WO2007138906A1 - 有機エレクトロルミネッセンス素子及びフルカラー発光装置 - Google Patents

有機エレクトロルミネッセンス素子及びフルカラー発光装置 Download PDF

Info

Publication number
WO2007138906A1
WO2007138906A1 PCT/JP2007/060345 JP2007060345W WO2007138906A1 WO 2007138906 A1 WO2007138906 A1 WO 2007138906A1 JP 2007060345 W JP2007060345 W JP 2007060345W WO 2007138906 A1 WO2007138906 A1 WO 2007138906A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
emitting layer
light emitting
substituted
layer
Prior art date
Application number
PCT/JP2007/060345
Other languages
English (en)
French (fr)
Inventor
Yukitoshi Jinde
Hitoshi Kuma
Kiyoshi Ikeda
Mitsunori Ito
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/475,225 external-priority patent/US20070275266A1/en
Priority claimed from US11/475,081 external-priority patent/US7768195B2/en
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to CN2007800095368A priority Critical patent/CN101405887B/zh
Priority to EP07743779A priority patent/EP1933397A4/en
Priority to JP2008517846A priority patent/JP4134280B2/ja
Publication of WO2007138906A1 publication Critical patent/WO2007138906A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values

Definitions

  • the present invention relates to an organic electoluminescence device and a full-color light emitting device using the same.
  • Patent Document 1 in the type in which the light emitting layer is divided into two, the light emitting color becomes red by making the light emitting layer on the anode side where the light emitting region of the light emitting layer is easily biased into a blue light emitting layer
  • the tendency to be biased can be counteracted, and have proposed a white element that suppresses color changes.
  • the luminous efficiency was not always at a sufficient level.
  • Patent Document 2 discloses an organic EL element in which a light emitting layer is laminated in the order of a red light emitting layer, a blue light emitting layer, and a green light emitting layer from the anode side. Furthermore, a technique for suppressing a color change accompanying an increase in driving current by doping a red light emitting layer used in the red light emitting layer into the blue light emitting layer is also disclosed. However, the luminous efficiency was not always sufficient.
  • Patent Document 3 discloses an organic EL device that emits white light by laminating an anode, a hole transporting blue light emitting layer, an electron transporting carrier recombination region control layer, an electron transporting red light emitting layer, and a cathode in this order. Yes.
  • the driving voltage was high because the affinity level of the carrier recombination region control layer was larger than the affinity level of the hole transporting blue light emitting layer.
  • Patent Document 4 discloses a white light-emitting organic EL device in which two electron-transporting light-emitting layers are arranged via a charge barrier layer. However, the holes injected from the anode are mostly consumed in the first light-emitting layer, and pass through the charge barrier layer and are supplied to the second electron-transporting light-emitting layer. Due to the small amount, the efficiency of white light emission is low.
  • Patent Document 5 an anode, a first light emitting layer, a charge barrier layer, a second light emitting layer, and a cathode are stacked in this order, and the ion barrier potential of the charge barrier layer is set to the ion barrier of the first light emitting layer.
  • a white light emitting organic EL device is disclosed in which the potential level of the charge barrier layer is set to 0. leV or more higher than the potential, and the affinity level of the second light emitting layer is set to 0. leV or less.
  • the charge barrier layer has both functions of an electron barrier and a hole barrier, there is a problem that the drive voltage becomes high.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-272857
  • Patent Document 2 JP-A-2004-235168
  • Patent Document 3 JP-A-8-78163
  • Patent Document 4 International Publication No. 2005Z099313 Pamphlet
  • Patent Document 5 International Publication No. 2005Z112518 Pamphlet
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2005-100921
  • Patent Document 7 US Publication No. 2006Z0088729
  • the present invention has color rendering properties suitable for display and lighting applications, and emits light.
  • the object is to provide an organic EL device with high efficiency and little change in chromaticity!
  • the following organic EL element and full-color light-emitting device are provided.
  • An anode, a first light emitting layer, a charge barrier layer, a second light emitting layer, and a cathode are laminated in this order, and the first light emitting layer and the second light emitting layer each contain a host material and a dopant, and 1 The energy gap force of the host material of the light emitting layer is smaller than the energy gap of the host material of the second light emitting layer,
  • the host material of the first light emitting layer is a hole transporting material
  • the host material of the second light emitting layer is an electron transporting material
  • the affinity level force of the charge barrier layer is 0.2 eV or more smaller than the affinity level of the host material of the second light emitting layer
  • Ion potential (Iel) of the charge barrier layer and ion potential (Ihl) 1S of the host material of the first light emitting layer 1S An organic electoluminescence device that satisfies the following relationship (1).
  • It includes an anode, a first light emitting layer, a charge barrier layer, a second light emitting layer, a third light emitting layer, and a cathode stacked in this order,
  • the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer contain a host material and a dopant, respectively;
  • the energy gap force of the host material of the first light emitting layer is smaller than the energy gap of the host material of the second light emitting layer
  • the host material of the first light emitting layer is a hole transporting material
  • the host material of the second light emitting layer and the third light emitting layer is an electron transporting material, and the charge barrier layer is a hole transporting material,
  • the ion barrier potential (Iel) of the charge barrier layer and the host material of the first light emitting layer On-potential (Ihl) force An organic electroluminescent device that satisfies the following relationship (1).
  • the energy gap force of the host material of the first light-emitting layer 4.
  • the organic electroreductive element according to any one of 1 to 3, which is 0.4 eV or more smaller than the energy gap of the host material of the second light-emitting layer.
  • the organic electoluminescence device according to any one of 1 to 8, which has a hole transport layer adjacent to the first light emitting layer between the anode and the first light emitting layer.
  • the first light-emitting layer or the first organic layer which is an organic layer close to the anode, has a force containing an oxidizing agent
  • the second light-emitting layer or the second organic layer which is an organic layer close to Z or the cathode
  • the organic electoluminescence device according to any one of 1 to 10, which contains a reducing agent.
  • the host material of the first light emitting layer is a compound represented by the following formula (1), and the dopant of the first light emitting layer is a compound having a fluoranthene skeleton or a perylene skeleton 1 to: L 1
  • the organic electoluminescence device according to any one of the above.
  • X is a condensed aromatic ring group having 3 or more carbon rings
  • Y is a group selected from a substituted or unsubstituted aryl group, a substituted or unsubstituted dialyl amino group, a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group,
  • n is an integer of 1 to 6, and when n is 2 or more, Y may be the same or different. )
  • Ar 2 and Ar 3 are each a substituted or unsubstituted aromatic ring group or a substituted if Ku unsubstituted aromatic heterocyclic group, 1-8 each represent hydrogen, halogen, alkyl group, alkoxy group, alkylthio group , Alkenyl group, alkoxy group, alkenyl group, aromatic ring-containing alkyl group, aromatic ring-containing alkyloxy group, aromatic ring-containing alkylthio group, aromatic ring group, aromatic heterocyclic group, aromatic ring oxy group, Aromatic ring thio group, aromatic ring alkenyl group, alkenyl aromatic ring group, amino group, carbazolyl group, cyano group, hydroxyl group, -COOR 1 (R 1 'is hydrogen, alkyl group, alkenyl group, aromatic ring-containing alkyl group or Is an aromatic ring group), COR 2 ′ (R 2 ′ is hydrogen, an alkyl group, an alkenyl group, an al
  • the organic electroluminescent device wherein the indenoperylene derivative is a dibenzotetrafluoro-perifuranthene derivative.
  • the compound power represented by the formula (1) The organic electoluminescence device according to any one of 12 to 15, which is a naphthacene derivative represented by the following formula (4).
  • ( ⁇ to 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 nuclear carbon atoms, amino Group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted alkylthio group having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 20 nuclear carbon atoms, substituted or unsubstituted 6-20 aralkylthio group, substituted or unsubstituted alkenyl group having 2-20 carbon atoms, substituted or unsubstituted aralkyl group having 7-20 carbon atoms, or substituted or unsubstituted nuclear atoms 5-20 And these may be the same or different.
  • Q 3 to Q 12 , Q 101 to Q 105 , Q 201 to Q 2 ° 5 each independently represents the same group as Q 3 to Q 12 in the general formula (1), These two, which may be the same or different, may be bonded to each other to form a ring.
  • At least one of Q 1 (n , Q 105 , Q 201 and Q 2 ° 5 is an alkyl group, aryl group, amino group, alkoxy group, aryloxy group, 19.
  • the organic electoluminescence device according to any one of 12 to 19, wherein the charge barrier layer comprises a tertiary amine compound, a force rubazole derivative, a compound containing a nitrogen-containing heterocyclic ring or a metal complex.
  • a full-color light emitting device comprising a white-light-emitting organic electroluminescent device according to any one of 1 to 20 and a color filter.
  • FIG. 1 is a diagram showing a configuration of an organic EL element according to Embodiment 1 of the present invention.
  • 2 is a diagram showing energy levels of a first light emitting layer, a charge barrier layer, and a second light emitting layer of the organic EL element shown in FIG. 1.
  • FIG. 3 is a diagram showing a configuration of an organic EL element according to Embodiment 2 of the present invention.
  • FIG. 4 is a diagram showing a configuration of an organic EL element according to Embodiment 3 of the present invention.
  • FIG. 5 is a diagram showing energy levels of the first light-emitting layer, the first charge barrier layer, and the second light-emitting layer created in Example 1.
  • FIG. 6 is a diagram showing energy levels of the first light-emitting layer, the first charge barrier layer, and the second light-emitting layer prepared in Comparative Example 4.
  • FIG. 7 is a diagram showing the energy levels of the first light-emitting layer, the first charge barrier layer, and the second light-emitting layer prepared in Comparative Example 5.
  • FIG. 8 is a diagram showing the value of CIE1931 chromaticity X with respect to the luminance of the organic EL devices fabricated in Comparative Example 1 and Examples 1 to 4.
  • FIG. 9 is a diagram showing the value of CIE1931 chromaticity y with respect to the luminance of the organic EL devices fabricated in Comparative Example 1 and Examples 1 to 4.
  • the organic EL device includes an anode, a first light emitting layer, a charge barrier layer, a second light emitting layer, and a cathode laminated in this order.
  • Each of the first light emitting layer and the second light emitting layer contains a host material and a dopant.
  • the first light emitting layer includes a hole transporting material as a host material
  • the second light emitting layer includes an electron transporting material as a host material.
  • the energy gap of the host material of the first luminescent layer is smaller than the energy gap of the host material of the second luminescent layer! /.
  • the affinity level force of the charge barrier layer The ion barrier potential (Iel) of the charge barrier layer, which is 0.2 eV or more smaller than the affinity level of the host material of the second light emitting layer, and the host material of the first light emitting layer. Ion potential (Ihl) force The following relationship (1) is satisfied.
  • the affinity level (Afel) of the charge barrier layer is 0.2 eV or more smaller than the affinity level (Afh2) of the host material of the second light emitting layer, which is greater than leV! Meet ) o
  • the ion barrier potential (Iel) of the charge barrier layer and the ionization potential (Ihl) force of the host material of the first light emitting layer satisfy the following equation.
  • the energy gap (Eghl) of the host material of the first light-emitting layer is larger than 1.5 eV and smaller than the energy gap (Egh2) of the host material of the second light-emitting layer by 0.4 eV or more ( Fulfill).
  • FIG. 1 is a diagram illustrating an example of the configuration of the organic EL element according to the first embodiment.
  • the organic EL element 10 shown in FIG. 1 has a structure in which an anode hole transport layer 2, a first light emitting layer 3, a charge barrier layer 4, a second light emitting layer 5, an electron transport layer 6 and a cathode 7 are laminated. .
  • the first light emitting layer 3 and the second light emitting layer 5 contain a host material and a dopant, respectively.
  • white light emission can be obtained by making the first light emitting layer 3 emit red light and the second light emitting layer 5 emit blue light.
  • the reason why the second light-emitting layer 5 is doped with a blue dopant is to make blue, which is generally weak in light emission, shine well and to balance white.
  • the host material of the first light emitting layer 3 close to the anode 1 side is a hole transporting material
  • the host material of the second light emitting layer 5 close to the cathode 7 is an electron transporting material.
  • a charge barrier layer 4 is provided between the first light emitting layer 3 and the second light emitting layer 5.
  • the second light emitting layer 5 is doped with a blue dopant, blue light emission can be obtained efficiently.
  • Blue light emission is generally weak, but strong blue light emission can be obtained.
  • the energy of blue light emitted from the second light-emitting layer 5 is also transferred to the red light of the first light-emitting layer 3 along with recombination of electrons injected through the charge barrier layer and holes from the anode side.
  • the red light emission is also obtained by moving. Therefore, high efficiency and excellent color balance White luminescence is obtained.
  • hole transportability in the present invention means that the hole mobility of the layer is larger than the electron mobility in the electric field range of 10 2 to 10 8 V / cm.
  • the hole mobility of the first light emitting layer is 10 ⁇ 5 cm 2 ZV ⁇ sec or more.
  • Electrode transportability means that the electron mobility of the layer is higher than the hole mobility in the electric field range of 10 2 to 10 8 V / cm.
  • the electron mobility of the second light emitting layer is 10 -6 cm 2 ZV ⁇ sec or more.
  • Hole or electron mobility is measured by the Time of flight method.
  • the recombination region is biased to the second light emitting layer, and good white light emission is obtained. Hateful.
  • the recombination region tends to be biased to the cathode side in the second light emitting layer. For this reason, the light emission efficiency is lowered by the quenching action of the metal cathode.
  • the host material of the first light emitting layer is an electron transporting material and the host material of the second light emitting layer is a hole transporting material
  • electrons are injected into the first light emitting layer and holes are injected into the second light emitting layer. Both injections are performed, resulting in a significant increase in drive voltage.
  • the energy gap of blue is large! Therefore, the affinity level of the hole transporting blue light emitting layer is lowered.
  • the electron transport carrier recombination region control layer has a generally high level of affinity. Therefore, the electron injection barrier from the electron transporting carrier recombination region control layer to the hole transporting blue light emitting layer is increased, and the driving voltage of the device is increased as a whole.
  • the blue light-emitting layer is disposed on the cathode side of the charge barrier layer, so that the gap in the power level does not become too large and high voltage is prevented. Can do.
  • the power level of the charge barrier layer 4 is 0.2 eV or more smaller than the power level of the host material of the second light emitting layer 5.
  • the ionic potential (Iel) of the charge barrier layer 4 and the ionic potential (Ihl) force of the host material of the first light emitting layer 3 satisfy the following relationship (1).
  • FIG. 2 shows the energy levels of the host material of the first light emitting layer 3, the charge barrier layer 4 and the second light emitting layer 5 of the organic EL element 10.
  • the upper side shows the affinity level of each layer
  • the lower side shows the ionization potential.
  • the lower part shows a larger value.
  • the difference between the ion potential and the affinity level corresponds to the energy gap.
  • the power level of the charge barrier layer 4 is 0.2 eV or more smaller than the power level of the second light emitting layer 5. That is, in FIG. 2, the charge level of the charge barrier layer 4 is positioned 0.2 eV or more higher than that of the second light emitting layer 5 (in FIG. 2, ⁇ is 0.2 eV or more).
  • the charge barrier layer 4 is a layer that restricts the injection of electrons from the second light-emitting layer 5 closer to the cathode 7 to the first light-emitting layer 3 closer to the anode 1. It is provided to control the recombination amount of the hole pair and adjust the light emission amount from each light emitting layer. Considering this function, it is necessary to have a power level that is 0.2 eV or more smaller than that of the host material of the second light emitting layer. Preferably it has a small power level of 0.5 eV or more.
  • the relationship between the host material affinity level of the first light-emitting layer 3 and the charge barrier layer 4 affinity level is not particularly limited, but from the viewpoint of driving voltage, the affinity level force of the charge barrier layer 4 is not limited. It is preferable to be smaller than S ⁇ eV.
  • the ionization potential (Iel) of the charge barrier layer 4 and the ion potential (Ihl) of the host material of the first light emitting layer 3 satisfy the above (1). This is because the increase of the drive voltage becomes a problem when the charge barrier layer 4 becomes a barrier against holes, thus preventing it. It is to do.
  • the relationship between the ionic potential (Iel) of the charge barrier layer 4 and the ionic potential (Ihl) of the host material of the first light emitting layer 3 preferably satisfies the following formula (1 ′).
  • the energy gap force of the host material of the first light emitting layer 3 is smaller than the energy gap of the host material of the second light emitting layer 5, preferably 0.4 eV or more. If the energy gap of the host material of the first luminescent layer 3 is larger or less than 0.4 eV, the difference in the affinity level between the second luminescent layer 5 and the charge barrier layer 4 becomes large. For this reason, the supply of electrons to the first light-emitting layer 3 becomes insufficient, and it may be difficult to obtain good white light emission.
  • the energy gap of the host material of the first light emitting layer 3 is preferably 1.8 to 2.8 eV
  • the energy gap of the host material of the second light emitting layer 5 is preferably 2.2 to 3.3 eV. That's right.
  • the dopant of the first light emitting layer 3 is a red dopant and the dopant of the second light emitting layer 5 is a blue dopant
  • the first light emitting layer 3 emits red light
  • the second light emitting layer 5 emits blue light.
  • satisfying the above requirements can provide well-balanced white light emission.
  • blue is preferably located on the cathode side of the electron barrier layer.
  • red is arranged on the anode side of the electron barrier layer.
  • excitons are generated in the second light emitting layer (blue), which is the negative side of the electron barrier layer, and this blue shines well.
  • the second light emitting layer has a wider energy gap than the first light emitting layer, the energy is transferred to the first light emitting layer side. As a result, the red color of the second light emitting layer also shines.
  • element configuration of the present embodiment is not limited to FIG. 1, and may be, for example, the following configuration.
  • the intervening layer is not limited as long as it can transport electrons and holes. When it is in the light extraction direction, it is preferably transparent.
  • the organic EL device includes an anode, a first light emitting layer, a charge barrier layer, a second light emitting layer, a third light emitting layer, and a cathode laminated in this order.
  • the host material of the first light emitting layer becomes the hole transporting material force
  • the host materials of the second light emitting layer and the third light emitting layer become the electron transporting material.
  • the energy gap of the host material of the first light emitting layer is smaller than the energy gap of the host material of the second light emitting layer! /.
  • the charge barrier layer is hole transporting.
  • the affinity leveler of the charge barrier layer is preferably 0.2 eV or more smaller than the affinity level of the host material of the second light emitting layer.
  • the ionization potential (Iel) of the charge barrier layer and the ionization potential (Ihl) force of the host material of the first light-emitting layer satisfy the following relationship (1).
  • FIG. 3 is a diagram illustrating an example of the configuration of the organic EL element according to the second embodiment.
  • the organic EL device 20 shown in FIG. 3 is formed by laminating an anode hole transport layer 2, a first light emitting layer 3, a charge barrier layer 4, a second light emitting layer 5, a third light emitting layer 8, an electron transport layer 6 and a cathode 7.
  • the third light emitting layer 8 also contains a host material and a dopant.
  • the host material of the third light emitting layer 8 is Like the second light emitting layer 5, it is an electron transporting material.
  • the first light emitting layer 3 has a first dopant as a red dopant
  • the second light emitting layer 5 has a blue dopant
  • the third light emitting layer 8 has a green dopant as a first dopant.
  • the first light emitting layer 3, the charge barrier layer 4, and the second light emitting layer 5 do not necessarily have the relationship as in the first embodiment. This is because the amount of electrons injected into the first light emitting layer 3, the charge barrier layer 4, and the second light emitting layer 5 is limited by forming the third light emitting layer 8. In particular, since the third light emitting layer is doped with a green dopant, electrons are trapped by this green dopant, and electron injection into the second light emitting layer is controlled.
  • the ionization potential, the power level, and the energy gap of the host material of the first light emitting layer 3, the charge barrier layer 4 and the host material of the second light emitting layer 5 are Preferred to have the same relationship as one.
  • the element configuration of the present embodiment is not limited to FIG. 3.
  • a configuration in which the third light emitting layer is formed on the element configuration 16 illustrated in the first embodiment may be used.
  • a plurality of charge barrier layers may be stacked.
  • the host material strength of the first light emitting layer is a compound represented by the following formula (1)
  • the dopant of the first light emitting layer is a compound having a fluoranthene skeleton or a perylene skeleton.
  • X is a condensed aromatic ring group having 3 or more carbon rings
  • is a group selected from a substituted or unsubstituted aryl group, a substituted or unsubstituted dialyl amino group, a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group,
  • the host material of the first light emitting layer has 4 or more condensed rings.
  • the host material of the second light emitting layer has 3 or less condensed rings.
  • the embodiment of the present invention has been described.
  • the anode, the hole transporting first light emitting layer, the charge barrier layer, the electron transporting second light emitting layer, and the cathode are arranged in this order. It is constructed by laminating. With such a configuration, an organic EL device having color rendering properties, high luminous efficiency, and little chromaticity change can be obtained.
  • the element of the present invention is characterized in that the chromaticity change of light emission is small even when the driving conditions (driving voltage, etc.) of the element are changed.
  • the full-color light emitting device includes the organic EL element of the present invention that emits white light and a color filter.
  • FIG. 4 is a diagram illustrating an example of the configuration of the full-color light emitting device according to the third embodiment.
  • the full-color light emitting device 100 shown in FIG. 4 is provided with first, second, and third (white) organic EL elements 120, 130, and 140 force S on a support substrate 110, and the light of these elements 120, 130, and 140 is provided.
  • First, second, and third (red, green, and blue) color filters 122, 132, and 142 are arranged on the extraction side (indicated by arrows) so as to face these elements 120, 130, and 140, respectively. .
  • the color filters 122, 132, 142 are formed on the transparent substrate 150.
  • the light emitted from the organic EL element 120 is converted to red light by the color filter 122 and extracted outside, and the light emitted from the organic EL element 130 is converted to green light by the color filter 132 and extracted to the outside.
  • the light emitted from the element 140 is converted into blue light by the color filter 142 and extracted outside to obtain a full color.
  • the organic EL element 120, 130, and 140 and the color finoletas 122, 132, and 142 the organic EL element is prevented from being deteriorated by oxygen, moisture, or other volatile components contained in the environment or the color filter.
  • a sealing layer or the like may be provided. Specific examples include transparent inorganic compound layers such as SiOxNy, AlOxNy, and SiAlOxNy, and those laminated with these transparent inorganic compound layers and a transparent resin or sealing liquid.
  • Examples of the color filters 122, 132, 142 include, for example, the following dyes only or those in a solid state in which the dyes are dissolved or dispersed in a binder resin.
  • Red (R) dye Perylene pigment, lake pigment, azo pigment, etc.
  • Green (G) dyes Halogen polysubstituted phthalocyanine pigments, halogen polysubstituted copper phthalocyanine pigments, trifelmethane basic dyes, etc.
  • Blue (B) dye Copper phthalocyanine pigment, indanthrone pigment, indophenol pigment, cyanine pigment, etc.
  • the binder resin is preferably a transparent material (visible light transmittance of 50% or more).
  • transparent rosin (polymer) such as polymethylmetatalylate, polyatalylate, polycarbonate, polybulal alcohol, polyvinylpyrrolidone, hydroxyethyl cellulose, canoleboxymethinoresolerose, etc.
  • photosensitive resin examples include photo-curing resist materials having a reactive vinyl group such as acrylic acid-based or methacrylic acid-based resins.
  • printing ink (medium) using a transparent resin such as polyvinyl chloride resin, melamine resin, or phenol resin is selected.
  • the color filter mainly has a coloring power
  • it is formed by vacuum deposition or sputtering through a mask having a desired color filter pattern.
  • the color filter is composed of a coloring material and a binder resin
  • Oils and resists are mixed, dispersed or solubilized, formed into a film by a method such as spin coating, roll coating, or casting, and patterned with a desired color filter pattern by a photolithography method, or by a method such as printing. It is common to pattern with a desired color filter pattern.
  • each of the color filters 122, 132, 142 are preferably as follows.
  • R film thickness 0.5 to 5.0 111 (transmittance 50% or more 761011111),
  • a black matrix when providing a full-color light emitting device that emits light of three primary colors of red, green, and blue, a black matrix can be used to improve the contrast ratio.
  • charge barrier layer the first light emitting layer, and the second light emitting layer (third light emitting layer), which are characteristic parts of the organic EL device of the present invention, will be mainly described.
  • organic layers inorganic compound layers, positive electrodes, cathodes, and the like and the manufacturing method, general configurations can be adopted. [0049] 1. Charge barrier layer
  • the charge barrier layer is preferably at least 10 _5 cm 2 ZV ′ seconds or more when an electric field of hole mobility of 10 4 to 10 7 VZcm is applied from the viewpoint that it is difficult to become a barrier against holes.
  • the thickness of the charge barrier layer is not particularly limited, but is preferably 0.1 to 50 nm. More preferably, the thickness is 0.1 to 20 nm.
  • organic compounds and inorganic compounds can be used for the charge barrier layer.
  • a tertiary amine compound, a force rubazole derivative, a compound containing a nitrogen-containing heterocyclic ring, a metal complex, or the like can be used.
  • Inorganic compounds include Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, K, Cd, Mg, Si, Ta, Ge, Sb, Zn, Cs, Eu, Y, Ce, W, Zr , La, Sc, Rb, Lu, Ti, Cr, Ho, Cu, Er, Sm, W, Co, Se, Hf, Tm, Fe, Nb and other metal oxides, nitrides, complex oxides, Sulfides, fluorides, etc. can be used.
  • the organic compounds described below that are usually used as a hole transport layer in an organic EL device are preferable.
  • JP-A Stilbene derivatives
  • JP-A 61-210363, 61-228451, 61-14642, 61-72255, 62-47646, 62-36674, 62-10652, 62-30255, 60-93455, 60-94462, 60-174749, 60-175052, etc.
  • silazane derivatives US Pat. No. 4,950,950
  • JP-A-2-204996 polysilane-based
  • aniline-based copolymer JP-A-2-282263
  • JP-A-1-211399 especially thiophene oligomer.
  • a Borhuylin compound (disclosed in JP-A-63-29556965), an aromatic tertiary amine compound and a styrylamine compound (US Pat. No. 4,127,412) Kaisho 53-27033, 54-58445, 54-149634, 54-64299, 55-79450, 55-144250, 56-11913 2 61-295558, 61-98353, 63-295695, etc.) can also be used.
  • Ar to A 4 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, and R 21 and R 22 are each independently a hydrogen atom, a substituted or unsubstituted nucleus.
  • aryl group having 6 to 50 nuclear carbon atoms a phenyl, naphthyl, biphenyl, terphenyl, phenanthryl group and the like are preferable.
  • the aryl group having 6 to 50 nuclear carbon atoms may be further substituted with a substituent.
  • Preferred substituents include alkyl groups having 1 to 6 carbon atoms (methyl group, ethyl group, isopropyl group, n -Propyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, etc.), and an amino group substituted with an aryl group having 6 to 50 carbon atoms.
  • alkyl group having 1 to 50 carbon atoms examples include methyl group, ethyl group, isopropyl group, n-propyl group, sbutyl group, tbutyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, and the like. Is preferred.
  • a light emitting material may be added to the charge barrier layer.
  • the dopant of the first light emitting layer 3 is a red dopant and the dopant of the second light emitting layer is blue.
  • the light emitting material of the dopant and charge barrier layer is a green dopant. That is, light emission
  • blue is the weakest, blue is placed in the most shining area, and with high visibility, green is placed in the next most shining area.
  • red emits light by the power of charge injection energy transfer from blue and green, it may be at the position of the first light emitting layer.
  • This arrangement can achieve a three-wavelength white color that is well balanced in efficiency and resists color shifts.
  • dopants used in each light emitting layer described later can be used.
  • the affinity level and ion potential of the charge barrier layer are the affinity level and ionization potential of the host material of the charge barrier layer.
  • the first light emitting layer is preferably a yellow to orange or red light emitting layer.
  • the yellow to orange or red light emitting layer is a light emitting layer having a maximum emission wavelength of 550 to 650 nm.
  • the light emitting layer is preferably composed of a host material and a yellow to orange or red dopant.
  • X is a condensed aromatic ring group having 3 or more carbon rings
  • is a group selected from a substituted or unsubstituted aryl group, a substituted or unsubstituted dialyl amino group, a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group,
  • is an integer of 1 to 6, and when ⁇ is 2 or more, ⁇ may be the same or different.
  • X It is a group containing one or more skeletons selected from dibenzopyrene, dibenzofluoranthene, and isanaphthylfluoranthene. More preferably, it contains a naphthacene skeleton or an anthracene skeleton.
  • is preferably an aryl group or diarylamino group having 12 to 60 carbon atoms, and more preferably. Or an aryl group having 12 to 20 carbon atoms or a diarylamino group having 12 to 40 carbon atoms.
  • n is preferably 2.
  • the compound represented by the formula (1) is a naphthacene derivative represented by the following formula (4).
  • ( ⁇ to 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 nuclear carbon atoms.
  • a compound in which at least one of 4 is an aryl group is an aryl group.
  • the naphthacene derivative represented by the formula (4) is a compound represented by the following formula (5).
  • Q 3 to Q 12 , Q 101 to Q 105 , Q 201 to Q 2 ° 5 each independently represents the same group as Q 3 to Q 12 in the general formula (1), These two, which may be the same or different, may be bonded to each other to form a ring.
  • a fluorescent compound having at least one fluoranthene skeleton or perylene skeleton can be used, and examples thereof include compounds represented by the following formulas [2] to [18]. .
  • X ⁇ X ⁇ is independently a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic carbon.
  • the compounds of the formulas [2] to [16] preferably contain an amino group or a alkenyl group.
  • X 21 to X 24 are each independently an alkyl group having 1 to 20 carbon atoms or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • X 21 and X 22 and / or X 23 and X 24 may be bonded via a carbon-carbon bond or —O— or —S—.
  • X 25 to X 36 are a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted group.
  • An alkenyl group of 0, adjacent substituents and x 25 to x 36 may be bonded to form a cyclic structure
  • At least one of the substituents X 25 to X 36 in each formula contains an amine or alkenyl group.
  • Indenoperylene derivatives of the formulas [13] and [14] are preferred.
  • the fluorescent compound having a fluoranthene skeleton preferably contains an electron donating group in order to obtain high efficiency and a long lifetime.
  • the preferred electron donating group is a substituted or unsubstituted arylene amino group. It is.
  • the fluorescent compound having a fluoranthene skeleton preferably has 5 or more condensed rings, and more preferably 6 or more. This is because the fluorescent compound exhibits a fluorescent peak wavelength of 540 to 70 Onm, and the light emission from the blue light emitting material and the fluorescent compound is superposed and white.
  • the above-mentioned fluorescent compound is preferable because it has a plurality of fluoranthene skeletons, since the emission color is in a yellow to orange or red region.
  • the indenoperylene derivative is a dibenzotetraphenyl perifuranthene derivative.
  • the thickness of the first light emitting layer is preferably 1 to 50 nm, more preferably 5 to 50 nm. If it is less than lnm, the luminous efficiency may decrease, and if it exceeds 50 nm, the drive voltage may increase.
  • the second light emitting layer is preferably a blue light emitting layer in view of the energy gap.
  • the peak wavelength of blue light emission is 450 to 500 nm.
  • dopants examples include arylene compounds and Z or styrylamine compounds, anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, taricene, fluorescein, perylene, lidar perylene, and naphthaperylene.
  • the second light emitting layer preferably contains an arylamine compound and Z or styrylamine compound.
  • arylamine compounds include compounds represented by the following general formula (A), and examples of styrylamine compounds include compounds represented by the following general formula (B).
  • Ar represents a fuel, a bifuel, a terpheal, a stilbene, a distil
  • Ar and Ar are each a hydrogen atom or a carbon number.
  • p is an integer from 1 to 4.
  • Ar and Z or Ar are substituted with a styryl group.
  • the aromatic group having 6 to 20 carbon atoms is preferably a phenyl group, a naphthyl group, an anthracyl group, a phenanthryl group, a terphenyl group, or the like.
  • Ar to Ar are optionally substituted aryl groups having 5 to 40 nuclear carbon atoms. It is. q is an integer from 1 to 4. ]
  • aryl groups having 5 to 40 nuclear atoms include phenyl, naphthyl, anthracenyl, phenanthryl, pyrenyl, coloninole, biphenyl, terphenyl, pyrrolyl, furanyl, thiophenyl, benzothiophenyl, oxadiazolyl, Preference is given to diphenylanthracenyl, indolyl, carbazolyl, pyridyl, benzoquinolyl, fluoranthenyl, isenaftfluoroolturyl, stilbene and the like.
  • the aryl group having 5 to 40 nucleus atoms may be further substituted with a substituent.
  • alkyl groups having 1 to 6 carbon atoms ethyl group, methyl group, isopropyl group, n —Propyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, etc.
  • alkoxy group having 1 to 6 carbon atoms ethoxy group, methoxy group, isopropoxy group, n— Propoxy group, s-butoxy group, t-butoxy group, pentoxy group, hexyloxy group, cyclopentoxy group, cyclohexyloxy group, etc.
  • aryl group having 5-40 nuclear atoms aryl group having 5-40 nuclear atoms
  • a compound having an anthracene center skeleton and a structure represented by the following formula (19) is preferable.
  • a and A are each independently a substituted or unsubstituted aromatic group having 6 to 20 nuclear carbon atoms.
  • R to R are each independently a hydrogen atom, substituted or absent.
  • Substituted aryl group having 6 to 50 carbon atoms, substituted or unsubstituted hetero atom having 5 to 50 nuclear atoms Aryl group, substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted A aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 carbon atoms, a substituted or unsubstituted aryl atom group having 5 to 50 carbon atoms, a substituted or unsubstituted carbon atom having 1 to 50 carbon atoms
  • the group is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted group.
  • Arylthio group having 5 to 50 atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted or unsubstituted silyl group, carboxyl group, halogen atom, cyano group, nitro group and hydroxyl group Power is chosen.
  • the adjacent substituents may be bonded to each other to form a saturated or unsaturated cyclic structure.
  • a and A are preferably different from each other.
  • Ar is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms.
  • Ar is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • X 1 , X 2 and X 3 are each independently a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, substituted Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted nuclear atom.
  • a, b and c are each an integer of 0-4.
  • a, when b and c is 2 or more, X 1 the mechanic, X 2 together, X 3 together may be the same or different.
  • n is an integer of 1 to 3. When n is 2 or more, the values in [] may be the same or different. )
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, and m and n are each an integer of 1 to 4)
  • Ar and Ar are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • L and L are each a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group.
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • L or Ar is bonded to any of the 1-5 positions of pyrene, and L or Ar, is bonded to any of the 6-10 positions of pyrene.
  • substitution positions of L and L 'or Ar and Ar in pyrene are not the 1st and 6th positions or the 2nd and 7th positions.
  • a 1 and 1 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
  • Ar 1 and Ar 2 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
  • ⁇ ! ⁇ Is independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted Is an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, Substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 carbon atoms, substituted or unsubstituted nuclear atom An arylcarbothio group having 5 to 50 carbon atoms, a substituted or unsubstituted carbon group having 1 to 50 carbon atoms, a substituted or unsubstituted silyl
  • Ar 2 , R 9 and R 10 may be plural or adjacent to each other to form a saturated or unsaturated cyclic structure.
  • 1 ⁇ to 1 ⁇ 1 () are each independently a hydrogen atom, alkyl group, cycloalkyl group, optionally substituted aryl group, alkoxyl group, aryloxy group, alkylamino group, alkke group.
  • A-group, an arylamino group or an optionally substituted heterocyclic group, a and b each represent an integer of 1 to 5, and when they are 2 or more, R 1 or R 2 are In each case, they may be the same or different, and R 1 or R 2 may be bonded to each other to form a ring, or R 3 and R 4 , R 5 and R 6 , R 7 And R 8 , R 9 and R 1C) may be bonded to each other to form a ring.
  • L 1 represents a single bond, —O—, —S—, —N (R) — (R represents an alkyl group or an aryl group which may be substituted), an alkylene group or an arylene group. )
  • R 11 to! ⁇ are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxyl group, an aryloxy group, an alkylamino group, an arylamino group, or Cd, e and f each represent an integer of 1 to 5, and when they are 2 or more, R 11 , R 12 , R 16, or R 17 In each case, they may be the same or different, and R 11 , R 12 , R 16, or R 17 may combine to form a ring, or R 13 and R 14 , R 18 and R 19 may be bonded to each other to form a ring L 2 is a single bond, —O—, 1 S—, — N (R) — (R is an alkyl group or an optionally substituted aryl group. Represents an alkylene group or an arylene group.
  • a 5 to A 8 each independently represents a substituted or unsubstituted biphenyl group or a substituted or unsubstituted naphthyl group.
  • a 9 to A ′′ are each a single bond or a substituted or unsubstituted arylene group having 6 to 50 nuclear carbon atoms
  • a 12 to A 14 are a hydrogen atom or a substituted or unsubstituted group, respectively.
  • An aryl group having 6 to 50 nuclear carbon atoms R 21 to R 23 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or 1 to 6 carbon atoms.
  • at least one of A 9 to A 14 is a group having three or more condensed aromatic rings.
  • R and R are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or
  • R represents an unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted amino group, a cyano group or a halogen atom.
  • R may be the same or different, and the same fluorene group
  • R 1 2 may be the same or different.
  • R 4 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, and R bonded to different fluorene groups , R may be the same or different, the same
  • R and R bonded to the fluorene group may be the same or different.
  • Ar is a substituted or unsubstituted condensed polycyclic aromatic group having a total of 3 or more benzene rings.
  • Ar and Ar may be the same or different.
  • n an integer of 1 to 10.
  • anthracene derivatives are preferable, monoanthracene derivatives are more preferable, and asymmetric anthracene is particularly preferable.
  • the blue dopant is preferably at least one selected from a styrylamine, an amine-substituted styryl compound, and a fused aromatic ring-containing compound.
  • the blue dopant is composed of a plurality of different compound forces.
  • the styrylamine and amine-substituted styryl compound include a compound force represented by the following formula [20] or [21].
  • the above condensed aromatic ring-containing compound may be represented by the following formula [22], for example. Compounds.
  • Ar ⁇ Ar 32 and Ar 33 each independently represent a substituted or unsubstituted aromatic group having 6 to 40 carbon atoms, and p represents an integer of 1 to 3.
  • at least one of Ar 31 , Ar 32 and Ar 33 contains a styryl group.
  • Ar 41 and Ar 42 are each independently an arylene group having 6 to 30 carbon atoms
  • E 1 and H 2 are each independently an aryl group or alkyl group having 6 to 30 carbon atoms
  • It represents a hydrogen atom or a cyan group
  • q represents an integer of 1 to 3.
  • U and Z or V are substituents containing an amino group, and the amino group is preferably an aryl amino group.
  • A is an alkyl group or alkoxy group having 1 to 16 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted alkylamino group having 6 to 30 carbon atoms, Alternatively, a substituted or unsubstituted arylamino group having 6 to 30 carbon atoms, B represents a condensed aromatic ring group having 10 to 40 carbon atoms, and r represents an integer of 1 to 4.
  • the same arylamine compound and Z or styrylamine compound as the blue dopant described above can be used.
  • the peak wavelength of green light emission is 500 to 550 nm.
  • an aromatic amine compound represented by the formula (1) can be used as a green dopant.
  • ⁇ to A 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms), a substituted or unsubstituted group.
  • Group substituted or unsubstituted nuclear carbon group having 5 to 50 (preferably, nuclear carbon number 5 to 20) aryl group, substituted or unsubstituted carbon 1 to 10 (preferably 1 to 6 carbon atoms) ) Represents an alkylamino group or a halogen atom.
  • Examples of the substituted or unsubstituted alkyl group of A to A 2 for example, a methyl group, Echiru group, a propyl group, an isopropyl group, butyl group, sec- butyl group, tert- butyl group, pentyl group, to Xyl group, heptyl group, octyl group, stearyl group, 2-phenylisopropyl group, trichloromethyl group, trifluoromethyl group, benzyl group, ⁇ -phenoxybenzyl group, a, ⁇ -dimethylenobenzenole group, Examples thereof include a, ⁇ -methinorefinenobenzylenole group, a, ⁇ -ditrifluoromethylbenzyl group, triphenylmethyl group, ⁇ - benzyloxybenzyl group and the like.
  • Examples of the substituted or unsubstituted aryl group of A to A 2 include, for example, a phenyl group, a 2-methyl furol group, a 3-methyl furol group, a 4-methyl furol group, and a 4-ethyl furyl group.
  • a phenyl group a 2-methyl furol group, a 3-methyl furol group, a 4-methyl furol group, and a 4-ethyl furyl group.
  • Group, biphenyl group, 4-methylbiphenyl group, 4-ethyl biphenyl group, 4-cyclohexyl biphenyl group, terfel group, 3, 5-dichlorophenyl group, naphthyl group, 5- A methyl naphthyl group, an anthryl group, a pyrenyl group, etc. are mentioned.
  • Examples of the substituted or unsubstituted cycloalkyl group of A to A 2 for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, norbornel group, Adama pentyl group and the like.
  • substituted or unsubstituted alkoxy group A to A 2 for example, a methoxy group, Etoki sheet group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec- butoxy group
  • Examples of the substituted or unsubstituted aryloxy group of A 1 to A 2 include a phenoxy group, a triloxy group, and a naphthyloxy group.
  • the substituted or unsubstituted Ariruamino group Hache-eight for example, Jifue - Ruamino group, ditolylamino group, Jinafuchiruamino group, naphthylene Ruff enyl ⁇ amino group and the like.
  • the substituted or unsubstituted alkylamino group Hache-eight 2 for example, Jimechiruamino group, Jechiruamino group, Kishiruamino group and the like to di.
  • halogen atoms ⁇ to A 2 examples include a fluorine atom, a chlorine atom, and a bromine atom.
  • both A 1 and A 2 are not hydrogen atoms.
  • d and e are each an integer of 1 to 5, preferably 1 to 3.
  • the plurality of AA 2 may be the same or different, and may be connected to each other to form a saturated or unsaturated ring.
  • H is an integer of 1 to 9, preferably 1 to 3.
  • R 11 represents a substituted or unsubstituted secondary or tertiary alkyl group having 3 to 10 carbon atoms, or a substituted or unsubstituted secondary or tertiary cycloalkyl group having 3 to 10 carbon atoms.
  • Examples of the substituted or unsubstituted secondary or tertiary alkyl group having 3 to 10 carbon atoms of R 11 include isopropyl group, tert butyl group, sec butyl group, tert pentyl group, 1-methylbutyl group, 1 -Methylpentyl group, 1,1 'dimethylpentyl group, 1,1' dimethylpropyl group, 1-benzyl-2-phenyl ester, 1-methoxyethyl group, 1-phenyl-1-methylethyl group and the like.
  • f is an integer of 1 to 9, and preferably 1 to 3.
  • f is 2 or more, multiple R 11s may be the same or different!
  • R 12 represents a hydrogen atom, a substituted or unsubstituted carbon group having 1 to: L0 alkyl group (preferably having 1 to 6 carbon atoms), a substituted or unsubstituted aryl group having 5 to 50 nuclear carbon atoms ( Preferably, a nuclear carbon number of 5 to: L0), a substituted or unsubstituted cycloalkyl group having a nuclear carbon number of 3 to 20 (preferably Is a substituted or unsubstituted carbon group having 1 to: LO alkoxy group (preferably 1 to 6 carbon atoms), a substituted or unsubstituted aryloxy group having 5 to 50 nuclear carbon atoms.
  • L0 alkyl group preferably having 1 to 6 carbon atoms
  • a substituted or unsubstituted aryl group having 5 to 50 nuclear carbon atoms Preferably, a nuclear carbon number of 5 to: L0
  • substituted or unsubstituted arylamino group having 5 to 50 nuclear carbon atoms preferably 5 to 20 carbon atoms
  • substituted or unsubstituted carbon having 1 to: L0 represents an alkylamino group (preferably having 1 to 6 carbon atoms) or a halogen atom.
  • R 12 substituted or unsubstituted alkyl group, aryl group, cycloalkyl group, alkoxy group, aryloxy group, aryl amino group, alkylamino group and norogen atom are the same as those in Ai to A 2 above. Is mentioned.
  • g is an integer of 0 to 8, preferably 0 to 2.
  • the plurality of R 12 may be the same or different! /.
  • f + g + h is an integer of 2-10, and it is preferable in it being 2-6.
  • aromatic amine compound compounds represented by the formulas (1-1) to (1-7) are more preferable.
  • the thickness of the second light emitting layer is preferably 1 to: LOOnm, more preferably 5 to 50 nm. If it is less than In m, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity, and if it exceeds lOOnm, the drive voltage may increase.
  • the third light emitting layer is preferably a green light emitting layer in view of the energy gap.
