WO2010110176A1 - 有機el素子 - Google Patents
有機el素子 Download PDFInfo
- Publication number
- WO2010110176A1 WO2010110176A1 PCT/JP2010/054700 JP2010054700W WO2010110176A1 WO 2010110176 A1 WO2010110176 A1 WO 2010110176A1 JP 2010054700 W JP2010054700 W JP 2010054700W WO 2010110176 A1 WO2010110176 A1 WO 2010110176A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- emitting layer
- light
- organic
- layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
- H10K50/13—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
- H10K50/131—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
- H10K50/166—Electron transporting layers comprising a multilayered structure
Definitions
- the present invention relates to an organic EL (electroluminescence) element used for a flat panel display, a backlight for a liquid crystal display, a light source for illumination, and the like.
- Organic EL elements have attracted attention in recent years because they can emit surface light with high luminance at a low voltage of about several volts.
- the organic EL device includes an anode, a light emitting layer, and a cathode. When a voltage is applied, the anode injects holes into the light emitting layer, the cathode injects electrons into the light emitting layer, and the injected holes and electrons are combined in the light emitting layer. .
- excitons generated by the combination of holes and electrons transition to the ground state and emit light.
- the light emission color of the organic EL element is determined by the light emitting substance contained in the light emitting layer.
- the luminescent substance that can be used at present is a luminescent substance that emits light of a single color such as blue, green, and red.
- the organic EL element when used as an illumination light source, the organic EL element preferably emits light including a plurality of emission colors.
- the organic EL element when used as an indoor main illumination light source, the organic EL element preferably emits white light.
- White light emission is light emission that includes substantially all light having a wavelength in the visible light region, and is obtained, for example, by mixing two colors of light blue and orange that are complementary to each other.
- the organic EL element that emits white light is formed, for example, by laminating two light emitting layers exhibiting light emission colors that are complementary to each other.
- this organic EL element has, for example, a light emitting layer that emits light with a long wavelength of orange, and a light emitting layer that emits light with a short wavelength of light. Flashes on.
- an organic EL element having a layer that does not emit light for blocking charges and excitons is known (see, for example, JP-T-2004-522276).
- This organic EL element is configured by inserting a hole / exciton block layer for adjusting the emission color between two emission layers exhibiting different emission colors.
- This hole / exciton blocking layer blocks the movement of holes and excitons and improves the light emission intensity of the light emitting layer provided on the anode side.
- this organic EL element has a large change in chromaticity because the electron blocking property of the hole / exciton block layer is not sufficient.
- an organic EL element that includes two light-emitting layers that exhibit different emission colors, both of which are made of a hole-transporting material, and a hole barrier layer inserted between these light-emitting layers (for example, JP 2005-276583).
- This organic EL element has high luminous efficiency and small chromaticity change, but has a short life because the electron transport layer provided between the light emitting layer and the cathode is deteriorated by holes. The deterioration of the electron transport layer is considered to be caused by the fact that all the light emitting layers have hole transport properties.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an organic EL device having high luminous efficiency, long life, and small chromaticity change.
- An organic EL device is an organic EL device in which two light-emitting layers are stacked between a positive electrode and a negative electrode via a hole-transporting non-light-emitting layer, and the light-emitting layer on the anode side Is a hole-transporting light-emitting layer, the cathode-side light-emitting layer is an electron-transporting light-emitting layer, and the non-light-emitting layer contains at least one energy transfer auxiliary material in the hole-transporting material. It is characterized by being.
- the energy transfer auxiliary material efficiently transfers the excitation energy in the non-light-emitting layer to each light-emitting layer adjacent to the non-light-emitting layer, so that the light emission efficiency of each light-emitting layer can be improved. it can.
- the electron transport layer since the holes do not easily reach the electron transport layer, the electron transport layer does not deteriorate, so that the lifetime can be increased.
- the hole transporting material in the non-light emitting layer has an ionization potential of 0.2 eV or more and an electron affinity of 0.2 eV or more larger than the host material of the light emitting layer on the cathode side.
- This energy transfer auxiliary material may have a higher ionization potential and a lower electron affinity than the hole transport material in the non-light emitting layer.
- the hole transport material in the non-light-emitting layer and the host material of the light-emitting layer on the cathode side are in a predetermined energy level, so that holes and electrons are transferred between the non-light-emitting layer and the cathode. Since it tends to concentrate on the interface of the light emitting layer on the side, the electron transport layer and the hole transport layer are not deteriorated by holes and electrons, so that the life is long.
- the energy transfer auxiliary material in the non-light emitting layer and the hole transport material are in a predetermined energy level relationship, the excitation energy formed at the interface between the non-light emitting layer and the light emitting layer on the cathode side assists in energy transfer. Since it efficiently moves to the material, the light emission efficiency of each light emitting layer adjacent to the non-light emitting layer is improved.
- the organic EL device includes: a hole transport layer disposed between the anode and the light-emitting layer on the anode side; and an electron transport layer disposed between the cathode and the light-emitting layer on the cathode side.
- the mobility may be larger than the hole mobility of the hole transport layer.
- the hole transporting material in the non-light emitting layer may be the same material as the hole transporting layer.
- the manufacturing process becomes simple.
- An organic EL device is an organic EL device in which two light-emitting layers are laminated between an anode and a cathode via an electron-transporting non-light-emitting layer, and the light-emitting layer on the anode side Is a hole-transporting light-emitting layer, the cathode-side light-emitting layer is an electron-transporting light-emitting layer, and the non-light-emitting layer contains at least one energy transfer auxiliary material in the electron-transporting material. It is characterized by being.
- the energy transfer auxiliary material efficiently transfers the excitation energy in the non-light-emitting layer to each light-emitting layer adjacent to the non-light-emitting layer, so that the light emission efficiency of each light-emitting layer can be improved. it can.
- the hole transport layer since electrons do not easily reach the hole transport layer, the hole transport layer does not deteriorate, so that a long life can be achieved.
- the electron transporting material in the non-light emitting layer has an ionization potential of 0.2 eV or more smaller than the host material of the light emitting layer on the anode side and an electron affinity of 0.2 eV or more smaller than in the non-light emitting layer.
- This energy transfer auxiliary material may have a higher ionization potential and a lower electron affinity than the electron transport material in the non-light emitting layer.
- the electron transporting material in the non-light-emitting layer and the host material of the light-emitting layer on the anode side are in a predetermined energy level relationship, so that holes and electrons are on the non-light-emitting layer and the anode side. Since it becomes easy to concentrate on the interface of the light emitting layer, the electron transport layer and the hole transport layer are not deteriorated by holes and electrons, so that a long lifetime is obtained.
- the energy transfer auxiliary material in the non-light emitting layer and the hole transporting material are in a predetermined energy level relationship, excitation energy formed at the interface between the non-light emitting layer and the light emitting layer on the anode side assists energy transfer. Since it efficiently moves to the material, the light emission efficiency of each light emitting layer adjacent to the non-light emitting layer is improved.
- the organic EL device includes: a hole transport layer disposed between the anode and the light-emitting layer on the anode side; and an electron transport layer disposed between the cathode and the light-emitting layer on the cathode side.
- the mobility may be smaller than the hole mobility of the hole transport layer.
- the holes pass through the non-light emitting layer and reach the light emitting layer on the cathode side, the light emission of the light emitting layer on the cathode side can be sufficiently extracted, and each light emission adjacent to the non light emitting layer can be extracted. Since the layer can be illuminated in a balanced manner, the chromaticity change is reduced.
- the energy transfer auxiliary material in the non-light emitting layer includes at least a light emitting dopant, and the light emitting dopant in the energy transfer auxiliary material is at least one of the light emitting dopants included in the light emitting layers on the anode side and the cathode side.
- the maximum emission wavelength may be shorter.
- the light-emitting dopant in the energy transfer auxiliary material efficiently transfers the excitation energy in the non-light-emitting layer to each light-emitting layer adjacent to the non-light-emitting layer, thereby further improving the light-emitting efficiency of each light-emitting layer.
- the thickness of the non-light emitting layer may be 1 to 5 nm.
- the non-light-emitting layer when the non-light-emitting layer is hole transportable, the number of electrons that reach the light-emitting layer on the anode side is increased because the non-light-emitting layer is thin, so that the light-emitting layer on the anode side can be sufficiently illuminated. Since each light-emitting layer adjacent to the non-light-emitting layer can be illuminated in a balanced manner, the color shift is reduced.
- the non-light-emitting layer is electron transporting
- since the non-light-emitting layer is thin more holes reach the light-emitting layer on the cathode side, so that the light-emitting layer on the cathode side can be sufficiently illuminated, Since the light emitting layers adjacent to each other can be illuminated with good balance, the color shift is reduced.
- the maximum emission wavelength of the light emitting layer on the anode side may be in the range of 600 to 650 nm, and the maximum emission wavelength of the light emitting layer on the cathode side may be in the range of 450 to 490 nm.
- each light emitting layer is configured to easily satisfy the optical design, it is easy to extract light to the outside of the substrate.
- FIG. 1 is a side sectional view of an organic EL element according to an embodiment of the present invention.
- FIG. 1 shows a configuration of an organic EL element 1 of the present embodiment.
- the organic EL element 1 has two light emitting layers 5 and 7 between a positive electrode 3 and a negative electrode 9 via a non-light emitting layer 6.
- the organic EL element 1 includes a substrate 2, an anode 3, a hole transport layer 4, a light emitting layer 5 on the anode side, a non-light emitting layer 6, a light emitting layer 7 on the cathode side, and an electron transport layer in this order from the substrate 2 side. 8 and the cathode 9 are laminated in this order.
- the substrate 2 has translucency, for example, a soda lime glass or a non-alkali glass transparent glass plate, or a plastic film or plastic made of polyester, polyolefin, polyamide, epoxy resin, or fluorine resin. A plate or the like is used as the material.
- the anode 3 has translucency and is an electrode for injecting holes into the light emitting layers 5 and 7.
- the material of the anode 3 is, for example, a metal such as gold, CuI, ITO (indium-tin oxide), SnO 2 , ZnO, IZO (indium-zinc oxide), PEDOT, polyaniline conductive polymer, any Examples thereof include a conductive polymer doped with an acceptor, a conductive light-transmitting material of carbon nanotubes, and the like.
- the anode 3, the light emitting layers 5 and 7, the non-light emitting layer 6, the cathode 9, and the like are laminated by, for example, a vacuum evaporation method, a sputtering method, coating, or the like.
- the cathode 9 is an electrode for injecting electrons into the light emitting layers 5 and 7.
- Examples of the material of the cathode 9 include alkali metals, alkali metal halides, alkali metal oxides, alkaline earth metals, and alloys of these with other metals, specifically sodium, sodium-potassium alloys, lithium , Magnesium, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al / LiF mixture, and the like.
- the cathode 9 is made of one or more conductive materials such as metal on an aluminum, Al / Al 2 O 3 mixture, alkali metal oxide, alkali metal halide, or metal oxide base. Specifically, an alkali metal / Al laminate, an alkali metal halide / alkaline earth metal / Al laminate, an alkali metal oxide / Al laminate, and the like can be given.
- the hole transport layer 4 is disposed between the anode 3 and the light emitting layer 5 on the anode side, and is provided in order to improve hole injectability into the light emitting layers 5 and 7.
- the material of the hole transport layer 4 may be any compound having a hole transport property.
- N, N′-Bis (1-naphthyl) -N, N′-diphenyl-4,4-biphenyl N , N'-Bis (naphthalen-1-yl) -N, N'-bis (phenyl) -benzidine (NPB), N, N'-Bis (3-methylphenyl) -N, N'-bis (phenyl)- benzidine (TPD), 2,2 ', 7,7'-Tetyakis (N, N-diphenylamino) -9,9'-spirobifluorene (Sprio-TAD), N, N'-Bis (3-methylphenyl) -N, And N'-bis (phenyl) -9,9'-dimethyl-fluorene (DMFL-TPD).
- the electron transport layer 8 is disposed between the cathode 9 and the light emitting layer 7 on the cathode side, and is provided in order to improve electron injectability to the light emitting layers 5 and 7.
- the material of the electron transport layer 8 is, for example, Tris (8-hydroxy-quinolinato) aluminum (Alq 3 ), 4,4′-Bis (carbazol-9-yl) biphenyl (CBP), 4,4′-Bis (9 -carbazolyl) -2,2'-dimethyl-biphenyl (CDBP).
- the electron mobility of the electron transport layer 8 is preferably larger than the hole mobility of the hole transport layer 4.
- a combination of materials of the hole transport layer 4 and the electron transport layer 8 includes, for example, a combination of NPD and Alq 3 to which 4,7-Diphenyl-1,10-phenathroline (Bphen) is added.
- Bphen 4,7-Diphenyl-1,10-phenathroline
- electrons pass through the non-light emitting layer 6 and reach the light emitting layer 5 on the anode side, so that the light emission of the light emitting layer 5 on the anode side can be sufficiently extracted.
- the light emitting layers 5 and 7 can be made to shine in a balanced manner, so that the change in chromaticity is small.
- the light emitting layer 5 on the anode side is a hole transporting light emitting layer, and comprises a hole transporting host material and a light emitting dopant contained in the host material.
- the host material of the light emitting layer 5 on the anode side may be a compound having hole transport properties, and the materials mentioned for the hole transport layer 4 may be used.
- As the light emitting dopant of the light emitting layer 5 on the anode side a light emitting material whose light emitting color is complementary to the light emitting color of the light emitting dopant contained in the light emitting layer 7 on the cathode side is used.
- the cathode-side light-emitting layer 7 is an electron-transporting light-emitting layer, and is composed of an electron-transporting host material and a light-emitting dopant contained in the host material.
- the electron transporting host material of the light emitting layer 7 on the cathode side may be a compound having electron transporting properties, and the materials mentioned in the electron transporting layer 8 are used.
- As the light emitting dopant of the light emitting layer 7 on the cathode side a light emitting material whose light emitting color is complementary to the light emitting color of the light emitting dopant contained in the light emitting layer 5 on the anode side is used.
- the organic EL element 1 has a long life because holes are unlikely to reach the electron transport layer 8 by the cathode-side light-emitting layer 7 that has electron transport properties.
- the anode-side light-emitting layer 5 has a maximum emission wavelength in the range of 600 to 650 nm
- the cathode-side light-emitting layer 7 has a maximum emission wavelength in the range of 450 to 490 nm.
- n is the refractive index of the organic material such as the light emitting layers 5 and 7
- d is the film thickness from the emission center (center of the hole / electron recombination region) to the cathode 9
- ⁇ is the maximum emission wavelength of the emission dopant.
- the cathode-side light-emitting layer 7 located near the cathode 9 is configured to emit blue light whose maximum emission wavelength is in the range of 450 to 490 nm. Since the organic EL element 1 is configured so that the light emitting layers 5 and 7 can easily satisfy the optical design, it is easy to extract light to the outside of the substrate 2.
- the non-light-emitting layer 6 has a hole transporting property and includes at least one energy transfer auxiliary material in the hole transporting material. Since this energy transfer auxiliary material efficiently moves the excitation energy in the non-light emitting layer 6 to the light emitting layers 5 and 7 adjacent to the non-light emitting layer 6, the light emission efficiency of the light emitting layers 5 and 7 is improved.
- the hole transporting material in the non-light emitting layer 6 may be any compound having hole transporting properties, and the materials mentioned in the hole transporting layer 4 may be used.
- the hole transporting material in the non-light emitting layer 6 is preferably the same as the material of the hole transporting layer 4. In that case, the manufacturing process of the organic EL element 1 becomes simple.
- the energy transfer auxiliary material in the non-light emitting layer 6 preferably contains at least a light emitting dopant.
- the light-emitting dopant in the energy transfer auxiliary material has a maximum emission wavelength shorter than at least one of the light-emitting dopants contained in the light-emitting layers 5 and 7, for example, 3- (2-Benzothiazolyl) -7- (diethylamino) coumarin (coumarin 6), N, N'-Dimethyl-quinacridone (DMQA), Tetraphenylnaphthacene (Rubrene), 2,8-di-tert-butyl-5,11-bis (4-tert-butylphenyl) -6,12-diphenyltetracene (TBRb) or the like.
- the light emitting dopant in the energy transfer auxiliary material efficiently transfers the excitation energy in the non-light emitting layer 6 to each light emitting layer 5, 7 adjacent to the non light emitting layer 6. Thereby, the non-light emitting layer 6 does not emit light, and the light emitting efficiency of the light emitting layers 5 and 7 is further improved.
- the hole transporting material in the non-light emitting layer 6 preferably has an ionization potential of 0.2 eV or more and an electron affinity of 0.2 eV or more larger than the host material of the light emitting layer 7 on the cathode side.
- the hole transport material in the non-light-emitting layer 6 and the host material of the light-emitting layer 7 on the cathode side have the above energy level relationship, so that holes and electrons are Since it becomes easy to concentrate on the interface of the light emitting layer 7 on the cathode side, the electron transport layer 8 and the hole transport layer 4 are not deteriorated by holes and electrons, so that the life is long.
- the energy transfer auxiliary material in the non-light emitting layer 6 preferably has a larger ionization potential and a lower electron affinity than the hole transport material in the non-light emitting layer 6.
- the organic EL element 1 is formed at the interface between the non-light-emitting layer 6 and the cathode-side light-emitting layer 7 because the energy transfer auxiliary material and the hole transport material in the non-light-emitting layer 6 have the above energy level relationship.
- the excited energy is efficiently transferred to the energy transfer auxiliary material. Thereby, the luminous efficiency of the light emitting layers 5 and 7 adjacent to the non-light emitting layer 6 is improved.
