WO2007046225A1 - 微多孔ポリプロピレンフィルムおよびその製造方法 - Google Patents

微多孔ポリプロピレンフィルムおよびその製造方法 Download PDF

Info

Publication number
WO2007046225A1
WO2007046225A1 PCT/JP2006/319407 JP2006319407W WO2007046225A1 WO 2007046225 A1 WO2007046225 A1 WO 2007046225A1 JP 2006319407 W JP2006319407 W JP 2006319407W WO 2007046225 A1 WO2007046225 A1 WO 2007046225A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
film
microporous
stretching
resin
Prior art date
Application number
PCT/JP2006/319407
Other languages
English (en)
French (fr)
Inventor
Jun'ichi Masuda
Masatoshi Ohkura
Shigeru Tanaka
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to JP2006549739A priority Critical patent/JP5417685B2/ja
Publication of WO2007046225A1 publication Critical patent/WO2007046225A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins

Definitions

  • Microporous polypropylene film and method for producing the same are Microporous polypropylene film and method for producing the same
  • the present invention relates to a microporous polypropylene film suitable for a wide range of uses such as packaging and industrial uses. Specifically, compared to the conventional microporous film by the ⁇ crystal method, the microporous film has excellent permeability of various permeable media with high porosity, excellent film forming properties, and excellent dimensional stability and mechanical properties. It relates to a polypropylene film.
  • Microporous films are mainly composed of various separators such as batteries and electrolytic capacitors, various separation membranes (filters), absorbent articles typified by diapers and sanitary products, because of their characteristics such as permeability and high porosity.
  • separators such as batteries and electrolytic capacitors
  • separation membranes filters
  • absorbent articles typified by diapers and sanitary products, because of their characteristics such as permeability and high porosity.
  • There are a wide variety of uses such as clothing and medical breathable waterproofing members, heat-sensitive receiving paper members, ink receiving member members, and polyolefin microporous films typified by polypropylene and polyethylene are mainly used! /,
  • polypropylene and polyethylene are mainly used! /
  • Methods for producing microporous polyolefin films are generally roughly divided into wet methods and dry methods.
  • a wet method the extractables are added to polyolefin and finely dispersed, and after forming into a sheet, the extractables are extracted with a solvent to form pores, and stretched before and after extraction as necessary.
  • an extraction method including a process to be performed (for example, see Patent Document 1).
  • a dry method an unstretched sheet in which a special crystalline lamella structure is formed by producing a special melt crystallization condition of low temperature extrusion and high draft during sheet extrusion by melt extrusion is produced, and this is mainly uniaxially stretched.
  • Patent Document 3 materials with higher crystal-forming ability have been proposed as a ⁇ -crystal nucleating agent compared to quinacridone compounds that have been used for a long time (for example, see Non-Patent Document 3).
  • Patent Documents 11 and 12 various microporous polypropylene films have been proposed.
  • a method for producing a polypropylene microporous film that is stretched in at least one direction at an area stretch ratio in a specific range (Patent Document 4), a polypropylene and polyethylene having a specific composition, and a resin composition having a j8 crystal nucleating power as a crystalline phase in a sheet
  • a microporous membrane manufacturing method (Patent Document 7), in which a sheet is melt-molded so that it is substantially in the ⁇ crystal phase and then stretched under a specific range of temperature conditions, and the ⁇ crystal ratio of a specific composition is specified
  • a biaxially oriented microporous film with a specific range of Gurley permeability and a coefficient of static friction (Patent Document 10) is made up of a range of polypropylene resin and a resin incompatible with polypropylene. Proposal has been! Ru.
  • Patent Document 1 Japanese Patent No. 1299979 (Claim 1)
  • Patent Document 2 Japanese Patent No. 1046436 (Claim 1)
  • Patent Document 3 Japanese Patent No. 1638935 (Claims 1-7)
  • Patent Document 4 Japanese Patent No. 1974511 (Claim 1)
  • Patent Document 5 Japanese Patent No. 2509030 (Claims 1 to 8)
  • Patent Document 6 Japanese Patent No. 3443934 (Claims 1 to 5)
  • Patent Document 7 Japanese Patent No. 3523404 (Claim 1)
  • Patent Document 8 Pamphlet of International Publication No. 02-66233 (Claims 1 to: L 1)
  • Patent Document 9 U.S. Pat.No. 6596814 (Claims 1 to 31, page 2, paragraph 1, lines 18 to 50, Examples 1 to 3, Comparative Example 4)
  • Patent Document 10 JP-A-2005-171230 (Claims 1 to: LI)
  • Patent Document 11 Japanese Patent No. 2055797 (Claims 1 to 8)
  • Patent Document 12 Japanese Patent No. 3243835 (Claim 1)
  • Non-Patent Document 1 Adachi et al., “Chemical Industry”, 47th, 1997, p. 47-52
  • Non-Patent Document 2 M. Xu et al., “Polymers for Advanced Technologies”
  • Non-Patent Document 3 Fujiyama
  • Polymer Processing Vol. 38, 1989, p. 35-41
  • the ⁇ crystal method is a dry method and does not require a complicated process, so it is said that the so-called extraction method can supply a microporous film at a lower cost than the lamellar stretching method.
  • the conventional microporous film by the ⁇ crystal method is inferior to the permeation performance of various media (hereinafter sometimes simply referred to as “permeability”) as compared with the microporous film by the extraction method and the lamellar stretching method. It was. That is, even if a highly active ⁇ -crystal nucleating agent as shown in Patent Documents 11 and 12 is used, it is a microporous film by the ⁇ -crystal method proposed in Patent Documents 4 to 10 and Non-Patent Document 2. Even if it exists, the permeability was inferior compared with the microporous film by the extraction method lamellar stretching method. For this reason, it has been considered difficult to develop microporous films by the ⁇ crystal method in high value-added fields such as filters and battery separators that require high permeation performance.
  • permeability various media
  • the permeation performance of the conventional microporous polypropylene film by the ⁇ crystal method is equivalent to or slightly superior to that of the microporous film by the inorganic particle method, and there are disadvantages such as process contamination due to particle dropping. It lacked the distinctive features of microporous film produced by the inorganic particle method, which has excellent cost competitiveness.
  • the ⁇ -crystal method also has a problem of low productivity due to special melt crystallization conditions in the casting process for producing an unstretched sheet. More specifically, in the j8 crystal method, it is more preferable to use only a polypropylene containing a ⁇ crystal nucleating agent in order to produce a large amount of ⁇ crystals in an unstretched sheet to form a highly permeable microporous film. High temperature atmosphere exceeding 100 ° C It solidifies under air and forms a sheet (for example, see Patent Document 8). There is also a report that a larger amount of ⁇ -crystals can be formed at a lower melt extrusion temperature (see Non-Patent Document 3).
  • the line speed at the time of producing the microporous film is determined by the crystal solidification state of the molten polypropylene in the casting process. That is, even if high-speed casting is performed for high-speed film formation, there is a problem that the metal drum force is difficult to peel off because it adheres in an unsolidified state. Even if it can be peeled off, the sheet under subsequent tension In some cases, the sheet stretches during transport. Therefore, the casting speed, and hence the line speed (that is, the film forming speed) is inevitably low, resulting in low productivity. Moreover, in order to express the permeation performance, it is necessary to stretch at a lower temperature than the stretching conditions of a conventional polypropylene film having no permeability in the subsequent stretching process. Even in this drawing process, the problem was that breakage sporadically spattered depending on the conditions, resulting in a higher production cost.
  • An object of the present invention was made to solve the above-described problems, and has a high porosity, excellent permeation performance of various media, and excellent productivity with less process contamination and film breakage.
  • Another object of the present invention is to provide a microporous polypropylene film having excellent mechanical properties and dimensional stability. In addition, it provides excellent permeability for various media with high porosity, and provides a manufacturing method for microporous polypropylene films that have excellent mechanical properties and dimensional stability, as well as excellent productivity and low film tearing. It is to be.
  • the first microporous polypropylene film of the present invention is mainly composed of polypropylene containing a j8 crystal nucleating agent, contains ethylene 'a-olefin copolymer, and has a Gurley air permeability of 500 seconds. It is not more than ZlOOml and has substantially non-nucleated pores.
  • the ⁇ -olefin of the ethylene 'a -olefin copolymer is 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene 1, 1 Hexene, 4-methylpentene 1, 5-ethylhexene 1, 1, 1-otatenka
  • the addition amount of ethylene'a-olefin copolymer is 1 wt% or more and less than 10 wt%
  • it is characterized by being ultra-low density polyethylene (mVLDPE) synthesized by an ethylene-a-olefin copolymer catalyst and having an average pore diameter of 60 nm or more.
  • mVLDPE ultra-low density polyethylene
  • the second microporous polypropylene film of the present invention is mainly composed of polypropylene containing a ⁇ crystal nucleating agent, and the melt crystallization temperature of the polypropylene containing the ⁇ crystal nucleating agent ( It has a Tmc of 30 ° C lower than Tmc) and contains a resin that is incompatible with polypropylene, has a Gurley permeability of 500 seconds or less of ZlOOml, and has substantially non-nuclear pores. It is characterized by having.
  • the resin incompatible with polypropylene is an ethylene 'a-olefin copolymer
  • the ethylene a-olefin copolymer ⁇ -olefin is 1-butene, 1-pentene, 3-methylolene pentene 1, 3-methylbutene 1, 1 hexene, 4-methylpentene 1, 5 ethylhexene 1, 1 otatenka Must be at least one selected.
  • It is an ultra-low density polyethylene (mVLDPE) synthesized with a 1-year-old refin copolymer catalyst, and the amount of resin added is incompatible with polypropylene. It is characterized by being 1% by weight or more and less than 10% by weight and an average pore diameter of 60nm or more.
  • the first method for producing a microporous polypropylene film of the present invention is mainly composed of polypropylene containing a 13 crystal nucleating agent as a main component, and is incompatible with polypropylene. And a step of obtaining an unstretched sheet having a dispersion diameter of a resin that is incompatible with polypropylene in the sheet and having a dispersion diameter of 300 nm or less. Forming a hole in the film by stretching the obtained unstretched sheet.
  • the second method for producing a microporous polypropylene film of the present invention mainly comprises a polypropylene containing a ⁇ crystal nucleating agent as a main component and is incompatible with polypropylene.
  • the resin composition containing the additive is melt-extruded and further cast on a drum to obtain an unstretched sheet, and further the process of stretching the resulting unstretched sheet to form pores in the film.
  • polypropylene when solidifying the unstretched sheet, polypropylene is solidified prior to a resin that is incompatible with polypropylene.
  • the polypropylene is crystallized prior to the crystallization of the resin incompatible with the polypropylene, and the polypropylene in the unstretched sheet
  • the dispersion diameter of incompatible resin is 300 nm or less.
  • the melt crystallization temperature (Tmc) of the ⁇ -crystal nucleating agent-containing polypropylene is Tmc of a resin that is incompatible with polypropylene. 30 ° C.
  • the resulting microporous film has substantially non-nuclear pores
  • the stretching speed in at least one direction is 1000% Z Less than a minute
  • the step of stretching the unstretched sheet is a sequential biaxial stretching step of transverse stretching after longitudinal stretching
  • the step of stretching the unstretched sheet is a sequential biaxial stretching step, and that the stretching rate in the transverse stretching step is less than 1000% Z min, also be ⁇ fat is incompatible with the polypropylene is ethylene.
  • the microporous polypropylene film of the present invention is compared with a conventional microporous polypropylene film by adding a different component capable of maintaining a state in which the obtained microporous film has substantially anuclear pores. Excellent film forming properties with less process contamination and film tearing. Thereby, it becomes possible to stretch in the vertical direction at a high magnification, and the porosity can be increased. Even at the same draw ratio, the porosity can be increased as compared with the conventional microporous film. Furthermore, the strength that mechanical properties may be lowered when the porosity is originally increased, the microporous polypropylene film of the present invention can increase the porosity without significantly impairing the mechanical properties. it can. In addition, the dimensional stability can be maintained at the same level as the conventional microporous polypropylene film.
  • the microporous polypropylene film of the present invention can be made into a film excellent in absorbability and liquid retention due to its high porosity and high permeability, and can be used for synthetic paper and optical members.
  • the first and second microporous polypropylene films of the present invention are mainly composed of polypropylene containing a ⁇ crystal nucleating agent.
  • the microporous polypropylene film of the present invention can use the j8 crystal method having excellent cost competitiveness by using polypropylene containing a ⁇ crystal nucleating agent as a main component, and has the following embodiment. Can improve permeability to increase porosity
  • the polypropylene referred to in the present invention is preferably mainly composed of a homopolymer of propylene, but propylene and a monomer other than propylene are copolymerized within a range not impairing the object of the present invention.
  • the copolymer may be a polypropylene, and the copolymer is added to polypropylene. May be blended. However, as will be described later, it is necessary that the resulting microporous film has substantially nucleus-free pores.
  • Examples of monomers constituting such a copolymer component include ethylene, 1-butene, 1-pentene, 3-methylpentene-1, 1,3-methylbutene-1, 1hexane, 4-methylpentene 1, 5 ethyl. Hexene-1, 1-octene, 1-decene, 1-dodecene, butylcyclohexene, styrene, arylbenzene, cyclopentene, norbornene, 5-methyl-2-norbornene, acrylic acid and derivatives thereof It is not done.
  • the first and second microporous polypropylene films of the present invention contain 90% by weight or more of a propylene monomer component with respect to all the polymers constituting the film (that is, the main component is polypropylene). ).
  • the content of the propylene monomer is less than the above range, the resulting microporous film has insufficient ⁇ crystal activity, and as a result, the porosity may be lowered or the permeation performance may be poor.
  • the content of the propylene monomer is more preferably 95% by weight or more, and still more preferably 97% by weight or more based on the total amount of monomers of all the polymers constituting the film.
  • the propylene monomer content is 95% by weight or more. I like it because it can increase the porosity.
  • the first and second microporous polypropylene films of the present invention are preferably in the following modes in order to improve the permeability that increases the porosity.
  • the first and second microporous polypropylene films of the present invention preferably contain high melt tension polypropylene (High Melt Strength—PP; HMS—PP). Because it contains HMS-PP, it has superior film-forming properties with less tearing during stretching than conventional microporous polypropylene films.
  • the longitudinal orientation of molecular chains in the film can be promoted, and the mechanical properties in the longitudinal direction can be maintained. This is because HMS—PP is included to remove the microcrystals in the system from the casting stage. It is presumed that the entanglement between the penetrating amorphous phase tie molecules is promoted and the stretching stress is uniformly transmitted to the entire system in the subsequent stretching process.
  • the method for obtaining HMS-PP is not particularly limited, but the following methods are exemplified, and these methods are preferably used.
  • the HMS-PP used in the present invention has a great effect of stability of melt extrusion, the effect of the above-mentioned stable high-magnification drawing, the resulting increase in porosity, and permeability improvement! Therefore, polypropylene having a long chain branch in the main chain skeleton is preferable.
  • the polypropylene having a long chain branch in the main chain skeleton is a polypropylene having a polypropylene chain having a branched main chain skeleton strength.
  • the above-mentioned great effect can be obtained with polypropylene having a long chain branch in the main chain skeleton because the long chain branch acts as a tie molecule that pseudo-crosslinks between microcrystals from the casting stage, and in the subsequent stretching step. It is estimated that the stretching stress is uniformly transmitted to the entire system.
  • polypropylene having a long-chain branch in the main chain skeleton are: Basell polypropylene (type name: PF-814, PF-633, PF-611, SD-632, etc.), Bore alis Examples include polypropylene (type name: WB130HMS, etc.) and Dow polypropylene (type names: D114, D201, D206, etc.).
  • the microporous polypropylene film of the present invention contains HMS-PP
  • its addition amount is not particularly limited, but is 0.1 to 50% by weight with respect to all the polymers constituting the film. The effect can be seen even with small additions.
  • the mixing amount is less than the above range, the film-forming property, particularly in the case of successive biaxial stretching in the longitudinal and lateral directions, the stretching ratio is increased particularly in the longitudinal direction.
  • the stretchability in the transverse direction when stretched may deteriorate (the film may be broken in the transverse stretching process).
  • the porosity may be low or the permeability may be poor.
  • the film formability in the case of longitudinal and transverse sequential biaxial stretching, the stretchability in the longitudinal direction is particularly poor when stretched at a high magnification in the longitudinal direction (the film is stretched in the longitudinal stretching step). May cut).
  • the stable discharge property of the molten polymer at the time of melt extrusion and the impact resistance of the film are deteriorated.
  • the j8 crystal fraction defined below may decrease more than necessary.
  • the mixing amount of HMS PP is more preferably 0.5 to 20% by weight, and most preferably 0.5 to 5% by weight, based on all polymers constituting the film.
  • the melt flow rate (MFR) of polypropylene constituting the first and second microporous polypropylene films of the present invention is preferably 1 to 30 g / 10 min from the viewpoint of film forming property. If the MFR is less than the above range, melt extrusion at low temperatures becomes unstable, it becomes difficult to form a film with a uniform thickness that requires a long time to replace the extrusion raw material, and the film forming property is poor. It may cause problems such as a problem. When the MFR exceeds the above range, the landing point of the molten polymer on the metal drum varies greatly when the molten polymer discharged from the slit-shaped die in the casting process is cast into a metal drum and formed into a sheet shape.
  • the sheet has defects such as undulations, and it is difficult to form uniform j8 crystals in the unstretched sheet, resulting in large thickness unevenness of the resulting microporous film and large pore formation unevenness.
  • the MFR is more preferably 1 to 20 gZlO min.
  • the mesopentad fraction (mmmm) of the polypropylene constituting the first and second microporous polypropylene films of the present invention is preferably 90 to 99.5%. If the mesopentad fraction is less than the above range, the dimensional stability may be inferior. On the other hand, if the above range is exceeded, the production process may deteriorate as a result of many film tears.
  • the mesopentad fraction is more preferably 92 to 99%, still more preferably 93 to 99%.
  • the isotactic index ( ⁇ ) of the polypropylene constituting the first and second microporous polypropylene films of the present invention is preferably 92 to 99.8%. If II is less than the above range, problems such as lowering the stiffness of the film and increasing the heat shrinkage may occur. As II increases, rigidity and dimensional stability tend to improve. If the force exceeds the above range, the film-forming property itself may deteriorate. II is more preferably 94 to 99.5%, still more preferably 96 to 99%.
  • the polypropylene constituting the first and second microporous polypropylene films of the present invention contains an IS crystal nucleating agent.
  • ⁇ -crystal nucleating agent By containing a ⁇ -crystal nucleating agent, it becomes possible to generate ⁇ 8 crystals in the unstretched sheet by controlling the solidification conditions of the sheet in the production process, and in the subsequent stretching process, ⁇ -crystals can be formed. Can be transformed into ⁇ -crystal and pores can be formed by the difference in crystal density.
  • Examples of the ⁇ crystal nucleating agent that can be preferably added to the polypropylene constituting the first and second microporous polypropylene films of the present invention include, for example, acidic iron oxide having a nanoscale size; 1, 2-hydroxy Alkali or alkaline earth metal salts of carboxylic acids such as potassium stearate, magnesium benzoate, magnesium succinate, magnesium phthalate, etc .; ;, ⁇ , monodicyclohexyl 2, 6 naphthalene, dicarboxamide, etc.
  • the present invention is not limited to these. Also, only one type may be used, or two or more types may be mixed and used.
  • the j8 crystal nucleating agent added to polypropylene the following are particularly preferable among the above.
  • R 1 represents a saturated or unsaturated aliphatic dicarboxylic acid residue having 1 to 24 carbon atoms, a saturated or unsaturated alicyclic dicarboxylic acid residue having 4 to 28 carbon atoms, or a carbon number.
  • R 2 and R 3 are the same or different cycloalkyl groups having 3 to 18 carbon atoms, cycloalkenyl groups having 3 to 12 carbon atoms, or derivatives thereof.
  • R 4 represents a saturated or unsaturated aliphatic diamine residue having 1 to 24 carbon atoms, a saturated or unsaturated alicyclic diamine residue having 4 to 28 carbon atoms, or 6 to 6 carbon atoms.
  • 12 represents a bicyclic diamine residue or an aromatic diamine residue having 6 to 28 carbon atoms, and R 5 and R 6 are the same or different cycloalkyl groups having 3 to 12 carbon atoms, and 3 to 12 carbon atoms.
  • ⁇ crystal nucleating agent or polypropylene with ⁇ crystal nucleating agent include j8 crystal nucleating agent “ENJESTER” (type name: NU-100, etc.) manufactured by Shin Nippon Rika Co., Ltd., SU NOCO j8 nucleating agent-added polypropylene "BEPOL” (type name: B022—SP, etc.).
  • the addition amount of the ⁇ crystal nucleating agent is preferably 0.001 to 1% by weight with respect to all the substances constituting the film depending on the ⁇ crystal forming ability of the ⁇ crystal nucleating agent to be used. If the amount of added calories of the 8-crystal nucleating agent is less than the above range, the resulting microporous film may have a low ⁇ crystal fraction, a low porosity, or poor permeation performance. If the amount of ⁇ -crystal nucleating agent exceeds the above range, the ⁇ -crystal fraction of the microporous film obtained by adding more than this range will not improve, resulting in poor economics and poor dispersibility of the nucleating agent itself. Conversely, the ⁇ crystal activity may decrease.
  • added Caro amount of ⁇ crystal nucleating agent is more preferably from 0.005 to 0.5 wt 0/0, more preferably from 05 to 0.2% by weight 0.1.
  • the above-described ⁇ -crystal nucleating agent is dispersed in a needle shape in the unstretched sheet.
  • the j8 crystal nucleating agent dispersed in a needle shape in the microporous film it may be considered that the j8 crystal nucleating agent is dispersed in a needle shape in the unstretched sheet.
  • the same observation is made on the microporous film, and if the average value of the ratio of the minor axis to the major axis of the nucleating agent shape confirmed at that time is 10 or more, it can be said that it is dispersed in a needle shape.
  • the porosity of the resulting microporous film can be increased or the permeability can be increased.
  • the nucleating agent dispersed in a needle shape is more likely to be arranged in the longitudinal direction (the major axis direction of the nucleating agent is easier to be oriented in the longitudinal direction of the unstretched sheet), so that the crystal lamella itself of the unstretched sheet obtained after casting is also more It becomes easier to align. It is presumed that the porosity of the microporous film and the permeability increase due to the synergistic effect of this and the crystal transition from ⁇ crystal to a crystal.
  • the / 3 crystal fraction of the microporous polypropylene film of these inventions is preferably 30% or more.
  • the 13 crystal fraction is measured according to JIS K 7122 (1987) using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • Peak area force of endothermic peak (one or more peaks) due to melting of j8 crystal derived from polypropylene whose apex is observed Calculated heat of fusion ( ⁇ ⁇ ; symbol 2 in Fig. 2 which is the same calorimetric curve as Fig. 1)
  • the peak area of the endothermic peak due to melting of the non- ⁇ crystal-derived polypropylene has a peak beyond the baseline due to melting of the polypropylene-derived crystal other than the ⁇ -crystal whose peak is observed at 160 ° C or higher. From the heat of fusion ( ⁇ ⁇ ⁇ ; symbol 3 in Fig. 2 which is the same heat curve as Fig. 1) It calculates
  • the caloric curve obtained at the first temperature rise may be referred to as the first run caloric curve
  • the caloric curve obtained at the second temperature rise may be referred to as the second run caloric curve.
  • the ⁇ crystal fraction is more preferably 40% or more, further preferably 50% or more, and most preferably 60% or more.
  • the ⁇ crystal fraction is the ratio of ⁇ crystals to all the crystals of polypropylene, and is described in JP 2004-142321 A, JP 2005-171230 A mentioned above, and International Publication No. 02-266233.
  • JP 2000-30683, etc. the calorimetric curve is measured using DSC under the temperature conditions close to these inventions, and the ⁇ crystal fraction of the film is obtained.
  • the sample is melt crystallized under the specific conditions described in (8) of the following measurement method, together with the DSC results. And evaluated using the wide-angle X-ray diffraction method.
  • the K value force calculated by the following formula is 0.3 or more, more preferably 0.5 or more.
  • the diffraction peak intensity of the (300) plane due to the j8 crystal (assuming ⁇
  • 8) and 20 14, 17 and 19 ° are measured respectively.
  • (110), (040), (130) plane diffraction peak intensities due to crystals ( ⁇ ⁇ ⁇ ⁇ ⁇ , ⁇ , ⁇ , respectively)
  • the ⁇ value is an empirical value indicating the ratio of ⁇ crystal.
  • the first microporous polypropylene film of the present invention contains an ethylene 'a-olefin copolymer. However, as shown below, it is necessary that the resulting microporous film has substantially nucleus-free pores.
  • the microporous film of the present invention promotes the formation of pores and increases the porosity as compared with the case where the copolymer is not included. Improves permeability
  • ⁇ -olefin refers to those having 4 to 20 carbon atoms.
  • the above ⁇ -olefin is converted into 1-butene, 1-pentene, 3-methylpentene 1, 3-methylbutene 1, 1 because the dispersibility in polypropylene having high affinity with polypropylene is good.
  • the ethylene 'a-olefin copolymer defined above is substantially incompatible with polypropylene, a structure in which the copolymer is dispersed in polypropylene is formed in the unstretched sheet. .
  • the pore formation force due to the crystal transition from the ⁇ crystal to the ⁇ crystal is further promoted by the interfacial peeling phenomenon between the polypropylene and the copolymer. It is estimated that. Thereby, as described above, the permeability that increases the porosity can also be improved.
  • the copolymer resin is finely dispersed in polypropylene.
  • the pores that can be generated by the interface peeling can be reduced, so that coarse pores are not formed.
  • the ethylene 'a-olefin copolymer contained in the first microporous polypropylene film of the present invention is preferably synthesized with a meta-octacene catalyst. If the copolymer used in the microporous film of the present invention is not the above-described embodiment, the melting point and melt crystallization temperature of the copolymer will be higher than necessary, or the affinity with polypropylene will be reduced. In the manufacturing process, the dispersion diameter in the unstretched sheet may become larger than necessary.
  • the monomers regardless of the molecular weight are almost uniformly copolymerized.
  • a copolymer having a uniform amount with respect to the molecular weight distribution and a truly uniform property can be produced. Therefore, as described above, an ⁇ -olefin monomer component is selected so as to have an extremely high affinity with polypropylene, and a copolymer in which the monomer component is introduced almost uniformly by a metamouth catalyst. It is presumed that the copolymer can be very finely dispersed in polypropylene.
  • the melt crystallization temperature (Tmc) of the above ethylene 'a-olefin copolymer to be contained in the first microporous polypropylene film of the present invention contains the ⁇ crystal nucleating agent constituting the microporous film of the present invention. It is preferably lower by 30 ° C or more than Tmc of polypropylene. If Tmc is not the above-described embodiment, the permeability of the obtained microporous film having a low porosity may not be improved so much.
  • the Tmc of the ethylene'a-olefin copolymer is more preferably lower by 40 ° C or more and more preferably by 50 ° C or more as compared to the Tmc of the j8 crystal nucleating agent-containing polypropylene.
  • the melting point (Tm) of the ethylene 'a-olefin copolymer to be contained in the first microporous polypropylene film of the present invention is preferably 100 ° C or lower.
  • Tm exceeds the above range, the porosity of the resulting microporous film is low, and the permeability is not so improved. In some cases, the resulting microporous film is substantially non-nuclear. There may be no holes.
  • the Tm of the ethylene'a-olefin copolymer is more preferably 90 ° C or lower, and further preferably 80 ° C or lower.
  • the ethylene 'a-olefin copolymer preferably has a dispersion diameter of 300 nm or less in the unstretched sheet.
  • the dispersion diameter of the resin other than polypropylene in the polypropylene was measured by the transmission electron microscope (TEM), and all the dispersion diameters in the thickness direction of the resin dispersed in the polypropylene were measured and averaged. Define as value.
  • the dispersion diameter of ethylene'a-olefin copolymer is, for example, the chemical structure of ⁇ -olefin monomer in the resin, the amount and method of addition, and the resin is stably finely dispersed in polypropylene. It can be controlled by the addition of a compatibilizing agent that can be added, extrusion conditions for producing an unstretched sheet (for example, extrusion temperature, screw rotation speed, etc.) and casting conditions such as draft ratio.
  • the dispersion diameter of the resin in order to control the dispersion diameter of the resin to be small, for example, it is preferable to apply a high shearing force at the time of extrusion and to finely disperse the resin, and use a master batch method exemplified below; Use low temperature extrusion conditions of 200-250 ° C; increase the screw speed of the extruder so that the resin temperature does not rise excessively to obtain the highest possible shear force; It is effective to devise the design of the screen, for example, by shallowing it or providing a mixing section. Furthermore, particularly preferably, for example, the monomer component of OC 1-year-old refin is selected so as to increase the affinity between the resin and polypropylene, and the added amount does not increase the dispersion size during melt extrusion.
  • 1-butene, 1-hexene, 1-octene should be used as the a-olefin monomer, and the addition amount should be in the range of 1% by weight to less than 10% by weight. Is particularly preferred.
  • the resin tends to have a long and narrow shape in the longitudinal direction of the sheet, and in the subsequent stretching step, formation of pores by interfacial peeling may be promoted in some cases.
  • the dispersion shape may be different between the vicinity of the surface and the inside.
  • the dispersion diameter of the ethylene 'a-olefin copolymer in the unstretched sheet is more preferably 250 nm or less, and even more preferably 200 nm or less.
  • the lower the dispersion diameter is, for example, the force that tends to form uniform and fine pores in the resulting film. If the dispersion diameter is too small, the formation of pores due to interfacial delamination between polypropylene and the resin associated with stretching will not be promoted. For example, since it may not be possible to obtain a large effect of addition, it is preferably, for example, lOnm or more.
  • Ethylene ' ⁇ -olefin which can be preferably added to the microporous polypropylene film of the present invention.
  • copolymer include, for example, excellent affinity with polypropylene, extremely excellent dispersibility in polypropylene, and melt crystallization temperature (Tmc) compared to the above
  • the ultra-low density polyethylene in the present invention is an ethylene resin having a density of 0.9 gZcm 3 or less.
  • the amount of the ethylene 'a-olefin copolymer added is 1% by weight or more and less than 10% by weight with respect to all polymers constituting the film. The effect is seen even in small amounts that are preferred. When the addition amount is less than the above range, the above-mentioned preferable effects may not be obtained substantially. If the amount of added calories is more than the above range, the dimensional stability of the film may deteriorate, conversely, the porosity may decrease or the permeability may deteriorate.
  • the addition amount is more preferably 1 to 9% by weight, and further preferably 1 to 5% by weight.
  • the second microporous polypropylene film of the present invention has a Tmc lower by 30 ° C or more than the melt crystallization temperature (Tmc) of the 13 crystal nucleating agent-containing polypropylene constituting the microporous film of the present invention.
  • Tmc melt crystallization temperature
  • it contains rosin that is incompatible with polypropylene.
  • polypropylene contains a / 3 crystal nucleating agent, so that Tmc is substantially increased.
  • the Tmc of the resin added and contained in the present invention needs to be 30 ° C. or more lower than the Tmc of the j8 crystal nucleating agent-containing polypropylene constituting the microporous film of the present invention. In this way, when an unstretched sheet is solidified in the manufacturing process, a j8 crystal lamella of polypropylene is first produced inside the sheet, and then the resin crystals that are incompatible with polypropylene are grown. A lamella is formed.
  • ⁇ 8 crystal lamella is formed by penetrating the domain of the incompatible resin dispersed in polypropylene is produced.
  • this ⁇ -crystal lamella penetration structure is the starting point for pore formation in the manufacturing process such as stretching, which promotes pore formation.
  • the porosity of the resulting microporous film can be increased and the permeability can be increased, and further higher porosity and permeability can be achieved by further optimizing the raw material composition and film forming conditions.
  • the above-mentioned rosin is incompatible with polypropylene.
  • microporous film has substantially nucleus-free pores despite containing incompatible resin in polypropylene, for example, in the production process of microporous film, It can be achieved by melting. Uniform and fine pores can be formed in the resulting microporous film by being incompatible with polypropylene and having the above embodiment.
  • the melting point (Tm) of the resin incompatible with the polypropylene is preferably 100 ° C or lower. When Tm exceeds the above range, the porosity of the resulting microporous film is low, and the permeability may not be improved so much. In some cases, the resulting microporous film has substantially non-nuclear pores. May not have.
  • the Tm of the resin that is incompatible with the polypropylene is more preferably 90 ° C. or less, and further preferably 80 ° C. or less.
  • the resin that is incompatible with the polypropylene is preferably an ethylene'-olefin copolymer. However, as described below, it is necessary that the resulting microporous film has substantially non-nucleated pores. If the resin is not an ethylene'a-olefin copolymer, pore formation is not promoted, and the permeability with low porosity may not be improved so much.
  • a-olefin is as described above, and in the present invention, since the dispersibility in polypropylene having high affinity with polypropylene is good, the ⁇ -olefin is It must be at least one selected from 1-butene, 1-pentene, 3-methylpentene, 1, 3-methylbutene, 1, 1-hexene, 4-methylpentene, 1,5-ethylhexene, and 1-octene. Preferable power of being 1 octene The viewpoint power of dispersibility in polypropylene is also particularly preferable.
  • the resin incompatible with polypropylene is an ethylene 'a-olefin copolymer
  • the above-described effect can be obtained because, as described above, the copolymer resin is finely dispersed in polypropylene. It is presumed that the formation of holes is promoted without forming coarse holes.
  • the ethylene 'a-olefin copolymer is preferably synthesized with a meta-octacene catalyst. If the copolymer is not the above embodiment, the melting point and melt crystallization temperature of the copolymer will be higher than necessary, or the affinity with polypropylene will be reduced. Therefore, in the manufacturing process, the dispersion diameter in the unstretched sheet may become larger than necessary. Such a fine dispersion effect can be obtained because, as described above, in the ethylene (X-olefin copolymer synthesized by a meta-cene catalyst, (the X-olefin monomer component is copolymerized almost uniformly. (The amount of copolymerization is almost constant with respect to the molecular weight distribution), and it is presumed that it has a molecular chain skeleton structure that exhibits truly uniform properties.
  • the ethylene 'a-olefin copolymer preferably has a dispersion diameter of 300 nm or less in the unstretched sheet.
  • the dispersion diameter of resins other than polypropylene in polypropylene was measured by the transmission electron microscope (TEM), and all the dispersion diameters in the thickness direction of the resin dispersed in polypropylene were measured and averaged. Define as value.
  • the dispersion diameter exceeds the above range, coarse pores are formed in the obtained microporous film, and the film is broken during the manufacturing process of the microporous film of the present invention and the subsequent secondary cleaning process. May occur, resulting in poor productivity and easy cleavage of the film.
  • This dispersion diameter is, for example, the chemical structure of ex-one-year-old refin monomer in the copolymer resin, the amount and method of addition, and the compatibilizer capable of stably finely dispersing the resin in polypropylene. It is possible to control by addition of the above, extrusion conditions for producing an unstretched sheet (for example, extrusion temperature, screw rotation speed, etc.), casting conditions such as draft ratio.
  • the dispersion diameter of the resin in order to control the dispersion diameter of the resin to be small, for example, it is preferable to apply a high shearing force at the time of extrusion and to finely disperse the resin, and use a master batch method exemplified below; Use low-temperature extrusion conditions of 200-250 ° C; as high as possible! Increase the screw speed of the extruder screw so that the resin temperature does not rise excessively so that shearing force can be obtained It is effective to devise the screw design, such as making the groove shallower or providing a mixing section.
  • the monomer component of a-olefin is selected so as to increase the affinity between the resin and polypropylene, or the amount of addition is reduced to such an extent that the dispersion size does not become coarse during melt extrusion. Is effective.
  • 1-butene, 1-hexene, and 1-octene can be used as ⁇ -olefin monomers, and the amount added can be in the range of 1 wt% to less than 10 wt%. Particularly preferred.
  • the resin tends to have a long and narrow shape in the longitudinal direction of the sheet. In some cases, the formation of holes by peeling can be promoted. In the unstretched sheet obtained, the dispersion shape may be different between the vicinity of the surface and the inside.
  • the dispersion diameter of the ethylene 'a-olefin copolymer in the unstretched sheet is more preferably 250 nm or less, and still more preferably 200 nm or less.
  • the lower the dispersion diameter is, for example, the force that tends to form uniform and fine pores in the resulting film. If the dispersion diameter is too small, pore formation is not promoted due to interfacial debonding between polypropylene and resin along with stretching. For example, since it may not be possible to obtain a large effect of addition, it is preferably, for example, lOnm or more.
  • the ethylene ' ⁇ -olefin copolymer that can be preferably added include, for example, excellent compatibility with polypropylene and the above
  • Melt crystallization temperature (Tmc) is lower than that of polypropylene. Dispersibility in polypropylene is extremely excellent, so ultra-low density polyethylene (ethylene'butene copolymer) using a meta-polycene catalyst made by DuPont Dow Elastomers. Or “engage” (type name: 8411, 8200, 8130, etc.), which is an ethylene (octene copolymer).
  • the ultra low density polyethylene in the present invention is an ethylene-based resin having a density of 0.9 g / cm 3 or less.
  • the amount of the resin incompatible with the polypropylene is 1% by weight or more and less than 10% by weight with respect to all the polymers constituting the film. The effect can be seen even if a small amount is added. When the addition amount is less than the above range, the above-mentioned preference and effect may not be obtained even when compared with the case where it is not added. If the addition amount is in the above range or more, the dimensional stability of the film may deteriorate, the porosity may decrease, or the permeability may deteriorate.
  • the addition amount is more preferably 1 to 9% by weight, still more preferably 1 to 5% by weight.
  • the first and second microporous polypropylene films of the present invention have a Gurley air permeability of 500 sec Z 100 ml or less.
  • Gurley permeability is a measure of the permeability of the film. The lower the Gurley permeability, the better the transmission performance of the film. Do not set a lower limit. If it is too low, the film production process will deteriorate, resulting in poor film-forming properties. Since it may be inferior in handling properties, such as hanging or breaking, it is preferably, for example, 10 seconds ZlOOml or more.
  • the Gurley air permeability is more preferably 10 to 350 seconds ZlOOml, most preferably 20 to 300 seconds ZlOOml.
  • the microporous film of the present invention has such a high permeability, it can be a film having excellent absorbency and liquid retention.
  • moisture-permeable waterproof materials such as synthetic paper, optical materials, building materials, separation membranes (filters), wound dressings, moisture-permeable waterproof fabrics for clothing, absorbent articles for diapers and sanitary products, Excellent characteristics in various applications such as separators, ink-receptive paper, oil or oil absorbers, blood glucose level sensors, protein separation membranes used in power storage devices such as batteries, electrolytic capacitors, and electric double layer capacitors Can be demonstrated.
  • the Gurley air permeability is controlled by the amount of HMS-PP or ⁇ crystal nucleating agent added to the polypropylene constituting the film, the above-mentioned ethylene 'a-olefin copolymer, or the amount of resin incompatible with polypropylene. it can.
  • conditions for solidifying the molten polymer in the casting process metal drum (cast drum) temperature, peripheral speed of the metal drum, thickness of the unstretched sheet obtained, contact time with the metal drum, etc.)
  • stretching conditions in the stretching process stretching direction (longitudinal or transverse), stretching method (longitudinal or transverse uniaxial stretching, longitudinal, transverse or transverse longitudinal biaxial stretching, simultaneous biaxial stretching, re-stretching after biaxial stretching, etc.)
  • Stretching ratio stretching speed, stretching temperature, etc.
  • HMS-PP in order to produce a film with excellent permeability by reducing the gas permeability, HMS-PP is added to the extent that productivity is not adversely affected by, for example, film breakage.
  • the film is stretched at a high magnification in the machine direction, more preferably 1 to: LO weight%; incompatible with the above-mentioned ethylene'-olefin copolymer or polypropylene.
  • the longitudinal stretching ratio should be 5-8 times; the longitudinal stretching temperature should be 95-120 ° C; the transverse stretching temperature should be 130-150 ° C.
  • the transverse stretching speed is 100 to: LOOOO%, more preferably 10 Less than 00% Z min. Power Particularly effective.
  • the dispersion diameter in the thickness direction of the resin dispersed in polypropylene was measured. This means that the average value of is more than lOnm.
  • the dispersion diameter is more preferably 20 nm or more, and further preferably 40 nm or more.
  • the dispersion diameter is preferably 500 nm or less, more preferably 400 nm or less.
  • the first and second microporous polypropylene films of the present invention have substantially non-nucleated pores.
  • the “nuclear-free pore” in the present invention is a pore in which a nucleus for pore formation is not observed in the inside, such as a resin or particle that induces pore formation by stretching or the like. Defined.
  • Such a non-nuclear hole is obtained by using an ultra-thin section of a film prepared by an embedding method using an ultramicrotome as described below, using a transmission electron microscope (TEM), None is observed inside the hole when observed at a magnification of 40000x.
  • TEM transmission electron microscope
  • a nucleus having a spherical shape, a fibrous shape, an indefinite shape, or other shape is observed inside the hole in the TEM observation image.
  • “having substantially non-nuclear holes” means the ratio of the area of all nuclei in the total observation visual field area (total area of the film) in the TEM observation image as shown in the following measurement method. (R) is defined as 3% or less, and in this case, the microporous film has substantially non-nucleated pores. At this time, even if the holes originally have nuclei, they may be detected as non-nucleated holes by the above method, but if the ratio R calculated by this method is within the above range, the object of the present invention is achieved. It is.
  • microporous polypropylene films of the present invention have a tendency to be able to form a uniform and dense pore structure because they have substantially non-nucleated pores, that is, they do not depend on the formation of pores using nuclei. is there.
  • the nuclei may fall off and contaminate the process during the manufacturing process of the microporous film of the present invention and the subsequent secondary processing process. When the film breaks due to the nucleus, it can prevent the productivity loss.
  • a film having no coarse void formed from the nucleus is difficult to cleave.
  • the film is cleaved is a phenomenon in which the film is torn into a plurality of sheets approximately parallel to the surface. Furthermore, for example, when the microporous film of the present invention is used as a separator for a battery, it is possible to prevent the battery from being defective because impurities that can become the internal resistance of the separator battery are not dropped off or dissolved.
  • the film in order for the film to have substantially non-nuclear pores, it is important that the compatibility with the polypropylene constituting the film is low or the affinity is low, and that different polymers and particles are not added as much as possible. is there.
  • the non-compatible resin in polypropylene for example, production of a microporous film is performed.
  • the ratio R described above is more preferably 2% or less, and most preferably less than 1%, most preferably substantially 0%.
  • the resin that forms nuclei in polypropylene when added in an effective amount is substantially added because most of the pores in the resulting microporous film have nuclei. It is preferable not to carry it.
  • these unfavorable resins include, for example, polypentene (PMP) and copolymers of ⁇ -olefin other than methylpentene and methylpentene, cycloolefin mono- or copolymer (COC), polybutylene terephthalate.
  • rosins retain a dispersed form in polypropylene even in a film-forming process in which the dispersed size in polypropylene is large. Therefore, coarse voids are formed in the resulting microporous film with the polymer as a core.
  • the permeability may deteriorate and the film forming property may also deteriorate.
  • the first and second microporous polypropylene films of the present invention do not impair the object of the present invention.
  • Various additives such as an antioxidant, a heat stabilizer, a chlorine scavenger, an antistatic agent, a lubricant, an antiblocking agent, a viscosity modifier, and a copper damage inhibitor may be mixed.
  • the ⁇ crystal fraction of the microporous film obtained when added is within the target range.
  • first and second microporous polypropylene films of the present invention as long as the film has substantially non-nuclear pores, for example, for the purpose of imparting slipperiness and preventing blocking (antiblocking agent), Add various particles such as inorganic particles and / or crosslinked organic particles.
  • the inorganic particles are inorganic particles of a metal or a metal compound.
  • zeolite calcium carbonate, magnesium carbonate, alumina, silica, aluminum silicate, kaolin, force olinite, talc, clay, diatomaceous earth, montmorillonite, acid ⁇ Powers including particles such as titanium or a mixture of these, but not limited to these.
  • the crosslinked organic particles are particles obtained by crosslinking a polymer compound using a crosslinking agent.
  • a crosslinking agent for example, crosslinked particles of a polymethoxysilane compound, crosslinked particles of a polystyrene compound, and crosslinked of an acryl compound.
  • examples thereof include, but are not limited to, particles, crosslinked particles of a polyurethane compound, crosslinked particles of a polyester compound, crosslinked particles of a fluorine compound, or a mixture thereof.
  • the volume average particle size of the inorganic particles and the crosslinked organic particles is preferably 0.5 to 5 ⁇ m. If the volume average particle size is less than the above range, the resulting microporous film may be inferior in slipperiness, and if it exceeds the above range, the particles may fall off.
  • the addition amount of inorganic particles and Z or crosslinked organic particles is preferably 0.02-0. 5% by weight, more preferably 0.05, based on all the substances constituting the film. -0. 2% by weight is also preferable from the viewpoints of anti-blocking property, slipperiness and the like. Furthermore, as described above, it is more preferable not to add substantially if the addition of particles causes a decrease in the
  • the first and second microporous polypropylene films of the present invention preferably have a porosity of 50 to 95%.
  • This extremely high porosity means that the pores are dense and formed in large quantities. Corresponds to that. If the porosity is less than the above range, the permeability of the microporous film may be insufficient. When the porosity exceeds the above range, the film production process deteriorates as a result of many film tears in the film manufacturing process, and the film is stretched or damaged in the subsequent secondary processing process. It may be inferior in handling properties, such as entering or breaking.
  • Porosity refers to the raw material formulation such as the addition amount of the 13 crystal nucleating agent incorporated in the polypropylene of the film, HMS-PP, and the addition amount of the resin other than the above-mentioned polypropylene, and in the production process, the casting process
  • the conditions for solidifying the molten polymer in (the metal drum temperature, the peripheral speed of the metal drum, the thickness of the resulting unstretched sheet, the contact time with the metal drum, etc.) and the stretching conditions in the stretching process (stretching direction (longitudinal or transverse) ), Stretching method (longitudinal or transverse uniaxial stretching, longitudinal, transverse or transverse longitudinal biaxial stretching, simultaneous biaxial stretching, re-stretching after biaxial stretching, etc.), stretching ratio, stretching speed, stretching temperature, etc.) it can.
  • HMS-PP in order to produce a film with a high porosity, for example, it is possible to add HMS-PP or produce it by longitudinal and transverse sequential biaxial stretching as long as the productivity does not deteriorate due to film breakage or the like.
  • increasing the stretching ratio in the machine direction, lowering the stretching temperature in the machine direction, increasing the stretching temperature in the transverse direction, and reducing the stretching speed in the transverse direction are particularly effective. Is.
  • the porosity is more preferably 60 to 90%, and still more preferably 65 to 86%.
  • the thickness of the additionally laminated resin layer is preferably 0.25 ⁇ m or more and 1Z2 or less of the total thickness of the film. If this thickness is less than 0. Due to this, uniform lamination becomes difficult, and if the total thickness exceeds 1Z2, it may affect characteristics such as high porosity and high permeability as a microporous polypropylene film.
  • the resin itself to be laminated at this time does not necessarily have to satisfy the above-mentioned various properties.
  • lamination methods include co-extrusion, in-line or off-line extrusion lamination, in-line or off-line coating, physical vapor deposition, chemical vapor deposition, Examples include sputtering. The best method may be selected at any time, not limited to any of these methods.
  • microporous polypropylene film of the present invention when applied as a separator for an electricity storage device, in order to improve the handling properties as a separator while imparting good slipperiness while maintaining high permeability.
  • various polymers containing various lubricants, various particles, and various sliding agents as a skin layer on at least one surface of the film of the present invention.
  • At least one surface of the first and second microporous polypropylene films of the present invention is subjected to corona discharge treatment so that the wetting tension of the film surface is 35 mNZm or more. By doing so, it is possible to improve surface hydrophilicity, adhesiveness, antistatic properties and lubricant bleed-out properties.
  • the atmospheric gas during the corona discharge treatment air, oxygen, nitrogen, carbon dioxide gas, or a mixed system of nitrogen Z carbon dioxide gas is preferred. . Flame (flame) treatment and plasma treatment are also preferred from the viewpoint of improving surface wetting tension.
  • the first and second microporous polypropylene films of the present invention preferably have an average pore diameter of 60 nm or more.
  • the average pore diameter in the present invention is an average pore diameter measured by a so-called double point method described in detail below. It is difficult to increase the average pore size of microporous polypropylene film by the / 3 crystal method. For example, when producing a microporous film using homopolypropylene as a raw material, it is difficult to increase the average pore diameter of the microporous film beyond 55 nm as long as the film is produced under standard conditions. In particular, it is difficult to significantly increase the average pore diameter simply by changing the film forming conditions such as temperature and magnification.
  • the average pore diameter can be extremely increased by setting the stretching speed in the stretching process in at least one direction to less than 1000% Z as described below.
  • the microporous film of the present invention can not only improve the permeation performance typified by the above-mentioned Gurley permeability by having such a large pore diameter, particularly in the case of separation membrane (filter) applications.
  • the size of possible substances can be controlled and the pressure loss during filtration can be reduced.
  • a separator application used for a power storage device such as a battery, an electrolytic capacitor, or an electric double layer capacitor, the charge / discharge performance of the device can be remarkably improved.
  • the average pore diameter is more preferably 6 lnm or more, further preferably 64 nm or more, and most preferably 70 nm or more.
  • the larger the pore diameter the better the permeation performance and the above-mentioned effect tends to increase.
  • the porosity becomes too high or the strength is high.
  • the isolation function between electrodes may be inferior, and therefore, for example, 400 nm or less is preferable.
  • the breaking strength in the longitudinal direction (that is, the longitudinal direction and the flow direction) at 25 ° C is preferably 40 MPa or more. 2 If the breaking strength in the longitudinal direction at 5 ° C is less than the above range, the handling property may be inferior in the film forming process and the subsequent secondary processing process.
  • the breaking strength can be controlled by the crystallinity of the polypropylene (corresponding to wrinkles, etc.) of the film, the porosity of the resulting microporous film, and the orientation state (orientation state in the film plane).
  • the plane orientation of the microporous film can be increased, for example, as it is stretched at a high magnification or a low temperature in the longitudinal direction, particularly in the film forming process.
  • the breaking strength is more preferably 50 MPa or more, and further preferably 55 MPa or more.
  • the breaking strength is too high, the porosity is lowered or the permeation performance is improved.
  • the pressure is 150 MPa or less. Good.
  • the thermal dimensional stability of the first and second microporous polypropylene films of the present invention is kept low even when relatively low temperature stretching conditions are satisfied.
  • the heat shrinkage rate in the longitudinal direction at 105 ° C. of the microporous polypropylene film of the present invention is preferably 5% or less. If the thermal contraction rate in the longitudinal direction at 105 ° C exceeds the above range, the film shrinkage becomes large in the secondary caching process, which may induce process defects such as creaking and curling.
  • the heat shrinkage ratio is the crystallinity of the polypropylene of the film (corresponding to wrinkles, etc.), stretching conditions (stretching ratio, stretching temperature, etc.), and heat setting conditions after stretching (relaxation rate during heat setting, temperature, etc.) It can be controlled by
  • the polypropylene II should be 96-99% within the range that does not deteriorate the quality and productivity.
  • mmmm should be 93 to 99%; after stretching, heat setting should be performed while giving a relaxation rate of 1% or more at a temperature that is equal to or higher than the stretching temperature and does not impair the permeability of the resulting film.
  • the thermal contraction rate in the longitudinal direction at 105 ° C is more preferably 4.5% or less.
  • the lower the heat shrinkage rate is, the lower the force that tends to suppress the above-mentioned process defects.
  • the porosity may be lowered, or the permeation performance may be deteriorated.
  • the first and second microporous polypropylene films of the present invention as described above are produced, for example, as follows.
  • the method of adding a resin that is incompatible with ethylene'-a-olefin copolymer or polypropylene is to have a specific composition of each raw material chip as it is in order to minimize foreign matters mixed during melt extrusion.
  • the dry blending method may be used, and from the viewpoints of handling properties and dispersibility, both are heated and melt-kneaded in a specific concentration in advance in an extruder, extruded into a gut shape, passed through a chip cutter, You may use the masterbatch method using the chip
  • an ethylene'a-olefin copolymer or polypropylene added with polypropylene incompatible with polypropylene is supplied to an extruder and melted at a temperature of 200 to 320 ° C, and after passing through a filtration filter. Then, the slit-shaped die force is extruded, cast on a cooling metal drum, cooled and solidified in a sheet shape, and an unstretched sheet is obtained.
  • the melt extrusion temperature is preferably low, but if it is less than the above range, unmelted material is generated in the molten polymer discharged from the die. However, it may cause process defects such as tearing in the subsequent stretching process. On the other hand, when the above range is exceeded, the thermal decomposition of polypropylene becomes severe, and the resulting microporous film may be inferior in film properties such as Young's modulus and breaking strength.
  • the temperature of the cooling metal drum is such that the film is crystallized under moderately slow cooling conditions to produce a large amount and uniformity of j8 crystals, and high porosity and high permeability after stretching.
  • the higher one is preferable, and the temperature is preferably 60 to 130 ° C. If the temperature of the cooling drum is lower than the above range, the ⁇ -crystal fraction of the first run of the unstretched sheet obtained may be lowered. On the other hand, if the above range is exceeded, solidification of the sheet on the drum may be insufficient, and it may be difficult to evenly peel the sheet having the drum strength.
  • the permeability of the obtained microporous film is closer to the upper limit in the temperature range described above, and the force tends to be lower as the lower limit is approached. This depends on the amount of crystal j8 in the unstretched sheet. Presumed.
  • the amount of ⁇ crystal in the unstretched sheet is determined using the unstretched sheet as a sample.
  • the first run caloric curve force obtained using DSC corresponds to the 13 crystal fraction obtained.
  • the cast drum temperature is preferably 100 to 125 ° C. is there.
  • the time for the unstretched sheet to contact the cooling metal drum (hereinafter sometimes simply referred to as the contact time to the drum) is preferably 6 to 60 seconds.
  • the total power of the time when the unstretched sheet is in contact with these drums is the contact time with the metal drum.
  • the contact time with the metal drum is less than the above range, the unstretched sheet sticks at the time of peeling, or ⁇ crystals generated in the unstretched sheet are reduced (j8 of unstretched sheet). Therefore, the porosity of the film after biaxial stretching may be lower than necessary.
  • the size of the metal drum if the contact time with the metal drum exceeds the above range, the peripheral speed of the metal drum is unnecessarily low, and the productivity may be significantly deteriorated.
  • the contact time with the metal drum is more preferably 7 to 45 seconds, and further preferably 8 to 40 seconds.
  • the air knife method air is blown from the non-drum surface, and the surface temperature is preferably 10 to 200 ° C.
  • the surface opening ratio can be controlled, that is, the permeability of the resulting microporous film can be controlled.
  • a desired resin is prepared as necessary. Then, these fats are fed to separate extruders and melted at a desired temperature. After passing through an excessive filter, they are merged in a polymer tube or a die, extruded in a slit-like die force at each desired lamination thickness, cast into a cooling drum, and cooled and solidified into a sheet to obtain an unlaminated stretched sheet. be able to.
  • the obtained unstretched (laminated) sheet is stretched to form holes in the film.
  • the first and second microporous polypropylene films of the present invention are preferably biaxially oriented.
  • the biaxial orientation of the film facilitates the formation of pores by the ⁇ crystal method and increases the permeability. Therefore, it is preferable to perform biaxial stretching here.
  • first and second microporous polypropylene films of the present invention it is represented by various biaxial stretching methods such as simultaneous biaxial stretching, sequential biaxial stretching, and subsequent re-stretching.
  • Various film forming methods are used.
  • the longitudinal-transverse sequential biaxial stretching method is suitable from the viewpoint of the expandability of the apparatus.
  • a microporous film having high permeability can be obtained by stretching at a low temperature and a high magnification in the longitudinal direction.
  • biaxial stretching is performed using a general-purpose longitudinal and transverse sequential biaxial stretching method, first, an unstretched sheet is preheated through a roll maintained at a predetermined temperature, and then the film is maintained at the predetermined temperature. It passes between rolls provided with a difference in peripheral speed, stretches in the longitudinal direction, and immediately cools.
  • the effective stretch ratio in the machine direction (that is, the longitudinal direction and the flow direction) is set to 5 to 10 times is preferable.
  • the effective draw ratio in the machine direction when a microporous polypropylene film is formed by the normal longitudinal-lateral sequential biaxial stretching method is in the range of 3 to 4.5 times. It becomes difficult and the film is torn by transverse stretching.
  • S-PP By adding S-PP, more stable stretch in the machine direction in the machine direction is possible. It becomes.
  • the effective stretch ratio in the machine direction is more preferably 5 to 9 times, and even more preferably 5 to 8 times.
  • the longitudinal stretching speed is preferably 5000 to 500,000% Z from the viewpoint of productivity and stable film-forming property.
  • the longitudinal stretching temperature is preferably, for example, 80 to 140 ° C from the viewpoints of stable film-forming properties, suppression of thickness unevenness, and improvement in porosity and permeability.
  • the thickness unevenness and permeability of the film are not bad. Giving relaxation in the longitudinal direction to the extent that the dimensional stability in the longitudinal direction is reduced. View power is also preferable. Further, a desired resin layer may be appropriately placed on the film after longitudinal stretching by extrusion lamination or coating.
  • the longitudinally stretched film is guided to a tenter type stretching machine, preheated at a predetermined temperature, and stretched in the width direction.
  • the effective stretch ratio in the width direction is preferably 12 times or less. If the effective stretch ratio in the width direction exceeds 12 times, the film forming property may be deteriorated.
  • the transverse stretching temperature is preferably 100 to 150 ° C. as long as the optimum temperature conditions are selected from the viewpoints of stable film forming properties, thickness unevenness, target porosity or permeability.
  • the transverse stretching speed is preferably 100 to 10,000% Z from the viewpoint of productivity and stable film-forming property.
  • the microporous polypropylene film of the present invention is obtained by winding the film.
  • the stretching speed in the present invention is calculated using the following formula when stretching is performed with two roll pairs having a circumferential speed difference in the stretching step.
  • This stretching method is used in the longitudinal stretching step in the case of longitudinal and lateral sequential biaxial stretching.
  • the roll gap (m) corresponds to a stretching section in the longitudinal stretching step.
  • the peripheral speed (mZ) of the high-speed roll By dividing this by the peripheral speed (mZ) of the high-speed roll, the time required for the film to pass through the stretching section of the two roll pairs can be calculated.
  • the peripheral speed of the high-speed side roll is the rotational speed of the roll located on the winder side of the two pairs of rolls that perform the stretching.
  • the transverse stretching zone length (unit: m) is the length in the line direction of the zone that is transversely stretched in the tenter.
  • the line speed (unit: mZ)
  • the line speed is the film transport speed when passing through the transverse stretching zone.
  • film formation can be performed by directly inputting a desired stretching speed.
  • the microporous film obtained has no-nuclear pores in spite of adding an incompatible resin to the ethylene-a-olefin copolymer or polypropylene as described above. Shall have. Therefore, in this invention, it is preferable to melt these resin in the extending process mentioned above.
  • the interface of polypropylene in the longitudinal stretching process is used as the starting point to promote pore formation, and the resin melts in the longitudinal stretching process, so that the resin falls off during the film forming process. Does not contaminate the process.
  • such a mode can be achieved by appropriately selecting the melting point of the resin.
  • the stretching speed in at least one direction in the stretching step is improved, and particularly when the average pore diameter is increased, the stretching speed in at least one direction in the stretching step. Is preferably less than 1000% Z min.
  • the stretching speed in order to extremely reduce the stretching speed as compared with the existing film forming process, for example, when passing through the stretching section, such as lowering the casting speed in the film forming process or lengthening the stretching section. This can be achieved by increasing the time required. In the former method, the production area of the film per unit time may be low, so the latter method is preferable.
  • Increasing the stretching section can be achieved, for example, by increasing the roll gap in the case of the longitudinal stretching process or by increasing the stretching zone length of the tenter in the case of the lateral stretching process. Of these, it is most easily achievable to increase the length of the transverse stretching zone, and the above effect is also great. Accordingly, when the longitudinal and transverse sequential biaxial stretching method is used, it is particularly preferable that the stretching speed in the transverse stretching satisfies the above range.
  • the stretching speed in at least one direction in the stretching process is more preferably 900% Z min or less, and still more preferably 800 % Z min or less, most preferably 700% Z min or less.
  • polypropylene containing a ⁇ -crystal nucleating agent is a main component, and ethylene'a-olefin is used.
  • An unstretched sheet having a dispersion diameter of the resin or additive that is incompatible with the copolymer or polypropylene is 300 nm or less, and the resulting unstretched sheet is stretched to form holes in the film.
  • the dispersion diameter of the resin (additive) incompatible with the ethylene ' ⁇ -olefin copolymer or polypropylene in the unstretched sheet is below the above range, coarse pores are formed in the resulting microporous film. Without forming, void formation by the ⁇ crystal method can be promoted, the porosity can be increased, and the permeability can be remarkably enhanced.
  • the dispersion diameter in the unstretched sheet is, for example, the chemical structure, addition amount and addition method of the resin (additive) incompatible with the ethylene 'a-olefin copolymer or polypropylene listed above.
  • Add compatibilizing agent that can stably disperse the coconut resin in polypropylene, specifications of the extruder used (cylinder diameter, LZD, screw design, etc.), unstretched sheet It can be controlled by extrusion conditions (for example, extrusion temperature, screw rotation speed, etc.) at the time of production and casting conditions such as draft ratio.
  • the dispersion diameter of the resin in order to control the dispersion diameter of the resin to be small, for example, it is preferable to apply a high shearing force at the time of extrusion and to finely disperse the resin, and the master batch method exemplified below is used.
  • a high shearing force at the time of extrusion and to finely disperse the resin.
  • an ethylene a-year-old refin copolymer or a non-compatible resin is selected so as to increase the affinity between the resin and polypropylene, and the added amount thereof. It is effective to lower the dispersion to such an extent that the dispersion size does not become coarse during melt extrusion. From this point of view, for example, it is particularly preferable to use an ethylene 'butene copolymer or an ethylene' octene copolymer, and to add it in an amount of 1 wt% or more and less than 10 wt%.
  • the resin tends to become a long and narrow shape in the longitudinal direction of the sheet, and in the subsequent stretching step, formation of pores due to interface peeling may be promoted in some cases.
  • the dispersion shape may be different between the vicinity of the surface and the inside.
  • the dispersion diameter is more preferably 250 nm or less, and still more preferably 200 nm or less.
  • the lower the dispersion diameter is, the lower the dispersion diameter, for example, there is a tendency that uniform fine pores can be formed in the obtained film. Since formation may not be promoted and a large addition effect may not be obtained, for example, it is preferably lOnm or more.
  • a polypropylene containing a / 3 crystal nucleating agent is a main component and is incompatible with an ethylene'-olefin copolymer or polypropylene.
  • the resin (additive) that is incompatible with ethylene 'a-olefin copolymer or polypropylene Crystallization of polypropylene may be mentioned prior to solidification. Further, in this embodiment, in the casting process, it is incompatible with the ethylene.
  • a Orefuin copolymer or polypropylene in unstretched sheet over preparative ⁇ it is more preferable to crystallize polypropylene prior to crystallization of the additive in order to increase the porosity of the resulting microporous film and improve the permeation performance.
  • 8 crystal lamella penetrates the domain of ethylen'a 1-year-old refin copolymer dispersed in polypropylene or the resin (additive) in an unstretched sheet. It is formed.
  • This ⁇ crystal lamella intrusion structure is the starting point for pore formation in the manufacturing process such as stretching, which can promote pore formation.
  • the porosity of the resulting microporous film can be increased and the permeability can be increased, and further higher porosity and permeability can be obtained if the raw material prescription and film forming conditions are set as preferred embodiments as described. Can be achieved.
  • Such solidification or crystallization behavior can be achieved, for example, by using a resin (additive) having a Tmc lower than that of the ⁇ crystal nucleating agent-containing polypropylene. More preferably, the Tmc of the agent-containing polypropylene is at least 30 ° C higher than the Tmc of the resin (additive) that is incompatible with the polypropylene.
  • a resin having a high affinity with polypropylene is preferably an ethylene'a one-year-old olefin copolymer, more preferably an ethylene'butene copolymer or an ethylene'otaten copolymer.
  • the dispersion diameter of the resin (additive) incompatible with ethylene'a 1-year-old refin copolymer or polypropylene in the unstretched sheet is 300 nm. The following is preferable.
  • the dispersion diameter exceeds the above range, coarse pores are formed in the resulting microporous film, and film breakage occurs in the film stretching process and the subsequent secondary caking process, resulting in productivity. May be bad or the film may be easier to cleave.
  • the dispersion diameter in the unstretched sheet is, for example, the chemical structure, addition amount and addition method of the resin (additive) incompatible with the ethylene 'a-olefin copolymer or polypropylene listed above.
  • the dispersion diameter of the resin in order to control the dispersion diameter of the resin to be small, for example, it is preferable to apply a high shearing force at the time of extrusion and to finely disperse the resin, and the master batch method exemplified below is used.
  • a high shearing force at the time of extrusion and to finely disperse the resin
  • the master batch method exemplified below is used.
  • ethylene a-year-old refin copolymer or a non-compatible resin (additive) so as to increase the affinity between the resin and polypropylene, It is effective to reduce the dispersion size to such an extent that it does not become coarse during melt extrusion.
  • the resin tends to have a long and narrow shape, and in the subsequent stretching step, pore formation by interfacial peeling may be promoted.
  • the dispersion shape may be different between the vicinity of the surface and the inside.
  • the dispersion diameter is more preferably 250 nm or less, and further preferably 200 nm or less.
  • the lower the dispersion diameter is, for example, the force that tends to form uniform fine pores in the resulting film is too small. Since formation is not promoted and a large additive effect may not be obtained, for example, it is preferably lOnm or more.
  • the fact that the added resin is incompatible with polypropylene means that the following requirements are satisfied. That is, as shown in the following measurement method, when a sample prepared by melting and compressing a microporous film was observed with a transmission electron microscope (TEM), the resin dispersed in the thickness direction of the resin was dispersed in polypropylene. It means that the average value of diameter is more than lOnm. When the dispersion diameter is less than the above range, pore formation is not promoted and a large addition effect may not be obtained.
  • the dispersion diameter is more preferably 20 nm or more, and further preferably 40 nm or more.
  • the dispersion diameter is preferably 50 Onm or less, more preferably 400 nm or less.
  • the melt crystallization temperature (Tmc) of the ⁇ -nucleating agent-containing polypropylene is higher than the Tmc of the resin that is incompatible with polypropylene. It is preferably 30 ° C or higher. If Tmc is not the above-described embodiment, the permeability of the obtained microporous film having a low porosity may not be improved so much.
  • the Tmc of the resin that is incompatible with the polypropylene is more preferably 40 ° C or more lower than the Tmc of the ⁇ crystal nucleating agent-containing polypropylene, more preferably 50 ° C or more. Better!/,.
  • the obtained microporous film has substantially non-nucleated pores. If the resulting microporous film is not in the above-described manner, the nuclei may fall off and contaminate the process in the film stretching process or the subsequent secondary processing process, or the film may break due to the nuclei. In addition, the obtained film may be easily cleaved by a coarse void formed from the nucleus. Thus, in order for the film to have non-nucleated pores, it is important in the production process that polypropylene is not compatible or has a low affinity with polypropylene and that different polymers and particles are not added as much as possible.
  • the fact that the resulting microporous film has substantially nucleus-free pores despite the fact that it contains incompatible resin in polypropylene means that, for example, in the production process of microporous film, This can be achieved by melting the coffin.
  • uniform and fine pores may be formed in the resulting microporous film.
  • the stretching step produces a highly porous, highly permeable microporous film with high productivity, and is further excellent in apparatus expandability. Therefore, a sequential biaxial stretching process in which transverse stretching is performed after longitudinal stretching is preferable.
  • the resin that is incompatible with polypropylene is preferably an ethylene'a-olefin copolymer.
  • the microporous film obtained after film formation has substantially non-nucleated pores. If the resin is not an ethylene 1-year-old refin copolymer, pore formation is not promoted, and the permeability with low porosity may not be improved so much.
  • the 1-year-old refin referred to in the first and second production methods of the present invention is as described above.
  • the polypropylene has a high affinity with polypropylene.
  • the ⁇ -olefin has the following properties: 1-butene, 1-pentene, 3-methylpentene 1, 3-methylbutene 1, 1-hexene, 4-methylpentene 1, 5-ethylhexene 1, 1-Otatenka is also preferred to be at least one selected.
  • 1-Otaten is particularly preferred from the viewpoint of dispersibility in polypropylene.
  • the ethylene 'a-olefin copolymer is preferably synthesized with a meta-octacene catalyst. If the copolymer is not the above-described embodiment, the melting point and the melt crystallization temperature of the copolymer are increased more than necessary, or the affinity with polypropylene is lowered. The dispersion diameter inside may become larger than necessary.
  • the incompatible resin that can be preferably added to the ⁇ -crystal nucleating agent-containing polypropylene include, for example, excellent affinity with polypropylene. Compared to the polypropylene containing the j8 crystal nucleating agent, the melt crystallization temperature (Tmc) is very low and the dispersibility in polypropylene is extremely excellent. Examples include “engage” (type name: 8411, 8200, 8130, etc.), which is polyethylene (ethylene / butene copolymer or ethylene / otaten copolymer).
  • the ultra low density polyethylene in the present invention is an ethylene-based resin having a density of 0.9 g / cm 3 or less.
  • the resin incompatible with polypropylene in an amount of 1 wt% or more and less than 10 wt%. If the amount added is less than the above range, there may be a case where substantially no effect is observed even when compared with the case where it is not added. If the amount added is in the above range or more, the dimensional stability of the film may deteriorate, conversely the porosity may decrease, or the permeability may deteriorate.
  • the addition amount is more preferably 1 to 9% by weight, still more preferably 1 to 5% by weight.
  • the microporous polypropylene film of the present invention or the microporous polypropylene film obtained by the production method of the present invention is a microporous polypropylene film formed by a conventional 13-crystal method.
  • the permeability is high and the permeability is excellent.
  • it has excellent film-forming properties with few tears during stretching, and also has excellent dimensional stability and mechanical properties. From the above, the microporous polypropylene film of the present invention and the production method thereof are preferred for packaging use, industrial use, etc.
  • L can be widely used as a microporous film or a production method thereof.
  • the sample was stained with 4 and the cross section was observed using a transmission electron microscope (TEM) under the following conditions. Sample preparation and cross-sectional observation were performed at Toray Research Center.
  • TEM transmission electron microscope
  • the obtained image was subjected to image analysis using Image-Pro Plus, Ver. 4.0 for Windows manufactured by Planetron Co., Ltd. At this time, spatial calibration was performed using the scale of the captured cross-sectional image.
  • the measurement conditions were set as follows.
  • Measurement was performed according to JIS K 7122 (1987) using a thermal analyzer RDC220 manufactured by Seiko Instruments.
  • a film or resin chip is filled in an aluminum pan with a weight of 5 mg, set in the apparatus, heated from 30 ° C to 280 ° C at a rate of 10 ° CZ in a nitrogen atmosphere, and heated. After completion, wait for 5 minutes at 280 ° C, continue to cool to 30 ° C at a rate of 10 ° CZ, wait for 5 minutes at 30 ° C after completion of cooling, and continue to 280 ° C at a rate of 10 ° CZ The temperature rose.
  • the peak of the exothermic peak accompanying the crystallized state from the molten state was determined using the built-in program of the company's thermal analysis system SSC5200, and it was defined as the melt crystallization temperature (Tmc) (unit: ° C). The same measurement was performed 5 times for the same sample, and the average value of the obtained Tmc was defined as the Tmc of the sample.
  • Tmc melt crystallization temperature
  • the apex of the endothermic peak accompanying crystal melting was determined using the same program, and was defined as the melting point (Tm) (unit: ° C). Same sample The same measurement was performed 5 times, and the average value of the obtained Tm was taken as the Tm of the sample.
  • an ultrathin section having a cross section in the longitudinal direction and thickness direction of an unstretched sheet was collected.
  • the collected sections were stained with RuO, and the transmission electron microscope (TE
  • Peak splitting is performed using WINFIT software (Bruker). At that time, the peak splitting is performed from the peak on the high magnetic field side as shown below, soft automatic fitting is performed, the peak splitting is optimized, and mmmm and ss (mmmm spinning sidebands) The sum of the peak fractions of peak) is defined as the mesopentad fraction (mmmm).
  • Film polypropylene is extracted with ⁇ -heptane at a temperature of 60 ° C for 2 hours to remove impurities' additives in polypropylene. Then vacuum dry at 130 ° C for 2 hours. A sample of weight W (mg) is taken from this, placed in a Soxhlet extractor and extracted with boiling n-heptane for 12 hours. Next, take out this sample, thoroughly wash with acetone, vacuum dry at 130 ° C for 6 hours, then cool to room temperature, measure the weight W '(mg), and obtain it by the following formula.
  • the peak of the melting peak exists at 140 to 160 ° C.
  • the K value that calculates the intensity of each diffraction peak of the diffraction profile obtained by the 2 ⁇ / ⁇ scan may be measured.
  • the sample preparation conditions and measurement conditions for the wide-angle X-ray diffraction method are shown below.
  • Sample Align the direction of the film and stack the sample after hot press preparation so that the thickness of the sample is about 1 mm. This sample is sandwiched between two aluminum plates with a thickness of 0.5 mm and melted and compressed by hot pressing at 280 ° C to make the polymer chains almost non-oriented. Immediately after taking out the whole aluminum plate, the obtained sheet is crystallized by immersing it in boiling water at 100 ° C for 5 minutes. Then, a sample cut out of the sheet obtained by cooling in an atmosphere of 25 ° C is used for measurement.
  • 8) attributed to the j8 crystal and around 2 0 14, 17, 19 °.
  • Diffraction peak intensities observed on the (110), (040), and (130) planes, which are observed respectively, are denoted as ⁇ ⁇ , ⁇ ⁇ , and ⁇ ⁇ , respectively.
  • the ⁇ value is an empirical value indicating the ratio of
  • the ⁇ value such as the calculation method of each diffraction peak intensity, see Turner Jones; ⁇ , Macro Molecule. (Makromolekulare Chemie), 75, 134—see pages 158 (1964).
  • the same measurement is performed 5 times on the same sample, and the average value of the ratio of major axis to minor axis obtained is the ratio of major axis to minor axis of the sample.
  • those having a ratio of the major axis to the minor axis of 10 or more are defined as those in which the nucleating agent is dispersed in a needle shape.
  • the volume average diameter measured using the centrifugal sedimentation method (using CAPA500 manufactured by Horiba, Ltd.) is defined as the average particle diameter m).
  • the sample was sandwiched between 0.5 mm thick aluminum plates, melted and compressed by hot pressing at 280 ° C, and the obtained sheet was immersed in water at 30 ° C together with the aluminum plate. Quenched quickly.
  • the obtained sheet was subjected to the same measurement for the same sample five times in the same manner as described above, and the average value of the obtained specific gravity was defined as the specific gravity (d0) after sample preparation. From the obtained dl and d0, the porosity of the film was determined using the following formula (unit:%).
  • a cross section in the transverse direction and thickness direction of the microporous film was collected at 100 ° C using the freezing microtome method. After coating Pt on the cross-section of the obtained microporous film, the cross-section was observed using a scanning electron microscope (SEM) under the following conditions, and a cross-sectional image was collected. Further, the thickness m) of each layer was measured from the obtained cross-sectional image. Sample preparation and cross-sectional observation were performed at Toray Research Center. The observation magnification was changed within the following range as necessary.
  • the same measurement was performed 5 times for the same sample, and the average value of the obtained heat shrinkage rate was calculated.
  • the heat shrinkage rate of the sample was calculated.
  • the X-ray diffraction photographic power obtained when X-rays were incident on the film from the three directions shown below was also determined.
  • the sample was cut out by stacking the film so that the directions were aligned and having a thickness of about 1 mm.
  • Imaging plate FUJIFILM BAS -SR
  • the non-orientation, uniaxial orientation, and biaxial orientation of the film are different from those of, for example, Kiyoichi Matsumoto et al., "Journal of the Textile Society", Vol. 26, No. 12, 1970, p. 537-549; Matsumoto Kiyoichi, “Making Films”, Kyoritsu Shuppan (1993), p. 67-86; Okamura Seizo et al., “Introduction to Polymer Chemistry (2nd Edition)”, Kagaku Dojin (1981), p. 92— Judgment was made according to the following criteria as explained in 93.
  • Biaxial orientation Diffraction strength that reflects the orientation of X-ray diffraction photographs in any direction Diffracted images can be obtained if the degrees are not uniform.
  • Dial gauge thickness gauge JIS B 7503 (1997), PEACOCK UPRIGHT DI
  • the number of tears was counted according to the following criteria. In other words, if a break occurs in the longitudinal stretching process or the transverse stretching process, it is counted as one break at that time, and the film is cut immediately before the process and waits while winding (the break occurs for some reason). If it is difficult to wait in the previous process, you may wait in the previous process.) When the preparation is complete, the film is introduced again in the process where the tear occurred. For example, if film tearing occurs in the transverse stretching process, the film is temporarily cut between the longitudinal stretching machine and the transverse stretching machine (tenter), and the longitudinally stretched film is taken up as it is and put into a standby state, and the tenter tear film is removed.
  • the film is again introduced into the tenter and stretched laterally to evaluate the film forming property.
  • the 5 hours of film formation time is defined as the time including this standby state. Similar for the same level The film-forming experiment was conducted 5 times, and the average value of the number of tears obtained was taken as the number of tears, and the film-forming property was judged according to the above criteria.
  • the films were aligned so that the sample thickness after hot press preparation was about lmm.
  • This sample was sandwiched between two 0.5 mm thick aluminum plates, melted and compressed by hot pressing at 280 ° C for 3 minutes, and the polymer chains were almost non-oriented.
  • the obtained sheet was crystallized by being immersed in boiling water at 100 ° C for 5 minutes immediately after taking out the whole aluminum plate. Thereafter, a sample was cut out from the sheet obtained by cooling in an atmosphere at 25 ° C. and subjected to measurement.
  • the dispersion diameter of the resin incompatible with polypropylene in the obtained sample was determined by the measurement method using TEM in (4) above.
  • the present invention will be described based on examples.
  • the extrusion amount of the polymer was adjusted to a predetermined value unless otherwise specified.
  • the ⁇ crystal fraction and porosity of the film are values measured for the entire film even when the film is a laminate of a plurality of layers.
  • the melt crystallization temperature (Tmc) of the ⁇ crystal nucleating agent-containing polypropylene is a value measured for the film
  • the Tmc of the additive resin other than polypropylene is a value measured for the pellet of the resin alone before adjusting the resin. is there.
  • the resin composition of Comparative Example 6 in Table 1 is described with respect to the composition of the core layer.
  • Polypropylene resin A and polypropylene resin B having the following composition were prepared.
  • Polypropylene Polypropylene WF836DG3 (melt flow rate (M FR):. 7gZlO minutes) ... 99 8 weight 0/0
  • j8 crystal nucleating agent ⁇ , ⁇ , monodicyclohexyl 2, 6-naphthalene dicarboxamide (NU-100, manufactured by Nippon Rika Co., Ltd.) ⁇ 0.2 wt%
  • IRGANOX1 010 manufactured by Ciba Geigy Co., Ltd. and 0.1 parts by weight of IRGAFOS168 manufactured by Ciba Geigy Co., Ltd. were added as thermal stabilizers to 100 parts by weight of the composition of the resin. This is fed to a twin screw extruder and melted and kneaded at 300 ° C, then extruded into a gut shape, cooled through a 20 ° C water bath, cut into a 3 mm length with a chip cutter, and then 100 ° C. And dried for 2 hours.
  • Polypropylene Polypropylene manufactured by Sumitomo Chemical Co., Ltd. WF836DG3 (MFR: 7gZlO) ⁇ ⁇ 70% by weight
  • Polyolefin resin "Engage” 8411 (mVLDPEl; ethylene 'octene copolymer; melting point (Tm): 79 ° C, Tmc: 53 ° C) made by Duponda Welastoma Japan Japan ⁇ ⁇ 30 layers
  • the composition was supplied to a twin screw extruder and melted and kneaded at 250 ° C, then extruded into a gut shape, passed through a 20 ° C water bath, cooled and cut into 3 mm lengths with a chip cutter, then at 100 ° C. Dried for 2 hours.
  • the obtained unstretched sheet was passed through a roll group maintained at 120 ° C, preheated, passed between rolls maintained at 120 ° C and provided with a circumferential speed difference, and 5 times in the longitudinal direction at 120 ° C. Stretched and cooled to 95 ° C. Subsequently, both ends of this longitudinally stretched film were introduced into a tenter while being held by clips, preheated at 135 ° C, and stretched 8 times in the transverse direction at 135 ° C. Then 5% laterally in the tenter The sample was heat-set at 155 ° C.
  • the longitudinal stretching speed was 38000% Z
  • the lateral stretching speed was 1750% Z.
  • Tables 1 and 2 show the raw material composition and film property evaluation results of the obtained microporous film, respectively.
  • the obtained microporous film was excellent in permeability with a high porosity and excellent in film forming properties.
  • Example 1 a rosin composition prepared by adding 90% of polypropylene resin C prepared in the following composition and 10% by weight of polypropylene resin B was supplied to a single screw extruder, and 100 in the longitudinal direction.
  • Example 2 was a microporous polypropylene film having a thickness of 20 ⁇ m produced under the same conditions except that the film was stretched 4 times at ° C and stretched at 140 ° C in the transverse direction.
  • Polypropylene Polypropylene manufactured by Sumitomo Chemical Co., Ltd. WF836DG3 (MFR: 7gZlO) ⁇ ⁇ 96. 8% by weight
  • High melt tension polypropylene with long chain branching in the main chain Basell polypropylene PF—814 (MFR: 3 gZlO min) 3% by weight
  • N N, monodicyclohexyl 2, 6-naphthalene dicarboxamide (NU-100, Nippon Rika Co., Ltd.) ⁇ 0.2 wt%
  • the results are shown in Tables 1 and 2.
  • the obtained microporous film had a high porosity and excellent permeability, and excellent film forming properties.
  • Example 2 the operation was performed under the same conditions except that the longitudinal draw ratio was increased to 5.
  • a produced microporous polypropylene film having a thickness of 20 ⁇ m was used as Example 3.
  • the longitudinal stretching speed was 38000% Z
  • the transverse stretching speed was 1750% Z.
  • the results are shown in Tables 1 and 2.
  • the obtained microporous film had a high porosity and excellent permeability, and excellent film forming properties.
  • Example 4 A microporous polypropylene film having a thickness of 20 m produced under the same conditions as Example 3 except that the longitudinal draw ratio was increased to 6 was used as Example 4. At this time, the longitudinal stretching speed was 56300% Z, and the transverse stretching speed was 2100% Z.
  • the results are shown in Tables 1 and 2.
  • the obtained microporous film had a high porosity and excellent permeability, and excellent film forming properties.
  • Example 2 a microporous polypropylene film having a thickness of 20 ⁇ m was prepared in the same manner as in Example 5 except that polypropylene-based resin D prepared with the following composition was supplied to a single screw extruder. It was. In this case, the longitudinal stretching speed is 23000% Z, and the transverse stretching speed is
  • Polypropylene Polypropylene manufactured by Sumitomo Chemical Co., Ltd. WF836DG3 (MFR: 7gZlO) ⁇ ⁇
  • High melt strength polypropylene having a long chain branch in the main chain skeleton Basell made polypropylene emissions PF- 814 (MFR: 3gZlO min) '- 3 wt 0/0
  • j8 nucleating agent ⁇ , N, monodicyclohexyl 2, 6-naphthalene dicarboxamide (NU-100, manufactured by Nippon Rika Co., Ltd.) ⁇ 0.2 wt%
  • Polyolefin-based ⁇ DuPont Dow Elastomer one Japan Ltd. "ENGAGE" 8411 (mVLDPEl; ethylene 'Otaten copolymer; Tm: 79 ° C, Tmc : 53 ° C) ⁇ ⁇ 5 weight 0/0
  • the ⁇ To 100 parts by weight of the composition 0.115 parts by weight of IRGANOX 1010 manufactured by Ciba Geigy Co., Ltd. was added as an antioxidant, and 0.1 parts by weight of IRGAFOS168 manufactured by Ciba Geigy Co., Ltd. was added as a heat stabilizer.
  • the results are shown in Tables 1 and 2.
  • the obtained microporous film had a high porosity and excellent permeability, and excellent film forming properties.
  • Example 3 95 weight polypropylene ⁇ A 0/0, were prepared under the same conditions except that the ⁇ composition obtained by adding and mixing polypropylene ⁇ B at a ratio of 5 wt% was fed into a single screw extruder
  • Example 6 was a microporous polypropylene film having a thickness of 20 m. In this case, the longitudinal stretching speed was 38000% Z, and the lateral stretching speed was 1750% Z.
  • the results are shown in Tables 1 and 2.
  • the obtained microporous film had a high porosity and excellent permeability, and excellent film forming properties.
  • Example 1 instead of polypropylene-based resin B, a microporous polypropylene film having a thickness of 20 m prepared under the same conditions except that polypropylene-based resin E prepared in the following composition was used. It was set to 7. At this time, the longitudinal stretching speed was 38000% Z and the transverse stretching speed was 1750% Z.
  • Polypropylene Polypropylene manufactured by Sumitomo Chemical Co., Ltd. WF836DG3 (MFR: 7gZlO) ⁇ ⁇
  • Polyolefin-based ⁇ DuPont Dow Elastomer one Japan Ltd. "ENGAGE" 8100 (mVLDPE2; ethylene 'Otaten copolymer; Tm: 60 ° C, Tmc : 42 ° C) ⁇ ⁇ 30 weight 0/0
  • the composition was supplied to a twin screw extruder and melted and kneaded at 250 ° C, then extruded into a gut shape, passed through a 20 ° C water bath, cooled and cut into 3 mm lengths with a chip cutter, then at 100 ° C. Dried for 2 hours.
  • the results are shown in Tables 1 and 2.
  • the obtained microporous film had a high porosity and excellent permeability, and excellent film forming properties.
  • Example 5 a longitudinally uniaxially stretched film was collected after stretching in the longitudinal direction and cooling.
  • the obtained longitudinally uniaxially stretched film is cut into rectangles with a size of 200 mm in the vertical direction and 85 mm in the horizontal direction. I put it out.
  • the obtained sample was stretched transversely using a film stretcher under the following conditions.
  • KARO-IV film stretcher manufactured by Bruckner Maschinenbau GmbH. Temperature conditions:
  • Stepl Mode: Heating, Position: Stretching Oven, Time: 15sec
  • Step2 Mode: Position, Position: Stretching Oven, MD: 1.00, 15% / sec, TD: 6.00, 15
  • Step3 Mode: Position ⁇ Position: Annealing 1 Oven, MD: 1.00, 15% / sec ⁇ TD: 5.70, 15% / sec Speed Mode: Constant Speed
  • Example 8 The above conditions were as follows: the longitudinally uniaxially stretched film was preheated at 135 ° C for 15 seconds, then stretched 6 times at 135 ° C in the horizontal direction at 900% Z, and subsequently given 5% relaxation in the lateral direction. 15 corresponds to the heat treatment at 5 ° C.
  • the obtained microporous polypropylene film having a thickness of 25 ⁇ m was taken as Example 8.
  • the results are shown in Tables 1 and 2.
  • the obtained microporous film was excellent in permeability with a high porosity and a very large pore diameter.
  • Example 1 longitudinal stretching was performed at a longitudinal stretching ratio of 4 times, and a longitudinally uniaxially stretched film was collected after cooling.
  • the obtained longitudinally uniaxially stretched film was subjected to transverse stretching under the following stretching conditions using a film stretcher in the same manner as in Example 8 to produce a microporous polypropylene film having a thickness of 25 ⁇ m (Example 9). ).
  • Step2 Mode: Position, Position: Stretching Oven, MD: 1.00, 10% / sec, TD: 6.00, 10
  • Step3 Mode: Position ⁇ Position: Annealing 1 Oven, MD: 1.00, 10% / sec ⁇ TD: 5.70, 10% / sec, Speed Mode: Constant Speed
  • the results are shown in Tables 1 and 2.
  • the obtained microporous film was excellent in permeability with a high porosity and a very large pore diameter.
  • Example 2 a longitudinally uniaxially stretched film was collected after stretching in the longitudinal direction and cooling. The resulting longitudinally uniaxially stretched film was subjected to transverse stretching under the following stretching conditions using a film stretcher in the same manner as in Example 8 to produce a microporous polypropylene film having a thickness of 25 m (Example Ten).
  • Stepl Mode: Heating, Position: Stretching Oven, Time: 15sec
  • Step2 Mode: Position, Position: Stretching Oven, MD: 1.00, 5% / sec, TD: 6.00, 5% / sec, Speed Mode: Constant Speed
  • Step3 Mode: Position, Position: Annealing 1 Oven, MD: 1.00, 5% / sec, TD: 5.70, 5% / sec, Speed Mode: Constant Speed
  • the above condition is that the longitudinally uniaxially stretched film is preheated at 135 ° C for 15 seconds and then stretched 6 times at 135 ° C in the transverse direction at 300% Z for 5%. , Corresponding to heat treatment at 5 ° C!
  • Example 3 the longitudinally uniaxially stretched film collected after longitudinal stretching and cooling was subjected to lateral stretching under the same conditions as in Example 10 to produce a microporous polypropylene film having a thickness of 25 m (Example 11). ).
  • the results are shown in Tables 1 and 2.
  • the obtained microporous film had a high porosity and an extremely large pore diameter and excellent permeability.
  • Example 1 in place of polypropylene-based resin B, polypropylene-based resin F prepared with the following composition was used, and a longitudinal uniaxially stretched film was collected after stretching in the longitudinal direction with a longitudinal stretching ratio of 4 times and cooling. . Using the obtained longitudinally uniaxially stretched film, transverse stretching was performed under the same conditions as in Example 9 to produce a microporous polypropylene film having a thickness of 25 m (Example 12).
  • Polypropylene Polypropylene manufactured by Sumitomo Chemical Co., Ltd. WF836DG3 (MFR: 7gZlO) ⁇ ⁇ 70% by weight
  • Polyolefin resin "engage" ENR 7270 (mVLDPE3; ethylene-butene copolymer; Tm: 65 ° C, Tmc: 50 ° C) manufactured by Duponda Welastomer Japan Japan ⁇ ⁇ 30% by weight
  • the results are shown in Tables 1 and 2.
  • the obtained microporous film was excellent in permeability with a high porosity and a very large pore diameter.
  • Example 11 the longitudinally uniaxially stretched film collected after longitudinal stretching and cooling was subjected to transverse stretching under the following stretching conditions using a film stretcher in the same manner as in Example 8, and the thickness was 25 ⁇ m.
  • a microporous polypropylene film was prepared (Example 13).
  • Stepl Mode: Heating, Position: Stretching Oven, Time: 15sec
  • Step2 Mode: Position, Position: Stretching Oven, MD: 1.00, 5% / sec, TD: 6.00, 5% / sec, Speed Mode: Constant Speed
  • Step3 Mode: Position, Position: Annealing 1 Oven, MD: 1.00, 5% / sec, TD: 5.70, 5% / sec, Speed Mode: Constant Speed
  • the above condition is that the longitudinally uniaxially stretched film was preheated at 148 ° C for 15 seconds, then stretched 6 times at 148 ° C in the transverse direction at 300% Z min, and subsequently given 5% relaxation in the transverse direction. , 15
  • the results are shown in Tables 1 and 2.
  • the obtained microporous film was excellent in permeability with a high porosity and a very large pore diameter.
  • Example 6 the longitudinally uniaxially stretched film collected after stretching in the longitudinal direction and cooling was subjected to transverse stretching under the following stretching conditions using a film stretcher in the same manner as in Example 8, and the thickness was 25 ⁇ m.
  • a microporous polypropylene film of Example 14 was prepared.
  • Stepl Mode: Heating, Position: Stretching Oven, Time: 15sec
  • Step2 Mode: Position, Position: Stretching Oven, MD: 1.00, 2% / sec, TD: 6.00, 2% / sec, Speed Mode: Constant Speed
  • Step3 Mode: Position, Position: Annealing 1 Oven, MD: 1.00, 2% / sec, TD: 5.70, 2% / sec, Speed Mode: Constant Speed
  • the above condition is that the longitudinally uniaxially stretched film was preheated at 140 ° C for 15 seconds, then stretched 6 times at 120% Z in the transverse direction at 140 ° C, and subsequently given 5% relaxation in the transverse direction. , Corresponding to heat treatment at 5 ° C!
  • the results are shown in Tables 1 and 2.
  • the obtained microporous film was excellent in permeability with a high porosity and a very large pore diameter.
  • Example 7 the surface temperature of the cast drum was set to 110 ° C, the extruder force was also discharged from the molten polymer, and the longitudinally uniaxially stretched film collected after stretching in the longitudinal direction and cooling was transversely stretched under the same conditions as in Example 8. To make a microporous polypropylene film with a thickness of 25 m. (Example 15).
  • Example 2 film formation was attempted under the same conditions except that polypropylene resin A was supplied to the single screw extruder instead of polypropylene resins B and C (Comparative Example 1).
  • Comparative Example 1 a microporous polypropylene film having a thickness of 20 ⁇ m was prepared as Comparative Example 2 except that the film was stretched at 120 ° C. in the longitudinal direction and stretched at 135 ° C. in the transverse direction. At this time, the longitudinal stretching speed is 23000% Z and the transverse stretching speed is 1400% Z.
  • Comparative Example 2 film formation was attempted under the same conditions except that the draw ratio in the machine direction was increased to 5 times (Comparative Example 3).
  • Polypropylene resin G having the following composition was prepared.
  • Polypropylene Polypropylene manufactured by Sumitomo Chemical Co., Ltd. WF836DG3 (MFR: 7gZlO) ⁇ ⁇ 94. 95% by weight
  • j8 crystal nucleating agent N, N, monodicyclohexyl 2, 6-naphthalene dicarboxamide (NU 100, Nippon Rika Co., Ltd.) ⁇ 0.05% by weight
  • Polymethylpentene Mitsui Chemicals Co., Ltd. polymethylpentene "TPX" RT-18 (Tm: 230 ° C, Tmc: 208 ° C) ⁇ ⁇ 5% by weight
  • This resin composition was supplied to a twin screw extruder, melted and kneaded at 280 ° C, extruded into a gut shape, cooled through a 30 ° C water bath, cut into a 3 mm length with a chip cutter, and 100 Dried for 2 hours at ° C.
  • the obtained polypropylene-based resin G chips were supplied to a single screw extruder, melted and kneaded at 280 ° C, passed through a 400 mesh single-plate filter, and then heated to 200 ° C in a slit shape Base force Extrusion, casting on a drum heated to a surface temperature of 120 ° C, non-dram surface side force of the film Using an air knife, hot air heated to 120 ° C is blown into close contact to form a sheet Molded to obtain an unstretched sheet. The contact time with the metal drum at this time was 40 seconds.
  • the obtained unstretched sheet was preheated through a roll group maintained at 120 ° C, passed between rolls maintained at 120 ° C and provided with a difference in peripheral speed, and quadrupled in the longitudinal direction at 120 ° C. Stretched and cooled to 30 ° C. Subsequently, both ends of this longitudinally stretched film were introduced into a tenter while being held by clips, preheated at 135 ° C, and stretched 8 times in the transverse direction at 135 ° C. Next, the film was heat-set at 150 ° C. while giving 5% relaxation in the transverse direction in the tenter, uniformly cooled, and then cooled to room temperature.
  • both surfaces were subjected to corona discharge treatment in air and then wound up to obtain a microporous polypropylene film having a thickness of 25 m.
  • the longitudinal stretching speed was 23000% Z
  • the transverse stretching speed was 1400% Z.
  • Polypropylene resin H having the following composition was prepared as the resin constituting the core layer.
  • Polypropylene Polypropylene manufactured by Sumitomo Chemical Co., Ltd. WF836DG3 (MFR: 7gZlO) ⁇ ⁇ 94.8% by weight
  • N N, monodicyclohexyl 2, 6-naphthalene dicarboxamide (NU-100, manufactured by Nippon Rika Co., Ltd.) ⁇ 0.2 wt%
  • Polyolefin-based ⁇ DuPont Dow Elastomer one Japan Ltd. "ENGAGE" 8411 (ethylene Otaten copolymer; Tm:. 79 ° C, Tmc: 53 ° C) ⁇ ⁇ 5 weight 0/0
  • IRGANOX1 010 manufactured by Ciba Geigy Co., Ltd. and 0.1 parts by weight of IRGAFOS168 manufactured by Ciba Geigy Co., Ltd. were added as thermal stabilizers to 100 parts by weight of the composition of the resin. This is fed to a twin screw extruder and melted and kneaded at 300 ° C, then extruded into a gut shape, cooled through a 20 ° C water bath, cut into a 5 mm length with a chip cutter, and then 100 ° C. And dried for 2 hours.
  • polypropylene resin I having the following yarn composition was prepared as a resin for the skin layer laminated on one side of the core layer.
  • Polypropylene Polypropylene F-107DV (MFR: 7gZlO content) manufactured by Mitsui Chemicals, Inc. 99.8% by weight
  • Particles Spherical silica particles manufactured by Mizusawa Chemical Co., Ltd. ⁇ -20S (average particle size: 1.7 m) Then, it was extruded into a gut shape, passed through a 20 ° C. water bath, cooled, cut to a length of 5 mm with a tip cutter, and then dried at 100 ° C. for 2 hours.
  • Polypropylene resin J having the following composition was prepared as a resin for the skin layer laminated on the other surface of the core layer.
  • Polypropylene resin Sumitomo Chemical Co., Ltd. ethylene-propylene random copolymer (ethylene copolymerization amount: 1% by weight, MFR: 4gZlO) ' ⁇ 99. 75% by weight
  • Particles Cross-linked polymethyl methacrylate particles (average particle size: 2 m) manufactured by Nippon Shokubai Co., Ltd.
  • This rosin composition was supplied to a twin screw extruder, melted and kneaded at 280 ° C, extruded into a gut shape, cooled through a 20 ° C water bath, cut into a 5 mm length with a chip cutter, and 100 Dried for 2 hours at ° C.
  • the polypropylene-based resin H obtained above was supplied to a single screw extruder, melted and kneaded at 210 ° C, filtered through a 35 / zm cut leaf disk filter, and then a multi-hold type composite. Introduced into the base. At the same time, the obtained polypropylene resin I was supplied to another uniaxial extruder, melted and kneaded at 260 ° C., filtered through a 35 m cut wire mesh filter, and then introduced into the die.
  • the obtained polypropylene-based resin J was supplied to a further single screw extruder, melted and kneaded at 260 ° C., filtered through a 35 m cut wire mesh filter, and then introduced into the die.
  • the molten polymer with each extruder force introduced was stacked and coextruded into a sheet.
  • the contact time with the metal drum at this time was 20 seconds.
  • the obtained unstretched sheet was introduced into an oven maintained at 120 ° C, preheated, stretched 5 times in the machine direction, and then introduced into a tenter while holding both ends of the machined film with clips.
  • heat-fixing was performed at 150 ° C. while giving 5% relaxation in the transverse direction in the tenter, and the mixture was gradually cooled and then cooled to room temperature.
  • the skin layer surface using polypropylene resin I is corona discharge treatment in air
  • the skin layer surface using polypropylene resin J is corona discharge treatment in a mixed atmosphere of 80% by volume nitrogen and 20% by volume carbon dioxide.
  • microporous polypropylene film having a thickness of 35 m.
  • Each skin layer thickness was 3 ⁇ m.
  • the longitudinal stretching speed was 50000% Z and the transverse stretching speed was 3400% Z.
  • the results are shown in Tables 1 and 2, respectively.
  • the resulting microporous film has a low porosity.
  • the force was not substantially permeable.
  • the pore diameter was not measurable.
  • Polypropylene resin K having the following composition was prepared.
  • Polypropylene Polypropylene manufactured by Sumitomo Chemical Co., Ltd. WF836DG3 (MFR: 7gZlO) ⁇ ⁇ 79.5 wt%
  • N N, monodicyclohexyl 2, 6-naphthalene dicarboxamide (NU-100, manufactured by Nippon Rika Co., Ltd.) ⁇ 0.5 wt%
  • Polyethylene Tosoh Corporation high density polyethylene "Polonhard” 4010 (Tm: 135. C, Tmc: 120 ° C) .20% by weight
  • IRGANOX1 010 manufactured by Ciba Geigy Co., Ltd. and 0.1 parts by weight of IRGAFOS168 manufactured by Ciba Geigy Co., Ltd. were added as heat stabilizers to 100 parts by weight of the composition of the resin. This is fed to a twin screw extruder and melted and kneaded at 240 ° C, then extruded into a gut shape, passed through a 20 ° C water bath, cooled and cut to a length of 5 mm with a chip cutter, and then at 100 ° C. Dried for 2 hours.
  • the obtained unstretched sheet is preheated through a group of rolls maintained at 90 ° C, passed between rolls maintained at 90 ° C and provided with a circumferential speed difference, and doubled in the longitudinal direction at 90 ° C. And cooled to 30 ° C.
  • this longitudinally stretched film is introduced into a tenter, preheated at 90 ° C, stretched 8 times in the transverse direction at 90 ° C, and uniformly cooled slowly, and then cooled to room temperature. After cooling, it was wound up to obtain a microporous polypropylene film having a thickness of 44 m.
  • the longitudinal stretching speed was 5000% Z and the lateral stretching speed was 1050% Z.
  • H S-PP High melt tension polypropylene
  • / 3PP Polypropylene containing 0 crystal nucleating agent constituting the film
  • Tmc Melt crystallization temperature
  • microporous polypropylene film obtained in Example 1 and the microporous polypropylene obtained in Comparative Example 2 Figures 4 and 6 show cross-sectional TEM images of each film. As shown in these figures, the microporous polypropylene film of the present invention obtained in Example 1 has substantially non-nuclear pores in spite of the addition of a different component (ethylene-otaten copolymer). I had it. This is presumably because the melting point of the added different component was sufficiently lower than the film forming temperature of the microporous film, so that the component was melted during film formation.
  • ethylene-otaten copolymer ethylene-otaten copolymer
  • Example 1 of the present invention is different from the microporous polypropylene film of Comparative Example 2. In comparison, it was confirmed visually that the porosity was clearly high.
  • the microporous polypropylene film of the example was excellent in film forming property with less film tearing as compared with the microporous polypropylene film of the comparative example.
  • the film can be stretched at a high magnification in the longitudinal direction, and the porosity can be improved.
  • the porosity of the microporous polypropylene film of the example could be improved as compared with the microporous film of the comparative example.
  • the porosity can be controlled by the composition of the resin and the film forming conditions. In particular, by reducing the stretching speed in one direction, the porosity can be made extremely high.
  • the microporous polypropylene film of the example has a larger pore diameter than the microporous polypropylene film of the comparative example.
  • This pore diameter can be controlled by the composition of the resin and the film forming conditions, and can be remarkably increased by lowering the stretching speed in one direction in particular.
  • microporous polypropylene film of the example had high porosity, it had high mechanical properties almost equivalent to the microporous polypropylene film of the comparative example.
  • FIGS. 3 and 5 show cross-sectional TEM photographs of the unstretched sheets obtained when producing the microporous films of Example 1 and Comparative Example 2, respectively.
  • the unstretched sheet obtained in Example 1 has an infinite number of ethylene 'otaten copolymer (mVLDPE) phases (4 in FIG. 3) finely dispersed in a polypropylene phase (5 in FIG. 3). confirmed.
  • mVLDPE ethylene 'otaten copolymer
  • the wrinkles shown in the figure were placed near the surface of the sheet, the mVLDPE phase was observed as a smaller spherical phase. This was presumed to reflect that the sheet surface part was subjected to higher shearing force in the extrusion process.
  • the microporous polypropylene film of the present invention is compared with the conventional microporous polypropylene film by adding a different component capable of maintaining the resulting microporous film having a substantially nucleus-free pore. Excellent film forming properties with little film tearing. Thereby, it becomes possible to stretch in the vertical direction at a high magnification, and the porosity can be increased. Even at the same draw ratio, the porosity can be increased as compared with the conventional microporous film.
  • the microporous polypropylene film of the present invention has a high porosity and high permeability, so that it can be made into a film excellent in absorbability and liquid retention.
  • FIG. 1 schematically shows a calorific curve obtained when the ⁇ crystal fraction is obtained in the above measurement method (8) ⁇ crystal fraction using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • Figure 2 shows the heat of fusion ( ⁇ ⁇
  • FIG. 6 is a graph showing the heat of fusion ( ⁇ ) determined from the area of the endothermic peak accompanying melting of polypropylene-derived crystals other than ⁇ crystals.
  • FIG. 3 is a cross-sectional photograph of an unstretched sheet obtained when producing the microporous polypropylene film (Example 1) of the present invention.
  • the ethylene 'otaten copolymer phase is observed as a black domain.
  • the vertical axis of the photograph is the thickness direction of the unstretched sheet, and the horizontal axis is the longitudinal direction of the unstretched sheet.
  • FIG. 4 is a cross-sectional photograph of a microporous polypropylene film of the present invention (Example 1).
  • the vertical axis of the photograph is the thickness direction of the film, and the horizontal axis is the horizontal direction of the film.
  • FIG. 5 is a cross-sectional photograph of an unstretched sheet obtained when producing the microporous polypropylene film of Comparative Example 2.
  • the vertical axis of the photograph is the thickness direction of the unstretched sheet, and the horizontal axis is the longitudinal direction of the unstretched sheet.
  • FIG. 6 is a cross-sectional TEM photograph of the microporous polypropylene film of Comparative Example 2. Note that the vertical axis of the photograph is the thickness direction of the film, and the horizontal axis is the horizontal direction of the film.

Abstract

 【課題】本発明では連続製膜可能で安価に微多孔フィルムを製造できるβ晶法において、製膜性を向上させた微多孔ポリプロピレンフィルムを提供する。また、空孔率をさらに高く、透過性を高めた微多孔ポリプロピレンフィルムを提供する。また、これら微多孔ポリプロピレンフィルムの製造方法を提供する。  【解決手段】 β晶核剤を含有するポリプロピレンを主成分とし、ガーレ透気度が500秒/100ml以下であり、かつ実質的に無核の孔を有する微多孔ポリプロピレンフィルムであって、エチレン・α-オレフィン共重合体を含有し、および/または、β晶核剤含有ポリプロピレンの溶融結晶化温度(Tmc)より30°C以上低いTmcを有し、かつポリプロピレンに非相溶である樹脂を含有してなる微多孔ポリプロピレンフィルムとする。  

Description

明 細 書
微多孔ポリプロピレンフィルムおよびその製造方法
技術分野
[0001] 本発明は、包装用途、工業用途など広範な用途に好適な微多孔ポリプロピレンフィ ルムに関するものである。詳しくは、従来の β晶法による微多孔フィルムに比べて、 空孔率が高ぐ各種透過媒体の透過性に優れ、製膜性に優れるととともに、寸法安 定性、力学物性にも優れる微多孔ポリプロピレンフィルムに関する。
背景技術
[0002] 微多孔フィルムは、透過性、高空孔率などの特徴から、主として電池や電解コンデ ンサ一などの各種セパレータ、各種分離膜 (フィルター)、おむつや生理用品に代表 される吸収性物品、衣料や医療用の透湿防水部材、感熱受容紙用部材、インク受容 体部材などその用途は多岐に渡っており、ポリプロピレンやポリエチレンに代表され るポリオレフイン系微多孔フィルムが主として用いられて!/、る。
[0003] 微多孔ポリオレフインフィルムの製造方法は、一般に湿式法と乾式法に大別される 。湿式法としては、ポリオレフインに被抽出物を添加、微分散させ、シート化した後に 被抽出物を溶媒などにより抽出して孔を形成し、必要に応じて抽出前および Ζまた は後に延伸加工を行う工程を有する抽出法などがある(例えば、特許文献 1参照)。 乾式法としては、溶融押出によるシートィ匕時に低温押出、高ドラフトの特殊な溶融結 晶化条件をとることにより特殊な結晶ラメラ構造を形成させた未延伸シートを製造し、 これを主として一軸延伸することによりラメラ界面を開裂させて孔を形成するラメラ延 伸法がある(例えば、特許文献 2、非特許文献 1参照)。他の乾式法としては、ポリオ レフインに無機粒子などの非相溶粒子を大量添加した未延伸シートを延伸することに より異種素材界面を剥離させて孔を形成する無機粒子法がある(例えば、特許文献 3 参照)。他にはポリプロピレンの溶融押出による未延伸シート作製時に結晶密度の低 い ι8晶(結晶密度: 0. 922g/cm3)を形成させ、これを延伸することにより結晶密度 の高い α晶(結晶密度 : 0. 936gZcm3)に結晶転移させ、両者の結晶密度差により 孔を形成させる β晶法 (例えば、特許文献 4〜10、非特許文献 2参照)がある。 [0004] 上記 13晶法では、延伸後のフィルムに多量の孔を形成させるため、延伸前の未延 伸シートに選択的に多量の β晶を生成する必要がある。このため、 β晶法では β晶 核剤を用い、特定の溶融結晶化条件で j8晶を生成させることが重要となる。近年で は、 β晶核剤として、古くから用いられてきたキナクリドン系化合物 (例えば、非特許 文献 3参照)に比較して、さらに高い 晶生成能を有する材料が提案されており(例 えば、特許文献 11、 12参照)、種々の微多孔ポリプロピレンフィルムが提案されてい る。
[0005] また、 /3晶法においても、ポリプロピレンに異種の成分を添加し、孔の形成を促進 することを目的として各種検討がなされている。これらの技術としては、例えば、ポリプ ロピレンとポリプロピレンより結晶化温度が高いポリマー、 β晶核剤力 なる榭脂組成 物を溶融押出し、特定範囲の温度条件で保持して未延伸シートを作製し、特定範囲 の面積延伸倍率で少なくとも一方向に延伸するポリプロピレン微孔性フィルムの製造 方法 (特許文献 4)、特定組成のポリプロピレンとポリエチレン、 j8晶核剤力もなる榭脂 組成物をシート中の結晶相が実質的に β結晶相であるようにシートを溶融成形し、こ れを特定範囲の温度条件で延伸する微多孔性膜の製造方法 (特許文献 7)、特定組 成の β晶比率が特定範囲であるポリプロピレン榭脂とポリプロピレンに非相溶である 榭脂からなり、特定範囲のガーレ透気度、静摩擦係数を有する二軸配向微多孔フィ ルム (特許文献 10)などが提案されて!ヽる。
特許文献 1 :特許第 1299979号公報 (請求項 1)
特許文献 2:特許第 1046436号公報 (請求項 1)
特許文献 3 :特許第 1638935号公報 (請求項 1〜7)
特許文献 4:特許第 1974511号公報 (請求項 1)
特許文献 5:特許第 2509030号公報 (請求項 1〜8)
特許文献 6:特許第 3443934号公報 (請求項 1〜5)
特許文献 7:特許第 3523404号公報 (請求項 1)
特許文献 8 :国際公開第 02Ζ66233号パンフレット (請求項 1〜: L 1)
特許文献 9 :米国特許第 6596814号公報 (請求項 1〜31、第 2頁第 1段落第 18〜5 0行目、実施例 1〜3、比較例 4) 特許文献 10 :特開 2005— 171230号公報 (請求項 1〜: L I)
特許文献 11:特許第 2055797号公報 (請求項 1〜8)
特許文献 12:特許第 3243835号公報 (請求項 1)
非特許文献 1 :足立ら、 "化学工業"、第 47卷、 1997年、 p. 47- 52
非特許文献 2 :シユー(M. Xu)ら、"ポリマーズ フォー アドバンスド テクノロジーズ
" (Polymers for Advanced Technologies)、第 7卷、 1996年、 p. 743— 748 非特許文献 3 :藤山、 "高分子加工"、第 38卷、 1989年、 p. 35—41
発明の開示
発明が解決しょうとする課題
[0006] 一般に、 β晶法は、乾式法であり、煩雑なプロセスを必要としないことから、いわゆ る抽出法ゃラメラ延伸法に比較して安価で微多孔フィルムを供給できると言われてい る。
しかしながら、従来の β晶法による微多孔フィルムは、抽出法、ラメラ延伸法による微 多孔フィルムに比較して、各種媒体の透過性能(以下、単に透過性と略称する場合 がある。 )に劣っていた。すなわち、特許文献 11、 12に示されるような高活性の β晶 核剤を用いても、特許文献 4〜 10や非特許文献 2などで提案されている β晶法によ る微多孔フィルムであっても、抽出法ゃラメラ延伸法による微多孔フィルムに比較して 透過性が劣っていた。このため、 β晶法による微多孔フィルムは、高い透過性能が要 求されるフィルターや電池セパレータ用途などに代表される高付加価値分野へ展開 することは難 、とされてきた。
[0007] また、従来の β晶法による微多孔ポリプロピレンフィルムの透過性能は、無機粒子 法による微多孔フィルムと同等力もしくは若干優れる程度であり、粒子の脱落による 工程汚染などの短所はあるものの、コスト競争力に優れる無機粒子法による微多孔フ イルムに対して際立った特徴に乏し力つた。
[0008] β晶法では未延伸シートを作製するキャスト工程での特殊な溶融結晶化条件のた めに生産性が低いことも問題であった。より具体的には、 j8晶法では未延伸シートに 多量の β晶を生成させて高透過性の微多孔フィルムとするために、 β晶核剤を含有 したポリプロピレンを用いるだけでなぐより好ましくはこれを 100°Cを超える高温雰囲 気下で固化させてシートィ匕する(例えば、特許文献 8参照)。また、溶融押出温度が 低いほど、多量の β晶を形成できるという報告もある(非特許文献 3参照)。このため、 微多孔フィルム作製時のライン速度は、キャスト工程の溶融ポリプロピレンの結晶固 化状態によって決定される。すなわち、高速製膜のために高速キャストを行おうとして も、未固化状態では粘着するため金属ドラム力も剥離しにくいという問題があった、仮 に剥離できたとしても、その後の張力下でのシート搬送時に場合によってはシートが 伸びてしまう。したがって、キャスト速度、ひいてはライン速度 (すなわち製膜速度)は 必然的に低くなり、生産性が低くなる。また、透過性能を発現するためにはその後の 延伸工程で従来の透過性を有さない汎用ポリプロピレンフィルムの延伸条件より低温 で延伸する必要がある。この延伸工程でも条件によっては破れが散発し、生産コスト 力 Sさらに高くなることが問題であった。
[0009] さらに、特許文献 4, 7, 10で開示されている異種成分を導入した β晶法による微 多孔フィルムでは、異種成分が核となり、これらがフィルムの延伸工程やその後の二 次加工工程において脱落して工程を汚染したり、これらが原因でフィルム破れが発 生したりすることが問題であった。また、異種成分の核を基点として形成される粗大な 孔が原因で、フィルムが劈開しやす 、と 、う問題があった。
[0010] カロえて、さらに空孔率が高い、透過性が高い微多孔フィルムが要求されており、従 来の β晶法で対応できる空孔率の範隨こも限界があった。一方、仮に空孔率をさら に高くすることができたとしても、ヤング率や強度などに代表されるフィルムの力学物 性が実質的に低下するなどの問題があった。
[0011] 本発明の目的は、上記問題を解消するためになされたものであり、空孔率が高ぐ 各種媒体の透過性能に優れ、工程汚染やフィルム破れが少なぐ生産性に優れると ともに、力学物性や寸法安定性などにも優れる微多孔ポリプロピレンフィルムを提供 することである。また、空孔率が高ぐ各種媒体の透過性能に優れ、工程汚染ゃフィ ルム破れが少なぐ生産性に優れるとともに、力学物性や寸法安定性などにも優れる 微多孔ポリプロピレンフィルムの製造方法を提供することである。
課題を解決するための手段
[0012] 本発明者らは、鋭意検討した結果、主として、以下の構成により上記課題を解決で きることを見出した。
[0013] すなわち、本発明の第 1の微多孔ポリプロピレンフィルムは、主として、 j8晶核剤を 含有するポリプロピレンを主成分とし、エチレン' aーォレフイン共重合体を含有し、 ガーレ透気度が 500秒 ZlOOml以下であり、かつ実質的に無核の孔を有することを 特徴とする。
[0014] さらに、この微多孔ポリプロピレンフィルムの好ましい態様として、前記エチレン' a —ォレフイン共重合体の α ォレフィンが、 1—ブテン、 1—ペンテン、 3—メチルペン テンー1、 3—メチルブテン 1、 1一へキセン、 4ーメチルペンテン 1、 5 ェチルへ キセン一 1、 1—オタテンカ 選ばれる少なくとも 1種類以上であること、またエチレン' aーォレフイン共重合体の添加量が 1重量%以上 10重量%未満であること、またェ チレン' aーォレフイン共重合体カ^タ口セン系触媒により合成されてなる超低密度ポ リエチレン (mVLDPE)であること、平均孔径が 60nm以上であることを特徴とする。
[0015] また、別の構成として、本発明の第 2の微多孔ポリプロピレンフィルムは、主として、 β晶核剤を含有するポリプロピレンを主成分とし、該 β晶核剤含有ポリプロピレンの 溶融結晶化温度 (Tmc)より 30°C以上低い Tmcを有し、かつポリプロピレンに非相溶 である榭脂を含有してなり、ガーレ透気度が 500秒 ZlOOml以下であり、かつ実質 的に無核の孔を有することを特徴とする。
[0016] さらに、この微多孔ポリプロピレンフィルムの好ましい態様として、ポリプロピレンに非 相溶である樹脂が、エチレン' aーォレフイン共重合体であること、また前記エチレン • a—ォレフイン共重合体の α ォレフィンが、 1—ブテン、 1—ペンテン、 3—メチノレ ペンテン 1、 3—メチルブテン 1、 1一へキセン、 4ーメチルペンテン 1、 5 ェチ ルへキセン 1、 1 オタテンカ 選ばれる少なくとも 1種類以上であること、またェチ レン' a一才レフイン共重合体カ^タ口セン系触媒により合成されてなる超低密度ポリ エチレン(mVLDPE)であること、またポリプロピレンに非相溶である樹脂の添カ卩量が 1重量%以上 10重量%未満であること、平均孔径が 60nm以上であることを特徴とす る。
[0017] また、別の構成として、本発明の第 1の微多孔ポリプロピレンフィルムの製造方法は 、主として、 13晶核剤を含有するポリプロピレンを主成分とし、ポリプロピレンに非相溶 である榭脂を含有する榭脂組成物を溶融押出し、さらにドラムにキャストし、シート中 のポリプロピレンに非相溶である樹脂の分散径が 300nm以下である未延伸シートを 得る工程と、さらに得られた未延伸シートを延伸してフィルムに孔を形成する工程とを 含むことを特徴とする。
[0018] また、別の構成として、本発明の第 2の微多孔ポリプロピレンフィルムの製造方法は 、主として、 β晶核剤を含有するポリプロピレンを主成分とし、ポリプロピレンに非相溶 である榭脂もしくは添加剤を含有する榭脂組成物を溶融押出し、さらにドラムにキャス トし、未延伸シートを得る工程と、さらに得られた未延伸シートを延伸してフィルムに 孔を形成する工程とを含む微多孔ポリプロピレンフィルムの製造方法であって、前記 未延伸シートを固化する際に、ポリプロピレンに非相溶である樹脂より先にポリプロピ レンを固化せしめることを特徴とする。
[0019] さらに、この第 2の微多孔ポリプロピレンフィルムの製造方法の好ましい態様として、 ポリプロピレンに非相溶である樹脂の結晶化より先にポリプロピレンを結晶化せしめる こと、また未延伸シート中のポリプロピレンに非相溶である樹脂の分散径が 300nm以 下であることを特徴とする。
[0020] さらに、これら第 1、第 2の微多孔ポリプロピレンフィルムの製造方法の好ましい態様 として、 β晶核剤含有ポリプロピレンの溶融結晶化温度 (Tmc)が、ポリプロピレンに 非相溶である樹脂の Tmcに比べて 30°C以上高 、こと、また得られる微多孔フィルム が実質的に無核の孔を有すること、また前記未延伸シートを延伸する工程において、 少なくとも一方向の延伸速度が 1000%Z分未満であること、また前記未延伸シート を延伸する工程が縦延伸後に横延伸する逐次二軸延伸工程であること、また前記未 延伸シートを延伸する工程が逐次二軸延伸工程であって、かつ横延伸工程における 延伸速度が 1000%Z分未満であること、また前記ポリプロピレンに非相溶である榭 脂がエチレン. aーォレフイン共重合体であること、また前記エチレン' exーォレフイン 共重合体のひ一ォレフィンが、 1—ブテン、 1—ペンテン、 3—メチルペンテン一 1、 3 ーメチルブテン 1、 1一へキセン、 4ーメチルペンテン 1、 5 ェチルへキセン 1 、 1—オタテンカ 選ばれる少なくとも 1種類以上であること、またエチレン' aーォレ フィン共重合体力 Sメタ口セン系触媒により合成されてなる超低密度ポリエチレン (mV LDPE)であること、またポリプロピレンに非相溶である樹脂の添加量が 1重量%以上 10重量%未満であることを特徴とする。
発明の効果
[0021] 本発明の微多孔ポリプロピレンフィルムは、得られる微多孔フィルムが実質的に無 核の孔を有する状態を保持できる異種成分を添加することにより、従来の微多孔ポリ プロピレンフィルムに比較して、工程汚染やフィルム破れが少なぐ製膜性に優れる。 これにより、縦方向に高倍率に延伸することが可能となり、空孔率ゃ透過性を高める ことができる。また、同じ延伸倍率においても、従来の微多孔フィルムに比較して、空 孔率ゃ透過性を高めることができる。さらに、元来、空孔率ゃ透過性を高めると力学 物性が低下する場合があった力 本発明の微多孔ポリプロピレンフィルムでは、力学 物性を大きく損なうことなぐ空孔率ゃ透過性を高めることができる。また、寸法安定 性も従来の微多孔ポリプロピレンフィルムと同等に保持できる。
[0022] そして、本発明の微多孔ポリプロピレンフィルムは、空孔率が高ぐ透過性が高いこ とにより、吸収性、保液性にも優れたフィルムとすることができ、合成紙、光学部材、 建材、分離膜 (フィルター)、創傷被覆材などの透湿防水部材、衣料用などの透湿防 水布、おむつ用や生理用品用などの吸収性物品、電池や電解コンデンサー、電気 二重層キャパシターなどの蓄電デバイスに用いるセパレータ、インク受容紙、油また は油脂の吸収材、血糖値センサー、タンパク質分離膜などの用途など様々な分野で 優れた特性を発揮しうる。
発明を実施するための最良の形態
[0023] 本発明の第 1、第 2の微多孔ポリプロピレンフィルムは、 β晶核剤を含有するポリプ ロピレンを主成分とする。本発明の微多孔ポリプロピレンフィルムは、 β晶核剤を含有 するポリプロピレンを主成分とすることにより、コスト競争力に優れた j8晶法を用いるこ とができ、かつ下記のような態様とすることにより、空孔率を高ぐ透過性を向上できる
[0024] ここで、本発明でいうところのポリプロピレンは、主としてプロピレンの単独重合体か らなることが好ましいが、本発明の目的を損なわない範囲でプロピレンとプロピレン以 外の単量体が共重合された重合体であってもよ 、し、ポリプロピレンに該共重合体が ブレンドされてもよい。ただし、後述する通り、得られる微多孔フィルムが実質的に無 核の孔を有することが必要である。このような共重合成分を構成する単量体として、 例えば、エチレン、 1—ブテン、 1—ペンテン、 3—メチルペンテン一 1、 3—メチルブ テンー1、 1一へキセン、 4ーメチルペンテン 1、 5 ェチルへキセンー1、 1 ォクテ ン、 1—デセン、 1—ドデセン、ビュルシクロへキセン、スチレン、ァリルベンゼン、シク 口ペンテン、ノルボルネン、 5—メチル 2 ノルボルネン、アクリル酸およびそれらの 誘導体などが挙げられる力 これらに限定される訳ではない。
[0025] 本発明の第 1、第 2の微多孔ポリプロピレンフィルムは、フィルムを構成する全ての ポリマーに対し、 90重量%以上のプロピレン単量体成分を含む(すなわち、ポリプロ ピレンを主成分とする)。プロピレン単量体の含量が上記範囲未満であると、得られる 微多孔フィルムの β晶活性が不十分となり、結果として、空孔率が低くなつたり、透過 性能に劣る場合がある。プロピレン単量体の含量は、フィルムを構成する全てのポリ マーの単量体全量に対し、より好ましくは 95重量%以上であり、さらに好ましくは 97 重量%以上である。特に、エチレン単量体が共重合されたポリプロピレン系共重合体 を用いる場合は、プロピレン単量体の含量は、 95重量%以上であること力 得られる 微多孔フィルムの寸法安定性を損なわず、空孔率を高くできることから好ま 、。
[0026] 本発明の第 1、第 2の微多孔ポリプロピレンフィルムは、空孔率を高ぐ透過性を向 上させるためには、下記態様であることが好ま 、。
[0027] すなわち、本発明の第 1、第 2の微多孔ポリプロピレンフィルムは、高溶融張力ポリ プロピレン(High Melt Strength— PP ;HMS— PP)を含むことが好ましい。 HM S— PPを含むことにより、従来の微多孔ポリプロピレンフィルムに比較して、延伸時の 破れが少なぐ製膜性に優れるため、縦方向に低温でかつ高倍率に延伸しても横延 伸でフィルムが破れることなく安定に製膜できる。また、これにより、面積延伸倍率(= 縦方向の実効延伸倍率と横方向の実効延伸倍率の積)を高くでき、下記のエチレン • aーォレフイン共重合体の添加効果と相まって、さらに孔形成が促進されるため、 従来の微多孔ポリプロピレンフィルムに比較して、空孔率を高くできる。さらには、空 孔率が高くても、フィルム中の分子鎖の縦配向を促進でき、縦方向の力学物性を保 持できる。これは、 HMS— PPを含むことにより、キャストの段階から系内の微結晶を 貫く非晶相のタイ分子同士の絡み合いが促進され、その後の延伸過程で延伸応力 が系全体に均一に伝達されるためと推定される。
[0028] 一般に、 HMS— PPを得る方法としては、特に限定されないが、以下の方法が例示 され、これらの方法が好ましく用いられる。
(1)高分子量成分を多く含むポリプロピレンをブレンドする方法。
(2)分岐構造を持つオリゴマーやポリマーをブレンドする方法。
(3)ポリプロピレン分子中に長鎖分岐構造を導入する、特開昭 62— 121704号公報 に記載の方法。
(4)長鎖分岐を導入せずに溶融張力と固有粘度、結晶化温度と融点とがそれぞれ 特定の関係を満たし、かつ沸騰キシレン抽出残率が特定の範囲にある直鎖状の結 晶性ポリプロピレンとする、特許第 2869606号公報に記載の方法
本発明に用いる HMS— PPとしては、これらのポリプロピレンのうち、溶融押出の安 定性、上記した安定高倍率延伸の効果、それに伴う高空孔率化、透過性向上の効 果が大き!/、ことから、主鎖骨格中に長鎖分岐を有するポリプロピレンであることが好ま しい。
[0029] ここで、主鎖骨格中に長鎖分岐を有するポリプロピレンとは、ポリプロピレン主鎖骨 格力も枝分かれしたポリプロピレン鎖を有するポリプロピレンである。主鎖骨格中に長 鎖分岐を有するポリプロピレンで上記のように大きな効果が得られるのは、キャストの 段階から長鎖分岐が微結晶間を疑似架橋するタイ分子として作用し、その後の延伸 工程で延伸応力が系全体に均一に伝達されるためと推定される。
[0030] 力かる主鎖骨格中に長鎖分岐を有するポリプロピレンの具体例としては、 Basell製 ポリプロピレン(タイプ名: PF— 814、 PF— 633、 PF— 611、 SD— 632など)、 Bore alis製ポリプロピレン(タイプ名: WB130HMSなど)、 Dow製ポリプロピレン(タイプ名 : D114、 D201、 D206など)などが挙げられる。
[0031] 本発明の微多孔ポリプロピレンフィルムが HMS— PPを含有する場合、その添加量 は、特に制限されないが、フィルムを構成する全てのポリマーに対して、 0. 1〜50重 量%であることが好ましぐ少量添加でも効果がみられる。混合量が上記範囲未満で あると、製膜性、特に縦 ·横逐次二軸延伸する場合には、特に縦方向に高倍率に延 伸したときの横方向の延伸性が悪ィ匕する (横延伸工程でフィルムが破れる)場合があ る。また、空孔率が低くなつたり、透過性に劣る場合がある。上記範囲を超えると、製 膜性、縦'横逐次二軸延伸する場合には、特に縦方向に高倍率に延伸したときの縦 方向の延伸性が悪ィ匕する(縦延伸工程でフィルムが切れる)場合がある。また、溶融 押出時の溶融ポリマーの安定吐出性やフィルムの耐衝撃性などが悪ィ匕する場合が ある。さらには、下記で定義する j8晶分率が必要以上に低下する場合がある。 HMS PPの混合量は、フィルムを構成する全てのポリマーに対して、より好ましくは 0. 5 〜20重量%、最も好ましくは 0. 5〜5重量%である。
[0032] 本発明の第 1、第 2の微多孔ポリプロピレンフィルムを構成するポリプロピレンのメル トフローレイト(MFR)は、製膜性の観点から l〜30g/10分であることが好ましい。 MFRが上記範囲未満であると、低温での溶融押出が不安定になったり、押出原料 の置換に長時間を要する、均一な厚みのフィルムを形成することが困難になる、製膜 性が悪ィ匕するなどの問題点を生じる場合がある。 MFRが上記範囲を超えると、キャス ト工程においてスリット状口金から吐出された溶融ポリマーを金属ドラムにキャストして シート状に成形せしめる際に、溶融ポリマーの金属ドラム上での着地点が大きく変動 するため、シートに波うちなどの欠点が生じたり、未延伸シートにおける均一な j8晶の 生成が困難になるため、得られる微多孔フィルムの厚みムラが大きくなつたり、孔の形 成ムラが大きくなる場合がある。 MFRは、より好ましくは l〜20gZlO分である。
[0033] 本発明の第 1、第 2の微多孔ポリプロピレンフィルムを構成するポリプロピレンのメソ ペンタッド分率(mmmm)は、 90〜99. 5%であることが好ましい。メソペンタッド分率 が上記範囲未満であると、寸法安定性などに劣る場合がある。また、上記範囲を超え ると、その製造工程において、フィルム破れが多ぐ結果として、生産性が悪化する場 合がある。メソペンタッド分率は、より好ましくは 92〜99%、さらに好ましくは 93〜99 %である。
[0034] 本発明の第 1、第 2の微多孔ポリプロピレンフィルムを構成するポリプロピレンのアイ ソタクチックインデックス(Π)は、 92〜99. 8%であることが好ましい。 IIが上記範囲未 満であると、フィルムとしたときの腰が低下する、熱収縮率が大きくなるなどの問題点 が生じる場合がある。 IIが高くなるほど剛性、寸法安定性などが向上する傾向にある 力 上記範囲を超えると製膜性自体が悪ィ匕する場合がある。 IIは、より好ましくは 94 〜99. 5%、さらに好ましくは 96〜99%である。
[0035] 次に、本発明の第 1、第 2の微多孔ポリプロピレンフィルムを構成するポリプロピレン は、 IS晶核剤を含有する。
[0036] β晶核剤を含有することにより、その製造工程において、シートの固化条件を制御 することにより未延伸シート中に ι8晶を生成させることが可能となり、その後の延伸ェ 程で β晶を α晶に結晶転移させ、その結晶密度差により孔を形成できる。
[0037] 本発明の第 1、第 2の微多孔ポリプロピレンフィルムを構成するポリプロピレンに好ま しく添加できる β晶核剤としては、例えば、ナノスケールのサイズを有する酸ィ匕鉄; 1, 2—ヒドロキシステアリン酸カリウム、安息香酸マグネシウム、コハク酸マグネシウム、フ タル酸マグネシウムなどに代表されるカルボン酸のアルカリまたはアルカリ土類金属 塩; Ν, Ν, 一ジシクロへキシル 2, 6 ナフタレン ジカルボキサミドなどに代表され るアミド系化合物;ベンゼンスルホン酸ナトリウム、ナフタレンスルホン酸ナトリウムなど に代表される芳香族スルホン酸化合物;二または三塩基カルボン酸のジもしくはトリ エステル類;テトラオキサスピロ化合物類;イミドカルボン酸誘導体;フタロシア-ンブ ルーなどに代表されるフタロシアニン系顔料;キナクリドン、キナクリドンキノンなどに 代表されるキナクリドン系顔料;有機二塩基酸である成分 Αと周期律表第 ΠΑ族金属 の酸ィ匕物、水酸ィ匕物または塩である成分 Bとからなる二成分系化合物などが挙げら れるが、これらに限定されない。また 1種類のみを用いても良いし、 2種類以上を混合 して用いても良い。本発明において、ポリプロピレンに添加する j8晶核剤としては、上 記のなかでも、特に次のようなものが好ましい。
(1)下記化学式で表され、 N, N, 一ジシクロへキシルー 2, 6 ナフタレンジカルボキ サミドなどに代表されるアミド系化合物
R2 - NHCO - R1 - CONH R3
[ここで、式中の R1は、炭素数 1〜24の飽和もしくは不飽和の脂肪族ジカルボン酸残 基、炭素数 4〜28の飽和もしくは不飽和の脂環族ジカルボン酸残基または炭素数 6 〜28の芳香族ジカルボン酸残基を表し、 R2、 R3は同一または異なる炭素数 3〜18の シクロアルキル基、炭素数 3〜 12のシクロアルケ-ル基またはこれらの誘導体である o ]
(2)下記化学式を有する化合物
R5 CONH R4 - NHCO - R6
[ここで、式中の R4は、炭素数 1〜24の飽和もしくは不飽和の脂肪族ジァミン残基、 炭素数 4〜28の飽和もしくは不飽和の脂環族ジァミン残基または炭素数 6〜 12の複 素環式ジァミン残基または炭素数 6〜28の芳香族ジァミン残基を表し、 R5、 R6は同 一または異なる炭素数 3〜 12のシクロアルキル基、炭素数 3〜 12のシクロアルケ-ル 基またはこれらの誘導体である。 ]
(3)有機二塩基酸である成分と、周期律表第 ΠΑ族金属の酸ィヒ物、水酸化物または 塩である成分とからなる二成分系化合物
これらは、得られる微多孔フィルムの空孔率を高くでき、透過性を向上できるので、特 に好ましい。
[0038] 力かる特に好ま ヽ β晶核剤もしくは β晶核剤添加ポリプロピレンの具体例として は、新日本理化 (株)製 j8晶核剤"ェヌジエスター"(タイプ名: NU— 100など)、 SU NOCO製 j8晶核剤添カ卩ポリプロピレン" BEPOL" (タイプ名: B022— SPなど)など が挙げられる。
[0039] β晶核剤の添加量は、用いる β晶核剤の β晶生成能にもよる力 フィルムを構成 する全ての物質に対して、 0. 001〜1重量%であることが好ましい。 |8晶核剤の添カロ 量が上記範囲未満であると、得られる微多孔フィルムの β晶分率が低力つたり、空孔 率が低くなつたり、透過性能に劣る場合がある。 β晶核剤の添加量が上記範囲を超 えると、それ以上添加しても得られる微多孔フィルムの β晶分率が向上せず、経済性 に劣り、核剤自体の分散性が悪化して逆に β晶活性が低下する場合がある。 β晶核 剤の添カロ量は、より好ましくは 0. 005〜0. 5重量0 /0、さらに好ましくは 0. 05〜0. 2 重量%である。
[0040] ここで、上記した β晶核剤は、未延伸シートにぉ 、て針状に分散して 、ることが好 ましい。核剤の分散形態は、下記測定方法の詳細な説明で述べる通り、未延伸シー トについてフィルムの面方向から光学顕微鏡で観察し、その際確認される核剤形状 の短径に対する長径の比(=長径 Ζ短径)の平均値が 10以上であれば、針状に分 散しているものと定義する。但し、微多孔フィルムで針状に分散した j8晶核剤が確認 できれば、未延伸シート中で j8晶核剤が針状に分散しているものとみなしてもよい。 その場合には、微多孔フィルムについて同様の観察を行い、その際確認される核剤 形状の短径と長径の比の平均値が 10以上であれば、針状に分散しているものといえ る。
[0041] β晶核剤が未延伸シート中に針状に分散することにより、得られる微多孔フィルム の空孔率を高めたり、透過性を高めることが可能となる。未延伸シートに )8晶核剤を 針状に分散させるためには、溶融榭脂中に β晶核剤を分散させておくことが好まし いが、押出、キャスト工程において、溶融押出の際に針状に分散した該核剤が長手 方向に配列しやすくなる(核剤の長径方向が未延伸シートの長手方向に向きやすく なる)ため、キャスト後に得られる未延伸シートの結晶ラメラ自体もより配向しやすくな る。このことと、 β晶から a晶への結晶転移との相乗効果によって、微多孔フィルムの 空孔率が高まったり、透過性が高まったりするものと推定される。
[0042] ここで、より均一かつ多数の孔を形成させるためには、これらの発明の微多孔ポリプ ロピレンフィルムの /3晶分率は、 30%以上であることが好ましい。なお、 13晶分率は、 示差走査熱量計 (DSC)を用いて、 JIS K 7122 (1987)に準じて測定する。すな わち、窒素雰囲気下で 5mgの試料を 10°CZ分の速度で 30°Cから 280°Cまで昇温さ せ、昇温完了後 5分間保持し、引き続き 10°CZ分の冷却速度で 30°Cまで冷却し、冷 却完了後 5分間保持し、次いで再度 10°CZ分の速度で 280°Cまで昇温した際に得 られる熱量曲線において、 140°C以上 160°C未満に頂点が観測されるポリプロピレン 由来の j8晶の融解に伴う吸熱ピーク(1個以上のピーク)のピーク面積力 算出され る融解熱量(Δ Η ;図 1と同じ熱量曲線である図 2の符号 2)と、 160°C以上に頂点 が観測される β晶以外のポリプロピレン由来の結晶の融解に伴うベースラインを越え てピークを持つ β晶以外のポリプロピレン由来の結晶の融解に伴う吸熱ピークのピー ク面積力も算出される融解熱量(Δ Η α ;図 1と同じ熱量曲線である図 2の符号 3)か ら、下記式を用いて求める。なお、上記の DSCによる測定において、最初の昇温で 得られる熱量曲線をファーストランの熱量曲線と称し、 2回目の昇温で得られる熱量 曲線をセカンドランの熱量曲線と称する場合がある。 j8晶分率(%) = {ΔΗ|8/(ΔΗ|8 + ΔΗα)}Χ100
β晶分率が上記範囲未満であると、得られる微多孔フィルムの空孔率が低くなつた り、透過性に劣る場合がある。 β晶分率は、より好ましくは 40%以上、さらに好ましく は 50%以上、最も好ましくは 60%以上である。
ここで、 β晶分率とは、ポリプロピレンの全ての結晶に占める β晶の比率であり、特 開 2004— 142321号公報や上記した特開 2005— 171230号公報、国際公開第 0 2Ζ66233号パンフレツ卜、特開 2000— 30683号公報などでは、これらの発明に近 い温度条件下で DSCを用いて熱量曲線を測定し、フィルムの β晶分率を求めている なお、 140〜160°Cに頂点を有する吸熱ピークが存在する力 j8晶の融解に起因す るか不明確な場合などは、 DSCの結果と併せて、当該サンプルを下記測定方法の( 8)で記載した特定条件で溶融結晶化させ、広角 X線回折法を用いて評価する。そし て、下記数式により算出される K値力 0. 3以上、より好ましくは 0. 5以上であること が好ましい。すなわち、 20 =16° 付近に観測され、 j8晶に起因する(300)面の回 折ピーク強度 (Η|8 とする)と 20 =14, 17, 19° 付近にそれぞ^測され、ひ晶に 起因する(110)、 (040)、 (130)面の回折ピーク強度(それぞれ Ηα 、Ηα 、 Η α
1 2 3 とする)とから、下記の数式により Κ値を算出する。ここで、 Κ値は、 β晶の比率を示す 経験的な値である。各回折ピーク強度の算出方法など κ値の詳細については、ター ナージヨーンズ (A. Turner Jones)ら, "マクロモレキュラーレ ヒエミー" (Makromo lekulare Chemie) , 75, 134— 158頁(1964)を参考【こすれ ί よ!ヽ。
Κ = Hj8 /{Hj8 + (Ηα +Ηα +Ηα )}
1 1 1 2 3
(ただし、 Ηβι ポリプロピレンの β晶に起因する(300)面の回折ピーク強度、 Η α , Ηα , Ηα :それぞれ、ポリプロピレンの α晶に起因する(110)、(040)、 (1
1 2 3
30)面の回折ピーク強度)
次に、本発明の第 1の微多孔ポリプロピレンフィルムは、エチレン' a—ォレフイン共 重合体を含有する。ただし、下記に示す通り、得られる微多孔フィルムが実質的に無 核の孔を有することが必要である。本発明の微多孔フィルムは、上記共重合体を含 有することにより、含有しない場合に比較して、孔の形成が促進され、空孔率を高ぐ 透過性を向上できる
ここで、本発明でいうところの α—ォレフインとは、炭素数 4〜20のものを指し、例え ば、 1—ブテン、 1 ペンテン、 3—メチルペンテン一 1、 3—メチルブテン一 1、 4—メ チノレー 1 ペンテン、 1一へキセン、 1 ヘプテン、 1—オタテン、 1ーデセン、 1ーテト ラデセン、 1一へキサデセン、 1一へプタデセン、 1ーォクタデセン、 1 エイコセンな どに代表される力 これらに限定される訳ではない。本発明では、ポリプロピレンとの 親和性が高ぐポリプロピレン中での分散性が良好であることから、上記 α ォレフィ ンは、 1ーブテン、 1 ペンテン、 3—メチルペンテン 1、 3—メチルブテン 1、 1 へキセン、 4ーメチルペンテン 1、 5 ェチルへキセン 1、 1—オタテンから選ばれ る少なくとも 1種類以上であることが好ましぐ 1—オタテンであること力 ポリプロピレン 中での分散性の観点から特に好まし 、。
[0044] 上記に定義したエチレン' aーォレフイン共重合体は、ポリプロプロピレンに実質的 に非相溶であるため、未延伸シート中では、当該共重合体がポリプロピレン中に分散 した構造が形成される。そして、当該共重合体が分散した未延伸シートを延伸するェ 程においては、 β晶から α晶への結晶転移による孔の形成力 ポリプロピレン 当 該共重合体間の界面剥離現象により、さらに促進されると推定される。これにより、上 記したように、空孔率を高ぐ透過性も向上できる。また、上記のように、ポリプロピレ ンとの親和性が良好となるよう oc一才レフイン単量体成分を選択することにより、当該 共重合体榭脂がポリプロピレン中に微細に分散する。これにより、上記界面剥離によ り生成できる孔を小さくできるため、粗大な孔が形成されない。
[0045] 本発明の第 1の微多孔ポリプロピレンフィルムが含有するエチレン' aーォレフイン 共重合体は、メタ口セン系触媒により合成されたものであることが好ましい。本発明の 微多孔フィルムに用いる当該共重合体が、上記態様でないと、当該共重合体の融点 や溶融結晶化温度が必要以上に高くなつたり、ポリプロピレンとの親和性が低下する ために、その製造工程において、未延伸シート中の分散径が必要以上に大きくなる 場合がある。メタ口セン系触媒により合成されたエチレン' a—ォレフイン共重合体を 用いることで、このような微分散効果が得られることは、その分子鎖骨格構造によるも のと推定される。チーダラ一一ナッタ系触媒など従来の触媒により合成されたェチレ ン' OCーォレフイン共重合体では、 OCーォレフイン単量体の共重合量は、ポリマー鎖 の分子量が高いほど、小さい傾向にある。すなわち、分子量分布と共重合量分布に ある種の相関があった。これに対して、メタ口セン系触媒では、分子量の大小に関係 なぐ当該単量体がほぼ均一に共重合されている。言い換えると、分子量分布に対し て共重合量が一定であり、真に均一な性質を有する共重合体を製造できる。したが つて、上記のようにポリプロピレンとの親和性に極めて優れるように α—ォレフイン単 量体成分を選択し、メタ口セン系触媒により当該単量体成分がほぼ均一に導入され た共重合体を用いることにより、ポリプロピレン中に当該共重合体を極めて微細に分 散せしめることが可能となると推定される。
[0046] 本発明の第 1の微多孔ポリプロピレンフィルムに含有せしめる上記エチレン' aーォ レフイン共重合体の溶融結晶化温度 (Tmc)は、本発明の微多孔フィルムを構成する β晶核剤含有ポリプロピレンの Tmcに比較して、 30°C以上低いことが好ましい。 Tm cが上記態様でないと、得られる微多孔フィルムの空孔率が低ぐ透過性もそれほど 向上しない場合がある。上記エチレン' a—ォレフイン共重合体の Tmcは、より好まし くは j8晶核剤含有ポリプロピレンの Tmcに比較して 40°C以上低いことがより好ましく 、 50°C以上低いことがより好ましい。
[0047] 本発明の第 1の微多孔ポリプロピレンフィルムに含有せしめる上記エチレン' aーォ レフイン共重合体の融点 (Tm)は、 100°C以下であることが好ましい。 Tmが上記範 囲を超えると、得られる微多孔フィルムの空孔率が低ぐ透過性もそれほど向上しな V、場合があり、あまりに高 、と得られる微多孔フィルムが実質的に無核の孔を有さなく なる場合がある。上記エチレン' aーォレフイン共重合体の Tmは、より好ましくは 90 °C以下であり、さらに好ましくは 80°C以下である。
[0048] 本発明の第 1の微多孔ポリプロピレンフィルムにおいて、上記エチレン' aーォレフ イン共重合体は、未延伸シート中で 300nm以下の分散径を有することが好ましい。 本発明では、ポリプロピレン中でのポリプロピレン以外の榭脂の分散径は、透過型電 子顕微鏡 (TEM)により、ポリプロピレン中に分散した当該樹脂の厚み方向の分散径 を全て測定し、これらを平均した値と定義する。分散径が上記範囲を超えると、得ら れる微多孔フィルムに、粗大な孔が形成され、本発明の微多孔フィルムの製造工程 やその後の二次カ卩ェ工程において、フィルム破れが発生し、結果として生産性が悪 化したり、フィルムが劈開しやすくなる場合がある。
[0049] エチレン' aーォレフイン共重合体の分散径は、例えば、当該榭脂における α—ォ レフイン単量体の化学構造、添加量や添加手法、当該榭脂をポリプロピレン中に安 定に微分散させうる相溶化剤の添加、未延伸シートを作製する際の押出条件 (例え ば、押出温度、スクリュー回転数など)や、ドラフト比などのキャスト条件などにより制 御することができる。ここで、当該樹脂の分散径を小さく制御するためには、例えば、 押出時に高い剪断力を付加し、当該榭脂を微分散させることが好ましぐ下記に例示 するマスターバッチ法を用いること; 200〜250°Cの低温押出条件をとること;可能な 限り高い剪断力が得られるよう、榭脂温度が過度に上昇しない程度に、押出機のスク リューの回転数を高くすること;溝を浅くしたり、ミキシングセクションを設けるなどスクリ ユーのデザインを工夫することなどが効果的である。さらに、特に好ましくは、例えば、 当該樹脂とポリプロピレンとの親和性が高くなるよう OC一才レフインの単量体成分を選 択することや、その添加量を溶融押出中に分散サイズが粗大化しない程度に低くす ることが特に効果的である。この観点から、例えば、 a—ォレフイン単量体として 1— ブテン、 1—へキセン、 1—オタテンを用いること、さらには、その添加量を 1重量%以 上 10重量%未満の範囲とすることが特に好ましい。また、当該榭脂は、例えば押出 キャスト時のドラフト比を高くすれば、シートの縦方向に長細い形状となる傾向にあり、 引き続く延伸工程において、界面剥離による孔形成を促進できる場合がある。なお、 得られる未延伸シートにおいて、表面付近と内部では、分散形状が異なる場合があ る。
[0050] 未延伸シートにおけるエチレン' aーォレフイン共重合体の分散径は、より好ましく は 250nm以下、さらに好ましくは 200nm以下である。当該分散径は、低ければ低い ほど、例えば得られるフィルムに均一微細な孔を形成できる傾向にある力 あまりに 小さすぎると、延伸に伴うポリプロピレン 当該榭脂間の界面剥離による孔形成が促 進されず、大きな添加効果が得られない場合があるため、例えば、 lOnm以上である ことが好ましい。
[0051] 本発明の微多孔ポリプロピレンフィルムに好ましく添カ卩できるエチレン' α—ォレフィ ン共重合体の具体例としては、例えば、ポリプロピレンとの親和性に優れ、ポリプロピ レン中での分散性に極めて優れ、上記 |8晶核剤含有ポリプロピレンに比較して溶融 結晶化温度 (Tmc)が低いことから、デュポンダウエラストマーズ製のメタ口セン系触 媒による超低密度ポリエチレン (エチレン'ブテン共重合体またはエチレン'オタテン 共重合体)である"エンゲージ"(タイプ名:8411、 8200、 8130など)などが挙げられ る。なお、本発明における超低密度ポリエチレンとは密度 0. 9gZcm3以下のェチレ ン系榭脂である。
[0052] 本発明の第 1の微多孔ポリプロピレンフィルムにおいて、上記エチレン' aーォレフ イン共重合体の添加量は、フィルムを構成する全てのポリマーに対して、 1重量%以 上、 10重量%未満であることが好ましぐ少量添加でも効果がみられ。添加量が上記 範囲未満であると、実質的に上記した好ましい効果が得られない場合がある。添カロ 量が上記範囲以上であると、フィルムの寸法安定性が悪ィヒしたり、逆に空孔率が低 下したり、透過性が悪ィ匕する場合がある。添加量は、より好ましくは 1〜9重量%、さら に好ましくは 1〜5重量%である。
[0053] 一方、本発明の第 2の微多孔ポリプロピレンフィルムは、本発明の微多孔フィルムを 構成する 13晶核剤含有ポリプロピレンの溶融結晶化温度 (Tmc)より 30°C以上低い Tmcを有し、かつポリプロピレンに非相溶である榭脂を含有する。
[0054] ここで、ポリプロピレンは、 /3晶核剤を含有することにより、 Tmcが実質的に高くなる 。本発明において添加含有せしめる榭脂の Tmcは、本発明の微多孔フィルムを構成 する当該 j8晶核剤含有ポリプロピレンの Tmcより 30°C以上低いことが必要である。こ うすることで、その製造工程において未延伸シートを固ィ匕 '成形する際に、シート内部 でまずポリプロピレンの j8晶ラメラが生成'生長し、次いでポリプロピレンとは非相溶の 当該樹脂の結晶ラメラが生成する。すなわち、ポリプロピレン中に分散した当該非相 溶榭脂のドメインを貫入して ι8晶ラメラが形成される構造が生じる。詳細は明らかでは ないがこの β晶ラメラの貫入構造が引き続く延伸などの製造工程において孔形成の 起点となり、孔形成が促進されるものと考えられる。また、得られる微多孔フィルムの 空孔率を高くでき、透過性を高めることができるとともに、原料組成や製膜条件をさら に適性化すれば、さらに高い空孔率、透過性を達成できる。 [0055] また、上記榭脂は、ポリプロピレンに非相溶である。ポリプロピレンに非相溶の榭脂 を含有するにも関わらず、得られる微多孔フィルムが実質的に無核の孔を有するとい うことは、例えば、微多孔フィルムの製造工程において、当該榭脂を溶融させることに より達成可能である。ポリプロピレンに非相溶であり、かつ上記態様とすることで、得ら れる微多孔フィルムに均一かつ微細な孔を形成できる。
[0056] 上記ポリプロピレンに非相溶である樹脂の融点 (Tm)は、 100°C以下であることが 好ましい。 Tmが上記範囲を超えると、得られる微多孔フィルムの空孔率が低ぐ透過 性もそれほど向上しな 、場合があり、あまりに高 、と得られる微多孔フィルムが実質 的に無核の孔を有さなくなる場合がある。上記ポリプロピレンに非相溶である樹脂の Tmは、より好ましくは 90°C以下であり、さらに好ましくは 80°C以下である。
[0057] また、上記ポリプロピレンに非相溶である榭脂は、エチレン' aーォレフイン共重合 体であることが好ましい。ただし、下記する通り、得られる微多孔フィルムが実質的に 無核の孔を有することが必要である。当該樹脂がエチレン' a—ォレフイン共重合体 でないと、孔の形成が促進されず、空孔率が低ぐ透過性もそれほど向上しない場合 がある。
[0058] ここで、 aーォレフインは、上記に述べた通りであり、本発明では、ポリプロピレンと の親和性が高ぐポリプロピレン中での分散性が良好であることから、上記 α—ォレフ インは、 1—ブテン、 1—ペンテン、 3—メチルペンテン一 1、 3—メチルブテン一 1、 1 一へキセン、 4ーメチルペンテン 1、 5 ェチルへキセン 1、 1—オタテンから選ば れる少なくとも 1種類以上であることが好ましぐ 1 オタテンであること力 ポリプロピ レン中での分散性の観点力も特に好ましい。
[0059] ポリプロピレンに非相溶である樹脂がエチレン' aーォレフイン共重合体であること により上記の効果が得られるのは、上記の通り、当該共重合体榭脂がポリプロピレン 中に微細に分散し、粗大な孔を形成させることなく孔形成を促進するためと推定され る。
[0060] また、上記エチレン' aーォレフイン共重合体は、メタ口セン系触媒により合成され たものであることが好ましい。当該共重合体が上記態様でないと、当該共重合体の融 点や溶融結晶化温度が必要以上に高くなつたり、ポリプロピレンとの親和性が低下す るために、その製造工程において、未延伸シート中の分散径が必要以上に大きくな る場合がある。このような微分散効果が得られることは、上記の通り、メタ口セン系触媒 により合成されたエチレン · (Xーォレフイン共重合体において、 (Xーォレフイン単量体 成分がほぼ均一に共重合されており(分子量分布に対して共重合量がほぼ一定であ り)、真に均一な性質を示す分子鎖骨格構造を有するためであると推定される。
[0061] また、上記エチレン' aーォレフイン共重合体は、未延伸シート中で 300nm以下の 分散径を有することが好ましい。本発明では、ポリプロピレン中でのポリプロピレン以 外の樹脂の分散径は、透過型電子顕微鏡 (TEM)により、ポリプロピレン中に分散し た当該樹脂の厚み方向の分散径を全て測定し、これらを平均した値と定義する。分 散径が上記範囲を超えると、得られる微多孔フィルムに、粗大な孔が形成され、本発 明の微多孔フィルムの製造工程やその後の二次カ卩ェ工程にぉ 、て、フィルム破れが 発生し、結果として生産性が悪ィ匕したり、フィルムが劈開しやすくなる場合がある。
[0062] この分散径は、例えば、当該共重合体榭脂における ex一才レフイン単量体の化学 構造、添加量や添加手法、当該榭脂をポリプロピレン中に安定に微分散させうる相 溶化剤の添加、未延伸シートを作製する際の押出条件 (例えば、押出温度、スクリュ 一回転数など)や、ドラフト比などのキャスト条件などにより制御することができる。ここ で、当該樹脂の分散径を小さく制御するためには、例えば、押出時に高い剪断力を 付加し、当該榭脂を微分散させることが好ましぐ下記に例示するマスターバッチ法を 用いること; 200〜250°Cの低温押出条件をとること;可能な限り高!、剪断力が得られ るよう、榭脂温度が過度に上昇しない程度に、押出機のスクリューの回転数を高くす ること;溝を浅くしたり、ミキシングセクションを設けるなどスクリューのデザインを工夫 することなどが効果的である。特に好ましくは、例えば、当該樹脂とポリプロピレンとの 親和性が高くなるよう aーォレフインの単量体成分を選択することや、その添加量を 溶融押出中に分散サイズが粗大化しない程度に低くすることが効果的である。この観 点から、例えば、 α—ォレフィン単量体として 1ーブテン、 1一へキセン、 1—オタテン を用いること、さらには、その添加量を 1重量%以上 10重量%未満の範囲とすること が特に好ましい。また、当該榭脂は、例えば押出キャスト時のドラフト比を高くすれば 、シートの縦方向に長細い形状となる傾向にあり、引き続く延伸工程において、界面 剥離による孔形成を促進できる場合がある。なお、得られる未延伸シートにおいて、 表面付近と内部では、分散形状が異なる場合がある。
[0063] 未延伸シートにおけるエチレン' aーォレフイン共重合体の分散径は、より好ましく は 250nm以下、さらに好ましくは 200nm以下である。当該分散径は、低ければ低い ほど、例えば得られるフィルムに均一微細な孔を形成できる傾向にある力 あまりに 小さすぎると、延伸に伴うポリプロピレン 当該榭脂間の界面剥離により孔形成が促 進されず、大きな添加効果が得られない場合があるため、例えば、 lOnm以上である ことが好ましい。
[0064] 本発明の第 2の微多孔ポリプロピレンフィルムにおいて、好ましく添加できるェチレ ン' α—ォレフイン共重合体の具体例としては、例えば、ポリプロピレンとの親和性に 優れ、上記 |8晶核剤含有ポリプロピレンに比較して溶融結晶化温度 (Tmc)が低ぐ ポリプロピレン中での分散性に極めて優れることから、デュポンダウエラストマーズ製 のメタ口セン系触媒による超低密度ポリエチレン (エチレン'ブテン共重合体またはェ チレン 'オタテン共重合体)である"エンゲージ"(タイプ名: 8411、 8200、 8130など) などが挙げられる。なお、本発明における超低密度ポリエチレンとは密度 0. 9g/cm 3以下のエチレン系榭脂である。
[0065] 本発明の第 2の微多孔ポリプロピレンフィルムにおいて、上記ポリプロピレンに非相 溶である樹脂の添加量は、フィルムを構成する全てのポリマーに対して、 1重量%以 上、 10重量%未満であることが好ましぐ少量添加でも効果がみられる。添加量が上 記範囲未満であると、未添加の場合と比較しても実質的に上記した好ま 、効果が 得られない場合がある。添加量が上記範囲以上であると、フィルムの寸法安定性が 悪化したり、逆に空孔率が低下したり、透過性が悪ィ匕する場合がある。添加量は、より 好ましくは 1〜9重量%、さらに好ましくは 1〜5重量%である。
[0066] そして、本発明の第 1、第 2の微多孔ポリプロピレンフィルムは、ガーレ透気度が 50 0秒 Z 100ml以下である。ガーレ透気度はフィルムの透過性の尺度であり、ガーレ透 気度が低ければ低 、ほどフィルムの透過性能に優れることになる。下限は設けな ヽ 力 あまりに低すぎるとフィルムの製造工程においてフィルム破れが多ぐ結果として 製膜性が悪ィ匕したり、その後の二次カ卩ェ工程においてフィルムが伸びたり、シヮが入 つたり、破断するなど、ハンドリング性に劣る場合があるため、例えば、 10秒 ZlOOml 以上であることが好ましい。ガーレ透気度は、より好ましくは 10〜350秒 ZlOOml、 最も好ましくは 20〜300秒 ZlOOmlである。
[0067] 本発明の微多孔フィルムは、このように透過性が高いことにより、吸収性、保液性な どにも優れたフィルムとすることができる。その結果、合成紙、光学部材、建材、分離 膜 (フィルター)、創傷被覆材などの透湿防水部材、衣料用などの透湿防水布、おむ つ用や生理用品用などの吸収性物品、電池や電解コンデンサー、電気二重層キヤ パシターなどの蓄電デバイスに用いるセパレータ、インク受容紙、油または油脂の吸 収材、血糖値センサー、タンパク質分離膜などの様々な用途においても、優れた特 性を発揮しうる。
[0068] ガーレ透気度は、フィルムを構成するポリプロピレンに添加する HMS— PPや β晶 核剤や上記したエチレン' aーォレフイン共重合体もしくはポリプロピレンに非相溶で ある樹脂の添加量などにより制御できる。また、その製造工程においては、キャストェ 程における溶融ポリマーを固化させる際の条件 (金属ドラム (キャストドラム)温度、金 属ドラムの周速、得られる未延伸シートの厚み、金属ドラムへの接触時間など)ゃ延 伸工程における延伸条件 (延伸方向(縦もしくは横)、延伸方式 (縦もしくは横の一軸 延伸、縦 横もしくは横 縦逐次二軸延伸、同時二軸延伸、二軸延伸後の再延伸 など)、延伸倍率、延伸速度、延伸温度など)などにより制御できる。これらのうち、ガ 一レ透気度を低くして透過性に優れたフィルムを製造するためには、例えば、フィル ム破れなどにより生産性を悪ィ匕させない範囲で、 HMS— PPを添加して特に下記に 示すように縦方向に高倍率に延伸すること、より好ましくはその添加量を 1〜: LO重量 %とすること;上記したエチレン' aーォレフイン共重合体もしくはポリプロピレンに非 相溶である樹脂の添力卩量を 1〜10重量0 /0とすること;キャストドラムの温度を 110〜1 25°Cとすること;キャストドラムへの接触時間を 8秒以上とすること;縦 横逐次二軸 延伸により製造する場合には、縦方向の延伸倍率を 5〜8倍とすること;縦延伸温度 を 95〜 120°Cとすること;横方向の延伸温度を 130〜 150°Cとすること;横方向の延 伸速度を 100〜: LOOOO%とすること、より好ましくは 1000%Z分未満とすることなど 力 特に効果的である。 [0069] ここで、本発明の第 1、第 2の微多孔ポリプロピレンフィルムにおいて、添加する榭 脂がポリプロピレンに非相溶であるとは、次に挙げる要件を満たすことをいう。即ち、 下記測定方法に示す通り、微多孔フィルムを溶融'圧縮成型して作製したサンプルを 透過型電子顕微鏡 (TEM)により観察した際に、ポリプロピレン中に分散した当該榭 脂の厚み方向の分散径の平均値が lOnm以上であることをいう。当該分散径が上記 範囲未満であると、孔形成が促進されず、大きな添加効果が得られない場合がある。 当該分散径は、より好ましくは 20nm以上、さらに好ましくは 40nm以上である。一方 、当該分散径は、小さい方が均一緻密な孔構造を保持しながら、孔径を大きぐ空孔 率を高くでき、透過性を著しく高められる傾向にある。したがって、当該分散径は、好 ましくは 500nm以下、より好ましくは 400nm以下である。
[0070] また、本発明の第 1、第 2の微多孔ポリプロピレンフィルムは、実質的に無核の孔を 有する。ここで、本発明における"無核の孔"とは、延伸などで孔形成を誘発するよう な榭脂、粒子などに代表される、孔形成のための核が、その内部に観察されない孔と 定義される。このような無核の孔は、下記の通り、榭脂包埋法によりウルトラミクロトー ムを用いて調整したフィルムの超薄切片を、透過型電子顕微鏡 (TEM)を用いてカロ 速電圧 100kV、観察倍率 40000倍の条件で観察した際に、孔の内部に何も観察さ れない。これに対して、無核の孔に該当しない孔は、上記 TEM観察像において、孔 の内部に球状、繊維状、不定形状、またはその他の形状をした核が観察される。本 発明において"実質的に無核の孔を有する"とは、下記測定法に示す通り、当該 TE M観察像において、全観察視野面積 (フィルムの全面積)に占める全ての核の面積 の比率 (R)が 3%以下である場合と定義し、この場合に当該微多孔フィルムが実質的 に無核の孔を有するものとする。この際、本来核を有する孔でも、上記手法で無核の 孔として検出される場合もあり得るが、本手法で算出した当該比率 Rが上記範囲であ れば、本発明の目的が達成されるのである。
[0071] 本発明のこれら微多孔ポリプロピレンフィルムは、実質的に無核の孔を有することに より、すなわち、核を利用した孔形成によらないため、均一かつ緻密な孔構造を形成 できる傾向にある。また、実質的に無核の孔を有することにより、本発明の微多孔フィ ルムの製造工程やその後の二次加工工程にぉ 、て、核が脱落して工程を汚染したり 、核が原因でフィルム破れが発生するといつた、生産性の悪ィ匕を防止できる。また、 核を起点として形成される粗大なボイドが無ぐフィルムが劈開しにくい。ここで、フィ ルムが劈開するとは、フィルムがその表面におおよそ平行に複数枚以上に裂ける現 象をいう。さらには、例えば、本発明の微多孔フィルムをセパレータとして電池に用い た場合は、該セパレータカ 電池の内部抵抗となり得る不純物が脱落および Zまた は溶解することが無ぐ電池の不良を防止できる。
[0072] このようにフィルムが実質的に無核の孔を有するためには、フィルムを構成するポリ プロピレンと相溶性あるいは親和性が低 、異種ポリマーや粒子を極力添加しな 、こと が重要である。ここで、上記の通りポリプロピレンに非相溶である榭脂を含有するにも 関わらず、このように実質的に無核の孔を有するものとするためには、例えば、微多 孔フィルムの製造工程において、当該榭脂を溶融することが好ましい。上記した比率 Rは、 2%以下であることがより好ましぐ 1%未満であることがさらに好ましぐ実質的 に 0%であることが最も好ま 、。
[0073] なお、上記したように、有効量添加した場合にポリプロピレン中で核を形成する榭脂 は、得られる微多孔フィルム中の孔の大半が核を有することになるので、実質的に添 カロしないことが好ましい。これら好ましくない榭脂の具体例としては、例えば、ポリメチ ルペンテン(PMP)およびメチルペンテンとメチルペンテン以外の α—ォレフインの 共重合物、シクロォレフインの単独もしくは共重合体 (COC)、ポリブチレンテレフタレ ート(ΡΒΤ)、ポリカーボネート (PC)、シンジオタクチックポリスチレン(stPS)、超高分 子量ポリエチレン(UHMWPE)、ポリテトラフルォロエチレン(PTFE)、液晶榭脂(L CP)、ポリメタクリル酸メチル(PMMA)、ポリエチレンテレフタレート(PET)などが挙 げられる。これらの榭脂は、ポリプロピレン中の分散サイズが大きぐ製膜工程におい てもポリプロピレン中での分散形態を保持するため、得られる微多孔フィルムには、 当該ポリマーを核として粗大なボイドを形成し、透過性が悪ィ匕するとともに製膜性も悪 化する場合がある。特に、 UHMWPEを用いた場合、溶融押出時にゲル状物が析 出する場合があり、 PTFEはポリマーの分解によりフッ酸が発生し、押出機や口金を 腐食する懸念があるため、本発明には用いな 、ことが好ま 、。
[0074] 本発明の第 1、第 2の微多孔ポリプロピレンフィルムには、本発明の目的を損なわな い範囲で、例えば、酸化防止剤、熱安定剤、塩素捕捉剤、帯電防止剤、滑剤、ブロッ キング防止剤、粘度調整剤、銅害防止剤などの各種添加剤が混合されていても良い 。この際、添加した場合に得られる微多孔フィルムの β晶分率が目的とする範囲にな るようなものが好ましい。
[0075] 本発明の第 1、第 2の微多孔ポリプロピレンフィルムには、フィルムが実質的に無核 の孔を有する限り、例えば、滑り性付与、ブロッキング防止 (ブロッキング防止剤)を目 的として、無機粒子および,または架橋有機粒子などの各種粒子が添加されて ヽて ちょい。
[0076] 無機粒子は、金属または金属化合物の無機粒子であり、例えば、ゼォライト、炭酸 カルシウム、炭酸マグネシウム、アルミナ、シリカ、珪酸アルミニウム、カオリン、力オリ ナイト、タルク、クレイ、珪藻土、モンモリロナイト、酸ィ匕チタンなどの粒子、もしくはこれ らの混合物などが挙げられる力 これらに限定されるものではない。
[0077] また、架橋有機粒子は、架橋剤を用いて高分子化合物を架橋した粒子であり、例 えば、ポリメトキシシラン系化合物の架橋粒子、ポリスチレン系化合物の架橋粒子、ァ クリル系化合物の架橋粒子、ポリウレタン系化合物の架橋粒子、ポリエステル系化合 物の架橋粒子、フッソ系化合物の架橋粒子、もしくはこれらの混合物などが挙げられ るが、これらに限定されるものではない。
[0078] また、無機粒子および架橋有機粒子の体積平均粒径は、 0. 5〜5 μ mであることが 好ましい。体積平均粒径が上記範囲未満であると、得られる微多孔フィルムの滑り性 に劣る場合があり、上記範囲を超えると、粒子が脱落する場合がある。
[0079] 無機粒子および Zまたは架橋有機粒子の添加量は、フィルムを構成する全ての物 質に対して、 0. 02-0. 5重量%であることが好ましぐより好ましくは 0. 05-0. 2重 量%であることが、ブロッキング防止性、滑り性などの観点力も好ましい。さらに、上記 の通り、粒子を添加することにより、 |8晶分率が低下する場合や粒子が脱落し、工程 中を汚す傾向にある場合には、実質的に添加しない方が好ましぐ適宜添加量を選 択すればよい。
[0080] 本発明の第 1、第 2の微多孔ポリプロピレンフィルムは、空孔率が 50〜95%である ことも好ましい。空孔率がこのように著しく高いことは、孔が緻密かつ多量に形成され ていることに対応する。空孔率が上記範囲未満であると、微多孔フィルムの透過性が 不充分となる場合がある。空孔率が上記範囲を超えると、フィルムの製造工程におい てフィルム破れが多ぐ結果として製膜性が悪ィ匕したり、その後の二次加工工程にお いてフィルムが伸びたり、シヮが入ったり、破断するなど、ハンドリング性に劣る場合が ある。
[0081] 空孔率は、フィルムのポリプロピレンに含有せしめる 13晶核剤の添加量や HMS— PP、上記したポリプロピレン以外の榭脂の添加量などの原料処方や、その製造工程 においては、キャスト工程における溶融ポリマーを固化させる際の条件 (金属ドラム温 度、金属ドラムの周速、得られる未延伸シートの厚み、金属ドラムへの接触時間など) や延伸工程における延伸条件 (延伸方向(縦もしくは横)、延伸方式 (縦もしくは横の 一軸延伸、縦 横もしくは横 縦逐次二軸延伸、同時二軸延伸、二軸延伸後の再 延伸など)、延伸倍率、延伸速度、延伸温度など)などにより制御できる。これらのうち 、空孔率が高いフィルムを製造するためには、例えば、フィルム破れなどにより生産 性を悪ィ匕しない範囲で、 HMS— PPを添加することや、縦 横逐次二軸延伸により 製造する場合には、縦方向の延伸倍率を高くすること、縦方向の延伸温度を低くす ること、横方向の延伸温度を高めること、横方向の延伸速度を低くすることなどが、特 に効果的である。
[0082] 空孔率は、より好ましくは 60〜90%、さらに好ましくは 65〜86%である。
[0083] 次に、本発明の第 1、第 2の微多孔ポリプロピレンフィルムの少なくとも片面には、添 加剤飛散'ブリードア外抑制、コーティング膜'蒸着膜易接着、易印刷性付与、ヒート シール性付与、プリントラミネート性付与、光沢付与、滑り性付与、離型性付与、ィー ジーピール性付与、表面硬度向上、平滑性付与、表面粗度向上、手切れ性付与、 表面開孔率向上、表面親水性付与、光学特性制御、表面耐熱性付与、隠蔽性向上 など、種々の目的に応じて、適宜各種ポリオレフイン系榭脂およびその他の榭脂を積 層してもよい。この際、積層前と同様、積層することにより得られるフィルムも実質的に 透過性を有するものとする必要がある。
[0084] この際、追加で積層される榭脂層の厚みは、 0. 25 μ m以上であり、かつフィルムの 全厚みの 1Z2以下であることが好ましい。この厚みが 0. 未満であると、膜切 れなどにより均一な積層が困難となり、全厚みの 1Z2を越えると、微多孔ポリプロピレ ンフィルムとしての高空孔率、高透過性などの特徴に影響を及ぼす場合がある。
[0085] また、この際積層される榭脂そのものは必ずしも上記した各種特性を満たす必要は なぐかかる積層方法は、共押出、インラインまたはオフライン押出ラミネート、インライ ンまたはオフラインコーティング、物理蒸着、化学蒸着、スパッタリングなどが挙げられ る。これら方法のうちいずれかに限定されるわけではなぐ随時最良の方法を選択す ればよい。
[0086] 例えば、本発明の微多孔ポリプロピレンフィルムを蓄電デバイスのセパレータとして 適用する場合には、高い透過性を保持しつつ、良好な滑り性を付与し、セパレータと してのハンドリング性を高めるために、本発明のフィルムの少なくとも片面に各種滑剤 、各種粒子、各種摺動剤を含有している各種ポリマーをスキン層として積層すること が好ましい。
[0087] また、本発明の第 1、第 2の微多孔ポリプロピレンフィルムの少なくとも片方の表面に コロナ放電処理を施し、フィルム表面の濡れ張力を 35mNZm以上とすることも好ま しい。こうすることで、表面親水性、接着性、帯電防止性および滑剤のブリードアウト 性を向上させることができる。コロナ放電処理時の雰囲気ガスとしては、空気、酸素、 窒素、炭酸ガス、あるいは窒素 Z炭酸ガスの混合系などが好ましぐ経済性の観点か らは空気中でコロナ放電処理することが特に好ましい。また、火炎(フレーム)処理、 プラズマ処理なども表面濡れ張力向上の観点から好まし 、。
[0088] 本発明の第 1、第 2の微多孔ポリプロピレンフィルムは、平均孔径が 60nm以上であ ることが好ましい。ここで、本発明における平均孔径とは、下記に詳述した所謂パブ ルポイント法により測定した平均孔径である。なお、 /3晶法による微多孔ポリプロピレ ンフィルムの平均孔径を大きくすることは難しい。例えば、ホモポリプロピレンを原料と して微多孔フィルムを作製する場合、標準的な条件で製膜する限り、微多孔フィルム の平均孔径を 55nmを越えて大きくすることは難しい。特に、温度や倍率などの製膜 条件を変更するだけでは、平均孔径を顕著に大きくすることは難しい。本発明では、 下記するように少なくとも一方向の延伸工程における延伸速度を 1000%Z分未満と することにより、平均孔径を極めて大きくすることができる。 [0089] 本発明の微多孔フィルムは、このように孔径が大きいことにより、上記したガーレ透 気度などに代表される透過性能を向上できるだけでなぐ特に、分離膜 (フィルター) 用途では、捕集可能な物質のサイズを制御したり、濾過時の圧力損失を低減すること ができる。また、電池や電解コンデンサー、電気二重層キャパシターなどの蓄電デバ イスに用いるセパレータ用途では、当該デバイスの充放電性能を格段に向上させる ことができる。
[0090] 平均孔径は、より好ましくは 6 lnm以上、さらに好ましくは 64nm以上、最も好ましく は 70nm以上である。
[0091] また、本発明の微多孔ポリプロピレンフィルムにおいては、孔径が大きいほど透過 性能に優れ、上記の効果が高まる傾向にあるが、あまりに高すぎると空孔率が高くな りすぎたり、強度が低くなつたり、例えば蓄電デバイス用セパレータとして用いる場合 は、電極間の隔離機能に劣る場合があるため、例えば、 400nm以下であることが好 ましい。
[0092] 本発明の第 1、第 2の微多孔ポリプロピレンフィルムにおいては、 25°Cでの長手方 向(すなわち縦方向、流れ方向)の破断強度が 40MPa以上であることが好ましい。 2 5°Cでの長手方向の破断強度が上記範囲未満であると、製膜工程やその後の二次 加工工程においてハンドリング性に劣る場合がある。破断強度は、フィルムのポリプロ ピレンの結晶性 (Πなどに対応)、得られる微多孔フィルムの空孔率、配向状態 (フィ ルム面内における配向状態)などにより制御できる。
[0093] ここで、一般には、空孔率が高くなるほどフィルム中に占める孔の比率が高くなるた め、当該微多孔フィルムの力学物性は低下する。同じ空孔率でも、その面配向を高く するほど当該破断強度を高くすることができるため、その配向状態の制御は重要であ る。微多孔フィルムの面配向は、例えば、その製膜工程において、特に縦方向に高 倍率もしくは低温度で延伸するほど高くできる。
[0094] 破断強度は、より好ましくは 50MPa以上、さらに好ましくは 55MPa以上である。
[0095] また、本発明のこれら微多孔ポリプロピレンフィルムの長手方向の破断強度は、高 いほど上記したハンドリング性に優れる傾向にある力 あまりに高すぎると空孔率が低 くなつたり、透過性能に劣る場合があるため、例えば、 150MPa以下であることが好 ましい。
[0096] 本発明の第 1、第 2の微多孔ポリプロピレンフィルムの熱寸法安定性は、比較的低 温の延伸条件をとつたとしても、低く抑えられていることが好ましい。具体的には、例 えば、本発明の微多孔ポリプロピレンフィルムの 105°Cでの長手方向の熱収縮率は、 5%以下であることが好ましい。 105°Cでの長手方向の熱収縮率が上記範囲を越え ると、二次カ卩ェ工程において、フィルムの収縮が大きくなり、シヮ入り、カールなどの 工程不良を誘起する場合がある。
[0097] 熱収縮率は、フィルムのポリプロピレンの結晶性 (Πなどに対応)、延伸条件 (延伸倍 率、延伸温度など)、延伸後の熱固定条件 (熱固定時の弛緩率、温度など)などによ り制御できる。熱収縮率が低ぐ寸法安定性に優れたフィルムを製造するためには、 これらのうち、例えば、品質や生産性を悪化しない範囲で、ポリプロピレンの IIを 96〜 99%とすること;ポリプロピレンの mmmmを 93〜99%とすること;延伸後に、当該延 伸温度以上であって、得られるフィルムの透過性が損なわれない程度の温度で、 1 % 以上の弛緩率を与えながら熱固定すること;縦 横逐次二軸延伸により製造する場 合には、縦延伸後に 100〜150°Cで 1 %以上の弛緩を与えながら熱固定することや 横延伸後に 145〜165°Cで 1 %以上の弛緩を与えながら熱固定することなどが特に 効果的である。
[0098] 105°Cでの長手方向の熱収縮率は、より好ましくは 4. 5%以下である。また、当該 熱収縮率は、低いほど上記した工程不良を抑制できる傾向にある力 そのためには 、延伸後の熱固定温度をある程度フィルムのポリプロピレンの融点直下にまで上げる 必要があり、孔が閉塞して空孔率が低くなつたり、透過性能が悪化したりする場合が あるので、例えば、 0%以上であることが好ましい。
[0099] 以上のような本発明の第 1、第 2の微多孔ポリプロピレンフィルムは、例えば次のよう にして製造される。
[0100] まず、第 1の微多孔ポリプロピレンフィルムの場合、 β晶核剤を含有せしめたポリプ ロピレンに、上記のエチレン' a—ォレフイン共重合体を添カ卩し、適宜 HMS— PPを 添加せしめた原料を準備する。一方、第 2の微多孔ポリプロピレンフィルムの場合、 β 晶核剤を含有せしめたポリプロピレンに、ポリプロピレンに非相溶である榭脂もしくは 添加剤(以下、単に樹脂と称する場合がある)を添加し、適宜 HMS— PPを添加せし めた原料を準備する。
[0101] ここで、エチレン' aーォレフイン共重合体またはポリプロピレンに非相溶である榭 脂の添加手法は、溶融押出時に混入する異物を最小限に留めるために各原料単体 のチップをそのまま特定組成で混合するドライブレンド法でも構わな 、し、ハンドリン グ性、分散性の観点から予め特定の濃度で両者を押出機中で加熱 ·溶融混練せし め、ガット状に押出してチップカッターに通し、得られるチップを用いるマスターバッチ 法を用いても構わない。しかしながら、未延伸シート中での当該樹脂の分散性、低融 点榭脂のプロセス適性、経済性の観点から、マスターバッチ法を適用することが好ま しい。
[0102] 次に、エチレン' aーォレフイン共重合体またはポリプロピレンに非相溶である榭脂 を添加したポリプロピレンを押出機に供給して 200〜320°Cの温度で溶融させ、濾過 フィルターを経た後、スリット状口金力 押し出し、冷却用金属ドラムにキャストしてシ ート状に冷却固化せしめ未延伸シートとする。
[0103] この際、未延伸シートに多量の β晶を生成させるため、溶融押出温度は低い方が 好ましいが、上記範囲未満であると、口金から吐出された溶融ポリマー中に未溶融物 が発生し、後の延伸工程で破れなどの工程不良を誘発する原因となる場合がある。 一方、上記範囲を超えると、ポリプロピレンの熱分解が激しくなり、得られる微多孔フィ ルムのフィルム特性、例えば、ヤング率、破断強度などに劣る場合がある。
[0104] また、冷却用金属ドラム (キャストドラム)の温度は、フィルムを適度に徐冷条件下で 結晶化させ、多量かつ均一に j8晶を生成させて、延伸後に高空孔率、高透過性の 微多孔フィルムとするために、高い方が好ましぐ 60〜130°Cとすることが好ましい。 冷却用ドラムの温度が上記範囲未満であると、得られる未延伸シートのファーストラン の β晶分率が低下する場合がある。一方、上記範囲を超えると、ドラム上でのシート の固化が不十分となり、ドラム力ものシートの均一剥離が難しくなる場合がある。また 、得られる微多孔フィルムの透過性は上記した温度範囲で上限に近 、ほど高くなり、 下限に近いほど低い傾向にある力 これは未延伸シート中の j8晶量に依存している ものと推定される。ここで、未延伸シート中の β晶量は、未延伸シートをサンプルとし 、 DSCを用いて得られるファーストランの熱量曲線力 得られる 13晶分率に対応する 。ガーレ透気度が 500秒 ZlOOml以下であって、この範囲でも特に透過性の高い( 透気度が低い)微多孔フィルムとする場合には、キャストドラム温度は、好ましくは 100 〜125°Cである。
[0105] 未延伸シートが冷却用金属ドラムに接触する時間(以下、単純にドラムへの接触時 間と称する場合がある)は、 6〜60秒であることが好ましい。ここで、ドラムへの接触時 間とは、上記キャスト工程において、溶融ポリマーがドラム上に最初に着地した時を 開始時間(=0秒)とし、その溶融ポリマーからなる未延伸シートがドラム力も剥離する までに要する時間を意味する。なお、キャスト工程が複数個のドラムで構成されてい る場合は、未延伸シートがそれらドラムに接触している時間の総和力 金属ドラムへ の接触時間となる。温度にもよるが、金属ドラムへの接触時間が上記範囲未満である と、剥離時点において未延伸シートが粘着したり、未延伸シートに生成する β晶が少 なくなったりする(未延伸シートの j8晶分率が低い)ために、二軸延伸後のフィルムの 空孔率が必要以上に低くなる場合がある。金属ドラムの大きさにもよるが、金属ドラム への接触時間が上記範囲を超えると、必要以上に金属ドラムの周速が低ぐ生産性 が著しく悪ィ匕する場合がある。金属ドラムへの接触時間は、より好ましくは 7〜45秒、 さらに好ましくは 8〜40秒である。
[0106] 未延伸シートを冷却用金属ドラムへ密着させるには、静電印加(ピンユング)法、水 の表面張力を利用した密着方法、エアーナイフ法、プレスロール法、水中キャスト法 などのうちいずれの手法を用いてもよいが、厚み制御性が良好で、その吹き付けエア 一の温度により冷却速度を制御可能であるエアーナイフ法、もしくは静電印可法を用 いることが好ましい。ここで、エアーナイフ法では、エアーは非ドラム面から吹き付けら れ、その温度は 10〜200°Cとすることが好ましぐ表面の冷却速度を制御することに より、表面 j8晶量を制御し、ひいては表面開孔率を制御でき、すなわち得られる微多 孔フィルムの透過性を制御できる。
[0107] また、微多孔ポリプロピレンフィルムの少なくとも片面に第 2、第 3の層を共押出積層 した積層体とする場合には、上記したポリプロピレンの他に各々所望の榭脂を必要に 応じて準備し、これらの榭脂を別々の押出機に供給して所望の温度で溶融させ、濾 過フィルターを経た後、ポリマー管あるいは口金内で合流せしめ、目的とするそれぞ れの積層厚みでスリット状口金力 押し出し、冷却用ドラムにキャストしてシート状に 冷却固化せしめ未積層延伸シートとすることができる。
[0108] 次に、得られた未延伸(積層)シートを延伸してフィルムに孔を形成する。本発明の 第 1、第 2の微多孔ポリプロピレンフィルムは、二軸配向していることが好ましい。フィ ルムが二軸配向していることにより、 β晶法による孔の形成を促進させ、透過性を高 めることができる。したがって、ここでは二軸延伸を行うことが好ましい。
[0109] また、本発明の第 1、第 2の微多孔ポリプロピレンフィルムを製造するに際しては、同 時二軸延伸、逐次二軸延伸、それに続く再延伸など、各種二軸延伸法に代表される 各種の製膜法が用いられる。しかしながら、高空孔率、高透過性の微多孔フィルムを 高 、生産性で製造するためには、縦—横逐次二軸延伸法を用いることが好ま 、。 また、縦-横逐次二軸延伸法は、装置の拡張性などの観点力も好適である。そして、 縦 横逐次二軸延伸する場合には、縦方向に低温でかつ高倍率に延伸することに より、高い透過性を有する微多孔フィルムとすることができる。
[0110] 汎用の縦 横逐次二軸延伸法を用いて二軸延伸する場合、まず、未延伸シートを 所定の温度に保たれたロールに通して予熱し、引き続きそのフィルムを所定の温度 に保ち周速差を設けたロール間に通し、長手方向に延伸して直ちに冷却する。
[0111] ここで、高空孔率、高透過性などの特徴を有する本発明の微多孔ポリプロピレンフ イルムを製造するためには、縦方向(すなわち長手方向、流れ方向)の実効延伸倍率 を 5〜10倍とすることが好ましい。通常の縦-横逐次二軸延伸法で微多孔ポリプロピ レンフィルムを製膜する際の縦方向の実効延伸倍率は 3〜4. 5倍の範囲であり、 5倍 を越えると安定な製膜が困難になり、横延伸でフィルムが破れてしまう。これに対して 、本発明においては、縦方向の実効延伸倍率を 5〜: LO倍とすることが好ましぐ ΗΜ S— PPを含有させることにより、さらに安定な縦方向の高倍率延伸が可能となる。縦 方向の実効延伸倍率が上記範囲未満であると、得られる微多孔フィルムの空孔率が 低くなり、透過性に劣る場合があり、倍率が低いため同じキャスト速度でも製膜速度( =ライン速度)が遅くなり、生産性に劣る場合がある。一方、縦方向の実効延伸倍率 が上記範囲を超えると、縦延伸あるいは横延伸でフィルム破れが散発し、製膜性が 悪ィ匕する場合がある。縦方向の実効延伸倍率は、より好ましくは 5〜9倍、さらに好ま しくは 5〜8倍である。
[0112] また、縦延伸速度は、生産性と安定製膜性の観点から、 5000〜500000%Z分で あることが好ましい。
[0113] さらに、縦延伸を少なくとも 2段階以上に分けて行うことは、高空孔率化、透過性能 向上、表面欠点抑制などの観点から好ましい場合がある。
[0114] そして、縦延伸温度は、安定製膜性、厚みムラ抑制、空孔率ゃ透過性の向上など の観点から、例えば、 80〜140°Cであることが好ましい。
[0115] また、縦延伸後の冷却過程にお!、て、フィルムの厚みムラや透過性が悪ィ匕しな!ヽ 程度に縦方向に弛緩を与えることは、長手方向の寸法安定性の観点力も好ましい。 さらに、縦延伸後のフィルムに所望の榭脂層を適宜押出ラミネートゃコ一ティングなど により設置してもよい。
[0116] 引き続き、この縦延伸フィルムをテンター式延伸機に導いて、各々所定の温度で予 熱し、幅方向に延伸する。ここで、幅方向の実効延伸倍率は、 12倍以下であることが 好ましい。幅方向の実効延伸倍率が 12倍を越えると、製膜性が悪ィ匕する場合がある 。横延伸温度は、安定製膜性、厚みムラ、目的とする空孔率もしくは透過性などの観 点から適宜最適な温度条件を選定すればよぐ 100〜150°Cであることが好ましい。
[0117] また、横延伸速度は、生産性と安定製膜性の観点から、 100〜10000%Z分であ ることが好ましい。
[0118] 幅方向に延伸した後、得られる微多孔フィルムの寸法安定性向上などの観点力 さ らに幅方向に 1%以上の弛緩を与えつつ 100〜180°Cで熱固定し、冷却する。さら に、必要に応じ、フィルムの少なくとも片面に空気あるいは窒素あるいは炭酸ガスと窒 素の混合雰囲気中で、コロナ放電処理する。次いで、該フィルムを巻き取ることで、 本発明の微多孔ポリプロピレンフィルムが得られる。
[0119] ここで、本発明における延伸速度は、当該延伸工程において、周速差を有する 2本 のロール対で延伸する場合には、下記式を用いて算出する。当該延伸方式は、縦 横逐次二軸延伸の場合、縦延伸工程に用いられる。
[0120] 縦延伸速度 (%Z分) = { (縦延伸実効倍率)— 1} X 100Z{ (ロール間隙) Z( 高速側ロールの周速) }
ここで、ロール間隙 (m)とは、当該縦延伸工程における延伸区間に対応する。これを 高速側ロールの周速 (mZ分)で除することにより、フィルムが当該 2本のロール対に おける延伸区間を通過するのに要する時間を算出できる。また、高速側ロールの周 速とは、当該延伸を行う 2本のロール対のうち、巻き取り機側に位置するロールの回 転速度である。なお、複数組のロール対を用いて延伸を行う場合は、各延伸区間を 通過するのに要する時間を各々算出する必要があり、下記式力 算出すればよい。
[0121] 縦延伸速度 (%Z分) = { (縦延伸実効倍率)— 1} X 100Z[∑{ (ロール間隙) Ζ (高速側ロールの周速))]
また、当該延伸工程において、テンターを用いて延伸する場合には、下記式を用 いて算出する。当該延伸方式は、縦—横逐次二軸延伸の場合、横延伸工程に用い られる。
[0122] 横延伸速度 (%Ζ分) = { (横延伸実効倍率)— 1} Χ 100Ζ{ (横延伸ゾーン長) Ζ (ライン速度 } }
ここで、横延伸ゾーン長(単位: m)とは、テンターにおいて横延伸するゾーンのライン 方向の長さである。これをライン速度(単位: mZ分)で除することにより、フィルムが当 該横延伸区間を通過するのに要する時間を算出できる。また、ライン速度とは、当該 横延伸ゾーンを通過する際のフィルムの搬送速度である。
[0123] その他、フィルムストレッチヤーを用いて延伸する場合には、所望の延伸速度を直 接入力して製膜を行うことができる。
[0124] なお、本発明では、上記のようにエチレン · aーォレフイン共重合体もしくはポリプロ ピレンに非相溶である榭脂を添加するにも関わらず、得られる微多孔フィルムが無核 の孔を有するものとする。そのために、本発明では、それら榭脂を上記した延伸工程 中で溶融することが好ましい。これにより、例えば縦延伸工程でポリプロピレン 当該 榭脂の界面が起点となって、孔形成が促進されるとともに、縦延伸工程で当該榭脂 が溶融するため、製膜工程中で樹脂が脱落することにより工程を汚染することもない 。本発明では、当該樹脂の融点などを適宜選択することなどにより、このような態様と できる。 [0125] ここで、得られる微多孔フィルムの空孔率を高くしたり、透過性能を向上したり、また 特に平均孔径を大きくする場合には、その延伸工程において、少なくとも一方向の延 伸速度が 1000%Z分未満で有ることが好ましい。このように、既存の製膜プロセスに 比べて極端に延伸速度を低下させるためには、例えば、製膜工程におけるキャスト 速度を低くする、延伸区間を長くするなど、当該延伸区間を通過する際に要する時 間を長くすることにより達成可能である。前者の方法では、単位時間当たりのフィルム の製造面積が低くなる場合があるので、後者の方法が好ましい。延伸区間を長くする ことは、例えば、縦延伸工程の場合には、ロール間隙を長くする、横延伸工程の場合 にはテンターの延伸ゾーン長を長くすることなどにより達成可能である。このうち、横 延伸ゾーン長を長くすることが最も容易に達成可能であり、かつ上記効果も大きい。 したがって、縦 横逐次二軸延伸法を用いる場合は、横延伸における延伸速度が上 記範囲を満たすことが、特に好ましい。空孔率を高ぐ透過性能を向上させ、また特 に平均孔径を大きくするためには、その延伸工程における少なくとも一方向の延伸速 度は、より好ましくは 900%Z分以下、さらに好ましくは 800%Z分以下、最も好まし くは 700%Z分以下である。
[0126] そして、上記における本発明の微多孔ポリプロピレンフィルムの第 1の製造方法に おいては、未延伸シートを得る工程において、 β晶核剤を含有するポリプロピレンを 主成分とし、エチレン' aーォレフイン共重合体またはポリプロピレンに非相溶である 榭脂もしくは添加剤の分散径が 300nm以下である未延伸シートを得て、得られた未 延伸シートを延伸してフィルムに孔を形成させる。未延伸シート中のエチレン' α—ォ レフイン共重合体またはポリプロピレンに非相溶である榭脂(添加剤)の分散径が上 記範囲以下であることにより、得られる微多孔フィルムに粗大な孔を形成することなく 、 β晶法によるボイド形成を促進でき、空孔率を高くでき、透過性を著しく高めること ができる。
[0127] 未延伸シート中の分散径は、例えば、上記に挙げたエチレン' aーォレフイン共重 合体またはポリプロピレンに非相溶である榭脂(添加剤)の化学構造、添加量や添加 手法、これらの榭脂をポリプロピレン中に安定に微分散させうる相溶化剤の添加、用 いる押出機の仕様 (シリンダー径、 LZD、スクリューデザインなど)、未延伸シートを 作製する際の押出条件 (例えば、押出温度、スクリュー回転数など)や、ドラフト比な どのキャスト条件などにより制御することができる。ここで、当該樹脂の分散径を小さく 制御するためには、例えば、押出時に高い剪断力を付加し、当該榭脂を微分散させ ることが好ましぐ下記に例示するマスターバッチ法を用いること; 200〜250°Cの低 温押出条件をとること;可能な限り高い剪断力が得られるよう、榭脂温度が過度に上 昇しない程度に、押出機のスクリューの回転数を高くすること;溝を浅くしたり、ミキシ ングセクションを設けるなどスクリューのデザインを工夫することなどが効果的である。 特に好ましくは、例えば、当該樹脂とポリプロピレンとの親和性が高くなるようエチレン • a一才レフイン共重合体またはポリプロピレンに非相溶である榭脂(添加剤)を選択 することや、その添加量を溶融押出中に分散サイズが粗大化しない程度に低くするこ とが効果的である。この観点から、例えば、エチレン'ブテン共重合体、エチレン'オタ テン共重合体を用いること、その添加量を 1重量%以上 10重量%未満の範囲とする ことが特に好ましい。また、当該榭脂は、例えば押出キャスト時のドラフト比を高くすれ ば、シートの長手方向に長細い形状となる傾向にあり、引き続く延伸工程において、 界面剥離による孔形成を促進できる場合がある。なお、得られる未延伸シートにおい て、表面付近と内部では、分散形状が異なる場合がある。
[0128] 上記分散径は、より好ましくは 250nm以下、さらに好ましくは 200nm以下である。
本発明では、上記分散径は、低ければ低いほど、例えば得られるフィルムに均一微 細な孔を形成できる傾向にあるが、あまりに小さすぎると、延伸に伴うポリプロピレン 当該榭脂間の界面剥離により孔形成が促進されず、大きな添加効果が得られない 場合があるため、例えば、 lOnm以上であることが好ましい。
[0129] また、本発明の微多孔ポリプロピレンフィルムの第 2の製造方法としては、 /3晶核剤 を含有するポリプロピレンを主成分とし、エチレン' aーォレフイン共重合体またはポリ プロピレンに非相溶である榭脂もしくは添加剤を含有する榭脂組成物を溶融押出し て得られた未延伸シートを固化する際に、エチレン' aーォレフイン共重合体または ポリプロピレンに非相溶である榭脂(添加剤)の固化より先に、ポリプロピレンを結晶 化せしめることが挙げられる。さらに、本態様では、キャスト工程において、未延伸シ ート中でエチレン. aーォレフイン共重合体またはポリプロピレンに非相溶である榭脂 もしくは添加剤の結晶化より先にポリプロピレンを結晶化せしめることが、得られる微 多孔フィルムの空孔率を高め、透過性能を向上させるためには、より好ましい。このよ うな製造方法をとることにより、未延伸シート中で、ポリプロピレン中に分散したェチレ ン' a一才レフイン共重合体または当該榭脂(添加剤)のドメインを |8晶ラメラが貫入 して形成される。この β晶ラメラの貫入構造が引き続く延伸などの製造工程において 孔形成の起点となり、孔形成を促進することができる。また、得られる微多孔フィルム の空孔率を高くでき、透過性を高めることができるとともに、原料処方や製膜条件を 記載のような好ましい態様とすれば、さらに高い空孔率、透過性を達成できる。このよ うな固ィ匕もしくは結晶化挙動は、例えば、 β晶核剤含有ポリプロピレンの Tmcより低 い Tmcを有する榭脂(添加剤)を用いることにより達成可能であり、下記の通り、 j8晶 核剤含有ポリプロピレンの Tmcが当該ポリプロピレンに非相溶である榭脂(添加剤) の Tmcに比べて 30°C以上高いことがより好ましい。また、上記のようなラメラの貫入 構造を形成させるには、ポリプロピレンに非相溶である榭脂として、ポリプロピレンとの 親和性が高い榭脂を用いることが効果的であり、当該榭脂は、エチレン' a一才レフ イン共重合体であることが好ましく、エチレン'ブテン共重合体もしくはエチレン'オタ テン共重合体であることがより好まし 、。
[0130] また、上記した本発明の第 2の製造方法において、未延伸シート中のエチレン' a 一才レフイン共重合体またはポリプロピレンに非相溶である榭脂(添加剤)の分散径 は 300nm以下であることが好ましい。分散径が上記範囲を超えると、得られる微多孔 フィルムに、粗大な孔が形成され、フィルムの延伸工程やその後の二次カ卩ェ工程に おいて、フィルム破れが発生し、結果として生産性が悪ィ匕したり、フィルムが劈開しや すくなる場合がある。
[0131] 未延伸シート中の分散径は、例えば、上記に挙げたエチレン' aーォレフイン共重 合体またはポリプロピレンに非相溶である榭脂(添加剤)の化学構造、添加量や添加 手法、これらの榭脂をポリプロピレン中に安定に微分散させうる相溶化剤の添加、用 いる押出機の仕様 (シリンダー径、 LZD、スクリューデザインなど)、未延伸シートを 作製する際の押出条件 (例えば、押出温度、スクリュー回転数など)や、未延伸シート を作製する際の押出条件 (例えば、押出温度、スクリュー回転数など)や、ドラフト比 などのキャスト条件などにより制御することができる。ここで、当該樹脂の分散径を小さ く制御するためには、例えば、押出時に高い剪断力を付加し、当該榭脂を微分散さ せることが好ましぐ下記に例示するマスターバッチ法を用いること; 200〜250°Cの 低温押出条件をとること;可能な限り高い剪断力が得られるよう、榭脂温度が過度に 上昇しない程度に、押出機のスクリューの回転数を高くすること;溝を浅くしたりミキシ ングセクションを設けるなどスクリューのデザインを工夫することなどが効果的である。 特に好ましくは、例えば、当該樹脂とポリプロピレンとの親和性が高くなるようエチレン • a一才レフイン共重合体またはポリプロピレンに非相溶である榭脂(添加剤)を選択 すること、その添加量を溶融押出中に分散サイズが粗大化しない程度に低くすること が効果的である。この観点から、例えば、エチレン'ブテン共重合体、エチレン'オタ テン共重合体を用いること、その添加量を 1重量%以上 10重量%未満の範囲とする ことが特に好ましい。また、当該榭脂は、例えば押出キャスト時のドラフト比を高くすれ ば、長細い形状となる傾向にあり、引き続く延伸工程において、界面剥離による孔形 成を促進できる場合がある。なお、得られる未延伸シートにおいて、表面付近と内部 では、分散形状が異なる場合がある。分散径は、より好ましくは 250nm以下、さらに 好ましくは 200nm以下である。本発明では、上記分散径は、低ければ低いほど、例 えば得られるフィルムに均一微細な孔を形成できる傾向にある力 あまりに小さすぎ ると、延伸に伴うポリプロピレン 当該榭脂間の界面剥離により孔形成が促進されず 、大きな添加効果が得られない場合があるため、例えば、 lOnm以上であることが好 ましい。
ここで、上記した本発明の第 1、第 2の製造方法において、添加する榭脂がポリプロ ピレンに非相溶であるとは、次に挙げる要件を満たすことをいう。即ち、下記測定方 法に示す通り、微多孔フィルムを溶融'圧縮成型して作製したサンプルを透過型電子 顕微鏡 (TEM)により観察した際に、ポリプロピレン中に分散した当該樹脂の厚み方 向の分散径の平均値が lOnm以上であることをいう。当該分散径が上記範囲未満で あると、孔形成が促進されず、大きな添加効果が得られない場合がある。当該分散径 は、より好ましくは 20nm以上、さらに好ましくは 40nm以上である。一方、当該分散 径は、小さい方が均一緻密な孔構造を保持しながら、孔径を大きぐ空孔率を高くで き、透過性を著しく高められる傾向にある。したがって、当該分散径は、好ましくは 50 Onm以下、より好ましくは 400nm以下である。
[0133] また、上記した本発明の第 1、第 2の製造方法において、 β晶核剤含有ポリプロピレ ンの溶融結晶化温度 (Tmc)は、ポリプロピレンに非相溶である樹脂の Tmcに比べて 30°C以上高いことが好ましい。 Tmcが上記態様でないと、得られる微多孔フィルムの 空孔率が低ぐ透過性もそれほど向上しない場合がある。当該ポリプロピレンに非相 溶である樹脂の Tmcは、より好ましくは β晶核剤含有ポリプロピレンの Tmcに比較し て 40°C以上低 、ことがより好ましぐ 50°C以上低 、ことがより好まし!/、。
[0134] 本発明の第 1、第 2の製造方法において、得られる微多孔フィルムが実質的に無核 の孔を有することが好ましい。得られる微多孔フィルムが上記態様でないと、フィルム の延伸工程やその後の二次加工工程において、核が脱落して工程を汚染したり、核 が原因でフィルム破れが発生する場合がある。また、得られるフィルムが核を起点とし て形成される粗大なボイドにより劈開しやすい場合がある。このようにフィルムが無核 の孔を有するためには、その製造工程において、ポリプロピレンに、ポリプロピレンと 相溶性あるいは親和性が低 、異種ポリマーや粒子を極力添加しな 、ことが重要であ る。また、ポリプロピレンに非相溶の榭脂を含有するにも関わらず、得られる微多孔フ イルムが実質的に無核の孔を有するということは、例えば、微多孔フィルムの製造ェ 程において、当該榭脂を溶融させることにより達成可能である。ポリプロピレンに非相 溶であり、かつ上記態様とすることで、得られる微多孔フィルムに均一かつ微細な孔 を形成できる場合がある。
[0135] 本発明の第 1、第 2の製造方法において、延伸工程は、高空孔率、高透過性の微 多孔フィルムを高い生産性で製造するため、さらには、装置の拡張性に優れることか ら、縦延伸後に横延伸する逐次二軸延伸工程であることが好ましい。
[0136] また、上記第 1、第 2の製造方法において、ポリプロピレンに非相溶である榭脂は、 エチレン' a—ォレフイン共重合体であることが好ましい。ただし、製膜後に得られる 微多孔フィルムが実質的に無核の孔を有することが必要である。当該樹脂がェチレ ン' a一才レフイン共重合体でないと、孔の形成が促進されず、空孔率が低ぐ透過 性もそれほど向上しない場合がある。 [0137] ここで、本発明の第 1、第 2の製造方法でいうところの a一才レフインは、上記に述 ベた通りであり、本発明では、ポリプロピレンとの親和性が高ぐポリプロピレン中での 分散性が良好であることから、上記 α ォレフィンは、 1—ブテン、 1—ペンテン、 3 - メチルペンテン 1、 3—メチルブテン 1、 1一へキセン、 4ーメチルペンテン 1、 5 -ェチルへキセン一 1、 1—オタテンカも選ばれる少なくとも 1種類以上であることが 好ましぐ 1—オタテンであることが、ポリプロピレン中での分散性の観点力も特に好ま しい。
[0138] また、上記エチレン' aーォレフイン共重合体は、メタ口セン系触媒により合成され たものであることが好ましい。当該共重合体が上記態様でないと、当該共重合体の融 点や溶融結晶化温度が必要以上に高くなつたり、ポリプロピレンとの親和性が低下す るために、その製造工程において、未延伸シート中の分散径が必要以上に大きくな る場合がある。
[0139] 本発明の第 1、第 2の製造方法において、 β晶核剤含有ポリプロピレンに好ましく添 加できる上記非相溶榭脂の具体例としては、例えば、ポリプロピレンとの親和性に優 れ、上記 j8晶核剤含有ポリプロピレンに比較して溶融結晶化温度 (Tmc)が低ぐポ リプロピレン中での分散性に極めて優れることから、デュポンダウエラストマーズ製の メタ口セン系触媒による超低密度ポリエチレン (エチレン'ブテン共重合体またはェチ レン ·オタテン共重合体)である"エンゲージ"(タイプ名: 8411、 8200、 8130など)な どが挙げられる。なお、本発明における超低密度ポリエチレンとは密度 0. 9g/cm3 以下のエチレン系榭脂である。
[0140] また、上記した本発明の第 1、第 2の製造方法において、ポリプロピレンに非相溶で ある榭脂を 1重量%以上 10重量%未満の添加量で添加することが好ましい。添加量 が上記範囲未満であると、未添加の場合と比較しても実質的に効果がみられない場 合がある。添加量が上記範囲以上であると、フィルムの寸法安定性が悪ィ匕したり、逆 に空孔率が低下したり、透過性が悪ィ匕する場合がある。添加量は、より好ましくは 1〜 9重量%、さらに好ましくは 1〜5重量%である。
[0141] 本発明の微多孔ポリプロピレンフィルムまたは本発明の製造方法により得られる微 多孔ポリプロピレンフィルムは、従来の 13晶法による微多孔ポリプロピレンフィルムに 比較して、空孔率が高ぐ透過性能に優れる。また、延伸時の破れが少なぐ製膜性 に優れるとともに、寸法安定性や力学物性にも優れる。以上のことから、本発明の微 多孔ポリプロピレンフィルムおよびその製造方法は、包装用途、工業用途などに好ま
L ヽ微多孔フィルムまたはその製造方法として広く用いることができる。
[特性値の測定法]
本発明に共通して用いられている用語および測定法を以下にまとめて説明する。
[0142] (1)ガーレ透気度
JIS P 8117 (1998)に準拠して、 23°C、 65%RHにて測定した(単位:秒 ZlOO ml) 0同じサンプルについて同様の測定を 5回行い、得られたガーレ透気度の平均 値を当該サンプルのガーレ透気度とした。この際、ガーレ透気度の平均値が 1000秒 ZlOOmlを越えるものについては実質的に透気性を有さないものとみなし、無限大( ∞)秒 ZlOOmlとする。
[0143] (2)実質的に無核の孔を有することの確認
エポキシ榭脂を用いた榭脂包埋法により、ウルトラミクロトームを用い、微多孔フィル ムの横方向一厚み方向に断面を有する超薄切片を採取した。採取した切片を RuO
4 で染色し、下記条件にて透過型電子顕微鏡 (TEM)を用いて断面を観察した。なお 、サンプル調製および断面観察は、(株)東レリサーチセンターにて行った。
'装置 :(株)日立製作所製 透過型電子顕微鏡 (TEM) H— 7100FA
'加速電圧: lOOkV
'観察倍率: 40000倍。
[0144] フィルムの一方の表面からもう一方の表面までを、画像の一辺がフィルムの横方向 に平行となるように、かつ厚み方向に平行に連続して観察した像を採取する。この際 、各画像のサイズは、横方向に平行な一辺がフィルムの実寸にして 5 mとなるように 調整する。得られた複数の画像の上に OHPシート(セイコーエプソン (株)製 EPSO N専用 OHPシート)を乗せた。次に、観察した孔のうち、孔の内部に観察された核が 有れば、核のみを OHPシート上にマジックペンで黒く塗りつぶした。得られた OHPシ ートの画像を、下記条件で読み込んだ。
'スキャナ :セイコーエプソン (株)製 GT— 7600U •ソフト : EPSON TWAIN ver. 4. 20J
•イメージタイプ:線画
'解像度 :600dpi。
得られた画像を、(株)プラネトロン製 Image— Pro Plus, Ver. 4. 0 for Windou wsを用いて、画像解析を行った。この際、取り込んだ断面像のスケールを使用して 空間校正を行った。なお、測定条件は、以下の通りに設定した。
•カウント Zサイズオプション内の表示オプション設定で、アウトラインの形式を塗りつ ぶしにする。
•オブジェクト抽出オプション設定で、境界上の除外をなし (None)にする。
•測定の際の輝度レンジ選択設定を喑 、色のオブジェクトを自動抽出にする。
上記条件下で、フィルムの全面積、即ち測定の対象とした横方向 X厚み方向 = 5 m Xフィルム厚み(下記(17)で測定した)に対する、核 (黒く塗りつぶした部分)の面 積の比を百分率で算出し、核の面積率 (R)とした (単位:%)。これより、核がフィルム の全面積に占める比率力 3%以下である場合を当該フィルムが無核の孔を有すると 定義し、 Yesとした。また、当該比率 Rが 3%を越えるフィルムは、無核の孔を有さない ため、 Noとした。
[0145] (3)溶融結晶化温度 (Tmc)、融点 (Tm)
Seiko Instruments製熱分析装置 RDC220型を用いて、 JIS K 7122 (1987) に準じて測定した。フィルムもしくは榭脂チップを、重量 5mgとしてアルミニウムパンに 封入して装填し、当該装置にセットし、窒素雰囲気下で 10°CZ分の速度で 30°Cから 280°Cまで昇温し、昇温完了後 280°Cで 5分間待機させ、引き続き 10°CZ分の速度 で 30°Cまで冷却し、冷却完了後 30°Cで 5分間待機させ、引き続き 10°CZ分の速度 で 280°Cまで昇温した。この際に得られる熱量曲線において、溶融状態からの結晶 ィ匕に伴う発熱ピークの頂点を同社製熱分析システム SSC5200の内蔵プログラムを 用いて求め、溶融結晶化温度 (Tmc)とした(単位: °C)。同じサンプルについて同様 の測定を 5回行 、、得られた Tmcの平均値を当該サンプルの Tmcとした。
[0146] また、この際に得られるセカンドランの熱量曲線において、結晶融解に伴う吸熱ピ ークの頂点を同プログラムを用いて求め、融点 (Tm)とした(単位: °C)。同じサンプル につ 、て同様の測定を 5回行 、、得られた Tmの平均値を当該サンプルの Tmとした
[0147] (4)未延伸シート中の異種成分の分散径の測定、ラメラ構造の観察
ミクロトーム法を用い、未延伸シートの縦方向 厚み方向に断面を有する超薄切片 を採取した。採取した切片を RuOで染色し、下記条件にて透過型電子顕微鏡 (TE
4
M)を用いて断面を観察した。なお、サンプル調製および観察は、(株)東レリサーチ センターにて行った。また、例えば、ポリエチレン系榭脂 (mVLDPEを含む)は、ポリ プロピレンよりも黒く染まる。
'装置 :(株)日立製作所製 透過型電子顕微鏡 (TEM) H— 7100FA
'加速電圧: lOOkV
'観察倍率: 40000倍。
[0148] 未延伸シートの一方の表面からもう一方の表面までを、厚み方向に連続して観察し た像を採取し、全ての異種成分の分散径を測定した (単位: nm)。この際、像の端で 異種成分相が見切れてしまっているものについては、測定する必要は無い。また、ひ とつひとつの異種成分相の分散径は、当該異種成分相のサイズを厚み方向に平行 な直線に沿って測定した際の、最大値である。測定した分散径を平均し、得られた平 均分散径を当該サンプルの分散径とした。
[0149] (5)メルトフローレイト(MFR)
JIS K 7210 (1999)に準じて条件^230。。、 2. 16kgf (21. 18N)で測定した (単位: gZlO分)。同じサンプルについて同様の測定を 5回行い、得られた MFRの 平均値を当該サンプルの MFRとした。
[0150] (6)メソペンタッド分率(mmmm)
フィルムのポリプロピレンを 60°Cの n—ヘプタンで 2時間抽出し、ポリプロピレン中の 不純物 ·添加物を除去した後、 130°Cで 2時間以上真空乾燥したものをサンプルとす る。該サンプルを溶媒に溶解し、 13C— NMRを用いて、以下の条件にてメソペンタツ ド分率 (mmmm)を求める(単位: %)。
[0151] 測定条件
•装置: Bruker製 DRX— 500 •測定核: C核 (共鳴周波数: 125. 8MHz)
,測定濃度: 10重量%
•溶媒:ベンゼン:重オルトジクロロベンゼン = 1: 3混合溶液 (体積比)
•測定温度: 130°C
•スピン回転数: 12Hz
•NMR試料管: 5mm管
'パノレス幅: 45。 (4. s)
•パルス繰り返し時間: 10秒
•データポイント: 64Κ
'積算回数: 10000回
'測疋モ ~~ト: complete decoupling
解析条件
LB (ラインブロードユングファクター)を 1としてフーリエ変換を行い、 mmmmピーク を 21. 86ppmとする。 WINFITソフト(Bruker製)を用いて、ピーク分割を行う。その 際に、高磁場側のピークから以下のようにピーク分割を行い、更にソフトの自動フイツ ティングを行い、ピーク分割の最適化を行った上で、 mmmmと ss (mmmmのスピ- ングサイドバンドピーク)のピーク分率の合計をメソペンタッド分率(mmmm)とする。
(1) mrrm
(2) (3)rrrm (2つのピークとして分割)
(4) rrrr
(5) mrmm + rmrr
(6) mmrr
(7) mmmr
(8) ss (mmmmのスピユングサイドバンドピーク)
(9) mmmm
(10) rmmr
同じサンプルにつ!/、て同様の測定を 5回行 、、得られたメソペンタッド分率の平均値 を当該サンプルのメソペンタッド分率とする。 [0152] (7)ァイソタクチックインデックス(Π)
フィルムのポリプロピレンを 60°Cの温度の η—ヘプタンで 2時間抽出し、ポリプロピレ ン中の不純物'添加物を除去する。その後 130°Cで 2時間真空乾燥する。これから重 量 W (mg)の試料を取り、ソックスレー抽出器に入れ沸騰 n—ヘプタンで 12時間抽出 する。次に、この試料を取り出し、アセトンで十分洗浄した後、 130°Cで 6時間真空乾 燥し、その後常温まで冷却し、重量 W' (mg)を測定し、次式で求める。
11 (%) = (W' /W) X 100 (%)
同じサンプルにつ!/、て同様の測定を 5回行 、、得られた IIの平均値を当該サンプル の IIとする。
[0153] (8) β晶分率
フィルムをサンプルとして上記(3)と同じ条件で測定した際に得られるセカンドラン の熱量曲線 (例として図 1の符号 1)において、 140°C以上 160°C未満に頂点が観測 されるポリプロピレン由来の β晶の融解に伴う 1本以上の吸熱ピーク力も算出される 融解熱量( Δ Η |8;例として図 2の符号 2)と 160°C以上に頂点が観測される β晶以外 のポリプロピレン由来の結晶の融解に伴う吸熱ピーク力も算出される融解熱量(Δ Η a;例として図 2の符号 3)から、下記式を用いて求めた。この際、 Δ Η の融解ピーク と Δ Η αの融解ピーク間に、微少な発熱もしくは吸熱ピークが観測される場合がある 力 このピークは削除した。
[0154] j8晶分率 = { Δ Η |8 / ( Δ Η |8 + Δ Η α ) } Χ 100
同じサンプルについて同様の測定を 5回行い、得られた j8晶分率の平均値を当該サ ンプルの β晶分率とした (単位: %)。なお、各種キャスト条件により製造された未延伸 シートについて測定を行う場合など、工程条件による 13晶分率の違いを評価する場 合は、ファーストランの熱量曲線を用いる以外は上記と同様の条件で測定を行えばよ い。
[0155] また、 140〜160°Cに頂点を有する融解ピークが存在する力 j8晶の融解に起因 するものか不明確な場合は、 140〜160°Cに融解ピークの頂点が存在することと、下 記条件で調製したサンプルについて、上記 2 θ / Θスキャンで得られる回折プロファ ィルの各回折ピーク強度力も算出される K値を測定すればよい。 下記にサンプル調製条件、広角 X線回折法の測定条件を示す。
•サンプル:フィルムの方向を揃え、熱プレス調製後のサンプル厚さが 1mm程度にな るよう重ね合わせる。このサンプルを 0. 5mm厚みの 2枚のアルミ板で挟み、 280°C で熱プレスして融解 ·圧縮させ、ポリマー鎖をほぼ無配向化する。得られたシートを、 アルミ板ごと取り出した直後に 100°Cの沸騰水中に 5分間浸漬して結晶化させる。そ の後 25°Cの雰囲気下で冷却して得られるシートを切り出したサンプルを測定に供す る。
•X線発生装置:理学電機 (株)製 4036A2 (管球型)
• X線源: CuK a線(Niフィルター使用 )
•出力: 40kV、 20mA
•光学系:理学電機 (株)製 ピンホール光学系(2mm φ )
.ゴ-ォメーター:理学電機 (株)製
'スリット系: 2mm φ (上記)— 1° — 1°
'検出器:シンチレーシヨンカウンター
•計数記録装置:理学電気 (株)製 RAD— C型
,測定方法:透過法
•2 Θ / Θスキャン:ステップスキャン、 2 Θ範囲 10〜55° 、 0. 05° ステップ、積算時 間 2秒
ここで、 K値は、 2 0 = 16° 付近に観測され、 j8晶に起因する(300)面の回折ピー ク強度 (Η |8 とする)と 2 0 = 14, 17, 19° 付近にそれぞれ観測され、ひ晶に起因 する(110)、(040)、(130)面の回折ピーク強度(それぞれ Η α、Η α、 Η α とす
1 2 3 る)とから、下記の数式により算出できる。 Κ値は |8晶の比率を示す経験的な値であり 、各回折ピーク強度の算出方法など Κ値の詳細については、ターナージヨーンズ (Α . Turner Jones; Ό, マクロモレキュフーレ ヒエ一 (Makromolekulare Chemi e) , 75, 134— 158頁(1964)を参考【こすれ ί よ!ヽ。
Κ = H j8 /{H j8 + (Η α +Η α +Η α ) }
1 1 1 2 3
なお、ポリプロピレンの結晶型( α晶、 j8晶)の構造、得られる広角 X線回折プロファ ィルなどは、例えば、エドワード ·Ρ·ムーア 'Jr.著、 "ポリプロピレンハンドブック"、ェ 業調査会(1998)、p. 135— 163 ;田所宏行著、 "高分子の構造"、化学同人(1976 p. 393 ;ターナージヨーンズ(A. Turner Jones)ら, "マクロモレキュラーレ ヒエミ 一,,(Makromolekulare Chemie) , 75, 134— 158頁(1964)や、これらに挙げら れた参考文献なども含めて多数の報告があり、それを参考にすればよい。
[0157] (9) β晶核剤の分散状態の確認
加熱装置を備えた光学顕微鏡を用い、サンプル (チップ形状の原料はそのまま、フ イルム ·シート形状のものは 10mm角に切り出して用いる)を松浪硝子 (株)製カバー グラス(18 X 18mm、 No. 1)にのせて 200°Cで加熱し、溶融させる。溶融後、そのま まもう一枚のカバーグラスを被せて圧縮し、厚さ 0. 03mmの溶融体とする。サンプル の任意の 5力所について倍率 400倍で焦点深度を変えて厚み方向の全ての核剤の 分散状態を観察し、観測された全ての核剤について長径と短径を測定し、その比( =長径 Z短径)の平均値を算出する。同じサンプルで同様の測定を 5回行い、得ら れた長径と短径の比の平均値を当該サンプルの長径と短径の比とする。本発明では 、該長径と短径の比が 10以上のものを、核剤が針状に分散しているものと定義する。
[0158] (10)粒子の平均粒径
遠心沈降法 (堀場製作所製 CAPA500を使用)を用いて測定した体積平均径を 平均粒径 m)とする。
[0159] (11)空孔率
ミラージュ貿易(株)製高精度電子比重計 (SD— 120L)を用いて、 30 X 40mmの サイズに切り出したサンプルについて、 JIS K 7112 (1999) A法(水中置換法) に準じて 23°C、 65%RHにて測定した。同じサンプルについて同様の測定を 5回行 い、得られた比重の平均値を当該サンプルの比重 (dl)とした。
[0160] 該サンプルを 0. 5mm厚みのアルミ板で挟み、 280°Cで熱プレスして融解 ·圧縮さ せた後、得られたシートを、アルミ板ごと 30°Cの水に浸漬して急冷した。得られたシ ートについて上記同様の方法で、同じサンプルについて同様の測定を 5回行い、得 られた比重の平均値をサンプル調製後の比重 (d0)とした。得られた dlと d0から、フ イルムの空孔率を、下記式を用いて求めた(単位: %)。
[0161] 空孔率(%) = { l -dl/dO} X 100 ( 12)微多孔フィルムの各層の厚み
凍結ミクロトーム法を用い、 100°Cで微多孔フィルムの横方向 厚み方向断面を 採取した。得られた微多孔フィルムの断面に、 Ptをコートした後、下記条件にて走査 型電子顕微鏡 (SEM)を用いて断面を観察し、断面像を採取した。また、得られた断 面像から、各層の厚み m)を測定した。なお、サンプル調製および断面観察は、 ( 株)東レリサーチセンターにて行った。また、観察倍率は、必要に応じて下記の範囲 で設定を変更した。
'装置 :(株)日立製作所製 超高分解能電解放射型走査電子顕微鏡 (UHR— F E-SEM) S- 900H
'加速電圧: 2kV
"観察倍率: 2000〜20000倍。
[0162] (13)濡れ張力
ホルムアミドとエチレングリコールモノェチルエーテルとの混合液を用いて、 JIS K 6768 (1999)に準じて測定する(単位: mNZm)。
[0163] (14)長手方向の破断強度
JIS K 7127 (1999、試験片タイプ 2)に準じて、(株)オリエンテック製フィルム強 伸度測定装置 (AMFZRTA— 100)を用いて、 25°C、 65%RHにて測定した。サン プルを長手方向: 15cm、幅方向: lcmのサイズに切り出し、原長 50mm、引張り速 度 300mmZ分で伸張して、破断強度(単位: MPa)を測定した。同じサンプルにつ V、て同様の測定を 5回行 、、得られた破断強度の平均値を当該サンプルの破断強 度とした。
[0164] (15)長手方向の熱収縮率
サンプルを長手方向: 260mm、幅方向: 10mmにサンプリングし、原寸(L )として
0
200mmの位置にマークを入れる。このサンプルの下端に 3gの荷重をかけ、 105°C の熱風循環オーブン中で 15分間熱処理した後室温中に取り出し、サンプルにマーク した長さ (L )を測定する。この際、熱収縮率は次式により求める(単位:%)。
[0165] 熱収縮率(%) = 100 X (L -L ) /L
0 1 0
同じサンプルについて同様の測定を 5回行い、得られた熱収縮率の平均値を当該サ ンプルの熱収縮率とする。
[0166] (16)二軸配向の判別
フィルムの配向状態を、フィルムに対して以下に示す 3方向から X線を入射した際 に得られる X線回折写真力も判別した。
•Through入射:フィルムの縦方向(MD) ·横方向(TD)で形成される面に垂直に入 射
• End入射 :フィルムの横方向 ·厚み方向で形成される面に垂直に入射 •Edge入射 :フィルムの縦方向'厚み方向で形成される面に垂直に入射。
[0167] なお、サンプルは、フィルムを方向を揃えて、厚みが lmm程度になるよう重ね合わ せて、切り出し、測定に供した。
[0168] X線回折写真は以下の条件でイメージングプレート法により測定した。
•X線発生装置 :理学電気 (株)製 4036A2型
•X線源 : CuK a線(Niフィルター使用)
'出力 :40Kv、20mA
'スリット系 : lmm φピンホールコリメータ
•イメージングプレート: FUJIFILM BAS -SR
'撮影条件 :カメラ半径 (サンプルとイメージングプレートとの間の距離) 40m m、露出時間 5分。
[0169] ここで、フィルムの無配向、一軸配向、二軸配向の別は、例えば、松本喜代一ら、 " 繊維学会誌"、第 26卷、第 12号、 1970年、 p. 537— 549 ;松本喜代一著、 "フィル ムをつくる"、共立出版(1993)、 p. 67— 86 ;岡村誠三ら著、 "高分子化学序論 (第 2 版) "、化学同人(1981)、 p. 92— 93などで解説されているように、以下の基準で判 別した。
•無配向 :いずれの方向の X線回折写真においても実質的にほぼ均等強度を有 するデバイ ·シエラー環が得られる
•縦一軸配向: End入射の X線回折写真にぉ 、てほぼ均等強度を有するデバイ ·シェ ラー環が得られる
•二軸配向 :いずれの方向の X線回折写真においてもその配向を反映した、回折強 度が均等ではな 、回折像が得られる。
[0170] (17)フィルムの厚み
ダイヤルゲージ式厚み計 (JIS B 7503 (1997)、 PEACOCK製 UPRIGHT DI
AL GAUGE (0. 001 X 2mm)、 No. 25、測定子 5mm φ平型、 125gf (l. 23N) 荷重)を用いて、フィルムの縦方向および横方向に 10cm間隔で 10点測定し、それら の平均値を当該サンプルのフィルム厚みとした(単位: μ m)。
[0171] (18)実効延伸倍率
スリット状口金力 押し出し、金属ドラムにキャストしてシート上に冷却固化せしめた 未延伸フィルムに、長さ lcm四方の升目をそれぞれの辺がフィルムの長手方向、幅 方向に平行になるように刻印した後、延伸 *卷き取りを行い、得られたフィルムの升目 の長さ(cm)を長手方向に 10升目分、幅方向に 10升目分測定し、これらの平均値を それぞれ長手方向'横方向の実効延伸倍率とした。
[0172] (19)製膜性
フィルムをキャスト速度 2mZ分で 5時間製膜した際に、下記の基準で判定した。
•A :破れが発生しない。
•B :破れが 1回発生。
•C :破れが 2回発生。
•D :破れが 3回以上発生。
[0173] なお、破れの回数は以下の基準で数えた。すなわち、縦延伸工程もしくは横延伸 工程で破れが発生したら、その時点で破れ 1回とカウントし、速やかにその工程の前 でフィルムをカットして巻き取りつつ待機し (何らかの理由で破れが発生した前の工程 で待機することが困難な場合、そのさらに前の工程で待機してもよい)、準備が整い 次第破れが発生した工程に再びフィルムを導入する。例えば、横延伸工程でフィル ム破れが発生した場合、縦延伸機—横延伸機 (テンター)間でフィルムを一旦カットし て縦延伸フィルムをそのまま巻き取りつつ待機状態とし、テンターの破れフィルムの 除去、フィルム通し条件 (温度、テンタークリップ走行速度など)の調整が完了次第、 再びフィルムをテンターに導入して横延伸させ、製膜性を評価する。なお、上記 5時 間の製膜時間は、この待機状態を含んだ時間と定義する。同じ水準について同様の 製膜実験を 5回行い、得られた破れ回数の平均値を破れ回数とし、製膜性を上記基 準で判定した。
[0174] (20)ポリプロピレンに非相溶であることの判定
フィルムの方向を揃え、熱プレス調製後のサンプル厚さが lmm程度になるよう重ね 合わせた。このサンプルを 0. 5mm厚みの 2枚のアルミ板で挟み、 280°Cで 3分間熱 プレスして融解'圧縮させ、ポリマー鎖をほぼ無配向化した。得られたシートを、アルミ 板ごと取り出した直後に 100°Cの沸騰水中に 5分間浸漬して結晶化させた。その後 2 5°Cの雰囲気下で冷却して得られるシートからサンプルを切り出し測定に供した。得 られたサンプル中の、ポリプロピレンに非相溶である樹脂の分散径を、上記 (4)の TE Mによる測定方法により求めた。
[0175] これより、当該サンプル中での当該樹脂の分散径が lOnm以上である場合、当該 榭脂がポリプロピレンに非相溶である、すなわち、 Yesとし、それ以外の場合を Noとし た。
実施例
[0176] 本発明を、実施例に基づ!/、て説明する。なお、所望の厚みのフィルムを得るために は、特に断りのない限り、ポリマーの押出量を所定の値に調節した。フィルムの β晶 分率、空孔率は、複数の層を積層したフィルムである場合も、フィルム全体について 測定した値である。 β晶核剤含有ポリプロピレンの溶融結晶化温度 (Tmc)は、フィル ムについて測定した値であり、ポリプロピレン以外の添加樹脂の Tmcは、榭脂調整前 の当該榭脂単独のペレットについて測定したものである。また、表 1の比較例 6の榭 脂組成は、コア層の組成について表記した。さらに、実施例のフィルム、比較例のフ イルムのうち採取できたフィルムは、上記した測定法(16)に基づき、全て二軸配向し ていることを確認した。また、全ての実施例について、上記した測定法(2)に基づき 測定した Rは、 0%であり、実質的に無核の孔を有しているフィルムといえた。
[0177] (実施例 1)
下記の組成を有するポリプロピレン榭脂 A、ポリプロピレン系榭脂 Bを準備した。 くポリプロピレン榭脂 A >
ポリプロピレン:住友化学 (株)製ポリプロピレン WF836DG3 (メルトフローレイト(M FR) : 7gZlO分) · ·99. 8重量0 /0
j8晶核剤: Ν, Ν,一ジシクロへキシル 2, 6—ナフタレン ジカルボキサミド(新日 本理化 (株)製 NU— 100) · · 0. 2重量%
この榭脂組成 100重量部に、酸化防止剤として、チバガイギー (株)製 IRGANOX1 010を 0. 15重量部、熱安定剤として、チバガイギー (株)製 IRGAFOS168を 0. 1 重量部添加した。これを二軸押出機に供給して 300°Cで溶融 '混練した後、ガット状 に押出し、 20°Cの水槽に通して冷却してチップカッターで 3mm長にカットした後、 1 00°Cで 2時間乾燥した。
<ポリプロピレン系榭脂 B >
ポリプロピレン:住友化学 (株)製ポリプロピレン WF836DG3 (MFR: 7gZlO分) · · 70重量%
ポリオレフイン系榭脂:デュポンダウエラストマ一ジャパン (株)製"エンゲージ" 8411 (mVLDPEl ;エチレン'オタテン共重合体;融点(Tm) : 79°C、 Tmc : 53°C) · · 30重 この榭脂組成を二軸押出機に供給して 250°Cで溶融 '混練した後、ガット状に押出し 、 20°Cの水槽に通して冷却してチップカッターで 3mm長にカットした後、 100°Cで 2 時間乾燥した。
[0178] 得られたポリプロピレン榭脂 Aを 90重量0 /0、ポリプロピレン系榭脂 Bを 10重量%の 比率で添加混合した榭脂組成を、一軸押出機に供給して 220°Cで溶融 '混練し、 40 0メッシュの単板濾過フィルターを経た後に 200°Cに加熱されたスリット状口金から押 出し、表面温度 120°Cに加熱されたドラム(=キャスティングドラム、キャストドラム; C D)にキャストし、フィルムの非ドラム面側力もエアーナイフを用いて 125°Cに加熱され た熱風を吹き付けて密着させながら、シート状に成形し、未延伸シートを得た。なお、 この際の金属ドラムとの接触時間は、 45秒であった。
[0179] 得られた未延伸シートを 120°Cに保たれたロール群に通して予熱し、 120°Cに保ち 周速差を設けたロール間に通し、 120°Cで縦方向に 5倍延伸して 95°Cに冷却した。 引き続き、この縦延伸フィルムの両端をクリップで把持しつつテンターに導入して 135 °Cで予熱し、 135°Cで横方向に 8倍に延伸した。次いで、テンター内で横方向に 5% の弛緩を与えつつ、 155°Cで熱固定をし、均一に徐冷した後、室温まで冷却して卷 き取り、厚さ 20 mの微多孔ポリプロピレンフィルムを得た。なお、この際の縦延伸速 度は、 38000%Z分、横延伸速度は、 1750%Z分であった。
[0180] 得られた微多孔フィルムの原料組成とフィルム特性評価結果をそれぞれ表 1、 2〖こ 示す。得られた微多孔フィルムは、空孔率が高ぐ透過性に優れているとともに、製膜 性に優れていた。
[0181] (実施例 2)
実施例 1において、下記の組成で準備したポリプロピレン榭脂 Cを 90%、ポリプロピ レン系榭脂 Bを 10重量%の比率で添加混合した榭脂組成を一軸押出機に供給し、 縦方向に 100°Cで 4倍に延伸し、横方向に 140°Cで延伸したこと以外は同様の条件 で作製した厚さ 20 μ mの微多孔ポリプロピレンフィルムを実施例 2とした。
くポリプロピレン榭脂 C >
ポリプロピレン:住友化学 (株)製ポリプロピレン WF836DG3 (MFR: 7gZlO分) · · 96. 8重量%
主鎖骨格中に長鎖分岐を有する高溶融張力ポリプロピレン: Basell製ポリプロピレン PF— 814 (MFR: 3gZlO分)· · 3重量%
j8晶核剤: N, N, 一ジシクロへキシル 2, 6—ナフタレン ジカルボキサミド(新日 本理化 (株)製 NU— 100) · · 0. 2重量%
この榭脂組成 100重量部に、酸化防止剤として、チバガイギー (株)製 IRGANOX1 010を 0. 15重量部、熱安定剤として、チバガイギー (株)製 IRGAFOS168を 0. 1 重量部添加した。これを二軸押出機に供給して 300°Cで溶融 '混練した後、ガット状 に押出し、 20°Cの水槽に通して冷却してチップカッターで 3mm長にカットした後、 1 00°Cで 2時間乾燥した。なお、この際の縦延伸速度は、 23000%Z分、横延伸速度 は、 1400%Z分であった。
[0182] 結果を表 1、 2に示す。得られた微多孔フィルムは、空孔率が高ぐ透過性に優れて いるとともに、製膜性に優れていた。
[0183] (実施例 3)
実施例 2において、縦方向の延伸倍率を 5倍に上げたこと以外は同様の条件で作 製した厚さ 20 μ mの微多孔ポリプロピレンフィルムを実施例 3とした。なお、この際の 縦延伸速度は、 38000%Z分、横延伸速度は、 1750%Z分であった。
[0184] 結果を表 1、 2に示す。得られた微多孔フィルムは、空孔率が高ぐ透過性に優れて いるとともに、製膜性に優れていた。
[0185] (実施例 4)
実施例 3において、縦方向の延伸倍率を 6倍に上げたこと以外は同様の条件で作 製した厚さ 20 mの微多孔ポリプロピレンフィルムを実施例 4とした。なお、この際の 縦延伸速度は、 56300%Z分、横延伸速度は、 2100%Z分であった。
[0186] 結果を表 1、 2に示す。得られた微多孔フィルムは、空孔率が高ぐ透過性に優れて いるとともに、製膜性に優れていた。
[0187] (実施例 5)
実施例 2にお 、て、下記の組成で準備したポリプロピレン系榭脂 Dを一軸押出機に 供給したこと以外は同様の条件で作製した厚さ 20 μ mの微多孔ポリプロピレンフィル ムを実施例 5とした。なお、この際の縦延伸速度は、 23000%Z分、横延伸速度は、
1400%Z分であった。
<ポリプロピレン系榭脂 D >
ポリプロピレン:住友化学 (株)製ポリプロピレン WF836DG3 (MFR: 7gZlO分) · ·
91. 8重量%
主鎖骨格中に長鎖分岐を有する高溶融張力ポリプロピレン: Basell製ポリプロピレ ン PF— 814 (MFR: 3gZlO分) ' · 3重量0 /0
j8晶核剤: Ν, N,一ジシクロへキシル 2, 6—ナフタレン ジカルボキサミド(新日 本理化 (株)製 NU— 100) · · 0. 2重量%
ポリオレフイン系榭脂:デュポンダウエラストマ一ジャパン (株)製"エンゲージ" 8411 (mVLDPEl ;エチレン'オタテン共重合体; Tm: 79°C、 Tmc : 53°C) · · 5重量0 /0 この榭脂組成 100重量部に、酸化防止剤として、チバガイギー (株)社製 IRGANOX 1010を 0. 15重量部、熱安定剤として、チバガイギー (株)社製 IRGAFOS168を 0 . 1重量部添加した。これを二軸押出機に供給して 300°Cで溶融 '混練した後、ガット 状に押出し、 20°Cの水槽に通して冷却してチップカッターで 3mm長にカットした後、 100°Cで 2時間乾燥した。
[0188] 結果を表 1、 2に示す。得られた微多孔フィルムは、空孔率が高ぐ透過性に優れて いるとともに、製膜性に優れていた。
[0189] (実施例 6)
実施例 3において、ポリプロピレン榭脂 Aを 95重量0 /0、ポリプロピレン系榭脂 Bを 5 重量%の比率で添加混合した榭脂組成を一軸押出機に供給したこと以外は同様の 条件で作製した厚さ 20 mの微多孔ポリプロピレンフィルムを実施例 6とした。なお、 この際の縦延伸速度は、 38000%Z分、横延伸速度は、 1750%Z分であった。
[0190] 結果を表 1、 2に示す。得られた微多孔フィルムは、空孔率が高ぐ透過性に優れて いるとともに、製膜性に優れていた。
[0191] (実施例 7)
実施例 1において、ポリプロピレン系榭脂 Bの代わりに、下記の組成で準備したポリ プロピレン系榭脂 Eを用いたこと以外は同様の条件で作製した厚さ 20 mの微多孔 ポリプロピレンフィルムを実施例 7とした。なお、この際の縦延伸速度は、 38000%Z 分、横延伸速度は、 1750%Z分であった。
<ポリプロピレン系榭脂 E >
ポリプロピレン:住友化学 (株)製ポリプロピレン WF836DG3 (MFR: 7gZlO分) · ·
70重量%
ポリオレフイン系榭脂:デュポンダウエラストマ一ジャパン (株)製"エンゲージ" 8100 (mVLDPE2 ;エチレン'オタテン共重合体; Tm: 60°C、 Tmc :42°C) · · 30重量0 /0 この榭脂組成を二軸押出機に供給して 250°Cで溶融 '混練した後、ガット状に押出し 、 20°Cの水槽に通して冷却してチップカッターで 3mm長にカットした後、 100°Cで 2 時間乾燥した。
[0192] 結果を表 1、 2に示す。得られた微多孔フィルムは、空孔率が高ぐ透過性に優れて いるとともに、製膜性に優れていた。
[0193] (実施例 8)
実施例 5において、縦方向の延伸、冷却後に縦一軸延伸フィルムを採取した。得ら れた縦一軸延伸フィルムを、縦方向 200mm、横方向 85mmのサイズの矩形に切り 出した。得られたサンプルを、下記の条件でフィルムストレッチヤーを用いて横延伸し た。
装置: Bruckner Maschinenbau GmbH製 KARO - IV (フィルムストレッチヤー)。 温度条件:下記の通り。
Stretcning Oven: 135 C、 Annealing 1 Oven: 15o C
延伸条件:下記の通り。なお、上記切り出したフィルムの縦方向を、装置の MD (machi ne direction)に対応させて、装置にセットした。
MD :initl=195mm、 init2= 182mm
TD :initl=85mm、 init2=70mm
Stepl :Mode: Heating、 Position: Stretching Oven、 Time: 15sec
Step2 :Mode: Position, Position: Stretching Oven, MD: 1.00, 15%/sec、 TD: 6.00, 15
%/sec、 Speed Mode: Constant Speed
Step3 :Mode: Positionゝ Position: Annealing 1 Oven, MD: 1.00, 15%/secゝ TD: 5.70, 15%/sec Speed Mode: Constant Speed
なお、上記条件は、当該縦一軸延伸フィルムを 135°Cで 15秒間予熱した後、 135°C で横方向に 900%Z分で 6倍延伸し、引き続き横方向に 5%の弛緩を与えつつ、 15 5°Cで熱処理していることに対応する。得られた厚み 25 μ mの微多孔ポリプロピレン フィルムを実施例 8とした。
[0194] 結果を表 1、 2に示す。得られた微多孔フィルムは、空孔率が高ぐ孔径が極めて大 きぐ透過性に優れていた。
[0195] (実施例 9)
実施例 1において、縦延伸倍率を 4倍として縦方向の延伸を行い、冷却後に縦一 軸延伸フィルムを採取した。得られた縦一軸延伸フィルムについて、実施例 8と同様 にして、フィルムストレッチヤーを用いて、下記の延伸条件で横延伸を行い、厚み 25 μ mの微多孔ポリプロピレンフィルムを作製した (実施例 9)。
温度条件:下記の通り。
Stretcning Oven: 135 C、 Annealing 1 Oven: 15o C
延伸条件:下記の通り。 Stepl : Mode: Heating、 Position: Stretching Oven、 Time: 15sec
Step2 : Mode: Position, Position: Stretching Oven, MD: 1.00, 10%/sec、 TD: 6.00, 10
%/sec、 Speed Mode: Constant Speed
Step3 : Mode: Positionゝ Position: Annealing 1 Oven, MD: 1.00, 10%/secゝ TD: 5.70, 10%/sec、 Speed Mode: Constant Speed
なお、上記条件は、当該縦一軸延伸フィルムを 135°Cで 15秒間予熱した後、 135°C で横方向に 600%Z分で 6倍延伸し、引き続き横方向に 5%の弛緩を与えつつ、 15
5°Cで熱処理して!/、ることに対応する。
[0196] 結果を表 1、 2に示す。得られた微多孔フィルムは、空孔率が高ぐ孔径が極めて大 きぐ透過性に優れていた。
[0197] (実施例 10)
実施例 2において、縦方向の延伸、冷却後に縦一軸延伸フィルムを採取した。得ら れた縦一軸延伸フィルムについて、実施例 8と同様にして、フィルムストレッチヤーを 用いて、下記の延伸条件で横延伸を行い、厚み 25 mの微多孔ポリプロピレンフィ ルムを作製した (実施例 10)。
温度条件:下記の通り。
Stretcning Oven : 135 C、 Annealing 1 Oven : 15o C
延伸条件:下記の通り。
Stepl: Mode: Heating、 Position: Stretching Oven、 Time: 15sec
Step2 : Mode: Position, Position: Stretching Oven, MD: 1.00, 5%/sec、 TD: 6.00, 5%/ sec、 Speed Mode: Constant Speed
Step3 : Mode: Position, Position: Annealing 1 Oven, MD: 1.00, 5%/sec、 TD: 5.70, 5 %/sec、 Speed Mode: Constant Speed
なお、上記条件は、当該縦一軸延伸フィルムを 135°Cで 15秒間予熱した後、 135°C で横方向に 300%Z分で 6倍延伸し、引き続き横方向に 5%の弛緩を与えつつ、 15 5°Cで熱処理して!/、ることに対応する。
[0198] 結果を表 1、 2に示す。得られた微多孔フィルムは、空孔率が高ぐ孔径が極めて大 きぐ透過性に優れていた。 [0199] (実施例 11)
実施例 3において、縦方向の延伸、冷却後に採取した縦一軸延伸フィルムについ て、実施例 10と同様の条件で横延伸を行い、厚み 25 mの微多孔ポリプロピレンフ イルムを作製した (実施例 11)。
[0200] 結果を表 1、 2に示す。得られた微多孔フィルムは、空孔率が高ぐ極めて孔径が大 きぐ透過性に優れていた。
[0201] (実施例 12)
実施例 1において、ポリプロピレン系榭脂 Bの代わりに、下記の組成で準備したポリ プロピレン系榭脂 Fを用い、縦延伸倍率を 4倍として縦方向の延伸、冷却後に縦一軸 延伸フィルムを採取した。得られた縦一軸延伸フィルムを用いて、実施例 9と同様の 条件で横延伸を行い、厚さ 25 mの微多孔ポリプロピレンフィルムを作製した (実施 例 12)。
<ポリプロピレン系榭脂 F >
ポリプロピレン:住友化学 (株)製ポリプロピレン WF836DG3 (MFR: 7gZlO分) · · 70重量%
ポリオレフイン系榭脂:デュポンダウエラストマ一ジャパン (株)製"エンゲージ" ENR 7270 (mVLDPE3;エチレン ·ブテン共重合体; Tm: 65°C、 Tmc: 50°C) · · 30重量 %
結果を表 1、 2に示す。得られた微多孔フィルムは、空孔率が高ぐ孔径が極めて大 きぐ透過性に優れていた。
[0202] (実施例 13)
実施例 11において、縦方向の延伸、冷却後に採取した縦一軸延伸フィルムについ て、実施例 8と同様にして、フィルムストレッチヤーを用いて下記の延伸条件で横延伸 を行 、、厚み 25 μ mの微多孔ポリプロピレンフィルムを作製した (実施例 13)。
Stretcning Oven: 148。C、 Annealing 1 Oven: 15o C
延伸条件:下記の通り。
Stepl :Mode: Heating、 Position: Stretching Oven、 Time: 15sec
Step2 :Mode: Position, Position: Stretching Oven, MD: 1.00, 5%/sec、 TD: 6.00, 5%/ sec、 Speed Mode: Constant Speed
Step3 : Mode: Position, Position: Annealing 1 Oven, MD: 1.00, 5%/sec、 TD: 5.70, 5 %/sec、 Speed Mode: Constant Speed
なお、上記条件は、当該縦一軸延伸フィルムを 148°Cで 15秒間予熱した後、 148°C で横方向に 300%Z分で 6倍延伸し、引き続き横方向に 5%の弛緩を与えつつ、 15
5°Cで熱処理して!/、ることに対応する。
[0203] 結果を表 1、 2に示す。得られた微多孔フィルムは、空孔率が高ぐ孔径が極めて大 きぐ透過性に優れていた。
[0204] (実施例 14)
実施例 6において、縦方向の延伸、冷却後に採取した縦一軸延伸フィルムについ て、実施例 8と同様にして、フィルムストレッチヤーを用いて下記の延伸条件で横延伸 を行 、、厚み 25 μ mの微多孔ポリプロピレンフィルムを作製した (実施例 14)。
Stretcning Oven : 140。C、 Annealing 1 Oven : 15o C
延伸条件:下記の通り。
Stepl : Mode: Heating、 Position: Stretching Oven、 Time: 15sec
Step2 : Mode: Position, Position: Stretching Oven, MD: 1.00, 2%/sec、 TD: 6.00, 2%/ sec、 Speed Mode: Constant Speed
Step3 : Mode: Position, Position: Annealing 1 Oven, MD: 1.00, 2%/sec、 TD: 5.70, 2 %/sec、 Speed Mode: Constant Speed
なお、上記条件は、当該縦一軸延伸フィルムを 140°Cで 15秒間予熱した後、 140°C で横方向に 120%Z分で 6倍延伸し、引き続き横方向に 5%の弛緩を与えつつ、 15 5°Cで熱処理して!/、ることに対応する。
[0205] 結果を表 1、 2に示す。得られた微多孔フィルムは、空孔率が高ぐ孔径が極めて大 きぐ透過性に優れていた。
[0206] (実施例 15)
実施例 7において、キャストドラムの表面温度を 110°Cとして押出機力も溶融ポリマ 一を吐出し、縦方向の延伸、冷却後に採取した縦一軸延伸フィルムについて、実施 例 8と同様の条件で横延伸を行い、厚み 25 mの微多孔ポリプロピレンフィルムを作 製した (実施例 15)。
[0207] 結果を表 1、 2に示す。得られた微多孔フィルムは、空孔率が高ぐ孔径が極めて大 きぐ透過性に優れていた。
[0208] (比較例 1)
実施例 2において、ポリプロピレン榭脂 B、 Cの代わりにポリプロピレン榭脂 Aを一軸 押出機に供給したこと以外は同様の条件で製膜を試みた (比較例 1)。
[0209] 結果を表 1、 2に示す。横延伸の際に破れが多発したため、全くもって満足なフィル ムが得られず、工業的に製造できな 、フィルムであった。
[0210] (比較例 2)
比較例 1において、縦方向に 120°Cで延伸し、横方向に 135°Cで延伸したこと以外 は同様の条件で作製した厚さ 20 μ mの微多孔ポリプロピレンフィルムを比較例 2とし た。なお、この際の縦延伸速度は、 23000%Z分、横延伸速度は、 1400%Z分で めつに。
[0211] 結果を表 1、 2に示す。得られた微多孔フィルムは、上記実施例で得られた微多孔 フィルムに比較して空孔率が低ぐ透過性能も不十分であった。
[0212] (比較例 3)
比較例 2において、縦方向の延伸倍率を 5倍に上げたこと以外は同様の条件で製 膜を試みた (比較例 3)。
[0213] 結果を表 1、 2に示す。横延伸の際に破れが散発したため、満足なフィルムが得ら れず、工業的に製造できないフィルムであった。
[0214] (比較例 4)
比較例 3において、縦方向の延伸倍率をさらに 6倍に上げたこと以外は同様の条件 で製膜を試みた (比較例 4)。
[0215] 結果を表 1、 2に示す。縦延伸 .横延伸の際に破れが多発したため、全くもって満足 なフィルムが得られず、工業的に製造できな 、フィルムであった。
[0216] (比較例 5)
下記の組成を有するポリプロピレン系榭脂 Gを準備した。
<ポリプロピレン系榭脂 G > ポリプロピレン:住友化学 (株)製ポリプロピレン WF836DG3 (MFR: 7gZlO分) · · 94. 95重量%
j8晶核剤: N, N, 一ジシクロへキシル 2, 6—ナフタレン ジカルボキサミド(新日 本理化(株)製 NU 100) · · 0. 05重量%
ポリメチルペンテン:三井化学 (株)製ポリメチルペンテン" TPX"RT— 18 (Tm: 23 0°C、 Tmc: 208°C) · · 5重量%
この榭脂組成を二軸押出機に供給して 280°Cで溶融 '混練した後、ガット状に押出し 、 30°Cの水槽に通して冷却してチップカッターで 3mm長にカットした後、 100°Cで 2 時間乾燥した。
[0217] 得られたポリプロピレン系榭脂 Gのチップを、一軸押出機に供給して 280°Cで溶融' 混練し、 400メッシュの単板濾過フィルターを経た後に 200°Cに加熱されたスリット状 口金力 押出し、表面温度 120°Cに加熱されたドラムにキャストし、フィルムの非ドラ ム面側力 エアーナイフを用いて 120°Cに加熱された熱風を吹き付けて密着させな がら、シート状に成形し、未延伸シートを得た。なお、この際の金属ドラムとの接触時 間は、 40秒、であった。
[0218] 得られた未延伸シートを 120°Cに保たれたロール群に通して予熱し、 120°Cに保ち 周速差を設けたロール間に通し、 120°Cで縦方向に 4倍延伸して 30°Cに冷却した。 引き続き、この縦延伸フィルムの両端をクリップで把持しつつテンターに導入して 135 °Cで予熱し、 135°Cで横方向に 8倍に延伸した。次いで、テンター内で横方向に 5% の弛緩を与えつつ、 150°Cで熱固定をし、均一に徐冷した後、室温まで冷却した。さ らに、両面を空気中でコロナ放電処理を行った後巻き取り、厚さ 25 mの微多孔ポリ プロピレンフィルムを得た。なお、この際の縦延伸速度は、 23000%Z分、横延伸速 度は、 1400%Z分であった。
[0219] 結果を表 1、 2に示す。ポリメチルペンテン添カ卩により、孔径は多少大きくなつたもの の、製膜工程において、ポリプロピレンとポリメチルペンテンの親和性が低いため力 フィルム力もポリメチルペンテンが脱落し、例えば延伸ロール上に白粉が付着して ヽ た。このため力、フィルム破れが散発した。また、ポリメチルペンテンを核にした粗大な ボイドが観察された。 [0220] (比較例 6)
コア層を構成する榭脂として、下記の組成を有するポリプロピレン系榭脂 Hを準備し た。
<ポリプロピレン系榭脂 H >
ポリプロピレン:住友化学 (株)製ポリプロピレン WF836DG3 (MFR: 7gZlO分) · · 94. 8重量%
j8晶核剤: N, N,一ジシクロへキシル 2, 6—ナフタレン ジカルボキサミド(新日 本理化 (株)製 NU— 100) · · 0. 2重量%
ポリオレフイン系榭脂:デュポンダウエラストマ一ジャパン (株)製"エンゲージ" 8411 (エチレン.オタテン共重合体; Tm: 79°C、 Tmc : 53°C) · · 5重量0 /0
この榭脂組成 100重量部に、酸化防止剤として、チバガイギー (株)製 IRGANOX1 010を 0. 15重量部、熱安定剤として、チバガイギー (株)製 IRGAFOS168を 0. 1 重量部添加した。これを二軸押出機に供給して 300°Cで溶融 '混練した後、ガット状 に押出し、 20°Cの水槽に通して冷却してチップカッターで 5mm長にカットした後、 1 00°Cで 2時間乾燥した。
[0221] また、コア層の片面に積層するスキン層の榭脂として、下記の糸且成を有するポリプロ ピレン樹旨 Iを準備した。
くポリプロピレン榭脂 1>
ポリプロピレン:三井化学 (株)製ポリプロピレン F—107DV(MFR: 7gZlO分) · · 99 . 8重量%
粒子:水澤化学 (株)製球状シリカ粒子 ΑΜΤ— 20S (平均粒径: 1. 7 m) · · 0. 2重 この榭脂組成を二軸押出機に供給して 280°Cで溶融 '混練した後、ガット状に押出し 、 20°Cの水槽に通して冷却してチップカッターで 5mm長にカットした後、 100°Cで 2 時間乾燥した。
[0222] また、コア層のもう一方の面に積層するスキン層の榭脂として、下記の組成を有する ポリプロピレン系榭脂 Jを準備した。
<ポリプロピレン系榭脂 J > ポリプロピレン系榭脂:住友化学 (株)製エチレン.プロピレンランダム共重合体 (ェ チレン共重合量: 1重量%、 MFR:4gZlO分) ' · 99. 75重量%
粒子:日本触媒 (株)製架橋ポリメタクリル酸メチル系粒子 (平均粒径: 2 m) · · 0.
25重量%
この榭脂組成を二軸押出機に供給して 280°Cで溶融 '混練した後、ガット状に押出し 、 20°Cの水槽に通して冷却してチップカッターで 5mm長にカットした後、 100°Cで 2 時間乾燥した。
[0223] 上記得られたポリプロピレン系榭脂 Hを一軸押出機に供給して 210°Cで溶融 ·混練 し、 35 /z mカットのリーフディスク型のフィルターでろ過した後、マルチマ-ホールド 型の複合口金に導入した。同時に、上記得られたポリプロピレン榭脂 Iを別の一軸押 出機に供給して 260°Cで溶融'混練し、 35 mカットの金網フィルターでろ過した後 、上記口金に導入した。さらに、上記得られたポリプロピレン系榭脂 Jをさらに別の一 軸押出機に供給して 260°Cで溶融'混練し、 35 mカットの金網フィルターでろ過し た後、上記口金に導入した。 口金内で、各押出機力も導入された溶融ポリマーを積 層してシート状に共押出成形した。次に、表面温度 120°Cに加熱されたキャストドラム にキャストし、フィルムの非ドラム面側からエアーナイフを用いて 60°Cに加熱された熱 風を吹き付けて密着させながら、シート状に成形し、未延伸シートを得た。なお、この 際の金属ドラムとの接触時間は、 20秒であった。
[0224] 得られた未延伸シートを 120°Cに保たれたオーブンに導いて予熱後、縦方向に 5 倍延伸し、引き続きこの縦延伸フィルムの両端をクリップで把持しつつテンターに導 入して 125°Cで予熱し、 125°Cで横方向に 10倍に延伸した。次いで、テンター内で 横方向に 5%の弛緩を与えつつ、 150°Cで熱固定をし、均一に徐冷した後、室温ま で冷却した。さらに、ポリプロピレン榭脂 Iを用いたスキン層表面は空気中で、ポリプロ ピレン系榭脂 Jを用いたスキン層表面は、窒素 80体積%、二酸化炭素 20体積%の混 合雰囲気下でコロナ放電処理を行った後巻き取り、厚さ 35 mの微多孔ポリプロピレ ンフィルムを得た。なお、スキン層厚みは、それぞれ 3 μ mであった。なお、この際の 縦延伸速度は、 50000%Z分、横延伸速度は、 3400%Z分であった。
[0225] 結果をそれぞれ表 1、 2に示す。得られた微多孔フィルムは、空孔率が低ぐさら〖こ は実質的に透過性を有していな力つた。なお、孔径は測定不能であった。
[0226] (比較例 7)
下記の組成を有するポリプロピレン系榭脂 Kを準備した。
<ポリプロピレン系榭脂 K>
ポリプロピレン:住友化学 (株)製ポリプロピレン WF836DG3 (MFR: 7gZlO分) · · 79. 5重量%
j8晶核剤: N, N,一ジシクロへキシル 2, 6—ナフタレン ジカルボキサミド(新日 本理化 (株)製 NU— 100) · · 0. 5重量%
ポリエチレン:東ソー(株)製高密度ポリエチレン" -ポロンハード" 4010 (Tm : 135 。C、 Tmc: 120°C) . .20重量%
この榭脂組成 100重量部に、酸化防止剤として、チバガイギー (株)製 IRGANOX1 010を 0. 1重量部、熱安定剤として、チバガイギー (株)製 IRGAFOS168を 0. 1重 量部添加した。これを二軸押出機に供給して 240°Cで溶融 '混練した後、ガット状に 押出し、 20°Cの水槽に通して冷却してチップカッターで 5mm長にカットした後、 100 °Cで 2時間乾燥した。
[0227] 得られたポリプロピレン系榭脂 Kのチップを、一軸押出機に供給して 240°Cで溶融
'混練し、 400メッシュの単板濾過フィルターを経た後に 240°Cに加熱されたスリット 状口金力 押出し、表面温度 100°Cに加熱されたドラムにキャストし、フィルムの非ド ラム面側力もエアーナイフを用いて 100°Cに加熱された熱風を吹き付けて密着させ ながら、シート状に成形し、未延伸シートを得た。なお、この際の金属ドラムとの接触 時間は、 7秒であった。
[0228] 得られた未延伸シートを 90°Cに保たれたロール群に通して予熱し、 90°Cに保ち周 速差を設けたロール間に通し、 90°Cで縦方向に 2倍に延伸して 30°Cに冷却した。引 き続き、この縦延伸フィルムの両端をクリップで把持しつつテンターに導入して 90°C で予熱し、 90°Cで横方向に 8倍に延伸し、均一に徐冷した後、室温まで冷却した後 巻き取り、厚さ 44 mの微多孔ポリプロピレンフィルムを得た。なお、この際の縦延伸 速度は、 5000%Z分、横延伸速度は、 1050%Z分であった。
[0229] 結果を表 1、 2に示す。製膜工程において、ポリプロピレンとポリエチレンの親和性 が低いためか、フィルム力 ポリエチレンが脱落し、例えば延伸ロール上に白粉が付 着していた。このため力フィルム破れが散発した。また、ポリエチレンの分散径も大き ぐこれを核にした粗大なボイドが観察された。さらに、得られたフィルムは、実質的に 透過性を有していな力つた。なお、孔径は測定不能であった。
[表 1]
表 1
Figure imgf000068_0001
H S-PP:高溶融張力ボリプロピレン、 /3PP : フィルムを構成する 0晶核剤含有ポリプロピレン、 Tmc :溶融結晶化温度、
mVLDPEl, 2, 3:メタ口セン触媒による超低密度ポリエチレン、 PMP:ポリメチルペンテン、 HDPE:高密度ポリエチレン. CD : キャストドラム
[表 2]
表 2
Figure imgf000069_0001
KMD) ; フィルムの縦方向の X線強度、 I (TD) : フィルムの横方向の X線強度 また、実施例 1で得られた微多孔ポリプロピレンフィルムと、比較例 2で得られた微 多孔ポリプロピレンフィルムそれぞれの断面 TEM写真を、図 4、 6に示した。これらに 示すとおり、実施例 1で得られた本発明の微多孔ポリプロピレンフィルムは、異種成分 (エチレン ·オタテン共重合体)を添加して 、るにも関わらず、実質的に無核の孔を有 していた。これは、添加した異種成分の融点が微多孔フィルムの製膜温度に比較し て十分低いため、製膜中に当該成分が溶融したためと考えられる。これにより、製膜 中に異種成分が脱落したり、それに伴い製膜性が悪ィ匕するといつた、異種成分を添 加した従来の微多孔フィルムのような現象はみられな力つた。また、本発明の実施例 1の微多孔ポリプロピレンフィルムは、比較例 2の微多孔ポリプロピレンフィルムに比 較して、明らかに空孔率が高 、ことを目視確認できた。
[0233] また、実施例の微多孔ポリプロピレンフィルムは、比較例の微多孔ポリプロピレンフ イルムに比較して、フィルム破れが少なぐ製膜性に優れていた。これにより、縦方向 に高倍率に延伸することが可能となり、空孔率ゃ透過性を高めることができた。また、 同じ延伸倍率においても、実施例の微多孔ポリプロピレンフィルムは、比較例の微多 孔フィルムに比較して、空孔率ゃ透過性を高めることができた。さらに、その空孔率ゃ 透過性は、榭脂組成や製膜条件により制御でき、特に一方向の延伸速度を低くする ことにより、空孔率ゃ透過性を極めて高くすることができた。
[0234] さらに、実施例の微多孔ポリプロピレンフィルムは、比較例の微多孔ポリプロピレン フィルムに比較して、孔径が大きい。この孔径は、榭脂組成や製膜条件により制御で き、特に一方向の延伸速度を低くすることにより、著しく高めることができた。
[0235] また、実施例の微多孔ポリプロピレンフィルムは空孔率ゃ透過性が高いにも関わら ず、比較例の微多孔ポリプロピレンフィルムとほぼ同等の高い力学物性を有していた
[0236] そして、実施例 1と比較例 2の微多孔フィルムを製造する際に得られた未延伸シート の断面 TEM写真をそれぞれ図 3、 5に示した。実施例 1で得られた未延伸シートには 、ポリプロピレンの相(図 3の符号 5)中に微細に分散した無数のエチレン'オタテン共 重合体 (mVLDPE)の相(図 3の符号 4)が確認された。なお、図示されて!ヽな ヽが、 シートの表面近傍に置 、ては、当該 mVLDPE相がさらに小さな球状の相として観察 された。これは、押出工程において、シート表面部分がより高い剪断力を受けている ことを反映して 、るものと推定された。
[0237] また、ポリプロピレンのラメラ構造の一部力 当該 mVLDPE相の内部に侵入して形 成されていた(図 3の符号 6)。これは、両者の溶融結晶化温度 (Tmc)の違いから、 T mcが高い |8晶核剤含有ポリプロピレンがまず結晶化(固ィ匕)し、 Tmcが低い mVLD PE相が次いで結晶化(固ィ匕)することにより、形成されたものと推定された。このような 相互貫入 (interpenetrate)ラメラ構造が孔形成の起点となるために、孔形成が促進さ れたものと推定された。
産業上の利用可能性 [0238] 本発明の微多孔ポリプロピレンフィルムは、得られる微多孔フィルムが実質的に無 核の孔を有する状態を保持できる異種成分を添加することにより、従来の微多孔ポリ プロピレンフィルムに比較して、フィルム破れが少なぐ製膜性に優れる。これにより、 縦方向に高倍率に延伸することが可能となり、空孔率ゃ透過性を高めることができる 。また、同じ延伸倍率においても、従来の微多孔フィルムに比較して、空孔率ゃ透過 性を高めることができる。
[0239] 本発明の微多孔ポリプロピレンフィルムは、空孔率が高ぐ透過性が高いことにより 、吸収性、保液性にも優れたフィルムとすることができ、合成紙、光学部材、建材、分 離膜 (フィルター)、創傷被覆材などの透湿防水部材、衣料用などの透湿防水布、お むつ用や生理用品用などの吸収性物品、電池や電解コンデンサー、電気二重層キ ャパシターなどの蓄電デバイスに用いるセパレータ、インク受容紙、油または油脂の 吸収材、血糖値センサー、タンパク質分離膜などの用途など様々な分野で優れた特 性を発揮しうる。
図面の簡単な説明
[0240] [図 1]図 1は、示差走査熱量計 (DSC)を用いて、上記の測定法 (8) β晶分率におい て、 β晶分率を求める際に得られる熱量曲線を模式的に示した図である。
[図 2]図 2は、図 1において 140〜160°Cに頂点が観測される j8晶の融解に伴う吸熱 ピークの面積から求める融解熱量( Δ Η |8 )と、 160°C以上に頂点が観測される β晶 以外のポリプロピレン由来の結晶の融解の伴う吸熱ピークの面積から求める融解熱 量( Δ Η α )を示した図である。
[図 3]図 3は、本発明の微多孔ポリプロピレンフィルム(実施例 1)を製造する際に得ら れた未延伸シートの断面 ΤΕΜ写真である。図中、黒いドメインとして観察されるのが 、エチレン'オタテン共重合体相である。なお、写真縦軸が未延伸シートの厚み方向 であり、横軸が未延伸シートの縦方向である。
[図 4]図 4は、本発明の微多孔ポリプロピレンフィルム(実施例 1)の断面 ΤΕΜ写真で ある。なお、写真縦軸がフィルムの厚み方向であり、横軸がフィルムの横方向である。
[図 5]図 5は、比較例 2の微多孔ポリプロピレンフィルムを製造する際に得られた未延 伸シートの断面 ΤΕΜ写真である。図中、黒いドメインとして観察されるの力 エチレン •オタテン共重合体の相である。なお、写真縦軸が未延伸シートの厚み方向であり、 横軸が未延伸シートの縦方向である。
[図 6]図 6は、比較例 2の微多孔ポリプロピレンフィルムの断面 TEM写真である。なお 、写真縦軸がフィルムの厚み方向であり、横軸がフィルムの横方向である。
符号の説明
1 β晶活性を有するポリプロピレンフィルムの熱量曲線
2 j8晶の融解熱量(Δ Η )
3 j8晶以外のポリプロピレン由来の結晶の融解熱量(Δ Η α )
4 エチレン'オタテン共重合体 (mVLDPE)の相
5 ポリプロピレンの相
6 ポリプロピレンと mVLDPEの相互貫入構造
7 孔
8 ポリプロピレン
T 温度
Endo. 吸熱方向

Claims

請求の範囲
[1] β晶核剤を含有するポリプロピレンを主成分とし、エチレン' a一才レフイン共重合体 を含有し、ガーレ透気度が 500秒 ZlOOml以下であり、かつ実質的に無核の孔を有 する微多孔ポリプロピレンフィルム。
[2] 前記エチレン' a—ォレフイン共重合体の a—ォレフインが、 1—ブテン、 1—ペンテ ン、 3—メチルペンテン 1、 3—メチルブテン 1、 1一へキセン、 4ーメチルペンテン —1、 5—ェチルへキセン— 1—オタテンカも選ばれる少なくとも 1種類以上である 請求項 1記載の微多孔ポリプロピレンフィルム。
[3] エチレン' aーォレフイン共重合体の添加量が 1重量%以上 10重量%未満である請 求項 1または 2に記載の微多孔ポリプロピレンフィルム。
[4] エチレン' a—ォレフイン共重合体力 Sメタ口セン系触媒により合成されてなる超低密度 ポリエチレン (mVLDPE)である請求項 1〜3のいずれかに記載の微多孔ポリプロピ レンフイノレム。
[5] β晶核剤を含有するポリプロピレンを主成分とし、該 β晶核剤含有ポリプロピレンの 溶融結晶化温度 (Tmc)より 30°C以上低い Tmcを有し、かつポリプロピレンに非相溶 である榭脂を含有してなり、ガーレ透気度が 500秒 ZlOOml以下であり、かつ実質 的に無核の孔を有する微多孔ポリプロピレンフィルム。
[6] ポリプロピレンに非相溶である樹脂が、エチレン' a—ォレフイン共重合体である請求 項 5に記載の微多孔ポリプロピレンフィルム。
[7] 前記エチレン' a—ォレフイン共重合体の a—ォレフインが、 1—ブテン、 1—ペンテ ン、 3—メチルペンテン 1、 3—メチルブテン 1、 1一へキセン、 4ーメチルペンテン —1、 5—ェチルへキセン— 1—オタテンカも選ばれる少なくとも 1種類以上である 請求項 6に記載の微多孔ポリプロピレンフィルム。
[8] エチレン' a—ォレフイン共重合体力 Sメタ口セン系触媒により合成されてなる超低密度 ポリエチレン (mVLDPE)である請求項 6または 7に記載の微多孔ポリプロピレンフィ ノレム。
[9] ポリプロピレンに非相溶である樹脂の添加量が 1重量%以上 10重量%未満である請 求項 5〜8のいずれかに記載の微多孔ポリプロピレンフィルム。
[10] 平均孔径が 60nm以上である請求項 1〜9のいずれかに記載の微多孔ポリプロピレ ンフイノレム。
[11] β晶核剤を含有するポリプロピレンを主成分とし、ポリプロピレンに非相溶である榭脂 を含有する榭脂組成物を溶融押出し、さらにドラムにキャストし、シート中のポリプロピ レンに非相溶である樹脂の分散径が 300nm以下である未延伸シートを得る工程と、 さらに得られた未延伸シートを延伸してフィルムに孔を形成する工程とを含む微多孔 ポリプロピレンフィルムの製造方法。
[12] β晶核剤を含有するポリプロピレンを主成分とし、ポリプロピレンに非相溶である榭脂 もしくは添加剤を含有する榭脂組成物を溶融押出し、さらにドラムにキャストし、未延 伸シートを得る工程と、さらに得られた未延伸シートを延伸してフィルムに孔を形成す る工程とを含む微多孔ポリプロピレンフィルムの製造方法であって、前記未延伸シー トを固化する際に、ポリプロピレンに非相溶である樹脂の固化より先にポリプロピレン を結晶化せしめる微多孔ポリプロピレンフィルムの製造方法。
[13] 未延伸シート中のポリプロピレンに非相溶である樹脂の分散径が 300nm以下である 請求項 12または 13のいずれかに記載の微多孔ポリプロピレンフィルムの製造方法。
[14] β晶核剤含有ポリプロピレンの溶融結晶化温度 (Tmc)力 ポリプロピレンに非相溶 である榭脂の Tmcに比べて 30°C以上高!、請求項 11〜13の!、ずれかに記載の微多 孔ポリプロピレンフィルムの製造方法。
[15] 得られる微多孔フィルムが実質的に無核の孔を有する請求項 11〜14のいずれかに 記載の微多孔ポリプロピレンフィルムの製造方法。
[16] 前記未延伸シートを延伸する工程において、少なくとも一方向の延伸速度が 1000 %Z分未満である請求項 11〜15のいずれかに記載の微多孔ポリプロピレンフィル ムの製造方法。
[17] 前記未延伸シートを延伸する工程が縦延伸後に横延伸する逐次二軸延伸工程であ る請求項 11〜16のいずれかに記載の微多孔ポリプロピレンフィルムの製造方法。
[18] 前記未延伸シートを延伸する工程が逐次二軸延伸工程であって、かつ横延伸工程 における延伸速度が 1000%Z分未満である請求項 11〜16のいずれかに記載の微 多孔ポリプロピレンフィルムの製造方法。
[19] 前記ポリプロピレンに非相溶である樹脂がエチレン' aーォレフイン共重合体である 請求項 11〜18のいずれかに記載の微多孔ポリプロピレンフィルム。
[20] 前記エチレン' a—ォレフイン共重合体の a—ォレフインが、 1—ブテン、 1—ペンテ ン、 3—メチルペンテン 1、 3—メチルブテン 1、 1一へキセン、 4ーメチルペンテン —1、 5—ェチルへキセン— 1—オタテンカも選ばれる少なくとも 1種類以上である 請求項 19のいずれかに記載の微多孔ポリプロピレンフィルム。
[21] エチレン' a一才レフイン共重合体カ^タ口セン系触媒により合成されてなる超低密度 ポリエチレン (mVLDPE)である請求項 19または 20のいずれかに記載の微多孔ポリ プロピレンフイノレム。
[22] ポリプロピレンに非相溶である樹脂の添加量が 1重量%以上 10重量%未満である請 求項 11〜21のいずれかに記載の微多孔ポリプロピレンフィルム。
PCT/JP2006/319407 2005-10-18 2006-09-29 微多孔ポリプロピレンフィルムおよびその製造方法 WO2007046225A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006549739A JP5417685B2 (ja) 2005-10-18 2006-09-29 微多孔ポリプロピレンフィルムの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005302719 2005-10-18
JP2005-302719 2005-10-18

Publications (1)

Publication Number Publication Date
WO2007046225A1 true WO2007046225A1 (ja) 2007-04-26

Family

ID=37962322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319407 WO2007046225A1 (ja) 2005-10-18 2006-09-29 微多孔ポリプロピレンフィルムおよびその製造方法

Country Status (3)

Country Link
JP (1) JP5417685B2 (ja)
TW (1) TW200728366A (ja)
WO (1) WO2007046225A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026499A (ja) * 2007-07-17 2009-02-05 Mitsubishi Plastics Inc リチウムイオン電池用セパレータおよび、その製造方法
JP2009084300A (ja) * 2007-08-31 2009-04-23 Tonen Chem Corp ポリオレフィン微多孔膜、電池用セパレータ及び電池
JP2009227819A (ja) * 2008-03-24 2009-10-08 Toray Ind Inc ポリプロピレン多孔性フィルム、その製造方法、および蓄電デバイス
JP2010111833A (ja) * 2008-11-10 2010-05-20 Mitsubishi Plastics Inc 多孔性フィルム、それを利用したリチウム電池用セパレータ、および電池
JP2010242060A (ja) * 2009-03-16 2010-10-28 Toray Ind Inc 多孔性ポリプロピレンフィルムロール
WO2010147149A1 (ja) * 2009-06-19 2010-12-23 三菱樹脂株式会社 多孔性ポリプロピレンフィルム
WO2011043160A1 (ja) * 2009-10-07 2011-04-14 東レ株式会社 多孔性ポリプロピレンフィルムロール
JP2011162773A (ja) * 2010-01-12 2011-08-25 Toray Ind Inc 多孔性フィルムおよび蓄電デバイス
JP2012531009A (ja) * 2009-06-20 2012-12-06 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー シャットダウン機能を有する電池用微孔質ホイル
JP2013010875A (ja) * 2011-06-29 2013-01-17 Sekisui Chem Co Ltd プロピレン系樹脂微孔フィルム及びその製造方法
JP2013010876A (ja) * 2011-06-29 2013-01-17 Sekisui Chem Co Ltd プロピレン系樹脂微孔フィルム及びその製造方法
WO2013054929A1 (ja) * 2011-10-14 2013-04-18 東レ株式会社 多孔性ポリプロピレンフィルムおよび蓄電デバイス
WO2013054930A1 (ja) * 2011-10-14 2013-04-18 東レ株式会社 多孔性ポリオレフィンフィルムおよび蓄電デバイス
WO2013089033A1 (ja) * 2011-12-13 2013-06-20 積水化学工業株式会社 プロピレン系樹脂微孔フィルム、電池用セパレータ、電池及びプロピレン系樹脂微孔フィルムの製造方法
JP2013532191A (ja) * 2010-04-26 2013-08-15 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー 高多孔質セパレータフォイル
US8815436B2 (en) 2008-11-26 2014-08-26 Toray Battery Separator Film Co., Ltd. Microporous membrane, methods for making such film, and the use of such film as battery separator film
KR20140148371A (ko) 2012-03-23 2014-12-31 도레이 카부시키가이샤 다공성 필름 및 축전 디바이스
EP2410006A4 (en) * 2009-03-17 2015-08-19 Toray Industries Porous polypyryl film and method for its production
JP2017528565A (ja) * 2014-09-11 2017-09-28 ボレアリス エージー コンデンサフィルム用のポリプロピレン組成物
KR20190141705A (ko) 2018-04-10 2019-12-24 엔즈파이어 인더스트리 씨오. 엘티디. 비추출성 및 무섬유 식품 기름 제거 필름 및 그 제조 방법
DE202018006662U1 (de) 2018-04-10 2021-11-29 Enzpire Industry Co., Ltd. Nicht extrahierbarer und faserfreier lebensmittelölentfernender Film
CN113856480A (zh) * 2021-09-23 2021-12-31 安徽泽汇新材料有限公司 一种聚烯烃水过滤膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733895A (ja) * 1993-05-20 1995-02-03 New Japan Chem Co Ltd 多孔性ポリプロピレン系樹脂延伸物及びその製造方法
JP2001342272A (ja) * 2000-06-02 2001-12-11 New Japan Chem Co Ltd 多孔性ポリプロピレンフィルム、その製造方法及び該フィルムを用いた吸収性物品
JP2005171230A (ja) * 2003-11-05 2005-06-30 Toray Ind Inc 二軸配向微多孔フィルムおよびその製造方法
JP2006028495A (ja) * 2004-06-18 2006-02-02 Toray Ind Inc 微多孔ポリプロピレンフィルムおよびそれを用いてなる透湿防水布。

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733895A (ja) * 1993-05-20 1995-02-03 New Japan Chem Co Ltd 多孔性ポリプロピレン系樹脂延伸物及びその製造方法
JP2001342272A (ja) * 2000-06-02 2001-12-11 New Japan Chem Co Ltd 多孔性ポリプロピレンフィルム、その製造方法及び該フィルムを用いた吸収性物品
JP2005171230A (ja) * 2003-11-05 2005-06-30 Toray Ind Inc 二軸配向微多孔フィルムおよびその製造方法
JP2006028495A (ja) * 2004-06-18 2006-02-02 Toray Ind Inc 微多孔ポリプロピレンフィルムおよびそれを用いてなる透湿防水布。

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026499A (ja) * 2007-07-17 2009-02-05 Mitsubishi Plastics Inc リチウムイオン電池用セパレータおよび、その製造方法
JP2009084300A (ja) * 2007-08-31 2009-04-23 Tonen Chem Corp ポリオレフィン微多孔膜、電池用セパレータ及び電池
JP2009227819A (ja) * 2008-03-24 2009-10-08 Toray Ind Inc ポリプロピレン多孔性フィルム、その製造方法、および蓄電デバイス
JP2010111833A (ja) * 2008-11-10 2010-05-20 Mitsubishi Plastics Inc 多孔性フィルム、それを利用したリチウム電池用セパレータ、および電池
US8815436B2 (en) 2008-11-26 2014-08-26 Toray Battery Separator Film Co., Ltd. Microporous membrane, methods for making such film, and the use of such film as battery separator film
JP2010242060A (ja) * 2009-03-16 2010-10-28 Toray Ind Inc 多孔性ポリプロピレンフィルムロール
EP2410006A4 (en) * 2009-03-17 2015-08-19 Toray Industries Porous polypyryl film and method for its production
JP4838910B2 (ja) * 2009-06-19 2011-12-14 三菱樹脂株式会社 多孔性ポリプロピレンフィルム
WO2010147149A1 (ja) * 2009-06-19 2010-12-23 三菱樹脂株式会社 多孔性ポリプロピレンフィルム
US8680169B2 (en) 2009-06-19 2014-03-25 Mitsubishi Plastics, Inc. Porous polypropylene film
JP2012531009A (ja) * 2009-06-20 2012-12-06 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー シャットダウン機能を有する電池用微孔質ホイル
WO2011043160A1 (ja) * 2009-10-07 2011-04-14 東レ株式会社 多孔性ポリプロピレンフィルムロール
JP2011162773A (ja) * 2010-01-12 2011-08-25 Toray Ind Inc 多孔性フィルムおよび蓄電デバイス
JP2013532191A (ja) * 2010-04-26 2013-08-15 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー 高多孔質セパレータフォイル
JP2013010875A (ja) * 2011-06-29 2013-01-17 Sekisui Chem Co Ltd プロピレン系樹脂微孔フィルム及びその製造方法
JP2013010876A (ja) * 2011-06-29 2013-01-17 Sekisui Chem Co Ltd プロピレン系樹脂微孔フィルム及びその製造方法
JP5267754B1 (ja) * 2011-10-14 2013-08-21 東レ株式会社 多孔性ポリオレフィンフィルムおよび蓄電デバイス
WO2013054929A1 (ja) * 2011-10-14 2013-04-18 東レ株式会社 多孔性ポリプロピレンフィルムおよび蓄電デバイス
KR101956950B1 (ko) 2011-10-14 2019-03-11 도레이 카부시키가이샤 다공성 폴리올레핀 필름 및 축전 디바이스
WO2013054930A1 (ja) * 2011-10-14 2013-04-18 東レ株式会社 多孔性ポリオレフィンフィルムおよび蓄電デバイス
CN103917583B (zh) * 2011-12-13 2016-11-23 积水化学工业株式会社 丙烯类树脂微孔膜、电池用隔板、电池及丙烯类树脂微孔膜的制造方法
JP5663040B2 (ja) * 2011-12-13 2015-02-04 積水化学工業株式会社 プロピレン系樹脂微孔フィルム、電池用セパレータ、電池及びプロピレン系樹脂微孔フィルムの製造方法
WO2013089033A1 (ja) * 2011-12-13 2013-06-20 積水化学工業株式会社 プロピレン系樹脂微孔フィルム、電池用セパレータ、電池及びプロピレン系樹脂微孔フィルムの製造方法
US9748545B2 (en) 2011-12-13 2017-08-29 Sekisui Chemical Co., Ltd. Propylene-based resin microporous film, separator for battery, battery, and method for producing propylene-based resin microporous film
CN103917583A (zh) * 2011-12-13 2014-07-09 积水化学工业株式会社 丙烯类树脂微孔膜、电池用隔板、电池及丙烯类树脂微孔膜的制造方法
KR20140148371A (ko) 2012-03-23 2014-12-31 도레이 카부시키가이샤 다공성 필름 및 축전 디바이스
JP2017528565A (ja) * 2014-09-11 2017-09-28 ボレアリス エージー コンデンサフィルム用のポリプロピレン組成物
KR20190141705A (ko) 2018-04-10 2019-12-24 엔즈파이어 인더스트리 씨오. 엘티디. 비추출성 및 무섬유 식품 기름 제거 필름 및 그 제조 방법
DE202018006662U1 (de) 2018-04-10 2021-11-29 Enzpire Industry Co., Ltd. Nicht extrahierbarer und faserfreier lebensmittelölentfernender Film
DE112018007467T5 (de) 2018-04-10 2022-01-05 Enzpire Industry Company Limited Nicht extrahierbarer und faserfreier lebensmittelölentfernender film und verfahren zu seiner herstellung
US11370901B2 (en) 2018-04-10 2022-06-28 Enzpire Industry Company Limited Non-extractable and fiber-free food oil removing film and production method thereof
CN113856480A (zh) * 2021-09-23 2021-12-31 安徽泽汇新材料有限公司 一种聚烯烃水过滤膜的制备方法

Also Published As

Publication number Publication date
JP5417685B2 (ja) 2014-02-19
TW200728366A (en) 2007-08-01
JPWO2007046225A1 (ja) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5417685B2 (ja) 微多孔ポリプロピレンフィルムの製造方法
JP4984890B2 (ja) 微孔性ポリプロピレンフィルムおよびその製造方法
JP5087906B2 (ja) 微多孔ポリプロピレンフィルムおよびその製造方法
JP4876387B2 (ja) 二軸配向微多孔フィルムおよびその製造方法
JP5354132B2 (ja) 多孔性ポリプロピレンフィルムおよび蓄電デバイス
WO2007046226A1 (ja) 蓄電デバイスセパレータ用微多孔フィルムおよびそれを用いた蓄電デバイスセパレータ
JP6273898B2 (ja) 積層多孔性フィルムおよび蓄電デバイス
JP5672015B2 (ja) 二軸配向多孔性フィルムおよび蓄電デバイス
JP6361251B2 (ja) 多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP5267754B1 (ja) 多孔性ポリオレフィンフィルムおよび蓄電デバイス
JP2010219037A (ja) 多孔性フィルムおよび蓄電デバイス
JP2009226746A (ja) 多孔性ポリオレフィンフィルム
WO2014103713A1 (ja) 多孔性ポリオレフィンフィルムおよびその製造方法、ならびにそれを用いてなる蓄電デバイス用セパレータ
WO2013187326A1 (ja) 多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP2014198832A (ja) 多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP2014062244A (ja) 多孔性フィルムおよび蓄電デバイス
JP2015071723A (ja) 多孔性フィルムの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006549739

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810813

Country of ref document: EP

Kind code of ref document: A1