  • the peak wavelength of green light emission is 500 to 550 nm.
  • the host material and dopant of the third light emitting layer those described above can be used. Host material is first
  • the thickness of the third light-emitting layer is preferably 1 to 100 nm, more preferably 5 to 50 nm. If it is less than In m, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If it exceeds lOOnm, the drive voltage may increase.
  • a hole injection layer, a hole transport layer, an organic semiconductor layer, or the like can be provided as the first organic layer between the anode and the first light emitting layer.
  • the hole injection layer or the hole transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and the ionization energy with high hole mobility is usually as small as 5.5 eV or less.
  • the hole injection layer is provided to adjust the energy level, for example, to alleviate sudden changes in energy level.
  • Such a hole injecting layer or hole transporting layer is preferably a material that transports holes to the light emitting layer with a lower electric field strength, and further has a hole mobility of, for example, 10 4 to: L0 6 V / cm of when an electric field is applied, at least 10_ 6 cm 2 ZV, ⁇ preferred are those which are second.
  • the material for forming the hole injection layer or the hole transport layer is not particularly limited as long as it has the above-mentioned preferable properties. Conventionally, it has been commonly used as a charge transport material for holes over optical materials. It can be used by selecting any one of those known and used for the hole injection layer of the organic EL element.
  • the material for forming such a hole injection layer or hole transport layer include, for example, a triazole derivative (see US Pat. No. 3,112,197, etc.), an oxadiazole derivative (US Pat. No. 3, 189, 447, etc.), imidazole derivatives (see Japanese Examined Patent Publication No. 37-1 6096, etc.), polyarylalkane derivatives (US Pat. Nos. 3,615,402, 3,820,989) No. 3,542,544, JP-B 45-555, 51-10983, JP-A 51-93224, 55-17105, 56-4148 55-108667, 55-156953, 56-3 6656, etc.), pyrazoline derivatives and pyrazolone derivatives (US Pat.
  • a triazole derivative see US Pat. No. 3,112,197, etc.
  • an oxadiazole derivative US Pat. No. 3, 189, 447, etc.
  • imidazole derivatives see Japanese Examined Patent Publication No. 37-1
  • JP-A-54-59143 55-52063, 55-52064, 55-46760, 55-85495, 57-11350, 57- 1487 No. 49 JP-A-2-311591 etc.
  • stilbene derivatives JP-A-61-210363, 61-228451, 61-14642, 61-72255, 62- 47646, 62-36674, 62-10652, 62-30255, 60-93455, 60-94462, 60-1747 49, 60- No. 175052, etc.
  • silazane derivatives US Pat. No.
  • the above-mentioned materials can be used.
  • Volfirin compound (disclosed in JP-A-63-29556965)
  • aromatic tertiary Amine compounds and styrylamine compounds (US Pat. No. 4,127,412, JP-A 53-27033, 54-58445, 54-149634, 54-6 4299, 55-79450 publication, 55-144250 publication, 56-119132 publication, 61-295558 publication, 61-98353 publication, 63-295695 publication etc.)
  • aromatic tertiary Amine compounds can also be used.
  • the aromatic amine derivative represented by the following general formula (1) is desirable.
  • L is a substituted or unsubstituted arylene group or heterocyclic group having 5 to 60 carbon atoms.
  • Ar to Ar are substituted or unsubstituted, respectively, having 5 to 50 nuclear atoms.
  • Ar to Ar are preferably the same substituent.
  • Ar to Ar are preferably biphenyl groups or terphenyl groups, and more preferably.
  • the compound represented by the general formula (1) includes Ar to Ar among substituents of Ar to Ar.
  • Ar 7 10 8 10 are preferably the same substituent.
  • Ar to Ar are preferably biphenyl groups.
  • a terfel group, more preferably a biphenyl group, and Ar is preferably a biphenyl group, a terfel group, a phenanthrene group, a fluorene group, a 1-naphthyl group, a 2-naphthyl group, or A phenyl group, more preferably a biphenyl group, a terfel group, a 1-naphthyl group or a phenyl group. More preferably, Ar to Ar are biphenyl, and Ar is
  • Ar to Ar are preferably biphenyl groups, ter
  • R, R, R, R, R, R are substituted or unsubstituted alkyl groups, substituted or unsubstituted
  • a substituted aryl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted heterocyclic group is shown.
  • R, R, R, R, and R may be the same or different. Also
  • R and R, R and R, R and R, or R and R, R and R, R and R may form a condensed ring.
  • This hole injection layer or hole transport layer may be composed of one or more of the above-described materials, and what is a hole injection layer or hole transport layer? A hole injection layer or a hole transport layer made of another kind of compound may be laminated! / ⁇ .
  • the thickness of the hole injection layer or the hole transport layer is not particularly limited, but is preferably 20 to 200 nm.
  • the organic semiconductor layer is a layer that assists hole injection or electron injection into the light-emitting layer, and preferably has a conductivity of 10 " 10 SZcm or more.
  • thiophene-containing oligomers may include conductive oligomers such as allylamin oligomers described in JP-A-8-193191, conductive dendrimers such as allylamamine dendrimers, and the like.
  • the thickness of the layer is not particularly limited, but is preferably 10 to: L, OOOnm.
  • An electron injection layer, an electron transport layer, or the like can be provided as the second organic layer between the cathode and the second light emitting layer.
  • the electron injection layer or the electron transport layer is a layer that assists the injection of electrons into the light emitting layer and has a high electron mobility.
  • the electron injection layer is provided to adjust the energy level, such as to alleviate sudden changes in energy level.
  • 8-hydroxyquinoline or a metal complex of its derivative, an oxadiazole derivative, or a nitrogen-containing heterocyclic derivative is preferable.
  • metal complexes of 8-hydroxyquinoline or its derivatives include metal chelate oxinoid compounds containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), for example, tris (8-quinolinol) aluminum.
  • metal chelate oxinoid compounds containing a chelate of oxine generally 8-quinolinol or 8-hydroxyquinoline
  • tris (8-quinolinol) aluminum for example, tris (8-quinolinol
  • oxadiazole derivative the following formula [Chemical 30]
  • Ar 50 , Ar 51 , Ar 52 , Ar 54 , Ar 55 and Ar 58 each represent an aryl group with or without a substituent
  • Ar 5 ° and Ar 51 , Ar 52 and Ar 54 , Ar 55 and Ar 58 may be the same or different from each other
  • Ar 53 , Ar 56 and Ar 57 each represent an arylene group having or not having a substituent
  • Ar 56 and Ar 57 are identical to each other. However, they may be different from each other.
  • Examples of aryl groups in these formulas include a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • Examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthrene group, a perylene group, and a pyrenylene group.
  • Examples of the substituent for these include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyan group.
  • this electron transfer composite those having good thin film formability are preferably used. Specific examples of these electron transfer compounds include the following.
  • the nitrogen-containing heterocyclic derivative is a metal complex including the structures shown in the following (a) to (c).
  • X represents a carbon atom or a nitrogen atom.
  • Z and Z each independently contain nitrogen.
  • the nitrogen-containing heterocyclic derivative preferably has a nitrogen-containing aromatic polycyclic group such as a 5-membered ring or a 6-membered ring, and if it contains a plurality of nitrogen atoms, it is not adjacent to the! And an organic compound having a skeleton.
  • a nitrogen-containing aromatic polycyclic group having a plurality of nitrogen atoms examples thereof include nitrogen-containing aromatic polycyclic organic compounds having a skeleton combining (a) and (b) or (a) and (c). It is done.
  • examples of the nitrogen-containing heterocyclic derivative include the compounds shown in the following (d) to (g).
  • R is an aryl group having 6 to 40 carbon atoms, a heteroaryl group having 3 to 40 carbon atoms, an alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms, and n is 0 to An integer of 5 Yes, when n is an integer greater than or equal to 2, several R may mutually be same or different.
  • a nitrogen-containing heterocyclic derivative represented by the following formula:
  • HAr is a nitrogen-containing heterocycle having 3 to 40 carbon atoms which may have a substituent
  • L may have a single bond or a substituent, and may have 6 to 40 carbon atoms.
  • Ar 61 may be a divalent divalent 6 to 40 carbon atom that may have a substituent.
  • Ar 62 may have a substituent, Ar 62 may have an aryl group or a substituent having 6 to 40 carbon atoms! /, May! /, 3 to 40 carbon atoms The heteroaryl group.
  • HAr examples include the following groups.
  • Examples of Ar bl include the following groups.
  • R bl to R each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 40 carbon atoms, The aryl group having 6 to 40 carbon atoms or the heteroaryl group having 3 to 40 carbon atoms may have a substituent, and Ar 63 may each have a substituent. It is an aryl group having 6 to 40 carbon atoms or a heteroaryl group having 3 to 40 carbon atoms.
  • R 61 to R 74 are all hydrogen atoms.
  • each of R 81 to R 84 independently represents a hydrogen atom, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aliphatic cyclic group, or a substituted or unsubstituted carbocyclic aromatic ring group. And represents a substituted or unsubstituted heterocyclic group, and X 81 and X 82 each independently represents an oxygen atom, a sulfur atom or a dicyanomethylene group.
  • R 91 , R 3, R 9d and R 94 are the same or different groups, and are aryl groups represented by the following formulae.
  • R 95 , R 96 , R 97 , R 98 and R 99 are the same or different from each other, and a hydrogen atom or at least one of them is a saturated or unsaturated alkoxyl group, alkyl group, amino A group or an alkylamino group.
  • the thickness of the electron injection layer or the electron transport layer is not particularly limited, but is preferably 1 to: L00 nm o
  • the first light-emitting layer or the first organic layer which is the organic layer closest to the anode, preferably contains an oxidizing agent.
  • Preferred oxidizing agents are electron withdrawing or electron acceptors.
  • the electron withdrawing or electron acceptor is preferably an electron withdrawing substituent or electron.
  • Examples of the electron-withdrawing substituent include halogen, CN—, carbo group, aryl group and the like.
  • Lewis acids various quinone derivatives, dicyanquinodimethane derivatives, and salts formed with aromatic amines and Lewis acids.
  • quinoid derivatives More preferred are quinoid derivatives, and compounds represented by the following formulas (la) to (li) can be mentioned. More preferred are compounds represented by (la) and (lb).
  • R 1 to R 4 are each hydrogen, halogen, a fluoroalkyl group, a cyano group, an alkoxy group, an alkyl group, or an aryl group. Of these, hydrogen and cyano groups are preferred.
  • ⁇ 17 is an electron withdrawing group, each independently, comprising any force structure of the following formula (j) ⁇ (P).
  • the structure is (j), (k), or (1).
  • R 49 to R 52 are each a hydrogen atom, a fluoroalkyl group, an alkyl group, an aryl group or a heterocyclic ring, and R 5 and R 51 may form a ring.
  • yi Y 28 each independently represents —N ⁇ or —CH 2.
  • fluoroalkyl group of ⁇ 1 to! ⁇ 48 a trifluoromethyl group or a pentafluoroethyl group is preferable.
  • ⁇ ⁇ 1 48 alkoxy group a methoxy group, an ethoxy group, iso- propoxy group, tert - butoxy group are preferable.
  • the alkyl group of ⁇ 1 ⁇ 48 is preferably a methyl group, an ethyl group, a propyl group, an iso-propyl group, a tert-butyl group, or a cyclohexyl group.
  • X is preferably a substituent represented by the following formula.
  • R 51 ′ and R 52 ′ are a methyl group, an ethyl group, a propyl group, and a tert-butyl group, respectively.
  • quinoid derivative include the following compounds.
  • the second light emitting layer or the second organic layer that is the organic layer closest to the cathode preferably contains a reducing agent.
  • Preferred reducing agents are alkali metals, alkaline earth metals, alkali metal oxides, alkaline earth oxides, rare earth oxides, alkali metal halides, alkaline earth halides, rare earth halides, alkali metals. And a complex formed of an aromatic compound.
  • Particularly preferred alkali metals are Cs, Li, Na and K.
  • the hole transport layer (hole injection layer) is preferably formed using the same material as the charge barrier layer described above. This makes it possible to reduce the types of materials used for manufacturing organic EL elements, which is advantageous in terms of cost in industrial production.
  • Table 1 shows the energy gap (Eg), ionization potential (Ip), and affinity level (Af) of the above compounds.
  • the photoelectrons emitted were plotted against the energy of ultraviolet rays irradiated to the material (powder) in the power of 1Z2, and the threshold of the photoelectron emission energy was defined as the ion potential (Ip).
  • the EL spectrum when a current density of 1 OmAZcm 2 was applied was measured with a spectral radiance meter CS 1 OOOA (manufactured by Koryo Minolta) to calculate the luminous efficiency (unit: cd / A).
  • the EL spectrum when current density lOmAZcm 2 was applied was measured for CIE1931 chromaticity (x, y) with a spectral radiance meter CS 1000A (manufactured by Koyu Minolta).
  • the EL spectrum when current density 1 OmAZcm 2 was applied was measured with a spectral radiance meter CS 1 OOOA (manufactured by Corminor Minolta) and calculated by the following formula.
  • RH Eg: 2.4 eV
  • RD RD
  • a 20 nm-thick tris (8-quinolinol) aluminum film (Alq film) was formed as an electron transport layer.
  • Alq film 8-quinolinol
  • metal A1 was deposited by 150 nm to form a metal cathode to form an organic EL light emitting device.
  • FIG. 5 shows the energy levels of the first light-emitting layer, the first charge barrier layer, and the second light-emitting layer prepared in Example 1. The characteristics of the obtained organic EL light emitting device were measured. The results are shown in Table 2.
  • Example 1 an organic EL light emitting device was formed in the same manner as in Example 1 except that the first light emitting layer was formed and then the charge barrier layer was not formed.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 2 shows the measurement results.
  • the thickness of the hole transport layer was set to 10 nm
  • the thickness of the first light emitting layer was set to 40 nm
  • the thickness of the electron transport layer was set to 30 nm
  • the film formation of the second light emitting layer was omitted.
  • an organic EL light emitting device was formed.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 2 shows the measurement results.
  • Comparative Example 1 the thickness of the hole transport layer was 20 nm, the thickness of the second light emitting layer was 40 nm, and the film formation of the first light emitting layer was omitted. Formed.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 2 shows the measurement results.
  • FIG. 6 shows the energy levels of the first light-emitting layer, the first charge barrier layer, and the second light-emitting layer prepared in Comparative Example 4. The obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 2 shows the measurement results.
  • An EL light emitting device was formed.
  • FIG. 7 shows the energy levels of the first light-emitting layer, the first charge barrier layer, and the second light-emitting layer prepared in Comparative Example 5.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 2 shows the measurement results.
  • the thickness of the two light emitting layers is 4
  • An organic EL light emitting device was formed in the same manner as in Example 1 except that Onm was used. The obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 2 shows the measurement results.
  • An organic EL light emitting device was formed in the same manner as in Example 2 except that the thickness of the second light emitting layer and the third light emitting layer was 15 nm and 25 nm, respectively.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1.
  • Table 2 shows the measurement results.
  • Example 1 the red light emission of Comparative Example 2 and the blue light emission of Comparative Example 3 were combined.
  • Example 2 by adding a green light-emitting layer as the third light-emitting layer to Example 1, it was possible to obtain good white light emission with higher current efficiency and an equivalent external quantum yield.
  • Example 3 by further doping the charge barrier layer with a green light emitting material as compared with Example 1, it was possible to obtain good white light emission with an equivalent external quantum yield.
  • An organic EL device was produced in the same manner as in Example 1 except that the compositions of the first light emitting layer, the electron blocking layer, and the second light emitting layer were changed as shown in Table 3. That is, the cathode side of the charge barrier layer is a red light emitting layer.
  • An amine hole transport material (GD) with an Af of about 3. leV was used as the charge barrier layer.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 3 shows the measurement results.
  • An organic EL device was produced in the same manner as in Example 1 except that the compositions of the first light emitting layer and the second light emitting layer were changed as shown in Table 3. That is, as in Comparative Example 6, the cathode side of the charge barrier layer is a red light emitting layer. Here, the Af of the host of the first light emitting layer is made higher than the Af of the charge barrier layer.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 3 shows the measurement results.
  • Eg of the second light emitting layer is larger than Eg of the first light emitting layer.
  • An organic EL device was produced in the same manner as in Example 1 except that the compositions of the first light emitting layer, the electron blocking layer, and the second light emitting layer were changed as shown in Table 3. That is, the first light emitting layer was green and the second light emitting layer was blue.
  • the charge barrier layer was doped with red (RD).
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 3 shows the measurement results.
  • An organic EL device was produced in the same manner as in Example 1 except that the compositions of the first light emitting layer, the electron blocking layer, and the second light emitting layer were changed as shown in Table 3. That is, the first light emitting layer was blue, the second light emitting layer was red, and the charge barrier layer was doped with green.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 3 shows the measurement results.
  • Example 3 and Comparative Examples 8 and 9 in order to form a well-balanced three-wavelength white color, it is preferable to arrange blue, which emits less light, in the region where it is most recombined. Therefore, blue becomes the second light emitting layer. From the balance of the host material, red is placed in the first light emitting layer. This configuration provides a well-balanced white color.
  • the charge barrier layer when the charge barrier layer is doped with green, green can be emitted by exciton energy generated in the interface region between the charge barrier layer and the second light emitting layer. Further, since the charge barrier layer constituting the recombination region is doped with green at the interface with the first and second light emitting layers, the green light emission is stabilized. Green, which is highly visible, can be easily seen by human eyes when the light emission balance is lost. Therefore, by arranging green at the position where the balance is most balanced, it is possible to make white with little color shift.
  • An organic EL device was manufactured in the same manner as in Example 2 except that the compositions of the second light emitting layer and the third light emitting layer were changed as shown in Table 3.
  • the obtained organic EL light emitting device was measured in the same manner as in Example 1. Table 3 shows the measurement results.
  • the blue light emission near 460 nm was weak, and a suitable white light emission was not obtained. This is because the blue light emission is weakened because it is difficult to transfer energy to the blue light-emitting layer due to recombination near the charge barrier layer Z second light-emitting layer (green) interface and green light emission.
  • Example 2 As can be seen from the comparison between Example 2 and Example 5, in Example 2, the recombination energy in the second light-emitting layer is transferred to the third light-emitting layer to emit green light in the third light-emitting layer. .
  • the recombination energy in the second light-emitting layer is transferred to the third light-emitting layer to emit green light in the third light-emitting layer.
  • the second embodiment since green is arranged on the cathode side with respect to blue, a non-lance of electron injection with respect to blue can be obtained. This is because the green dopant becomes an electron trap. As a result, a balanced white element configuration can be realized as a whole.
  • 112mmX 143mm X I On a 1mm support substrate (OA2 glass: manufactured by Nippon Electric Glass Co., Ltd.) V259BK (manufactured by Nippon Steel Chemical Co., Ltd.) is spin coated as a material for Black Mato Tutus (BM), opening 68 m X 285 m After exposure to ultraviolet rays through a photomask that creates a grid pattern, develop with 2% aqueous sodium carbonate, and beta at 200 ° C to form a black matrix (thickness 1.5 m) pattern. Formed.
  • OA2 glass manufactured by Nippon Electric Glass Co., Ltd.
  • V259BK manufactured by Nippon Steel Chemical Co., Ltd.
  • V259B manufactured by Nippon Steel Chemical Co., Ltd.
  • V259B manufactured by Nippon Steel Chemical Co., Ltd.
  • BM Aligned with BM, exposed to UV light, developed with 2% aqueous sodium carbonate solution, beta-treated at 200 ° C to form a blue color filter (thickness 1.5 m) pattern .
  • V259G manufactured by Nippon Steel Chemical Co., Ltd.
  • V259G manufactured by Nippon Steel Chemical Co., Ltd.
  • red color filter As a material for the red color filter, CRY-S840B (manufactured by Fuji Film Arch) was spin-coated to obtain 320 rectangular patterns (100 ⁇ m line, 230 ⁇ m gap). Aligned with BM through a photomask, exposed to UV light, developed with 2% aqueous sodium carbonate, betaed at 200 ° C, and red color filter (between the blue color filter and green color filter ( A pattern with a film thickness of 1.5 m) was formed.
  • an acrylic thermosetting resin (V259PH: manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated on the previous substrate as a flattening film, and beta-coated at 180 ° C. 5 m) was formed.
  • ITO indium stannate
  • a positive resist (HPR204: manufactured by Fuji Orin) is spin-coated on this substrate, and a cathode taking out part and a photomask that forms a striped pattern of 90 m line and 20 m gap are formed.
  • a positive resist HPR204: manufactured by Fuji Orin
  • a cathode taking out part and a photomask that forms a striped pattern of 90 m line and 20 m gap are formed.
  • UV exposure and development of tetramethylammonium hydroxide The resist was developed with a solution and beta-treated at 130 ° C.
  • the exposed ITO was etched with an ITO etchant.
  • the resist was treated with a stripping solution mainly composed of ethanolamine (N303: manufactured by Nagase Sangyo), and ITO pattern (lower electrode) was placed on the blue color filter, green color filter, and red color filter. : Anode, number of lines 960).
  • a negative resist (V259PA: manufactured by Nippon Steel Chemical Co., Ltd.) is spin-coated, exposed to ultraviolet rays through a photomask, and then developed with a developer of tetramethylammonium hydroxide. Developed. Next, beta was formed at 180 ° C., and an ITO opening covering the ITO edge was 70 m ⁇ 290 m) to form a lattice-patterned interlayer insulating film.
  • a negative resist ZPN1100: manufactured by Nippon Zeon Co., Ltd.
  • ZPN1100 manufactured by Nippon Zeon Co., Ltd.
  • the negative resist was developed with a developer of tetramethylammonium hydroxide to form a second interlayer insulating film (partition) perpendicular to the ITO stripe.
  • the substrate thus obtained was subjected to ultrasonic cleaning in pure water and isopropyl alcohol, dried by air blow, and then UV cleaned.
  • the organic layer (from the hole injection layer to the electron injection layer) was mask-deposited in a range covering the color filter, and the cathode was further subjected to mask deposition so that it could be connected to the previously formed ITO extraction electrode.
  • the cathode (upper electrode) was automatically separated by the partition walls previously formed on the substrate, and had a pattern (240 lines) intersecting the lower electrode.
  • the organic EL device of the present invention can be used for various display devices, knocklights, full-color display devices using color filters, light sources for general illumination and special illumination.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 陽極(1)、第1発光層(3)、電荷障壁層(4)、第2発光層(5)及び陰極(7)をこの順に積層して含み、前記第1発光層(3)及び第2発光層(5)が、それぞれホスト材料及びドーパントを含有し、前記第1発光層(3)のホスト材料のエネルギーギャップが、前記第2発光層(5)のホスト材料のエネルギーギャップよりも小さく、前記第1発光層(3)のホスト材料が正孔輸送性材料であり、第2発光層(5)のホスト材料が電子輸送性材料であり、前記電荷障壁層(4)のアフィニティレベルが、前記第2発光層(5)のホスト材料のアフィニティレベルよりも0.2eV以上小さく、前記電荷障壁層(4)のイオン化ポテンシャル(Ie1)と前記第1発光層(3)のホスト材料のイオン化ポテンシャル(Ih1)が、下記の関係(1)を満たす有機エレクトロルミネッセンス素子(10)。 Ie1<Ih1+0.1 (eV)・・・(1)

Description

明 細 書
有機エレクト口ルミネッセンス素子及びフルカラー発光装置
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子及びそれを用いたフルカラー発光装 置に関する。
背景技術
[0002] 近年、白色系有機エレクト口ルミネッセンス素子 (有機 EL素子)の開発は、モノカラ 一表示装置としての用途、ノ ックライト等の照明用途及びカラーフィルタを使用したフ ルカラー表示装置等に使用できるため積極的に行われている。特に、白色系有機 E L素子を照明用途に用いる場合、例えば蛍光灯の発光効率と比較して同等レベル以 上にある、発光効率が高い白色系有機 EL素子が要求される。
[0003] 有機 EL素子により白色発光を得る方法は数多く開示されている。これらの方法は、 1種類の発光材料だけで白色を得るものは少なぐ通常は 2種類又は 3種類の発光 材料を一つの有機 EL素子の中で、同時に発光させている。 2種類の発光材料を使 用する場合は、青系とその補色となる黄色〜赤色系の発光材料を選択するが、黄色 〜赤色系の発光が強くなることが多ぐ赤味を帯びた白色になりがちである。
[0004] この問題に対し、特許文献 1では発光層を 2分割するタイプにおいて、発光層の発 光領域が偏りやすい陽極側の発光層を青色系発光層とすることで、発光色が赤色に 偏りがちな傾向を打ち消せることを見出し、色変化を抑制した白色素子を提案してい る。し力しながら、その発光効率は必ずしも十分なレベルではなかった。
[0005] 特許文献 2では、発光層を陽極側から赤色発光層、青色発光層、緑色発光層の順 に積層した有機 EL素子が開示されている。さらに、赤色発光層に用いる赤色ドーパ ントを青色発光層にもドープすることで駆動電流増大に伴う色変化を抑制する技術 が開示されている。しかしながら、その発光効率は必ずしも十分なレベルではなかつ た。
[0006] 一方、バランスよく白色発光させるための技術としては、複数の発光層間に電荷障 壁層を設ける技術もいくつか開示されている。 例えば、特許文献 3では、陽極、正孔輸送性青色発光層、電子輸送性キャリア再結 合領域制御層、電子輸送性赤色発光層、陰極の順に積層し白色発光させる有機 EL 素子が開示されている。しかしながら、上記キャリア再結合領域制御層のァフィ二ティ レベルが正孔輸送性青色発光層のァフィ二ティーレベルに対して大きい値であつ たため駆動電圧が高かった。また、駆動時間とともに正孔輸送性青色発光層に電子 が注入されにくくなり、正孔輸送性青色発光層の発光強度が低下し、発光色が電子 輸送性発光層の赤色発光に偏りがちであった。
[0007] 特許文献 4では、 2つの電子輸送性発光層が電荷障壁層を介して配置された白色 発光有機 EL素子が開示されている。し力しながら、陽極から注入された正孔は、ほと んど最初の発光層で消費されてしまい、電荷障壁層を通過して二つめの電子輸送 性発光層へ供給される正孔の量が少な 、ため、白色発光の効率が低 、と 、う課題が めつに。
[0008] 特許文献 5では、陽極、第 1発光層、電荷障壁層、第 2発光層、陰極をこの順に積 層して 、て、電荷障壁層のイオンィ匕ポテンシャルを第 1発光層のイオンィ匕ポテンシャ ルよりも 0. leV以上大きくし、また電荷障壁層のァフィ二ティレベルを第二発光層の ァフィ-ティレベルよりもより 0. leV以上小さくした白色発光有機 EL素子が開示され ている。し力しながら、電荷障壁層は電子障壁と正孔障壁の両方の機能を有するが ために駆動電圧が高くなるという課題があった。
[0009] その他、特許文献 6、特許文献 7にも白色素子が開示されているが、いずれも発光 効率が十分ではない。
特許文献 1:特開 2003 - 272857号公報
特許文献 2 :特開 2004— 235168号公報
特許文献 3:特開平 8— 78163号公報
特許文献 4 :国際公開第 2005Z099313号パンフレット
特許文献 5 :国際公開第 2005Z112518号パンフレット
特許文献 6 :特開 2005— 100921号公報
特許文献 7:米国公開第 2006Z0088729
[0010] 本発明は上記課題に鑑み、ディスプレイや照明用途に適した演色性を有し、発光 効率が高くかつ色度変化が少な!/、有機 EL素子を提供することを目的とする。
発明の開示
[0011] この課題を解決するために、本発明者らが鋭意研究した結果、下記の素子が高い 演色性、及び発光効率を持ち、かつ色度変化が少ないことを見出し、本発明を完成 させた。
[0012] 本発明によれば、以下の有機 EL素子及びフルカラー発光装置が提供される。
1.陽極、第 1発光層、電荷障壁層、第 2発光層及び陰極をこの順に積層して含み、 前記第 1発光層及び第 2発光層が、それぞれホスト材料及びドーパントを含有し、 前記第 1発光層のホスト材料のエネルギーギャップ力 前記第 2発光層のホスト材 料のエネルギーギャップよりも小さく、
前記第 1発光層のホスト材料が正孔輸送性材料であり、第 2発光層のホスト材料が 電子輸送性材料であり、
前記電荷障壁層のァフィ二ティレベル力 前記第 2発光層のホスト材料のァフィ-テ ィレベルよりも 0. 2eV以上小さく、
前記電荷障壁層のイオンィ匕ポテンシャル (Iel)と前記第 1発光層のホスト材料のィ オンィ匕ポテンシャル (Ihl) 1S 下記の関係(1)を満たす有機エレクト口ルミネッセンス 素子。
IeKIhl + O. 1 (eV) · · · (1)
2.陽極、第 1発光層、電荷障壁層、第 2発光層、第 3発光層及び陰極をこの順に積 層して含み、
前記第 1発光層、第 2発光層及び第 3発光層が、それぞれホスト材料及びドーパン トを含有し、
前記第 1発光層のホスト材料のエネルギーギャップ力 前記第 2発光層のホスト材 料のエネルギーギャップよりも小さく、
前記第 1発光層のホスト材料が正孔輸送性材料であり、
前記第 2発光層及び第 3発光層のホスト材料が電子輸送性材料であり、 前記電荷障壁層は正孔輸送性材料であり、
前記電荷障壁層のイオンィ匕ポテンシャル (Iel)と前記第 1発光層のホスト材料のィ オンィ匕ポテンシャル (Ihl)力 下記の関係(1)を満たす有機エレクト口ルミネッセンス 素子。
IeKIhl + O. 1 (eV) · · · (1)
3.前記電荷障壁層のァフィ二ティレベル力 前記第 2発光層のホスト材料のァフィ- ティレベルよりも 0. 2eV以上小さい 2に記載の有機エレクト口ルミネッセンス素子。
4.前記第 1発光層のホスト材料のエネルギーギャップ力 前記第 2発光層のホスト材 料のエネルギーギャップよりも 0. 4eV以上小さい 1〜3のいずれか記載の有機エレク トロノレミネッセンス素子。
5.前記第 1発光層のドーパントが赤色ドーパントであり、前記第 2発光層のドーパント が青色ドーパントである 1に記載の有機エレクト口ルミネッセンス素子。
6.前記第 1発光層のドーパントが赤色ドーパントであり、前記第 2発光層のドーパント が青色ドーパントであり、前記第 3発光層のドーパントが緑色ドーパントである 2又は 3 に記載の有機エレクト口ルミネッセンス素子。
7.前記電荷障壁層が発光材料を含む 1〜6のいずれか記載の有機エレクトロルミネ ッセンス素子。
8.前記電荷障壁層の発光材料が、緑色ドーパントである 7に記載の有機エレクト口 ルミネッセンス素子。
9.前記陽極と前記第 1発光層の間に、第 1発光層と隣接する正孔輸送層を有する、 1〜8のいずれか記載の有機エレクト口ルミネッセンス素子。
10.前記正孔輸送層を形成する材料と前記電荷障壁層を形成する材料が同じ材料 である、 9に記載の有機エレクト口ルミネッセンス素子。
11.陽極に近い有機層である第 1発光層又は第 1の有機層が、酸化剤を含有してい る力、及び Z又は陰極に近い有機層である第 2発光層又は第 2の有機層が、還元剤 を含有している、 1〜10のいずれか記載の有機エレクト口ルミネッセンス素子。
12.前記第 1発光層のホスト材料が、下記式(1)で表される化合物であり、前記第 1 発光層のドーパントが、フルオランテン骨格又はペリレン骨格を有する化合物である 1〜: L 1のいずれか記載の有機エレクト口ルミネッセンス素子。
X—(Y) n (1) (式中、 Xは炭素環 3以上の縮合芳香族環基であり、
Yは置換もしくは無置換のァリール基、置換もしくは無置換のジァリールアミノ基、 置換もしくは無置換のァリールアルキル基又は置換もしくは無置換のアルキル基から 選択される基であり、
nは 1〜6の整数であり、 nが 2以上の場合、 Yは同じでも異なってもよい。 )
13.前記フルオランテン骨格又はペリレン骨格を有する化合物が、下記式(2)又は 式(3)で表されるインデノペリレン誘導体である 12に記載の有機エレクト口ルミネッセ ンス素子。
[化 1]
Figure imgf000007_0001
(式中、
Figure imgf000007_0002
Ar2及び Ar3は、それぞれ置換もしくは無置換の芳香環基又は置換もし くは無置換の芳香族複素環基であり、 〜 8は、それぞれ水素、ハロゲン、アルキ ル基、アルコキシ基、アルキルチオ基、ァルケ-ル基、ァルケ-ルォキシ基、ァルケ 二ルチオ基、芳香環含有アルキル基、芳香環含有アルキルォキシ基、芳香環含有ァ ルキルチオ基、芳香環基、芳香族複素環基、芳香環ォキシ基、芳香環チォ基、芳香 環アルケニル基、アルケニル芳香環基、アミノ基、カルバゾリル基、シァノ基、水酸基 、 -COOR1 (R1'は水素、アルキル基、ァルケ-ル基、芳香環含有アルキル基又は 芳香環基である。)、 COR2' (R2'は水素、アルキル基、アルケニル基、芳香環含有 アルキル基、芳香環基又はアミノ基である)、又は OCOR3' (R°はアルキル基、ァ ルケニル基、芳香環含有アルキル基又は芳香環基である)である。 〜 18の隣接 する基は、互いに結合して、又は置換している炭素原子と共に環を形成していてもよ い。)
14.前記インデノペリレン誘導体がジベンゾテトラフヱ-ルペリフランテン誘導体であ る 13に記載の有機エレクト口ルミネッセンス素子。 15.第 1発光層のホスト材料の縮合環数が 4以上で、第 2発光層のホスト材料の縮合 環数が 3環以下である 12〜14のいずれか記載に記載の有機エレクト口ルミネッセン ス素子。
16.前記式(1)で表される化合物力 下記式 (4)で表されるナフタセン誘導体である 12〜 15の!、ずれか記載の有機エレクト口ルミネッセンス素子。
[化 2]
Figure imgf000008_0001
( 4 )
(式 (4)中、 (^〜 2は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数 1〜20のアルキル基、置換もしくは無置換の核炭素数 6〜20のァリール基、アミノ基 、置換もしくは無置換の炭素数 1〜20のアルコキシ基、置換もしくは無置換の炭素数 1〜20のアルキルチオ基、置換もしくは無置換の核炭素数 6〜20のァリーロキシ基、 置換もしくは無置換の核炭素数 6〜20のァリールチオ基、置換もしくは無置換の炭 素数 2〜20のアルケニル基、置換もしくは無置換の核炭素数 7〜20のァラルキル基 又は置換もしくは無置換の核原子数 5〜20の複素環基を表し、これらは同一でも異 なってもよい。 )
17.前記式 (4)で表されるナフタセン誘導体における Q Q2、 Q3及び Q4の少なくと も 1つ以上がァリール基である 16記載の有機エレクト口ルミネッセンス素子。
18.前記式 (4)で表されるナフタセン誘導体が下記式(5)で表される 17記載の有機 エレクトロノレミネッセンス素子。
[化 3]
Figure imgf000009_0001
(式 (5)中、 Q3〜Q12、 Q101~Q105, Q201〜Q2°5は、それぞれ独立に、前記一般式 (1 )中 Q3〜Q12と同じ基を表し、これらは同一でも異なってもよぐこれら隣接する 2個以 上が互いに結合して環を形成してもよい。 )
19.前記式 (5)で表されるナフタセン誘導体における Q1(n、 Q105、 Q201及び Q2°5の 少なくとも 1つ以上がアルキル基、ァリール基、アミノ基、アルコキシ基、ァリーロキシ 基、アルキルチオ基、ァリールチオ基、ァルケ-ル基、ァラルキル基又は複素環基で あり、これらは同一でも異なってもよい 18記載の有機エレクト口ルミネッセンス素子。
20.前記電荷障壁層が、第三級ァミン化合物、力ルバゾール誘導体、含窒素複素環 を含む化合物又は金属錯体を含む 12〜 19の 、ずれか記載に記載の有機エレクト口 ルミネッセンス素子。
21. 白色発光の 1〜20のいずれか記載の有機エレクト口ルミネッセンス素子と、 カラーフィルタを備えるフルカラー発光装置。
[0013] 本発明によれば、演色性を有し、発光効率が高くかつ色度変化が少な!、有機 EL 素子を提供することができる。
図面の簡単な説明
[0014] [図 1]本発明の実施形態 1にかかる有機 EL素子の構成を示す図である。 [図 2]図 1に示す有機 EL素子の第 1発光層、電荷障壁層及び第 2発光層のエネルギ 一レベルを示す図である。
[図 3]本発明の実施形態 2にかかる有機 EL素子の構成を示す図である。
[図 4]本発明の実施形態 3にかかる有機 EL素子の構成を示す図である。
[図 5]実施例 1で作成した第 1発光層、第 1電荷障壁層、第 2発光層のエネルギーレ ベルを示す図である。
[図 6]比較例 4で作成した第 1発光層、第 1電荷障壁層、第 2発光層のエネルギーレ ベルを示す図である。
[図 7]比較例 5で作成した第 1発光層、第 1電荷障壁層、第 2発光層のエネルギーレ ベルを示す図である。
[図 8]比較例 1、実施例 1から 4で作製した有機 EL素子の輝度に対する CIE1931色 度 Xの値を示す図である。
[図 9]比較例 1、実施例 1から 4で作製した有機 EL素子の輝度に対する CIE1931色 度 yの値を示す図である。
発明を実施するための最良の形態
[0015] 実施形態 1
本発明の実施形態 1にかかる有機 EL素子は、陽極、第 1発光層、電荷障壁層、第 2発光層及び陰極をこの順に積層して含む。第 1発光層及び第 2発光層は、それぞ れホスト材料及びドーパントを含有する。
ここで、第 1発光層は正孔輸送性材料をホスト材料として含み、第 2発光層は電子 輸送性材料をホスト材料として含む。さら〖こ、第 1発光層のホスト材料のエネルギーギ ヤップが、第 2発光層のホスト材料のエネルギーギャップよりも小さ!/、。
また、電荷障壁層のァフィ二ティレベル力 第 2発光層のホスト材料のァフィ-ティレ ベルよりも 0. 2eV以上小さぐ電荷障壁層のイオンィ匕ポテンシャル (Iel)と第 1発光 層のホスト材料のイオンィ匕ポテンシャル (Ihl)力 下記の関係(1)を満たす。
IeKIhl + O. 1 (eV) · · · (1)
[0016] 好ましくは、電荷障壁層のァフィ二ティレベル (Afel)は leVより大きぐ第 2発光層 のホスト材料のァフィ-ティレベル (Afh2)よりも 0. 2eV以上小さ!/、(下記式を満たす ) o
KAfel≤Afh2-0. 2 (eV)
[0017] 好ましくは、電荷障壁層のイオンィ匕ポテンシャル (Iel)と第 1発光層のホスト材料の イオン化ポテンシャル(Ihl)力 下記の式を満たす。
2. 5<Iel <Ihl + 0. 1 (eV)
[0018] 好ましくは、第 1発光層のホスト材料のエネルギーギャップ(Eghl)が 1. 5eVより大 きぐ第 2発光層のホスト材料のエネルギーギャップ(Egh2)よりも 0. 4eV以上小さい (下記式を満たす)。
1. 5<Eghl≤Egh2-0. 4 (eV)
[0019] 図 1は、実施形態 1にかかる有機 EL素子の構成の例を示す図である。
図 1に示す有機 EL素子 10は、陽極 正孔輸送層 2、第 1発光層 3、電荷障壁層 4 、第 2発光層 5、電子輸送層 6及び陰極 7を積層した構造を有している。
第 1発光層 3及び第 2発光層 5は、それぞれホスト材料及びドーパントを含有してい る。
尚、この素子 10では、例えば、第 1発光層 3を赤色系発光とし、第 2発光層 5を青色 系発光とすることにより、白色発光を得ることができる。第 2発光層 5に青色ドーパント をドープするのは、一般に発光が弱い青を良く光らせて、白色としてのバランスをとる ためである。
[0020] 有機 EL素子 10では、陽極 1側に近い第 1発光層 3のホスト材料が正孔輸送性材料 であり、陰極 7側に近い第 2発光層 5のホスト材料が電子輸送性材料である。そして、 第 1発光層 3と第 2発光層 5との間に電荷障壁層 4が設けられている。こうすることによ り、第 1発光層 3への電子注入、第 2発光層 5への正孔注入がバランスよく行われると ともに電荷障壁層 4による電子ブロックによって、電荷障壁層 4と第 2発光層との界面 の周辺に再結合領域が集中する。すると、第 2発光層 5に青色ドーパントをドープし ているので青色発光が効率よく得られる。青色発光は一般に弱いところ、強い青色発 光を得られる。第 1発光層 3では電荷障壁層を介して注入された電子と陽極側からの 正孔との再結合とともに第 2発光層 5からの青発光のエネルギーが第 1発光層 3の赤 にもエネルギー移動して赤の発光も得られる。よって、高効率で色バランスに優れた 白色発光が得られる。
[0021] ここで、本発明における「正孔輸送性」とは、 102〜108V/cmの電界の範囲におい て層の正孔移動度が電子移動度よりも大きいことを意味する。好ましくは、第 1発光 層の正孔移動度が 10_5cm2ZV ·秒以上である。
また、「電子輸送性」とは、 102〜108V/cmの電界の範囲において層の電子移動 度が正孔移動度よりも大きいことを意味する。好ましくは、第 2発光層の電子移動度 は 10_6cm2ZV ·秒以上である。
正孔又は電子移動度は、 Time of flight法で測定する。
[0022] 尚、第 1発光層及び第 2発光層のホスト材料がともに電子輸送性材料である場合、 従来技術の特許文献 4のように、再結合領域が第 1発光層に偏ってしまい、良好な白 色発光が得られにくい。
また、第 1発光層及び第 2発光層のホスト材料がともに正孔輸送性材料である場合 、上記とは逆に再結合領域が第 2発光層に偏ってしまい、良好な白色発光が得られ にくい。また、再結合領域は第 2発光層の中でもとくに陰極側に偏る傾向がある。この ため、金属陰極による消光作用により、発光効率が低くなつてしまう。
第 1発光層のホスト材料が電子輸送性材料であり、第 2発光層のホスト材料が正孔 輸送性材料である場合、第 1発光層への電子注入、及び第 2発光層への正孔注入 がいずれもされに《なり、駆動電圧の大幅な上昇が生じる。
また、特許文献 3のごとぐ陽極、正孔輸送性青色発光層、電子輸送性キャリア再 結合領域制御層、電子輸送性赤色発光層、陰極の順に積層した場合について考え る。
この場合、青のエネルギーギャップは大き!、ことから正孔輸送性青色発光層のァフ ィ-ティレベルが低くなる。また、電子輸送性キャリア再結合領域制御層のァフィ-テ ィレベルは概して高い。そのため、電子輸送性キャリア再結合領域制御層から正孔 輸送性青色発光層への電子注入バリアが高くなり、全体として素子の駆動電圧が高 くなる。
この点、本実施形態の構成であれば、青色発光層を電荷障壁層の陰極側に配置 しているので、ァフィ-ティレベルのギャップが大きくなりすぎず、高電圧化を防ぐこと ができる。
[0023] 有機 EL素子 10では、電荷障壁層 4のァフィ-ティレベル力 第 2発光層 5のホスト 材料のァフィ-ティレベルよりも 0. 2eV以上小さい。また、電荷障壁層 4のイオンィ匕ポ テンシャル (Iel)と第 1発光層 3のホスト材料のイオンィ匕ポテンシャル (Ihl)力 下記 の関係(1)を満たす。
IeKIhl + O. l (eV) · · · (1)
この関係をエネルギーレベルを示した図で説明する。
[0024] 図 2は、有機 EL素子 10の第 1発光層 3のホスト材料、電荷障壁層 4、第 2発光層 5 のホスト材料のエネルギーレベルを示す。この図において上辺のレベルは各層のァ フィニティレベル、下辺はイオン化ポテンシャルを示す。エネルギーレベル図におい ては、下方がより大きい値を示す。各層において、イオンィ匕ポテンシャルとァフィ-テ ィレベルの差がエネルギーギャップに相当する。
[0025] 有機 EL素子 10では、電荷障壁層 4のァフィ-ティレベル力 第 2発光層 5のァフィ 二ティレベルよりも 0. 2eV以上小さい。即ち、図 2において電荷障壁層 4のァフィ-テ ィレベルが第 2発光層 5のァフィ-ティレベルよりも、 0. 2eV以上上方に位置する(図 2において、 ΔΑίが 0. 2eV以上)。
電荷障壁層 4は、陰極 7に近い方の第 2発光層 5から陽極 1に近い方の第 1発光層 3への電子の注入を制限する層であって、各発光層内における電子一正孔対の再 結合量を制御し、各発光層からの発光量を調整するために設けるものである。この機 能を考慮すると、第 2発光層のホスト材料のァフィ-ティレベルよりも 0. 2eV以上小さ なァフィ-ティレベルを有する必要がある。好ましくは 0. 5eV以上小さなァフィ-ティ レベルを有する。
尚、第 1発光層 3のホスト材料のァフィ-ティレベルと電荷障壁層 4のァフィ-ティレ ベルの関係は、特に限定されないが、駆動電圧の観点から、電荷障壁層 4のァフィ二 ティレベル力 S〇eV以上小さ 、ことが好ま U、。
[0026] また、有機 EL素子 10では、電荷障壁層 4のイオン化ポテンシャル (Iel)と第 1発光 層 3のホスト材料のイオンィ匕ポテンシャル (Ihl)が、上記(1)を満たす。これは、電荷 障壁層 4が正孔にとつて障壁となると駆動電圧の上昇が問題となるため、それを防止 するためである。
電荷障壁層 4のイオンィ匕ポテンシャル (Iel)と第 1発光層 3のホスト材料のイオンィ匕 ポテンシャル (Ihl)の関係は、好ましくは下記式(1 ' )を満たす。
IeKIhl -O. 2 (eV) · · · (1 ' )
[0027] 有機 EL素子 10では、第 1発光層 3のホスト材料のエネルギーギャップ力 第 2発光 層 5のホスト材料のエネルギーギャップよりも小さぐ好ましくは 0. 4eV以上小さい。 第 1発光層 3のホスト材料のエネルギーギャップの方が大きい場合や、小さくても 0. 4 eV未満の場合、第 2発光層 5と電荷障壁層 4とのァフィ二ティレベルの差が大きくなり 過ぎ、第 1発光層 3への電子供給が過少となり、良好な白色発光が得られにくい場合 がある。具体的には、第 1発光層 3のホスト材料のエネルギーギャップが 1. 8〜2. 8e V、第 2発光層 5のホスト材料のエネルギーギャップが 2. 2〜3. 3eVであることが好ま しい。
第 1発光層 3のドーパントが赤色ドーパントであり、第 2発光層 5のドーパントが青色 ドーパントであるとき、第 1発光層 3が赤色系の光を発し、第 2発光層 5が青色系の光 を発することに加え、上記要件を満たすことにより、バランスのよい白色発光が得られ る。
[0028] 第 1発光層のホスト材料のエネルギーが第 2発光層のホスト材料のエネルギーより 小さいことが好ましい理由は、定かではないが、以下のように考えられる。
発光強度を稼ぎにくい色は青であるので、この青をメインに励起子生成を行って発 光させる。そのために、青は電子障壁層の陰極側に位置させることが好ましい。そし て、赤を電子障壁層の陽極側に配置する。このような配置を行うと、電子障壁層の陰 極側である第 2発光層(青)で励起子を生成し、この青がよく光る。そして、第 2発光層 は第 1発光層に対してエネルギーギャップが広 、ので、そのエネルギーを第 1発光層 側に移動させる。その結果、第 2発光層の赤も光る。
[0029] 尚、本実施形態の素子構成は図 1に限定されず、例えば、以下の構成であってもよ い。
1.陽極 Z第 1発光層 Z電荷障壁層 Z第 2発光層 Z陰極
2.陽極 Z正孔輸送層 Z第 1発光層 Z電荷障壁層 Z第 2発光層 Z陰極 3.陽極 Z第 1発光層 Z電荷障壁層 Z第 2発光層 Z電子輸送層 Z陰極
4.陽極 Z正孔輸送層 Z第 1発光層 Z電荷障壁層 Z第 2発光層 Z電子輸送層 Z陰 極
5.陽極 Z正孔注入層 Z正孔輸送層 Z第 1発光層 Z電荷障壁層 Z第 2発光層 z電 子輸送層 Z陰極
6.陽極 Z正孔注入層 Z正孔輸送層 Z第 1発光層 Z電荷障壁層 Z第 2発光層 z電 子輸送層 Z電子注入層 Z陰極
[0030] これらの構成のなかでも、正孔輸送層を有することが好ましい。
上述した層の他にも、他の有機層又は無機層を介在させることができる。介在層は 、電子及び正孔を輸送できるものであれば制限されない。光取り出し方向にある場合 は、透明性であることが好ましい。
[0031] 実施形態 2
実施形態 2にかかる有機 EL素子は、陽極、第 1発光層、電荷障壁層、第 2発光層、 第 3発光層及び陰極をこの順に積層して含む。第 1発光層、第 2発光層及び第 3発 光層力 それぞれホスト材料及びドーパントを含有する。
ここで、第 1発光層のホスト材料が正孔輸送性材料力 なり、第 2発光層及び第 3発 光層のホスト材料が電子輸送性材料カゝらなる。さらに、第 1発光層のホスト材料のェ ネルギーギャップが、第 2発光層のホスト材料のエネルギーギャップよりも小さ!/、。 電荷障壁層は正孔輸送性である。また、好ましくは電荷障壁層のァフィ二ティレべ ルカ 第 2発光層のホスト材料のァフィ-ティレベルよりも 0. 2eV以上小さい。
さらに、電荷障壁層のイオンィ匕ポテンシャル (Iel)と第 1発光層のホスト材料のィォ ン化ポテンシャル (Ihl)力 下記の関係(1)を満たす。
IeKIhl + O. 1 (eV) · · · (1)
[0032] 図 3は、実施形態 2にかかる有機 EL素子の構成の例を示す図である。
図 3に示す有機 EL素子 20は、陽極 正孔輸送層 2、第 1発光層 3、電荷障壁層 4 、第 2発光層 5、第 3発光層 8、電子輸送層 6及び陰極 7を積層した構造を有している 。即ち、第 3発光層 8を形成した他は、上記実施形態 1と同様な構成を有する。第 3発 光層 8もホスト材料及びドーパントを含有している。また、第 3発光層 8のホスト材料は 、第 2発光層 5と同様に、電子輸送性材料である。
[0033] 尚、この素子 20では、例えば、第 1発光層 3のドーパントを赤色ドーパント、第 2発 光層 5のドーパントを青色ドーパント、第 3発光層 8のドーパントを緑色ドーパントにし て、第 1発光層 3を赤色系発光とし、第 2発光層 5を青色系発光とし、第 3発光層 8を 緑色系発光とすることにより、さらに演色性に優れた白色発光を得ることができる。 尚、通常、青色ドーパントのエネルギーギャップは約 2. 8eV、緑色ドーパントのェ ネルギーギャップは約 2. 5eV、赤色ドーパントのエネルギーギャップは約 2. OeV程 度である。
[0034] 本実施形態において、第 1発光層 3、電荷障壁層 4及び第 2発光層 5は、必ずしも 実施形態 1のような関係を有する必要はない。第 3発光層 8を形成することによって、 第 1発光層 3、電荷障壁層 4、及び第 2発光層 5への電子注入量が制限されるためで ある。とくに、第 3発光層に緑ドーパントをドープしているので、この緑ドーパントにより 電子がトラップされ、第 2発光層への電子注入が制御される。
し力しながら、素子の性能をより高めるため、第 1発光層 3のホスト材料、電荷障壁 層 4及び第二発光層 5のホスト材料のイオン化ポテンシャル、ァフィ-ティレベル及び エネルギーギャップは、実施形態 1と同じ関係を有することが好ま 、。
[0035] 尚、実施形態 1と同様、本実施形態の素子構成は図 3に限定されず、例えば、実施 形態 1で例示した素子構成 1 6に第 3発光層を形成した構成でもよぐまた、複数の 電荷障壁層を積層して形成してもよ 、。
[0036] 上記実施形態において、好ましくは、第 1発光層のホスト材料力 下記式(1)で表さ れる化合物であり、第 1発光層のドーパントが、フルオランテン骨格又はペリレン骨格 を有する化合物である。
X -(Y) n (1)
(式中、 Xは炭素環 3以上の縮合芳香族環基であり、
Υは置換もしくは無置換のァリール基、置換もしくは無置換のジァリールアミノ基、 置換もしくは無置換のァリールアルキル基又は置換もしくは無置換のアルキル基から 選択される基であり、
ηは 1〜6の整数であり、 ηが 2以上の場合、 Υは同じでも異なってもよい。 ) [0037] さらに好ましくは第 1発光層のホスト材料の縮合環数は 4以上である。また、好ましく は、第 2発光層のホスト材料の縮合環数は 3環以下である。
[0038] 以上、本発明の実施形態を説明したが、本発明の素子では、陽極、正孔輸送性の 第 1発光層、電荷障壁層、電子輸送性の第 2発光層及び陰極がこの順序に積層して 構成されている。このような構成とすることにより、演色性を有し、発光効率が高くかつ 色度変化が少ない有機 EL素子が得られる。また、本発明の素子では、素子の駆動 条件 (駆動電圧等)を変更しても、発光の色度変化が小さ 、と 、う特徴がある。
[0039] 実施形態 3
本発明の実施形態 3にかかるフルカラー発光装置は、白色発光する本発明の有機 EL素子と、カラーフィルタを備える。
[0040] 図 4は、実施形態 3にかかるフルカラー発光装置の構成の例を示す図である。
