WO2010106966A1 - オレフィンの製造方法 - Google Patents
オレフィンの製造方法 Download PDFInfo
- Publication number
- WO2010106966A1 WO2010106966A1 PCT/JP2010/054169 JP2010054169W WO2010106966A1 WO 2010106966 A1 WO2010106966 A1 WO 2010106966A1 JP 2010054169 W JP2010054169 W JP 2010054169W WO 2010106966 A1 WO2010106966 A1 WO 2010106966A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- producing
- acetone
- reaction
- ketone
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 47
- 150000001336 alkenes Chemical class 0.000 title claims abstract description 45
- 239000003054 catalyst Substances 0.000 claims abstract description 169
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 146
- 238000006243 chemical reaction Methods 0.000 claims abstract description 74
- 229910052709 silver Inorganic materials 0.000 claims abstract description 68
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 65
- 230000018044 dehydration Effects 0.000 claims abstract description 62
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 61
- 239000004332 silver Substances 0.000 claims abstract description 61
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000001257 hydrogen Substances 0.000 claims abstract description 38
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 38
- 150000002576 ketones Chemical class 0.000 claims abstract description 38
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims abstract description 37
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims abstract description 37
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000011964 heteropoly acid Substances 0.000 claims abstract description 34
- 239000010457 zeolite Substances 0.000 claims abstract description 28
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 26
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 25
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 21
- 150000003839 salts Chemical class 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- 150000001768 cations Chemical class 0.000 claims abstract description 14
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 8
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 118
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 60
- 239000000377 silicon dioxide Substances 0.000 claims description 28
- 241000894006 Bacteria Species 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 10
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 claims description 9
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 4
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 4
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 claims description 4
- CGFYHILWFSGVJS-UHFFFAOYSA-N silicic acid;trioxotungsten Chemical compound O[Si](O)(O)O.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 CGFYHILWFSGVJS-UHFFFAOYSA-N 0.000 claims description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 4
- 150000002431 hydrogen Chemical class 0.000 abstract description 3
- 229910021476 group 6 element Inorganic materials 0.000 abstract 1
- 208000005156 Dehydration Diseases 0.000 description 55
- 230000000694 effects Effects 0.000 description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 241000196324 Embryophyta Species 0.000 description 15
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 238000005984 hydrogenation reaction Methods 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- -1 alkali metal cation Chemical class 0.000 description 11
- 238000011049 filling Methods 0.000 description 11
- 108090000790 Enzymes Proteins 0.000 description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 5
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 5
- 108060008225 Thiolase Proteins 0.000 description 5
- 102000002932 Thiolase Human genes 0.000 description 5
- 102000004357 Transferases Human genes 0.000 description 5
- 108090000992 Transferases Proteins 0.000 description 5
- 108091022873 acetoacetate decarboxylase Proteins 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 238000004817 gas chromatography Methods 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000007086 side reaction Methods 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 5
- 241000193403 Clostridium Species 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 241000588722 Escherichia Species 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 235000002597 Solanum melongena Nutrition 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical class [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 229910052675 erionite Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910052680 mordenite Inorganic materials 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000193401 Clostridium acetobutylicum Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910017770 Cu—Ag Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- XURCIPRUUASYLR-UHFFFAOYSA-N Omeprazole sulfide Chemical compound N=1C2=CC(OC)=CC=C2NC=1SCC1=NC=C(C)C(OC)=C1C XURCIPRUUASYLR-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000005882 aldol condensation reaction Methods 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- NCMHKCKGHRPLCM-UHFFFAOYSA-N caesium(1+) Chemical compound [Cs+] NCMHKCKGHRPLCM-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 229940006165 cesium cation Drugs 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 150000001908 cumenes Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 229910001657 ferrierite group Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229910001683 gmelinite Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- HVDZMISZAKTZFP-UHFFFAOYSA-N indium(3+) trinitrate trihydrate Chemical compound O.O.O.[In+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HVDZMISZAKTZFP-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- LMEWRZSPCQHBOB-UHFFFAOYSA-M silver;2-hydroxypropanoate Chemical compound [Ag+].CC(O)C([O-])=O LMEWRZSPCQHBOB-UHFFFAOYSA-M 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000007039 two-step reaction Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
- C07C1/22—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/30—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/50—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
- B01J23/68—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/683—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
- B01J23/687—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten with tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/068—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
- B01J29/7415—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/78—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J29/7815—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
- C07C1/24—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/02—Alkenes
- C07C11/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/24—Preparation of oxygen-containing organic compounds containing a carbonyl group
- C12P7/26—Ketones
- C12P7/28—Acetone-containing products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/20—After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- C07C2521/08—Silica
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/24—Chromium, molybdenum or tungsten
- C07C2523/28—Molybdenum
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/24—Chromium, molybdenum or tungsten
- C07C2523/30—Tungsten
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2527/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- C07C2527/14—Phosphorus; Compounds thereof
- C07C2527/182—Phosphorus; Compounds thereof with silicon
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2527/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- C07C2527/14—Phosphorus; Compounds thereof
- C07C2527/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2527/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a method for producing an olefin by reacting a ketone with hydrogen. Specifically, the present invention relates to a method for producing olefins with high selectivity by using ketone and hydrogen as starting materials in a single reaction step.
- it relates to a method for producing propylene by reacting acetone and hydrogen. Specifically, it relates to a method for producing propylene using acetone and hydrogen as starting materials in a single reaction step.
- a method for producing cumene by reacting benzene and propylene, a method for producing cumene hydroperoxide by oxidizing cumene, and a method for producing phenol and acetone by acid decomposition of cumene hydroperoxide are already known.
- a method combining these reactions is a phenol production method generally called a cumene method, and is currently the mainstream of the phenol production method.
- This cumene method is characterized by the fact that acetone is co-produced, and it is advantageous if acetone is desired at the same time, but if the obtained acetone is in excess of the demand, the price difference from propylene, which is the raw material, is disadvantageous. Work in the wrong direction and worsen the economy. Therefore, a method for reusing the co-produced acetone as a raw material for the cumene method using various methods has been proposed.
- Acetone can be easily converted to isopropanol by hydrogenation, and this isopropanol is further converted to propylene by a dehydration reaction and then reacted with benzene to obtain cumene. That is, a process for reusing acetone as a raw material for the cumene method by converting acetone into propylene by a two-step reaction has been proposed (for example, see Patent Document 1).
- the present invention provides a novel olefin production method capable of establishing an industrially practical method for obtaining an olefin with high selectivity by directly reacting a ketone and hydrogen in a single reaction step.
- the purpose is to provide.
- an object of the present invention is to provide a novel propylene production method for obtaining propylene with high selectivity by directly reacting acetone and hydrogen.
- propylene can be produced in high yield from acetone and hydrogen as starting materials.
- part or all of protons of metal oxide catalyst, zeolite, alumina, and heteropolyacid containing at least one group 6 (VIB group) element are exchanged with metal cations.
- the ketone and hydrogen are reacted in the presence of at least one dehydration catalyst selected from the heteropolyacid salt and a catalyst containing elemental silver.
- the catalyst containing silver element further contains at least one group 13 (IIIA group) element.
- the dehydration catalyst is at least one dehydration catalyst selected from zeolite, ⁇ -alumina, tungsten oxide, molybdenum oxide, and heteropoly acid salt obtained by exchanging part or all of protons of heteropoly acid with a metal cation. Preferably there is.
- the ketone is acetone and the olefin is propylene.
- the heteropolyacid is preferably at least one heteropolyacid selected from phosphotungstic acid, silicotungstic acid, phosphomolybdic acid and silicomolybdic acid.
- heteropolyacid salt is supported on silica.
- the reaction temperature in the reaction is preferably 50 to 500 ° C.
- the dehydration catalyst and the catalyst containing silver element are reacted in a mixed state.
- the ketone is acetone obtained from an isopropyl alcohol-producing bacterium capable of generating isopropyl alcohol and acetone from plant-derived materials, and the olefin is propylene.
- olefin can be obtained by an industrially practical method using ketone and hydrogen as starting materials in a single reaction step.
- a novel method for producing propylene for obtaining propylene with high selectivity by directly reacting acetone and hydrogen is provided.
- the method for producing an olefin of the present invention includes a metal oxide catalyst containing at least one group 6 (VIB group) element, zeolite, alumina, and heteropolyacid in which part or all of protons of the heteropolyacid are exchanged with a metal cation. It is characterized by reacting a ketone and hydrogen in the presence of at least one dehydration catalyst selected from acid salts and a catalyst containing silver element.
- VIP group group 6
- the metal oxide catalyst containing at least one group 6 (VIB group) element as a catalyst, zeolite, alumina, and heteropolyacid obtained by exchanging part or all of protons of the heteropolyacid with a metal cation.
- VB group group 6
- Two components of at least one dehydration catalyst selected from salts and a catalyst containing the silver element may be used.
- the dehydration catalyst and the catalyst containing silver element may be physically mixed at a centimeter-sized catalyst particle level, or after pulverizing and mixing both, the centimeter may be used again.
- the catalyst particles may be molded into catalyst particles of a size, and further, the catalyst containing silver element may be supported thereon using the dehydration catalyst as a support, and conversely, the catalyst containing silver element may be used as a support.
- the dehydration catalyst may be supported on the substrate.
- the catalyst containing silver element acts as a hydrogenation catalyst, whereby the ketone is hydrogenated to produce an alcohol, and then the alcohol is dehydrated by the action of the dehydration catalyst to produce the olefin. It is thought to generate.
- the olefin is propylene
- acetone is hydrogenated by the action of a catalyst containing elemental silver to produce isopropyl alcohol
- the isopropyl alcohol is dehydrated by the action of a dehydration catalyst to produce propylene and water. It is thought that.
- a distinguishable catalyst layer may be formed, and an appropriate catalyst type corresponding to each stage of the reaction may be filled in order, or the mixing ratio of the catalyst containing silver element and the dehydration catalyst may be inclined.
- the ketone used in the present invention may be selected according to the target olefin. For example, in order to obtain propylene as the olefin, acetone is used as the ketone, and in order to obtain 1-butene as the olefin, the ketone is used. As methyl ethyl ketone.
- the method for producing an olefin of the present invention can be suitably applied when acetone is used as a ketone and propylene is obtained as an olefin.
- the method for obtaining the ketone is not particularly limited, and acetone obtained as a by-product during the production of phenol, methyl ethyl ketone obtained by dehydrogenation of 2-butanol, and the like can be used.
- acetone obtained from isopropyl alcohol-producing bacteria capable of producing isopropyl alcohol and acetone from plant-derived materials may be used.
- the plant-derived material is a carbon source obtained from a plant, and is not particularly limited as long as bacteria can be metabolized and converted into isopropyl alcohol.
- it refers to organs such as roots, stems, trunks, branches, leaves, flowers, seeds, etc., plant bodies containing them, plant organs, or degradation products thereof, and further plant bodies, plant organs, or degradation thereof.
- the carbon sources obtained from the products those that can be used as a carbon source in culture by microorganisms are also included in plant-derived materials.
- Carbon sources included in such plant-derived materials generally include sugars such as starch, glucose, fructose, sucrose, xylose, arabinose, or herbaceous degradation products and cellulose hydrolysis that contain a large amount of these components. Examples can be given. Furthermore, vegetable oil-derived glycerin and fatty acids also correspond to the carbon source in the present invention. As plant-derived materials in the present invention, crops such as cereals, corn, rice, wheat, soybeans, sugar cane, beet, cotton and the like can be preferably used. There is no particular limitation on the pulverized product. Moreover, the form of only said carbon source may be sufficient.
- the isopropyl alcohol-producing bacteria only needs to have an ability to produce isopropyl alcohol and acetone from the plant-derived raw material.
- the plant-derived raw material is assimilated by culturing, and isopropyl alcohol and acetone are added to the culture solution after a certain time.
- Examples include secreting bacteria.
- Such isopropyl alcohol-producing bacteria are described in, for example, International Publication No. WO2009 / 008377, Chinese Patent Application Publication No. CN1043956A, Japanese Patent Laid-Open No. 61-67493, Applied and Environmental Microbiology, Vol. 64, no. 3, those described in literature such as p1079-1085 (1998) can be used. Among them, it is preferable to use an isopropyl alcohol-producing bacterium described in International Publication WO2009 / 008377.
- the isopropyl alcohol-producing bacterium described in the international publication WO2009 / 008377 is one to which acetoacetate decarboxylase activity, isopropyl alcohol dehydrogenase activity, CoA transferase activity and thiolase activity are imparted.
- “Granting” the activity means to enhance the promoter activity of the enzyme gene possessed by the host bacterium on the genome in addition to introducing the gene encoding the enzyme from outside the host microbial cell, or Includes those in which the enzyme gene is strongly expressed by substitution with other promoters.
- the acetoacetate decarboxylase activity, isopropyl alcohol dehydrogenase activity, CoA transferase activity and thiolase activity each of a gene encoding an enzyme derived from at least one selected from the group consisting of Clostridium bacteria, Bacillus bacteria and Escherichia bacteria It is preferable that it is obtained by introduction.
- the acetoacetate decarboxylase activity and isopropyl alcohol dehydrogenase activity are obtained by introducing a gene encoding an enzyme derived from a Clostridium bacterium, and the CoA transferase activity and thiolase activity encode an enzyme derived from an Escherichia bacterium. More preferably, it is obtained by introduction of a gene to be used.
- the acetoacetate decarboxylase activity was obtained by introduction of a gene encoding an enzyme derived from Clostridium acetobutylicum, and the isopropyl alcohol dehydrogenase activity was obtained by introduction of a gene encoding an enzyme derived from Clostridium begerinki It is particularly preferable that the CoA transferase activity and the thiolase activity are those obtained by introduction of a gene encoding an enzyme derived from Escherichia coli.