- Examples of the combination of the hole transporting material in the non-light-emitting layer 6, the energy transfer auxiliary material, and the host material of the light-emitting layer 7 on the cathode side include, for example, a combination of TPD, columnarine 6, and CBP.
- the thickness of the non-light emitting layer 6 is preferably 1 to 5 nm.
- the non-light-emitting layer 6 since the non-light-emitting layer 6 is thin, the number of electrons that reach the anode-side light-emitting layer 5 increases, so that the anode-side light-emitting layer 5 can be sufficiently illuminated. Thereby, since each light emitting layer 5 and 7 adjacent to the non-light emitting layer 6 can be made to shine with sufficient balance, a chromaticity change becomes small.
- the organic EL element 1 of the modified example has an electron transporting property instead of a hole transporting property, and at least one energy transfer in the electron transporting material in the non-light emitting layer 6 is achieved.
- the energy transfer auxiliary material efficiently transfers the excitation energy in the non-light emitting layer 6 to each light emitting layer 5, 7 adjacent to the non-light emitting layer 6. Efficiency is improved.
- the organic EL element 1 has a long life because the hole-transporting layer 4 is not deteriorated because electrons are unlikely to reach the hole-transporting layer 4 by the light-emitting layer 5 on the anode side having hole transporting properties.
- the electron transporting material in the non-light emitting layer 6 preferably has an ionization potential of 0.2 eV or more and an electron affinity of 0.2 eV or more smaller than the host material of the light emitting layer 5 on the anode side.
- the electron transporting material in the non-light-emitting layer 6 and the host material of the light-emitting layer 5 on the anode side have the above energy level relationship, so that holes and electrons are Since it becomes easy to concentrate on the interface of the light emitting layer 5 on the anode side, the electron transport layer 8 and the hole transport layer 4 are not deteriorated by holes and electrons, so that the life is long.
- the energy transfer auxiliary material in the non-light emitting layer 6 preferably has a larger ionization potential and a lower electron affinity than the electron transport material in the non-light emitting layer 6.
- the organic EL element 1 is formed at the interface between the non-light-emitting layer 6 and the anode-side light-emitting layer 5 because the energy transfer auxiliary material and the electron transporting material in the non-light-emitting layer 6 have the above energy level relationship. Since the excited energy is efficiently transferred to the energy transfer auxiliary material, the light emission efficiency of the light emitting layers 5 and 7 adjacent to the non-light emitting layer 6 is improved.
- the electron mobility of the electron transport layer 8 is preferably smaller than the hole mobility of the hole transport layer 4.
- electrons pass through the non-light emitting layer 6 and reach the light emitting layer 7 on the cathode side, so that the light emission of the light emitting layer 7 on the cathode side can be sufficiently extracted.
- the light emitting layers 5 and 7 can be made to shine in a balanced manner, so that the change in chromaticity is small.
- Example 1 On the substrate 2, the anode 3, the hole transport layer 4, the anode side light emitting layer 5 made of a host material and a light emitting dopant, the non-light emitting layer 6 made of a hole transporting material and an energy auxiliary material, and the host material
- the organic EL element 1 is formed by laminating the light emitting layer 7, the electron transport layer 8, and the cathode 9 made of a light emitting dopant.
- the material of each layer is as follows.
- the substrate 2 is alkali-free glass
- the anode 3 is ITO
- the hole transport layer 4 is NPD
- the host material of the light emitting layer 5 on the anode side is NPD
- the light emitting dopant is 2-methyl-6- [2- (2 , 3,6,7-tetrahydro-1H, 5H-benzo [ij] quinolizin-9-yl) ethenyl] -4H-pyran-4-ylidene] propane-dinitrile (DCM2)
- energy auxiliary material is coumarin6
- cathode side light emitting layer 7 is CBP host material
- light emitting dopant is 2,5,8,11-tetra-tert-butylperylene (TBPe)
- electron transport layer 8 is Alq 3
- cathode 9 is Al / LiF.
- each layer is 0.7 mm for the substrate 2, 150 nm for the anode 3, 40 nm for the hole transport layer 4, 20 nm for the light emitting layer 5 on the anode side, 5 nm for the non-light emitting layer 6, 30 nm for the light emitting layer 7 on the cathode side,
- the electron transport layer 8 is 30 nm
- the cathode 9 Al is 80 nm
- LiF is 1 nm.
- Example 2 An organic EL device 1 was obtained in the same manner as in Example 1, except that the energy transfer auxiliary material of the non-light emitting layer 6 was rubrene.
- Example 3 An organic EL device 1 was obtained in the same manner as in Example 1 except that the hole transporting material of the non-light emitting layer 6 was NPD which is the same material as the host material of the light emitting layer 5 on the anode side.
- Example 1 An organic EL device was obtained in the same manner as in Example 1 except that the non-light-emitting layer 6 was formed of only a hole transporting material without adding an energy transfer auxiliary material.
- the energy transfer auxiliary material of the non-light emitting layer 6 is 4,4 ′-(bis (9-ethyl-3-carbazovinylene) -1,1′-biphenyl (BCzVBi), and the host material of the light emitting layer 7 on the cathode side is transported by holes.
- An organic EL device was obtained in the same manner as in Example 1 except that NPD was used.
- Example 3 An organic EL device was obtained in the same manner as in Example 1 except that the host material of the light emitting layer 7 on the cathode side was NPD having a hole transporting property.
- Examples 1 to 3 and Comparative Examples 1 to 3 produced as described above were connected to a power source (KEYTHLEY 2400), and a constant current with a current density of 10 mA / cm 2 was applied to the integrating sphere (trade name: SLMS-CDS). , Manufactured by Labsphere), and the power efficiency was measured.
- the luminance when these samples were continuously emitted at the same current density was measured using a luminance meter (trade name: LS-110, manufactured by Konica Minolta Holdings Co., Ltd.) for the half-life at which the luminance was reduced by half.
- the measurement results are shown in Table 1 below.
- the value of the power efficiency and lifetime of the comparative example 1 was made into the standard, and the value was set to 1.0.
- the organic EL elements 1 of Examples 1 to 3 have high light emission efficiency because of high power efficiency. And it has a long life.
- Example 4 An organic EL device 1 was obtained in the same manner as in Example 1 except that the thickness of the non-light emitting layer 6 was 1 nm.
- Example 5 An organic EL element 1 was obtained in the same manner as in Example 1 except that the thickness of the non-light emitting layer 6 was 3 nm.
- Example 4 An organic EL device was obtained in the same manner as in Example 1 except that the thickness of the non-light emitting layer 6 was changed to 7 nm.
- the organic EL elements 1 of Examples 1, 4, and 5 have power efficiency. Since it is high, the luminous efficiency is high and the lifetime is long. Moreover, since the organic EL element 1 of Examples 1, 4 and 5 has a small color shift, the chromaticity change is small.
- Example 6 The material of the electron transport layer 8 was Alq 3 and Bphen, the ratio was 10: 1, and the electron mobility of the electron transport layer 8 was made larger than the hole mobility of the hole transport layer 4, and the same as in Example 1. Thus, an organic EL element 1 was obtained.
- the power efficiency and lifetime of the samples of Examples 1 and 6 produced as described above were measured in the same manner as described above, and the hole mobility of the hole transport layer 4 and the electron mobility of the electron transport layer 8 were measured.
- the measurement results are shown in Table 3 below.
- the value of the power efficiency and lifetime of the comparative example 1 was made into the standard, and the value was set to 1.0.
- the organic EL element 1 of Example 6 emits light because it has higher power efficiency than the organic EL element 1 of Example 1. High efficiency and long life.
- Example 7 (1,1'-Bisphenyl-4-olato) bis (2-methyl-8-quinolinplate-N1,08) Aluminum (BAlq), an energy transfer auxiliary material, which is a hole transport material for the non-light emitting layer 6
- the organic EL device 1 was obtained in the same manner as in Example 1 except that rubrene was used.
- Example 8 The material of the electron transport layer 8 was Alq 3 and Bphen, the ratio was 10: 1, and the electron mobility of the electron transport layer 8 was made larger than the hole mobility of the hole transport layer 4, and the same as in Example 7. Thus, an organic EL element 1 was obtained.
- Example 5 An organic EL device was obtained in the same manner as in Example 7 except that the non-light-emitting layer 6 was formed of only an electron transporting material without adding an energy transfer auxiliary material.
- the organic EL element 1 of the present embodiment has high luminous efficiency and high lifetime because of high power efficiency. It is.
- the organic EL element 1 of Example 7 has higher power efficiency than the organic EL element 1 of Example 8, and thus has high luminous efficiency and a long life.
- an organic EL element is used to increase the electron injection layer from the cathode between the cathode and the electron transport layer, or to increase the hole injection efficiency from the anode between the anode and the hole transport layer.
- a hole injection layer may be provided.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
次に、有機EL素子1の変形例について説明する。変形例の有機EL素子1は、上記実施形態と異なり、非発光層6がホール輸送性ではなく電子輸送性であり、非発光層6中の電子輸送性材料中に少なくとも1つ以上のエネルギー移動補助材料を含んでいる。この有機EL素子1は、エネルギー移動補助材料が、非発光層6中の励起エネルギーを非発光層6に隣接する各発光層5、7へ効率的に移動させるので、発光層5、7の発光効率が向上する。また、この有機EL素子1は、ホール輸送性である陽極側の発光層5によって、電子がホール輸送層4まで到達しにくいので、ホール輸送層4が劣化しないことから長寿命である。
基板2上に、基板2側から順に陽極3、ホール輸送層4、ホスト材料と発光ドーパントから成る陽極側の発光層5、ホール輸送性材料とエネルギー補助材料から成る非発光層6、ホスト材料と発光ドーパントから成る陰極側の発光層7、電子輸送層8、陰極9を積層して有機EL素子1を形成する。各層の材料は、基板2が無アルカリガラス、陽極3がITO、ホール輸送層4がNPD、陽極側の発光層5のホスト材料がNPD、発光ドーパントが2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)ethenyl]-4H-pyran-4-ylidene]propane-dinitrile(DCM2)、非発光層6のホール輸送性材料がTPD、エネルギー補助材料がcoumarine6、陰極側の発光層7のホスト材料がCBP、発光ドーパントが2,5,8,11-tetra-tert-butylperylene(TBPe)、電子輸送層8がAlq3、陰極9がAl/LiFである。各層の厚さは、基板2が0.7mm、陽極3が150nm、ホール輸送層4が40nm、陽極側の発光層5が20nm、非発光層6が5nm、陰極側の発光層7が30nm、電子輸送層8が30nm、陰極9のAlが80nm、LiFが1nmである。
非発光層6のエネルギー移動補助材料をrubureneとした以外は、実施例1と同様にして有機EL素子1を得た。
非発光層6のホール輸送性材料を陽極側の発光層5のホスト材料と同一材料であるNPDとした以外は、実施例1と同様にして有機EL素子1を得た。
非発光層6を、エネルギー移動補助材料を添加せずにホール輸送性材料のみで形成した以外は、実施例1と同様にして有機EL素子を得た。
非発光層6のエネルギー移動補助材料を4,4'-(bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl(BCzVBi)とし、陰極側の発光層7のホスト材料をホール輸送性であるNPDとした以外は、実施例1と同様にして有機EL素子を得た。
陰極側の発光層7のホスト材料をホール輸送性であるNPDとした以外は、実施例1と同様にして有機EL素子を得た。
非発光層6の厚さを1nmとした以外は、実施例1と同様にして有機EL素子1を得た。
非発光層6の厚さを3nmとした以外は、実施例1と同様にして有機EL素子1を得た。
非発光層6の厚さを7nmとした以外は、実施例1と同様にして有機EL素子を得た。
電子輸送層8の材料をAlq3とBphenとし、その割合を10:1として、電子輸送層8の電子移動度をホール輸送層4のホール移動度より大きくした以外は、実施例1と同様にして有機EL素子1を得た。
非発光層6のホール輸送性材料を電子輸送性である(1,1'-Bisphenyl-4-olato)bis(2-methyl-8-quinolinplate-N1,08)Aluminum(BAlq)、エネルギー移動補助材料をrubureneとした以外は、実施例1と同様にして有機EL素子1を得た。
電子輸送層8の材料をAlq3とBphenとし、その割合を10:1として、電子輸送層8の電子移動度をホール輸送層4のホール移動度より大きくした以外は、実施例7と同様にして有機EL素子1を得た。
非発光層6を、エネルギー移動補助材料を添加せずに電子輸送性材料のみで形成した以外は、実施例7と同様にして有機EL素子を得た。
Claims (19)
- 1. 陽極と陰極の間に、ホール輸送性の非発光層を介して2つの発光層を積層して成る有機EL素子であって、
陽極側の発光層は、ホール輸送性の発光層であり、
陰極側の発光層は、電子輸送性の発光層であり、
前記非発光層は、ホール輸送性材料中に少なくとも1つ以上のエネルギー移動補助材料を含んでいることを特徴とする有機EL素子。 - 2. 前記非発光層中のホール輸送性材料は、前記陰極側の発光層のホスト材料よりイオン化ポテンシャルが0.2eV以上大きく、かつ、電子親和力が0.2eV以上大きく、
前記非発光層中のエネルギー移動補助材料は、該非発光層中のホール輸送性材料よりイオン化ポテンシャルが大きく、かつ、電子親和力が小さいことを特徴とする請求項1に記載の有機EL素子。 - 3. 前記陽極と陽極側の発光層の間に配置されるホール輸送層と、
前記陰極と陰極側の発光層の間に配置される電子輸送層と、を備え、
前記電子輸送層の電子移動度は、前記ホール輸送層のホール移動度より大きいことを特徴とする請求項2に記載の有機EL素子。 - 4. 前記非発光層中のホール輸送性材料は、ホール輸送層と同一材料であることを特徴とする請求項3に記載の有機EL素子。
- 5. 前記非発光層中のエネルギー移動補助材料は、少なくとも発光ドーパントを含み、
前記エネルギー移動補助材料中の発光ドーパントは、前記陽極側及び陰極側の発光層に含まれる発光ドーパントの少なくとも1つより最大発光波長が短いことを特徴とする請求項4に記載の有機EL素子。 - 6. 前記非発光層の厚みは、1~5nmであることを特徴とする請求項5に記載の有機EL素子。
- 7. 前記陽極側の発光層の最大発光波長は、600~650nmの範囲内であり、
前記陰極側の発光層の最大発光波長は、450~490nmの範囲内であることを特徴とする請求項5に記載の有機EL素子。 - 8. 前記陽極と陽極側の発光層の間に配置されるホール輸送層と、
前記陰極と陰極側の発光層の間に配置される電子輸送層と、を備え、
前記電子輸送層の電子移動度は、前記ホール輸送層のホール移動度より大きいことを特徴とする請求項1に記載の有機EL素子。 - 9. 前記非発光層中のエネルギー移動補助材料は、少なくとも発光ドーパントを含み、
前記エネルギー移動補助材料中の発光ドーパントは、前記陽極側及び陰極側の発光層に含まれる発光ドーパントの少なくとも1つより最大発光波長が短いことを特徴とする請求項1に記載の有機EL素子。 - 10. 前記非発光層中のエネルギー移動補助材料は、少なくとも発光ドーパントを含み、
前記エネルギー移動補助材料中の発光ドーパントは、前記陽極側及び陰極側の発光層に含まれる発光ドーパントの少なくとも1つより最大発光波長が短いことを特徴とする請求項2に記載の有機EL素子。 - 11. 陽極と陰極の間に、電子輸送性の非発光層を介して2つの発光層を積層して成る有機EL素子であって、
陽極側の発光層は、ホール輸送性の発光層であり、
陰極側の発光層は、電子輸送性の発光層であり、
前記非発光層は、電子輸送性材料中に少なくとも1つ以上のエネルギー移動補助材料を含んでいることを特徴とする有機EL素子。 - 12. 前記非発光層中の電子輸送性材料は、前記陽極側の発光層のホスト材料よりイオン化ポテンシャルが0.2eV以上小さく、かつ、電子親和力が0.2eV以上小さく、
前記非発光層中のエネルギー移動補助材料は、該非発光層中の電子輸送性材料よりイオン化ポテンシャルが大きく、かつ、電子親和力が小さいことを特徴とする請求項11に記載の有機EL素子。 - 13. 前記陽極と陽極側の発光層の間に配置されるホール輸送層と、
前記陰極と陰極側の発光層の間に配置される電子輸送層と、を備え、
前記電子輸送層の電子移動度は、前記ホール輸送層のホール移動度より小さいことを特徴とする請求項12に記載の有機EL素子。 - 14. 前記非発光層中のエネルギー移動補助材料は、少なくとも発光ドーパントを含み、
前記エネルギー移動補助材料中の発光ドーパントは、前記陽極側及び陰極側の発光層に含まれる発光ドーパントの少なくとも1つより最大発光波長が短いことを特徴とする請求項13に記載の有機EL素子。 - 15. 前記非発光層の厚みは、1~5nmであることを特徴とする請求項14に記載の有機EL素子。
- 16. 前記陽極側の発光層の最大発光波長は、600~650nmの範囲内であり、
前記陰極側の発光層の最大発光波長は、450~490nmの範囲内であることを特徴とする請求項14に記載の有機EL素子。 - 17. 前記陽極と陽極側の発光層の間に配置されるホール輸送層と、
前記陰極と陰極側の発光層の間に配置される電子輸送層と、を備え、
前記電子輸送層の電子移動度は、前記ホール輸送層のホール移動度より小さいことを特徴とする請求項11に記載の有機EL素子。 - 18. 前記非発光層中のエネルギー移動補助材料は、少なくとも発光ドーパントを含み、
前記エネルギー移動補助材料中の発光ドーパントは、前記陽極側及び陰極側の発光層に含まれる発光ドーパントの少なくとも1つより最大発光波長が短いことを特徴とする請求項11に記載の有機EL素子。 - 19. 前記非発光層中のエネルギー移動補助材料は、少なくとも発光ドーパントを含み、
前記エネルギー移動補助材料中の発光ドーパントは、前記陽極側及び陰極側の発光層に含まれる発光ドーパントの少なくとも1つより最大発光波長が短いことを特徴とする請求項12に記載の有機EL素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10755974.2A EP2413666A4 (en) | 2009-03-25 | 2010-03-18 | ORGANIC EL ELEMENT |
CN2010800132890A CN102362552A (zh) | 2009-03-25 | 2010-03-18 | 有机el元件 |
US13/259,208 US20120025181A1 (en) | 2009-03-25 | 2010-03-18 | Organic el element |
US13/862,708 US20130228764A1 (en) | 2009-03-25 | 2013-04-15 | Organic el element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-074783 | 2009-03-25 | ||
JP2009074783A JP2010225563A (ja) | 2009-03-25 | 2009-03-25 | 有機el素子 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/862,708 Continuation US20130228764A1 (en) | 2009-03-25 | 2013-04-15 | Organic el element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010110176A1 true WO2010110176A1 (ja) | 2010-09-30 |
Family
ID=42780869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/054700 WO2010110176A1 (ja) | 2009-03-25 | 2010-03-18 | 有機el素子 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20120025181A1 (ja) |
EP (1) | EP2413666A4 (ja) |
JP (1) | JP2010225563A (ja) |
KR (1) | KR20110129934A (ja) |
CN (1) | CN102362552A (ja) |
WO (1) | WO2010110176A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011249698A (ja) * | 2010-05-31 | 2011-12-08 | Canon Inc | 有機エレクトロルミネッセンス素子 |
JP2014508394A (ja) * | 2010-10-19 | 2014-04-03 | ケンブリッジ ディスプレイ テクノロジー リミテッド | 有機発光素子および方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8669155B2 (en) * | 2010-09-03 | 2014-03-11 | Institute of Microelectronics, Chinese Academy of Sciences | Hybrid channel semiconductor device and method for forming the same |
KR20120120514A (ko) * | 2011-04-22 | 2012-11-02 | 한국과학기술원 | 도핑 탄소나노구조체를 이용한 소자 제어방법 및 도핑 탄소나노구조체를 포함하는 소자 |
US10352059B2 (en) * | 2012-08-24 | 2019-07-16 | The Uab Research Foundation | Modular shelters comprising composite panels |
JP6168372B2 (ja) * | 2014-01-09 | 2017-07-26 | 株式会社村田製作所 | 発光デバイス、及び発光デバイスの製造方法 |
CN108550614B (zh) * | 2018-05-31 | 2020-03-13 | 上海天马有机发光显示技术有限公司 | 有机发光显示面板及其显示装置 |
WO2020121381A1 (ja) * | 2018-12-10 | 2020-06-18 | シャープ株式会社 | 発光素子、発光デバイス |
WO2020186428A1 (zh) * | 2019-03-18 | 2020-09-24 | 京东方科技集团股份有限公司 | 显示面板及其制作方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004060026A1 (ja) * | 2002-12-26 | 2004-07-15 | Semiconductor Energy Laboratory Co., Ltd. | 有機発光素子 |
JP2004522276A (ja) | 2001-05-16 | 2004-07-22 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | 高効率多色電界リン光oled |
JP2005100921A (ja) * | 2003-08-22 | 2005-04-14 | Sony Corp | 有機el素子および表示装置 |
JP2005276583A (ja) | 2004-03-24 | 2005-10-06 | Idemitsu Kosan Co Ltd | 有機エレクトロルミネッセンス素子及び表示装置 |
JP2006245011A (ja) * | 2006-05-08 | 2006-09-14 | Sony Corp | 電界発光素子及びその製造方法 |
JP2007299729A (ja) * | 2006-04-05 | 2007-11-15 | Toshiba Matsushita Display Technology Co Ltd | 有機el表示装置 |
WO2007138906A1 (ja) * | 2006-05-25 | 2007-12-06 | Idemitsu Kosan Co., Ltd. | 有機エレクトロルミネッセンス素子及びフルカラー発光装置 |
JP2009074783A (ja) | 2007-09-19 | 2009-04-09 | Yukio Ishii | 回転炉に投入された粘質物の破砕拡散装置 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100900375B1 (ko) * | 2001-06-06 | 2009-06-02 | 이데미쓰 고산 가부시키가이샤 | 유기 전자발광 소자 |
JP2004179142A (ja) * | 2002-09-30 | 2004-06-24 | Sanyo Electric Co Ltd | 発光素子 |
JP4391421B2 (ja) * | 2002-11-21 | 2009-12-24 | 株式会社半導体エネルギー研究所 | 電界発光素子および発光装置 |
CN1781340A (zh) * | 2003-02-27 | 2006-05-31 | 株式会社丰田自动织机 | 有机电致发光元件 |
JP4789475B2 (ja) * | 2004-03-10 | 2011-10-12 | 富士フイルム株式会社 | 発光素子 |
JP2005285469A (ja) * | 2004-03-29 | 2005-10-13 | Sanyo Electric Co Ltd | エレクトロルミネセンス素子 |
JP4393249B2 (ja) * | 2004-03-31 | 2010-01-06 | 株式会社 日立ディスプレイズ | 有機発光素子,画像表示装置、及びその製造方法 |
JP2006100806A (ja) * | 2004-08-31 | 2006-04-13 | Sanyo Electric Co Ltd | 有機エレクトロルミネッセンス素子およびそれを備える有機エレクトロルミネッセンス装置 |
JP4496949B2 (ja) * | 2004-12-13 | 2010-07-07 | 株式会社豊田自動織機 | 有機el素子 |
US20060246315A1 (en) * | 2005-04-27 | 2006-11-02 | Begley William J | Phosphorescent oled with mixed electron transport materials |
WO2007055186A1 (ja) * | 2005-11-09 | 2007-05-18 | Konica Minolta Holdings, Inc. | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 |
US20070252516A1 (en) * | 2006-04-27 | 2007-11-01 | Eastman Kodak Company | Electroluminescent devices including organic EIL layer |
JP2007287652A (ja) * | 2006-03-23 | 2007-11-01 | Fujifilm Corp | 発光素子 |
JP5032788B2 (ja) * | 2006-04-28 | 2012-09-26 | 双葉電子工業株式会社 | 有機el素子 |
US20080049413A1 (en) * | 2006-08-22 | 2008-02-28 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
JP4921943B2 (ja) * | 2006-12-07 | 2012-04-25 | クラリオン株式会社 | ナビゲーション装置 |
US20090053557A1 (en) * | 2007-08-23 | 2009-02-26 | Spindler Jeffrey P | Stabilized white-emitting oled device |
JP2009064605A (ja) * | 2007-09-05 | 2009-03-26 | Seiko Epson Corp | 有機el装置及び電子機器 |
JP5281271B2 (ja) * | 2007-11-09 | 2013-09-04 | パナソニック株式会社 | 有機エレクトロルミネッセンス素子 |
US7955719B2 (en) * | 2008-01-30 | 2011-06-07 | Global Oled Technology Llc | Tandem OLED device with intermediate connector |
JP2009295305A (ja) * | 2008-06-02 | 2009-12-17 | Seiko Epson Corp | 発光素子、表示装置および電子機器 |
-
2009
- 2009-03-25 JP JP2009074783A patent/JP2010225563A/ja not_active Ceased
-
2010
- 2010-03-18 CN CN2010800132890A patent/CN102362552A/zh active Pending
- 2010-03-18 US US13/259,208 patent/US20120025181A1/en not_active Abandoned
- 2010-03-18 WO PCT/JP2010/054700 patent/WO2010110176A1/ja active Application Filing
- 2010-03-18 KR KR1020117022892A patent/KR20110129934A/ko not_active Application Discontinuation
- 2010-03-18 EP EP10755974.2A patent/EP2413666A4/en not_active Withdrawn
-
2013
- 2013-04-15 US US13/862,708 patent/US20130228764A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004522276A (ja) | 2001-05-16 | 2004-07-22 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | 高効率多色電界リン光oled |
WO2004060026A1 (ja) * | 2002-12-26 | 2004-07-15 | Semiconductor Energy Laboratory Co., Ltd. | 有機発光素子 |
JP2005100921A (ja) * | 2003-08-22 | 2005-04-14 | Sony Corp | 有機el素子および表示装置 |
JP2005276583A (ja) | 2004-03-24 | 2005-10-06 | Idemitsu Kosan Co Ltd | 有機エレクトロルミネッセンス素子及び表示装置 |
JP2007299729A (ja) * | 2006-04-05 | 2007-11-15 | Toshiba Matsushita Display Technology Co Ltd | 有機el表示装置 |
JP2006245011A (ja) * | 2006-05-08 | 2006-09-14 | Sony Corp | 電界発光素子及びその製造方法 |
WO2007138906A1 (ja) * | 2006-05-25 | 2007-12-06 | Idemitsu Kosan Co., Ltd. | 有機エレクトロルミネッセンス素子及びフルカラー発光装置 |
JP2009074783A (ja) | 2007-09-19 | 2009-04-09 | Yukio Ishii | 回転炉に投入された粘質物の破砕拡散装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2413666A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011249698A (ja) * | 2010-05-31 | 2011-12-08 | Canon Inc | 有機エレクトロルミネッセンス素子 |
JP2014508394A (ja) * | 2010-10-19 | 2014-04-03 | ケンブリッジ ディスプレイ テクノロジー リミテッド | 有機発光素子および方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2010225563A (ja) | 2010-10-07 |
CN102362552A (zh) | 2012-02-22 |
US20130228764A1 (en) | 2013-09-05 |
US20120025181A1 (en) | 2012-02-02 |
EP2413666A1 (en) | 2012-02-01 |
EP2413666A4 (en) | 2013-05-22 |
KR20110129934A (ko) | 2011-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010110176A1 (ja) | 有機el素子 | |
KR102609089B1 (ko) | 유기전계발광소자 | |
CN109088008B (zh) | 一种有机发光器件及显示面板 | |
JP4895742B2 (ja) | 白色有機電界発光素子 | |
KR101710988B1 (ko) | 유기 전계 발광 소자 | |
KR100719991B1 (ko) | 일렉트로루미네센스 소자 | |
KR101417789B1 (ko) | 유기 전계 발광 소자 | |
CN107579097B (zh) | 白色有机发光装置 | |
KR101453874B1 (ko) | 백색 유기발광소자 | |
KR101772662B1 (ko) | 유기 발광 장치 | |
JP6246990B2 (ja) | 有機発光ダイオード装置 | |
US20090001875A1 (en) | Organic light-emitting device incorporating multifunctional osmium complexes | |
TWI488350B (zh) | 有機電致發光元件 | |
TW201351741A (zh) | 有機發光二極體元件 | |
JP6418533B2 (ja) | 有機エレクトロルミネッセンス素子 | |
KR20130030187A (ko) | 유기 전계 발광 소자, 표시 장치 및 조명 장치 | |
CN111048675A (zh) | 一种显示面板及显示装置 | |
KR100760901B1 (ko) | 백색 유기 전계 발광 소자 | |
KR100713049B1 (ko) | 일렉트로루미네센스 소자 | |
US8735879B2 (en) | Organic light-emitting diode comprising at least two electroluminescent layers | |
TW201316583A (zh) | 白光有機發光二極體構造 | |
KR101857293B1 (ko) | 유기발광다이오드 | |
JP2006107790A (ja) | エレクトロルミネッセンス素子 | |
JP2008091198A (ja) | 有機エレクトロルミネッセンス素子 | |
JP6078701B1 (ja) | 白色発光有機elパネル及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080013289.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10755974 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13259208 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117022892 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010755974 Country of ref document: EP |