図 4に示すフルカラー発光装置 100は、支持基板 110上に、第 1、第 2、第 3 (白)の 有機 EL素子 120, 130, 140力 S設けられ、これら素子 120, 130, 140の光取り出し 側 (矢印で示す)に、これら素子 120, 130, 140にそれぞれ対向して、第 1、第 2、第 3 (赤、緑、青)のカラーフィルタ 122, 132, 142を配置している。カラーフィルタ 122 , 132, 142は透明基板 150上に形成されている。
有機 EL素子 120から発せられた光はカラーフィルタ 122により赤色光となり外へ取 り出され、有機 EL素子 130から発せられた光はカラーフィルタ 132により緑色光とな り外へ取り出され、有機 EL素子 140から発せられた光はカラーフィルタ 142により青 色光となり外へ取り出され、フルカラーが得られる。
[0041] 有機 EL素子 120, 130, 140とカラーフィノレタ 122, 132, 142の間には、有機 EL 素子が環境やカラーフィルタに含まれる酸素、水分、その他揮発成分により劣化する ことを防止するための封止層等を設けてもよい。具体例としては、 SiOxNy、 AlOxN y、 SiAlOxNy等の透明無機化合物層、及びこれらの透明無機化合物層と透明榭脂 又は封止液と積層したもの等を用いることができる。
[0042] カラーフィルタ 122, 132, 142としては、例えば、下記の色素のみ、又は色素をバ インダー榭脂中に溶解又は分散させた固体状態のものを挙げることができる。
[0043] 赤色 (R)色素:ペリレン系顔料、レーキ顔料、ァゾ系顔料等 緑色(G)色素:ハロゲン多置換フタロシアニン系顔料、ハロゲン多置換銅フタロシア ニン系顔料、トリフェルメタン系塩基性染料等
青色(B)色素:銅フタロシアニン系顔料、インダンスロン系顔料、インドフエノール系 顔料、シァニン系顔料等
[0044] 一方、バインダー榭脂は、透明な (可視光透過率 50%以上)材料が好ま ヽ。例え ば、ポリメチルメタタリレート、ポリアタリレート、ポリカーボネート、ポリビュルアルコー ル、ポリビニルピロリドン、ヒドロキシェチルセルロース、カノレボキシメチノレセノレロース 等の透明榭脂 (高分子)や、フォトリソグラフィ一法が適用できる感光性榭脂として、了 クリル酸系、メタクリル酸系等の反応性ビニル基を有する光硬化型レジスト材料が挙 げられる。また、印刷法を用いる場合には、ポリ塩化ビニル榭脂、メラミン榭脂、フエノ 一ル榭脂等の透明な榭脂を用いた印刷インキ (メジゥム)が選ばれる。
[0045] カラーフィルタが主に色素力もなる場合は、所望のカラーフィルタパターンのマスク を介して真空蒸着又はスパッタリングにより成膜され、一方、色素とバインダー榭脂か らなる場合は、色素と上記榭脂及びレジストを混合、分散又は可溶化させ、スピンコ ート、ロールコート、キャスト等の方法で製膜し、フォトリソグラフィ一法で所望のカラー フィルタパターンでパター-ングしたり、印刷等の方法で所望のカラーフィルタパター ンでパター-ングするのが一般的である。
[0046] それぞれのカラーフィルタ 122, 132, 142の膜厚と透過率は、下記とすることが好 ましい。
R:膜厚 0. 5〜5. 0 111(透過率50%以上761011111) ,
0 :膜厚0. 5〜5. O /z m (透過率 50%以上 Z545nm) ,
8:膜厚0. 2〜5. (透過率 50%以上 Z460nm)。
[0047] また、本実施形態において、赤、緑、青の 3原色発光を呈するフルカラー発光装置 を提供する場合には、コントラスト比向上のためブラックマトリックスを用いることができ る。
[0048] 以下、本発明の有機 EL素子の特徴的な部分である電荷障壁層、第 1発光層、及 び第 2発光層(第 3発光層)を中心に説明する。その他の有機層、無機化合物層、陽 極、陰極等の構成や製法については、一般的な構成を採ることができる。 [0049] 1.電荷障壁層
電荷障壁層は、正孔に対する障壁となりにくいという観点から、正孔移動度が 104 〜107VZcmの電界印加時に、少なくとも 10_5cm2ZV'秒以上であることが好まし い。
電荷障壁層の膜厚は、特に限定されないが、好ましくは、 0. l〜50nmである。より 好ましくは 0. l〜20nmである。
[0050] 電荷障壁層には、種々の有機化合物、無機化合物を用いることができる。有機化 合物としては、第三級アミンィ匕合物、力ルバゾール誘導体、含窒素複素環を含む化 合物や金属錯体等を用いることができる。無機化合物としては、 Ba, Ca, Sr, Yb, Al , Ga, In, Li, Na, K, Cd, Mg, Si, Ta, Ge, Sb, Zn, Cs, Eu, Y, Ce, W, Zr, La , Sc, Rb, Lu, Ti, Cr、 Ho, Cu, Er, Sm、 W、 Co、 Se、 Hf, Tm、 Fe、 Nb等の金 属との酸化物、窒化物、複合酸化物、硫化物、弗化物等を用いることができる。
[0051] また、好ましくは、電荷障壁層が正孔に対する障壁となりにくいという観点から、通 常有機 EL素子において正孔輸送層として用いられる以下に記載の有機化合物であ る。
具体例としては、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等参照)、ォ キサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダゾール誘導 体 (特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体 (米国特許 3, 615, 402号明細書、同第 3, 820, 989号明細書、同第 3, 542, 544号明細書、特 公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号公報、同 55 — 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55— 156953 号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体 (米 国特許第 3, 180, 729号明細書、同第 4, 278, 746号明細書、特開昭 55— 8806 4号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 51086号公報、 同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公報、同 54— 11 2637号公報、同 55— 74546号公報等参照)、フ -レンジァミン誘導体 (米国特許 第 3, 615, 404号明細書、特公昭 51— 10105号公報、同 46— 3712号公報、同 4 7— 25336号公報、特開昭 54— 53435号公報、同 54— 110536号公報、同 54— 1 19925号公報等参照)、ァリールァミン誘導体 (米国特許第 3, 567, 450号明細書、 同第 3, 180, 703号明細書、同第 3, 240, 597号明細書、同第 3, 658, 520号明 細書、同第 4, 232, 103号明細書、同第 4, 175, 961号明細書、同第 4, 012, 37 6号明糸田書、特公昭 49— 35702号公報、同 39— 27577号公報、特開昭 55— 144 250号公報、同 56— 119132号公報、同 56— 22437号公報、西独特許第 1, 110 , 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明 細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等に開示の もの)、スチリルアントラセン誘導体 (特開昭 56— 46234号公報等参照)、フルォレノ ン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特許第 3, 7 17, 462号明細書、特開昭 54— 59143号公報、同 55— 52063号公報、同 55— 52 064号公報、同 55— 46760号公報、同 55— 85495号公報、同 57— 11350号公報 、同 57— 148749号公報、特開平 2— 311591号公報等参照)、スチルベン誘導体( 特開昭 61— 210363号公報、同第 61— 228451号公報、同 61— 14642号公報、 同 61— 72255号公報、同 62— 47646号公報、同 62— 36674号公報、同 62— 10 652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94462号公報 、同 60— 174749号公報、同 60— 175052号公報等参照)、シラザン誘導体 (米国 特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996号公報)、ァニリ ン系共重合体 (特開平 2— 282263号公報)、特開平 1— 211399号公報に開示され て 、る導電性高分子オリゴマー(特にチォフェンオリゴマー)等を挙げることができる。
[0052] また、ボルフイリンィ匕合物(特開昭 63— 2956965号公報等に開示のもの)、芳香族 第三級ァミン化合物及びスチリルアミン化合物 (米国特許第 4, 127, 412号明細書、 特開昭 53— 27033号公報、同 54— 58445号公報、同 54— 149634号公報、同 54 — 64299号公報、同 55— 79450号公報、同 55— 144250号公報、同 56— 11913 2号公報、同 61— 295558号公報、同 61— 98353号公報、同 63— 295695号公報 等参照)も使用できる。特に、芳香族第三級アミンィ匕合物を用いることが好ましい。
[0053] さらに、下記式で表される化合物も好ましい。
[化 4]
Figure imgf000021_0001
式中、 Ar 〜A 4は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の ァリール基であり、 R21及び R22は、それぞれ独立に、水素原子、置換もしくは無置換 の核炭素数 6〜50のァリール基、炭素数 1〜50のアルキル基であり、 m、 nは 0〜4の 整数である。
[0054] 核炭素数 6〜50のァリール基としては、フエ-ル、ナフチル、ビフエ-ル、テルフエ -ル、フエナントリル基等が好ましい。尚、核炭素数 6〜50のァリール基は、さらに置 換基により置換されていてもよぐ好ましい置換基としては、炭素数 1〜6のアルキル 基 (メチル基、ェチル基、イソプロピル基、 n—プロピル基、 s ブチル基、 t—ブチル 基、ペンチル基、へキシル基、シクロペンチル基、シクロへキシル基等)、核炭素数 6 〜50のァリール基で置換されたァミノ基が挙げられる。
炭素数 1〜50のアルキル基としては、メチル基、ェチル基、イソプロピル基、 n—プ 口ピル基、 s ブチル基、 t ブチル基、ペンチル基、へキシル基、シクロペンチル基 、シクロへキシル基等が好ましい。
[0055] また、米国特許第 5, 061, 569号に記載されている 2個の縮合芳香族環を分子内 に有する、例えば、 4, 4,一ビス(N— (1—ナフチル) N フエ-ルァミノ)ビフエ- ル (NPD)、特開平 4— 308688号公報に記載されているトリフエ-ルァミンユニットが 3つスターバースト型に連結された 4, 4' , 4"ートリス(N— (3—メチルフエ-ル)—N —フエ-ルァミノ)トリフエ-ルァミン(MTDATA)等を挙げることもできる。
[0056] 電荷障壁層には、発光材料を添加してもよい。これにより、さらに多様な成分の光を 含んだ発光が得られる。例えば、実施形態 1のように発光層が第 1発光層 3と第 2発 光層 5の二層のときに、第 1発光層 3のドーパントを赤色ドーパント、第 2発光層のドー パントを青色ドーパント、電荷障壁層の発光材料を緑色ドーパントとする。即ち、発光 がー番弱 、青を一番光る領域に配し、視感度の高 、緑を次に一番光る領域に配す る。これは緑の発光がずれると人が見たときに色ずれがすぐにわかり、バランスのよい 白色にできないためである。赤は電荷注入のほ力、青、緑からのエネルギー移動でも 発光するので、第 1発光層の位置でよい。このように配置すると、効率がよぐバランス がとれ、色ずれしにくい 3波長白色を実現できる。発光材料としては、後述する各発 光層で使用するドーパント等が使用できる。
尚、電荷障壁層が発光材料を含むとき、電荷障壁層のァフィ二ティレベル、イオン ィ匕ポテンシャルは、電荷障壁層のホスト材料のァフィ-ティレベル、イオン化ポテンシ ャルである。
[0057] 2.第 1発光層
上述したエネルギーギャップの関係から、第 1発光層は黄色〜橙色又は赤色発光 層であることが好ましい。黄色〜橙色又は赤色発光層は、発光の最大波長が 550〜 650nmである発光層である。発光層は、好ましくはホスト材料と黄色〜橙色又は赤 色ドーパントからなる。
ホスト材料として、下記式で表される化合物を使用する。
X- (Y) n
(式中、 Xは炭素環 3以上の縮合芳香族環基であり、
Υは置換もしくは無置換のァリール基、置換もしくは無置換のジァリールアミノ基、 置換もしくは無置換のァリールアルキル基又は置換もしくは無置換のアルキル基から 選択される基であり、
ηは 1〜6の整数であり、 ηが 2以上の場合、 Υは同じでも異なってもよい。 ) [0058] Xは、好ましくは、ナフタセン、ピレン、アントラセン、ペリレン、タリセン、ベンゾアント ラセン、ペンタセン、ジベンゾアントラセン、ベンゾピレン、ベンゾフル才レン、フルオラ ンテン、ベンゾフルオランテン、ナフチルフルオランテン、ジベンゾフルオレン、ジベン ゾピレン、ジベンゾフルオランテン、ァセナフチルフルオランテンから選択される 1以 上の骨格を含有する基である。より好ましくはナフタセン骨格又はアントラセン骨格を 含有する。
Υは、好ましくは炭素数 12〜60のァリール基、ジァリールアミノ基であり、より好まし くは炭素数 12〜20のァリール基又は炭素数 12〜40のジァリールアミノ基である。 nは好ましくは 2である。
好ましくは式(1)で表される化合物は、下記式 (4)で表されるナフタセン誘導体であ る。
[化 5]
Figure imgf000023_0001
( 4 ) 式 (4)中、 (^〜 2は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数 1 〜20のアルキル基、置換もしくは無置換の核炭素数 6〜20のァリール基、アミノ基、 置換もしくは無置換の炭素数 1〜20のアルコキシ基、置換もしくは無置換の炭素数 1 〜20のアルキルチオ基、置換もしくは無置換の核炭素数 6〜20のァリーロキシ基、 置換もしくは無置換の核炭素数 6〜20のァリールチオ基、置換もしくは無置換の炭 素数 2〜20のアルケニル基、置換もしくは無置換の核炭素数 7〜20のァラルキル基 又は置換もしくは無置換の核原子数 5〜20の複素環基を表し、これらは同一でも異 なってもよい。 )
[0060] より好ましくは、前記式 (4)で表されるナフタセン誘導体における Q Q2、 Q3及び Q
4の少なくとも 1つ以上がァリール基である化合物である。
[0061] より好ましくは、式 (4)で表されるナフタセン誘導体は、下記式(5)で表される化合 物である。
[化 6]
Figure imgf000024_0001
(式 (5)中、 Q3〜Q12、 Q101~Q105, Q201〜Q2°5は、それぞれ独立に、前記一般式 (1 )中 Q3〜Q12と同じ基を表し、これらは同一でも異なってもよぐこれら隣接する 2個以 上が互いに結合して環を形成してもよい。 )
[0062] より好ましくは、前記式(5)で表されるナフタセン誘導体における Qlcn、 Q105, Q201 及び Q2G5の少なくとも 1つ以上がアルキル基、ァリール基、アミノ基、アルコキシ基、ァ リーロキシ基、アルキルチオ基、ァリールチオ基、ァルケ-ル基、ァラルキル基又は 複素環基であり、これらは同一でも異なってもよい。
[0063] 黄色〜橙色又は赤色系ドーパントとして、少なくとも一つのフルオランテン骨格又は ペリレン骨格を有する蛍光性ィ匕合物が使用でき、例えば下記式〔2〕〜〔18〕で示され る化合物が挙げられる。
[0064] [化 7]
Figure imgf000025_0001
Sl7C090/.00Zdf/X3d 9068Cl/.00Z OAV
Figure imgf000026_0001
Figure imgf000027_0001
(式〔2〕〜〔16〕式中、 X^X^は、それぞれ独立に、水素原子、直鎖、分岐もしくは 環状の炭素原子数 1〜20のアルキル基、直鎖、分岐もしくは環状の炭素原子数 1〜 20のアルコキシ基、置換もしくは無置換の炭素原子数 6〜30のァリール基、置換もし くは無置換の炭素原子数 6〜30のァリールォキシ基、置換もしくは無置換の炭素原 子数 6〜30のァリールアミノ基、置換もしくは無置換の炭素原子数 1〜30のアルキル アミノ基、置換もしくは無置換の炭素原子数 7〜30のァリールアルキルアミノ基又は 置換もしくは無置換炭素原子数 8〜30のァルケ-ル基であり、隣接する置換基及び 〜 ^は結合して環状構造を形成して 、てもよ 、。隣接する置換基がァリール基の 時は、置換基は同一であってもよい。 )
式〔2〕〜〔16〕の化合物は、アミノ基又はァルケ-ル基を含有すると好ましい。
[0065] [化 8]
Figure imgf000028_0001
[0066] 式〔17〕、〔18〕中、 X21〜X24は、それぞれ独立に、炭素原子数 1〜20のアルキル 基、置換もしくは無置換の炭素原子数 6〜30のァリール基であり、 X21と X22及び/又 は X23と X24は、炭素—炭素結合又は— O—、—S—を介して結合していてもよい。
X25〜X36は、水素原子、直鎖、分岐もしくは環状の炭素原子数 1〜20のアルキル 基、直鎖、分岐もしくは環状の炭素原子数 1〜20のアルコキシ基、置換もしくは無置 換の炭素原子数 6〜30のァリール基、置換もしくは無置換の炭素原子数 6〜30のァ リールォキシ基、置換もしくは無置換の炭素原子数 6〜30のァリールアミノ基、置換 もしくは無置換の炭素原子数 1〜30のアルキルアミノ基、置換もしくは無置換の炭素 原子数 7〜30のァリールアルキルアミノ基又は置換もしくは無置換炭素原子数 8〜3
0のアルケニル基であり、隣接する置換基及び x25〜x36は結合して環状構造を形成 していてもよい。
各式中の置換基 X25〜X36の少なくとも一つがァミン又はアルケ-ル基を含有すると 好ましい。
好ましくは、式〔13〕、〔14〕のインデノペリレン誘導体である。
[0067] フルオランテン骨格を有する蛍光性ィ匕合物は、高効率及び長寿命を得るために電 子供与性基を含有することが好ましぐ好ましい電子供与性基は置換もしくは未置換 のァリールアミノ基である。さらに、フルオランテン骨格を有する蛍光性ィ匕合物は、縮 合環数 5以上が好ましぐ 6以上が特に好ましい。これは、蛍光性ィ匕合物が 540〜70 Onmの蛍光ピーク波長を示し、青色系発光材料と蛍光性化合物からの発光が重な つて白色を呈するからである。
上記の蛍光性化合物は、フルオランテン骨格を複数有すると、発光色が黄色〜橙 色又は赤色領域となるため好まし 、。
特に好ま 、インデノペリレン誘導体は、ジベンゾテトラフエ-ルペリフランテン誘導 体である。
[0068] 第 1発光層の膜厚は、好ましくは l〜50nm、より好ましくは 5〜50nmである。 lnm 未満では発光効率が低下する恐れがあり、 50nmを超えると駆動電圧が上昇する恐 れがある。
[0069] 3.第 2発光層
発光色について、エネルギーギャップの関係から第 2発光層は青系発光層であるこ とが好ましい。好ましくは、青色系発光のピーク波長は 450〜500nmである。
第 2発光層に使用できるドーパントとしては、例えば、ァリールアミンィ匕合物及び Z 又はスチリルアミン化合物、アントラセン、ナフタレン、フエナントレン、ピレン、テトラセ ン、コロネン、タリセン、フノレォレセイン、ペリレン、フタ口ペリレン、ナフタ口ペリレン、ぺ リノン、フタ口ペリノン、ナフタ口ペリノン、ジフエ二ルブタジエン、テトラフェニルブタジ ェン、クマリン、ォキサジァゾール、アルダジン、ビスべンゾキサゾリン、ビススチリル、 ピラジン、シクロペンタジェン、キノリン金属錯体、ァミノキノリン金属錯体、ベンゾキノ リン金属錯体、ィミン、ジフエニルエチレン、ビニルアントラセン、ジァミノ力ルバゾール 、ピラン、チォピラン、ポリメチン、メロシアニン、イミダゾールキレートィ匕ォキシノイドィ匕 合物、キナクリドン、ルブレン及び蛍光色素等が挙げられるが、これらに限定されるも のではない。
また、本発明の有機 EL素子は、第 2発光層が、ァリールアミンィ匕合物及び Z又はス チリルァミンィ匕合物を含有すると好ま 、。
ァリールアミンィ匕合物としては下記一般式 (A)で表される化合物等が挙げられ、ス チリルァミンィ匕合物としては下記一般式 (B)で表される化合物等が挙げられる。
[化 9]
Figure imgf000030_0001
(A)
[一般式(A)中、 Arは、フエ-ル、ビフエ-ル、テルフエ-ル、スチルベン、ジスチリ
8
ルァリールカゝら選ばれる基であり、 Ar及び Ar は、それぞれ水素原子又は炭素数
9 10
が 6〜20の芳香族基であり、 Ar〜Ar は置換されていてもよい。 p,は、 1〜4の整数
9 10
である。さらに好ましくは Ar及び Z又は Ar はスチリル基が置換されている。 ]
9 10
ここで、炭素数が 6〜20の芳香族基としては、フエニル基、ナフチル基、アントラセ -ル基、フエナントリル基、テルフエ-ル基等が好ましい。
[化 10]
Figure imgf000030_0002
[一般式(B)中、 Ar 〜Ar は、置換されていてもよい核炭素数 5〜40のァリール基 である。 q,は、 1〜4の整数である。 ]
ここで、核原子数が 5〜40のァリール基としては、フエニル、ナフチル、アントラセ- ル、フエナントリル、ピレニル、コロニノレ、ビフエニル、テルフエニル、ピロ一リル、フラニ ル、チォフエニル、ベンゾチォフエニル、ォキサジァゾリル、ジフエ二ルアントラセニル 、インドリル、カルバゾリル、ピリジル、ベンゾキノリル、フルオランテニル、ァセナフトフ ルオランテュル、スチルベン等が好ましい。なお、核原子数が 5〜40のァリール基は 、さらに置換基により置換されていてもよぐ好ましい置換基としては、炭素数 1〜6の アルキル基(ェチル基、メチル基、イソプロピル基、 n—プロピル基、 s ブチル基、 t ブチル基、ペンチル基、へキシル基、シクロペンチル基、シクロへキシル基等)、炭 素数 1〜6のアルコキシ基 (エトキシ基、メトキシ基、イソプロポキシ基、 n—プロポキシ 基、 s—ブトキシ基、 t—ブトキシ基、ペントキシ基、へキシルォキシ基、シクロペントキ シ基、シクロへキシルォキシ基等)、核原子数 5〜40のァリール基、核原子数 5〜40 のァリール基で置換されたァミノ基、核原子数 5〜40のァリール基を有するエステル 基、炭素数 1〜6のアルキル基を有するエステル基、シァノ基、ニトロ基、ハロゲン原 子 (塩素、臭素、ヨウ素等)が挙げられる。
第 2発光層に使用できるホスト材料としては、アントラセン中心骨格を有する下記式 (19)に示す構造を有する化合物が好ましい。
[化 11]
Figure imgf000031_0001
(式中、 A及び Aは、それぞれ独立に、置換又は無置換の核炭素数 6〜20の芳香
1 2
族環から誘導される基である。 R〜Rは、それぞれ独立に、水素原子、置換又は無
1 8
置換の核炭素数 6〜50のァリール基、置換又は無置換の核原子数 5〜50のへテロ ァリール基、置換又は無置換の炭素数 1〜50のアルキル基、置換又は無置換の炭 素数 3〜50のシクロアルキル基、置換又は無置換の炭素数 1〜50のアルコキシ基、 置換又は無置換の炭素数 6〜50のァラルキル基、置換又は無置換の核原子数 5〜 50のァリールォキシ基、置換又は無置換の核原子数 5〜50のァリールチオ基、置換 又は無置換の炭素数 1〜50のアルコキシカルボニル基、置換又は無置換のシリル基 、カルボキシル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基である。 ) [0074] A及び Aの芳香族環は 1又は 2以上の置換基で置換されて 、てもよ 、。この置換
1 2
基は、置換又は無置換の核炭素数 6〜50のァリール基、置換又は無置換の炭素数 1〜50のアルキル基、置換又は無置換の炭素数 3〜50のシクロアルキル基、置換又 は無置換の炭素数 1〜50のアルコキシ基、置換又は無置換の炭素数 6〜50のァラ ルキル基、置換又は無置換の核原子数 5〜50のァリールォキシ基、置換又は無置 換の核原子数 5〜50のァリールチオ基、置換又は無置換の炭素数 1〜50のアルコ キシカルボ-ル基、置換又は無置換のシリル基、カルボキシル基、ハロゲン原子、シ ァノ基、ニトロ基及びヒドロキシル基力 選ばれる。
[0075] A及び Aの芳香族環が 2以上の置換基で置換されている場合、置換基は同一で
1 2
あっても異なっていてもよく、隣接する置換基同士は互いに結合して飽和又は不飽 和の環状構造を形成して 、てもよ 、。
[0076] なお、前記式(19)において、 Aと Aとは互いに異なることが好ましい。
1 2
[0077] また、下記 (i)〜 (ix)で表される化合物が好ま 、。
[0078] 下記一般式 (i)で表される非対称アントラセン。
[化 12]
Figure imgf000032_0001
[0079] (式中、 Arは置換もしくは無置換の核炭素数 10〜50の縮合芳香族基である。 Ar,は置換もしくは無置換の核炭素数 6〜50の芳香族基である。
X1、 X2、 X3は、それぞれ独立して、置換もしくは無置換の核炭素数 6〜50の芳香 族基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしくは無置 換の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ 基、置換もしくは無置換の炭素数 6〜50のァラルキル基、置換もしくは無置換の核原 子数 5〜50のァリールォキシ基、置換もしくは無置換の核原子数 5〜50のァリール チォ基、置換もしくは無置換の炭素数 1〜50のアルコキシカルボ-ル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。
a、 b及び cは、それぞれ 0〜4の整数である。尚、 a、 b及び cが 2以上の場合、 X1同 士、 X2同士、 X3同士は同一でも異なっていてもよい。
nは 1〜3の整数である。また、 nが 2以上の場合は、 [ ]内は、同じでも異なってい てちよい。 )
[0080] 下記一般式 (ii)で表される非対称モノアントラセン誘導体。
[化 13]
Figure imgf000033_0001
( i i )
[0081] (式中、 Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の 芳香族環基であり、 m及び nは、それぞれ 1〜4の整数である。ただし、 m=n= lでか つ Ar1と Ar2のベンゼン環への結合位置が左右対称型の場合には、 Ar1と Ar2は同一 ではなぐ m又は nが 2〜4の整数の場合には mと nは異なる整数である。
〜!^は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボ-ル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 )
[0082] 下記一般式 (iii)で表される非対称ピレン誘導体。
[化 14]
Figure imgf000034_0001
[0083] [式中、 Ar及び Ar,は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。
L及び L,は、それぞれ置換もしくは無置換のフエ-レン基、置換もしくは無置換の ナフタレ-レン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無置換 のジベンゾシロリレン基である。
mは 0〜2の整数、 nは 1〜4の整数、 sは 0〜2の整数、 tは 0〜4の整数である。 また、 L又は Arは、ピレンの 1〜5位のいずれかに結合し、 L,又は Ar,は、ピレンの 6〜10位のいずれかに結合する。
ただし、 n+tが偶数の時、 Ar, Ar' , L, Vは下記(1) 又は(2) を満たす。
(1) Ar≠Ar'及び Z又は L≠L' (ここで≠は、異なる構造の基であることを示す。 ) (2) Ar=Ar,かつ L=L,の時
(2- 1) m≠s及び Z又は n≠t、又は
(2- 2) m= sかつ n=tの時、
(2- 2- 1) L及び L'、又はピレンが、それぞれ Ar及び Ar,上の異なる結合位 置に結合しているか、
(2- 2- 2) L及び L'、又はピレンが、 Ar及び Ar,上の同じ結合位置で結合し ている場合、