- acetoacetate decarboxylase activity isopropyl alcohol dehydrogenase activity, CoA transferase activity, and thiolase activity are each obtained by introduction of a gene encoding an enzyme derived from a Clostridium bacterium.
- the isopropyl alcohol-producing bacterium is Escherichia coli.
- Isopropyl alcohol and acetone can be produced from plant-derived raw materials by isopropyl alcohol-producing bacteria. In this production, other by-products such as water and carboxylic acid are usually obtained at the same time.
- acetone obtained from plant-derived raw materials by isopropyl alcohol-producing bacteria as the ketone used in the present invention, purification was performed to remove isopropyl alcohol, water, other by-products, etc. in the product. High acetone may be used.
- a product obtained by increasing the concentration of isopropyl alcohol and acetone in the obtained product and removing other by-products may be used.
- isopropyl alcohol and water are fed into the reactor simultaneously with acetone.
- isopropyl alcohol is supplied, the isopropyl alcohol is dehydrated by the dehydration catalyst to produce propylene and water.
- the hydrogen to be reacted with the ketone may be a molecular hydrogen gas or a hydrocarbon such as cyclohexane that generates hydrogen under the reaction conditions.
- hydrogen should be at least equimolar with the ketone. From the viewpoint of separation and recovery, a suitable range is 1 to 30 mol, preferably 1 to 15 mol, with respect to 1 mol of ketone.
- a suitable range is 1 to 30 mol, preferably 1 to 15 mol, with respect to 1 mol of ketone.
- the hydrogen supplied in the reaction of the present invention reacts with the oxygen atom of the ketone, and finally becomes water and can be taken out from the reactor outlet.
- hydrogen equal to or more than the equivalent of ketone is essentially not consumed unless an undesirable side reaction proceeds.
- hydrogen gas When hydrogen gas is added to the reaction, it is usually continuously supplied.
- the method is not particularly limited to this method. After adding hydrogen gas at the start of the reaction, the supply during the reaction is stopped, and after a certain period of time. The intermittent supply may be repeated, or in the case of a liquid phase reaction, hydrogen gas may be dissolved in the solvent and supplied. In the recycling process, hydrogen gas recovered from the top of the tower may be supplied together with the light boiling fraction.
- the pressure of hydrogen to be added is generally equal to the pressure in the reactor, but may be appropriately changed according to the hydrogen supply method.
- the method and conditions are not particularly limited, and for example, the following conditions and methods can be employed.
- reaction raw material, ketone, and hydrogen gas may be contacted by either gas-liquid countercurrent or gas-liquid co-current flow.
- the liquid and gas directions are liquid descending-gas rising, liquid rising-gas falling, liquid gas rising, liquid Any of gas fall may be sufficient.
- the present invention includes a metal oxide catalyst containing at least one group 6 (VIB group) element, a zeolite, alumina, and a heteropoly acid salt obtained by exchanging part or all of protons of a heteropoly acid with a metal cation. At least one dehydration catalyst is used. In the present invention, the dehydration catalyst may be used alone or in combination of two or more.
- VIB group group 6
- Tungsten oxide and molybdenum oxide can be used as the metal oxide catalyst containing at least one group 6 (VIB group) element.
- Zeolite which is an inorganic crystalline porous compound mainly composed of silicon and aluminum, can be suitably used as a dehydration catalyst from the viewpoint of heat resistance and acid strength.
- a suitable zeolite is selected according to the molecular diameter of the alcohol that is considered to exist as an intermediate and the target olefin in the production method of the present invention.
- zeolite As the zeolite, it is preferable to use a zeolite having pores with an 8- to 16-membered ring of oxygen.
- Zeolite having pores with an oxygen 8- to 16-membered ring include chabasite, erionite, ferrierite, heurlandite, ZSM-5, ZSM-11, ZSM-12, NU-87, Sheeter 1, Weinebeite, X-type zeolite Y-type zeolite, USY-type zeolite, mordenite, dealuminated mordenite, ⁇ -zeolite, MCM-22, MCM-36, MCM-56, gmelinite, offretite, cloverlite, VPI-5, UTD-1.
- zeolites those having pores approximately the same as the molecular diameter of alcohol are suitable, and it is more preferable to use zeolite having pores having an oxygen 8- to 12-membered ring.
- Zeolite having pores with oxygen 8- to 12-membered rings include chabasite, erionite, Y-type zeolite, USY-type zeolite, mordenite, dealuminated mordenite, ⁇ -zeolite, MCM-22, MCM-56, ZSM-12 , ZSM-5 and the like.
- the composition ratio of silicon and aluminum (silicon / aluminum) in these zeolites should be in the range of 2/1 to 200/1, and in particular from the viewpoint of activity and thermal stability, 5/1 to 100/1 is preferable.
- so-called isomorphously substituted zeolite in which the aluminum atom contained in the zeolite skeleton is substituted with a metal other than aluminum such as Ga, Ti, Fe, Mn, and B can also be used.
- ⁇ -alumina As the alumina, ⁇ -alumina, ⁇ -alumina and the like can be used. Among these, ⁇ -alumina is preferably used from the viewpoints of heat resistance and acid strength of the dehydration catalyst.
- heteropolyacid salt obtained by exchanging part or all of the protons possessed by the heteropolyacid with a metal cation one obtained by exchanging at least part of the protons possessed by the heteropolyacid with a metal cation can be used.
- the heteropolyacid at least one heteropolyacid selected from phosphotungstic acid, silicotungstic acid, phosphomolybdic acid and silicomolybdic acid is industrially available and preferable.
- a metal cation an alkali metal cation and an alkaline earth metal cation are preferable, an alkali metal cation is more preferable, and a potassium cation and a cesium cation are particularly preferable.
- heteropolyacid salt examples include phosphotungstic acid potassium salt, silicotungstic acid potassium salt, phosphomolybdic acid potassium salt, silicomolybdic acid potassium salt, phosphotungstic acid cesium salt, silicotungstic acid cesium salt, phosphorus
- examples thereof include a cesium salt of molybdic acid and a cesium salt of silicomolybdic acid. In these salts, it is sufficient that at least a part of protons is exchanged with a metal cation, and all protons may be exchanged with a metal cation.
- the heteropolyacid salt may be supported on a carrier.
- the carrier include silica, alumina, titania, zirconia, silica-alumina, silica-titania, silica-zirconia, and among them, silica is preferable. That is, the heteropolyacid salt is preferably supported on silica.
- a method for supporting the heteropolyacid salt on the carrier a conventionally known method can be used, for example, a method described in JP-A-6-91171.
- the dehydration catalyst used in the present invention is at least one selected from zeolite, ⁇ -alumina, tungsten oxide, molybdenum oxide, and heteropoly acid salt obtained by exchanging part or all of protons of heteropoly acid with a metal cation.
- the dehydration catalyst is preferably a heteropolyacid salt, and the most preferable side reactions such as aldol condensation of ketones, oligomerization of olefins, hydrogenation of olefins, and the like are suppressed.
- the shape of the dehydration catalyst is not particularly limited, and may be any of a spherical shape, a cylindrical shape, an extruded shape, and a crushed shape.
- the particle size is in the range of 0.01 mm to 100 mm, and is selected according to the size of the reactor. do it.
- the size of the particles in the supported state is preferably in the above range.
- the said dehydration catalyst may be used individually by 1 type, and may use 2 or more types.
- the catalyst containing silver element used in the present invention can be used without particular limitation as long as it contains silver element in the catalyst and acts as a hydrogenation catalyst.
- a catalyst containing a silver element you may use individually by 1 type and may use 2 or more types.
- the catalyst containing silver element used in the present invention acts as a hydrogenation catalyst for ketones, but hardly acts as a hydrogenation catalyst for olefins. For this reason, compared with the case where the catalyst containing a copper element is used as a hydrogenation catalyst, the paraffin byproduced by hydrogenating an olefin can be reduced, for example.
- the ketone is acetone, the use of a catalyst containing silver element suppresses the production of propane as a by-product.
- the catalyst containing silver element further contains at least one group 13 (IIIA group) element.
- Group 13 (IIIA group) elements include aluminum and indium.
- the catalyst containing silver element contains indium, it is possible to further reduce the occurrence of paraffin by-production by hydrogenating the target olefin, which is particularly preferable.
- Examples of the catalyst containing silver element include those contained in the form of cluster metals such as Ag 2 O (metal oxide), AgCl (metal chloride), and Cu—Ag.
- the catalyst containing elemental silver may be supported on a carrier.
- the carrier include silica, alumina, silica alumina, titania, magnesia, silica magnesia, zirconia, zinc oxide, carbon, acid clay, and diatomaceous earth.
- Zeolite can be used. Among these, it is preferable to select at least one of silica, alumina, silica alumina, titania, magnesia, silica magnesia, zirconia, zinc oxide, and carbon.
- a method for preparing a catalyst containing silver element supported on a carrier for example, a method of impregnating a carrier with an aqueous solution of silver nitrate or the like and baking it, or a ligand for making silver soluble in an organic solvent is called a ligand.
- the catalyst containing silver element available on the market include an Ag-supported silica catalyst and an Ag-supported alumina catalyst.
- the catalyst containing a silver element may be used individually by 1 type, and may use 2 or more types.
- a method for preparing the catalyst includes, for example, a catalyst containing silver element and a group 13 (IIIA group) element. And the like.
- the catalyst containing silver element may be improved in activity and selectivity when a metal salt such as PbSO 4 , FeCl 2 or SnCl 2, an alkali metal such as K or Na, an alkali metal salt, BaSO 4 or the like is added. What is necessary is just to add as needed.
- the shape of the catalyst containing silver element is not particularly limited, and may be any of spherical, cylindrical, extruded, and crushed, and the particle size is in the range of 0.01 mm to 100 mm. You may select according to.
- the silver element-containing catalyst may be supported on the dehydration catalyst.
- a method for preparing the catalyst containing silver element supported on the dehydration catalyst include aqueous solutions of silver nitrate and the like. A method in which a dehydration catalyst is impregnated and calcined, or as a complex in which an organic molecule called a ligand is bound to make silver soluble in an organic solvent, the solution is prepared by adding it to an organic solvent. It is also possible to load the catalyst on the dehydration catalyst by vapor deposition or the like since some of the complexes are vaporized under vacuum.
- a coprecipitation method is adopted in which a silver element containing a silver element coexists and a carrier synthesis and a catalyst containing a silver element are simultaneously carried. You can also.
- the reaction temperature is not particularly limited in the present invention, but it is preferably in the range of 50 to 500 ° C, more preferably 60 to 400 ° C. In general, the preferred operating pressure range is 0.1 to 500 atmospheres, more preferably 0.5 to 100 atmospheres.
- the amount of catalyst to be used is not particularly limited.
- the supply amount (weight) of raw material (ketone) per hour is set to the weight of catalyst (weight).
- the value divided by the total weight of the catalyst containing silver element and the dehydration catalyst, ie, WHSV, is desirably in the range of 0.01 to 200 / h, more preferably 0.02 to 100 / h. The range of is preferable.
- the amount ratio of the dehydration catalyst to the silver element-containing catalyst is not particularly limited.
- the dehydration catalyst: silver element-containing catalyst (weight ratio) is 1: 0.01 to 1: 100. Yes, preferably 1: 0.05 to 1:50. If the weight ratio of the dehydration catalyst is too small, the dehydration reaction is not sufficiently performed and the olefin yield is lowered, which is not economical. If the weight ratio of the dehydration catalyst is too large, the conversion rate of the ketone is lowered, which is also not economical.
- the filling method of the catalyst containing the dehydration catalyst and the silver element may greatly affect the reaction results.
- hydrogenation and dehydration are considered to occur in stages. Therefore, it is preferable to charge the appropriate catalyst species in accordance with each stage of the reaction in order to efficiently use the catalyst and to suppress unwanted side reactions.
- Examples of a method for sequentially filling appropriate catalyst species corresponding to each stage of the reaction include (1) a method of mixing and filling a dehydration catalyst and a catalyst containing silver element, and (2) from the catalyst containing silver element. (3) a method of filling a dehydration catalyst carrying a catalyst containing silver element, and (4) a method of filling the layer so as to form a layer (upstream side) and a layer (downstream side) of a dehydration catalyst.
- the upstream side refers to the reactor inlet side, that is, the layer through which the raw material passes in the first half of the reaction
- the downstream side refers to the reactor outlet side, ie, the layer through which the raw material passes through the second half of the reaction.
- entrance side of the said reactor shows the inlet_port
- the method can be carried out in any of batch, semi-batch and continuous flow methods. It can be carried out in any form of a liquid phase, a gas phase, and a gas-liquid mixed phase.
- a catalyst filling method various methods such as a fixed bed, a fluidized bed, a suspension bed, and a shelf fixed bed are adopted, and any method may be used.
- the dehydration catalyst and the catalyst containing silver element may be dehydrated by a known method.
- an inert gas such as nitrogen or helium
- the temperature is kept at 300 ° C. or higher for 10 minutes or longer. Good.
- treatment under a hydrogen stream can be performed.
- regeneration can be performed by a known method to recover the activity of the dehydration catalyst and the catalyst containing silver element.
- a merry-go-round system in which two or three reactors are arranged in parallel and the remaining one or two reactors carry out the reaction while one reactor is being regenerated. You can take it. Furthermore, when there are three reactors, a method may be used in which the other two reactors are connected in series to reduce fluctuations in production. In addition, when using the fluidized bed flow reaction system or moving bed reaction system, a certain level of activity is maintained by extracting some or all of the catalyst continuously or intermittently from the reactor and replenishing the corresponding amount. Is possible.
- Example 1 High pressure feed pump, high pressure hydrogen mass flow, high pressure nitrogen mass flow, electric furnace, reactor with catalyst filling part, fixed bed reactor equipped with back pressure valve, pressurized liquid phase flow reaction by down flow was performed .
- acetone was circulated at 0.30 g / Hr at 180 ° C. in a hydrogen stream of 12 ml / min from the reactor inlet side.
- Example 2 Example 1 except that the 5% Ag-0.5% In / silica catalyst prepared in Production Example 2 was used instead of the 5% Ag / silica catalyst, and the hydrogen flow rate was increased from 12 ml / min to 22 ml / min. The reaction was carried out in the same manner as above.
- Example 3 The reaction was performed in the same manner as in Example 2 except that the reaction temperature was raised from 180 ° C to 240 ° C.
- Example 4 The reaction was conducted in the same manner as in Example 2 except that the reaction temperature was raised from 180 ° C to 280 ° C.
- Example 5 The reaction was carried out in the same manner as in Example 4 except that 0.6 g of ⁇ -zeolite was changed to 1.0 g of ⁇ -alumina (N611N manufactured by JGC Chemicals, compression molded at 20 MPa, and then classified into 250 to 500 ⁇ ).
- Example 6 High pressure feed pump, high pressure hydrogen mass flow, high pressure nitrogen mass flow, electric furnace, reactor with catalyst filling part, fixed bed reactor equipped with back pressure valve, pressurized liquid phase flow reaction by down flow was performed .
- acetone was circulated at 0.30 g / Hr at 300 ° C. in a hydrogen stream of 22 ml / min from the reactor inlet side.
- Example 7 (Preparation of dehydration catalyst) 2.0 g of H 0.5 K 2.5 PW 12 O 40 (potassium phosphotungstic acid salt in which phosphotungstic acid H was partially exchanged with K) was placed in 15 ml of ethanol and stirred at 40 ° C. for 1 hour. Next, 6.9 g of tetraethoxysilane was added dropwise and stirred at 40 ° C. for 1 hour. To this, 3.0 g of water was added and stirred at 80 ° C. for 24 hours. The produced sol was evaporated to dryness, and the recovered solid was added to 80 ° C.
- reaction instead of tungsten oxide (WO 3 ), the same procedure as in Example 6 was used except that 1.0 g of the dehydration catalyst obtained by the above preparation (a catalyst in which H 0.5 K 2.5 PW 12 O 40 was supported on silica) was used. Reaction was performed. The reaction results are shown in Table 2. As shown in Table 2, propylene was produced with good selectivity.
- Example 8 (Preparation of dehydration catalyst) Instead of H 0.5 K 2.5 PW 12 O 40 (potassium phosphotungstic acid in which H of phosphotungstic acid is partially exchanged with K), K 3 PW 12 O 40 (H of phosphotungstic acid is all converted to K Except for using the exchanged phosphotungstic acid potassium salt), a dehydration catalyst in which K 3 PW 12 O 40 was supported on silica at a weight ratio of 1: 1 was obtained in the same manner as in the preparation of the dehydration catalyst of Example 7. .
- reaction The reaction was carried out in the same manner as in Example 6 except that 1.0 g of the dehydration catalyst obtained by the above preparation (a catalyst having K 3 PW 12 O 40 supported on silica) was used instead of tungsten oxide (WO 3 ). went.
- the reaction results are shown in Table 2. As shown in Table 2, propylene was produced with good selectivity.
- Example 9 (Production of isopropyl alcohol and acetone) Isopropyl alcohol was produced using isopropyl alcohol-producing Escherichia coli (Escherichia coli pGAP-Iaaa / B strain) described in Example 4 of WO2009 / 008377.
- processing was performed using the production apparatus 10 shown in FIG. 1 of WO2009 / 008377.
- the culture tank and the trap tank were 3 liters.
- the culture tank, trap tank, injection tube, connecting tube, and discharge tube were all made of glass.
- Water (trap water) as a trap liquid is injected into the trap tank in an amount of 1.8 L. Further, the trap water was cooled to 10 ° C. and used.
- a waste liquid tube was installed in the culture tank, and the culture liquid increased by feeding sugar or a neutralizing agent was appropriately discharged out of the culture tank.
- Culturing was performed under atmospheric pressure with an aeration rate of 1.5 L / min, a stirring speed of 550 rpm, a culture temperature of 35 ° C., and a pH of 7.0 (adjusted with an NH 3 aqueous solution).
- a 45 wt / wt% aqueous glucose solution was added at a flow rate of 7.5 g / L / hour.
- a 45 wt / wt% aqueous glucose solution was added at a flow rate of 15 g / L / hour.
- Example 8 except that acetone was replaced with the above mixed solution containing isopropyl alcohol, acetone and water, and the amount of the catalyst having K 3 PW 12 O 40 supported on silica was changed from 1.0 g to 1.5 g.
- the reaction was carried out in the same manner as above.
- the reaction results are shown in Table 3. As shown in Table 3, propylene was produced with good selectivity.
- the reaction time indicates how many hours later the reaction result (acetone conversion rate, selectivity) was obtained from the start of the reaction. That is, Table 1 shows that the reaction results were obtained 80 hours after the start of the reaction, and Tables 2 and 3 show that the reaction results were obtained 100 hours after the start of the reaction.
- the present invention provides an industrially practical method for directly reacting a ketone and hydrogen to obtain an olefin with high selectivity in a single reaction step. If this method is used, propylene can be obtained directly from acetone co-produced during the production of phenol by the cumene method.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Epoxy Compounds (AREA)
Abstract
Description
本発明には、少なくとも1種の6族(VIB族)の元素を含む金属酸化物触媒、ゼオライト、アルミナ、およびヘテロポリ酸が有するプロトンの一部若しくは全部を金属カチオンで交換したヘテロポリ酸塩から選択される少なくとも1種の脱水触媒が用いられる。本発明において、脱水触媒は、1種単独でも、2種以上を用いてもよい。
本発明に用いる銀元素を含む触媒としては、触媒中に銀元素を含み、水添触媒として作用するものであれば特に制限なく用いることができる。
300mlのナスフラスコにシリカゲル(和光純薬製ワコーゲルC-100)50.0g、乳酸銀(0.5水和物)4.77g、イオン交換水100mlを加えロータリーエバポレータを用い、室温で1時間混合した。20mmHgの減圧下40~50℃で水を留去し、銀をシリカゲルに担持した。得られた銀が担持されたシリカゲルに、水素気流下で、100℃から5時間をかけて段階的に300℃まで温度を上げる還元処理を行った。その結果、黒色の5%Ag/シリカ触媒52.5gを得た。5%Ag/シリカ触媒を、ふるいを用いて250~500μに分級した。
高圧用フィードポンプ、高圧用水素マスフロー、高圧用窒素マスフロー、電気炉、触媒充填部分を有する反応器、背圧弁を設置した固定床反応装置を用い、ダウンフローによる加圧液相流通反応を行った。
300mlのナスフラスコに製造例1で調製した5%Ag/シリカ触媒29.1g、硝酸インジウム3水和物0.43g、イオン交換水100mlを加えロータリーエバポレータを用い、室温で1時間混合した。20mmHgの減圧下40~50℃で水を留去し、硝酸インジウムを5%Ag/シリカ触媒に担持した。得られたインジウムが担持された5%Ag/シリカ触媒に、水素気流下で、100℃から3時間をかけて段階的に300℃まで温度を上げる還元処理を行った。その結果、黒色の5%Ag-0.5%In/シリカ触媒29.2gを得た。5%Ag-0.5%In/シリカ触媒を、ふるいを用いて250~500μに分級した。
5%Ag/シリカ触媒の代わりに製造例2で調製した5%Ag-0.5%In/シリカ触媒を用い、水素の流量を12ml/分から22ml/分へ増大させた以外は、実施例1と同様に反応を行った。
反応温度を180℃から240℃に上げた以外は、実施例2と同様に反応を行った。
反応温度を180℃から280℃に上げた以外は、実施例2と同様に反応を行った。
β-ゼオライト0.6gをγ-アルミナ(日揮化学製N611N、20MPaで圧縮成型後、250~500μへ分級したもの)1.0gに変えた以外は、実施例4と同様に反応を行った。
高圧用フィードポンプ、高圧用水素マスフロー、高圧用窒素マスフロー、電気炉、触媒充填部分を有する反応器、背圧弁を設置した固定床反応装置を用い、ダウンフローによる加圧液相流通反応を行った。
(脱水触媒の調製)
H0.5K2.5PW12O40(リンタングステン酸のHを部分的にKに交換したリンタングステン酸カリウム塩)2.0gをエタノール15ml中に入れ、40℃で1時間攪拌した。次いでテトラエトキシシラン6.9gを滴下して加え40℃で1時間攪拌した。これに3.0gの水を加え80℃で24時間攪拌した。生成したゾルを蒸発乾固し、回収した固体を80℃の水に加えて15時間攪拌した後、濾別し、水洗、乾燥後、300℃で焼成し、H0.5K2.5PW12O40がシリカに重量比1:1で担持された脱水触媒を得た。
タングステン酸化物(WO3)の代わりに、上記調製により得られた脱水触媒(H0.5K2.5PW12O40をシリカに担持した触媒)1.0gを用いた以外は、実施例6と同様に反応を行った。反応結果を表2に示す。表2に示したように選択性良くプロピレンを生成した。
(脱水触媒の調製)
H0.5K2.5PW12O40(リンタングステン酸のHを部分的にKに交換したリンタングステン酸カリウム塩)の代わりに、K3PW12O40(リンタングステン酸のHを、全てにKに交換したリンタングステン酸カリウム塩)を用いた以外は、実施例7の脱水触媒の調製と同様に行い、K3PW12O40がシリカに重量比1:1で担持された脱水触媒を得た。
タングステン酸化物(WO3)の代わりに、上記調製により得られた脱水触媒(K3PW12O40をシリカに担持した触媒)1.0gを用いた以外は、実施例6と同様に反応を行った。反応結果を表2に示す。表2に示したように選択性良くプロピレンを生成した。
(イソプロピルアルコールおよびアセトンの製造)
WO2009/008377の実施例4に記載のイソプロピルアルコール生産大腸菌(エシェリヒア・コリpGAP-Iaaa/B株)を用いてイソプロピルアルコールを生産した。本実施例では、WO2009/008377号パンフレット図1に示される生産装置10を用いて処理を行った。培養槽及びトラップ槽には3リットル容のものを使用した。培養槽、トラップ槽、注入管、連結管、排出管は、すべてガラス製のものとした。トラップ槽には、トラップ液としての水(トラップ水)が1.8Lの量で注入されている。更にトラップ水は10℃に冷却して使用した。
コーンスティープリカー(日本食品化工製):20g/L
Fe2SO4・7H2O:0.09g/L
K2HPO4:2g/L
KH2PO4:2g/L
MgSO4・7H2O:2g/L
(NH4)2SO4:2g/L
アデカノールLG126(旭電化工業):0.6g/L
残部:水
(プロピレンの製造)
上記イソプロピルアルコールおよびアセトンを含む水溶液(培養開始130時間後のトラップ水)から蒸留により、イソプロピルアルコール、アセトンを高濃度化し取り出した。
Claims (9)
- 少なくとも1種の6族(VIB族)の元素を含む金属酸化物触媒、ゼオライト、アルミナ、およびヘテロポリ酸が有するプロトンの一部若しくは全部を金属カチオンで交換したヘテロポリ酸塩から選択される少なくとも1種の脱水触媒と、銀元素を含む触媒との存在下で、ケトンと水素とを反応させるオレフィンの製造方法。
- 前記銀元素を含む触媒が、さらに少なくとも1種の13族(IIIA族)の元素を含む請求項1に記載のオレフィンの製造方法。
- 前記脱水触媒が、ゼオライト、γ-アルミナ、タングステン酸化物、モリブデン酸化物、およびヘテロポリ酸が有するプロトンの一部若しくは全部を金属カチオンで交換したヘテロポリ酸塩から選択される少なくとも1種の脱水触媒である請求項1に記載のオレフィンの製造方法。
- 前記ケトンがアセトンであり、前記オレフィンがプロピレンである請求項1~3のいずれか一項に記載のオレフィンの製造方法。
- 前記ヘテロポリ酸が、リンタングステン酸、ケイタングステン酸、リンモリブデン酸およびケイモリブデン酸から選択される少なくとも1種のヘテロポリ酸である請求項1に記載のオレフィンの製造方法。
- 前記ヘテロポリ酸塩が、シリカに担持されていることを特徴とする請求項1に記載のオレフィンの製造方法。
- 前記反応における反応温度が、50~500℃である請求項1に記載のオレフィンの製造方法。
- 前記脱水触媒と、銀元素を含む触媒とが、混合された状態で反応を行う請求項1に記載のオレフィンの製造方法。
- 前記ケトンが、植物由来原料からイソプロピルアルコールおよびアセトンを生成しうるイソプロピルアルコール生成細菌より得られたアセトンであり、前記オレフィンが、プロピレンである請求項1に記載のオレフィンの製造方法。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020117019433A KR101302935B1 (ko) | 2009-03-16 | 2010-03-12 | 올레핀의 제조 방법 |
JP2011504818A JP5345202B2 (ja) | 2009-03-16 | 2010-03-12 | オレフィンの製造方法 |
CA2755270A CA2755270C (en) | 2009-03-16 | 2010-03-12 | Olefin production process |
SG2011066271A SG174387A1 (en) | 2009-03-16 | 2010-03-12 | Process for production of olefins |
US13/255,239 US8552239B2 (en) | 2009-03-16 | 2010-03-12 | Olefin production process |
RU2011141551/04A RU2475469C1 (ru) | 2009-03-16 | 2010-03-12 | Способ получения олефинов |
BRPI1009187A BRPI1009187A2 (pt) | 2009-03-16 | 2010-03-12 | processo de produção de olefina |
CN201080009030.9A CN102325741B (zh) | 2009-03-16 | 2010-03-12 | 烯烃的制造方法 |
ES10753458.8T ES2669301T3 (es) | 2009-03-16 | 2010-03-12 | Procedimiento para la producción de olefinas |
EP10753458.8A EP2431347B1 (en) | 2009-03-16 | 2010-03-12 | Process for production of olefins |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-062686 | 2009-03-16 | ||
JP2009062686 | 2009-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010106966A1 true WO2010106966A1 (ja) | 2010-09-23 |
Family
ID=42739626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/054169 WO2010106966A1 (ja) | 2009-03-16 | 2010-03-12 | オレフィンの製造方法 |
Country Status (14)
Country | Link |
---|---|
US (1) | US8552239B2 (ja) |
EP (1) | EP2431347B1 (ja) |
JP (1) | JP5345202B2 (ja) |
KR (1) | KR101302935B1 (ja) |
CN (1) | CN102325741B (ja) |
BR (1) | BRPI1009187A2 (ja) |
CA (1) | CA2755270C (ja) |
ES (1) | ES2669301T3 (ja) |
MY (1) | MY161743A (ja) |
RU (1) | RU2475469C1 (ja) |
SA (1) | SA110310208B1 (ja) |
SG (1) | SG174387A1 (ja) |
TW (1) | TWI460147B (ja) |
WO (1) | WO2010106966A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012240912A (ja) * | 2011-05-13 | 2012-12-10 | Tokyo Institute Of Technology | プロピレンの製造方法 |
WO2013108543A1 (ja) | 2012-01-20 | 2013-07-25 | 三井化学株式会社 | オレフィンの製造方法 |
CN112898110A (zh) * | 2019-12-03 | 2021-06-04 | 中国科学院大连化学物理研究所 | 高碳醇脱水制α-高碳烯烃的方法 |
CN114436730A (zh) * | 2020-10-31 | 2022-05-06 | 中国石油化工股份有限公司 | 异丙醇脱水制丙烯的工艺系统和工艺方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5497411B2 (ja) * | 2008-12-01 | 2014-05-21 | 三井化学株式会社 | オレフィンの製造方法 |
US20140275688A1 (en) * | 2013-03-14 | 2014-09-18 | Exxonmobil Research And Engineering Company | Methods for producing basestocks from renewable sources using dewaxing catalyst |
US10850265B2 (en) * | 2014-06-18 | 2020-12-01 | Basf Corporation | Molecular sieve catalyst compositions, catalytic composites, systems, and methods |
US9889437B2 (en) * | 2015-04-15 | 2018-02-13 | Basf Corporation | Isomorphously substituted catalyst |
US9764313B2 (en) | 2014-06-18 | 2017-09-19 | Basf Corporation | Molecular sieve catalyst compositions, catalyst composites, systems, and methods |
RU2605427C1 (ru) * | 2015-10-20 | 2016-12-20 | Акционерное общество "Газпромнефть-Московский НПЗ" (АО "Газпромнефть-МНПЗ") | Способ восстановления разветвленных кетонов |
JP6235764B1 (ja) | 2015-12-28 | 2017-11-22 | トヨタ自動車株式会社 | クラスター担持触媒及びその製造方法 |
US20170335216A1 (en) * | 2016-05-19 | 2017-11-23 | Chevron U.S.A. Inc. | Base oil having high viscosity index from alkylation of dimer ketone-derived olefin |
JP6683656B2 (ja) * | 2017-06-27 | 2020-04-22 | トヨタ自動車株式会社 | クラスター担持触媒及びその製造方法 |
DE112018003257T5 (de) | 2017-06-27 | 2020-03-05 | Genesis Research Institute, Inc. | Cluster-tragender, poröser Träger und Verfahren zur Herstellung desselben |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02174737A (ja) * | 1988-09-30 | 1990-07-06 | Mitsui Petrochem Ind Ltd | フェノールの製造方法およびその製造時の副生アセトンからプロピレンを得る方法 |
CN1043956A (zh) | 1988-12-31 | 1990-07-18 | 孙书敏 | 用植物废料生产有机溶剂的工艺方法 |
JPH0691171A (ja) | 1992-09-10 | 1994-04-05 | Tokuyama Soda Co Ltd | ヘテロポリ酸塩担持触媒 |
JPH06167493A (ja) | 1992-11-30 | 1994-06-14 | Kyowa Medex Co Ltd | 免疫測定方法 |
JP2008513449A (ja) * | 2004-09-21 | 2008-05-01 | ユーオーピー エルエルシー | 重質オレフィン再循環ストリームの選択的水素化処理によるオキシジェネートのプロピレンへの転化方法 |
WO2009008377A1 (ja) | 2007-07-11 | 2009-01-15 | Mitsui Chemicals, Inc. | イソプロピルアルコール生産細菌及びこれを用いたイソプロピルアルコール生産方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD84378A (ja) | ||||
US4554260A (en) | 1984-07-13 | 1985-11-19 | Exxon Research & Engineering Co. | Two stage process for improving the catalyst life of zeolites in the synthesis of lower olefins from alcohols and their ether derivatives |
JPS6167493A (ja) | 1984-09-10 | 1986-04-07 | Res Assoc Petroleum Alternat Dev<Rapad> | イソプロピルアルコ−ルの製造法 |
US5017729A (en) * | 1988-09-30 | 1991-05-21 | Mitsui Petrochemical Industries, Ltd. | Phenol preparation process and propylene recovery therefrom |
JP2723621B2 (ja) | 1989-07-10 | 1998-03-09 | 三井東圧化学株式会社 | イソプロピルアルコールの製造方法 |
JP2764058B2 (ja) | 1989-07-10 | 1998-06-11 | 三井化学株式会社 | プロピレンの製造方法 |
US6046373A (en) * | 1998-04-29 | 2000-04-04 | Exxon Chemical Patents Inc. | Catalytic conversion of oxygenates to olefins |
WO2002026680A1 (en) | 2000-09-25 | 2002-04-04 | Exxonmobil Chemical Patents Inc. | Hydrogenation of cleavage effluents in phenol production |
US6518475B2 (en) | 2001-02-16 | 2003-02-11 | Exxonmobil Chemical Patents Inc. | Process for making ethylene and propylene |
US7214843B2 (en) * | 2002-11-26 | 2007-05-08 | Exxon Mobil Chemical Patents Inc. | Treating oxygenate containing feedstreams in the conversion of oxygenates to olefins |
US6984761B2 (en) * | 2002-12-16 | 2006-01-10 | Exxonmobil Chemical Patents Inc. | Co-production of phenol, acetone, α-methylstyrene and propylene oxide, and catalyst therefor |
BRPI0706688A2 (pt) | 2006-01-21 | 2011-04-05 | Tokyo Inst Tech | catalisador e método para produzir olefinas usando o catalisador |
SG171867A1 (en) * | 2008-12-01 | 2011-07-28 | Mitsui Chemicals Inc | Method for producing olefin |
-
2010
- 2010-03-12 ES ES10753458.8T patent/ES2669301T3/es active Active
- 2010-03-12 CN CN201080009030.9A patent/CN102325741B/zh active Active
- 2010-03-12 WO PCT/JP2010/054169 patent/WO2010106966A1/ja active Application Filing
- 2010-03-12 KR KR1020117019433A patent/KR101302935B1/ko active IP Right Grant
- 2010-03-12 JP JP2011504818A patent/JP5345202B2/ja active Active
- 2010-03-12 US US13/255,239 patent/US8552239B2/en active Active
- 2010-03-12 MY MYPI2011003973A patent/MY161743A/en unknown
- 2010-03-12 CA CA2755270A patent/CA2755270C/en active Active
- 2010-03-12 RU RU2011141551/04A patent/RU2475469C1/ru active
- 2010-03-12 EP EP10753458.8A patent/EP2431347B1/en active Active
- 2010-03-12 SG SG2011066271A patent/SG174387A1/en unknown
- 2010-03-12 BR BRPI1009187A patent/BRPI1009187A2/pt active Search and Examination
- 2010-03-15 SA SA110310208A patent/SA110310208B1/ar unknown
- 2010-03-15 TW TW099107424A patent/TWI460147B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02174737A (ja) * | 1988-09-30 | 1990-07-06 | Mitsui Petrochem Ind Ltd | フェノールの製造方法およびその製造時の副生アセトンからプロピレンを得る方法 |
CN1043956A (zh) | 1988-12-31 | 1990-07-18 | 孙书敏 | 用植物废料生产有机溶剂的工艺方法 |
JPH0691171A (ja) | 1992-09-10 | 1994-04-05 | Tokuyama Soda Co Ltd | ヘテロポリ酸塩担持触媒 |
JPH06167493A (ja) | 1992-11-30 | 1994-06-14 | Kyowa Medex Co Ltd | 免疫測定方法 |
JP2008513449A (ja) * | 2004-09-21 | 2008-05-01 | ユーオーピー エルエルシー | 重質オレフィン再循環ストリームの選択的水素化処理によるオキシジェネートのプロピレンへの転化方法 |
WO2009008377A1 (ja) | 2007-07-11 | 2009-01-15 | Mitsui Chemicals, Inc. | イソプロピルアルコール生産細菌及びこれを用いたイソプロピルアルコール生産方法 |
Non-Patent Citations (1)
Title |
---|
ENVIRONMENTAL MICROBIOLOGY, vol. 64, no. 3, 1998, pages 1079 - 1085 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012240912A (ja) * | 2011-05-13 | 2012-12-10 | Tokyo Institute Of Technology | プロピレンの製造方法 |
WO2013108543A1 (ja) | 2012-01-20 | 2013-07-25 | 三井化学株式会社 | オレフィンの製造方法 |
CN104053639A (zh) * | 2012-01-20 | 2014-09-17 | 三井化学株式会社 | 烯烃的制造方法 |
US9567266B2 (en) | 2012-01-20 | 2017-02-14 | Mitsui Chemicals, Inc. | Olefin production method |
CN112898110A (zh) * | 2019-12-03 | 2021-06-04 | 中国科学院大连化学物理研究所 | 高碳醇脱水制α-高碳烯烃的方法 |
CN112898110B (zh) * | 2019-12-03 | 2022-06-24 | 中国科学院大连化学物理研究所 | 高碳醇脱水制α-高碳烯烃的方法 |
CN114436730A (zh) * | 2020-10-31 | 2022-05-06 | 中国石油化工股份有限公司 | 异丙醇脱水制丙烯的工艺系统和工艺方法 |
CN114436730B (zh) * | 2020-10-31 | 2023-07-04 | 中国石油化工股份有限公司 | 异丙醇脱水制丙烯的工艺系统和工艺方法 |
Also Published As
Publication number | Publication date |
---|---|
MY161743A (en) | 2017-05-15 |
KR20110118688A (ko) | 2011-10-31 |
SA110310208B1 (ar) | 2014-01-20 |
TW201041827A (en) | 2010-12-01 |
US8552239B2 (en) | 2013-10-08 |
EP2431347A4 (en) | 2017-02-22 |
ES2669301T3 (es) | 2018-05-24 |
RU2475469C1 (ru) | 2013-02-20 |
JP5345202B2 (ja) | 2013-11-20 |
US20120010453A1 (en) | 2012-01-12 |
CN102325741A (zh) | 2012-01-18 |
JPWO2010106966A1 (ja) | 2012-09-20 |
EP2431347A1 (en) | 2012-03-21 |
CN102325741B (zh) | 2016-07-06 |
CA2755270A1 (en) | 2010-09-23 |
BRPI1009187A2 (pt) | 2016-03-01 |
CA2755270C (en) | 2013-10-15 |
KR101302935B1 (ko) | 2013-09-06 |
TWI460147B (zh) | 2014-11-11 |
SG174387A1 (en) | 2011-11-28 |
EP2431347B1 (en) | 2018-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5345202B2 (ja) | オレフィンの製造方法 | |
Gerardy et al. | Continuous flow upgrading of selected C2–C6 platform chemicals derived from biomass | |
JP6082035B2 (ja) | 酢酸とジメチルエーテルを製造するプロセス | |
KR101325457B1 (ko) | 올레핀의 제조 방법 | |
KR20140113706A (ko) | 5-하이드록시메틸푸르푸랄로부터 헥사메틸렌디아민의 생산 방법 | |
JP5674789B2 (ja) | gntRを破壊することによって生産性が向上したイソプロピルアルコール生産細菌 | |
JP2016534131A (ja) | 1,3−プロパンジオールからアクリル酸、アクリロニトリルおよび1,4−ブタンジオールを製造する方法 | |
Xia et al. | Efficient catalytic conversion of microalgae residue solid waste into lactic acid over a Fe-Sn-Beta catalyst | |
JP5497411B2 (ja) | オレフィンの製造方法 | |
CN109289909B (zh) | 一种催化复杂糖转化制备乳酸酯的催化剂 | |
JP5580668B2 (ja) | オレフィンの製造方法 | |
JP5410888B2 (ja) | オレフィンの製造方法 | |
Glas et al. | Ozmeral et al.(43) Pub. Date: Feb. 5, 2015 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080009030.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10753458 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117019433 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6565/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011504818 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13255239 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2755270 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010753458 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011141551 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1009187 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1009187 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110912 |