oscillation circuit 12 generates a sawtooth wave or a triangular wave used in the PWM modulation process and supplies it to the PWM modulation circuit 13.
  • the ADC 14 converts a feedback signal (analog signal) obtained from the motor and other circuits into a digital value and transmits the digital value to the arithmetic circuit 10.
  • the control by the arithmetic circuit 10 is based on an input signal from an external operation switch or a signal fed back from a rotation sensor, a phase detection sensor, a current sensor, a voltage sensor, a current sensor of a lighting fixture, an illuminance sensor, or the like. Done. Note that the configuration of the control circuit CONT can be changed as appropriate according to the circuit to be controlled or according to other system configurations.
  • the transformer is composed of a primary side coil L1 and a secondary side coil L2.
  • the receiving circuit Rx receives the pulse signal obtained through the transformer, demodulates the pulse signal, reproduces the control signal input to the transmitting circuit Tx, and transmits it to the subsequent circuit.
  • the receiving circuit Rx operates based on a power supply voltage of 5V, for example.
  • the level shifter SFT converts the amplitude of the control signal output from the receiving circuit Rx into an amplitude based on the power supply voltage of the gate drive circuit Drv. Then, the level shifter SFT outputs the converted control signal to the gate drive circuit Drv.
  • a detailed circuit diagram of the level shifter SFT is shown in FIG.
  • the level shifter SFT includes inverters INV1 and INV2, NMOS transistors N1 and N2, and PMOS transistors P1 and P2.
  • the inverters INV1 and INV2 operate based on a power supply voltage of 5V.
  • the inverter INV1 uses the output signal of the receiving circuit Rx as the input signal IN, inverts the input signal IN, and outputs it.
  • the inverter INV2 inverts and outputs the output of the inverter INV1.
  • the NMOS transistor N1 has a source connected to the ground terminal and a drain connected to the drain of the PMOS transistor P1.
  • the output signal of the inverter INV2 is given to the gate of the NMOS transistor N1.
  • the NMOS transistor N2 has a source connected to the ground terminal and a drain connected to the drain of the PMOS transistor P2.
  • the output signal of the inverter INV1 is given to the gate of the NMOS transistor N2.
  • the PMOS transistors P1 and P2 are cross-coupled transistors.
  • the sources of the PMOS transistors P1 and P2 are connected to the power supply voltage (15V).
  • the level shifter SFT has a signal having an amplitude corresponding to the input-side power supply voltage (for example, 5 V) and a signal having an amplitude corresponding to the output-side power supply voltage (for example, 15 V). Convert to
  • the gate drive circuit Drv drives the power transistor PTr based on a control signal obtained via the reception circuit Rx and the level shifter SFT.
  • the gate drive circuit Drv operates based on a power supply voltage of 15V.
  • the gate drive circuit Drv is a driver having a large current supply capability in order to drive the gate of the power transistor PTr.
  • the gate drive circuit Drv can have an open drain, push-pull type output stage.
  • the output current or sink current of the gate drive circuit Drv is preferably 10 mA or more.
  • the gate drive circuit Drv includes a plurality of inverters in which a PMOS transistor and an NMOS transistor are connected in series between a power supply terminal and a ground terminal.
  • the gate width w of each transistor is larger as the transistor disposed in the subsequent stage. This is because, when a transistor with no driving capability (for example, a transistor with a small gate width w) is driven and a transistor with a large gate width w is driven, the transistor to be driven cannot be driven due to the gate parasitic capacitance of the transistor to be driven. It is. As shown in FIG. 5, such a problem can be prevented by arranging the transistors (or inverters) so that the gate width w gradually increases.
  • FIG. 6 shows a schematic cross-sectional view of the first semiconductor substrate CHP1 and the second semiconductor substrate CHP2 constituting the semiconductor device according to the present embodiment.
  • the control circuit CONT is configured on the first semiconductor substrate CHP1.
  • the control circuit CONT includes a complicated logic circuit such as an arithmetic circuit (for example, MPU or DSP).
  • the first semiconductor substrate CHP1 is more effective in reducing the chip area when formed by a highly integrated manufacturing process.
  • the chip area can be reduced by using a CMOS process having a minimum gate size of 0.25 ⁇ m rather than using a CMOS process having a minimum gate size of 0.5 ⁇ m.
  • the CMOS process of the two-layer wiring can reduce the chip area in the CMOS process of the four-layer wiring.
  • the second semiconductor substrate CHP2 is manufactured by a manufacturing process capable of forming a transistor having a higher breakdown voltage than that of the first semiconductor substrate CHP1.
  • an IGBT Insulated Gate Bipolar Transistor
  • a power transistor that controls on / off of a voltage of several hundred volts often needs to apply 5 V to 15 V to the gate voltage.
  • a semiconductor integrated circuit for a general logic circuit that constitutes a control circuit CONT or the like operates at a power supply voltage of 5 V or less, and may be destroyed if a voltage higher than 5 V is applied to a gate insulating film or the like. High nature.
  • the second semiconductor substrate CHP1 needs to be formed by a manufacturing process that can withstand a withstand voltage of at least 5 V, more preferably with a voltage of 15 V or more. Therefore, in the present embodiment, the second semiconductor substrate CHP2 is formed by a manufacturing process that has a higher withstand voltage than the first semiconductor substrate CHP1.
  • the gate insulating film Go of the transistor on the second semiconductor substrate CHP2 is thicker than the transistor formed on the first semiconductor substrate CHP1. Further, the gate length of the transistor determined by the distance between the source / drain regions SD of the transistors on the second semiconductor substrate CHP2 is larger in the transistor formed on the second semiconductor substrate CHP2 than on the first semiconductor substrate CHP1. Longer than the transistor formed.
  • the wiring IW of the second semiconductor substrate CHP2 is also required to have a higher withstand voltage than the wiring IW of the first semiconductor substrate CHP1. Therefore, as shown in FIG. 6, the wiring interval on the second semiconductor substrate CHP2 is formed wider than the wiring interval of the first semiconductor substrate CHP1.
  • the insulating film thickness between the wiring layers of the second semiconductor substrate CHP2 is set to be thicker than the insulating film thickness between the wiring layers of the first semiconductor substrate CHP1.
  • the gate drive circuit Drv of the second semiconductor substrate CHP2 needs to supply a large current of several tens of milliamps to several hundred milliamps to the gate terminals of the IGBT and the power transistor, so that the wiring that can withstand the passage of the large current IW is required.
  • the wiring width of the second semiconductor substrate CHP2 is set wider than that of the first semiconductor substrate CHP1. Further, the wiring film thickness of the second semiconductor substrate CHP2 is set larger than the wiring film thickness of the first semiconductor substrate CHP1. Note that the number of wiring layers may be smaller than that of the first semiconductor substrate CHP1 because no complicated circuit is arranged on the second semiconductor substrate CHP2.
  • FIGS. 7 to 11 and FIGS. 13 to 23 are schematic views showing the mounting state of the AC coupling element in the semiconductor device according to the present embodiment.
  • the transmission circuit Tx includes another circuit (for example, the control circuit CONT) on the first semiconductor substrate
  • the reception circuit Rx is another circuit (for example, the second semiconductor substrate, for example).
  • Level shifter SFT, gate drive circuit Drv, etc. is another circuit (for example, the second semiconductor substrate, for example).
  • the first semiconductor substrate CHP1 and the second semiconductor substrate CHP2 are mounted on the semiconductor package 1.
  • the first semiconductor substrate CHP1 and the second semiconductor substrate CHP2 each have a pad Pd.
  • the pads Pd of the first semiconductor substrate CHP1 and the second semiconductor substrate CHP2 are connected to the lead terminals 2 provided in the semiconductor package 1 via bonding wires (not shown). This configuration is common to all of the mounting forms shown in FIGS. 8 to 11 and FIGS. 13 to 23.
  • the transmission circuit Tx is formed on the first semiconductor substrate CHP1.
  • a primary side coil L1, a secondary side coil L2, and a receiving circuit Rx are formed on the second semiconductor substrate CHP2.
  • a pad connected to the transmission circuit Tx is formed on the first semiconductor substrate CHP1, and a pad connected to the primary coil L1 is formed on the second semiconductor substrate CHP2.
  • the transmission circuit Tx is connected to one end of the primary coil L1 formed on the second semiconductor substrate CHP2 via the pad and the bonding wire W.
  • the other end of the primary coil L1 is connected to the ground wiring on the transmission circuit Tx side through a pad formed on the first semiconductor substrate CHP1 and a bonding wire W.
  • the two transformers include a first transformer having a first primary coil L11 and a first secondary coil L12, and a second transformer having a second primary coil L21 and a second secondary coil L22. And a transformer.
  • Each of the first primary coil L11 and the second primary coil L21 has one terminal connected to the ground wiring of the transmission circuit Tx to which the second ground voltage GND2 is supplied, and the other terminal corresponding to the corresponding transmission. Connected to the transmission node of the circuit Tx.
  • Each of the first secondary coil L12 and the second secondary coil L22 has one terminal connected to the ground wiring of the receiving circuit Rx to which the first ground voltage GND1 is supplied, and the other terminal corresponding thereto. Connected to the receiving node of the receiving circuit Rx.
  • the primary coil L1, the secondary coil L2, and the transmission circuit Tx are formed on the first semiconductor substrate CHP1.
  • the receiving circuit Rx is formed on the second semiconductor substrate CHP2. Further, a pad connected to the secondary coil L2 is formed on the first semiconductor substrate CHP1, and a pad connected to the receiving circuit Rx is formed on the second semiconductor substrate CHP2.
  • the receiving circuit Rx is connected to one end of the secondary coil L2 formed on the first semiconductor substrate CHP1 via the pad and the bonding wire W.
  • the secondary coil L2 is connected to the ground wiring on the receiving circuit Rx side through a pad formed on the second semiconductor substrate CHP2 and a bonding wire.
  • the primary coil L1 and the secondary coil L2 are formed by using a first wiring layer and a second wiring layer that are stacked in the vertical direction in one semiconductor chip. It is formed.
  • the primary coil L1, the secondary coil L2, and the transmission circuit Tx are formed on the first semiconductor substrate CHP1.
  • the receiving circuit Rx is formed on the second semiconductor substrate CHP2.
  • a pad connected to the secondary coil L2 is formed on the first semiconductor substrate CHP1
  • a pad connected to the receiving circuit Rx is formed on the second semiconductor substrate CHP2.
  • the receiving circuit Rx is connected to one end of the secondary coil L2 formed on the first semiconductor substrate CHP1 via the pad and the bonding wire W.
  • the other end of the primary coil L1 is connected to the ground wiring on the receiving circuit Rx side through a pad formed on the second semiconductor substrate CHP2 and a bonding wire W.
  • the primary side coil L1 and the secondary side coil L2 are formed on the same wiring layer of one semiconductor substrate. Further, the primary side coil L1 and the secondary side coil L2 are formed as windings having the same center position.
  • the two transformers include a first transformer having a first primary coil L11 and a first secondary coil L12, and a second transformer having a second primary coil L21 and a second secondary coil L22. And a transformer.
  • Each of the first primary coil L11 and the second primary coil L21 has one terminal connected to the ground wiring of the transmission circuit Tx to which the second ground voltage GND2 is supplied, and the other terminal corresponding to the corresponding transmission. Connected to the transmission node of the circuit Tx.
  • Each of the first secondary coil L12 and the second secondary coil L22 has one terminal connected to the ground wiring of the receiving circuit Rx to which the first ground voltage GND1 is supplied, and the other terminal corresponding thereto. Connected to the receiving node of the receiving circuit Rx.
  • FIG. 12 shows a schematic cross-sectional view of the first semiconductor substrate CHP1 and the second semiconductor substrate CHP2 when the mounting forms shown in FIGS. 9 to 11 are adopted.
  • the number of wiring layers of the second semiconductor substrate CHP2 is small, and a sufficient thickness of the interlayer insulating film between the primary side coil L1 and the secondary side coil L2 cannot be ensured.
  • a transformer is formed on the first semiconductor substrate CHP1 side where a thick interlayer insulating film can be secured. Thereby, it is possible to sufficiently ensure the withstand voltage between the primary side coil L1 and the secondary side coil L2.
  • the transmission circuit Tx is formed on the first semiconductor substrate CHP1, the reception circuit Rx is formed on the second semiconductor substrate CHP2, and the primary coil L1 is formed on the third semiconductor substrate CHP3.
  • the secondary side coil L2 is formed.
  • a pad connected to the primary coil L1 is formed on the first semiconductor substrate CHP1, and a pad connected to the secondary coil L2 is formed on the second semiconductor substrate CHP2.
  • a pad connected to the primary coil L1 and a pad connected to the secondary coil L2 are formed on the semiconductor substrate CHP3.
  • the transmission circuit Tx is connected to one end of the primary coil L1 formed on the third semiconductor substrate CHP3 through the pad and the bonding wire W, and the reception circuit Rx is connected to the third circuit through the pad and the bonding wire W. It is connected to one end of the secondary coil L2 formed on the semiconductor substrate CHP3.
  • the other end of the primary coil L1 is connected to the ground wiring on the transmission circuit Tx side via a pad formed on the first semiconductor substrate CHP1 and a bonding wire W, and the other end of the secondary coil L2 is Then, it is connected to the ground wiring on the receiving circuit Rx side through the pad formed on the second semiconductor substrate CHP2 and the bonding wire W.
  • the primary side coil L1 and the secondary side coil L2 are formed by using a first wiring layer and a second wiring layer that are stacked in the vertical direction in one semiconductor substrate. .
  • the transmission circuit Tx and the primary coil L1 are formed on the first semiconductor substrate CHP1, and the reception circuit Rx and the secondary coil L2 are formed on the second semiconductor substrate CHP2. It is.
  • a first semiconductor substrate CHP1 and a second semiconductor substrate CHP2 are stacked.
  • the first semiconductor substrate CHP1 and the first semiconductor substrate CHP1 are arranged so that the center position of the primary coil L1 and the center position of the secondary coil L2 are on the same straight line.
  • a second semiconductor substrate CHP2 is disposed.
  • the transmission circuit Tx, the reception circuit Rx, the primary side coil L1, and the secondary side coil L2 are formed on the same semiconductor substrate CHP4.
  • the primary side coil L1 and the secondary side coil L2 are formed using a first wiring layer and a second wiring layer that are stacked in the vertical direction.
  • the region where the transmission circuit Tx is disposed and the region where the reception circuit Rx is disposed are insulated from each other by an insulating layer formed on the semiconductor substrate CHP4.
  • FIGS cross-sectional views of the semiconductor substrate CHP4 are shown in FIGS.
  • the region where the transmission circuit Tx is formed and the region where the reception circuit Rx is formed are electrically separated by an insulating layer.
  • the primary coil L1 and the secondary coil L2 are provided in a region where the transmission circuit Tx is formed.
  • the region where the transmission circuit Tx is formed and the region where the reception circuit Rx is formed are electrically separated by the insulating layer.
  • the primary side coil L1 and the secondary side coil L2 are provided in a region where the receiving circuit Rx is formed.
  • the mounting example shown in FIG. 19 is obtained by changing the transformer of the mounting example of the semiconductor device shown in FIG. 1 to a capacitor. That is, the semiconductor device shown in FIG. 19 is a mounting example using a capacitor as an AC coupling element.
  • a capacitor used for signal transmission in the semiconductor device shown in FIG. 19 uses metal wiring (electrodes Ce1 and Ce2 in FIG. 19) formed in different wiring layers as two electrodes of the capacitor, and is filled between the metal wirings. Insulators (for example, interlayer insulating films) are used as dielectrics.
  • the mounting example shown in FIG. 20 is obtained by changing the transformer of the mounting example shown in FIG. 8 to a capacitor.
  • a first capacitor Ca in which the first primary coil L11 and the first secondary coil L12 constituting the first transformer are replaced with the electrode Ce1a and the electrode Ce2a
  • the second A second capacitor Cb in which the second primary coil L11 and the second secondary coil L12 constituting the transformer are replaced with an electrode Ce1b and an electrode Ce2b.
  • the first capacitor Ca and the second capacitor Cb use an interlayer insulating film formed between electrodes as a dielectric.
  • FIG. 21 shows a schematic diagram of the semiconductor package 20 including the first semiconductor substrate CHP1 and the second semiconductor substrate CHP2 according to the first embodiment.
  • one first semiconductor substrate CHP1 and six semiconductor substrates CHP2 are mounted on one semiconductor package 20. Therefore, the first semiconductor substrate CHP1 is provided with the number of transmission circuits Tx corresponding to the number of second semiconductor substrates CHP2.
  • the transmission circuit Tx individually receives control signals transmitted from the control circuit CONT formed on the first semiconductor substrate CHP1 to the second semiconductor substrate CHP2.
  • the AC coupling element is formed on the first semiconductor substrate CHP1 or the second semiconductor substrate, a plurality of second semiconductor substrates CHP2 are accommodated in one semiconductor package 20. It becomes possible.
  • the semiconductor package shown in FIG. 21 can be used as, for example, a motor drive control system.
  • the external connection terminals related to the second semiconductor substrate CHP2 are defined as high voltage pins that allow high voltage input and output, and the other terminals are low voltage pins that prohibit high voltage application. Defined.
  • FIG. 22 shows a block diagram of a motor control drive system (an application example of the semiconductor device according to the present embodiment) using the semiconductor package 20.
  • a three-phase drive motor M is a control target circuit.
  • the motor M is driven by drive signals of three different phases, u-phase, v-phase, and w-phase. Therefore, in the first semiconductor substrate CHP1, in the control circuit (a circuit including MCU, PWM modulation circuit, DSP), the upper arm control signal for u phase, the upper arm control signal for v phase, the upper arm signal for w phase, u A phase lower arm control signal, a v phase lower arm control signal, and a w phase lower arm control signal are generated.
  • the control circuit a circuit including MCU, PWM modulation circuit, DSP
  • the u-phase upper arm control signal is transmitted to the power transistor PTr on the power supply terminal side among the power transistors PTr that generate the u-phase drive signal via the second semiconductor substrate CHP2.
  • the v-phase upper arm control signal is transmitted to the power transistor PTr on the power supply terminal side among the power transistors PTr that generate the v-phase drive signal via the second semiconductor substrate CHP2.
  • the w-phase upper arm control signal is transmitted to the power transistor PTr on the power supply terminal side of the power transistor PTr that generates the w-phase drive signal via the second semiconductor substrate CHP2.
  • the u-phase lower arm control signal is transmitted to the power transistor PTr on the ground terminal side of the power transistor PTr that generates the u-phase drive signal via the second semiconductor substrate CHP2.
  • the v-phase lower arm control signal is transmitted to the power transistor PTr on the ground terminal side of the power transistor PTr that generates the v-phase drive signal via the second semiconductor substrate CHP2.
  • the w-phase lower arm control signal is transmitted to the power transistor PTr on the ground terminal side of the power transistor PTr that generates the w-phase drive signal via the second semiconductor substrate CHP2.
  • the control circuit provided in the first semiconductor substrate CHP1 can receive various signals for detecting the operation status of the motor M and can control the motor M based on the received detection signal.
  • a DC converter voltage (power supply voltage) detection signal, a motor drive current detection signal, a u-phase current detection signal, a v-phase current detection signal, a phase / rotation detection signal, and an IGBT temperature detection signal are controlled.
  • the voltage levels of these detection signals are set to such an extent that they can be received by the first semiconductor substrate CHP1 without passing through the second semiconductor substrate CHP2.
  • the current detection signal is supplied from the current detection circuit CS, and the phase / rotation detection signal is a signal output from the phase rotation detection circuit PS.
  • FIG. 23 shows a modification of the application example shown in FIG.
  • the first semiconductor substrate CHP1 includes a multiplexer MUX (or a multiplexing circuit), a demultiplexer DE-MUX, and an analog-digital conversion circuit (A / D in the drawing).
  • feedback signals such as a phase detection signal, a rotation detection signal, a current detection signal, a voltage detection signal, and a temperature detection signal fed back from the motor M are transmitted through the multiplexing circuit, the multiplexer MUX, and the demultiplexer DE-MUX. It may be fed back to the control circuit.
  • FIG. 24 shows a schematic diagram of the semiconductor package 21 showing a modification of the semiconductor package 20 shown in FIG.
  • the semiconductor package 20 three gate drive circuits Drv that transmit the lower arm control signal are housed in one second semiconductor substrate CHP2.
  • the number of transmission circuits Tx that transmit the lower arm control signal is one in accordance with the second semiconductor substrate CHP2. Since the signal level of the lower arm control signal is lower than that of the upper arm control signal, for example, the second semiconductor substrate CHP2 corresponding to the lower arm control signal can use a transistor having the same breakdown voltage as that of the receiving circuit Rx.
  • FIG. 25 shows a block diagram of a motor drive control system using the semiconductor package 21 shown in FIG.
  • the block diagram shown in FIG. 25 employs the semiconductor package 21 in the motor drive control system shown in FIG. Therefore, in the block diagram shown in FIG. 25, there is one second semiconductor substrate CHP2 corresponding to the lower arm control signal.
  • FIG. 26 is a modified example in the case where the first semiconductor substrate CHP1 has a circuit element having a sufficient withstand voltage with respect to the signal level of the lower arm control signal in the motor drive control system shown in FIG. As shown in FIG. 26, in this case, the motor M can be controlled without using the second semiconductor substrate CHP2 that transmits the lower arm control signal.
  • the circuit scale can be reduced as compared with other application examples.
  • FIG. 27 shows a block diagram when the semiconductor device according to the first embodiment is applied to the power supply circuit control system.
  • a first semiconductor substrate CHP1 and a second semiconductor substrate CHP2 are provided for the power supply circuit 30.
  • the operation of the power supply circuit 30 is practically the same as the operation of the power supply circuit 120 described in FIG.
  • the control circuit of the first semiconductor substrate CHP1 is provided with an operational amplifier OP and a PWM modulation circuit.
  • the operational amplifier OP compares the output of the power supply circuit 30 with the reference voltage Vref output from the reference voltage generation circuit, amplifies the difference voltage component, and outputs it to the PWM modulation circuit.
  • the PWM modulation circuit compares the voltage of the output signal of the operational amplifier OP with the signal level of the triangular wave signal or sawtooth wave signal output from the oscillation circuit, and outputs the comparison result to the transmission circuit Tx.
  • the transmission circuit Tx of the first semiconductor substrate CHP1 generates a pulse signal based on the PWM modulation signal output from the PWM modulation circuit, and drives the primary coil L1.
  • the receiving circuit Rx receives the pulse signal via the secondary coil L2, and regenerates the PWM control signal by demodulating the received pulse signal.
  • the gate drive circuit Drv provided on the second semiconductor substrate CHP2 drives the power MOS transistor PM by the PWM control signal regenerated by the reception circuit Rx.
  • the first semiconductor substrate CHP1 and the second semiconductor substrate CHP2 are housed in one semiconductor package as in other application examples.
  • the power MOS transistor PM can be controlled and driven by two semiconductor substrates.
  • the semiconductor device includes the control circuit CONT that generates a control signal for the control target circuit (for example, the motor M and the power supply circuit 30), and the transmission that generates the transmission signal by modulating the control signal.
  • a first semiconductor substrate CHP1 having a circuit Tx, a reception circuit Rx that demodulates a transmission signal transmitted from the transmission circuit Tx and reproduces a control signal, and a control target based on the control signal output from the reception circuit Rx
  • a second semiconductor substrate CHP2 having a drive circuit Drv for driving the circuit and electrically insulated from the first semiconductor substrate CHP1, and formed on the semiconductor substrate, the first semiconductor substrate CHP1 and the second semiconductor substrate CHP1
  • An AC coupling element that couples the semiconductor substrate CHP2 in an AC manner, and a semiconductor on which the first semiconductor substrate CHP1, the second semiconductor substrate CHP2, and the AC coupling element are mounted.
  • Kkeji has.
  • the semiconductor device according to the first embodiment can control a semiconductor device that requires signal transmission via the insulating interface with one semiconductor package. That is, the semiconductor device according to the first embodiment can reduce the circuit area and the mounting area as compared with the conventional semiconductor device. Since the second semiconductor substrate according to the first embodiment includes the reception circuit Rx and the gate drive circuit Drv, the reliability of signal transmission can be improved.
  • an AC coupling element used as an insulating interface can be formed on a semiconductor substrate, a plurality of insulating interfaces can be contained in one semiconductor package. That is, it is possible to fit a plurality of insulated interface channels, which has been difficult in the past, into one semiconductor package.
  • the control circuit CONT and the transmission circuit Tx are configured by circuit elements formed by a finer process than the second semiconductor substrate CHP2.
  • the semiconductor device according to the first embodiment can reduce the size and speed of the first semiconductor substrate.
  • the fineness of the process is determined by the minimum gate length of the transistors formed on the first semiconductor substrate CHP1 and the second semiconductor substrate CHP2.
  • the circuit element constituting the first semiconductor substrate CHP1 is formed by a finer process than the second semiconductor substrate CHP2, the breakdown voltage is lower than that of the circuit element constituting the second semiconductor substrate CHP2.
  • the receiving circuit Rx of the second semiconductor substrate CHP2 has a lower withstand voltage than the gate driving circuit Drv of the second semiconductor substrate and is configured by circuit elements formed by a fine process. As a result, the second semiconductor substrate CHP2 can be reduced in size and improved in sensitivity to received signals.
  • the film thickness of the insulating film between the wiring layers of the first semiconductor substrate CHP1 is smaller than the film thickness of the insulating film between the wiring layers of the second semiconductor substrate CHP2.
  • the first semiconductor substrate CHP1 can achieve higher integration than the second semiconductor substrate.
  • the wiring formed on the first semiconductor substrate CHP1 is thinner than the wiring formed on the second semiconductor substrate CHP2. Furthermore, the wiring formed on the first semiconductor substrate CHP1 has a smaller wiring width than the wiring formed on the second semiconductor substrate CHP2. As a result, the circuit formed on the second semiconductor substrate CHP2, particularly the gate drive circuit Drv, can output a larger current than the circuit formed on the first semiconductor substrate CHP1.
  • the first semiconductor substrate CHP1 operates based on a power supply voltage lower than that of the second semiconductor substrate CHP2. Thereby, the first semiconductor substrate CHP1 can operate at high speed.
  • the receiving circuit Rx can be configured by a transistor having a low breakdown voltage. Therefore, in the second semiconductor substrate CHP2, it is possible to realize high sensitivity of the receiving circuit Rx and reduction in circuit area.
  • the AC coupling element according to the first embodiment is formed using one of a wiring layer formed on the first semiconductor substrate CHP1 and a wiring layer formed on the second semiconductor substrate CHP2.
  • This AC coupling element may be a transformer having a primary side coil and a secondary side coil magnetically coupled to the primary side coil, and is connected to the output terminal of the transmission circuit Tx of the first semiconductor substrate CHP1.
  • the insulating film formed between the first electrode Ce1, the second electrode Ce2 connected to the input terminal of the receiving circuit Rx of the second semiconductor substrate CHP2, and the first and second electrodes is dielectric.
  • a capacitor as a body film may be used.
  • the inductance of the primary side coil is smaller than the inductance of the secondary side coil.
  • a signal having a sufficient amplitude can be transmitted to the receiving circuit, and communication reliability can be improved.
  • This inductance ratio can be realized by making the number of turns of the primary side coil smaller than the number of turns of the secondary side coil.
  • the inductance ratio is preferably such that the number of turns of the coil connected to the circuit using the high power supply voltage as the operation power source among the primary side coil L1 and the secondary side coil L2 is larger than that of the other coil.
  • the capacitor used as an AC coupling element uses either a wiring layer in which the first and second electrodes are formed on the first semiconductor substrate or a wiring layer formed on the second semiconductor substrate. Formed. Thereby, the capacitor can be formed on the semiconductor substrate.
  • control circuit can receive the response data obtained from the control target circuit without passing through the second semiconductor substrate CHP2.
  • the control circuit can receive the response data obtained from the control target circuit without passing through the second semiconductor substrate CHP2.
  • the transmission circuit Tx outputs a pulse signal corresponding to the transmission signal to the AC coupling element and having a frequency higher than that of the transmission signal.
  • a pulse signal corresponding to the transmission signal to the AC coupling element and having a frequency higher than that of the transmission signal.
  • it can utilize as a transformer with a small inductance value, or a capacitor
  • FIG. 28 is a schematic diagram showing a mounting state of the semiconductor device according to the second embodiment.
  • the semiconductor device according to the second embodiment is obtained by providing a communication path from the second semiconductor substrate CHP2 to the first semiconductor substrate CHP1 in the semiconductor device according to the first embodiment.
  • the semiconductor device according to the second embodiment also uses an AC coupling element (for example, a transformer) for communication.
  • the transmission circuit Tx2 provided on the second semiconductor substrate CHP2 transmits a signal obtained by modulating the transmission signal
  • the reception circuit Rx2 provided on the first semiconductor substrate CHP1 transmits The signal output from the circuit Tx2 is demodulated to reproduce transmission data.
  • a vertical MOS transistor or a bipolar transistor may be formed on the semiconductor substrate on which the second semiconductor substrate CHP2 is formed. Since the vertical MOS transistor or bipolar transistor has a high current driving capability, it is very effective for operating a circuit to be driven that requires a large current.
  • the present invention relates to a system in which signals are transmitted and received between a circuit operating in a first power supply system and a circuit operating in a second power supply system in which a power supply voltage different from that of the first power supply system is set. Can be used.

Abstract

 本発明にかかる半導体装置は、制御対象回路に対する制御信号を生成する制御回路と、制御信号を変調して送信信号を生成する送信回路Txと、を有する第1の半導体基板CHP1と、送信回路Txから送信された送信信号を復調して制御信号を再生する受信回路Rxと、受信回路Rxから出力された制御信号に基づき制御対象回路を駆動する駆動回路Drvとを有し、第1の半導体基板CHP1と電気的に絶縁された第2の半導体基板CHP2と、半導体基板上に形成され、第1の半導体基板CHP1と第2の半導体基板CHP2とを交流的に結合する交流結合素子と、第1の半導体基板CHP1、第2の半導体基板CHP2及び交流結合素子が搭載される半導体パッケージ20と、有する。これにより、回路面積又は実装面積を抑制することができる。

Description

半導体装置
 本発明は半導体装置に関し、特に異なる電源電圧に基づき、交流結合素子を介して通信を行う第1の半導体基板及び第2の半導体基板を有する半導体装置に関する。
 一般に、高耐圧のパワートランジスタを用いたシステム制御を行うためには、複数の半導体チップ又は半導体パッケージが用いられる。そこで、図29~31に高耐圧のパワートランジスタPTrを制御する半導体装置のブロック図を示す。図29~31に示すように、このようなシステムでは、パワートランジスタPTrの制御信号を生成する制御回路101とパワートランジスタPTrを駆動するゲート駆動回路103とを絶縁インタフェース102により接続する。
 制御回路101は、電動機や照明機器などに与える電力量を調整するために、パルス幅変調(PWM(Pulse Width Modulation)変調)などを用いてパワートランジスタPTrの制御信号を生成する。制御回路101は主に、マイクロコントローラ、PWM変調回路、タイマ回路、比較器、アナログデジタル変換回路などを有する。ゲート駆動回路103は、例えばフォトカプラの受信側のフォトトランジスタのインピーダンスの変化を検出し、パワートランジスタPTrのゲート端子を制御する。
 絶縁インタフェース102は、制御回路101とゲート駆動回路Drvを電気的に絶縁しながら交流的には結合し、制御信号等の必要な情報のみを伝達する交流結合素子を有する。図29は交流結合素子としてフォトカプラを用いたものであり、図30は交流結合素子として磁気結合型カプラ(例えば、トランスフォーマ)を用いたものであり、図31は交流結合素子として容量結合型カプラ(例えば、コンデンサ)を用いたものである。また、交流結合素子としてトランスフォーマ又はコンデンサを用いた場合、これら交流結合素子を介して信号を伝達するために変調回路と復調回路とが用いられる。絶縁インタフェース102としてトランスを用いた例が特許文献1~13に開示されている。また、絶縁インタフェース102として、コンデンサを用いた例が特許文献3、14に開示されている。
 図29~31では、半導体基板にハッチングを付し、半導体パッケージを長鎖線で囲んだ。図29~31に示すように、絶縁インタフェースは制御回路101側の回路とゲート駆動回路103側の回路とを絶縁する必要があるため、いずれのカプラを用いた場合であっても2つの半導体基板を必要とする。つまり、図29~31において示したように、絶縁インタフェース102を用いてシステムを構成した場合、半導体基板の数及び半導体パッケージの数が増加する問題がある。この問題は、絶縁インタフェースを用いてモーター駆動制御システムや照明システムを構築する場合に問題となる。
 そこで、一般的なモーター制御駆動システムのブロック図を図32に示し、照明システムのブロック図を図33に示す。図32に示すモーター駆動制御システムは、3相電動機を駆動するシステムであり、3相電動機を駆動するために6個のパワートランジスタPTrが設けられる。また、パワートランジスタPTrに高電圧電源を供給する電源回路110が設けられる。この電源回路110は、100~250Vの交流電源から0~1kVの直流電源を生成する交流直流変換回路である。電源回路110では、交流直流変換をパワートランジスタPTrのスイッチング動作により行う。つまり、図32に示すモーター駆動制御システムでは、8個のパワートランジスタPTrを制御する必要がある。そのため、パワートランジスタPTrの数に応じて8個の絶縁インタフェース102と8個のゲート駆動回路103が必要となる。これにより、図32に示すモーター駆動制御システムでは、Nを制御対象とするパワートランジスタPTrの個数として2N+1個の半導体パッケージが必要になり、半導体基板の数は3N+1個が必要となる。
 また、図33に示す照明システムは、照明素子122として発光ダイオードを用いるものである。図33に示す照明システムは、発光ダイオードの照度調整機能を有する。発光素子として発光ダイオードを使う場合、照度は素子に流れる電流におおよそ比例する。そのため、発光ダイオードに流れる電流量を所望の値に制御する方法が用いられる。図33に示す例では、発光ダイオードに流れる電流を検出するためのシャント抵抗Rshuntを用意し、シャント抵抗Rshuntに発生する電圧を所望の値にするように、負帰還のフィードバック制御を行う。図33に示す照明システムでは、この負帰還フィードバック制御を行うために絶縁インタフェース102が用いられる。
 図33に示す制御回路101では、シャント抵抗Rshuntから得られた電圧を照度調整信号と比較し、その大小に応じてPWM変調回路がパルス信号のデューティ比を変更する。例えば、シャント抵抗Rshuntから得られる電圧が照度調整信号の電圧よりも低い場合、PWM変調回路はパルス信号のデューティ比を大きく(パルス幅を太く)する。これにより、トランス121の一次側コイルに電圧が印加される時間が長くなり、二次側コイルから供給される電力が大きくなるため、シャント抵抗Rshuntから得られる電圧が上昇する。逆に、シャント抵抗Rshuntから得られる電圧が照度調整信号の電圧よりも高い場合、PWM変調回路はパルス信号のデューティ比を小さく(パルス幅を細く)する。これにより、トランス121の二次側コイルから供給される電力が小さくなるため、シャント抵抗Rshuntから得られる電圧が下降する。電源回路120は、このような負帰還制御を行うことで、所望の電圧を出力する。
 このとき、照明システムでは、パワーMOSトランジスタPMをPWM変調信号により制御するために、制御回路101及び絶縁インタフェース102、ゲート駆動回路103が用いられる。これは、耐圧の高い回路では動作速度が不足するためにPWM制御信号を生成することができないため、耐圧が必要なゲート駆動回路103と動作速度が必要な制御回路101とを異なるプロセスで製造する必要があるためである。つまり、図33に示す照明システムにおいても、パワーMOSトランジスタPMを制御するために少なくとも3つの半導体パッケージと4つの半導体基板を必要とする。
 図32、33に示すように、絶縁インタフェースを必要とするシステムでは、半導体基板数及び半導体パッケージ数が増加する問題がある。そこで、特許文献15では、パルス制御回路、トランスフォーマ、ゲート駆動回路を1つのパッケージに収めたハイブリッドICが提案されている。このハイブリッドICを用いることで、絶縁インタフェースを用いるシステムの半導体パッケージの数を低減することができる。
米国特許第4785345号 米国特許第5952849号 米国特許第6249171号 米国特許第6262600号 米国特許第6525566号 米国特許第6873065号 米国特許第6903578号 米国特許第6922080号 米国特許第7064442号 米国特許第7075329号 米国特許第7302247号 特表2001-521160号 特表2003-523147号 米国特許第4780795号 特開2005-080372号
 しかしながら、特許文献15において示されるハイブリッドICが内蔵するパルストランスはチップ上に形成することができないため、パルストランスを含む半導体パッケージが大きくなる問題がある。また、パルストランスは体積が大きいため、1つの半導体パッケージに複数のパルストランスを封入することは困難である。つまり、2個以上のパワートランジスタを駆動する場合、ハイブリッドICがパワートランジスタの個数に応じて増加することになる。
 また、パルストランスをオンチップトランスフォーマに置き換えた場合、トランスフォーマの結合係数が低く、受信側チップに伝達される信号振幅が小さくなる、又は、オンチップトランスフォーマのインダクタンスが小さいため、低周波信号が伝播できず受信側チップに伝達されるパルス信号のパルス幅を十分に確保できなくなる。そのため、特許文献15に記載のハイブリッドICでは、高耐圧トランジスタで構成されるゲートドライバが十分に動作できるパルス信号を伝達できない問題がある。
 つまり、特許文献15において示されたハイブリッドICを用いても、動作の信頼性を確保しながら、絶縁インタフェースを含む半導体装置の回路面積、又は、実装面積を十分に削減できない問題がある。
 このような課題に鑑み、本発明では、動作の信頼性を確保しながら、絶縁インタフェースを含む半導体装置の回路面積、又は、実装面積を削減することを目的とする。
 本発明にかかる半導体装置は、制御対象回路に対する制御信号を生成する制御回路と、前記制御信号を変調して送信信号を生成する送信回路と、を有する第1の半導体基板と、前記送信回路から送信された送信信号を復調して前記制御信号を再生する受信回路と、前記受信回路から出力された前記制御信号に基づき前記制御対象回路を駆動する駆動回路と、を有し、前記第1の半導体基板と電気的に絶縁された第2の半導体基板と、半導体基板上に形成され、前記第1の半導体基板と前記第2の半導体基板とを交流的に結合する交流結合素子と、前記第1の半導体基板、前記第2の半導体基板及び前記交流結合素子が搭載される半導体パッケージと、有する。
 本発明では、動作の信頼性を確保しながら、絶縁インタフェースを含む半導体装置の回路面積、又は、実装面積を削減することができる。
実施の形態1にかかる半導体装置の実装状態を示す模式図である。 実施の形態1にかかる半導体装置のブロック図である。 実施の形態1にかかる制御回路のブロック図である。 実施の形態1にかかるレベルシフタのブロック図である。 実施の形態1にかかるゲート駆動回路のブロック図である。 実施の形態1にかかる半導体装置を構成する半導体基板の模式的な断面図である。 実施の形態1にかかる半導体装置の実装状態を示す模式図である。 実施の形態1にかかる半導体装置の実装状態を示す模式図である。 実施の形態1にかかる半導体装置の実装状態を示す模式図である。 実施の形態1にかかる半導体装置の実装状態を示す模式図である。 実施の形態1にかかる半導体装置の実装状態を示す模式図である。 図10、11にしめす半導体装置を構成する半導体基板の模式的な断面図である。 実施の形態1にかかる半導体装置の実装状態を示す模式図である。 実施の形態1にかかる半導体装置の実装状態を示す模式図である。 実施の形態1にかかる半導体装置の実装状態を示す模式図である。 実施の形態1にかかる半導体装置の実装状態を示す模式図である。 図16に示す半導体装置の半導体基板の模式的な断面図である。 図16に示す半導体装置の半導体基板の模式的な断面図である。 実施の形態1にかかる半導体装置の実装状態を示す模式図である。 実施の形態1にかかる半導体装置の実装状態を示す模式図である。 実施の形態1にかかる半導体装置を適用した半導体パッケージの模式図である。 図21に示す半導体パッケージを適用したモーター駆動制御システムのブロック図である。 図21に示す半導体パッケージを適用したモーター駆動制御システムのブロック図である。 実施の形態1にかかる半導体装置を適用した半導体パッケージの模式図である。 図25に示す半導体パッケージを適用したモーター駆動制御システムのブロック図である。 図25に示す半導体パッケージを適用したモーター駆動制御システムのブロック図である。 実施の形態1にかかる半導体装置を適用した電源制御回路のブロック図である。 実施の形態2にかかる半導体装置の実装状態を示す模式図である。 絶縁インタフェース(フォトカプラ)を用いた一般的な半導体装置のブロック図である。 絶縁インタフェース(トランスフォーマ)を用いた一般的な半導体装置のブロック図である。 絶縁インタフェース(コンデンサ)を用いた一般的な半導体装置のブロック図である。 従来の絶縁インタフェースを用いたモーター駆動制御システムのブロック図である。 従来の絶縁インタフェースを用いた照明装置のブロック図である。
 実施の形態1
 以下、図面を参照して本発明の実施の形態について説明する。図1に本実施の形態にかかる半導体装置の実装状態を示す模式図を示す。図1に示すように、本実施の形態にかかる半導体装置は、第1の半導体基板CHP1と第2の半導体基板CHP2を有する。この第1の半導体基板CHP1及び第2の半導体基板CHP2は、1つの半導体パッケージに搭載されるものである。
 第1の半導体基板CHP1は、制御回路と送信回路Txを有する。第2の半導体基板CHP2は、受信回路Rxとゲート駆動回路Drvを有する。また、図1に示す例では、第2の半導体基板CHP2に交流結合素子(例えば、トランスフォーマ)を有する。トランスフォーマは、一次側コイルL1、二次側コイルL2を有する。二次側コイルL2は、パッドとワイヤボンディングを介して第1の半導体基板CHP1に設けられた送信回路Txの出力と接続される。このトランスフォーマは、本実施の形態の半導体装置において絶縁インタフェースとして機能する。また、本実施の形態では、絶縁インタフェースとして、半導体基板上に形成された交流結合素子(例えば、トランスフォーマ、コンデンサ)を用いる。そこで、半導体基板上に形成されたトランスフォーマを場合に応じてオンチップトランスフォーマと称し、コンデンサをオンチップコンデンサと称す。
 まず、第1の半導体基板CHP1と第2の半導体基板CHP2の製造プロセスについて説明する。第1の半導体基板CHP1は、第2の半導体基板CHP2とは異なる半導体プロセスで製造される。第1の半導体基板CHP1は、第2の半導体基板CHP2よりも微細なプロセスにより製造される。これにより、第1の半導体基板CHP1のチップ面積縮小による製造コストの低減、及び、消費電力を小さくすることが可能である。
 第2の半導体基板CHP2は、パワートランジスタのゲート端子を駆動するために5V~15V程度の耐圧を要求される。そのため、例えば0.13μm程度の最小寸法の微細プロセスを用いることが困難である。従って、第2の半導体基板CHP2は第1の半導体基板よりも絶縁耐圧が高い旧世代の最小加工寸法がおおよそ0.5μmよりも粗い製造プロセスで製造しても良い。第2の半導体基板CHP2には主にゲート駆動回路Drvと、トランスフォーマやキャパシタなどのパッシブ素子が形成される。これらの回路や素子が占有する面積は、半導体製造プロセスをより微細なものに置き換えても小さくすることは困難であり、製造プロセスの微細度に依存せず一定の面積を占有してしまう。従って、旧世代の製造プロセスにより製造される第2の半導体基板CHP2に形成することで、チップ面積の増加に与える影響を低減することができる。
 また、第2の半導体基板CHP2には、受信回路Rxとゲート駆動回路Drvが形成される。ゲート駆動回路Drvには、15V程度の耐圧が要求される場合がある。一方、受信回路Rxを構成するトランジスタに15V耐圧のものを用いると、回路面積の増加、消費電力の増加、動作周波数の低下、又は、増幅器等の感度の低下等のデメリットが生じる。そこで、本実施の形態にかかる第2の半導体基板CHP2では、受信回路Rxの動作電圧をゲート駆動回路22の動作電圧よりも低くする。つまり、受信回路Rxを構成する回路素子(例えば、MOSトランジスタ)は、ゲート駆動回路22を構成する回路素子(例えば、MOSトランジスタ)よりもゲート長が短く、ゲート絶縁膜厚が薄いトランジスタを用いる。これにより、受信回路Rxの回路面積及び消費電力を低減し、受信感度を向上させる可能である。例えば、受信回路Rxは最小ゲート長が0.5μm、ゲート絶縁膜の耐圧が5Vのトランジスタで構成し、ゲート駆動回路Drvは最小ゲート長が1.2μm、ゲート絶縁膜の耐圧が15Vのトランジスタで構成する。そして、受信回路Rxを5Vの電源電圧で動作させ、ゲート駆動回路Drvを15Vの電源電圧で動作させる。このとき、図1では、図示を省略したが、受信回路Rxが伝達する信号とゲート駆動回路Drvが伝達する信号との振幅差を解消するために、受信回路Rxとゲート駆動回路Drvとの間にはレベルシフタを挿入する。
 また、第2の半導体基板CHP2には、オンチップトランスフォーマが形成される。本実施の形態では、第1の半導体基板CHP1の送信回路Txの電源電圧及び信号振幅は1.0Vであり、第2の半導体基板CHP2の受信回路Rxの電源電圧及び信号振幅は5Vである。そのため、これら2つの回路の間で送受信が容易な電圧に変換するために、本実施の形態では、トランスフォーマのインダクタンス比を調整する。例えば、送信回路Txに接続される一次側コイルL1を10nH、受信回路Rxに接続される二次側コイルL2を50nHとする。これにより、送信回路Txから出力された1.0V振幅の信号を、トランスフォーマを介して5.0Vの振幅に変換して受信回路Rxに入力することが可能になる。このようにすることで、第1の半導体基板CHP1と第2の半導体基板CHP2を耐圧が異なる製造プロセスで製造しても信号の伝達を確実に行うことが可能になる。また、高い電源電圧で動作する回路から低い電源電圧で動作する回路に信号を伝達する場合、インダクタンス比に基づきトランスフォーマにおいて信号の振幅レベル変換を行うことで、受信回路に過大な電圧が印加することを防止することができる。これにより、低い電源電圧で動作する受信回路の破壊を防止することができる。
 続いて、本実施の形態にかかる半導体装置において用いられる回路について説明する。そこで、本実施の形態にかかる半導体装置の詳細なブロック図を図2に示す。図2に示すように、本実施の形態にかかる半導体装置では、第1の半導体基板CHP1に制御回路CONT、送信回路Txが搭載される。また、第2の半導体基板CHP2にオンチップトランスフォーマ(一次側コイルL1及び二次側コイルL2により構成される)、受信回路Rx、レベルシフタSFT、ゲート駆動回路Drvが搭載される。
 まず、第1の半導体基板CHP1に搭載される回路について説明する。制御回路CONTは、制御対象回路(本実施の形態では、パワートランジスタPTr)を制御するための制御信号を生成する。また、送信回路Txは、制御回路CONTが出力する制御信号を変調して送信信号を生成する。そして、送信回路Txは、送信信号により一次側コイルL1を駆動する。本実施の形態では、制御回路CONTと送信回路Txは、1.0Vの電源電圧に基づき動作するものとする。
 制御回路CONTの詳細について説明する。図3に制御回路CONTのブロック図を示す。図3に示すように、制御回路CONTは、演算回路(MPU(Multi Processing Unit)又はDSP(Digital Signal Processor))10、メモリ11、発振回路12、PWM変調回路13、ADC(アナログデジタル変換回路、Analog Digital Converter)14を有する。演算回路10は、例えば、モーターの回転制御や照明の出力制御を行う。メモリ11は、演算回路10で用いられるプログラムを格納する。PWM変調回路13は、演算回路10から出力されるバイナリコードなどで表現されるデジタル信号をパルス幅に大小に変換することでPWM変調された制御信号を発生する。発振回路12は、PWM変調処理において用いられる鋸波や三角波を生成し、PWM変調回路13に与える。ADC14は、モーターやその他回路から得られるフィードバック信号(アナログ信号)をデジタル値に変換して演算回路10に伝達する。演算回路10による制御は、外部の操作スイッチからの入力信号や、電動機の回転センサ、位相検出センサ、電流センサ、電圧センサや、照明器具の電流センサ、照度センサなどからフィードバックされてくる信号に基づいて行われる。なお、制御回路CONTの構成は、制御対象回路に応じて、又は、その他システムの構成に応じて適宜変更することが可能である。
 次いで、第2の半導体基板CHP2に搭載される回路について説明する。トランスフォーマは、一次側コイルL1と二次側コイルL2とから構成される。受信回路Rxは、トランスフォーマを介して得られるパルス信号を受信し、当該パルス信号を復調することで送信回路Txに入力された制御信号を再生して後段回路に伝達する。受信回路Rxは、例えば、5Vの電源電圧に基づき動作する。
 レベルシフタSFTは、受信回路Rxが出力した制御信号の振幅をゲート駆動回路Drvの電源電圧に基づく振幅に変換する。そして、レベルシフタSFTは、変換後の制御信号をゲート駆動回路Drvに出力する。このレベルシフタSFTの詳細な回路図を図4に示す。
 図4に示すように、レベルシフタSFTは、インバータINV1、INV2、NMOSトランジスタN1、N2、PMOSトランジスタP1、P2を有する。インバータINV1、INV2は、5Vの電源電圧に基づき動作する。インバータINV1は、受信回路Rxの出力信号を入力信号INとし、入力信号INを反転して出力する。インバータINV2は、インバータINV1の出力を反転させて出力する。NMOSトランジスタN1は、ソースが接地端子に接続され、ドレインがPMOSトランジスタP1のドレインに接続される。NMOSトランジスタN1のゲートには、インバータINV2の出力信号が与えられる。NMOSトランジスタN2は、ソースが接地端子に接続され、ドレインがPMOSトランジスタP2のドレインに接続される。NMOSトランジスタN2のゲートには、インバータINV1の出力信号が与えられる。PMOSトランジスタP1、P2はクロスカップル接続されたトランジスタである。PMOSトランジスタP1、P2のソースは電源電圧(15V)に接続される。このような回路構成とすることで、レベルシフタSFTは、入力側の電源電圧に相当する(例えば、5V)の振幅の信号を出力側の電源電圧に相当する(例えば、15V)の振幅を有する信号に変換する。
 ゲート駆動回路Drvは、受信回路Rx及びレベルシフタSFTを介して得た制御信号に基づきパワートランジスタPTrを駆動する。本実施の形態では、ゲート駆動回路Drvは、15Vの電源電圧に基づき動作する。ゲート駆動回路Drvは、パワートランジスタPTrのゲートを駆動するため、大きな電流供給能力を有するドライバである。ゲート駆動回路Drvは、例えば、オープンドレイン、プッシュ・プル型の出力段を有する構成をとることができる。また、ゲート駆動回路Drvの出力電流又はシンク電流は10mA以上であることが望ましい。
 ここで、ゲート駆動回路Drvの回路例を説明する。ゲート駆動回路Drvの回路図を図5に示す。図5に示すように、ゲート駆動回路Drvは、PMOSトランジスタとNMOSトランジスタが電源端子と接地端子との間に直列に接続されたインバータを複数有する。そして、各トランジスタのゲート幅wは、後段に配置されるトランジスタほど大きくなっている。これは、駆動能力のないトランジスタ(例えば、ゲート幅wが小さなトランジスタ)でゲート幅wが大きなトランジスタを駆動すると、駆動対象のトランジスタのゲート寄生容量により、駆動対象のトランジスタを駆動することができないためである。図5に示すように、徐々にゲート幅wが大きくなるようにトランジスタ(又はインバータ)を配置することで、このような不具合を防止することができる。
 続いて、本実施の形態にかかる半導体装置を構成する第1の半導体基板CHP1及び第2の半導体基板CHP2の製造プロセスについて詳細に説明する。そこで、本実施の形態にかかる半導体装置を構成する第1の半導体基板CHP1及び第2の半導体基板CHP2の模式的な断面図を図6に示す。
 上記において説明したように、第1の半導体基板CHP1上には制御回路CONTが構成される。制御回路CONTは演算回路(例えばMPUやDSP)などの複雑な論理回路を備える。そのため、第1の半導体基板CHP1は、集積度の高い製造プロセスで形成した方がチップ面積を削減できる効果が大きい。また、第1の半導体基板CHP1は、配線層数がより多い製造プロセスを用いることが好ましい。これにより、チップ面積を小さくしてコストを低減することが可能な場合がある。つまり、最小ゲート寸法が0.5μmのCMOSプロセスで作成するよりも、最小ゲート寸法が0.25μmのCMOSプロセスで作成する方がチップ面積を抑制することができる。また、2層配線のCMOSプロセスも、4層配線のCMOSプロセスの方がチップ面積を縮小できる。
 一方で、第2の半導体基板CHP2は、第1の半導体基板CHP1よりも耐圧の高いトランジスタを形成可能な製造プロセスで製造する。一般に、数百ボルトの電圧のオン・オフを制御するIGBT(Insulated Gate Bipolar Transistor)やパワートランジスタは、ゲート電圧に5V~15Vを与える必要がある場合が多い。一方で、制御回路CONTなどを構成する一般の論理回路用の半導体集積回路は、5V以下の電源電圧で動作しており、ゲート絶縁膜等に5Vより大きい電圧が印加されると破壊に至る危険性が高い。従って、第2の半導体基板CHP1は、少なくとも5V以上の耐圧、より望ましくは15V以上の電圧に耐えられる製造プロセスで形成されている必要がある。そこで、本実施の形態では、第2の半導体基板CHP2を第1半導体基板CHP1よりも絶縁耐圧が高い製造プロセスで形成する。
 より具体的には、図6に示すように、第2の半導体基板CHP2上のトランジスタのゲート絶縁膜Goは、第1の半導体基板CHP1上に形成されるトランジスタよりも厚い。また、第2の半導体基板CHP2上のトランジスタのソースドレイン領域SDの間隔により決定されるトランジスタのゲート長は、第2の半導体基板CHP2に形成されるトランジスタの方が第1の半導体基板CHP1上に形成されるトランジスタよりも長い。
 また、第2の半導体基板CHP2の配線IWも同様に第1の半導体基板CHP1の配線IWよりも高い絶縁耐圧が要求される。そのため、図6に示すように第2の半導体基板CHP2上の配線間隔は、第1の半導体基板CHP1の配線間隔よりも広く形成される。また、第2の半導体基板CHP2の配線層間の絶縁膜厚は、第1の半導体基板CHP1の配線層間の絶縁膜厚よりも厚く設定される。また、第2の半導体基板CHP2のゲート駆動回路Drvは、最大で数十ミリアンペアから数百ミリアンペアの大電流をIGBTやパワートランジスタのゲート端子に供給する必要があるため、大電流の通過に耐える配線IWが必要となる。そこで、第2の半導体基板CHP2の配線幅は、第1の半導体基板CHP1のそれよりも広く設定される。また、第2の半導体基板CHP2の配線膜厚は、第1の半導体基板CHP1の配線膜厚よりも厚く設定される。なお、第2の半導体基板CHP2には複雑な回路を配置しないため、配線層数は第1の半導体基板CHP1のそれよりも少なくて構わない。
 ここで、本実施の形態にかかる半導体装置におけるトランスフォーマの実装方法の変形例について説明する。本実施の形態にかかる半導体装置では、1つ又は2つの半導体チップ上に形成された2つのコイルを用いて交流結合素子を構成する。また、本実施の形態にかかる交流結合素子は半導体基板上に形成されていることが好ましいが、この配置の形態は様々な形態を考えることができる。そこで、図7~図11、図13~23に本実施の形態にかかる半導体装置における交流結合素子の実装状態を示す模式図を示す。なお、以下の説明では、送信回路Txが第1の半導体基板上の他の回路(例えば、制御回路CONT等)を含むものとし、受信回路Rxが第2の半導体基板上の他の回路(例えば、レベルシフタSFT、ゲート駆動回路Drv等)を含むものとする。
 図7に示す実装状態は、半導体パッケージ1に第1の半導体基板CHP1及び第2の半導体基板CHP2が搭載される。この第1の半導体基板CHP1及び第2の半導体基板CHP2は、それぞれパッドPdを有する。そして、第1の半導体基板CHP1及び第2の半導体基板CHP2のパッドPdは、図示しないボンディングワイヤを介して半導体パッケージ1に設けられたリード端子2と接続される。この構成は、図8~図11及び図13~23に示す実装形態のいずれにも共通する構成である。
 図7に示す実装状態は、第1の半導体基板CHP1に送信回路Txが形成される。一方、第2の半導体基板CHP2には、一次側コイルL1、二次側コイルL2及び受信回路Rxが形成される。また、第1の半導体基板CHP1には、送信回路Txと接続されるパッドが形成され、第2の半導体基板CHP2には、一次側コイルL1と接続されるパッドが形成される。そして、送信回路Txは、パッドとボンディングワイヤWとを介して第2の半導体基板CHP2に形成された一次側コイルL1の一端と接続される。また、一次側コイルL1の他端は、第1の半導体基板CHP1に形成されたパッドとボンディングワイヤWとを介して送信回路Tx側の接地配線と接続される。
 図8に示す実装例では、第2の半導体基板CHP2側に2つのトランスフォーマが設けられる。2つのトランスフォーマは、第1の一次側コイルL11及び第1の二次側コイルL12を有する第1のトランスフォーマと、第2の一次側コイルL21及び第2の二次側コイルL22を有する第2のトランスフォーマと、により構成される。第1の一次側コイルL11及び第2の一次側コイルL21は、それぞれ一方の端子が第2の接地電圧GND2が供給される送信回路Txの接地配線に接続され、他方の端子がそれぞれ対応する送信回路Txの送信ノードに接続される。第1の二次側コイルL12及び第2の二次側コイルL22は、それぞれ一方の端子が第1の接地電圧GND1が供給される受信回路Rxの接地配線に接続され、他方の端子がそれぞれ対応する受信回路Rxの受信ノードに接続される。
 図9に示す実装状態は、第1の半導体基板CHP1に一次側コイルL1、二次側コイルL2及び送信回路Txが形成される。一方、第2の半導体基板CHP2には受信回路Rxが形成される。また、第1の半導体基板CHP1には、二次側コイルL2と接続されるパッドが形成され、第2の半導体基板CHP2には、受信回路Rxと接続されるパッドが形成される。そして、受信回路Rxは、パッドとボンディングワイヤWとを介して第1の半導体基板CHP1に形成された二次側コイルL2の一端と接続される。また、二次側コイルL2は、第2の半導体基板CHP2に形成されたパッドとボンディングワイヤを介して受信回路Rx側の接地配線と接続される。なお、図1及び図9に示す例では、一次側コイルL1と二次側コイルL2は、1つの半導体チップ内において上下方向に積層される第1の配線層と第2の配線層を用いて形成される。
 図10に示す実装状態は、第1の半導体基板CHP1に一次側コイルL1、二次側コイルL2及び送信回路Txが形成される。一方、第2の半導体基板CHP2には受信回路Rxが形成される。また、第1の半導体基板CHP1には、二次側コイルL2と接続されるパッドが形成され、第2の半導体基板CHP2には、受信回路Rxと接続されるパッドが形成される。そして、受信回路Rxは、パッドとボンディングワイヤWとを介して第1の半導体基板CHP1に形成された二次側コイルL2の一端と接続される。また、一次側コイルL1の他端は、第2の半導体基板CHP2に形成されたパッドとボンディングワイヤWとを介して受信回路Rx側の接地配線と接続される。なお、図7及び図10に示す例では、一次側コイルL1と二次側コイルL2は、1つの半導体基板の同一の配線層に形成される。また、一次側コイルL1と二次側コイルL2は、同一の中心位置を有する巻線として形成される。
 図11に示す実装例では、第1の半導体基板CHP1側に2つのトランスフォーマが設けられる。2つのトランスフォーマは、第1の一次側コイルL11及び第1の二次側コイルL12を有する第1のトランスフォーマと、第2の一次側コイルL21及び第2の二次側コイルL22を有する第2のトランスフォーマと、により構成される。第1の一次側コイルL11及び第2の一次側コイルL21は、それぞれ一方の端子が第2の接地電圧GND2が供給される送信回路Txの接地配線に接続され、他方の端子がそれぞれ対応する送信回路Txの送信ノードに接続される。第1の二次側コイルL12及び第2の二次側コイルL22は、それぞれ一方の端子が第1の接地電圧GND1が供給される受信回路Rxの接地配線に接続され、他方の端子がそれぞれ対応する受信回路Rxの受信ノードに接続される。
 ここで、図9~図11で示した実装例では、第1の半導体基板CHP1にトランスフォーマが形成される。このような実装形態をとる場合は、第2の半導体基板CHP2の配線層の総数が少ない場合に有効である。そこで、図9~図11に示す実装形態を採用した場合の第1の半導体基板CHP1及び第2の半導体基板CHP2の模式的な断面図を図12に示す。図12に示すように、この場合、第2の半導体基板CHP2の配線層数が少なく、一次側コイルL1と二次側コイルL2との間の層間絶縁膜の厚みを十分に確保することができない。そこで、厚い層間絶縁膜を確保できる第1の半導体基板CHP1側にトランスフォーマを形成する。これにより、一次側コイルL1と二次側コイルL2との間の絶縁耐圧を十分に確保することができる。
 続いて、図13に示す実装状態は、第1の半導体基板CHP1に送信回路Txが形成され、第2の半導体基板CHP2に受信回路Rxが形成され、第3の半導体基板CHP3に一次側コイルL1及び二次側コイルL2が形成される。また、第1の半導体基板CHP1には、一次側コイルL1と接続されるパッドが形成され、第2の半導体基板CHP2には、二次側コイルL2と接続されるパッドが形成され、第3の半導体基板CHP3には一次側コイルL1に接続されるパッド及び二次側コイルL2に接続されるパッドが形成される。そして、送信回路Txはパッド及びボンディングワイヤWを介して第3の半導体基板CHP3上に形成された一次側コイルL1の一端と接続され、受信回路Rxはパッド及びボンディングワイヤWを介して第3の半導体基板CHP3上に形成される二次側コイルL2の一端と接続される。また、一次側コイルL1の他端は、第1の半導体基板CHP1に形成されたパッドとボンディングワイヤWとを介して送信回路Tx側の接地配線と接続され、二次側コイルL2の他端は、第2の半導体基板CHP2に形成されたパッドとボンディングワイヤWとを介して受信回路Rx側の接地配線と接続される。なお、図13に示す例では、一次側コイルL1と二次側コイルL2は、1つの半導体基板内において上下方向に積層される第1の配線層と第2の配線層を用いて形成される。
 図14、図15に示す例は、送信回路Tx及び一次側コイルL1が第1の半導体基板CHP1に形成され、受信回路Rx及び二次側コイルL2が第2の半導体基板CHP2に形成される例である。図14、図15に示す例は、第1の半導体基板CHP1と第2の半導体基板CHP2とが積層される。また、図14、図15に示す例では、積層された状態において、一次側コイルL1の中心位置と二次側コイルL2の中心位置とが同一直線上になるように第1の半導体基板CHP1及び第2の半導体基板CHP2が配置される。
 図16に示す例は、同一の半導体基板CHP4上に送信回路Tx、受信回路Rx、一次側コイルL1及び二次側コイルL2が形成されるものである。図16に示す例では、一次側コイルL1と二次側コイルL2は、上下方向に積層される第1の配線層と第2の配線層を用いて形成される。そして、送信回路Txが配置される領域と受信回路Rxが配置される領域は、半導体基板CHP4に形成される絶縁層により互いに絶縁される。ここで、半導体基板CHP4の断面図を図17、図18に示す。図17に示す例では、送信回路Txが形成される領域と受信回路Rxが形成される領域とが絶縁層により電気的に分断される。そして、一次側コイルL1及び二次側コイルL2は送信回路Txが形成される領域に設けられる。一方、図18に示す例では、送信回路Txが形成される領域と受信回路Rxが形成される領域とが絶縁層により電気的に分断される。そして、一次側コイルL1及び二次側コイルL2は受信回路Rxが形成される領域に設けられる。
 図19に示す実装例は、図1において示した半導体装置の実装例のトランスフォーマをコンデンサに変更したものである。つまり、図19に示す半導体装置は、交流結合素子としてコンデンサを用いた実装例である。
 図19に示す半導体装置において信号伝達に用いられるコンデンサは、異なる配線層に形成された金属配線(図19の電極Ce1、Ce2)をコンデンサの2つの電極として用い、当該金属配線の間に充填される絶縁体(例えば、層間絶縁膜)を誘電体として用いたものである。
 図20に示す実装例は、図8で示した実装例のトランスフォーマをコンデンサに変更したものである。図20で示した実装例では第1のトランスフォーマを構成する第1の一次側コイルL11及び第1の二次側コイルL12を電極Ce1aと電極Ce2aとに置き換えた第1のコンデンサCaと、第2のトランスフォーマを構成する第2の一次側コイルL11及び第2の二次側コイルL12を電極Ce1bと電極Ce2bとに置き換えた第2のコンデンサCbとを有する。第1のコンデンサCaと第2のコンデンサCbは、図19に示した実装例と同様に電極間に形成された層間絶縁膜を誘電体として用いたものである。
 続いて、実施の形態1にかかる半導体装置を適用した半導体パッケージについて説明する。実施の形態1にかかる第1の半導体基板CHP1及び第2の半導体基板CHP2を含む半導体パッケージ20の模式図を図21に示す。
 図21に示す応用例では、1つの半導体パッケージ20に、1つの第1の半導体基板CHP1と6つの半導体基板CHP2が搭載される。そのため、第1の半導体基板CHP1には、第2の半導体基板CHP2の数に応じた個数の送信回路Txが設けられる。なお、この送信回路Txは、第1の半導体基板CHP1に形成された制御回路CONTから第2の半導体基板CHP2に送信する制御信号をそれぞれ個別に受けるものとする。本実施の形態にかかる半導体装置では、交流結合素子が第1の半導体基板CHP1又は第2の半導体基板上に形成されているため、複数の第2の半導体基板CHP2を1つの半導体パッケージ20に収めることが可能になる。図21に示す半導体パッケージは、例えば、モーター駆動制御システムとして利用することができる。なお、半導体パッケージ20において第2の半導体基板CHP2に関係する外部接続端子は、高い電圧の入出力が許容される高圧ピンとして定義され、その他の端子は高い電圧の印加が禁止される低圧ピンとして定義される。
 そこで、図22に半導体パッケージ20を利用したモーター制御駆動システム(本実施の形態にかかる半導体装置の応用例)のブロック図を示す。図22に示すように、半導体パッケージ20を利用したモーター駆動制御システムでは、3相駆動のモーターMを制御対象回路とする。モーターMは、u相、v相、w相の3つの異なる位相の駆動信号により駆動される。そこで、第1の半導体基板CHP1では、制御回路(MCU、PWM変調回路、DSPを含む回路)においてu相用の上アーム制御信号、v相用上アーム制御信号、w相用上アーム信号、u相用下アーム制御信号、v相用下アーム制御信号、w相用下アーム制御信号を生成する。
 そして、u相用上アーム制御信号は、第2の半導体基板CHP2を介してu相の駆動信号を生成するパワートランジスタPTrのうち電源端子側のパワートランジスタPTrに伝達される。v相用上アーム制御信号は、第2の半導体基板CHP2を介してv相の駆動信号を生成するパワートランジスタPTrのうち電源端子側のパワートランジスタPTrに伝達される。w相用上アーム制御信号は、第2の半導体基板CHP2を介してw相の駆動信号を生成するパワートランジスタPTrのうち電源端子側のパワートランジスタPTrに伝達される。また、u相用下アーム制御信号は、第2の半導体基板CHP2を介してu相の駆動信号を生成するパワートランジスタPTrのうち接地端子側のパワートランジスタPTrに伝達される。また、v相用下アーム制御信号は、第2の半導体基板CHP2を介してv相の駆動信号を生成するパワートランジスタPTrのうち接地端子側のパワートランジスタPTrに伝達される。また、w相用下アーム制御信号は、第2の半導体基板CHP2を介してw相の駆動信号を生成するパワートランジスタPTrのうち接地端子側のパワートランジスタPTrに伝達される。
 このように、半導体パッケージ20を用いることで、1つの半導体パッケージによってモーターMを駆動する6つのパワートランジスタPTrにそれぞれ制御信号を与えることができる。また、第1の半導体基板CHP1に設けられた制御回路は、モーターMの動作状況を検出する各種信号を受けて、受信した検出信号に基づくモーターMの制御を行うことが可能である。図22に示す例では、DCコンバータ電圧(電源電圧)検出信号、モーター駆動電流検出信号、u相用電流検出信号、v相用電流検出信号、位相・回転検出信号、IGBT温度検出信号を制御回路は受信する。また、これらの検出信号は、第2の半導体基板CHP2を経由することなく第1の半導体基板CHP1で受信できる程度に電圧レベルが設定されているものとする。なお、電流検出信号は電流検出回路CSから与えられ、位相・回転検出信号は、位相回転検出回路PSが出力する信号である。
 また、図23に図22で示した応用例の変形例を示す。図23で示す例では、第1の半導体基板CHP1にマルチプレクサMUX(又は多重化回路)、デマルチプレクサDE-MUX及びアナログデジタル変換回路(図中のA/D)を備える。このように、モーターMからフィードバックされる位相検出信号、回転検出信号、電流検出信号、電圧検出信号、温度検出信号などのフィードバック信号は、多重化回路やマルチプレクサMUX、デマルチプレクサDE-MUXを介して制御回路にフィードバックされていても良い。
 また、図21で示した半導体パッケージ20の変形例を示す半導体パッケージ21の模式図を図24に示す。図24に示すように、半導体パッケージ20では、下アーム制御信号を伝達する3つのゲート駆動回路Drvが1つの第2の半導体基板CHP2に収めされる。また、第1の半導体基板CHP1では、下アーム制御信号を伝達する送信回路Txが第2の半導体基板CHP2に応じて1つになっている。下アーム制御信号は上アーム制御信号に比べて信号レベルが低いため、例えば下アーム制御信号に対応する第2の半導体基板CHP2は、受信回路Rxと同じ耐圧のトランジスタを用いることができる。これにより、小さな回路面積でより多くの回路素子を第2の半導体基板CHP2に作ることができるため、図24において示したような、実装形態が可能になる。また、このような実装形態を採用することで半導体パッケージの大きさを抑制することができる。
 図24で示した半導体パッケージ21を用いたモーター駆動制御システムのブロック図を図25に示す。図25に示すブロック図は、図23において示したモーター駆動制御システムにおいて半導体パッケージ21を採用したものである。そのため、図25で示すブロック図では、下アーム制御信号に対応する第2の半導体基板CHP2が1つになっている。
 また、下アーム制御信号は、上アーム制御信号に比べて信号レベルが低いことから、この信号レベルに十分に耐えられる耐圧を有する回路素子を第1の半導体基板CHP1に形成することができる場合、図26に示す回路構成を採用することもできる。図26は、図23で示したモーター駆動制御システムにおいて、第1の半導体基板CHP1が下アーム制御信号の信号レベルに対して十分な耐圧を有する回路素子を有する場合の変形例である。図26に示すように、この場合、下アーム制御信号を伝達する第2の半導体基板CHP2を用いることなくモーターMの制御が可能である。そして、図26に示す応用例では、他の応用例に比べて回路規模を小さくすることができる。
 また、実施の形態1にかかる半導体装置は、電源回路制御システムに適用することもできる。そこで、電源回路制御システムに実施の形態1にかかる半導体装置を適用した場合のブロック図を図27に示す。図27に示す例では、電源回路30に対して第1の半導体基板CHP1及び第2の半導体基板CHP2が設けられる。なお、電源回路30の動作は、図33において説明した電源回路120の動作と実施的に同じため説明を省略する。
 そして、第1の半導体基板CHP1の制御回路にはオペアンプOP及びPWM変調回路が設けられる。オペアンプOPは電源回路30の出力と基準電圧発生回路が出力する基準電圧Vrefとを比較して、その差電圧成分を増幅してPWM変調回路に出力する。PWM変調回路はオペアンプOPの出力信号の電圧と発振回路が出力する三角波信号又は鋸波信号の信号レベルとを比較してその比較結果を送信回路Txに出力する。
 第1の半導体基板CHP1の送信回路Txは、PWM変調回路が出力するPWM変調信号に基づきパルス信号を生成し、一次側コイルL1を駆動する。そして、第2の半導体基板CHP2では、受信回路Rxが二次側コイルL2を介してパルス信号を受信し、受信したパルス信号を復調することでPWM制御信号を再生する。第2の半導体基板CHP2に設けられたゲート駆動回路Drvは、受信回路Rxにより再生されたPWM制御信号によりパワーMOSトランジスタPMを駆動する。
 図27に示す例においても、他の応用例と同様に第1の半導体基板CHP1と第2の半導体基板CHP2は1つの半導体パッケージに収められる。そして、図27に示す例においても、2つの半導体基板によりパワーMOSトランジスタPMを制御及び駆動することが可能である。
 上記説明より、実施の形態1にかかる半導体装置は、制御対象回路(例えば、モーターM、電源回路30)に対する制御信号を生成する制御回路CONTと、制御信号を変調して送信信号を生成する送信回路Txと、を有する第1の半導体基板CHP1と、送信回路Txから送信された送信信号を復調して制御信号を再生する受信回路Rxと、受信回路Rxから出力された制御信号に基づき制御対象回路を駆動する駆動回路Drvと、を有し、第1の半導体基板CHP1と電気的に絶縁された第2の半導体基板CHP2と、半導体基板上に形成され、第1の半導体基板CHP1と第2の半導体基板CHP2とを交流的に結合する交流結合素子と、第1の半導体基板CHP1、第2の半導体基板CHP2及び交流結合素子が搭載される半導体パッケージと、有する。
 これにより、実施の形態1にかかる半導体装置は、絶縁インタフェースを介した信号の伝達を必要とする半導体装置を1つの半導体パッケージにより制御することができる。つまり、実施の形態1にいかかる半導体装置は、従来の半導体装置よりも回路面積及び実装面積を削減することができる。なお、実施の形態1にかかる第2の半導体基板は、受信回路Rxとゲート駆動回路Drvとを備えるため、信号伝達の信頼性を向上させることができる。
 また、実施の形態1では、絶縁インタフェースとして利用する交流結合素子を半導体基板上に形成できるため、複数の絶縁インタフェースを1つの半導体パッケージに収めることができる。つまり、従来では困難であった複数の絶縁インタフェースチャネルを1つの半導体パッケージに収めることができる。
 また、第1の半導体基板CHP1は、第2の半導体基板CHP2よりも微細なプロセスにより形成される回路素子により制御回路CONT及び送信回路Txが構成される。これより、実施の形態1にかかる半導体装置は、第1の半導体基板の小型化及び高速化を実現することができる。なお、プロセスの微細度は、第1の半導体基板CHP1及び第2の半導体基板CHP2に形成されるトランジスタの最小ゲート長により決定される。また、第1の半導体基板CHP1を構成する回路素子は、第2の半導体基板CHP2よりも微細なプロセスで形成されているため第2の半導体基板CHP2を構成する回路素子よりも耐圧が低い。
 第2の半導体基板CHP2の受信回路Rxは、第2の半導体基板のゲート駆動回路Drvよりも耐圧が低く、微細なプロセスにより形成される回路素子により構成される。これにより、第2の半導体基板CHP2は、小型化及び受信信号に対する感度向上を実現することができる。
 また、第1の半導体基板CHP1の配線層間の絶縁膜の膜厚は、第2の半導体基板CHP2の配線層間の絶縁膜の膜厚よりも薄い。これにより、第1の半導体基板CHP1は、第2の半導体基板よりも高集積化を実現することができる。
 また、第1の半導体基板CHP1に形成される配線は、第2の半導体基板CHP2に形成される配線よりも膜厚が薄い。さらに、第1の半導体基板CHP1に形成される配線は、第2の半導体基板CHP2に形成される配線よりも配線幅が小さい。これにより、第2の半導体基板CHP2に形成される回路、特にゲート駆動回路Drvは、第1の半導体基板CHP1に形成される回路よりも大きな電流を出力することが可能になる。
 また、第1の半導体基板CHP1は、第2の半導体基板CHP2よりも低い電源電圧に基づき動作する。これにより、第1の半導体基板CHP1は、高速動作が可能になる。
 また、第2の半導体基板CHP2では、受信回路Rxとゲート駆動回路Drvとの間にレベルシフト回路が挿入される。これにより、受信回路Rxを耐圧の低いトランジスタにより構成することができる。従って、第2の半導体基板CHP2では、受信回路Rxの高感度化及び回路面積の削減を実現することができる。
 実施の形態1にかかる交流結合素子は、第1の半導体基板CHP1に形成される配線層と第2の半導体基板CHP2に形成される配線層とのいずれか一方を用いて形成される。これにより、半導体パッケージ内に複数の絶縁インタフェースを納めることができるため、本実施の形態にかかる半導体装置は、半導体パッケージの個数を大幅に削減することができる。
 この交流結合素子は、一次側コイルと、一次側コイルと磁気的に結合される二次側コイルとを有するトランスフォーマであっても良く、第1の半導体基板CHP1の送信回路Txの出力端子と接続される第1の電極Ce1と、第2の半導体基板CHP2の受信回路Rxの入力端子に接続される第2の電極Ce2と、第1、第2の電極の間に形成される絶縁膜を誘電体膜とするコンデンサであっても良い。
 また、本実施の形態では、一次側コイルのインダクタンスは、前記二次側コイルのインダクタンスよりも小さい。これにより、受信回路に十分な振幅の信号を伝達することができ、通信の信頼性を向上させることができる。また、第2の半導体基板CHP2から第1の半導体基板CHP1へ信号を伝達する場合は、第1の半導体基板CHP1に形成された受信回路を破壊から保護する効果がある。このインダクタンス比は、一次側コイルの巻数を二次側コイルの巻数よりも少なくすることで実現することができる。また、インダクタンス比は、一次側コイルL1と二次側コイルL2とのうち高い電源電圧を動作電源とする回路に接続されるコイルの巻数を他方のコイルよりも巻数よりも多くすることが好ましい。
 また、交流結合素子として利用されるコンデンサは、第1、第2の電極が第1の半導体基板に形成される配線層と第2の半導体基板に形成される配線層とのいずれか一方を利用して形成される。これにより、コンデンサを半導体基板上に形成することができる。
 また、実施の形態1にかかる半導体装置では、制御回路が制御対象回路から得られる応答データを第2の半導体基板CHP2を介することなく受信することもできる。これにより、第2の半導体基板CHP2の個数を削減できるため、半導体パッケージを小型化することができる。
 また。実施の形態1にかかる送信回路Txは、交流結合素子に送信信号に対応し、送信信号よりも高い周波数を有するパルス信号を出力する。これにより、インダクタンス値が小さいトランスフォーマ、又は、容量値が小さいコンデンサお交流結合素子として利用することができる。
 実施の形態2
 実施の形態2にかかる半導体装置の実装状態を示す模式図を図28に示す。図28に示すように、実施の形態2にかかる半導体装置は、実施の形態1にかかる半導体装置に、第2の半導体基板CHP2から第1の半導体基板CHP1への通信経路を設けたものである。実施の形態2にかかる半導体装置においても通信には交流結合素子(例えば、トランスフォーマ)を用いる。なお、実施の形態2においても、第2の半導体基板CHP2に設けられた送信回路Tx2は、送信信号を変調した信号を送信し、第1の半導体基板CHP1に設けられた受信回路Rx2は、送信回路Tx2が出力した信号を復調して送信データを再生する。
 このように、第2の半導体基板CHP2から第1の半導体基板CHP1への通信経路を設けることで、高い電圧を有する応答データであっても第1の半導体基板CHP1に伝達することが可能となる。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。なお、第2の半導体基板CHP2が形成される半導体基板には、縦型MOSトランジスタ又はバイポーラトランジスタを形成することもできる。縦型MOSトランジスタ又はバイポーラトランジスタは、高い電流駆動能力を有するため、大きな電流を必要とする駆動対象回路を動作させるために非常に有効である。
 この出願は、2009年3月31日に出願された日本出願特願2009-084921を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、第1の電源系で動作する回路と、第1の電源系とは異なる電源電圧が設定される第2の電源系で動作する回路との間で信号の送受信が行われるシステムにおいて利用することができる。
1、20、21  半導体パッケージ
2  リード端子
10  演算回路
11  メモリ
12  発振回路
13  PWM変調回路
20  半導体パッケージ
21  半導体パッケージ
22  ゲート駆動回路
30  電源回路
Ca  コンデンサ
Cb  コンデンサ
Ce1、Ce1a、Ce1b  電極
Ce2、Ce2a、Ce2b  電極
CHP1、CHP2  半導体基板
CONT  制御回路
CS  電流検出回路
DE-MUX  デマルチプレクサ
MUX  マルチプレクサ
Drv  ゲート駆動回路
Drv  駆動回路
Go  ゲート絶縁膜
INV1、INV2  インバータ
IW  配線
OP  オペアンプ
L1、L11、L12、L2、L21、L22  コイル
N1、N2  NMOSトランジスタ
P1、P2  トランジスタ
Pd  パッド
PM  パワーMOSトランジスタ
PS  位相回転検出回路
PTr  パワートランジスタ
Rshunt  シャント抵抗
SD  ソースドレイン領域
SFT  レベルシフタ
Rx、Rx1、Rx2  受信回路
Tx、Tx1、Tx2  送信回路
W  ボンディングワイヤ

Claims (26)

  1.  制御対象回路に対する制御信号を生成する制御回路と、前記制御信号を変調して送信信号を生成する送信回路と、を有する第1の半導体基板と、
     前記送信回路から送信された送信信号を復調して前記制御信号を再生する受信回路と、前記受信回路から出力された前記制御信号に基づき前記制御対象回路を駆動する駆動回路と、を有し、前記第1の半導体基板と電気的に絶縁された第2の半導体基板と、
     半導体基板上に形成され、前記第1の半導体基板と前記第2の半導体基板とを交流的に結合する交流結合素子と、
     前記第1の半導体基板、前記第2の半導体基板及び前記交流結合素子が搭載される半導体パッケージと、
     有する半導体装置。
  2.  前記第1の半導体基板は、前記第2の半導体基板よりも微細なプロセスにより形成される回路素子により前記制御回路及び前記送信回路が構成される請求項1に記載の半導体装置。
  3.  前記プロセスの微細度は、前記第1の半導体基板及び前記第2の半導体基板に形成されるトランジスタの最小ゲート長により決定される請求項2に記載の半導体装置。
  4.  前記第1の半導体基板を構成する回路素子は、前記第2の半導体基板を構成する回路素子よりも耐圧が低い請求項1乃至3のいずれか1項に記載の半導体装置。
  5.  前記第2の半導体基板の前記受信回路は、前記第2の半導体基板の前記駆動回路よりも耐圧が低く、微細なプロセスにより形成される回路素子により構成される請求項1乃至4のいずれか1項に記載の半導体装置。
  6.  前記第1の半導体基板の配線層間の絶縁膜の膜厚は、前記第2の半導体基板の配線層間の絶縁膜の膜厚よりも薄い請求項1乃至5のいずれか1項に記載の半導体装置。
  7.  前記第1の半導体基板に形成される配線は、前記第2の半導体基板に形成される配線よりも膜厚が薄い請求項1乃至6のいずれか1項に記載の半導体装置。
  8.  前記第1の半導体基板に形成される配線は、前記第2の半導体基板に形成される配線よりも配線幅が小さい請求項1乃至7のいずれか1項に記載の半導体装置。
  9.  前記第1の半導体基板は、前記第2の半導体基板よりも低い電源電圧に基づき動作する請求項1乃至8のいずれか1項に記載の半導体装置。
  10.  前記受信回路と前記駆動回路との間にはレベルシフト回路が挿入される請求項1乃至9のいずれか1項に記載の半導体装置。
  11.  前記第2の半導体基板が形成される半導体基板には、縦型MOSトランジスタ又はバイポーラトランジスタが形成される請求項1乃至10のいずれか1項に記載の半導体装置。
  12.  前記交流結合素子は、前記第1の半導体基板に形成される配線層と前記第2の半導体基板に形成される配線層とのいずれか一方を用いて形成される請求項1乃至11のいずれか1項に記載の半導体装置。
  13.  前記交流結合素子は、一次側コイルと、前記一次側コイルと磁気的に結合される二次側コイルとを有するトランスフォーマである請求項1乃至12のいずれか1項に記載の半導体装置。
  14.  前記一次側コイルのインダクタンスは、前記二次側コイルのインダクタンスよりも小さい請求項13に記載の半導体装置。
  15.  前記一次側コイルの巻数は、前記二次側コイルの巻数よりも少ない請求項13又は14に記載の半導体装置。
  16.  前記一次側コイルと前記二次側コイルとのうち高い電源電圧を動作電源とする回路に接続されるコイルの方が他方のコイルよりも巻数が多い請求項13又は14に記載の半導体装置。
  17.  前記交流結合素子は、前記第1の半導体基板の前記送信回路の出力端子と接続される第1の電極と、前記第2の半導体基板の前記受信回路の入力端子に接続される第2の電極と、前記第1、第2の電極の間に形成される絶縁膜を誘電体膜とするコンデンサである請求項1乃至12のいずれか1項に記載の半導体装置。
  18.  前記第1、第2の電極は、前記第1の半導体基板に形成される配線層と前記第2の半導体基板に形成される配線層とのいずれか一方を利用して形成される請求項17に記載の半導体装置。
  19.  前記半導体パッケージは、前記第2の半導体基板を複数有する請求項1乃至18のいずれか1項に記載の半導体装置。
  20.  複数の前記第2の半導体基板は、それぞれ駆動対象回路を駆動する請求項19に記載の半導体装置。
  21.  前記駆動対象回路は、前記第2の半導体基板の前記駆動回路を構成する回路素子よりも高い体圧を有するIGBT(Insulated Gate Bipolar Transistor)又はパワートランジスタである請求項1乃至20のいずれか1項に記載の半導体装置。
  22.  前記駆動対象回路は、前記IGBT又はパワートランジスタにより制御される電動機又は電源回路のいずれか1つを含む請求項21に記載の半導体装置。
  23.  前記制御回路は、演算回路、発振回路、PWM変調回路、アナログデジタル変換回路、デジタルアナログ変換回路の少なくとも1つを有する請求項1乃至22のいずれか1項に記載の半導体装置。
  24.  前記制御回路は、前記制御対象回路から得られる応答データを前記第2の半導体基板を介することなく受信する請求項1乃至23のいずれか1項に記載の半導体装置。
  25.  前記送信回路は、前記交流結合素子に前記送信信号に対応し、前記送信信号よりも高い周波数を有するパルス信号を出力する請求項1乃至24のいずれか1項に記載の半導体装置。
  26.  前記送信回路を第1の送信回路とし、前記受信回路を第1の受信回路とし、前記交流結合素子を第1の交流結合素子とし、
     前記第2の半導体基板は、前記第1の半導体基板に送信信号を変調した信号を送信する第2の送信回路を有し、
     前記第1の半導体基板は、前記第2の半導体基板から受信した信号を復調して前記送信データを復調する第2の受信回路を有し、
     前記第2の送信回路と前記第2の受信回路との間の信号を交流的に伝達する第2の交流結合素子を有する請求項1乃至25に記載の半導体装置。
PCT/JP2010/000983 2009-03-31 2010-02-17 半導体装置 WO2010113383A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/203,199 US8618630B2 (en) 2009-03-31 2010-02-17 Semiconductor device
JP2011506976A JP5375952B2 (ja) 2009-03-31 2010-02-17 半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009084921 2009-03-31
JP2009-084921 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010113383A1 true WO2010113383A1 (ja) 2010-10-07

Family

ID=42827701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000983 WO2010113383A1 (ja) 2009-03-31 2010-02-17 半導体装置

Country Status (3)

Country Link
US (1) US8618630B2 (ja)
JP (1) JP5375952B2 (ja)
WO (1) WO2010113383A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182740A (ja) * 2011-03-02 2012-09-20 Nitto Denko Corp アイソレータ用回路基板、アイソレータおよびそれらの製造方法
JP2012227517A (ja) * 2011-04-01 2012-11-15 Rohm Co Ltd 温度検出装置、温度検出回路およびパワー半導体モジュール
CN102970009A (zh) * 2011-08-31 2013-03-13 瑞萨电子株式会社 半导体集成电路和包括半导体集成电路的驱动设备
JP2014053365A (ja) * 2012-09-05 2014-03-20 Renesas Electronics Corp 半導体装置
WO2014155478A1 (ja) * 2013-03-25 2014-10-02 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
WO2015114758A1 (ja) * 2014-01-29 2015-08-06 ルネサスエレクトロニクス株式会社 半導体装置
JP6010633B2 (ja) * 2012-12-19 2016-10-19 ルネサスエレクトロニクス株式会社 半導体装置
JP2016540393A (ja) * 2013-09-25 2016-12-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated 面内磁界を使用する非接触データ通信、ならびに関連するシステムおよび方法
JPWO2014171125A1 (ja) * 2013-04-15 2017-02-16 パナソニックIpマネジメント株式会社 電磁共鳴結合器及び高周波伝送装置
JP2018064104A (ja) * 2017-11-21 2018-04-19 ルネサスエレクトロニクス株式会社 半導体装置
JP2018139290A (ja) * 2018-03-28 2018-09-06 ルネサスエレクトロニクス株式会社 半導体装置
JP2019079940A (ja) * 2017-10-25 2019-05-23 三菱電機株式会社 パワー半導体モジュールの製造方法およびパワー半導体モジュール
JP2019216133A (ja) * 2018-06-11 2019-12-19 三菱電機株式会社 半導体装置及び電力変換システム
JP2020043178A (ja) * 2018-09-07 2020-03-19 株式会社東芝 トランス及び信号伝送システム
JP2021073687A (ja) * 2013-11-13 2021-05-13 ローム株式会社 半導体装置
JP2021166300A (ja) * 2016-07-01 2021-10-14 ローム株式会社 半導体装置
JP2021192444A (ja) * 2015-04-07 2021-12-16 テキサス インスツルメンツ インコーポレイテッド 寄生容量が低減されたデバイスアイソレーター
WO2022158304A1 (ja) * 2021-01-19 2022-07-28 ローム株式会社 半導体装置
WO2023032611A1 (ja) * 2021-08-30 2023-03-09 ローム株式会社 信号伝達装置および絶縁チップ
US11657953B2 (en) 2013-11-13 2023-05-23 Rohm Co., Ltd. Semiconductor device and semiconductor module
WO2023162681A1 (ja) * 2022-02-24 2023-08-31 国立大学法人東京工業大学 合成回路
WO2023248621A1 (ja) * 2022-06-24 2023-12-28 ローム株式会社 インテリジェントパワーモジュール、エンジン点火装置、車両

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582134B2 (ja) * 2009-02-20 2014-09-03 日本電気株式会社 受信回路及び信号受信方法
JP5372578B2 (ja) 2009-04-09 2013-12-18 ルネサスエレクトロニクス株式会社 半導体装置
EP4344163A3 (en) * 2011-06-05 2024-04-24 Apple Inc. Systems and methods for displaying notifications received from multiple applications
FR2978595A1 (fr) * 2011-07-28 2013-02-01 St Microelectronics Crolles 2 Transformateur du type symetrique-dissymetrique
US10241522B2 (en) * 2011-12-06 2019-03-26 Somfy Sas Communication method in a system comprising a power supply and communication entity and a home automation actuator
US9754854B2 (en) * 2012-10-11 2017-09-05 Infineon Technologies Ag Semiconductor device having sensing functionality
US9337905B2 (en) * 2013-07-01 2016-05-10 Texas Instruments Incorporated Inductive structures with reduced emissions and interference
JP6582401B2 (ja) 2014-12-01 2019-10-02 富士電機株式会社 信号伝達装置
JP6589277B2 (ja) * 2015-01-14 2019-10-16 富士電機株式会社 高耐圧受動素子および高耐圧受動素子の製造方法
WO2017006363A1 (en) * 2015-07-03 2017-01-12 Fuji Electric Co., Ltd. Isolator and isolator manufacturing method
US10304806B2 (en) 2015-07-16 2019-05-28 Pezy Computing K.K. Semiconductor device
CN105071643A (zh) * 2015-07-27 2015-11-18 焦作华飞电子电器股份有限公司 高压隔离型scr和igbt驱动器的无线供电方法
ITUB20153500A1 (it) 2015-09-09 2017-03-09 St Microelectronics Srl Procedimento per trasmettere potenza e dati attraverso una barriera di isolamento galvanico, sistema ed apparecchiatura corrispondenti
JP2017098334A (ja) * 2015-11-19 2017-06-01 ルネサスエレクトロニクス株式会社 半導体装置
ITUB20156047A1 (it) * 2015-12-01 2017-06-01 St Microelectronics Srl Sistema di isolamento galvanico, apparecchiatura e procedimento
US10497506B2 (en) * 2015-12-18 2019-12-03 Texas Instruments Incorporated Methods and apparatus for isolation barrier with integrated magnetics for high power modules
US9948193B2 (en) 2016-06-10 2018-04-17 Stmicroelectronics S.R.L. Galvanically isolated DC-DC converter with bidirectional data transmission
IT201600088207A1 (it) 2016-08-30 2018-03-02 St Microelectronics Srl Circuito di isolamento galvanico, sistema e procedimento corrispondenti
JP7051649B2 (ja) * 2018-09-07 2022-04-11 株式会社東芝 磁気結合装置及び通信システム
CN113474860A (zh) * 2019-02-26 2021-10-01 德克萨斯仪器股份有限公司 具有用于降低的emi的集成屏蔽拓扑结构的隔离变压器
US11538766B2 (en) 2019-02-26 2022-12-27 Texas Instruments Incorporated Isolated transformer with integrated shield topology for reduced EMI
US11443889B2 (en) * 2019-06-24 2022-09-13 Texas Instruments Incorporated Data and power isolation barrier
JP7232137B2 (ja) * 2019-06-25 2023-03-02 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US11716117B2 (en) * 2020-02-14 2023-08-01 Texas Instruments Incorporated Circuit support structure with integrated isolation circuitry
US11605701B2 (en) 2020-07-17 2023-03-14 Infineon Technologies Austria Ag Lateral coreless transformer
JP2023081614A (ja) 2021-12-01 2023-06-13 ルネサスエレクトロニクス株式会社 半導体装置及び制御システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510274A (ja) * 1991-06-28 1993-01-19 Abbott Lab 計量型ポンプのピストン回転速度を制御する方法及びシステム
JP2007252109A (ja) * 2006-03-16 2007-09-27 Fuji Electric Device Technology Co Ltd パワーエレクトロニクス機器
WO2009035028A1 (ja) * 2007-09-12 2009-03-19 Nec Corporation データ伝送装置およびデータ伝送方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780795A (en) 1986-04-28 1988-10-25 Burr-Brown Corporation Packages for hybrid integrated circuit high voltage isolation amplifiers and method of manufacture
US4785345A (en) 1986-05-08 1988-11-15 American Telephone And Telegraph Co., At&T Bell Labs. Integrated transformer structure with primary winding in substrate
CN1183587C (zh) 1996-04-08 2005-01-05 德克萨斯仪器股份有限公司 用于把两个集成电路直流上相互隔离的方法和设备
US5952849A (en) 1997-02-21 1999-09-14 Analog Devices, Inc. Logic isolator with high transient immunity
US6054780A (en) 1997-10-23 2000-04-25 Analog Devices, Inc. Magnetically coupled signal isolator using a Faraday shielded MR or GMR receiving element
US6873065B2 (en) 1997-10-23 2005-03-29 Analog Devices, Inc. Non-optical signal isolator
US6262600B1 (en) 2000-02-14 2001-07-17 Analog Devices, Inc. Isolator for transmitting logic signals across an isolation barrier
EP2302850A1 (en) 2003-04-30 2011-03-30 Analog Devices, Inc. Signal isolators using micro-transformers
US7064442B1 (en) 2003-07-02 2006-06-20 Analog Devices, Inc. Integrated circuit package device
JP2005080372A (ja) 2003-08-29 2005-03-24 Mitsubishi Electric Corp コンバータ装置
US7302247B2 (en) 2004-06-03 2007-11-27 Silicon Laboratories Inc. Spread spectrum isolator
US8362481B2 (en) * 2007-05-08 2013-01-29 Scanimetrics Inc. Ultra high speed signal transmission/reception
CA2687120A1 (en) * 2007-05-08 2008-11-13 Scanimetrics Inc. Ultra high speed signal transmission/reception
IT1404038B1 (it) * 2010-12-29 2013-11-08 St Microelectronics Srl Dispositivo elettronico a semiconduttore provvisto di un elemento isolatore galvanico integrato, e relativo procedimento di assemblaggio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510274A (ja) * 1991-06-28 1993-01-19 Abbott Lab 計量型ポンプのピストン回転速度を制御する方法及びシステム
JP2007252109A (ja) * 2006-03-16 2007-09-27 Fuji Electric Device Technology Co Ltd パワーエレクトロニクス機器
WO2009035028A1 (ja) * 2007-09-12 2009-03-19 Nec Corporation データ伝送装置およびデータ伝送方法

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182740A (ja) * 2011-03-02 2012-09-20 Nitto Denko Corp アイソレータ用回路基板、アイソレータおよびそれらの製造方法
JP2012227517A (ja) * 2011-04-01 2012-11-15 Rohm Co Ltd 温度検出装置、温度検出回路およびパワー半導体モジュール
CN102970009A (zh) * 2011-08-31 2013-03-13 瑞萨电子株式会社 半导体集成电路和包括半导体集成电路的驱动设备
JP2013051547A (ja) * 2011-08-31 2013-03-14 Renesas Electronics Corp 半導体集積回路及びそれを備えた駆動装置
JP2015149731A (ja) * 2011-08-31 2015-08-20 ルネサスエレクトロニクス株式会社 半導体装置
JP2014053365A (ja) * 2012-09-05 2014-03-20 Renesas Electronics Corp 半導体装置
JP6010633B2 (ja) * 2012-12-19 2016-10-19 ルネサスエレクトロニクス株式会社 半導体装置
US9536828B2 (en) 2012-12-19 2017-01-03 Renesas Electronics Corporation Semiconductor device
JPWO2014097425A1 (ja) * 2012-12-19 2017-01-12 ルネサスエレクトロニクス株式会社 半導体装置
WO2014155478A1 (ja) * 2013-03-25 2014-10-02 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
TWI620305B (zh) * 2013-03-25 2018-04-01 Renesas Electronics Corp 半導體裝置及其製造方法
JP6010216B2 (ja) * 2013-03-25 2016-10-19 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
TWI645538B (zh) * 2013-03-25 2018-12-21 日商瑞薩電子股份有限公司 半導體裝置及其製造方法
TWI578493B (zh) * 2013-03-25 2017-04-11 Renesas Electronics Corp 半導體裝置及其製造方法
US9653396B2 (en) 2013-03-25 2017-05-16 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US10128125B2 (en) 2013-03-25 2018-11-13 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US9805950B2 (en) 2013-03-25 2017-10-31 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
JPWO2014171125A1 (ja) * 2013-04-15 2017-02-16 パナソニックIpマネジメント株式会社 電磁共鳴結合器及び高周波伝送装置
JP2016540393A (ja) * 2013-09-25 2016-12-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated 面内磁界を使用する非接触データ通信、ならびに関連するシステムおよび方法
JP2021073687A (ja) * 2013-11-13 2021-05-13 ローム株式会社 半導体装置
US11657953B2 (en) 2013-11-13 2023-05-23 Rohm Co., Ltd. Semiconductor device and semiconductor module
US10062642B2 (en) 2014-01-29 2018-08-28 Renesas Electronics Corporation Semiconductor device with inductively coupled coils
US9711451B2 (en) 2014-01-29 2017-07-18 Renesas Electronics Corporation Semiconductor device with coils in different wiring layers
JPWO2015114758A1 (ja) * 2014-01-29 2017-03-23 ルネサスエレクトロニクス株式会社 半導体装置
CN110349932A (zh) * 2014-01-29 2019-10-18 瑞萨电子株式会社 半导体器件
US10483199B2 (en) 2014-01-29 2019-11-19 Renesas Electronics Corporation Semiconductor device with coils in different wiring layers
WO2015114758A1 (ja) * 2014-01-29 2015-08-06 ルネサスエレクトロニクス株式会社 半導体装置
JP7311941B2 (ja) 2015-04-07 2023-07-20 テキサス インスツルメンツ インコーポレイテッド 寄生容量が低減されたデバイスアイソレーター
JP2021192444A (ja) * 2015-04-07 2021-12-16 テキサス インスツルメンツ インコーポレイテッド 寄生容量が低減されたデバイスアイソレーター
JP2021166300A (ja) * 2016-07-01 2021-10-14 ローム株式会社 半導体装置
JP7121834B2 (ja) 2016-07-01 2022-08-18 ローム株式会社 半導体装置
JP2019079940A (ja) * 2017-10-25 2019-05-23 三菱電機株式会社 パワー半導体モジュールの製造方法およびパワー半導体モジュール
JP2018064104A (ja) * 2017-11-21 2018-04-19 ルネサスエレクトロニクス株式会社 半導体装置
JP2018139290A (ja) * 2018-03-28 2018-09-06 ルネサスエレクトロニクス株式会社 半導体装置
JP2019216133A (ja) * 2018-06-11 2019-12-19 三菱電機株式会社 半導体装置及び電力変換システム
JP2020043178A (ja) * 2018-09-07 2020-03-19 株式会社東芝 トランス及び信号伝送システム
WO2022158304A1 (ja) * 2021-01-19 2022-07-28 ローム株式会社 半導体装置
WO2023032611A1 (ja) * 2021-08-30 2023-03-09 ローム株式会社 信号伝達装置および絶縁チップ
WO2023162681A1 (ja) * 2022-02-24 2023-08-31 国立大学法人東京工業大学 合成回路
WO2023248621A1 (ja) * 2022-06-24 2023-12-28 ローム株式会社 インテリジェントパワーモジュール、エンジン点火装置、車両

Also Published As

Publication number Publication date
US20120020419A1 (en) 2012-01-26
JPWO2010113383A1 (ja) 2012-10-04
JP5375952B2 (ja) 2013-12-25
US8618630B2 (en) 2013-12-31

Similar Documents

Publication Publication Date Title
JP5375952B2 (ja) 半導体装置
US7447492B2 (en) On chip transformer isolator
US7421028B2 (en) Transformer isolator for digital power supply
US8169108B2 (en) Capacitive isolator
US9761545B2 (en) Isolator and method of manufacturing isolator
JP5148562B2 (ja) 容量性信号結合を用いた高電圧駆動回路及び関連する装置及び方法
JP6434763B2 (ja) 半導体装置
JP6829019B2 (ja) ガルバニック直流絶縁をまたいだ通信
US20130285465A1 (en) Transmitter circuit and semiconductor integrated circuit having the same
JP5303167B2 (ja) スイッチ制御装置及びこれを用いたモータ駆動装置
JP5435029B2 (ja) 半導体装置及び信号伝達方法
JP2008502215A (ja) スペクトル拡散アイソレータ
US20090195068A1 (en) Power conversion apparatus
JP6184137B2 (ja) 電力管理チップ及びそれを備える電力管理装置
WO2010095368A1 (ja) 受信回路及び信号受信方法
US9985626B2 (en) Bidirectional GaN switch with built-in bias supply and integrated gate drivers
JP6343627B2 (ja) 電気絶縁体実装構造
US9520804B2 (en) Power converter and matrix converter
JP2002252328A (ja) 半導体装置
JPH06105549A (ja) 直流電圧安定化電源装置
US11756881B2 (en) Semiconductor device
US20240105761A1 (en) Semiconductor device
CN116137487A (zh) 功率半导体模块、电力电子组件及功率转换控制电路
JP2012196111A (ja) Dc−dcコンバータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011506976

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13203199

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758169

Country of ref document: EP

Kind code of ref document: A1