L及び L'又は Ar及び Ar,のピレンにおける置換位置が 1位と 6位、又は 2位と 7 位である場合はない。 ]
[0084] 下記一般式 (iv)で表される非対称アントラセン誘導体。
[化 15]
Figure imgf000035_0001
[0085] (式中、 A1及び ΑΊま、それぞれ独立に、置換もしくは無置換の核炭素数 10〜20の 縮合芳香族環基である。
Ar1及び Ar2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数 6〜50の芳香族環基である。
〜!^は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボ-ル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基である。
Ar2、 R9及び R10は、それぞれ複数であってもよぐ隣接するもの同士で飽和も しくは不飽和の環状構造を形成して 、てもよ 、。
ただし、一般式(1)において、中心のアントラセンの 9位及び 10位に、該アントラセ ン上に示す X— Y軸に対して対称型となる基が結合する場合はない。)
[0086] 下記一般式 (V)で表されるアントラセン誘導体。
[化 16]
Figure imgf000036_0001
[0087] (式中、 1^〜1^1()は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置 換しても良いァリール基,アルコキシル基,ァリーロキシ基,アルキルアミノ基,ァルケ -ル基,ァリールアミノ基又は置換しても良い複素環式基を示し、 a及び bは、それぞ れ 1〜5の整数を示し、それらが 2以上の場合、 R1同士又は R2同士は、それぞれにお いて、同一でも異なっていてもよぐまた R1同士又は R2同士が結合して環を形成して いてもよいし、 R3と R4, R5と R6, R7と R8, R9と R1C)がたがいに結合して環を形成してい てもよい。 L1は単結合、— O— , — S— , — N (R)— (Rはアルキル基又は置換しても 良いァリール基である)、アルキレン基又はァリーレン基を示す。 )
[0088] 下記一般式 (vi)で表されるアントラセン誘導体。 [化 17]
Figure imgf000037_0001
[0089] (式中、 R11〜!^は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,ァリ ール基,アルコキシル基,ァリーロキシ基,アルキルアミノ基,ァリールアミノ基又は置 換しても良い複数環式基を示し、 c d, e及び fは、それぞれ 1〜5の整数を示し、それ らが 2以上の場合、 R11同士, R12同士, R16同士又は R17同士は、それぞれにおいて 、同一でも異なっていてもよぐまた R11同士, R12同士, R16同士又は R17同士が結合 して環を形成していてもよいし、 R13と R14, R18と R19がたがいに結合して環を形成して いてもよい。 L2は単結合、—O—, 一 S— , — N (R)—(Rはアルキル基又は置換して も良いァリール基である)、アルキレン基又はァリーレン基を示す。 )
[0090] 下記一般式 (vii)で表されるスピロフルオレン誘導体。
[化 18]
Figure imgf000037_0002
[0091] (式中、 A5〜A8は、それぞれ独立に、置換もしくは無置換のビフエ-ル基又は置換も しくは無置換のナフチル基である。 ) [0092] 下記一般式 (viii)で表される縮合環含有化合物。
[化 19]
Figure imgf000038_0001
[0093] (式中、 A9〜A"はそれぞれ単結合又は置換もしくは無置換の核炭素数 6〜50のァ リーレン基であり、 A12〜A14はそれぞれ水素原子又は置換もしくは無置換の核炭素 数 6〜50のァリール基である。 R21〜R23は、それぞれ独立に、水素原子、炭素数 1〜 6のアルキル基、炭素数 3〜6のシクロアルキル基、炭素数 1〜6のアルコキシル基、 炭素数 5〜18のァリールォキシ基、炭素数 7〜18のァラルキルォキシ基、炭素数 5 〜16のァリールアミノ基、ニトロ基、シァノ基、炭素数 1〜6のエステル基又はハロゲ ン原子を示し、 A9〜A14のうち少なくとも 1つは 3環以上の縮合芳香族環を有する基 である。 )
[0094] 下記一般式 (ix)で表されるフルオレンィ匕合物。
[化 20]
Figure imgf000038_0002
[0095] (式中、 R及び Rは、水素原子、置換あるいは無置換のアルキル基、置換あるいは
1 2
無置換のァラルキル基、置換あるいは無置換のァリール基,置換あるいは無置換の 複素環基、置換アミノ基、シァノ基又はハロゲン原子を表わす。異なるフルオレン基 に結合する R同士、 R同士は、同じであっても異なっていてもよく、同じフルオレン基
1 2
に結合する R
1及び R
2は、同じであっても異なっていてもよい。 R
3及び R
4は、水素原 子、置換あるいは無置換のアルキル基、置換あるいは無置換のァラルキル基、置換 あるいは無置換のァリール基又は置換あるいは無置換の複素環基を表わし、異なる フルオレン基に結合する R同士、 R同士は、同じであっても異なっていてもよく、同じ
3 4
フルオレン基に結合する R及び Rは、同じであっても異なっていてもよい。 Ar及び
3 4 1
Arは、ベンゼン環の合計が 3個以上の置換あるいは無置換の縮合多環芳香族基又
2
はベンゼン環と複素環の合計が 3個以上の置換あるいは無置換の炭素でフルオレン 基に結合する縮合多環複素環基を表わし、 Ar及び Arは、同じであっても異なって
1 2
いてもよい。 nは、 1乃至 10の整数を表す。 )
[0096] 以上のホスト材料の中でも、好ましくはアントラセン誘導体、さらに好ましくはモノア ントラセン誘導体、特に好ましくは非対称アントラセンである。
[0097] 青色系ドーパントは、スチリルァミン、ァミン置換スチリル化合物及び縮合芳香族環 含有ィ匕合物の中から選ばれる少なくとも一種類であることが好ましい。そのとき、青色 系ドーパントは異なる複数の化合物力 構成されて 、てもよ 、。上記スチリルァミン及 びァミン置換スチリルイ匕合物としては、例えば下記式〔20〕又は〔21〕で示される化合 物力 上記縮合芳香族環含有ィヒ合物としては、例えば下記式〔22〕で示される化合 物が挙げられる。
[化 21]
Figure imgf000039_0001
〔式中、 Ar \ Ar32及び Ar33は、それぞれ独立に、炭素原子数 6〜40の置換もしくは 無置換の芳香族基を示し、 pは 1〜3の整数を示す。尚、好ましくは Ar31、 Ar32及び A r33の少なくとも一つはスチリル基を含む。〕
[0098] [化 22]
Figure imgf000040_0001
〔式中、 Ar41及び Ar42は、それぞれ独立に、炭素原子数 6〜30のァリーレン基、 E1及 ひ Έ2は、それぞれ独立に、炭素原子数 6〜30のァリール基もしくはアルキル基、水 素原子又はシァノ基を示し、 qは 1〜3の整数を示す。 U及び Z又は Vはアミノ基を含 む置換基であり、該ァミノ基がァリールアミノ基であると好ましい。〕
[0099] [化 23]
(A B2 2
〔式中、 Aは炭素原子数 1〜16のアルキル基もしくはアルコキシ基、炭素原子数 6〜 30の置換もしくは未置換のァリール基、炭素原子数 6〜30の置換もしくは未置換の アルキルアミノ基、又は炭素原子数 6〜30の置換もしくは未置換のァリールアミノ基、 Bは炭素原子数 10〜40の縮合芳香族環基を示し、 rは 1〜4の整数を示す。〕
[0100] 緑色系ドーパントとして、上述した青色ドーパントと同じァリールアミンィ匕合物及び Z又はスチリルアミンィ匕合物を用いることができる。好ましくは、緑色系発光のピーク 波長は 500〜550nmである。
好ましくは緑色系ドーパントとして、式(1)で表わされる芳香族アミンィ匕合物を使用で きる。
[化 24]
Figure imgf000040_0002
[0101] 式(1)において、 ^〜A2は、それぞれ独立に、水素原子、置換もしくは無置換の炭 素数 1〜10 (好ましくは、炭素数 1〜6)のアルキル基、置換もしくは無置換の核炭素 数 5〜50 (好ましくは、核炭素数 5〜: LO)のァリール基、置換もしくは無置換の核炭素 数 3〜20 (好ましくは、核炭素数 5〜: LO)のシクロアルキル基、置換もしくは無置換の 炭素数 1〜10 (好ましくは、炭素数 1〜6)のアルコキシ基、置換もしくは無置換の核 炭素数 5〜50 (好ましくは、核炭素数 5〜: LO)のァリールォキシ基、置換もしくは無置 換の核炭素数 5〜50 (好ましくは、核炭素数 5〜20)のァリールアミノ基、置換もしく は無置換の炭素数 1〜10 (好ましくは、炭素数 1〜6)のアルキルアミノ基、又はハロ ゲン原子を表す。
[0102] A 〜A2の置換もしくは無置換のアルキル基としては、例えば、メチル基、ェチル基 、プロピル基、イソプロピル基、ブチル基、 sec—ブチル基、 tert—ブチル基、ペンチ ル基、へキシル基、ヘプチル基、ォクチル基、ステアリル基、 2—フエ-ルイソプロピ ル基、トリクロロメチル基、トリフルォロメチル基、ベンジル基、 α—フエノキシベンジル 基、 a , α—ジメチノレべンジノレ基、 a , α—メチノレフエ二ノレべンジノレ基、 a , α—ジト リフルォロメチルベンジル基、トリフエ-ルメチル基、 α—べンジルォキシベンジル基 等が挙げられる。
[0103] A 〜A2の置換もしくは無置換のァリール基としては、例えば、フエ-ル基、 2—メチ ルフヱ-ル基、 3—メチルフヱ-ル基、 4ーメチルフヱ-ル基、 4ーェチルフヱ-ル基、 ビフエ-ル基、 4—メチルビフエ-ル基、 4—ェチルビフエ-ル基、 4—シクロへキシル ビフエ-ル基、ターフェ-ル基、 3, 5—ジクロロフエ-ル基、ナフチル基、 5—メチル ナフチル基、アントリル基、ピレニル基等が挙げられる。
[0104] A 〜A2の置換もしくは無置換のシクロアルキル基としては、例えば、シクロプロピル 基、シクロブチル基、シクロペンチル基、シクロへキシル基、ノルボルネル基、ァダマ ンチル基等が挙げられる。
[0105] A 〜A2の置換もしくは無置換のアルコキシ基としては、例えば、メトキシ基、ェトキ シ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、 sec—ブトキシ基
、 tert—ブトキシ基、各種ペンチルォキシ基、各種へキシルォキシ基等が挙げられる [0106] A1〜A2の置換もしくは無置換のァリールォキシ基としては、例えば、フエノキシ基、 トリルォキシ基、ナフチルォキシ基等が挙げられる。
八ェ〜八2の置換もしくは無置換のァリールアミノ基としては、例えば、ジフエ-ルァミノ 基、ジトリルアミノ基、ジナフチルァミノ基、ナフチルフエニルァミノ基等が挙げられる。 八ェ〜八2の置換もしくは無置換のアルキルアミノ基としては、例えば、ジメチルァミノ 基、ジェチルァミノ基、ジへキシルァミノ基等が挙げられる。
^〜A2のハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子等が挙 げられる。
尚、式(1)において、 A1及び A2の両方が水素原子である場合はない。
[0107] 式(1)において、 d及び eはそれぞれ 1〜5の整数であり、 1〜3であると好ましい。 d 、 eがそれぞれ 2以上の場合、複数の A A2は、それぞれ同一でも異なっていてもよ ぐ互いに連結して飽和もしくは不飽和の環を形成していてもよい。また、 hは 1〜9の 整数であり、 1〜3であると好ましい。
[0108] R11は、置換もしくは無置換の炭素数 3〜 10の 2級又は 3級のアルキル基、又は置 換もしくは無置換の炭素数 3〜10の 2級又は 3級のシクロアルキル基を表す。
R11の置換もしくは無置換の炭素数 3〜 10の 2級又は 3級のアルキル基としては、例 えば、イソプロピル基、 tert ブチル基、 sec ブチル基、 tert ペンチル基、 1ーメ チルブチル基、 1ーメチルペンチル基、 1, 1 ' ジメチルペンチル基、 1, 1 ' ジェチ ルプロピル基、 1一べンジルー 2—フエ-ルェチル基、 1ーメトキシェチル基、 1 フエ 二ルー 1 メチルェチル基等が挙げられる。
R11の置換もしくは無置換の炭素数 3〜 10の 2級又は 3級のシクロアルキル基として は、例えば、シクロペンチル基、シクロへキシル基、ノルボルネル基、ァダマンチル基 等が挙げられる。
式(1)において、 fは 1〜9の整数であり、 1〜3であると好ましい。 fが 2以上の場合、 複数の R11は同一でも異なって 、てもよ!/、。
[0109] R12は、水素原子、置換もしくは無置換の炭素数 1〜: L0のアルキル基 (好ましくは、 炭素数 1〜6)、置換もしくは無置換の核炭素数 5〜50のァリール基 (好ましくは、核 炭素数 5〜: L0)、置換もしくは無置換の核炭素数 3〜20のシクロアルキル基 (好ましく は、核炭素数 5〜: LO)、置換もしくは無置換の炭素数 1〜: LOのアルコキシ基 (好ましく は、炭素数 1〜6)、置換もしくは無置換の核炭素数 5〜50のァリールォキシ基 (好ま しくは、核炭素数 5〜: L0)、置換もしくは無置換の核炭素数 5〜50のァリールアミノ基 (好ましくは、核炭素数 5〜20)、置換もしくは無置換の炭素数 1〜: L0のアルキルアミ ノ基 (好ましくは、炭素数 1〜6)、又はハロゲン原子を表す。
R12の置換もしくは無置換のアルキル基、ァリール基、シクロアルキル基、アルコキ シ基、ァリールォキシ基、ァリールアミノ基、アルキルアミノ基及びノヽロゲン原子の具 体例としては、上記 Ai〜A2と同様のものが挙げられる。
式(1)において、 gは 0〜8の整数であり、 0〜2であると好ましい。
gが 2以上の場合、複数の R12は同一でも異なって 、てもよ!/、。
また、式(1)において、 f+g+hは 2〜10の整数であり、 2〜6であると好ましい。 芳香族アミンィ匕合物としては、式(1— 1)〜( 1— 7)で表される化合物がより好ましい
[化 25]
Figure imgf000043_0001
/: O1£AV ^
Figure imgf000044_0001
Figure imgf000045_0001
[式(1— 1)〜(: L— 7)中、 A A2、 d、 e、 R11及び R12は、式(1)と同じである。 ] [0111] 第 2発光層の膜厚は、好ましくは 1〜: LOOnm、より好ましくは 5〜50nmである。 In m未満では発光層形成が困難となり、色度の調整が困難となる恐れがあり、 lOOnm を超えると駆動電圧が上昇する恐れがある。
[0112] 4.第 3発光層
発光色については、エネルギーギャップの関係から、第 3発光層は緑系発光層であ ることが好ましい。好ましくは、緑色系発光のピーク波長は 500〜550nmである。 第 3発光層のホスト材料とドーパントは、上述したものを使用できる。ホスト材料は第
2発光層と同じ材料であると好ま 、。
[0113] 第 3発光層の膜厚は、好ましくは l〜100nm、より好ましくは 5〜50nmである。 In m未満では発光層形成が困難となり、色度の調整が困難となる恐れがあり、 lOOnm を超えると駆動電圧が上昇する恐れがある。
[0114] 5.他の有機層 (1)第一の有機層
陽極と第 1発光層の間に、第一の有機層として、正孔注入層、正孔輸送層又は有 機半導体層等を設けることができる。正孔注入層又は正孔輸送層は、発光層への正 孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きぐイオン化工 ネルギ一が通常 5. 5eV以下と小さい。正孔注入層はエネルギーレベルの急な変化 を緩和する等、エネルギーレベルを調整するために設ける。このような正孔注入層又 は正孔輸送層としてはより低 、電界強度で正孔を発光層に輸送する材料が好ましく 、さらに正孔の移動度力 例えば 104〜: L06V/cmの電界印加時に、少なくとも 10_6 cm2ZV,秒以上であるものが好ま ヽ。正孔注入層又は正孔輸送層を形成する材 料としては、前記の好ましい性質を有するものであれば特に制限はなぐ従来、光導 伝材料にぉ ヽて正孔の電荷輸送材料として慣用されて ヽるものや、有機 EL素子の 正孔注入層に使用されて 、る公知のものの中から任意のものを選択して用いること ができる。
このような正孔注入層又は正孔輸送層の形成材料としては、具体的には、例えばト リアゾール誘導体 (米国特許 3, 112, 197号明細書等参照)、ォキサジァゾール誘 導体 (米国特許 3, 189, 447号明細書等参照)、イミダゾール誘導体 (特公昭 37— 1 6096号公報等参照)、ポリアリールアルカン誘導体 (米国特許 3, 615, 402号明細 書、同第 3, 820, 989号明細書、同第 3, 542, 544号明細書、特公昭 45— 555号 公報、同 51— 10983号公報、特開昭 51— 93224号公報、同 55— 17105号公報、 同 56— 4148号公報、同 55— 108667号公報、同 55— 156953号公報、同 56— 3 6656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体 (米国特許第 3, 180 , 729号明細書、同第 4, 278, 746号明細書、特開昭 55— 88064号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 51086号公報、同 56— 80051号 公報、同 56— 88141号公報、同 57— 45545号公報、同 54— 112637号公報、同 5 5— 74546号公報等参照)、フ -レンジァミン誘導体 (米国特許第 3, 615, 404号 明細書、特公昭 51— 10105号公報、同 46— 3712号公報、同 47— 25336号公報 、特開昭 54— 53435号公報、同 54— 110536号公報、同 54— 119925号公報等 参照)、ァリールァミン誘導体 (米国特許第 3, 567, 450号明細書、同第 3, 180, 70 3号明細書、同第 3, 240, 597号明細書、同第 3, 658, 520号明細書、同第 4, 23 2, 103号明細書、同第 4, 175, 961号明細書、同第 4, 012, 376号明細書、特公 昭 49— 35702号公報、同 39— 27577号公報、特開昭 55— 144250号公報、同 56 — 119132号公報、同 56— 22437号公報、西独特許第 1, 110, 518号明細書等 参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明細書等参照)、ォ キサゾール誘導体 (米国特許第 3, 257, 203号明細書等に開示のもの)、スチリルァ ントラセン誘導体 (特開昭 56— 46234号公報等参照)、フルォレノン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特許第 3, 717, 462号明細 書、特開昭 54— 59143号公報、同 55— 52063号公報、同 55— 52064号公報、同 55— 46760号公報、同 55— 85495号公報、同 57— 11350号公報、同 57— 1487 49号公報、特開平 2— 311591号公報等参照)、スチルベン誘導体 (特開昭 61— 2 10363号公報、同第 61— 228451号公報、同 61— 14642号公報、同 61— 72255 号公報、同 62— 47646号公報、同 62— 36674号公報、同 62— 10652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94462号公報、同 60— 1747 49号公報、同 60— 175052号公報等参照)、シラザン誘導体 (米国特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996号公報)、ァニリン系共重合体 (特 開平 2— 282263号公報)、特開平 1— 211399号公報に開示されて 、る導電性高 分子オリゴマー(特にチォフェンオリゴマー)等を挙げることができる。
正孔注入層又は正孔輸送層の材料としては、上記のものを使用することができるが 、ボルフイリンィ匕合物(特開昭 63— 2956965号公報等に開示のもの)、芳香族第三 級ァミン化合物及びスチリルアミン化合物 (米国特許第 4, 127, 412号明細書、特開 昭 53— 27033号公報、同 54— 58445号公報、同 54— 149634号公報、同 54— 6 4299号公報、同 55— 79450号公報、同 55— 144250号公報、同 56— 119132号 公報、同 61— 295558号公報、同 61— 98353号公報、同 63— 295695号公報等 参照)、芳香族第三級アミンィ匕合物を用いることもできる。また米国特許第 5, 061, 5 69号に記載されている 2個の縮合芳香族環を分子内に有する、例えば 4, 4' ビス( N— (1—ナフチル)—N フエ-ルァミノ)ビフエ-ル、また特開平 4 308688号公 報に記載されているトリフエニルァミンユニットが 3つスターバースト型に連結された 4 , 4,, 4,,—トリス(N— (3—メチルフエ-ル)—N フエ-ルァミノ)トリフエ-ルァミン 等を挙げることができる。さらに、発光層の材料として示した前述の芳香族ジメチリデ イン系化合物の他、 P型 Si、 p型 SiC等の無機化合物も正孔注入層又は正孔輸送層 の材料として使用することができる。
[0117] 正孔輸送材料としては下記一般式(1)で表される前記芳香族ァミン誘導体が望ま しい。
[化 26]
Figure imgf000048_0001
[式中、 は置換もしくは無置換の炭素数 5〜60のァリーレン基又は複素環基よりな る 2価の基であり、 Ar〜Ar はそれぞれ置換もしくは無置換の核原子数 5〜50の置
7 10
換基又は下記一般式で表される置換基である。
[化 27]
Figure imgf000048_0002
(式中、 Lは置換もしくは無置換の炭素数 5〜60のァリーレン基又は複素環基よりな
2
る 2価の基であり、 Ar 〜Ar はそれぞれ置換もしくは無置換の核原子数 5〜50の
11 12
置換基である。)]
[0118] L及び Lとして、ビフエ二レン、ターフェ-レン、フエナントレン又はフルォレ-レン
1 2
を例示でき、好ましくはビフエ-レン、ターフェ-レンであり、更に好ましくはビフエ-レ ンである。
[0119] Ar〜Ar として、ビフエ-ル基、ターフェ-ル基、フエナントレン基、フルォレ -ル
7 12
基、 1 ナフチル基、 2—ナフチル基又はフエ二ル基を例示でき、好ましくはビフエ- ル基、ターフェ-ル基、 1 ナフチル基又はフエ-ル基である。 [0120] 前記一般式(1)で表される化合物は、 Ar〜Ar が同一の置換基であることが好ま
7 10
しい。その際、 Ar〜Ar は好ましくはビフエ-ル基、ターフェニル基であり、より好ま
7 10
しくはビフ ニル基である。
[0121] また、前記一般式(1)で表される化合物は、 Ar〜Ar の置換基のうち Ar〜Ar
7 10 8 10 が同一の置換基であることが好ましい。その際、 Ar〜Ar は好ましくはビフエ-ル基
8 10
、ターフェ-ル基であり、より好ましくはビフエ-ル基であり、 Arは好ましくはビフエ- ル基、ターフェ-ル基、フエナントレン基、フルォレ -ル基、 1 ナフチル基、 2—ナフ チル基又はフエ-ル基であり、より好ましくはビフエ-ル基、ターフェ-ル基、 1 ナフ チル基又はフエ-ル基である。さらに好ましくは Ar〜Ar がビフエ-ルであり、 Arが
8 10 7 ターフェ-ル基、 1 ナフチル基である。
[0122] また、前記一般式(1)で表される化合物は、 Ar〜Ar の置換基のうち 3つ以上が
7 10
異なる置換基であることが好ましい。 Ar〜Ar としては好ましくはビフエ-ル基、ター
7 12
フエ-ル基、フエナントレン基、フルォレニル基、 1 ナフチル基、 2—ナフチル基又 はフエ-ル基であり、より好ましくはビフエ-ル基、ターフェ-ル基、 1 ナフチル基又 はフエ-ル基である。さらに好ましくは Ar〜Ar がビフエ-ルであり、 Arがターフェ
9 10 7
-ル基、 1 ナフチル基であり、 Arはフエ-ル基である。
8
[0123] 正孔注入層としては下記式の化合物を用いることができる。
[化 28]
Figure imgf000049_0001
(式中、 R、 R , R、 R、 R、 Rは置換もしくは無置換のアルキル基、置換もしくは無
1 2 3 4 5 6
置換のァリール基、置換もしくは無置換のァラルキル基、又は置換もしくは無置換の 複素環基を示す。但し、 R、 R , R、 R、 R、 Rは同じでも異なっていてもよい。また
1 2 3 4 5 6
、 Rと R , Rと R、 Rと R、又は Rと R , Rと R、 Rと Rは縮合環を形成していても
1 2 3 4 5 6 1 6 2 3 4 5
よい。 ) [0124] より好ましくは、下記の化合物である
[化 29]
Figure imgf000050_0001
[0125] この正孔注入層又は正孔輸送層は、上述した材料の 1種又は 2種以上力 なる一 層で構成されてもよいし、また、正孔注入層又は正孔輸送層とは別種の化合物から なる正孔注入層又は正孔輸送層を積層したものであってもよ!/ヽ。正孔注入層又は正 孔輸送層の膜厚は、特に限定されないが、好ましくは、 20〜200nmである。
[0126] 有機半導体層は、発光層への正孔注入又は電子注入を助ける層であって、 10"10 SZcm以上の導電率を有するものが好適である。このような有機半導体層の材料と しては、含チォフェンオリゴマーゃ特開平 8— 193191号公報に記載の含ァリールァ ミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー等の導電性デン ドリマー等を用いることができる。有機半導体層の膜厚は、特に限定されないが、好 ましくは、 10〜: L, OOOnmである。
[0127] (2)第二の有機層
陰極と第 2発光層の間に、第二の有機層として、電子注入層又は電子輸送層等を 設けることができる。電子注入層又は電子輸送層は、発光層への電子の注入を助け る層であって、電子移動度が大きい。電子注入層はエネルギーレベルの急な変化を 緩和する等、エネルギーレベルを調整するために設ける。電子注入層又は電子輸送 層に用いられる材料としては、 8—ヒドロキシキノリン又はその誘導体の金属錯体、ォ キサジァゾール誘導体、含窒素複素環誘導体が好適である。上記 8—ヒドロキシキノ リン又はその誘導体の金属錯体の具体例としては、ォキシン (一般に 8—キノリノール 又は 8—ヒドロキシキノリン)のキレートを含む金属キレートォキシノイド化合物、例え ばトリス(8—キノリノール)アルミニウムを用いることができる。そして、ォキサジァゾ一 ル誘導体としては、下記式 [化 30]
Figure imgf000051_0001
(式中、 Ar50, Ar51, Ar52, Ar54, Ar55及び Ar58は、それぞれ置換基を有するもしくは 有しないァリール基を示し、 Ar5°と Ar51、 Ar52と Ar54、 Ar55と Ar58は、たがいに同一で も異なっていてもよい。 Ar53, Ar56及び Ar57は、それぞれ置換基を有するもしくは有 しないァリーレン基を示し、 Ar56と Ar57は、たがいに同一でも異なっていてもよい。)で 表される電子伝達化合物が挙げられる。これら式におけるァリール基としては、フエ二 ル基、ビフエ二ル基、アントラニル基、ペリレニル基、ピレニル基等が挙げられる。また 、ァリーレン基としては、フエ-レン基、ナフチレン基、ビフエ-レン基、アントラ-レン 基、ペリレニレン基、ピレニレン基等が挙げられる。そして、これらへの置換基としては 炭素数 1〜10のアルキル基、炭素数 1〜10のアルコキシ基又はシァノ基等が挙げら れる。この電子伝達ィ匕合物は、薄膜形成性の良好なものが好ましく用いられる。そし て、これら電子伝達性化合物の具体例としては、下記のものを挙げることができる。
[化 31]
Figure imgf000052_0001
[0128] 含窒素複素環誘導体としては、下記 (a)〜 (c)に示す構造を含む、金属錯体でな
V、含窒素化合物が挙げられる。
[0129] (a) =N—骨格を含有する 5員環もしくは 6員環
[0130] (b)
[化 32]
Figure imgf000052_0002
(式中、 Xは炭素原子もしくは窒素原子を表す。 Z及び Zは、それぞれ独立に含窒
1 2
素へテロ環を形成可能な原子群を表す。 )
[0131] (c)
[化 33] N-
( 3 ) また、含窒素複素環誘導体として、好ましくは、 5員環もしくは 6員環カゝらなる含窒素 芳香多環族を有し、窒素原子を複数含む場合は隣接しな!ヽ結合位に有する骨格を 有する有機化合物を挙げられる。このような複数窒素原子を有する含窒素芳香多環 族の場合は、上記 (a)と (b)もしくは (a)と (c)を組み合わせた骨格を有する含窒素芳 香多環有機化合物を挙げられる。
さらに、含窒素複素環誘導体としては、下記 (d)〜(g)に示す化合物が挙げられる
(d)以下の式から選択される含窒素複素環基を含む含窒素複素環誘導体。
[化 34]
Figure imgf000053_0001
(式中、 Rは、炭素数 6〜40のァリール基、炭素数 3〜40のへテロアリール基、炭素 数 1〜20のアルキル基又は炭素数 1〜20のアルコキシ基であり、 nは 0〜5の整数で あり、 nが 2以上の整数であるとき、複数の Rは互いに同一又は異なっていてもよい。 ) [0133] (e)さらに、好ましい具体的な化合物として、下記式で表される含窒素複素環誘導体
HAr-L-Ar61-Ar62
(式中、 HArは、置換基を有していてもよい炭素数 3〜40の含窒素複素環であり、 L は単結合、置換基を有して 、てもよ 、炭素数 6〜40のァリーレン基又は置換基を有 して 、てもよ 、炭素数 3〜40のへテロアリーレン基であり、 Ar61は置換基を有して ヽ ても良い炭素数 6〜40の 2価の芳香族炭化水素基であり、 Ar62は置換基を有してい ても良 、炭素数 6〜40のァリール基又は置換基を有して!/、てもよ!/、炭素数 3〜40の ヘテロァリール基である。 )
[0134] HArとして、下記の基が例示される。
[化 35]
Figure imgf000055_0001
[化 37]
Figure imgf000056_0001
[0137] Arblとして、下記の基が例示される。
[化 38]
Figure imgf000056_0002
(式中、 Rbl〜R"は、それぞれ独立して、水素原子、ハロゲン原子、炭素数 1〜20の アルキル基、炭素数 1〜20のアルコキシ基、炭素数 6〜40のァリールォキシ基、置 換基を有して 、てもよ 、炭素数 6〜40のァリール基又は炭素数 3〜40のへテロァリ ール基であり、 Ar63は、それぞれ置換基を有していてもよい炭素数 6〜40のァリール 基又は炭素数 3〜40のへテロアリール基である。 )
好ましくは、 R61〜R74は、いずれも水素原子である。
[0138] (f)特開平 9 3448記載の下記化合物
[化 39]
Figure imgf000056_0003
(式中、 R81〜R84は、それぞれ独立に、水素原子、置換もしくは未置換の脂肪族基、 置換もしくは未置換の脂肪族式環基、置換もしくは未置換の炭素環式芳香族環基、 置換もしくは未置換の複素環基を表し、 X81, X82は、それぞれ独立に、酸素原子、硫 黄原子もしくはジシァノメチレン基を表す。 )
[0139] (g)特開 2000— 173774記載の下記化合物
[化 40]
Figure imgf000057_0001
〔式中、 R91、 R , R9d及び R94は互いに同一の又は異なる基であって、下記式で表わ されるァリール基である。
[化 41]
Figure imgf000057_0002
(式中、 R95, R96, R97, R98及び R99は互いに同一の又は異なる基であって、水素原 子、或いはそれらの少なくとも 1つが飽和又は不飽和アルコキシル基、アルキル基、 アミノ基又はアルキルアミノ基である。 ) ]
[0140] (h)さらに、該含窒素複素環基もしくは含窒素複素環誘導体を含む高分子化合物で あってもよい。
[0141] 電子注入層又は電子輸送層の膜厚は、特に限定されないが、好ましくは、 1〜: L00 nmである o
[0142] 陽極に最も近い有機層である第一発光層又は第一の有機層が、酸化剤を含有し ていることが好ましい。好ましい酸化剤は、電子吸引性又は電子ァクセプターである 。電子吸引性又は電子ァクセプターは、好ましくは、電子吸引性の置換基又は電子 欠乏環を有する有機化合物である。
電子吸引性の置換基として、例えば、ハロゲン、 CN—、カルボ-ル基、ァリールホ ゥ素基等が挙げられる。
電子欠乏環として、 f列えば、、 2 ピリジノレ、 3 ピリジノレ、 4 ピリジノレ、 2 キノリノレ、 3 キノリル、 4 キノリル、 2 イミダゾール、 4 イミダゾール、 3 ピラゾール、 4 ピ ラゾール、ピリダジン、ピリミジン、ピラジン、シンノリン、フタラジン、キナゾリン、キノキ サリン、 3— (1, 2, 4— N)—トリァゾリル、 5— (1, 2, 4— N)—トリァゾリル、 5—テトラ ゾリル、 4— (1— O, 3— N)—ォキサゾール、 5— (1— O, 3— N)—ォキサゾール、 4 (1 -S, 3-N) チアゾーノレ、 5— (1 -S, 3-N) チアゾーノレ、 2 ベンゾキサ ゾール、 2 ベンゾチアゾール、 4— (1, 2, 3-N)—ベンゾトリァゾール、及びべンズ イミダゾールカ なる群力 選択される化合物等が挙げられる力 必ずしもこれらに限 定されるわけではない。
好ましくはルイス酸、各種キノン誘導体、ジシァノキノジメタン誘導体、芳香族ァミンと ルイス酸で形成された塩類である。
さらに好ましくはキノイド誘導体で、下記式(la)〜(li)に示される化合物が挙げら れる。より好ましくは、(la)、 (lb)に示される化合物である。
[化 42]
Figure imgf000058_0001
Figure imgf000058_0002
Figure imgf000059_0001
[0144] 式(la)〜(: Li)において、 R 〜R は、それぞれ水素、ハロゲン、フルォロアルキル 基、シァノ基、アルコキシ基、アルキル基又はァリール基である。好ましくは、水素、シ ァノ基である。
式(la)〜(li)において、 〜 17は電子吸引基であり、それぞれ独立して、下記 式 (j)〜(P)の構造のいずれ力からなる。好ましくは、(j)、(k)、(1)の構造である。
[化 43]
0 NCVCN N,CN NC^CF3 NC^COOR49 R50OOC、ノ COOR51 NC^R52 0) (k) (1) (m) (n) (o) (p)
(式中、 R49〜R52は、それぞれ水素、フルォロアルキル基、アルキル基、ァリール基 又は複素環であり、 R5と R51が環を形成してもよい。 )
式(la)〜(: Li)において、 yi Y28は、それぞれが独立して、— N =又は— CH二 である。
[0145] !^〜尺48のハロゲンとして、フッ素、塩素が好ま 、。
!^1〜!^48のフルォロアルキル基として、トリフルォロメチル基、ペンタフルォロェチル 基が好ましい。
^〜1 48のアルコキシル基として、メトキシ基、エトキシ基、 iso—プロポキシ基、 tert —ブトキシ基が好ましい。
〜1^48のアルキル基として、メチル基、ェチル基、プロピル基、 iso—プロピル基、 t ert—ブチル基、シクロへキシル基が好ましい。
!^〜尺48のァリール基として、フエ-ル基、ナフチル基が好ましい。
R49〜R52のフルォロアルキル基、アルキル基、ァリール基は、!^〜尺48と同様である [0146] R49〜R52の複素環として、下記式に示す置換基が好ま U '
[化 44]
Figure imgf000060_0001
[0147] Rと R51が環を形成する場合、 Xは、好ましくは、下記式に示す置換基である。
[化 45]
Figure imgf000060_0002
(式中、 R51', R52'は、それぞれメチル基、ェチル基、プロピル基、 tert—ブチル基で ある。)
[0148] キノイド誘導体の具体例としては、以下の化合物が挙げられる。
[化 46]
Figure imgf000060_0003
Figure imgf000061_0001
陰極に最も近い有機層である第 2発光層又は第二の有機層が、還元剤を含有して いることが好ましい。好ましい還元剤は、アルカリ金属、アルカリ土類金属、アルカリ金 属酸化物、アルカリ土類酸化物、希土類酸化物、アルカリ金属ハロゲン化物、アル力 リ土類ハロゲンィ匕物、希土類ハロゲンィ匕物、アルカリ金属と芳香族化合物で形成され る錯体である。特に好ましいアルカリ金属は Cs、 Li、 Na、 Kである。
[0149] 本発明にお ヽて、正孔輸送層(正孔注入層)は、上述した電荷障壁層と同じ材料を 使用して形成することが好ましい。これにより、有機 EL素子を作製する上で使用する 材料の種類を減らすことができ、工業生産においてコスト的に有利となる。
[実施例]
[0150] 以下に実施例及び比較例に使用した化合物を示す。
[化 47] //-0v:0zfcl>d 099068Π OAV
Figure imgf000062_0001
/v:/-00ifcl£
Figure imgf000063_0001
RH
Figure imgf000064_0001
C B P 上記の化合物の、エネルギーギャップ(Eg),イオン化ポテンシャル (Ip) ,ァフィ ィレベル(Af)を表 1に示す。
[表 1] 化合物 IP(eV) Eg(eV) Af (eV)
BH 5.8 3.0 2.8
BD 5.5 2.8 2.7
GD 5.6 2.5 3.1
RH 5.6 2.4 3.2
RD 5.5 2.1 3.4
ET 5.71 2.98 2.73
HT 5.36 3.06 2.3
HI 5.3 3.3 2.0
CBP 5.86 3.45 2.41 [0152] 化合物の特性の測定方法は以下の通りである。
(1)エネノレギーギャップ(Eg)
紫外'可視分光光度計 (島津製、 UV— 3100PC)を用い、材料の溶液 (溶媒:トル ェン)の紫外 可視光吸収スペクトルを測定し、その長波長側接線力も算出した光学 的バンドキャップをエネルギーギャップ(Eg)とした。
[0153] (2)イオン化ポテンシャル(Ip)
大気中光電子分光測定装置 (理研計器製、 AC— 1)を用いて測定した。材料 (粉 末)に照射した紫外線のエネルギーに対し、放出された光電子を 1Z2乗でプロットし 、光電子放出エネルギーのしきい値をイオンィ匕ポテンシャル (Ip)とした。
[0154] (3)ァフィ-ティレベル (Af)
Af=IP— Egとした。
[0155] (4)駆動電圧
電流密度が lOmAZcm2となるように ITOと A1間に通電したときの電圧(単位: V)を 計測した。
[0156] (5)発光効率
電流密度 1 OmAZcm2印加時の ELスぺクトルを分光放射輝度計 CS 1 OOOA (コ- 力ミノルタ社製)で計測し、発光効率 (単位: cd/A)を算出した。
[0157] (6) CIE1931色度
電流密度 lOmAZcm2印加時の ELスペクトルを分光放射輝度計 CS 1000A (コ ユカミノルタ社製)で CIE1931色度 (x、 y)を計測した。
[0158] (7)外部量子収率
電流密度 1 OmAZcm2印加時の ELスぺクトルを分光放射輝度計 CS 1 OOOA (コ- 力ミノルタ社製)で計測し、下記式にて算出した。
[数 1]
E0E(0/ ) (分光放射強度 ÷光子のエネルギー) を光子の波長で積分し更に立体角で積分する., - 電流密度 ÷電子の素電荷
[0159] 実施例 1 (有機 EL素子の形成)
25mm X 75mm X 1. 1mm厚の ITO透明電極(陽極)付きガラス基板(ジォマティ ック社製)(ΙΤΟの膜厚 130nm)をイソプロピルアルコール中で超音波洗浄を 5分間 行なった後、 UVオゾン洗浄を 30分間行なった。洗浄後の透明電極ライン付きガラス 基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されてい る側の面上に前記透明電極を覆うようにして膜厚 60nmの HI膜を成膜した。この HI 膜は、正孔注入層として機能する。 HI膜の成膜に続けて、この HI膜上に膜厚 15nm の HT膜を成膜した。この HT膜は正孔輸送層として機能する。
[0160] さらに、 HT膜の成膜に続けて、膜厚 5nmにて RH (Eg : 2. 4eV)と RDを、 RDが 0.
5重量%となるように、蒸着し成膜し、第 1発光層(IpZAf (eV) = 5. 6/3. 2)とした 。この第 1発光層は赤色発光する。次いで、電荷障壁層として、膜厚 5nmの HT膜 (I p/Af [eV] = 5. 36/2. 3)を成膜した。電荷障壁層上に BHと BDを、 BDが 7. 5重 量%となるように蒸着し成膜し、膜厚が 40nmの青色発光層(第 2発光層) (lp/Af[e V] = 5. 8/2. 8)とした。この膜上に、電子輸送層として膜厚 20nmのトリス(8—キノ リノール)アルミニウム膜 (Alq膜)を成膜した。この後、電子注入層として LiF膜を 1.
3
6nm形成した。この LiF膜上に金属 A1を 150nm蒸着させ金属陰極を形成し有機 EL 発光素子を形成した。
[0161] (有機 EL素子の評価)
図 5に、実施例 1で作成した第 1発光層、第 1電荷障壁層、第 2発光層のエネルギ 一レベルを示す。得られた有機 EL発光素子の特性について測定を行った。結果を 表 2に示す。
[0162] 比較例 1
実施例 1において、第 1発光層を形成した後、電荷障壁層を形成しなカゝつた他は実 施例 1と同様にして有機 EL発光素子を形成した。得られた有機 EL発光素子につい て、実施例 1と同様に測定を行った。測定結果を表 2に示す。
[0163] 比較例 2
比較例 1において、正孔輸送層の厚さを 10nmとし、第 1発光層の厚さを 40nmとし 、電子輸送層の厚さを 30nmとし、第二発光層の成膜を省略した他は比較例 1と同様 にして有機 EL発光素子を形成した。得られた有機 EL発光素子について、実施例 1 と同様に測定を行った。測定結果を表 2に示す。
[0164] 比較例 3
比較例 1において、正孔輸送層の厚さを 20nmとし、第二発光層の厚さを 40nmとし 、第 1発光層の成膜を省略した他は比較例 1と同様にして有機 EL発光素子を形成し た。得られた有機 EL発光素子について、実施例 1と同様に測定を行った。測定結果 を表 2に示す。
[0165] 比較例 4
実施例 1において、電荷障壁層として HTの代わりに、厚さ 5nmにて ET膜 (IpZAf [eV] = 5. 71/2. 73)を成膜した他は実施例 1と同様にして有機 EL発光素子を形 成した。図 6に、比較例 4で作成した第 1発光層、第 1電荷障壁層、第 2発光層のエネ ルギーレベルを示す。得られた有機 EL発光素子について、実施例 1と同様に測定を 行った。測定結果を表 2に示す。
[0166] 実施例 2
実施例 1において、第 2発光層を膜厚 lOnmにて形成した後、第 3発光層として、膜 厚 30nmにて BHと GDを、 GDが 10重量%となるように、蒸着し成膜 (IpZAf [eV] = 5. 8/2. 8)し、緑系発光層とした後、 Alq層(電子輸送層)を形成した他は実施例
3
1と同様にして有機 EL発光素子を形成した。得られた有機 EL発光素子について、 実施例 1と同様に測定を行った。測定結果を表 2に示す。
[0167] 比較例 5
実施例 2において、電荷障壁層として HTの代わりに、厚さ 5nmにて CBP膜 (IpZ Af[eV] = 5. 86/2. 41)を成膜した他は実施例 2と同様にして有機 EL発光素子を 形成した。図 7に、比較例 5で作成した第 1発光層、第 1電荷障壁層、第 2発光層のェ ネルギーレベルを示す。得られた有機 EL発光素子について、実施例 1と同様に測定 を行った。測定結果を表 2に示す。
[0168] 実施例 3
実施例 1において、電荷障壁層として HTの代わりに、 HTと GDを、 GDが 10重量 %となるように、蒸着し成膜 (IpZAf [eV] = 5. 36/2. 3)し、第二発光層の厚さを 4 Onmとした他は、実施例 1と同様にして有機 EL発光素子を形成した。 得られた有機 EL発光素子について、実施例 1と同様に測定を行った。測定結果を 表 2に示す。
[0169] 実施例 4
実施例 2において、電荷障壁層として HTの代わりに、 HTと GDを、 GDが 5重量% となるように、蒸着し成膜 (IPZAf[eV] = 5. 36/2. 3)し、第二発光層、第三発光 層の厚さをそれぞれ 15nm、 25nmとした他は、実施例 2と同様にして有機 EL発光素 子を形成した。
得られた有機 EL発光素子について、実施例 1と同様に測定を行った。測定結果を 表 2に示す。
[0170] [表 2]
Figure imgf000069_0001
[0171] 実施例 1では、比較例 2の赤色発光、比較例 3の青色発光を組み合わせた。エネル ギーギャップの小さな赤色発光層を陽極側の第 1発光層、エネルギーギャップの大き な青色発光層を第 2発光層とし、その間にァフィ二ティレベルの小さな電荷障壁層を 設けることにより、各単色での外部量子収率よりも高ぐかつ良好な白色発光を得るこ とができた(図 5)。
実施例 2では、実施例 1に対してさらに第 3発光層として緑色発光層を入れることに より、同等の外部量子収率ながらさらに電流効率が高く良好な白色発光を得ることが できた。
実施例 3では、実施例 1に対してさらに電荷障壁層に緑色発光材料をドープするこ とにより、同等の外部量子収率ながら良好な白色発光を得ることができた。
[0172] 比較例 4では、ァフィ-ティレベルが大きい電子輸送性の電荷障壁層を設けたため 、さらに赤みが増してしまい、かつ効率も低くなつた(図 6)。
比較例 5では、イオン化ポテンシャルが大きくかつァフエ-ティが小さ 、電荷障壁層 を設けたため正孔が第 1発光層に留まり、実施例 2に対して赤みが増してしまい、良 好な白色発光を得ることができな力つた(図 7)。
[0173] 比較例 1では、輝度 10〜: LOOOOcdZm2の範囲において、 CIE1931色度(x, y) が白色付近 (0. 33, 0. 33)力も大きく離れ、赤みが増していて良好な白色ではなか つた。実施例 1〜4は色度 (X, y)が白色付近であり、良好な白色発光を得ることがで きた。特に実施例 3は、輝度 10〜: LOOOOcdZm2の範囲において色度 (x、 y)の変化 が実施例 1〜2、実施例 4より少なぐさらに良好な白色発光を得ることができた(図 8、 図 9)。
[0174] 比較例 6
第 1発光層、電子障害層、第 2発光層の組成を表 3に示すように変えた他は、実施 例 1と同様にして有機 EL素子を製造した。すなわち、電荷障壁層の陰極側を赤色発 光層とする。そして、電荷障壁層として Afが 3. leV程度のアミン正孔輸送材 (GD)を 用いた。得られた有機 EL発光素子について、実施例 1と同様に測定を行った。測定 結果を表 3に示す。
(CIEx, CIEy) = (0. 657, 0. 340)と第 2発光層の赤だけが光った。また、発光 効率も悪かった。
[0175] 比較例 7
第 1発光層、第 2発光層の組成を表 3に示すように変えた他は、実施例 1と同様にし て有機 EL素子を製造した。すなわち、上記比較例 6と同様に電荷障壁層の陰極側 を赤色発光層とする。ここで、電荷障壁層の Afよりも第 1発光層のホストの Afを高くし ている。得られた有機 EL発光素子について、実施例 1と同様に測定を行った。測定 結果を表 3に示す。
(CIEx, CIEy) = (0. 657, 0. 340)と第 2発光層の赤だけが光り、効率が悪かつ た。この場合も発光は赤だけとなり、第 1発光層(青)には電子注入されず、良好な白 色とはならない。
このように、上記二つの比較例から、第 2発光層のホストの Egが第 1発光層のホスト の Egよりも小さい場合、電荷障壁層の Afレベルをどう工夫しても発光バランスが取れ ないことが分かる。
したがって、第 2発光層の Egが第 1発光層の Egよりも大き 、ことが必要である。
[0176] 比較例 8
第 1発光層、電子障害層、第 2発光層の組成を表 3に示すように変えた他は、実施 例 1と同様にして有機 EL素子を製造した。すなわち、第 1発光層を緑とし、第 2発光 層を青とした。そして、電荷障壁層に赤 (RD)をドープした。得られた有機 EL発光素 子について、実施例 1と同様に測定を行った。測定結果を表 3に示す。
色度データより、電荷障壁層 Z第 2発光層の界面で再結合したエネルギーは、青ド 一パントと赤ドーパントに移動し発光する力 赤力 緑にエネルギー移動しないため に緑の発光はほとんど見られな力つたことが分った。
[0177] 比較例 9
第 1発光層、電子障害層、第 2発光層の組成を表 3に示すように変えた他は、実施 例 1と同様にして有機 EL素子を製造した。すなわち、第 1発光層を青とし、第 2発光 層を赤とし、電荷障壁層に緑をドープした。得られた有機 EL発光素子について、実 施例 1と同様に測定を行った。測定結果を表 3に示す。
色度データに示されるように発光はほとんど赤しかな力 た。 [0178] 実施例 3及び比較例 8、 9に示すように、バランスのよい 3波長白色を構成するため には、発光が弱い青を最も再結合する領域に配置することが好ましい。従って、青は 第 2発光層になる。ホスト材料のバランスから、第 1発光層に赤を配置する。この構成 によりバランスのよい白色を得る。
さらに、電荷障壁層に緑をドープすると、電荷障壁層と第 2発光層との界面領域で 生じる励起子エネルギーにより緑を光らせることができる。さらに、第 1及び第 2発光 層との界面で再結合領域を構成する電荷障壁層に緑をドープするので、緑の発光が 安定する。視感性が高い緑は発光バランスが崩れると人の目にはすぐにわかる。従 つて、緑を一番バランスがとれる位置に配置することにより、色ずれが少ない白色とす ることがでさる。
[0179] 実施例 5
第 2発光層、第 3発光層の組成を表 3に示すように変えた他は、実施例 2と同様にし て有機 EL素子を製造した。得られた有機 EL発光素子について、実施例 1と同様に 測定を行った。測定結果を表 3に示す。
色度データに示されるように 460nm付近の青の発光が弱ぐ好適な白色発光とな らなかった。原因は電荷障壁層 Z第 2発光層(緑)界面付近で再結合し緑色発光は する力 青発光層へエネルギー移動し難いので青の発光が弱くなつたためである。
[0180] 実施例 2及び実施例 5の対比からわかるように、実施例 2では、第 2発光層での再 結合のエネルギーを第 3発光層に移動させて第 3発光層の緑を発光させる。実施例 2では、緑が青に対して陰極側に配置されていることにより、青に対する電子注入の ノ《ランスをとることができる。緑ドーパントが電子トラップとなるためである。これにより、 全体としてバランスのとれた白色素子構成を実現できる。
[0181] [表 3]
Figure imgf000073_0001
[0182] 実施例 6
(フルカラー発光装置)
112mmX 143mm X I. 1mmの支持基板(OA2ガラス:日本電気硝子社製)上に 、ブラックマトツタス (BM)の材料として V259BK (新日鉄化学社製)をスピンコートし 、 68 m X 285 mが開口した格子状のパターンになるようなフォトマスクを介して紫 外線露光し、 2%炭酸ナトリウム水溶液で現像後、 200°Cでベータして、ブラックマトリ ックス (膜厚 1. 5 m)のパターンを形成した。
[0183] 次に、青色カラーフィルタの材料として、 V259B (新日鉄化学社製)をスピンコート し、長方形(100 μ mライン、 230 μ mギャップ)のストライプパターンが 320本得られ るようなフォトマスクを介して、 BMに位置合わせして紫外線露光し、 2%炭酸ナトリウ ム水溶液で現像後、 200°Cでベータして、青色カラーフィルタ(膜厚 1. 5 m)のパタ ーンを形成した。
[0184] 次に、緑色カラーフィルタの材料として、 V259G (新日鉄化学社製)をスピンコート し、長方形(100 μ mライン、 230 μ mギャップ)のストライプパターンが 320本得られ るようなフォトマスクを介して、 BMに位置合わせして紫外線露光し、 2%炭酸ナトリウ ム水溶液で現像後、 200°Cでベータして、青色カラーフィルタに隣接する位置に緑 色カラーフィルタ(膜厚 1. 5 m)のパターンを形成した。
[0185] 次に、赤色カラーフィルタの材料として、 CRY—S840B (富士フィルムアーチ製)を スピンコートし、長方形(100 μ mライン、 230 μ mギャップ)のストライプパターンが 32 0本得られるようなフォトマスクを介して、 BMに位置合わせして紫外線露光し、 2%炭 酸ナトリウム水溶液で現像後、 200°Cでベータして、青色カラーフィルタと緑色カラー フィルタの間の位置に赤色カラーフィルタ (膜厚 1. 5 m)のパターンを形成した。
[0186] 次に、平坦化膜としてアクリル系熱硬化性榭脂 (V259PH:新日鉄化学社製)を先 の基板上にスピンコートし、 180°Cでベータして、平坦ィ匕膜 (膜厚 5 m)を形成した。 次に、 ITO (インジウム錫酸ィ匕物)をスパッタリングにより 130nm膜厚で成膜した。
[0187] 次に、この基板上にポジ型レジスト (HPR204 :富士オーリン製)をスピンコートし、 陰極の取り出し部と、 90 mライン、 20 mギャップのストライプ状のパターンになる ようなフォトマスクを介して紫外線露光し、テトラメチルアンモ-ゥムヒドロキシドの現像 液で現像し、 130°Cでベータし、レジストパターンを得た。
[0188] 次に、 ITOエツチャントにて、露出している部分の ITOをエッチングした。次に、レジ ストをエタノールアミンを主成分とする剥離液 (N303 :長瀬産業製)で処理して、青色 カラーフィルタ、緑色カラーフィルタ、赤色カラーフィルタ上に相当する位置に、 ITO パターン(下部電極:陽極、ライン数 960本)を得た。
[0189] 次に、第一の層間絶縁膜として、ネガ型レジスト (V259PA:新日鉄化学社製)をス ピンコートし、フォトマスクを介して、紫外線露光し、テトラメチルアンモ-ゥムヒドロキ シドの現像液で現像した。次に、 180°Cでベータして、 ITOのエッジを被覆した ITO の開口部が 70 m X 290 m)格子状パターン層間絶縁膜を形成した。
[0190] 次に、第二の層間絶縁膜 (隔壁)として、ネガ型レジスト (ZPN1100 :日本ゼオン製 )をスピンコートし、 20 mライン、 310 mギャップのストライプパターンになるような フォトマスクを介して紫外線露光後、さらに露光後ベータを行なった。次に、テトラメチ ルアンモ-ゥムヒドロキシドの現像液でネガレジストを現像し、 ITOストライプに直交し た第二の層間絶縁膜 (隔壁)を形成した。
このようにして得られた基板を純水及びイソプロピルアルコール中で超音波洗浄し 、エアブローにて乾燥後、 UV洗浄した。
[0191] その後、有機層(正孔注入層〜電子注入層まで)は、カラーフィルタを覆う範囲にマ スク蒸着し、陰極はさらに、先に形成した ITO取り出し電極に接続できるようなマスク 蒸着した。陰極 (上部電極)は、先に基板上に作製した隔壁により、 自動的に分離さ れ、下部電極と交差したパターン (ライン数 240本)となっていた。
[0192] 基板上に有機 EL素子を作製後、乾燥窒素を流通したドライボックスに基板を大気 に触れないように移動し、そのドライボックス内にて、封止基板の青板ガラスで表示部 を被覆し、表示部周辺部はカチオン硬化性の接着剤 (TB3102:スリーボンド製)で 光硬化させて封止した。
[0193] このようにして、下部電極と上部電極が XYマトリックスを形成してなるフルカラー発 光装置を作製し、その下部電極と上部電極に DC電圧を印加(下部電極:(+ )、上部 電極:(一))したところ、各電極の交差部分 (画素)が発光した。
[0194] (フルカラー発光装置の特性評価) (1)青色性能
青色カラーフィルタに対応する下部電極と上部透明電極との間に、 7. 25Vの直流 電圧を印加したところ、青く発光した。分光放射輝度計 CS— 1000 (ミノルタ製)にて 測定したところ、輝度 31cdZm2、色度(0. 124, 0. 117)であった。両電極間に流 れる電流値を測定し、発光効率を算出したところ、 1. 14cdZAであった。
[0195] (2)緑色性能
緑色カラーフィルタに対応する下部電極と上部透明電極との間に、 7. 25Vの直流 電圧を印加したところ、緑色に発光した。分光放射輝度計 CS— 1000 (ミノルタ製)に て測定したところ、輝度 250cdZm2、色度(0. 247, 0. 621)であった。両電極間に 流れる電流値を測定し、発光効率を算出したところ、 9. 24cdZAであった。
[0196] (3)赤色性能
赤色カラーフィルタに対応する下部電極と上部透明電極との間に、 7. 25Vの直流 電圧を印加したところ、赤色に発光した。分光放射輝度計 CS— 1000 (ミノルタ製)に て測定したところ、輝度 85cdZm2、色度(0. 652, 0. 335)であった。両電極間に 流れる電流値を測定し、発光効率を算出したところ、 3. 15cdZAであった。
[0197] (4)全面点灯
全ての下部電極と上部透明電極との間に、 7. 25Vの直流電圧を印加したところ、 白色発光を示した。分光放射輝度計 CS— 1000 (ミノルタ製)にて測定したところ、輝 度 451cdZm2、色度(0. 324, 0. 397)であった。両電極間に流れる電流値を測定 し、発光効率を算出したところ、 4. 51cdZAであり、非常に高効率であった。
産業上の利用可能性
[0198] 本発明の有機 EL素子は、各種表示装置、ノ ックライト、カラーフィルタを使用したフ ルカラー表示装置、汎用照明用及び特殊照明用光源等に使用できる。

Claims

請求の範囲
[1] 陽極、第 1発光層、電荷障壁層、第 2発光層及び陰極をこの順に積層して含み、 前記第 1発光層及び第 2発光層が、それぞれホスト材料及びドーパントを含有し、 前記第 1発光層のホスト材料のエネルギーギャップ力 前記第 2発光層のホスト材 料のエネルギーギャップよりも小さく、
前記第 1発光層のホスト材料が正孔輸送性材料であり、第 2発光層のホスト材料が 電子輸送性材料であり、
前記電荷障壁層のァフィ二ティレベル力 前記第 2発光層のホスト材料のァフィ-テ ィレベルよりも 0. 2eV以上小さく、
前記電荷障壁層のイオンィ匕ポテンシャル (Iel)と前記第 1発光層のホスト材料のィ オンィ匕ポテンシャル (Ihl) 1S 下記の関係(1)を満たす有機エレクト口ルミネッセンス 素子。
IeKIhl + O. 1 (eV) · · · (1)
[2] 陽極、第 1発光層、電荷障壁層、第 2発光層、第 3発光層及び陰極をこの順に積層 して含み、
前記第 1発光層、第 2発光層及び第 3発光層が、それぞれホスト材料及びドーパン トを含有し、
前記第 1発光層のホスト材料のエネルギーギャップ力 前記第 2発光層のホスト材 料のエネルギーギャップよりも小さく、
前記第 1発光層のホスト材料が正孔輸送性材料であり、
前記第 2発光層及び第 3発光層のホスト材料が電子輸送性材料であり、 前記電荷障壁層は正孔輸送性材料であり、
前記電荷障壁層のイオンィ匕ポテンシャル (Iel)と前記第 1発光層のホスト材料のィ オンィ匕ポテンシャル (Ihl) 1S 下記の関係(1)を満たす有機エレクト口ルミネッセンス 素子。
IeKIhl + O. 1 (eV) · · · (1)
[3] 前記電荷障壁層のァフィ二ティレベル力 前記第 2発光層のホスト材料のァフィ-テ ィレベルよりも 0. 2eV以上小さい請求項 2に記載の有機エレクト口ルミネッセンス素子 [4] 前記第 1発光層のホスト材料のエネルギーギャップ力 前記第 2発光層のホスト材 料のエネルギーギャップよりも 0. 4eV以上小さ!/、請求項 1〜3の!、ずれか一項記載 の有機エレクト口ルミネッセンス素子。
[5] 前記第 1発光層のドーパントが赤色ドーパントであり、前記第 2発光層のドーパント が青色ドーパントである請求項 1に記載の有機エレクト口ルミネッセンス素子。
[6] 前記第 1発光層のドーパントが赤色ドーパントであり、前記第 2発光層のドーパント が青色ドーパントであり、前記第 3発光層のドーパントが緑色ドーパントである請求項
2又は 3に記載の有機エレクト口ルミネッセンス素子。
[7] 前記電荷障壁層が発光材料を含む請求項 1〜6のいずれか一項記載の有機エレ タトロルミネッセンス素子。
[8] 前記電荷障壁層の発光材料が、緑色ドーパントである請求項 7に記載の有機エレ タトロルミネッセンス素子。
[9] 前記陽極と前記第 1発光層の間に、第 1発光層と隣接する正孔輸送層を有する、 請求項 1〜8のいずれか一項記載の有機エレクト口ルミネッセンス素子。
[10] 前記正孔輸送層を形成する材料と前記電荷障壁層を形成する材料が同じ材料で ある、請求項 9に記載の有機エレクト口ルミネッセンス素子。
[11] 陽極に近い有機層である第 1発光層又は第 1の有機層が、酸化剤を含有している 力 及び Z又は陰極に近い有機層である第 2発光層又は第 2の有機層力 還元剤を 含有している、請求項 1〜10のいずれか一項記載の有機エレクト口ルミネッセンス素 子。
[12] 前記第 1発光層のホスト材料が、下記式(1)で表される化合物であり、前記第 1発 光層のドーパントが、フルオランテン骨格又はペリレン骨格を有する化合物である請 求項 1〜: L 1のいずれか記載の有機エレクト口ルミネッセンス素子。
X -(Y) n (1)
(式中、 Xは炭素環 3以上の縮合芳香族環基であり、
Υは置換もしくは無置換のァリール基、置換もしくは無置換のジァリールアミノ基、 置換もしくは無置換のァリールアルキル基又は置換もしくは無置換のアルキル基から 選択される基であり、
nは 1〜6の整数であり、 nが 2以上の場合、 Yは同じでも異なってもよい。 ) 前記フルオランテン骨格又はペリレン骨格を有する化合物が、下記式(2)又は式 (
3)で表されるインデノペリレン誘導体である請求項 12に記載の有機エレクトロルミネ ッセンス素子。
[化 48]
Figure imgf000079_0001
(式中、
Figure imgf000079_0002
Ar2及び Ar3は、それぞれ置換もしくは無置換の芳香環基又は置換もし くは無置換の芳香族複素環基であり、 〜 8は、それぞれ水素、ハロゲン、アルキ ル基、アルコキシ基、アルキルチオ基、ァルケ-ル基、ァルケ-ルォキシ基、ァルケ 二ルチオ基、芳香環含有アルキル基、芳香環含有アルキルォキシ基、芳香環含有ァ ルキルチオ基、芳香環基、芳香族複素環基、芳香環ォキシ基、芳香環チォ基、芳香 環アルケニル基、アルケニル芳香環基、アミノ基、カルバゾリル基、シァノ基、水酸基 、 -COOR1' (R1'は水素、アルキル基、ァルケ-ル基、芳香環含有アルキル基又は 芳香環基である。)、 COR2' (R2'は水素、アルキル基、アルケニル基、芳香環含有 アルキル基、芳香環基又はアミノ基である)、又は OCOR3' (R3'はアルキル基、ァ ルケニル基、芳香環含有アルキル基又は芳香環基である)である。 〜 18の隣接 する基は、互いに結合して、又は置換している炭素原子と共に環を形成していてもよ い。)
[14] 前記インデノペリレン誘導体がジベンゾテトラフヱニルペリフランテン誘導体である 請求項 13に記載の有機エレクト口ルミネッセンス素子。
[15] 第 1発光層のホスト材料の縮合環数が 4以上で、第 2発光層のホスト材料の縮合環 数が 3環以下である請求項 12〜14のいずれか一項記載に記載の有機エレクト口ルミ ネッセンス素子。 前記式(1)で表される化合物力 下記式 (4)で表されるナフタセン誘導体である請 求項 12〜 15の!、ずれか一項記載の有機エレクト口ルミネッセンス素子。
[化 49]
Figure imgf000080_0001
( 4 )
(式 (4)中、 (^〜 2は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数 1〜20のアルキル基、置換もしくは無置換の核炭素数 6〜20のァリール基、アミノ基 、置換もしくは無置換の炭素数 1〜20のアルコキシ基、置換もしくは無置換の炭素数 1〜20のアルキルチオ基、置換もしくは無置換の核炭素数 6〜20のァリーロキシ基、 置換もしくは無置換の核炭素数 6〜20のァリールチオ基、置換もしくは無置換の炭 素数 2〜20のアルケニル基、置換もしくは無置換の核炭素数 7〜20のァラルキル基 又は置換もしくは無置換の核原子数 5〜20の複素環基を表し、これらは同一でも異 なってもよい。 )
[17] 前記式 (4)で表されるナフタセン誘導体における Q Q2、 Q3及び Q4の少なくとも 1 つ以上がァリール基である請求項 16記載の有機エレクト口ルミネッセンス素子。
[18] 前記式 (4)で表されるナフタセン誘導体が下記式(5)で表される請求項 17記載の 有機エレクト口ルミネッセンス素子。
[化 50]
Figure imgf000081_0001
(式 (5)中、 Q3〜Q12、 Q101~Q105, Q201〜Q2°5は、それぞれ独立に、前記一般式 (1 )中 Q3〜Q12と同じ基を表し、これらは同一でも異なってもよぐこれら隣接する 2個以 上が互いに結合して環を形成してもよい。 )
[19] 前記式 (5)で表されるナフタセン誘導体における Qlcn、 Q105, Q2Cn及び Q2°5の少な くとも 1つ以上がアルキル基、ァリール基、アミノ基、アルコキシ基、ァリーロキシ基、ァ ルキルチオ基、ァリールチオ基、アルケニル基、ァラルキル基又は複素環基であり、 これらは同一でも異なってもよい請求項 18記載の有機エレクト口ルミネッセンス素子。
[20] 前記電荷障壁層が、第三級アミンィ匕合物、力ルバゾール誘導体、含窒素複素環を 含む化合物又は金属錯体を含む請求項 12〜 19のいずれか一項記載に記載の有 機エレクト口ルミネッセンス素子。
[21] 白色発光の請求項 1〜20のいずれか一項記載の有機エレクト口ルミネッセンス素 子と、
カラーフィルタを備えるフルカラー発光装置。
PCT/JP2007/060345 2006-05-25 2007-05-21 有機エレクトロルミネッセンス素子及びフルカラー発光装置 WO2007138906A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800095368A CN101405887B (zh) 2006-05-25 2007-05-21 有机电致发光元件和彩色发光装置
EP07743779A EP1933397A4 (en) 2006-05-25 2007-05-21 ORGANIC ELECTROLUMINESCENT DEVICE AND COLOR LIGHT EMITTING DEVICE
JP2008517846A JP4134280B2 (ja) 2006-05-25 2007-05-21 有機エレクトロルミネッセンス素子及びフルカラー発光装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006146001 2006-05-25
JP2006-145983 2006-05-25
JP2006145983 2006-05-25
JP2006-146001 2006-05-25
US11/475,225 US20070275266A1 (en) 2006-05-25 2006-06-27 Organic electroluminescence device
US11/475,225 2006-06-27
US11/475,081 2006-06-27
US11/475,081 US7768195B2 (en) 2006-05-25 2006-06-27 Organic electroluminescent device with improved luminous efficiency

Publications (1)

Publication Number Publication Date
WO2007138906A1 true WO2007138906A1 (ja) 2007-12-06

Family

ID=38778425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060345 WO2007138906A1 (ja) 2006-05-25 2007-05-21 有機エレクトロルミネッセンス素子及びフルカラー発光装置

Country Status (2)

Country Link
EP (1) EP1933397A4 (ja)
WO (1) WO2007138906A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300503A (ja) * 2007-05-30 2008-12-11 Sony Corp 有機電界発光素子および表示装置
JP2009076793A (ja) * 2007-09-21 2009-04-09 Seiko Epson Corp 発光素子、表示装置および電子機器
JP2009295306A (ja) * 2008-06-02 2009-12-17 Seiko Epson Corp 発光素子、表示装置および電子機器
JP2009295305A (ja) * 2008-06-02 2009-12-17 Seiko Epson Corp 発光素子、表示装置および電子機器
WO2010110176A1 (ja) * 2009-03-25 2010-09-30 パナソニック電工株式会社 有機el素子
WO2012070233A1 (en) * 2010-11-22 2012-05-31 Idemitsu Kosan Co.,Ltd. Organic electroluminescence device
KR101430589B1 (ko) 2011-02-21 2014-08-19 (주)씨에스엘쏠라 유기발광화합물 및 이를 이용한 유기 광소자
US8883323B2 (en) 2010-11-22 2014-11-11 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2016509369A (ja) * 2013-01-03 2016-03-24 メルク パテント ゲーエムベーハー 電子素子
US9324950B2 (en) 2010-11-22 2016-04-26 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2021261310A1 (ja) * 2020-06-23 2021-12-30 ソニーグループ株式会社 発光素子及び表示装置
KR20220061138A (ko) 2019-09-13 2022-05-12 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
WO2022190226A1 (ja) * 2021-03-10 2022-09-15 シャープ株式会社 発光素子および発光デバイス
KR20230027191A (ko) 2020-06-19 2023-02-27 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
KR20230117384A (ko) 2020-12-02 2023-08-08 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
WO2024053088A1 (ja) * 2022-09-09 2024-03-14 シャープディスプレイテクノロジー株式会社 発光素子および表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102126544B1 (ko) * 2013-12-30 2020-06-24 엘지디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 표시 장치
CN111755614A (zh) * 2020-06-17 2020-10-09 武汉华星光电半导体显示技术有限公司 有机发光二极管显示器件及显示面板

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
JPS4725336B1 (ja) 1969-11-26 1972-07-11
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
JPS4935702B1 (ja) 1969-06-20 1974-09-25
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5110105B2 (ja) 1972-02-09 1976-04-01
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5193224A (ja) 1974-12-20 1976-08-16
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
JPS5453435A (en) 1977-10-01 1979-04-26 Yoshikatsu Kume Portable bicycle equipped with foldable type triangle frame
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS5464299A (en) 1977-10-29 1979-05-23 Toshiba Corp Beam deflector for charged particles
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110536A (en) 1978-02-20 1979-08-30 Ichikoh Ind Ltd Device for time-lag putting out room lamp for motorcar
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
JPS54149634A (en) 1978-05-12 1979-11-24 Xerox Corp Image forming member and method of forming image using same
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5585495A (en) 1978-12-18 1980-06-27 Pacific Metals Co Ltd Method of composting organic waste
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093455A (ja) 1983-10-28 1985-05-25 Fuji Xerox Co Ltd 電子写真用現像剤
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH01211399A (ja) 1988-02-19 1989-08-24 Toshiba Corp スキャン機能付きダイナミックシフトレジスタ
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH045555A (ja) 1990-04-23 1992-01-09 Yokogawa Electric Corp 発光分光検出器
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0878163A (ja) 1994-09-07 1996-03-22 Kemipuro Kasei Kk 有機エレクトロルミネッセンス素子およびその製法
JPH08193191A (ja) 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd 有機電界発光素子及び有機薄膜
JPH093448A (ja) 1995-06-23 1997-01-07 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用電子輸送材料およびそれを用いた有機エレクトロルミネッセンス素子
JP2000173774A (ja) 1998-12-09 2000-06-23 Sony Corp 有機電界発光素子
JP2003272857A (ja) 2002-03-19 2003-09-26 Idemitsu Kosan Co Ltd 白色系有機エレクトロルミネッセンス素子
WO2004060027A1 (ja) * 2002-12-25 2004-07-15 Fujitsu Limited 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンスディスプレイ
JP2004235168A (ja) 2004-05-20 2004-08-19 Toyota Industries Corp 有機エレクトロルミネッセンス素子
JP2005100921A (ja) 2003-08-22 2005-04-14 Sony Corp 有機el素子および表示装置
JP2005150081A (ja) * 2003-10-24 2005-06-09 Pentax Corp 白色有機エレクトロルミネセンス素子
JP2005276583A (ja) * 2004-03-24 2005-10-06 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子及び表示装置
WO2005099313A1 (ja) 2004-04-02 2005-10-20 Idemitsu Kosan Co., Ltd. 電子障壁層を介して2つの発光層を有する有機エレクトロルミネッセンス素子
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
WO2005112518A1 (ja) 2004-03-25 2005-11-24 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
US20060088729A1 (en) 2004-10-25 2006-04-27 Eastman Kodak Company White organic light-emitting devices with improved performance
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003289392A1 (en) * 2002-12-26 2004-07-22 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element
TWI265750B (en) * 2003-02-27 2006-11-01 Toyota Jidoshokki Kk Organic electro-luminescence devices
US20050147844A1 (en) * 2004-01-05 2005-07-07 Eastman Kodak Company White oled devices with color filter arrays

Patent Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
JPS4935702B1 (ja) 1969-06-20 1974-09-25
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
JPS4725336B1 (ja) 1969-11-26 1972-07-11
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5110105B2 (ja) 1972-02-09 1976-04-01
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5193224A (ja) 1974-12-20 1976-08-16
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5453435A (en) 1977-10-01 1979-04-26 Yoshikatsu Kume Portable bicycle equipped with foldable type triangle frame
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS5464299A (en) 1977-10-29 1979-05-23 Toshiba Corp Beam deflector for charged particles
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110536A (en) 1978-02-20 1979-08-30 Ichikoh Ind Ltd Device for time-lag putting out room lamp for motorcar
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
JPS54149634A (en) 1978-05-12 1979-11-24 Xerox Corp Image forming member and method of forming image using same
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5585495A (en) 1978-12-18 1980-06-27 Pacific Metals Co Ltd Method of composting organic waste
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS6093455A (ja) 1983-10-28 1985-05-25 Fuji Xerox Co Ltd 電子写真用現像剤
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH01211399A (ja) 1988-02-19 1989-08-24 Toshiba Corp スキャン機能付きダイナミックシフトレジスタ
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
JPH045555A (ja) 1990-04-23 1992-01-09 Yokogawa Electric Corp 発光分光検出器
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0878163A (ja) 1994-09-07 1996-03-22 Kemipuro Kasei Kk 有機エレクトロルミネッセンス素子およびその製法
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子
JPH08193191A (ja) 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd 有機電界発光素子及び有機薄膜
JPH093448A (ja) 1995-06-23 1997-01-07 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用電子輸送材料およびそれを用いた有機エレクトロルミネッセンス素子
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
JP2000173774A (ja) 1998-12-09 2000-06-23 Sony Corp 有機電界発光素子
JP2003272857A (ja) 2002-03-19 2003-09-26 Idemitsu Kosan Co Ltd 白色系有機エレクトロルミネッセンス素子
WO2004060027A1 (ja) * 2002-12-25 2004-07-15 Fujitsu Limited 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンスディスプレイ
JP2005100921A (ja) 2003-08-22 2005-04-14 Sony Corp 有機el素子および表示装置
JP2005150081A (ja) * 2003-10-24 2005-06-09 Pentax Corp 白色有機エレクトロルミネセンス素子
JP2005276583A (ja) * 2004-03-24 2005-10-06 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子及び表示装置
WO2005112518A1 (ja) 2004-03-25 2005-11-24 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005099313A1 (ja) 2004-04-02 2005-10-20 Idemitsu Kosan Co., Ltd. 電子障壁層を介して2つの発光層を有する有機エレクトロルミネッセンス素子
JP2004235168A (ja) 2004-05-20 2004-08-19 Toyota Industries Corp 有機エレクトロルミネッセンス素子
US20060088729A1 (en) 2004-10-25 2006-04-27 Eastman Kodak Company White organic light-emitting devices with improved performance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1933397A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300503A (ja) * 2007-05-30 2008-12-11 Sony Corp 有機電界発光素子および表示装置
JP2009076793A (ja) * 2007-09-21 2009-04-09 Seiko Epson Corp 発光素子、表示装置および電子機器
JP2009295306A (ja) * 2008-06-02 2009-12-17 Seiko Epson Corp 発光素子、表示装置および電子機器
JP2009295305A (ja) * 2008-06-02 2009-12-17 Seiko Epson Corp 発光素子、表示装置および電子機器
WO2010110176A1 (ja) * 2009-03-25 2010-09-30 パナソニック電工株式会社 有機el素子
JP2010225563A (ja) * 2009-03-25 2010-10-07 Panasonic Electric Works Co Ltd 有機el素子
CN102362552A (zh) * 2009-03-25 2012-02-22 松下电工株式会社 有机el元件
US8883323B2 (en) 2010-11-22 2014-11-11 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2012070234A1 (en) * 2010-11-22 2012-05-31 Idemitsu Kosan Co.,Ltd. Organic electroluminescence device
WO2012070233A1 (en) * 2010-11-22 2012-05-31 Idemitsu Kosan Co.,Ltd. Organic electroluminescence device
US9324950B2 (en) 2010-11-22 2016-04-26 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
KR101430589B1 (ko) 2011-02-21 2014-08-19 (주)씨에스엘쏠라 유기발광화합물 및 이를 이용한 유기 광소자
KR101739828B1 (ko) 2011-02-21 2017-06-28 주식회사 스킨앤스킨 유기발광화합물 및 이를 이용한 유기 광소자
JP2016509369A (ja) * 2013-01-03 2016-03-24 メルク パテント ゲーエムベーハー 電子素子
KR20220061138A (ko) 2019-09-13 2022-05-12 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
KR20230027191A (ko) 2020-06-19 2023-02-27 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
WO2021261310A1 (ja) * 2020-06-23 2021-12-30 ソニーグループ株式会社 発光素子及び表示装置
KR20230117384A (ko) 2020-12-02 2023-08-08 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
WO2022190226A1 (ja) * 2021-03-10 2022-09-15 シャープ株式会社 発光素子および発光デバイス
WO2024053088A1 (ja) * 2022-09-09 2024-03-14 シャープディスプレイテクノロジー株式会社 発光素子および表示装置

Also Published As

Publication number Publication date
EP1933397A1 (en) 2008-06-18
EP1933397A4 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
CN101405887B (zh) 有机电致发光元件和彩色发光装置
WO2007138906A1 (ja) 有機エレクトロルミネッセンス素子及びフルカラー発光装置
JP4509211B2 (ja) 電子障壁層を介して2つの発光層を有する有機エレクトロルミネッセンス素子
US7737625B2 (en) Organic electroluminescent device with carrier blocking layer interposed between two emitting layers
JP5432523B2 (ja) 有機エレクトロルミネッセンス素子
US7888865B2 (en) Organic electroluminescent device and display having multiple emitting layers
WO2008023623A1 (fr) Dispositif électroluminescent organique
JP4134280B2 (ja) 有機エレクトロルミネッセンス素子及びフルカラー発光装置
JP5097700B2 (ja) 有機エレクトロルミネッセンス素子
EP1727396A1 (en) Organic electroluminescent device
US20070275266A1 (en) Organic electroluminescence device
WO2008015949A1 (fr) Composant organique électroluminescent
KR20090021174A (ko) 복소환 함유 아릴아민 유도체를 이용한 유기 전계발광 소자
US20070108894A1 (en) Organic electroluminescent device
JP4002277B2 (ja) 有機エレクトロルミネッセンス素子
JP2009221442A (ja) 有機エレクトロルミネッセンス素子用材料ならびに有機エレクトロルミネッセンス素子
JP5435386B2 (ja) 有機エレクトロルミネッセンス素子用材料
JP2011016882A (ja) 低分子塗布型有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子用インキ組成物、および、有機エレクトロルミネッセンス素子
JP2010140976A (ja) 有機エレクトロルミネッセンス素子用材料およびそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020087005360

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2008517846

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743779

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007743779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780009536.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE