WO2010107023A1 - 多孔性ポリプロピレンフィルムおよびその製造方法 - Google Patents

多孔性ポリプロピレンフィルムおよびその製造方法 Download PDF

Info

Publication number
WO2010107023A1
WO2010107023A1 PCT/JP2010/054425 JP2010054425W WO2010107023A1 WO 2010107023 A1 WO2010107023 A1 WO 2010107023A1 JP 2010054425 W JP2010054425 W JP 2010054425W WO 2010107023 A1 WO2010107023 A1 WO 2010107023A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polypropylene film
porous polypropylene
porous
resin
Prior art date
Application number
PCT/JP2010/054425
Other languages
English (en)
French (fr)
Inventor
久万琢也
生駒啓
大倉正寿
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP10753515.5A priority Critical patent/EP2410006A4/en
Priority to US13/203,879 priority patent/US20110319511A1/en
Priority to JP2010513514A priority patent/JP5736777B2/ja
Priority to CN2010800047370A priority patent/CN102282203B/zh
Publication of WO2010107023A1 publication Critical patent/WO2010107023A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a porous polypropylene film excellent in quality and productivity, and having excellent battery characteristics when used in a separator of an electricity storage device, and a method for producing the same.
  • Polypropylene films are used in various applications such as industrial materials, packaging materials, optical materials, and electrical materials due to their excellent mechanical, thermal, electrical, and optical properties.
  • a porous polypropylene film having a void formed in the polypropylene film has excellent properties such as permeability and low specific gravity in addition to the properties as a polypropylene film.
  • separators for batteries and electrolytic capacitors various separation membranes, clothing, moisture-permeable waterproof membranes for medical applications, reflectors for flat panel displays and heat-sensitive transfer recording sheets has been studied.
  • a porous film is used as a separator, not only is the cost reduced by improving productivity, but also the recent lithium ion battery ignition accident requires further safety for the battery. High quality and reliability with less foreign matter are required.
  • Porous methods can be broadly classified into wet methods and dry methods.
  • wet method polypropylene is used as the matrix resin, the extractables to be extracted after sheeting are added and mixed, and only the additives are extracted using the good solvent of the extractables, creating voids in the matrix resin. It is a method to do.
  • Various proposals have been made as wet methods (see Patent Document 1). The wet method is excellent in quality because it can reduce the viscosity of the resin composition and can be filtered with high precision, and can be cast at a low temperature, thereby reducing deterioration of the resin composition.
  • the extraction process is complicated and a solvent treatment process is required, cost reduction is difficult.
  • the porous polypropylene film produced by the various methods described above is used as a separator for an electricity storage device, particularly a lithium ion secondary battery
  • the ⁇ crystal method usually forms voids by biaxial stretching, so it is compared with other methods.
  • a high porosity can be achieved. Therefore, the internal resistance of the battery can be lowered, and it is particularly suitable for a separator for a high-output power storage device that requires a large current (see Patent Document 7).
  • an object of the present invention is to provide a porous polypropylene film excellent in quality and productivity and exhibiting excellent battery characteristics when used in a separator of an electricity storage device, and a method for producing the same.
  • the polypropylene film of the present invention has 0.5 or less portions per 1 m 2 where the transmitted light amount is 5 times or more with respect to the average transmitted light amount.
  • porous polypropylene film of the present invention is excellent in quality and productivity and has a high porosity, it can be suitably applied as a separator for an electricity storage device.
  • the porous polypropylene film of the present invention is a biaxially oriented polypropylene film and has through holes.
  • a biaxially oriented polypropylene film produced by a dry method is preferable.
  • a through-hole means the hole which penetrates both surfaces of a film and has air permeability.
  • the ⁇ crystal method can be mentioned. Thereby, uniform physical properties and thinning can be achieved.
  • the ⁇ crystal forming ability of the polypropylene resin is preferably 40 to 90%. If the ⁇ -crystal forming ability is less than 40%, the amount of ⁇ -crystals is small at the time of film production, so the number of voids formed in the film is reduced by utilizing the transition to ⁇ -crystal, and as a result, only a film with low air permeability is obtained. It may not be possible. On the other hand, in order to make the ⁇ crystal forming ability exceed 90%, it is necessary to add a large amount of a ⁇ crystal nucleating agent described later, or to make the stereoregularity of the polypropylene resin to be used extremely high. Industrial practical value is low, such as deterioration of stability. Industrially, the ⁇ -crystal forming ability is preferably 60 to 85%, particularly preferably 65 to 80%.
  • a polypropylene resin having a high isotactic index is used, or a ⁇ crystal is selectively added by adding it to the polypropylene resin called a ⁇ crystal nucleating agent.
  • the crystallization nucleating agent to be formed is preferably used as an additive.
  • the ⁇ crystal nucleating agent include various pigment compounds and amide compounds. For example, amide compounds; tetraoxaspiro compounds; quinacridones; iron oxides having a nanoscale size; carboxylic acids represented by potassium 1,2-hydroxystearate, magnesium benzoate or succinate, magnesium phthalate, etc.
  • amide compounds disclosed in JP-A-5-310665 can be preferably used. Specifically, it is an amide compound represented by the following general formula (1).
  • R 1 NHCO—X—CONH—R 2 (1)
  • X represents the following (2) or (3).
  • R 1 and R 2 represent the same or different cycloalkyl groups having 5 to 12 carbon atoms.
  • the polypropylene resin preferably contains 0.05 to 0.5% by mass of the ⁇ crystal nucleating agent with respect to the entire polypropylene resin. It is more preferable if it is -0.3 mass%.
  • the polypropylene resin constituting the porous polypropylene film of the present invention preferably has a melt flow rate (hereinafter referred to as MFR, measurement conditions are 230 ° C., 2.16 kg) in the range of 2 to 30 g / 10 min. Furthermore, it is preferable that it is an isotactic polypropylene resin.
  • MFR melt flow rate
  • measurement conditions are 230 ° C., 2.16 kg
  • the isotactic index is preferably 90 to 99.9%. If the isotactic index is less than 90%, the crystallinity of the resin is low, and it may be difficult to achieve high air permeability.
  • polypropylene resin used in the present invention it is possible to use a homopolypropylene resin, as well as from the viewpoint of stability in the film-forming process, film-forming properties, and uniformity of physical properties, polypropylene with an ethylene component or butene, Resins obtained by copolymerizing ⁇ -olefin components such as hexene and octene in the range of 5% by mass or less can also be used.
  • the form of introduction of the comonomer (copolymerization component) into polypropylene may be either random copolymerization or block copolymerization.
  • the above polypropylene resin preferably contains high melt tension polypropylene in the range of 0.5 to 5% by mass from the viewpoint of improving the film forming property.
  • High melt tension polypropylene is a polypropylene resin whose tension in the molten state is increased by mixing a high molecular weight component or a component having a branched structure into the polypropylene resin or by copolymerizing a long-chain branched component with polypropylene.
  • This high melt tension polypropylene is commercially available.
  • polypropylene resins PF814, PF633, and PF611 manufactured by Basell polypropylene resin WB130HMS manufactured by Borealis, and polypropylene resins D114 and D206 manufactured by Dow can be used.
  • the polypropylene resin used in the present invention comprises 80 to 99 parts by mass of polypropylene and an ethylene / ⁇ -olefin copolymer 20 to 20% from the viewpoint of improving void formation efficiency during biaxial stretching and improving air permeability by increasing the pore size. It is preferable to use a mixture having a mass ratio of 1 part by mass.
  • examples of the ethylene / ⁇ -olefin copolymer include linear low-density polyethylene and ultra-low-density polyethylene, and among them, a copolymer polyethylene obtained by copolymerizing octene-1 and having a melting point of 60 to 90 ° C.
  • a resin (copolymerized PE resin) can be preferably used.
  • the copolymerized polyethylene include commercially available resins such as “Engage (registered trademark)” (type names: 8411, 8452, 8100, etc.) manufactured by Dow Chemical.
  • the copolymer polyethylene resin contains 1 to 10% by mass when the entire polypropylene resin constituting the film of the present invention is 100% by mass, and the porosity and average through-hole diameter described below are controlled within a preferable range. Since it becomes easy to do, it is preferable. From the viewpoint of the mechanical properties of the film, it is more preferably 1 to 7% by mass.
  • the number of the portions where the transmitted light amount is 5 times or more with respect to the average transmitted light amount is 0.5 or less per 1 m 2 .
  • a portion where the amount of transmitted light is 5 times or more may cause a short circuit when used as a separator.
  • the number of transmitted light quantity is more than 5 times per 1 m 2 , the yield deteriorates and the productivity decreases. It is more preferable that the number of transmitted light amounts be 5 times or more is 0.3 or less per 1 m 2 .
  • the porous polypropylene film of this invention is 1 or less per 1 m ⁇ 2 > that the transmitted light quantity becomes 3 times or more and less than 5 times with respect to an average transmitted light quantity.
  • the portion where the amount of transmitted light is 3 times or more and less than 5 times is not a problem when a separate shutdown layer is provided from the viewpoint of safety or when it is used for a low output battery, but when high output such as in-vehicle use is required A short circuit may occur and the battery life may be reduced.
  • the number of transmitted light amounts of 3 times or more and less than 5 times exceeds 1 per 1 m 2 , the yield may deteriorate and the productivity may decrease. It is more preferable that the number of transmitted light amounts be 3 times or more and less than 5 times is 0.5 or less per 1 m 2 .
  • the filtration accuracy is preferably 50 ⁇ m, that is, it is possible to remove foreign matters of 50 ⁇ m or more. More preferably, it is 20 micrometers, Most preferably, it is 10 micrometers. If the filtration accuracy exceeds 50 ⁇ m, the foreign matter that has passed through the filter medium may be the starting point and coarse voids or pinholes may be generated.
  • a polypropylene resin has a high viscosity when melted
  • the leaf disk type filter has a complicated flow path, a resin staying portion occurs. When this staying portion is generated on the downstream side of the filter, particles or additives added to the polypropylene resin may aggregate or thermally deteriorate at that portion, which may be the starting point of coarse voids or pinholes.
  • the inclusion of the amide compound represented by the above general formula (1) increases the ⁇ crystal forming ability of polypropylene which is a cause of porosity, while the amide compound contained therein is crystallized in the molten polypropylene resin in which the amide compound is retained. In some cases, it grows and flows into the film, resulting in a film defect, and the amide compound may cause a decrease in productivity.
  • the frequency may increase when continuous film formation is performed, which causes a deterioration in productivity.
  • the filtration accuracy is made finer as it goes downstream, but in the present invention, the filtration accuracy of the flat filter is coarser than that of the high-precision filtration filter described above.
  • the roughness is preferably 1.8 to 3 times.
  • the filter area of the flat filter cannot be increased, so that the filtration pressure increases and the filter is damaged, and if the discharge rate is lowered to suppress the increase in filtration pressure, the residence time is reduced. Increasing the defects may increase. If it exceeds 3 times, particles passing through the filter medium and aggregates of additives may be the starting point and coarse voids and pinholes may be generated.
  • the filtration accuracy of the flat filter is preferably 100 ⁇ m, that is, it can remove foreign matters of 100 ⁇ m or more, more preferably 50 ⁇ m, and most preferably 20 ⁇ m. If the filtration accuracy exceeds 100 ⁇ m, particles passing through the filter medium and aggregates of additives may be the starting point and coarse voids and pinholes may be generated. Since the flat filter cannot increase the filtration area, the filtration accuracy is often about 20 ⁇ m.
  • the position where the flat filter is installed is preferably as downstream as possible, and is preferably immediately before the die or when the feed block is used for lamination.
  • the coarse voids and pinholes generated from the aggregates of particles and additives are portions where the amount of transmitted light is high, which may deteriorate the battery characteristics when used as a separator.
  • Sintered metal, porous ceramics, sand, wire mesh, etc. can be used for the filter medium used for high-precision filtration filters and flat plate filters.
  • the amide compound represented by the above general formula (1) is included as a ⁇ crystal nucleating agent, the ⁇ crystal nucleating agent grows in a needle shape, so that a sintered metal or porous material is used rather than a screen filter such as a wire mesh. It is preferable to use a sintered filter made of conductive ceramic because the defect frequency can be effectively reduced.
  • the melt extrusion temperature is preferably 190 ° C to 240 ° C. More preferably, it is 200 ° C to 230 ° C, and further preferably 200 ° C to 220 ° C.
  • the temperature exceeds 240 ° C.
  • the particles and additives added to the polypropylene resin are aggregated, which may be the starting point of coarse voids and pinholes. If it is less than 190 degreeC, the fluidity
  • the raw material hopper may be purged with nitrogen, or an antioxidant may be added to the raw material.
  • the porous polypropylene film of the present invention preferably has a porosity of 60 to 85% from the viewpoint of ionic conductivity when used as a separator.
  • the porosity is less than 60%, the electric resistance increases when used as a separator, and when used for a high output, heat may be generated and energy may be lost.
  • the porosity exceeds 85%, the strength of the film becomes too low, and the handleability may be inferior, for example, the film may be broken when wound together with the electrode to be stored inside the battery.
  • the film porosity is more preferably 65 to 80%, and particularly preferably 65 to 75%.
  • the polypropylene resin and the copolymer polyethylene resin were mixed at a specific ratio. It becomes easy to achieve by using a resin, and can be effectively achieved by employing specific biaxial stretching conditions described later. In a wet method or a uniaxially stretched film, it is difficult to obtain a porous film having such low cost, high porosity, and practical strength.
  • the air resistance is preferably 10 to 500 seconds / 100 ml.
  • the air permeation resistance is the air permeation resistance (Gurley) defined in JIS P8117 (1998).
  • the air permeation resistance is a value evaluated using this JIS B-type testing machine. If the air permeability resistance is less than 10 seconds / 100 ml, the film strength is low, and pinholes are easily generated when used as a separator, causing a short circuit or tearing when wound for storage inside the battery. May be inferior in handleability. If the air permeation resistance exceeds 500 seconds / 100 ml, the ion conductivity is poor. From the viewpoint of exhibiting excellent ionic conductivity as a separator, the air permeation resistance is more preferably 30 to 300 seconds / 100 ml, and particularly preferably 50 to 200 seconds / 100 ml.
  • the porous polypropylene film of the present invention preferably has a total film thickness of 10 to 50 ⁇ m. If the total thickness is less than 10 ⁇ m, the film may break during use. If it exceeds 50 ⁇ m, the volume ratio of the porous film in the electricity storage device becomes too high, and it may be impossible to obtain a high energy density.
  • the total film thickness is more preferably 12 to 30 ⁇ m, still more preferably 14 to 25 ⁇ m.
  • Porous polypropylene film of the present invention is preferably break strength E M in the longitudinal direction is not less than 65 MPa.
  • the pressure is less than 65 MPa, the film may be stretched, wrinkled or broken in the process of processing the electricity storage device using the separator, and productivity may be reduced. From the viewpoint of workability at the time of winding the battery, it is more preferably 70 MPa or more.
  • the upper limit of the breaking strength in the longitudinal direction is not particularly limited, but is practically about 150 MPa or less.
  • the porous polypropylene film of the present invention preferably has a breaking strength E T in the width direction of 45 MPa or more. If it is less than 45 MPa, the difference from the breaking strength in the longitudinal direction becomes large, and the porous polypropylene film may be easily torn in the longitudinal direction.
  • the upper limit of the breaking strength in the width direction is not particularly limited, but is practically about 150 MPa or less.
  • the breaking strength can be controlled by the crystallinity of polypropylene, the porosity of the resulting porous film, the orientation state (orientation state in the film plane), and the like. It becomes stronger by decreasing the porosity within 60 to 85%, and weaker by increasing it.
  • the higher the plane orientation the higher the strength, so the control of the orientation state is important.
  • the planar orientation of the porous film can be increased as the stretching condition is higher or low temperature.
  • an antioxidant In the porous polypropylene film of the present invention, an antioxidant, a heat stabilizer, an antistatic agent, a lubricant composed of inorganic or organic particles, an antiblocking agent, a filler, a non-blocking agent, and the like are used as long as the effects of the present invention are not impaired.
  • Various additives such as a compatible polymer may be contained.
  • the method for producing the porous polypropylene film of the present invention will be specifically described.
  • the manufacturing method of the film of this invention is not limited to this.
  • a polypropylene resin 94 parts by mass of a commercially available homopolypropylene resin having an MFR of 8 g / 10 minutes, 1 part by mass of a commercially available MFR of 2.5 g / 10 minutes and a high melt tension polypropylene resin, and an ultra low density polyethylene having a melt index of 18 g / 10 minutes.
  • N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide which is a ⁇ crystal nucleating agent
  • the melting temperature is preferably 270 to 300 ° C. It is preferable to remove foreign matters by providing a high-accuracy filter that can remove foreign matters of, for example, 50 ⁇ m or more on the downstream side of the twin-screw extruder.
  • the above-mentioned mixed raw material is supplied to a single-screw melt extruder, and melt extrusion is performed at 190 to 240 ° C. And after removing a foreign material, a modified polymer, etc. with the filter installed in the middle of the polymer pipe
  • it is preferable to remove a foreign matter by providing a high-accuracy filter that can remove a foreign matter of 50 ⁇ m or more.
  • the surface temperature of the cast drum for obtaining the unstretched sheet is preferably 105 to 130 ° C. from the viewpoint of controlling the ⁇ crystal fraction in the unstretched sheet to be high.
  • the end portion is sprayed with spot air to be in close contact with the drum. Further, air may be blown over the entire surface using an air knife as necessary based on the state of close contact of the entire sheet on the drum.
  • the obtained unstretched sheet is biaxially stretched to form pores (through holes) in the film.
  • a biaxial stretching method the film is stretched in the longitudinal direction of the film and then stretched in the width direction, or the sequential biaxial stretching method of stretching in the longitudinal direction after stretching in the width direction, or the longitudinal direction and the width direction of the film are stretched almost simultaneously. Any simultaneous biaxial stretching method can be used. It is preferable to employ a sequential biaxial stretching method from the viewpoint that it is easy to obtain a highly permeable film, and it is particularly preferable to stretch in the width direction after stretching in the longitudinal direction.
  • an unstretched sheet is controlled to a temperature at which it can be stretched in the longitudinal direction.
  • a temperature control method a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted.
  • the stretching temperature in the longitudinal direction it is preferable to employ a temperature of 110 to 140 ° C., more preferably 120 to 135 ° C., from the viewpoint of film characteristics and uniformity.
  • the draw ratio is preferably 3 to 10 times, more preferably 4 to 6 times, still more preferably 4.5 to 5.8 times. When the draw ratio is less than 3 times, the porosity may be lowered to deteriorate the battery characteristics, and the productivity may be lowered.
  • the stretching ratio As the stretching ratio is increased, the porosity is increased. However, if the stretching ratio exceeds 10 times, the film may be easily broken in the next transverse stretching step.
  • the stretching temperature in the longitudinal direction at which a particularly high porosity film can be obtained is 120 to 125 ° C.
  • the uniaxially stretched polypropylene film is introduced by holding the film end by a tenter-type stretcher and stretched in the width direction to obtain a biaxially stretched film.
  • the stretching temperature is preferably 130 to 155 ° C, and more preferably 145 to 150 ° C because a high porosity can be obtained.
  • the stretching ratio in the width direction is preferably 3 to 10 times, more preferably 4 to 8 times. When the draw ratio is less than 3 times, the porosity may be lowered to deteriorate the battery characteristics, and the productivity may be lowered. Moreover, the higher the stretching ratio, the higher the porosity. However, if the stretching ratio exceeds 10 times, the film may be easily broken.
  • the transverse stretching speed at this time is preferably 500 to 6,000% / min, more preferably 1,000 to 5,000% / min. It is particularly preferable that the stretching speed is as low as 2,000% / min or less.
  • heat setting is performed in the stenter as it is, and the temperature is preferably from the transverse stretching temperature to 160 ° C. and the heat setting time is preferably 5 to 30 seconds. Further, the heat setting may be performed while relaxing in the longitudinal direction and / or the width direction of the film, and in particular, the relaxation rate in the width direction is preferably 7 to 12% from the viewpoint of thermal dimensional stability.
  • the porous polypropylene film of the present invention is excellent in productivity and not only has a high porosity, but also can control extremely small voids and foreign matter defects in the separator film that affect battery characteristics. Therefore, it can be preferably used as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, which is particularly demanding of safety.
  • ⁇ -crystal forming ability 5 mg of resin or film was sampled in an aluminum pan and measured using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220).
  • the temperature is raised from room temperature to 260 ° C. at a rate of 10 ° C./minute (first run) in a nitrogen atmosphere, held for 10 minutes, and then cooled to 20 ° C. at a rate of 10 ° C./minute.
  • the melting peak observed when the temperature is raised again (second run) at 10 ° C./min after holding for 5 minutes the melting having a peak in the temperature range of 145 to 157 ° C. is the melting peak of ⁇ crystal, 158 ° C.
  • the melting at which the peak is observed is regarded as the melting peak of the ⁇ crystal, and the respective heats of fusion are determined from the base line drawn with reference to the flat portion on the high temperature side and the area of the region surrounded by the peak.
  • the value calculated by the following formula is the ⁇ crystal forming ability.
  • the heat of fusion was calibrated using indium.
  • ⁇ crystal forming ability (%) [ ⁇ H ⁇ / ( ⁇ H ⁇ + ⁇ H ⁇ )] ⁇ 100
  • the ⁇ crystal fraction in the state of the sample can be calculated by calculating the abundance ratio of the ⁇ crystal in the same manner from the melting peak observed in the first run.
  • MFR Melt flow rate
  • the film was cut into a size of 30 mm ⁇ 40 mm and used as a sample.
  • an electronic hydrometer SD-120L manufactured by Mirage Trading Co., Ltd.
  • the specific gravity was measured in an atmosphere having a room temperature of 23 ° C. and a relative humidity of 65%. The measurement was performed three times, and the average value was defined as the specific gravity ⁇ of the film.
  • the measured film was hot-pressed at 280 ° C. and 5 MPa, and then rapidly cooled with water at 25 ° C. to prepare a sheet from which pores were completely erased.
  • the specific gravity of this sheet was measured in the same manner as described above, and the average value was defined as the specific gravity (d) of the resin.
  • the obtained film was slit with a width of 210 mm, and the transmitted light amount of the film was measured with a defect detector equipped with an unwinder and a winder.
  • a cylindrical rod lens having a length of 750 mm and a diameter of 10 mm was used as the light source, and light from a 250 W metal halide light source was incident from the end surface of the rod lens.
  • a light source was placed 15 mm away from one side of the film, and the amount of irradiated light was detected from the other side. The distance between the detector and the film was 250 mm.
  • the film width direction was run at 5 m / min, and the amount of light transmitted through the film was measured at a full width for a length of 500 m.
  • the frequency of the portion where the transmitted light amount is 5 times or more compared to the average transmitted light amount is A / 1 m 2
  • the frequency of the portion where the transmitted light amount is 3 times or more and less than 5 times compared to the average transmitted light amount is B / 1 m 2 .
  • the average transmitted light amount the transmitted light amount for a length of 1 m was measured for each of the core portion and the unwinding portion of the film after the slit, and the average value was used.
  • the measurement area was increased 10 times, and the frequency was obtained.
  • Battery characteristics evaluation Long-term characteristics at normal temperature A lithium cobalt oxide (LiCoO 2 ) positive electrode having a thickness of 40 ⁇ m manufactured by Hosen Co., Ltd. was used and cut into a width of 200 mm and a length of 4,000 mm. Further, a graphite negative electrode having a thickness of 50 ⁇ m manufactured by Hosen Co., Ltd. was used and cut into a width of 200 mm and a length of 4,000 mm.
  • LiCoO 2 lithium cobalt oxide
  • a graphite negative electrode having a thickness of 50 ⁇ m manufactured by Hosen Co., Ltd. was used and cut into a width of 200 mm and a length of 4,000 mm.
  • the above belt-like positive electrode is overlapped with the sheet-like negative electrode through the separator film of each Example / Comparative Example, wound into a spiral shape to form a spiral electrode body, and then a bottomed cylindrical battery
  • the electrolytic solution dissolved so as to be L was poured into the battery case. The opening of the battery case was sealed and the battery was precharged to produce a cylindrical organic electrolyte secondary battery.
  • a battery was produced for each example and comparative example.
  • Each manufactured secondary battery was charged to 4.2 V at 16,000 mA in an atmosphere of 25 ° C. (Charging operation was 3.5 hours, and constant current charging up to 4.2 V reached 4.2 V. Thereafter, a constant voltage charge was performed), and a charge / discharge operation of discharging at 1,600 mA up to 2.7 V was repeated three times, and then charged again at 16,000 mA to 4.2 V. Thereafter, the secondary battery was left without being charged and discharged in an atmosphere at 25 ° C., and the voltage value after 50 hours was measured. Battery characteristics were good when the value obtained by the formula of [(voltage value after 50 hours) / (initial voltage value (4.2 V))] ⁇ 100 was 95% or more. 100 test pieces were measured, and the frequency of batteries with good battery characteristics was determined and evaluated according to the following criteria. A: 90% or more B: 80% or more and less than 90% C: less than 80%.
  • A Long-term characteristics evaluation at normal temperature, the same operation was performed except that the ambient temperature left for 50 hours was 60 ° C., and evaluation was performed according to the following criteria.
  • (C) Output characteristics A lithium cobalt oxide (LiCoO 2 ) positive electrode having a thickness of 40 ⁇ m manufactured by Hosen Co., Ltd. was used and punched into a circle having a diameter of 15.9 mm. Further, a graphite negative electrode having a thickness of 50 ⁇ m manufactured by Hosen Co., Ltd. was used and punched into a circle having a diameter of 16.2 mm. Next, the separators of the examples and comparative examples were punched out to a diameter of 24 mm.
  • LiCoO 2 lithium cobalt oxide
  • the negative electrode, the separator, and the positive electrode were stacked in this order so that the positive electrode active material and the negative electrode active material face each other, and stored in a small stainless steel container with a lid (HS cell manufactured by Hosen Co., Ltd.).
  • the container and the lid are insulated, the container is in contact with the negative electrode copper foil, and the lid is in contact with the positive electrode aluminum foil.
  • a battery was produced for each example and comparative example.
  • Breaking strength According to JIS K 7127 (1999, test piece type 2), using a film strength / elongation measuring device (AMF / RTA-100) manufactured by Orientec Co., Ltd., at 25 ° C. and 65% RH.
  • the breaking strength was measured. Specifically, a porous polypropylene film was cut into a size of 15 cm in the longitudinal direction and 1 cm in the width direction, stretched at an original length of 50 mm, and a tensile speed of 300 mm / min, and the breaking strength (unit: MPa) was measured. The same measurement was performed five times for the same sample, and the average value of the obtained breaking strengths was taken as the breaking strength in the longitudinal direction of the sample. Further, the longitudinal direction and the width direction of the sample were interchanged, and the breaking strength in the width direction was similarly measured.
  • ⁇ -crystal nucleating agent content A porous polypropylene film is added to decalin to extract amide compounds, antioxidants and the like in polypropylene resin, and then quantified by high performance liquid chromatography. A standard polypropylene resin with a known amount of amide compound and antioxidant added in advance is prepared, the same measurement is performed, and a calibration curve is prepared to determine the concentration of the amide compound in polypropylene. did.
  • Air permeability resistance (Gurley) A square with a side length of 100 mm was cut out from the separators obtained in the examples and comparative examples. The permeation time of 100 ml of air was measured three times at 23 ° C.
  • the average value of the permeation time was defined as the air resistance (Gurley) of the film.
  • the measurement was stopped when the permeation time of 25 ml of air exceeded 30 minutes (1,800 seconds), and the air resistance (Gurley) was 120. It was judged that the minute / 100 ml (7,200 seconds / 100 ml) was exceeded.
  • the raw material fed to a twin-screw extruder from the weighing hopper was melt-kneaded at 300 ° C., discharged from a die in a strand shape, cooled and solidified in a water bath at 25 ° C., cut into a chip shape, and used as a chip raw material. This was used as a raw material resin for a porous polypropylene film.
  • This chip was supplied to a single screw extruder (discharge amount: 15 kg / hr) and melt extrusion was performed at 235 ° C.
  • Foreign matter was removed with a leaf disk type filter in which 10 sheets of a 20 ⁇ m cut sintered filter (filtration area: 65000 mm 2 ) were set, and then a 50 ⁇ m cut wire mesh screen filter (filtration area: 18000 mm 2 ) was passed.
  • the sheet was discharged from a T-die to a cast drum whose surface temperature was controlled at 120 ° C. and cast so as to be indirectly on the drum for 15 seconds to obtain an unstretched sheet.
  • the ⁇ -crystal forming ability of the unstretched film was 80%.
  • preheating was performed using a ceramic roll heated to 125 ° C., and the film was stretched 5 times in the longitudinal direction of the film.
  • the end portion was introduced into a tenter type stretching machine by holding it with a clip, and the film was stretched 6.5 times at 150 ° C. at a stretching speed of 1,800% / min.
  • heat treatment was performed at 155 ° C. for 7 seconds while relaxing 10% in the width direction to obtain a porous polypropylene film having a thickness of 25 ⁇ m.
  • Table 1 shows the physical properties of the obtained film.
  • the sample for evaluating physical properties was a sample collected after film formation for 10 hours under the above conditions.
  • the obtained separator had good defect quality and air permeability, and the battery characteristics were good in both long-term characteristics and output characteristics.
  • Example 2 A porous polypropylene film was obtained with the raw material composition and film forming conditions described in Example 1 except that a static mixer was used instead of the screen filter of 50 ⁇ m cut in Example 1. Since a static mixer was used in place of the screen filter, the obtained separator had a slightly higher frequency of defects than that of Example 1, and the long-term characteristics at high temperatures were slightly lowered, resulting in Evaluation B. The output characteristics were good.
  • Example 3 A porous polypropylene film was obtained with the raw material composition and film forming conditions described in Example 1 except that a static mixer was installed on the downstream side of the screen filter of 50 ⁇ m cut in Example 1. Since the screen filter and the static mixer were installed in series, the obtained separator had less defect frequency compared to Example 1, both defect quality and air permeability were good, and battery characteristics were good in both long-term characteristics and output characteristics. Met.
  • Example 4 A porous polypropylene film was obtained with the raw material composition and film forming conditions described in Example 1 except that the temperature during melt extrusion in Example 1 was 200 ° C. Since the temperature at the time of melt extrusion was set to a preferable temperature, the obtained separator had fewer defect frequencies than Example 1, both defect quality and air permeability were good, and battery characteristics were good in both long-term characteristics and output characteristics. there were.
  • Example 5 A porous polypropylene film was obtained using the raw material composition and film forming conditions described in Example 1, except that a 40 ⁇ m cut sintered filter was used instead of the 20 ⁇ m cut sintered filter in Example 1. Since the filter accuracy was changed to a 40 ⁇ m cut, the obtained separator had a slightly higher frequency of defects than that of Example 1, and the long-term characteristics at room temperature and high temperature were slightly lowered, resulting in Evaluation B. The output characteristics were good.
  • Example 6 A porous polypropylene film was formed under the same raw material composition and film forming conditions as described in Example 1 except that a flat plate sintered filter (filtering area: 18000 mm 2 ) of 50 ⁇ m cut was used instead of the screen filter of 50 ⁇ m cut in Example 1. Obtained. By changing the wire mesh filter to a sintered filter, the obtained separator significantly improved the defect quality compared to Example 1. The battery characteristics were good in both long-term characteristics and output characteristics.
  • Example 7 A porous polypropylene film was obtained with the raw material composition and film forming conditions described in Example 1, except that the temperature at the time of melt extrusion in Example 1 was 200 ° C. and the addition amount of the ⁇ crystal nucleating agent was 0.03 parts by mass. It was. The obtained separator had good defect quality and good long-term characteristics. However, since there were few ⁇ crystal nucleating agents, the air permeability was lowered and the output characteristics were evaluated as B.
  • Example 8 A porous polypropylene film was obtained with the raw material composition and film forming conditions described in Example 1, except that the draw ratio in the longitudinal direction was changed to 2.8 times in Example 1. Since the obtained separator had a low draw ratio, the frequency of defects was improved and long-term characteristics were good. However, since the longitudinal draw ratio was low, the air permeability was lowered, and the output characteristics were evaluated as B. Moreover, since the strength was reduced, workability during battery assembly was also reduced.
  • Example 9 A porous polypropylene film was obtained with the raw material composition and film forming conditions described in Example 1 except that the draw ratio in the width direction was changed to 2.8 times in Example 1. Since the obtained separator had a low draw ratio, the frequency of defects was improved and long-term characteristics were good. However, since the width direction draw ratio was low, the air permeability was lowered, and the output characteristics were evaluated as B. Moreover, since the strength was reduced, workability during battery assembly was also reduced.
  • Example 1 A porous polypropylene film was obtained using the raw material composition and film forming conditions described in Example 1, except that the 20 ⁇ m cut sintered filter and the 50 ⁇ m cut screen filter were not used in Example 1. Since the obtained separator had a high defect frequency, the long-term characteristics deteriorated.
  • Example 2 A porous polypropylene film was obtained with the raw material composition and film forming conditions described in Example 1, except that the screen filter of 50 ⁇ m cut was not used in Example 1. Since the obtained separator had a high defect frequency, the long-term characteristics deteriorated.
  • Example 3 (Comparative Example 3)
  • the temperature at the time of melt extrusion was 200 ° C.
  • a porous polypropylene film was obtained with the raw material composition and film forming conditions described in Example 1 except that a 50 ⁇ m cut screen filter was not used. Since the obtained separator had a high defect frequency, the long-term characteristics deteriorated.
  • Example 4 The raw material composition described in Example 1, except that a screen filter of 15 ⁇ m cut was used instead of the screen filter of 50 ⁇ m cut in Example 1, and the discharge rate was changed to 3 kg / hr to prevent breakage of the screen filter, A porous polypropylene film was obtained under the film forming conditions. In addition, at the same discharge amount as in Example 1, the pressure loss before and after the screen filter was high, and film formation was difficult. The separator obtained had a lower discharge rate and increased residence time, so the frequency of defects increased and the long-term characteristics deteriorated.
  • Example 5 A porous polypropylene film was formed under the same raw material composition and film forming conditions as described in Example 1, except that a leaf disk type filter in which 10 sheets of 15 ⁇ m cut sintered filters were set instead of the 50 ⁇ m cut screen filter in Example 1 was installed. Obtained. Since a flat plate type filter was not installed, the obtained separator had a higher frequency of defects and deteriorated long-term characteristics.
  • the film quality is excellent, so that it can be suitably used as a separator for an electricity storage device.
  • the comparative example there are many defects that cause deterioration of battery evaluation, and it is difficult to use as a separator for an electricity storage device.
  • the porous polypropylene film of the present invention is excellent in quality and productivity, and has a high porosity, so that it can be suitably used as a separator for a lithium ion battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

 本発明は、平均透過光量に対し透過光量が5倍以上となる部分が1m当たり0.5個以下の多孔性ポリプロピレンフィルムに関する。 本発明により、高い空孔率と優れた生産性を有し、かつ、蓄電デバイスのセパレータに用いた際に、電池性能を悪化させるような欠点の少ない、品位に優れた多孔性ポリプロピレンフィルムが提供される。本発明の多孔性ポリプロピレンフィルムを用いれば、短絡による発熱や自己放電が抑えられた蓄電デバイスが提供される。

Description

多孔性ポリプロピレンフィルムおよびその製造方法
 本発明は品位、生産性に優れ、蓄電デバイスのセパレータに用いた際に優れた電池特性を示す多孔性ポリプロピレンフィルムおよびその製造方法に関する。
 ポリプロピレンフィルムは優れた機械特性、熱特性、電気特性、光学特性により、工業材料用途、包装材料用途、光学材料用途、電機材料用途など多様な用途で使用されている。このポリプロピレンフィルムに空隙を設け、多孔化した多孔性ポリプロピレンフィルムは、ポリプロピレンフィルムとしての特性に加えて、透過性や低比重などの優れた特性を併せ持つ。そのため、電池や電解コンデンサーのセパレータや各種分離膜、衣料、医療用途における透湿防水膜、フラットパネルディスプレイの反射板や感熱転写記録シートなど多岐に渡る用途への展開が検討されている。特に、多孔性フィルムをセパレータとして用いる場合、生産性向上による低コスト化はもちろんのこと、近年のリチウムイオン電池の発火事故などに伴い、電池に対する更なる安全性が求められ、セパレータにも欠点や異物が少ない高い品位と信頼性が必要となる。
 ポリプロピレンフィルムを多孔化する手法としては、様々な提案がなされている。多孔化の方法を大別すると湿式法と乾式法に分類することができる。湿式法とは、ポリプロピレンをマトリックス樹脂とし、シート化後に抽出する被抽出物を添加、混合し、被抽出物の良溶媒を用いて添加剤のみを抽出することで、マトリックス樹脂中に空隙を生成する方法である。湿式法として種々の提案がなされている(特許文献1参照)。湿式法は、樹脂組成物の粘度を低下させることができるため高精度濾過が可能であること、また低温でキャスト可能なため樹脂組成物の劣化を低減できることから品位に優れる。しかし、抽出工程が繁雑であることや溶媒処理工程が必要になることから、低コスト化が困難であった。
 一方、乾式法としては、たとえば、溶融押出時に低温押出、高ドラフト比を採用することにより、シート化した延伸前のフィルム中のラメラ構造を制御し、これを一軸延伸することでラメラ界面での開裂を発生させ、空隙を形成する方法(いわゆる、ラメラ延伸法)が提案されている(特許文献2参照)。この方法を用いると、一軸延伸で更に延伸倍率が低いため、未延伸フィルムの欠点が延伸工程で粗大化しにくく、セパレータとしての品位に優れる。しかし、面積倍率が低いことや延伸速度が遅いことから生産性向上が困難であり、また、高い空孔率を得ることが困難であり、蓄電デバイス、特にリチウムイオン二次電池用のセパレータとして用いた場合に電池性能が低下する場合があった。
 生産性がよく、更に高い空孔率を達成できる方法として、乾式法で無機粒子またはマトリックス樹脂であるポリプロピレンなどに非相溶な樹脂を粒子として多量添加し、シートを形成して延伸することにより粒子とポリプロピレン樹脂界面で開裂を発生させ、空隙を形成する方法も提案されている(特許文献3参照)。さらには、ポリプロピレンの結晶多形であるα型結晶(α晶)とβ型結晶(β晶)の結晶密度の差と結晶転移を利用してフィルム中に空隙を形成させる、いわゆるβ晶法と呼ばれる方法の提案も数多くなされている(特許文献4~6参照)。
 上記した各種方法で製造した多孔性ポリプロピレンフィルムを蓄電デバイス、特にリチウムイオン二次電池用のセパレータとして用いる場合、特にβ晶法は通常二軸延伸により空隙を形成することから、他の方法に比較して、高い空孔率を達成することができる。そのため、電池の内部抵抗を低くすることができ、特に大電流を必要とする高出力用の蓄電デバイス用のセパレータに適しているとされている(特許文献7参照)。
特開昭55-131028号公報 特公昭55-32531号公報 特開昭57-203520号公報 特開昭63-199742号公報 特開平6-100720号公報 特開平9-255804号公報 国際公開第05/103127号パンフレット
 しかしながら、β晶法では、樹脂に添加する粒子や添加剤などに起因する欠点が生じる場合がある。また、延伸倍率が高いため延伸工程で欠点が粗大化し易くなる場合がある。そのため、二次電池用のセパレータとして用いると、短絡による発熱や自己放電しやすくなるという問題が生じることがある。
 本発明は、上述した従来技術における問題点の解決を課題として検討した結果達成されたものである。すなわち、本発明の目的は、品位、生産性に優れ、蓄電デバイスのセパレータに用いた際に優れた電池特性を示す多孔性ポリプロピレンフィルムおよびその製造方法を提供することにある。
 上記した目的を達成するため、本発明のポリプロピレンフィルムは、平均透過光量に対し透過光量が5倍以上となる部分が1m当たり0.5個以下である。
 本発明の多孔性ポリプロピレンフィルムは、品位、生産性に優れ、高い空孔率を持つことから、蓄電デバイスのセパレータとして好適に適用することができる。
 本発明の多孔性ポリプロピレンフィルムは、二軸配向ポリプロピレンフィルムであって貫通孔を有している。好ましくは、乾式法により製造された二軸配向ポリプロピレンフィルムである。ここで、貫通孔とは、フィルムの両表面を貫通し、透気性を有する孔を意味する。貫通孔を得る具体的な方法としては、例えばβ晶法を挙げることができる。これにより、均一物性、薄膜化を達成することができる。
 β晶法を用いてフィルムに貫通孔を形成するためには、ポリプロピレン樹脂のβ晶形成能が40~90%であることが好ましい。β晶形成能が40%未満ではフィルム製造時にβ晶量が少ないためにα晶への転移を利用してフィルム中に形成される空隙数が少なくなり、その結果、透気性の低いフィルムしか得られない場合がある。一方、β晶形成能が90%を超えるようにするのは、後述するβ晶核剤を多量に添加したり、使用するポリプロピレン樹脂の立体規則性を極めて高くしたりする必要があり、製膜安定性が悪化するなど工業的な実用価値が低い。工業的にはβ晶形成能は60~85%が好ましく、65~80%が特に好ましい。
 β晶形成能を40~90%に制御するためには、アイソタクチックインデックスの高いポリプロピレン樹脂を使用したり、β晶核剤と呼ばれる、ポリプロピレン樹脂中に添加することでβ晶を選択的に形成させる結晶化核剤を添加剤として用いたりすることが好ましい。β晶核剤としては種々の顔料系化合物やアミド系化合物などを挙げることができる。例えば、アミド化合物;テトラオキサスピロ化合物;キナクリドン類;ナノスケールのサイズを有する酸化鉄;1,2-ヒドロキシステアリン酸カリウム、安息香酸マグネシウムもしくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリもしくはアルカリ土類金属塩;ベンゼンスルホン酸ナトリウムもしくはナフタレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物;二もしくは三塩基カルボン酸のジもしくはトリエステル類;フタロシアニンブルーなどに代表されるフタロシアニン系顔料;有機二塩基酸と周期律表第IIA族金属の酸化物、水酸化物もしくは塩とからなる二成分系化合物;環状リン化合物とマグネシウム化合物からなる組成物などが挙げられる。これらの中でも、特に特開平5-310665号公報に開示されているアミド系化合物を好ましく用いることができる。具体的には下記一般式(1)で示されるアミド系化合物である。
 R-NHCO-X―CONH-R  (1)
式中、Xは下記(2)又は(3)を表す。R,Rは、同一又は異なる炭素数5~12のシクロアルキル基を表す。
Figure JPOXMLDOC01-appb-C000001
 β晶形成能を40~90%に制御するために、ポリプロピレン樹脂中に、β晶核剤を、ポリプロピレン樹脂全体に対して0.05~0.5質量%含有することが好ましく、0.1~0.3質量%であればより好ましい。
 本発明の多孔性ポリプロピレンフィルムを構成するポリプロピレン樹脂は、メルトフローレート(以下、MFRと表記する、測定条件は230℃、2.16kg)が2~30g/10分の範囲であることが好ましく、さらにアイソタクチックポリプロピレン樹脂であることが好ましい。MFRが2g/10分未満であると、樹脂の溶融粘度が高くなり高精度濾過が困難となり、フィルムの品位が低下する場合がある。MFRが30g/10分を超えると、分子量が低くなりすぎるため、延伸時のフィルム破れが起こりやすくなり、生産性が低下する場合がある。より好ましくは、MFRが3~20g/10分である。
 また、アイソタクチックポリプロピレン樹脂を用いる場合、アイソタクチックインデックスは90~99.9%であることが好ましい。アイソタクチックインデックスが90%未満であると、樹脂の結晶性が低く、高い透気性を達成するのが困難な場合がある。
 本発明で用いるポリプロピレン樹脂としては、ホモポリプロピレン樹脂を用いることができるのはもちろんのこと、製膜工程での安定性や造膜性、物性の均一性の観点から、ポリプロピレンにエチレン成分やブテン、ヘキセン、オクテンなどのα-オレフィン成分を5質量%以下の範囲で共重合した樹脂を用いることもできる。なお、ポリプロピレンへのコモノマー(共重合成分)の導入形態としては、ランダム共重合でもブロック共重合でもいずれでも構わない。
 また、上記したポリプロピレン樹脂は0.5~5質量%の範囲で高溶融張力ポリプロピレンを含有させることが製膜性向上の点で好ましい。高溶融張力ポリプロピレンとは高分子量成分や分岐構造を有する成分をポリプロピレン樹脂中に混合したり、ポリプロピレンに長鎖分岐成分を共重合させたりすることで溶融状態での張力を高めたポリプロピレン樹脂であるが、中でも長鎖分岐成分を共重合させたポリプロピレン樹脂を用いることが好ましい。この高溶融張力ポリプロピレンは市販されており、たとえば、Basell社製ポリプロピレン樹脂PF814、PF633、PF611やBorealis社製ポリプロピレン樹脂WB130HMS、Dow社製ポリプロピレン樹脂D114、D206を用いることができる。
 本発明で用いるポリプロピレン樹脂は、二軸延伸時の空隙形成効率の向上や、孔径が拡大することによる透気性向上の観点から、ポリプロピレン80~99質量部とエチレン・α-オレフィン共重合体20~1質量部の質量比率とした混合物とすることが好ましい。ここで、エチレン・α-オレフィン共重合体としては直鎖状低密度ポリエチレンや超低密度ポリエチレンを挙げることができ、中でも、オクテン-1を共重合した、融点が60~90℃の共重合ポリエチレン樹脂(共重合PE樹脂)を好ましく用いることができる。この共重合ポリエチレンは市販されている樹脂、たとえば、ダウ・ケミカル製“Engage(エンゲージ)(登録商標)”(タイプ名:8411、8452、8100など)を挙げることができる。
 上記共重合ポリエチレン樹脂は本発明のフィルムを構成するポリプロピレン樹脂全体を100質量%としたときに、1~10質量%含有することが以下に記載する空孔率や平均貫通孔径を好ましい範囲に制御することが容易となるので好ましい。フィルムの機械特性の観点からは1~7質量%であればより好ましい。
 本発明の多孔性ポリプロピレンフィルムは、平均透過光量に対し透過光量が5倍以上となる部分が1m当たり0.5個以下である。透過光量が5倍以上となる部分は、セパレータとして用いたとき短絡を生じる可能性がある。透過光量が5倍以上となる部分が1m当たり0.5個を超えると、歩留まりが悪くなり生産性が低下する。透過光量が5倍以上となる部分は1m当たり0.3個以下であることがより好ましい。
 また、本発明の多孔性ポリプロピレンフィルムは、平均透過光量に対し透過光量が3倍以上5倍未満となる部分が1m当たり1個以下であることが好ましい。透過光量が3倍以上5倍未満となる部分は、安全性の観点からシャットダウン層を別途設ける場合や低出力な電池に用いる場合は問題とならないが、車載用など高出力が求められる場合には微短絡が発生し、電池の寿命が低下する場合がある。透過光量が3倍以上5倍未満となる部分が1m当たり1個を超えると、歩留まりが悪くなり生産性が低下する場合がある。透過光量が3倍以上5倍未満となる部分は1m当たり0.5個以下であることがより好ましい。
 このような頻度で表される品位に優れた多孔性ポリプロピレンフィルムを得るには、まず、原料中の異物を除去するために製膜工程または原料調整工程で高精度濾過を行うことが好ましい。濾過精度は50μm、つまり50μm以上の異物を除去できることが好ましい。さらに好ましくは20μm、最も好ましくは10μmである。濾過精度が50μmを超えると濾材を通過した異物が起点となり粗大ボイドやピンホールが発生する場合がある。一般にポリプロピレン樹脂は溶融時の粘度が高いことから、高精度濾過は濾過面積の広いリーフディスク型のフィルターを用いることが好ましい。しかし、リーフディスク型のフィルターは流路が複雑であるため、樹脂の滞留部分が生じる。フィルターの下流側にこの滞留部分が生じると、その部分でポリプロピレン樹脂に添加した粒子や添加剤が凝集したり、熱劣化したりして、粗大ボイドやピンホールの起点となる場合がある。
 特に上記一般式(1)で示されるアミド系化合物を含有させることで、多孔化のきっかけとなるポリプロピレンのβ晶形成能が高まる一方で、含有させるアミド系化合物が滞留した溶融ポリプロピレン樹脂中で結晶成長し、フィルム中に流出してフィルム欠点となり、アミド系化合物が生産性低下の原因となり得る場合もあった。
 このような欠点は、製膜直後には発生しなくても、連続製膜を行うと頻度が増加する場合があり、生産性悪化の原因となる。この欠点を回避するために、高精度濾過フィルターの下流側に平板形のフィルター(例えばスクリーンフィルターなど)を1枚以上設けることが好ましい。通常多段濾過を行う場合には、濾過寿命を長くするため、下流側に進むに従って濾過精度を細かくするが、本発明においては平板形フィルターの濾過精度は前述した高精度濾過フィルターの精度より粗いことが好ましく、具体的には1.8倍~3倍の粗さであることが好ましい。1.8倍未満であると、平板形フィルターは濾過面積を大きくできないため、濾圧が上昇してフィルターが破損したり、また、濾圧の上昇を抑えるために吐出量を低くすると滞留時間が増えて欠点が増加する場合がある。3倍を超えると、濾材を通過した粒子や添加剤の凝集物が起点となり粗大ボイドやピンホールが発生する場合がある。平板形フィルターの濾過精度は100μm、つまり100μm以上の異物を除去できることが好ましく、更に好ましくは50μm、最も好ましくは20μmである。濾過精度が100μmを超えると濾材を通過した粒子や添加剤の凝集物が起点となり粗大ボイドやピンホールが発生する場合がある。平板形フィルターは濾過面積を大きくできないため、濾過精度は20μm程度が下限であることが多い。
 また、平板形フィルターを設置する位置は、できる限り下流側であることが好ましく、口金直前や積層のためフィードブロックを用いる場合はフィードブロックの直前であることが好ましい。
 なお、粒子や添加剤の凝集物が起点となり発生した粗大ボイドやピンホールの部分は、透過光量が高い部分となり、セパレータとして用いたとき電池特性を悪化させる場合がある。
 高精度濾過フィルターや平板形フィルターに用いる濾材は、焼結金属、多孔性セラミック、サンド、金網等を用いることができる。特にβ晶核剤として上記一般式(1)で示されるアミド系化合物を含有させる場合、β晶核剤は針状に成長するため、金網等のスクリーンフィルターを用いるよりも、焼結金属や多孔性セラミックによる焼結フィルターを用いる方が効果的に欠点頻度を低下させることが出来るため好ましい。
 また、高精度濾過フィルターの下流側、あるいは高精度濾過フィルターの下流側に設置した平板形フィルターのさらに下流側に、スタティックミキサーを設置することで効果的に粗大ボイドやピンホールを減少させることができる。これは高精度濾過フィルター後や平板形フィルター後の異常滞留部分で凝集した粒子や添加剤が、粘性の高いポリプロピレン樹脂中でスタティックミキサーなどにより流路が急激に曲げられることにより再度分散し、結果として粗大ボイドやピンホールが減少するものと考えられる。
 また、溶融押出の温度は190℃~240℃であることが好ましい。より好ましくは200℃~230℃、更に好ましくは200℃~220℃である。240℃を超えると、ポリプロピレン樹脂に添加した粒子や添加剤が凝集し、粗大ボイドやピンホールの起点となる場合がある。190℃未満では樹脂の流動性が悪くなり、高精度な濾過が困難になる場合がある。また、粒子や添加剤の凝集を抑制するために、原料ホッパーに窒素をパージしたり、原料に酸化防止剤を添加してもよい。
 本発明の多孔性ポリプロピレンフィルムはセパレータとして用いた際のイオン電導性の観点から空孔率が60~85%であることが好ましい。空孔率が60%未満ではセパレータとして使用したときに電気抵抗が大きくなり、高出力用途に用いると発熱してしまいエネルギーを損失する場合がある。一方、空孔率が85%を超えると、フィルムの強度が低くなりすぎてしまい、電池内部に収納するために電極と共に捲回する際に破断してしまうなど、取扱性に劣る場合がある。優れた電池特性と強度を両立させる観点からフィルムの空孔率は65~80%であればより好ましく、65~75%であれば特に好ましい。
 多孔性ポリプロピレンフィルムの空孔率をこの好ましい範囲に制御する方法としては、β晶法によりポリプロピレンフィルムを多孔化するに際して、上述したように、ポリプロピレン樹脂と共重合ポリエチレン樹脂とを特定比率で混合した樹脂を用いることで達成しやすくなり、さらに、後述する特定の二軸延伸条件を採用することにより効果的に達成することができる。湿式法や一軸延伸フィルムではこのような低コスト、高空孔率で、なおかつ実用的な強度を有する多孔フィルムを得ることは困難である。
 本発明の多孔性ポリプロピレンフィルムは蓄電デバイスのセパレータ用途に好適に用いるため、透気抵抗が10~500秒/100mlであることが好ましい。ここで、透気抵抗とはJIS P8117(1998年)で規定されている透気抵抗度(ガーレー)であり、本発明ではこのJISのB形試験機を用いて評価した値である。透気抵抗が10秒/100ml未満ではフィルム強度が低く、セパレータとして用いた際に容易にピンホールが発生し、短絡の原因となる場合や、電池内部に収納するために捲回した際に破れてしまうなど取扱性に劣る場合がある。500秒/100mlを超える透気抵抗ではイオン電導性に劣ってしまう。セパレータとして優れたイオン電導性を発現させる観点で透気抵抗は30~300秒/100mlであればより好ましく、50~200秒/100mlであれば特に好ましい。
 透気抵抗をこの好ましい範囲に制御する方法としては、上記した空孔率と同様に、ポリプロピレン樹脂と共重合ポリエチレン樹脂とを特定比率で混合した樹脂を用いることで達成しやすくなり、さらに、後述する特定の二軸延伸条件を採用することにより効果的に達成することができる。
 本発明の多孔性ポリプロピレンフィルムは、フィルム総厚みが10~50μmであることが好ましい。総厚みが10μm未満では使用時にフィルムが破断する場合がある。50μmを超えると蓄電デバイス内に占める多孔性フィルムの体積割合が高くなりすぎてしまい、高いエネルギー密度を得ることができなくなる場合がある。フィルム総厚みは12~30μmであればより好ましく、14~25μmであればなお好ましい。
 本発明の多孔性ポリプロピレンフィルムは、長手方向の破断強度Eが65MPa以上であることが好ましい。65MPa未満になると、セパレータを用いた蓄電デバイスへの加工工程において、フィルムが伸びたり、シワが入ったり、破断して生産性が低下する場合がある。電池巻取時の加工性の観点から70MPa以上であることが、より好ましい。長手方向の破断強度の上限は特に限定されるものではないが現実的には150MPa以下程度である。
 また、本発明の多孔性ポリプロピレンフィルムは、幅方向の破断強度Eが45MPa以上であることが好ましい。45MPa未満になると、長手方向の破断強度との差が大きくなり、多孔性ポリプロピレンフィルムが長手方向に裂けやすくなる場合がある。幅方向の破断強度の上限は特に限定されるものではないが現実的には150MPa以下程度である。
 破断強度は、ポリプロピレンの結晶性、得られる多孔性フィルムの空孔率、配向状態(フィルム面内における配向状態)などにより制御できる。空孔率を60~85%内で減少させることにより強くなり、増加させることにより弱くなる。ここで、同じ空孔率でも、面配向が高くなるほど当該強度を高くすることができるため、その配向状態の制御は重要である。多孔性フィルムの面配向は、例えば、その製膜工程において少なくとも一方向に延伸してフィルムを製造する場合、高倍率もしくは低温度の延伸条件であるほど、高くできる。特に、長手方向および幅方向の破断強度をバランス良く向上させるためには、縦-横逐次二軸延伸法を用い、長手方向と幅方向にそれぞれ3~10倍とすることが有効である。
 本発明の多孔性ポリプロピレンフィルムには、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤や無機あるいは有機粒子からなる滑剤、さらにはブロッキング防止剤や充填剤、非相溶性ポリマーなどの各種添加剤を含有させてもよい。特に、ポリプロピレン樹脂の熱履歴による酸化劣化を抑制する目的で、ポリプロピレン樹脂100質量部に対して酸化防止剤を0.01~0.5質量部添加することは好ましいことである。
 以下に本発明の多孔性ポリプロピレンフィルムの製造方法を具体的に説明する。なお、本発明のフィルムの製造方法はこれに限定されるものではない。
 まず、ポリプロピレン樹脂として、MFR8g/10分の市販のホモポリプロピレン樹脂94質量部、同じく市販のMFR2.5g/10分高溶融張力ポリプロピレン樹脂1質量部、さらにメルトインデックス18g/10分の超低密度ポリエチレン樹脂5質量部にβ晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド0.2質量部を混合し、二軸押出機を使用して予め所定の割合で混合した原料を準備する。この際、溶融温度は270~300℃とすることが好ましい。二軸押出機の下流側に例えば50μm以上の異物を除去できる高精度フィルターを設けて異物を除去することが好ましい。
 次に、上述の混合原料を単軸の溶融押出機に供給し、190~240℃にて溶融押出を行う。そして、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、Tダイよりキャストドラム上に吐出し、未延伸シートを得る。この際、例えば50μm以上の異物を除去できる高精度フィルターを設けて異物を除去することが好ましい。更に高精度フィルターの下流側に例えば100μm以上の異物を除去できるスクリーンフィルターまたは/およびスタティックミキサーを設置することが好ましい。
 また、未延伸シートを得る際のキャストドラムは表面温度が105~130℃であることが、未延伸シート中のβ晶分率を高く制御する観点から好ましい。この際、特にシートの端部の成形が後の延伸性に影響するため、端部にスポットエアーを吹き付けてドラムに密着させることが好ましい。また、シート全体のドラム上への密着状態に基づき、必要に応じて全面にエアナイフを用いて空気を吹き付けてもよい。
 次に得られた未延伸シートを二軸延伸してフィルム中に空孔(貫通孔)を形成する。二軸延伸の方法としては、フィルム長手方向に延伸後幅方向に延伸、あるいは幅方向に延伸後長手方向に延伸する逐次二軸延伸法、またはフィルムの長手方向と幅方向をほぼ同時に延伸していく同時二軸延伸法などを用いることができる。高透気性フィルムを得やすいという点で逐次二軸延伸法を採用することが好ましく、特に長手方向に延伸後、幅方向に延伸することが好ましい。
 具体的な延伸条件としては、まず未延伸シートを長手方向に延伸可能な温度に制御する。温度制御の方法は、温度制御された回転ロールを用いる方法、熱風オーブンを使用する方法などを採用することができる。長手方向の延伸温度としてはフィルム特性とその均一性の観点から、110~140℃、さらに好ましくは120~135℃の温度を採用することが好ましい。延伸倍率は3~10倍であることが好ましく、より好ましくは4~6倍、更に好ましくは4.5~5.8倍である。延伸倍率が3倍未満であると空孔率が低下して電池特性が悪化する場合があり、また生産性が低下する場合がある。延伸倍率を高くするほど高空孔率化するが、10倍を超えて延伸すると、次の横延伸工程でフィルム破れが起きやすくなってしまう場合がある。ここで、特に高空孔率フィルムを得ることができる長手方向の延伸温度としては、120~125℃である。
 次に、一軸延伸ポリプロピレンフィルムをテンター式延伸機にフィルム端部を把持させて導入し、幅方向に延伸して二軸延伸フィルムを得る。延伸温度は130~155℃が好ましく、高い空孔率が得られることから145~150℃がより好ましい。幅方向の延伸倍率は3~10倍が好ましく、より好ましくは4~8倍である。延伸倍率が3倍未満であると空孔率が低下して電池特性が悪化する場合があり、また生産性が低下する場合がある。また、延伸倍率を高くするほど高空孔率化するが、10倍を超えて延伸すると、フィルム破れが起きやすくなってしまう場合がある。なお、このときの横延伸速度としては500~6,000%/分で行うことが好ましく、1,000~5,000%/分であればより好ましい。延伸速度が2,000%/分以下と低速にすることが特に好ましい。
 ついで、そのままステンター内で熱固定を行うが、その温度は横延伸温度以上160℃以下が好ましく、熱固定時間は5~30秒間であることが好ましい。さらに、熱固定時にはフィルムの長手方向および/もしくは幅方向に弛緩させながら行ってもよく、特に幅方向の弛緩率を7~12%とすることが、熱寸法安定性の観点から好ましい。
 本発明の多孔性ポリプロピレンフィルムは、生産性に優れ、高い空孔率を有するだけでなく、電池特性に影響を及ぼすセパレータフィルム中の粗大ボイド、異物欠点を極めて少なく制御することが可能であることから、特に安全性への要求の厳しい、リチウムイオン二次電池などの非水電解液二次電池のセパレータとして好ましく用いることができる。
 以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。
 (1)β晶形成能
 樹脂またはフィルム5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から260℃まで10℃/分で昇温(ファーストラン)し、10分間保持した後、20℃まで10℃/分で冷却する。5分保持後、再度10℃/分で昇温(セカンドラン)した際に観測される融解ピークにについて、145~157℃の温度領域にピークが存在する融解をβ晶の融解ピーク、158℃以上にピークが観察される融解をα晶の融解ピークとして、高温側の平坦部を基準に引いたベースラインとピークに囲まれる領域の面積から、それぞれの融解熱量を求める。α晶の融解熱量をΔHα、β晶の融解熱量をΔHβとしたとき、以下の式で計算される値をβ晶形成能とする。なお、融解熱量の校正はインジウムを用いて行った。
・β晶形成能(%) = 〔ΔHβ / (ΔHα + ΔHβ)〕 × 100
 なお、ファーストランで観察される融解ピークから同様にβ晶の存在比率を算出することで、その試料の状態でのβ晶分率を算出することができる。
 (2)メルトフローレート(MFR)
 ポリプロピレン樹脂のMFRは、JIS K 7210(1995)の条件M(230℃、2.16kg)に準拠して測定する。ポリエチレン樹脂は、JIS K 7210(1995)の条件D(190℃、2.16kg)に準拠して測定する。
 (3)空孔率
 フィルムを30mm×40mmの大きさに切取り試料とした。電子比重計(ミラージュ貿易(株)製SD-120L)を用いて、室温23℃、相対湿度65%の雰囲気にて比重の測定を行った。測定を3回行い、平均値をそのフィルムの比重ρとした。
次に、測定したフィルムを280℃、5MPaで熱プレスを行い、その後、25℃の水で急冷して、空孔を完全に消去したシートを作成した。このシートの比重を上記した方法で同様に測定し、平均値を樹脂の比重(d)とした。なお、後述する実施例においては、いずれの場合も樹脂の比重dは0.91であった。フィルムの比重と樹脂の比重から、以下の式により空孔率を算出した。
・空孔率(%) = 〔( d - ρ ) / d 〕 × 100。
 (4)透過光量
 得られたフィルムを幅210mmでスリットし、巻出機と巻取機を備えた欠点検出器でフィルムの透過光量を測定した。光源には、長さ750mm、直径φ10mmの円柱状のロッドレンズを用い、ロッドレンズの端面から250Wのメタルハライド光源の光を入射した。フィルムの一方の面から光源を15mm離して設置し、照射した光の光量をもう一方の面から検出した。検出器とフィルムの距離は250mmとした。検出器としてはエレクトロセンサリデバイス(株)社製CCDラインセンサカメラE7450Dとニコン社製カメラレンズAiMicro-Nikkor55mmF2.8Sをフィルム幅方向に2台用い、以下の条件で検査した。フィルムを5m/分で走行させ、フィルムの透過光量を長さ500mについて全幅で測定した。表には平均透過光量に比べ、透過光量が5倍以上となる部分の頻度をA個/1m、平均透過光量に比べ、透過光量が3倍以上5倍未満となる部分の頻度をB個/1mとして記載した。ここで、平均透過光量はスリット後のフィルムの巻き芯部分と巻き外部分についてそれぞれ長さ1m分の透過光量を測定し、その平均値を用いた。
また、上記操作で透過光量が平均透過光量に比べ、5倍以上および3倍以上5倍未満となる部分が検出されなかった場合は、測定面積を10倍にして検査を行い、頻度を求めた。
・幅方向分解能 :20μm/pixel
・長さ方向分解能:20μm/pixel
・視野幅    :中央部200mm幅
・スキャンレート:9,500
・絞り     :16F。
 (5)電池特性評価
 (A)常温での長期特性
 宝泉(株)製の厚みが40μmのリチウムコバルト酸化物(LiCoO)正極を使用し、幅200mm、長さ4,000mmに切断した。また、宝泉(株)製の厚みが50μmの黒鉛負極を使用し、幅200mm、長さ4,000mmに切断した。
次に、上記の帯状正極を、各実施例・比較例のセパレータ用フィルムを介して、上記シート状負極と重ね、渦巻状に巻回して渦巻状電極体としたのち、有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った後、この容器内に、エチレンカーボネート:ジメチルカーボネート=3:7(体積比)の混合溶媒に溶質としてLiPFを濃度1モル/Lとなるように溶解させた電解液を電池ケース内に注入した。電池ケースの開口部を封口し、電池の予備充電を行い、筒形の有機電解液二次電池を作製した。各実施例・比較例につき、電池を作製した。
 作製した各二次電池について、25℃の雰囲気下、充電を16,000mAで4.2Vまで行い(充電操作は3.5時間とし、4.2Vまでは定電流充電、4.2Vに達した後は定電圧充電を行った)、放電を1,600mAで2.7Vまでとする充放電操作を3回繰り返して行い、再度16,000mAで4.2Vまで充電した。その後、25℃雰囲気中で二次電池を、充放電操作をせずに放置し50時間後の電圧値を測定した。
[(50時間後の電圧値)/(初期電圧値(4.2V))]×100 の計算式で得られる値が95%以上のものを電池特性良好とした。試験個数は100個測定し、電池特性良好となった電池の頻度を求め以下の基準で評価した。
A:90%以上
B:80%以上90%未満
C:80%未満。
 (B)60℃での長期特性
 上記(A)常温での長期特性評価において、50時間放置する雰囲気温度を60℃とする以外は同様の操作を行い、以下の基準で評価した。
A:90%以上
B:80%以上90%未満
C:80%未満。
 (C)出力特性
宝泉(株)製の厚みが40μmのリチウムコバルト酸化物(LiCoO)正極を使用し、直径15.9mmの円形に打ち抜いた。また、宝泉(株)製の厚みが50μmの黒鉛負極を使用し、直径16.2mmの円形に打ち抜いた。次に、各実施例・比較例のセパレータを直径24mmに打ち抜いた。正極活物質と負極活物質面が対向するように、下から負極、セパレータ、正極の順に重ね、蓋付ステンレス金属製小容器(宝泉(株)製のHSセル)に収納した。容器と蓋とは絶縁され、容器は負極の銅箔と、蓋は正極のアルミ箔と接している。この容器内にエチレンカーボネート:ジメチルカーボネート=3:7(体積比)の混合溶媒に溶質としてLiPFを濃度1モル/Lとなるように溶解させた電解液を注入して密閉した。各実施例・比較例につき、電池を作製した。
 作製した各二次電池について、25℃の雰囲気下、充電を1,600mAで4.2Vまで行い(充電操作は3.5時間とし、4.2Vまでは定電流充電、4.2Vに達した後は定電圧充電を行った)、放電を1,600mAで2.7Vまでとする充放電操作を行い、放電容量を調べた。さらに、充電を1,600mAで4.2Vまで、放電を16,000mAで2.7Vまでとする充放電操作を行い、放電容量を調べた。
[(16,000mAでの放電容量)/(1,600mAでの放電容量)]×100 の計算式で得られる値を以下の基準で評価した。なお、試験個数は20個測定し、その平均値で評価した。
A:85%以上
B:80%以上85%未満
C:80%未満。
 (6)破断強度
 JIS K 7127(1999、試験片タイプ2)に準じて、(株)オリエンテック製フィルム強伸度測定装置(AMF/RTA-100)を用いて、25℃、65%RHにて破断強度を測定した。具体的には、多孔性ポリプロピレンフィルムを長手方向:15cm、幅方向:1cmのサイズに切り出し、原長50mm、引張り速度300mm/分で伸張して、破断強度(単位:MPa)を測定した。同じサンプルについて同様の測定を5回行い、得られた破断強度の平均値を当該サンプルの長手方向の破断強度とした。また、サンプルの長手方向と幅方向を入れ替えて同様に幅方向の破断強度を測定した。
 (7)β晶核剤含有量
 多孔性ポリプロピレンフィルムをデカリンに加えてポリプロピレン樹脂中のアミド系化合物や酸化防止剤などを抽出させたのち、高速液体クロマトグラフィーにより定量する。なお、予め秤量したアミド系化合物、酸化防止剤の添加量が既知の標準ポリプロピレン樹脂を作成し、同様の測定を行い、検量線を作成しておくことで、ポリプロピレン中のアミド系化合物濃度を定量した。
(8)透気抵抗(ガーレー)
実施例および比較例で得たセパレータから1辺の長さ100mmの正方形を切取り試料とした。JIS P 8117(1998)のB形のガーレー試験機を用いて、23℃、相対湿度65%にて、100mlの空気の透過時間の測定を3回行った。透過時間の平均値をそのフィルムの透気抵抗度(ガーレー)とした。なお、透気抵抗度(ガーレー)が悪いサンプルの場合は、25mlの空気の透過時間が30分(1,800秒)を超えた時点で測定を中止し、透気抵抗度(ガーレー)が120分/100ml(7,200秒/100ml)を超えていると判断した。
 (実施例1)
 住友化学(株)製ホモポリプロピレンFLX80E4(以下、PP-1と表記、MFR=8)94質量部、高溶融張力ポリプロピレン樹脂であるBasell製ポリプロピレンPF-814(以下、HMS-PPと表記、MFR=2.5)1質量部、エチレン-オクテン-1共重合体であるダウ・ケミカル製 Engage8411(メルトインデックス:18g/10分、以下、単にPEと表記)5質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、Nu-100、以下、単にβ晶核剤と表記)0.2質量部、酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010、IRGAFOS168を各々0.15、0.1質量部を、この比率で混合されるように計量ホッパーから二軸押出機に原料供給した。300℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてチップ原料とした。これを多孔性ポリプロピレンフィルムの原料樹脂とした。
 このチップを単軸押出機(吐出量15kg/hr)に供給して235℃で溶融押出を行なった。20μmカットの焼結フィルター(濾過面積:65000mm)を10枚セットしたリーフディスク型フィルターで異物を除去後、続けて50μmカットの金網製スクリーンフィルター(濾過面積:18000mm)を通した。Tダイから120℃に表面温度を制御したキャストドラムに吐出し、ドラムに15秒間接するようにキャストして未延伸シートを得た。未延伸フィルムのβ晶形成能は80%であった。ついで、125℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、150℃で6.5倍に、延伸速度1,800%/分で延伸した。そのまま、幅方向に10%のリラックスを掛けながら155℃で7秒間の熱処理を行い、厚み25μmの多孔性ポリプロピレンフィルムを得た。得られたフィルムの物性を表1に示す。ただし、物性を評価するサンプルは、上記条件で10時間連続製膜した後に採取したサンプルとした。
 得られたセパレータは欠点品位、透気性共に良好であり、電池特性は長期特性、出力特性共に良好であった。
 (実施例2)
 実施例1で50μmカットのスクリーンフィルターの代わりにスタティックミキサーを用いた以外は実施例1に記載した原料組成、製膜条件で多孔性ポリプロピレンフィルムを得た。
スクリーンフィルターの代わりにスタティックミキサーを用いたため、得られたセパレータは実施例1に比べて欠点頻度がやや多くなり、高温での長期特性が若干低下し、評価Bとなった。出力特性は良好であった。
 (実施例3)
 実施例1で50μmカットのスクリーンフィルターの下流側にスタティックミキサーを設置した以外は実施例1に記載した原料組成、製膜条件で多孔性ポリプロピレンフィルムを得た。
スクリーンフィルターとスタッティクミキサーを直列して設置したので、得られたセパレータは実施例1に比べて欠点頻度が少なく、欠点品位、透気性共に良好であり、電池特性は長期特性、出力特性共に良好であった。
 (実施例4)
 実施例1で溶融押出時の温度を200℃とした以外は実施例1に記載した原料組成、製膜条件で多孔性ポリプロピレンフィルムを得た。
溶融押出温時の温度を好ましい温度にしたので、得られたセパレータは実施例1に比べて欠点頻度が少なく、欠点品位、透気性共に良好であり、電池特性は長期特性、出力特性共に良好であった。
 (実施例5)
 実施例1で20μmカットの焼結フィルターの代わりに40μmカットの焼結フィルターを用いた以外は実施例1に記載した原料組成、製膜条件で多孔性ポリプロピレンフィルムを得た。
フィルター精度を40μmカットに変更したため、得られたセパレータは実施例1に比べて欠点頻度がやや多くなり、常温および高温での長期特性が若干低下し、評価Bとなった。出力特性は良好であった。
 (実施例6)
 実施例1で50μmカットのスクリーンフィルターの代わりに50μmカットの平板型焼結フィルター(濾過面積:18000mm)を用いた以外は実施例1に記載した原料組成、製膜条件で多孔性ポリプロピレンフィルムを得た。
金網フィルターを焼結フィルターに変更したことで、得られたセパレータは実施例1に比べて欠点品位が大幅に改善した。電池特性は長期特性、出力特性共に良好であった。
 (実施例7)
 実施例1で溶融押出時の温度を200℃とし、β晶核剤の添加量を0.03質量部とした以外は実施例1に記載した原料組成、製膜条件で多孔性ポリプロピレンフィルムを得た。
得られたセパレータは欠点品位が良好であり、長期特性が良好であったが、β晶核剤が少ないため透気性が低下し、出力特性が評価Bとなった。
 (実施例8)
 実施例1で長手方向の延伸倍率を2.8倍に変更する以外は実施例1に記載した原料組成、製膜条件で多孔性ポリプロピレンフィルムを得た。
得られたセパレータは延伸倍率が低いため欠点頻度は向上し、長期特性が良好であったが、長手方向延伸倍率が低いため透気性が低下し、出力特性が評価Bとなった。また、強度が低下したため、電池組立時の加工性も低下した。
 (実施例9)
 実施例1で幅方向の延伸倍率を2.8倍に変更する以外は実施例1に記載した原料組成、製膜条件で多孔性ポリプロピレンフィルムを得た。
得られたセパレータは延伸倍率が低いため欠点頻度は向上し、長期特性が良好であったが、幅方向延伸倍率が低いため透気性が低下し、出力特性が評価Bとなった。また、強度が低下したため、電池組立時の加工性も低下した。
 (比較例1)
 実施例1で20μmカットの焼結フィルターおよび50μmカットのスクリーンフィル
ターを使用しない以外は実施例1に記載した原料組成、製膜条件で多孔性ポリプロピレンフィルムを得た。
得られたセパレータは欠点頻度が高くなったため、長期特性が悪化した。
 (比較例2)
 実施例1で50μmカットのスクリーンフィルターを使用しない以外は実施例1に記載した原料組成、製膜条件で多孔性ポリプロピレンフィルムを得た。
得られたセパレータは欠点頻度が高くなったため、長期特性が悪化した。
 (比較例3)
 実施例1で溶融押出時の温度を200℃とし、50μmカットのスクリーンフィルターを使用しない以外は実施例1に記載した原料組成、製膜条件で多孔性ポリプロピレンフィルムを得た。
得られたセパレータは欠点頻度が高くなったため、長期特性が悪化した。
 (比較例4)
 実施例1で50μmカットのスクリーンフィルターの代わりに15μmカットのスクリーンフィルターを使用し、また、スクリーンフィルターの破損を防ぐため吐出量を3kg/hrと変更する以外は実施例1に記載した原料組成、製膜条件で多孔性ポリプロピレンフィルムを得た。なお、実施例1と同じ吐出量ではスクリーンフィルター前後の圧損が高くなり、製膜は困難であった。
得られたセパレータは吐出量が低くなり滞留時間が増えたため欠点頻度が高くなり、長期特性が悪化した。
 (比較例5)
 実施例1で50μmカットのスクリーンフィルターに代えて15μmカットの焼結フィルターを10枚セットしたリーフディスク型フィルターを設置する以外は実施例1に記載した原料組成、製膜条件で多孔性ポリプロピレンフィルムを得た。
平板型のフィルターを設置していないため、得られたセパレータは欠点頻度が高くなり、長期特性が悪化した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の要件を満足する実施例では高い空孔率と優れた生産性に加えて、フィルムの品位に優れるため蓄電デバイス用のセパレータとして好適に用いることが可能であると考えられる。一方、比較例では、電池評価悪化の原因となる欠点が多く、蓄電デバイス用のセパレータとして用いることが困難である。
 本発明の多孔性ポリプロピレンフィルムは、品位、生産性に優れ、高い空孔率を有することからリチウムイオン電池用セパレータとして好適に使用することができる。

Claims (9)

  1.  平均透過光量に対し透過光量が5倍以上となる部分が1m当たり0.5個以下である多孔性ポリプロピレンフィルム。
  2.  平均透過光量に対し透過光量が3倍以上5倍未満となる部分が1m当たり1個以下である請求項1の多孔性ポリプロピレンフィルム。
  3.  多孔性ポリプロピレンフィルムが乾式法で製造されてなる請求項1または2のいずれかの多孔性ポリプロピレンフィルム。
  4.  空孔率が60~85%である、請求項1~3のいずれかの多孔性ポリプロピレンフィルム。
  5.  多孔性ポリプロピレンフィルムがβ晶形成能40~90%のポリプロピレン樹脂を含む、請求項1~4のいずれかの多孔性ポリプロピレンフィルム。
  6.  多孔性ポリプロピレンフィルムを構成するポリプロピレン樹脂中に、該ポリプロピレン樹脂全体に対してβ晶核剤を0.05~0.5質量%含有する請求項1~5のいずれかの多孔性ポリプロピレンフィルム。
  7.  長手方向の破断強度Eが65MPa以上であり、幅方向の破断強度Eが45MPa以上である請求項1~6のいずれかの多孔性ポリプロピレンフィルム。
  8.  請求項1~7のいずれかの多孔性ポリプロピレンフィルムの製造方法であって、乾式法により製膜されたポリプロピレンフィルムを、長手方向および幅方向にそれぞれ3倍以上10倍以下延伸する多孔性ポリプロピレンフィルムの製造方法。
  9.  乾式法により製膜されたポリプロピレンフィルムが、β晶形成能40~90%のポリプロピレン樹脂を含む、請求項8の多孔性ポリプロピレンフィルムの製造方法。
PCT/JP2010/054425 2009-03-17 2010-03-16 多孔性ポリプロピレンフィルムおよびその製造方法 WO2010107023A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10753515.5A EP2410006A4 (en) 2009-03-17 2010-03-16 Porous polypyryl film and method for its production
US13/203,879 US20110319511A1 (en) 2009-03-17 2010-03-16 Porous polypropylene film and production method thereof
JP2010513514A JP5736777B2 (ja) 2009-03-17 2010-03-16 多孔性ポリプロピレンフィルムおよびその製造方法
CN2010800047370A CN102282203B (zh) 2009-03-17 2010-03-16 多孔聚丙烯膜及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009063955 2009-03-17
JP2009-063955 2009-03-17

Publications (1)

Publication Number Publication Date
WO2010107023A1 true WO2010107023A1 (ja) 2010-09-23

Family

ID=42739683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054425 WO2010107023A1 (ja) 2009-03-17 2010-03-16 多孔性ポリプロピレンフィルムおよびその製造方法

Country Status (6)

Country Link
US (1) US20110319511A1 (ja)
EP (1) EP2410006A4 (ja)
JP (1) JP5736777B2 (ja)
KR (1) KR20110131213A (ja)
CN (1) CN102282203B (ja)
WO (1) WO2010107023A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105660A1 (ja) * 2011-02-03 2012-08-09 東レ株式会社 多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
WO2012105661A1 (ja) * 2011-02-03 2012-08-09 東レ株式会社 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP2012531009A (ja) * 2009-06-20 2012-12-06 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー シャットダウン機能を有する電池用微孔質ホイル
JP2013100458A (ja) * 2011-10-14 2013-05-23 Toray Ind Inc 多孔性ポリオレフィンフィルムおよび蓄電デバイス
JP2015004017A (ja) * 2013-06-21 2015-01-08 三菱樹脂株式会社 多孔性フィルム、それを利用した電池用セパレータおよび電池
WO2018164056A1 (ja) 2017-03-08 2018-09-13 東レ株式会社 ポリオレフィン微多孔膜

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101268231B1 (ko) * 2011-12-21 2013-05-31 삼성토탈 주식회사 셧다운 특성을 갖는 리튬 이차전지용 분리막
CN106159171A (zh) * 2016-08-29 2016-11-23 无锡市宝来电池有限公司 一种耐腐蚀的锂离子电池隔膜材料
WO2019057325A1 (de) * 2017-09-20 2019-03-28 Treofan Germany Gmbh & Co. Kg Separator-folie mit verbesserten mechanischen eigenschaften
WO2019158266A1 (de) * 2018-02-16 2019-08-22 Treofan Germany Gmbh & Co. Kg Separator-folie mit verbesserten mechanischen eigenschaften
CN110894084B (zh) * 2019-12-06 2021-07-06 中国科学技术大学 一种纳米零价铁负载材料及其制备方法和污水中六价铬的净化方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532531B1 (ja) 1969-11-13 1980-08-26
JPS55131028A (en) 1979-04-02 1980-10-11 Asahi Chem Ind Co Ltd Production of porous object of polyolefin
JPS57203520A (en) 1981-06-09 1982-12-13 Mitsubishi Chem Ind Ltd Manufacture of porous film or sheet
JPS63199742A (ja) 1987-02-17 1988-08-18 Toray Ind Inc ポリプロピレン微孔性フイルムの製造方法
JPH05310665A (ja) 1992-04-27 1993-11-22 New Japan Chem Co Ltd 新規なアミド系化合物
JPH06100720A (ja) 1990-11-13 1994-04-12 Chem Inst Chinese Acad Sinica 超透過性ポリプロピレンのミクロポーラスフィルム及びその製造方法
JPH09255804A (ja) 1996-01-17 1997-09-30 Tokuyama Corp 微多孔性膜の製造方法
WO2005103127A1 (ja) 2004-04-22 2005-11-03 Toray Industries, Inc. 微孔性ポリプロピレンフィルムおよびその製造方法
WO2007026579A1 (ja) * 2005-08-31 2007-03-08 Zeon Corporation 有機エレクトロルミネッセンス素子用保護膜形成材料の製造方法
WO2007046226A1 (ja) * 2005-10-18 2007-04-26 Toray Industries, Inc. 蓄電デバイスセパレータ用微多孔フィルムおよびそれを用いた蓄電デバイスセパレータ
JP2008201814A (ja) * 2007-02-16 2008-09-04 Toray Ind Inc 多孔性ポリプロピレンフィルム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277922A (ja) * 1985-10-01 1987-04-10 Unitika Ltd 無孔の透湿性防水膜の製造方法
JP4158004B2 (ja) * 2000-06-02 2008-10-01 新日本理化株式会社 多孔性ポリプロピレンフィルム、その製造方法及び該フィルムを用いた吸収性物品
US6596814B2 (en) * 2000-12-07 2003-07-22 Sunoco Inc. (R&M) Polypropylene film having good drawability in a wide temperature range and film properties
JP4839882B2 (ja) * 2005-03-31 2011-12-21 住友化学株式会社 ポリオレフィン系樹脂組成物からなるシート、多孔性フィルムおよび電池用セパレータ
JP2007016211A (ja) * 2005-06-08 2007-01-25 Toray Ind Inc 芳香族ポリアミド及び/又は芳香族ポリイミドを含む多孔性フィルム、および電池用セパレータ
WO2007046225A1 (ja) * 2005-10-18 2007-04-26 Toray Industries, Inc. 微多孔ポリプロピレンフィルムおよびその製造方法
JP5087906B2 (ja) * 2006-11-14 2012-12-05 東レ株式会社 微多孔ポリプロピレンフィルムおよびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532531B1 (ja) 1969-11-13 1980-08-26
JPS55131028A (en) 1979-04-02 1980-10-11 Asahi Chem Ind Co Ltd Production of porous object of polyolefin
JPS57203520A (en) 1981-06-09 1982-12-13 Mitsubishi Chem Ind Ltd Manufacture of porous film or sheet
JPS63199742A (ja) 1987-02-17 1988-08-18 Toray Ind Inc ポリプロピレン微孔性フイルムの製造方法
JPH06100720A (ja) 1990-11-13 1994-04-12 Chem Inst Chinese Acad Sinica 超透過性ポリプロピレンのミクロポーラスフィルム及びその製造方法
JPH05310665A (ja) 1992-04-27 1993-11-22 New Japan Chem Co Ltd 新規なアミド系化合物
JPH09255804A (ja) 1996-01-17 1997-09-30 Tokuyama Corp 微多孔性膜の製造方法
WO2005103127A1 (ja) 2004-04-22 2005-11-03 Toray Industries, Inc. 微孔性ポリプロピレンフィルムおよびその製造方法
WO2007026579A1 (ja) * 2005-08-31 2007-03-08 Zeon Corporation 有機エレクトロルミネッセンス素子用保護膜形成材料の製造方法
WO2007046226A1 (ja) * 2005-10-18 2007-04-26 Toray Industries, Inc. 蓄電デバイスセパレータ用微多孔フィルムおよびそれを用いた蓄電デバイスセパレータ
JP2008201814A (ja) * 2007-02-16 2008-09-04 Toray Ind Inc 多孔性ポリプロピレンフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2410006A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012531009A (ja) * 2009-06-20 2012-12-06 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー シャットダウン機能を有する電池用微孔質ホイル
WO2012105660A1 (ja) * 2011-02-03 2012-08-09 東レ株式会社 多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
WO2012105661A1 (ja) * 2011-02-03 2012-08-09 東レ株式会社 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP5083479B2 (ja) * 2011-02-03 2012-11-28 東レ株式会社 多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
CN103339175A (zh) * 2011-02-03 2013-10-02 东丽株式会社 多孔性膜、蓄电器件用隔板及蓄电器件
US9287543B2 (en) 2011-02-03 2016-03-15 Toray Industries, Inc. Porous film, separator for electric storage device, and electric storage device
JP2013100458A (ja) * 2011-10-14 2013-05-23 Toray Ind Inc 多孔性ポリオレフィンフィルムおよび蓄電デバイス
JP2015004017A (ja) * 2013-06-21 2015-01-08 三菱樹脂株式会社 多孔性フィルム、それを利用した電池用セパレータおよび電池
WO2018164056A1 (ja) 2017-03-08 2018-09-13 東レ株式会社 ポリオレフィン微多孔膜

Also Published As

Publication number Publication date
JPWO2010107023A1 (ja) 2012-09-20
CN102282203A (zh) 2011-12-14
CN102282203B (zh) 2013-04-03
EP2410006A4 (en) 2015-08-19
US20110319511A1 (en) 2011-12-29
KR20110131213A (ko) 2011-12-06
EP2410006A1 (en) 2012-01-25
JP5736777B2 (ja) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5736777B2 (ja) 多孔性ポリプロピレンフィルムおよびその製造方法
CN107250234B (zh) 聚烯烃微多孔膜、其制造方法以及电池用隔膜
KR101432146B1 (ko) 물성과 고온 열안정성이 우수한 폴리올레핀 미세다공막
JP5907066B2 (ja) 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP5354132B2 (ja) 多孔性ポリプロピレンフィルムおよび蓄電デバイス
JP5672007B2 (ja) 多孔性ポリプロピレンフィルムロール
JP5194476B2 (ja) 多孔性ポリプロピレンフィルム
JPWO2018164054A1 (ja) ポリオレフィン微多孔膜
JP6361251B2 (ja) 多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP5724329B2 (ja) 多孔性ポリプロピレンフィルムロール
JP6135665B2 (ja) ポリオレフィン多孔性フィルムおよび蓄電デバイス
JP2012072380A (ja) 多孔性ポリプロピレンフィルムおよび蓄電デバイス
WO2013054930A1 (ja) 多孔性ポリオレフィンフィルムおよび蓄電デバイス
JP2013032505A (ja) 多孔性ポリオレフィンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
KR20220069831A (ko) 폴리올레핀 미다공막, 전지용 세퍼레이터 및 이차 전지
JP2014198832A (ja) 多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
WO2013054931A1 (ja) 多孔性ポリプロピレンフィルムおよび蓄電デバイス
JP2010108922A (ja) 多孔性積層フィルムおよび蓄電デバイス
JP2011070884A (ja) 蓄電デバイス用セパレータの製造方法
JP2015108076A (ja) 多孔性ポリプロピレンフィルムの製造方法および多孔性ポリプロピレンフィルム、蓄電デバイス
JP2014062244A (ja) 多孔性フィルムおよび蓄電デバイス
JP2015110688A (ja) 多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP2013100458A (ja) 多孔性ポリオレフィンフィルムおよび蓄電デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004737.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010513514

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753515

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010753515

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010753515

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13203879

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117021581

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE