WO2010106699A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2010106699A1
WO2010106699A1 PCT/JP2009/063965 JP2009063965W WO2010106699A1 WO 2010106699 A1 WO2010106699 A1 WO 2010106699A1 JP 2009063965 W JP2009063965 W JP 2009063965W WO 2010106699 A1 WO2010106699 A1 WO 2010106699A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat transfer
bare
heat
upstream
Prior art date
Application number
PCT/JP2009/063965
Other languages
English (en)
French (fr)
Inventor
晴治 香川
盛紀 村上
祐一郎 里
直行 神山
剛之 宮地
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/059,884 priority Critical patent/US9400102B2/en
Priority to EP09841901.3A priority patent/EP2410241A4/en
Priority to KR1020117003860A priority patent/KR101277001B1/ko
Publication of WO2010106699A1 publication Critical patent/WO2010106699A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/40Arrangements of partition walls in flues of steam boilers, e.g. built-up from baffles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J13/00Fittings for chimneys or flues 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/003Baffles or deflectors for air or combustion products; Flame shields in flue gas ducts

Definitions

  • the present invention relates to a heat exchanger that makes a gas flow flowing in a heat exchanger uniform in a heat exchanger such as a heat recovery unit.
  • a loop of a rear heat transfer section of a coal fired boiler provided with a rear heat transfer section connected to the rear side of the furnace via a sub-side wall and having a reheater and a superheater formed of a plurality of loop tubes inside.
  • This is a pipe wear prevention device that flows in a substantially horizontal direction with a required width at the upper position of the bent end portion of the loop tube of the reheater and superheater on the heat transfer tube wall constituting the rear heat transfer unit.
  • An erosion baffle projecting into a road is attached, and a coal ash circulation hole is formed on the entire surface of the erosion baffle (for example, Patent Document 2).
  • drift prevention board in the upper part of the heat exchange tube of a boiler side wall is disclosed (for example, patent document 3).
  • the horizontal elements are from the bare tube at the second stage from the top, and from the spiral fin tube at the second and lower stages to prevent wear and damage to the heat transfer tube from coal ash. Therefore, since a large amount of gas flows into the space between the end portion and the side wall tube and the tube in the vicinity thereof is damaged, a drift prevention plate is disclosed (for example, Patent Document 4).
  • the present invention relates to an exhaust heat recovery device that recovers heat from exhaust gas etc. of a gas turbine, a front surface, a rear surface, and a side duct casing that form four surfaces, through which exhaust gas passes, and a flow direction of exhaust gas provided in the duct.
  • the finned heat transfer tube group formed by a plurality of finned heat transfer tubes arranged in a direction orthogonal to the side duct casing and parallel to the longitudinal direction of the tube axis
  • the finned heat transfer tube group What is provided with baffles that are fixed to the inner surfaces of the duct casings on both the exhaust gas upstream side and the wake side and that are formed so as to cover the ends of the finned heat transfer tube groups along the longitudinal direction of the tube axis is disclosed.
  • Patent Document 5 proposes to cover the ends of the finned heat transfer tube groups along the longitudinal direction of the tube axis.
  • Japanese Utility Model Publication No. 60-128017 Japanese Patent Laid-Open No. 11-110007 Japanese Patent Laid-Open No. 11-72202 JP 11-118101 A JP-A-9-137906
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat exchanger that can greatly reduce drift.
  • the present invention aims to solve the problems by using the following means.
  • the heat exchanger of the first means is a heat exchange having a duct extension portion, a heat transfer tube bundle storage duct, and heat transfer tube bundles provided in a plurality of stages at intervals in the flow direction of the exhaust gas in the heat transfer tube bundle storage duct.
  • a plurality of introduction portion rectifying plates provided in the heat transfer tube bundle housing duct on the upstream side of the heat tube bundle.
  • the heat exchanger of the second means is characterized in that, in the first means, each of the bare tube portion upstream flow rectifying plates or each bare tube portion downstream flow rectifying plate is a flat plate.
  • the heat exchanger of the third means is characterized in that, in the first means, each of the bare tube portion upstream rectifying plates has a plurality of holes.
  • the heat exchanger of the fourth means is characterized in that, in the third means, an opening ratio of a large number of holes in the upstream straightening plate of each bare tube part is 20 to 50%.
  • the distance between the upstream straightening plate of each bare tube part and the heat medium tube on the most upstream side of each heat transfer tube bundle is the hole. It is characterized by being at least 10 times the diameter D of
  • each introduction portion rectifying plate is formed with a plurality of openings so that the pressure loss coefficient is in the range of 1 to 3. To do.
  • the heat exchanger of the seventh means is characterized in that, in the first means, the plurality of stages of introducing-portion rectifying plates are a combination of strip-like flat plates in a cross-beam shape.
  • the plurality of openings formed in each of the introduction-portion rectifying plates on the downstream side have the total area of the introduction portion on the upstream side. It is formed so as to be equal to or larger than the total area of the plurality of openings formed in the current plate.
  • the invention according to each claim described in the claims employs each of the above-described means, and the exhaust gas flowing into the heat exchanger is in the duct extension and / or upstream of the heat transfer tube bundle.
  • the flow is rectified by the multi-stage inlet rectifier plates provided in the bundle storage duct, and the rectified exhaust gas flows into each heat transfer tube bundle, so that the upstream side and the wake flow of the bare tube portion of each heat transfer tube bundle
  • the drift can be greatly suppressed by the bare tube portion upstream flow rectifying plate and the bare tube portion downstream flow rectifying plate respectively provided on the side.
  • FIG. 1 is an overall configuration diagram of a thermal power plant that employs a heat exchanger according to an embodiment of the present invention.
  • FIG. 2 is an enlarged plan view of the heat exchanger in FIG.
  • FIGS. 3A and 3B are configuration diagrams of the introduction-portion rectifying plate in FIG. 2, in which FIG. FIG. 4 is an enlarged view of the vicinity of the bare tube portion of the fin tube portion in FIG. 2.
  • the combustion exhaust gas discharged from the boiler 1 is introduced into a denitration device 2 filled with a catalyst.
  • NOx in the exhaust gas is reduced to water and nitrogen by ammonia (NH 3) injected as a reducing agent and rendered harmless.
  • NH 3 ammonia
  • the temperature of the hot exhaust gas discharged from the denitration apparatus 2 is generally 120 to 150 ° C. via an air heater (A / H).
  • This high-temperature exhaust gas is introduced into a heat recovery device 3 as a heat exchanger, and heat is recovered by exchanging heat with a heat medium (water or the like).
  • the exhaust gas temperature discharged from the heat recovery device 3 is 80 to 110 ° C.
  • the heat medium heated in the heat recovery device 3 is sent to the reheating device 6 described later via the heat medium circulation pipe 8.
  • a suit blower device 9 is provided on the side of the heat recovery device 3.
  • the low-temperature exhaust gas discharged from the heat recovery device 3 joins and is introduced into the electrostatic precipitator 4 to remove dust from the low-temperature exhaust gas.
  • the exhaust gas from which the dust has been removed is pressurized by a blower (ID fan) 10 driven by an electric motor. Note that the blower 10 may not be provided.
  • the desulfurization apparatus 5 the SOX in the exhaust gas is absorbed and removed by limestone, and gypsum is generated as a byproduct.
  • the exhaust gas discharged from the desulfurizer 5 is generally lowered to 45 to 55 ° C. If this exhaust gas is released into the atmosphere as it is, problems such as white smoke becoming difficult to diffuse due to low temperature. Therefore, the exhaust gas is introduced into the reheating device 6, heated to a predetermined temperature or higher by the heat medium sent from the heat recovery device 3 through the heat medium circulation pipe 8, and discharged from the chimney 7.
  • FIG. 1 Although the example of the boiler 1 is shown by FIG. 1, it is not limited to this, Various exhaust gas generation sources, such as an internal combustion engine, a gas turbine, and an incinerator, are employable. Moreover, as a thermal power plant, a thermal power plant or a garbage incineration plant can be employed.
  • the heat exchanger includes a heat transfer tube, a reheater, a superheater, a heat exchange tube, a heat transfer tube, and the like.
  • a duct-shaped heat recovery device 3 having a square cross section is connected to the exhaust gas duct 20 on the downstream side of the denitration device 2. The exhaust gas discharged from the denitration device 2 shown in FIG. 1 is introduced into the heat recovery device 3.
  • the heat recovery device 3 includes a duct expansion part 21 connected to the downstream side of the exhaust gas duct 20 and a heat transfer tube bundle storage duct 22 connected to the downstream side of the duct expansion part 21.
  • a plurality of rectifying plates 23 to 27 are attached as follows.
  • each introduction portion rectifying plate 23, 24, 25 has a plurality of strip-like horizontal flat plates Px and a plurality of strip-like vertical plates.
  • the flat plate Py is combined in the form of a cross in the vertical and horizontal directions.
  • the opening of each introducing portion rectifying plate 23, 24, 25 has a total pressure loss coefficient of three sheets (or two total pressure loss coefficients if there are only two introducing portion rectifying plates 23). Within the range, preferably 2.
  • the cross-sectional area of the exhaust gas duct 20 is set to So, and the total cross-sectional area of the multiple (plural) openings of the first-stage introduction portion rectifying plate 23 is set to S1, the multiple (plural) openings of the first-stage introduction portion rectifying plate 24.
  • S2 is the total cross-sectional area of a large number (a plurality of) openings of the third-stage introduction portion rectifying plate 25
  • S3 is the cross-sectional area Sd of the heat transfer tube bundle storage duct 22.
  • S1 ⁇ S2 ⁇ S3 ⁇ Sd A large number (a plurality of) openings are formed in each introduction portion rectifying plate 23, 24, 25.
  • the total cross-sectional area S3 of the opening of the introduction portion rectifying plate 25 at least in the third stage (most downstream side) is set to be larger than the cross-sectional area So of the exhaust gas duct 20.
  • the inlet rectifying plates 23, 24, 25 are configured such that the total cross-sectional area of a large number (plurality) of openings gradually increases toward the wake, thereby allowing the inlets of the heat recovery devices 3a, 3b to enter. Nearby ash erosion can be prevented.
  • the cross-sectional area So ⁇ total cross-sectional area S1 ⁇ total cross-sectional area S2 ⁇ total cross-sectional area S3 ⁇ cross-sectional area Sd Alternatively, the total sectional area S1 ⁇ the sectional area So ⁇ the total sectional area S2 ⁇ the total sectional area S3 ⁇ the sectional area Sd, Or, the total cross-sectional area S1 ⁇ total cross-sectional area S2 ⁇ cross-sectional area So ⁇ total cross-sectional area S3 ⁇ cross-sectional area Sd, To be.
  • the number of the horizontal plates Px and the vertical plates Py is the same, and the mounting interval between the horizontal plates Px and / or the vertical plates Py is set to rectify the introduction part on the downstream side. It may be configured such that the total cross-sectional areas S1, S2, and S3 of a large number (plurality) of openings gradually increase toward the downstream by making them equal or wider as going to the plates 23, 24, and 25. Alternatively, the size of the large number (a plurality of) openings may be the same, and the number of the horizontal flat plate Px and the vertical flat plate Py may be increased as going to the downstream side introduction portion rectifying plates 23, 24, 25. good.
  • the introduction part rectifying plate may be two sheets or four sheets or more (a plurality of sheets).
  • the shape of each introduction portion rectifying plate 23, 24, 25 is not limited to that shown in FIG. 3, and may be a shape in which a large number of circular holes are formed in a flat plate.
  • the most downstream side introduction portion rectifying plate 25 may be attached in the heat transfer tube bundle housing duct 22.
  • the position of the opening of the first-stage introduction portion rectifying plate 23 in the vertical and horizontal directions and the position of the opening of the second-stage introduction portion rectifying plate 24 in the vertical and horizontal directions or By configuring each inlet rectifying plate 23, 24, 25 so that the position of the opening in the upper / lower / left / right direction does not match the position of the opening of the third stage inlet rectifying plate 25 in the vertical / left / right direction, The flow can be made more uniform.
  • the vertical and horizontal positions of the portion where the wake side horizontal plate Px and the vertical plate Py intersect are positioned in the vertical and horizontal positions of the upstream opening Si. To do.
  • ⁇ Rectifying plate in heat transfer tube bundle storage duct> As shown in FIG. 2, in the heat transfer tube bundle housing duct 22 of the heat recovery device 3, a three-stage structure including a high temperature heat transfer tube bundle 11, an intermediate temperature heat transfer tube bundle 12, and a low temperature heat transfer tube bundle 13 in the exhaust gas flow direction. (Multi-stage) heat transfer tube bundles are attached at intervals.
  • Each of the heat transfer tube bundles 11 to 13 includes a plurality of rows and stages of fin tube portions (heat transfer portions) 15 and a bare tube portion (U-shaped) that connects the end portions of the adjacent fin tube portions (heat transfer portions) 15. Tube portion) 18.
  • the upstream end and the rear end of each heat transfer tube bundle 11 to 13 are connected to a header 14 attached to the wall surface of the heat recovery apparatus 3.
  • Each header 14 is connected to the heat medium circulation pipe 8 shown in FIG. And, on the upstream side and the downstream side of the bare tube portion 18 at both ends of each fin tube portion 15, the bare tube portion upstream side rectifying plate 26 and the bare tube portion downstream side rectifying plate are covered so as to cover the bare tube portion 18. 27 is attached.
  • the fin tube portion 15 includes a plurality of straight heat medium tubes 16, spiral heat transfer fins 17 attached to the outer peripheral surface of each heat medium tube 16, and ends of adjacent heat medium tubes 16. It is comprised from the bare tube part 18 to connect.
  • a gas short path is provided in the bare tube portion 18. It can happen. Therefore, in order to prevent a gas short path, a bare tube portion upstream flow straightening plate 26 and a bare tube portion downstream flow straightening plate are provided on the side walls in the heat transfer tube bundle housing duct 22 on the upstream side and the rear flow side of the bare tube portion 18. 27 is attached.
  • a number of holes having a diameter D are formed in the upstream straightening plate 26 on the bare tube portion.
  • the aperture ratio due to the large number of holes is 20 to 50%.
  • the heat medium tube 16 is disposed at a position where the distance L between the heat medium tube 16 (upstream end of the bare tube portion 18) and the bare tube portion upstream rectifying plate 26 is 10 times or more the diameter D of the hole. .
  • the upper limit of the ratio of the distance L / the diameter D of the hole is inevitably determined by the distance between the adjacent fin tube portions 15 and 15, the size of the heat transfer tube bundle housing duct 22, and the like.
  • the bare tube portion posterior flow side rectifying plate 27 is a solid one.
  • the pressure loss of the exhaust gas flow in the portion of the heat medium tube 16 and the pressure loss of the exhaust gas flow in the portion of the bare tube portion 18 can be made substantially the same. Can be reduced).
  • Both the bare tube portion upstream flow rectifying plate 26 and the bare tube portion downstream flow rectifying plate 27 may be solid, or both may have a large number of holes.
  • the bare tube portion upstream flow straightening plate 26 and the bare tube portion downstream flow straightening plate 27 are detachable in consideration of maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Chimneys And Flues (AREA)

Abstract

 ダクト拡張部と伝熱管バンドル収納ダクトと伝熱管バンドル収納ダクト内に排ガスに流れ方向に間隔を明けて複数段設けられた伝熱管バンドルとを有する熱交換器において、各伝熱管バンドルのベアチューブ部の上流側及び後流側に各々設けられたベアチューブ部上流側整流板及びベアチューブ部後流側整流板と、ダクト拡張部内及び又は伝熱管バンドルより上流側の伝熱管バンドル収納ダクト内に設けられた複数段の導入部整流板と、を備えたことを特徴とする。これにより、各伝熱管バンドルのベアチューブ部における偏流を大幅に軽減することができる。

Description

熱交換器
 本発明は、熱回収器等の熱交換器において、熱交換器内を流れるガス流を均一にする熱交換器に関する。
 従来、燃焼排ガスの通路中にベンド部を形成してジグザグ状に配置された伝熱管において、偏流が発生する炉壁近傍のベンド部の摩耗が大きいため、隣り合うベンド部どうしの間に、炉壁にバッフルプレートを配置して偏流を防止したものが開示されている(例えば、特許文献1。)。
 また、火炉の後側に副側壁を介して接続され且つ内部に複数のループ管からなる再熱器及び過熱器が配置される後部伝熱部を備えた石炭焚ボイラの後部伝熱部のループ管摩耗防止装置であって、後部伝熱部を構成する伝熱管壁における再熱器及び過熱器のループ管の折曲がり端部の上側位置に、略水平方向に所要幅を有して流路内に張り出すエロージョンバッフルを取り付け、該エロージョンバッフルの全面に石炭灰流通孔を穿設したものが開示されている(例えば、特許文献2。)。
 また、ボイラ側壁の熱交換チューブの上部に偏流防止板を設けたものが開示されている(例えば、特許文献3。)。
 また、石炭焚ボイラの横置型熱交換器に関し、石炭灰による伝熱管チューブの摩耗、損傷を防止すべく、横置エレメントは上から2段目がベアチューブ、3段目以下がスパイラルフィンチューブからなり、その端部と側壁管との間のスペースにはガスが多く流入し、この近辺のチューブが損傷するので偏流防止板を設けたものが開示されている(例えば、特許文献4。)。
 また、ガスタービンの排ガス等より熱を回収する排熱回収装置に関し、前面、後面及び側面ダクトケーシングにより4面が形成され内部を排ガスが通過するダクトと、ダクト内に設けられ排ガスの流れ方向と直交するように配設され側面ダクトケーシングとその管軸長手方向が平行な複数本のフィン付伝熱管により形成されたフィン付伝熱管群を備えた排熱回収装置において、フィン付伝熱管群の排ガス上流側と後流側の両側面ダクトケーシングの内面にそれぞれ固定され上記管軸長手方向に沿ったフィン付伝熱管群の端部を覆うように形成されたバッフルを備えたものが開示されている(例えば、特許文献5。)。
 このように、従来から、熱交換器(伝熱管、再熱器、加熱器、熱交換チューブ、伝熱管チューブ、或いは排熱回収装置)において、熱交換器内を流れるガス流を均一にすべく、各種の整流板(バッフルプレート、エロージョンバッフル、偏流防止板、或いはバッフル)が提案されている。
 しかしながら、特許文献1~5に記載のものは、いずれも熱交換器の近傍にしか整流板が設けられておらず、十分な整流(偏流の軽減)効果が得られないという問題がある。
実開昭60-128017公報(実願昭59-12671号) 特開平11-110007号公報 特開平11-72202号公報 特開平11-118101号公報 特開平9-137906号公報
 本発明は上記のような問題点を解消するためになされたもので、大幅に偏流を軽減することができる熱交換器を提供することを目的とする。
 上記の問題点に対し本発明は、以下の各手段を以って課題の解決を図る。
 第1の手段の熱交換器は、ダクト拡張部と伝熱管バンドル収納ダクトと前記伝熱管バンドル収納ダクト内に排ガスに流れ方向に間隔を明けて複数段設けられた伝熱管バンドルとを有する熱交換器において、前記各伝熱管バンドルのベアチューブ部の上流側及び後流側に各々設けられたベアチューブ部上流側整流板及びベアチューブ部後流側整流板と、前記ダクト拡張部内及び又は前記伝熱管バンドルより上流側の前記伝熱管バンドル収納ダクト内に設けられた複数段の導入部整流板と、を備えたことを特徴とする。
 第2の手段の熱交換器は、第1の手段において、前記各ベアチューブ部上流側整流板又は前記各ベアチューブ部後流側整流板は、平板であることを特徴とする。
 第3の手段の熱交換器は、第1の手段において、前記各ベアチューブ部上流側整流板は、多数の孔を有するものであることを特徴とする。
 第4の手段の熱交換器は、第3の手段において、前記各ベアチューブ部上流側整流板の多数の孔の開口率は、20~50%であることを特徴とする。
 第5の手段の熱交換器は、第3又は4の手段において、前記各ベアチューブ部上流側整流板と前記各伝熱管バンドルの最も上流側の熱媒体チューブとの間の距離は、前記孔の直径Dの10倍以上であることを特徴とする。
 第6の手段の熱交換器は、第1の手段において、前記各導入部整流板には、圧損係数が1~3の範囲内となるように複数の開口が形成されていることを特徴とする。
 第7の手段の熱交換器は、第1の手段において、前記複数段の導入部整流板は、帯状の平板を井桁状に組み合わせたものであることを特徴とする。
 第8の手段の熱交換器は、第1乃至7のいずれかの手段において、後流側の前記各導入部整流板に形成された複数の開口は、その総面積が上流側の前記導入部整流板に形成された複数の開口の総面積と同等もしくはより大きくなるように形成されていることを特徴とする。
 特許請求の範囲に記載の各請求項に係る発明は、上記の各手段を採用しており、熱交換器に流入する排ガスは、ダクト拡張部内及び又は前記伝熱管バンドルより上流側の前記伝熱管バンドル収納ダクト内に設けられた複数段の導入部整流板により、その流れが整流され、整流された排ガスが各伝熱管バンドルに流れ込むので、各伝熱管バンドルのベアチューブ部の上流側及び後流側に各々設けられたベアチューブ部上流側整流板及びベアチューブ部後流側整流板により偏流を大幅に抑制することができる。
図1は、本発明の実施の形態に係る熱交換器を採用した火力プラントの全体構成図である。 図2は、図1における熱交換器の拡大平面図である。 図3は、図2における導入部整流板の構成図であり、(a)は側面図、(b)は正面図である。 図4は、図2におけるフィンチューブ部のベアチューブ部近傍の拡大図である。
 <<火力プラントの概要>>
先ず、図1に基づき、本発明の実施の形態に係る熱交換器を採用した火力プラントの全体の構成につき説明する。
 なお、ボイラ1の燃料としては石炭、石油等が使用されており、ボイラ1からの排ガス中には、窒素酸化物(NOX)、硫黄酸化物(SOX)、ダスト等の大気汚染物質が含まれている。
 図1に図示のように、ボイラ1から排出された燃焼排ガスは、触媒が充填された脱硝装置2に導入される。
 脱硝装置2において、還元剤として注入されるアンモニア(NH3)により、排ガス中のNOXが水と窒素とに還元され無害化される。
 脱硝装置2から排出された高温の排ガスの温度は、エアヒータ(A/H)を経由し、一般的に120~150℃となっている。
 この高温の排ガスは、熱交換器としての熱回収装置3に導入され、熱媒体(水等)と熱交換を行うことにより、熱回収される。
 熱回収装置3から排出された排ガス温度は、80~110℃となる。
 なお、熱回収装置3において加熱された熱媒体は、熱媒体循環配管8を介して、後述する再加熱装置6に送付される。
 この熱回収装置3の側部には、スーツブロア装置9が設けられている。
 熱回収装置3から排出された低温の排ガスは、合流し電気集塵装置4に導入されて、低温の排ガスからダストが除去される。
 ダストが除去された排ガスは、電動機により駆動される送風機(IDファン)10により加圧される。
 なお、送風機10は設けられないこともある。
 その後、脱硫装置5に導入される。
 脱硫装置5において、石灰石により、排ガス中のSOXが吸収除去され、副生物として石膏が生成される。
 このとき、脱硫装置5から排出される排ガスは、一般的に45~55℃に低下している。
 この排ガスをこのまま大気に放出すると、低温のため拡散しにくく、白煙になるなどの問題が生じる。
 そこで、この排ガスを、再加熱装置6に導入し、熱回収装置3から熱媒体循環配管8を介して送られてきた熱媒体により所定温度以上に加熱して、煙突7から排出している。
 なお、図1にはボイラ1の例が示されているが、これに限定されるものではなく、内燃機関、ガスタービン、焼却炉等の各種の排ガス発生源が採用可能である。
 また、火力プラントとしては、火力発電プラント、ゴミ等焼却プラントが採用可能である。
 <<熱交換器の構成>>
 次に、図2に基づき、熱交換器としての熱回収装置3の詳細につき説明する。
 なお、熱交換器としては、図2に図示の熱回収装置3以外に、伝熱管、再熱器、過熱器、熱交換チューブ、伝熱管チューブ等がある。
 図2に図示のように、脱硝装置2の後流側の排ガスダクト20には、断面が四角のダクト状の熱回収装置3が接続されている、
 図1に図示の脱硝装置2から排出された排ガスは、熱回収装置3に導入されるようになっている。
 熱回収装置3は、排ガスダクト20の後流側に接続されたダクト拡張部21と、ダクト拡張部21の後流側に接続された伝熱管バンドル収納ダクト22とにより構成されている。
 そして、ダクト拡張部21内及び又は伝熱管バンドル収納ダクト22内には、以下のごとく、複数枚の整流板23~27が取り付けられている。
 <ダクト内の整流板>
 図2に図示のように、ダクト拡張部21内には、3枚の導入部整流板(多孔板)23、24、25が取り付けられている。
 なお、3枚の導入部整流板(多孔板)23、24、25の内の一枚或いは全部を、伝熱管バンドル収納ダクト22内(フィンチューブ部15より上流側)に取り付けても良い。
 各導入部整流板23、24、25は、図3(a)の側面図、図3(b)の正面図に図示のように、複数本の帯状の横平板Pxと複数本の帯状の縦平板Pyとを縦横に井桁状に組み合わせて構成されている。
 この場合、各導入部整流板23、24、25の開口は、3枚の合計圧損係数(導入部整流板23・・・が2枚しかない場合は2枚の合計圧損係数)が1~3の範囲内、好ましくは2となるようにする。
 そして、排ガスダクト20の断面積をSo、1段目の導入部整流板23の多数(複数)の開口の総断面積をS1、2段目の導入部整流板24の多数(複数)の開口の総断面積をS2、3段目の導入部整流板25の多数(複数)の開口の総断面積をS3、伝熱管バンドル収納ダクト22の断面積Sdとすると、
S1<S2<S3<Sd、
となるように、各導入部整流板23、24、25に、多数(複数)の開口が形成されている。
 なお、少なくとも3段目(最も後流側)の導入部整流板25の開口の総断面積S3は、排ガスダクト20の断面積Soより大きくなるようにする。
 このように、各導入部整流板23、24、25を、多数(複数)の開口の総断面積が後流に行くに従って次第に大きくなるように構成することにより、熱回収装置3a、3bの入口付近のアッシュエロージョンを防止することができる。
 例えば、断面積So<総断面積S1<総断面積S2<総断面積S3<断面積Sd、
或いは、総断面積S1<断面積So<総断面積S2<総断面積S3<断面積Sd、
又は、総断面積S1<総断面積S2<断面積So<総断面積S3<断面積Sd、
となるようにする。
 この場合、図3に図示の井桁の形状のものでは、横平板Px及び縦平板Pyの本数を同じにして、各横平板Px及び又は縦平板Pyの取り付け間隔を、後流側の導入部整流板23、24、25に行くに従って同等もしくは広くすることにより、多数(複数)の開口の総断面積S1、S2、S3が後流に行くに従って次第に大きくなるように構成しても良い。
 或いは、多数(複数)の開口の大きさは同じにして、横平板Px及び縦平板Pyの本数を後流側の導入部整流板23、24、25に行くに従って増加さるように構成しても良い。
 また、導入部整流板は、2枚或いは4枚以上(複数枚)としても良い。
 また、各導入部整流板23、24、25の形状としては、図3に図示のものに限定されるものではなく、平板に多数の円状の孔を開けた形状のものでも良い。
 また、最も後流側の導入部整流板25は、伝熱管バンドル収納ダクト22内に取り付けても良い。
 また、1段目の導入部整流板23の開口の上下左右方向の位置と2段目の導入部整流板24の開口の上下左右方向の位置、或いは、2段目の導入部整流板24の開口の上下左右方向の位置と3段目の導入部整流板25の開口の上下左右方向の位置とが一致しないように、各導入部整流板23、24、25を構成することにより、排ガスの流れをより均一化することができる。
 例えば、図3に図示の構造のものでは、後流側の横平板Pxと縦平板Pyとが交差する箇所の上下左右方向の位置が、その上流側の開口Siの上下左右方向の位置に位置するようにする。
 <伝熱管バンドル収納ダクト内の整流板>
 図2に図示のように、熱回収装置3の伝熱管バンドル収納ダクト22内には、排ガスの流れ方向に高温伝熱管バンドル11、中温伝熱管バンドル12、及び低温伝熱管バンドル13からなる3段(複数段)の伝熱管バンドルが、間隔を明けて取り付けられている。
 伝熱管バンドル11~13は、各々、複数列、多数段のフィンチューブ部(伝熱部)15と、隣接するフィンチューブ部(伝熱部)15の端部を接続するベアチューブ部(U字管部)18とにより構成されている。
 各伝熱管バンドル11~13の上流端及び後流端は、熱回収装置3の壁面に取り付けられたヘッダ14に接続されている。
 各ヘッダ14には、図1に図示の熱媒体循環配管8が接続されている。
 そして、各フィンチューブ部15の両端のベアチューブ部18の上流側及び後流側には、ベアチューブ部18を覆うように、ベアチューブ部上流側整流板26及びベアチューブ部後流側整流板27が取り付けられている。
 次に、図4に基づき、フィンチューブ部15の両端部に取り付けられたベアチューブ部上流側整流板26及びベアチューブ部後流側整流板27の詳細な構造につき説明する。
 フィンチューブ部15は、複数条の直管の熱媒体チューブ16と、各熱媒体チューブ16の外周面に取り付けられた螺旋状の伝熱フィン17と、隣接する熱媒体チューブ16の端部同士を接続するベアチューブ部18とから構成されている。
 このベアチューブ部18には伝熱フィン17が取付けられておらず、しかも、ベアチューブ部18は伝熱管バンドル収納ダクト22内に納まる構造となっているため、ベアチューブ部18ではガスショートパスを生じる可能性がある。
 そこで、ガスショートパスを防止すべく、ベアチューブ部18の上流側及び後流側の伝熱管バンドル収納ダクト22内の側壁に、ベアチューブ部上流側整流板26及びベアチューブ部後流側整流板27が取り付けられている。
 このベアチューブ部上流側整流板26には、直径Dの多数の孔が明けられている。
 この多数の孔による開口率は、20~50%とする。
 また、熱媒体チューブ16(ベアチューブ部18の上流端)とベアチューブ部上流側整流板26との距離Lが、孔の直径Dの10倍以上となる位置に、熱媒体チューブ16を配置する。
 なお、距離L/孔の直径Dの比の上限は、隣接するフィンチューブ部15、15間の距離、伝熱管バンドル収納ダクト22の大きさ等により必然的に決定される。
 一方、ベアチューブ部後流側整流板27は、ソリッドのものを配置する。
 このような構造とすることにより、熱媒体チューブ16の部分における排ガスの流れの圧損と、ベアチューブ部18部分における排ガスの流れの圧損を、ほぼ同じにすることができるため、排ガスを整流(偏流の軽減)することができる。
 なお、ベアチューブ部上流側整流板26及びベアチューブ部後流側整流板27の双方共、ソリッドのものにしても良く、或いは、双方共に多数の孔を明けたものとしても良い。
 また、ベアチューブ部上流側整流板26及びベアチューブ部後流側整流板27は、メインテナンスを考慮して、着脱可能なものとする。
 <<その他の実施の形態>>
 以上、本発明の各実施の形態について説明したが、本発明は上記の各実施の形態に限定されず、本発明の範囲内で種々の変更を加えてよいことは言うまでもない。
 1   ボイラ
 2   脱硝装置
 3   熱回収装置(熱交換器)
 4   電気集塵装置
 5   脱硫装置
 6   再加熱装置
 7   煙突
 8   熱媒体循環配管
 9   スーツブロア装置
 10  送風機
 11  高温伝熱管バンドル
 12  中温伝熱管バンドル
 13  低温伝熱管バンドル
 14  ヘッダ
 15  フィンチューブ部(伝熱部)
 16  熱媒体チューブ
 17  伝熱フィン
 18  ベアチューブ部(U字管部)
 20  排ガスダクト
 21  ダクト拡張部
 22  伝熱管バンドル収納ダクト
 23  1段目の導入部整流板
 24  2段目の導入部整流板
 25  3段目の導入部整流板
 26  ベアチューブ部上流側整流板
 27  ベアチューブ部後流側整流板
 So  排ガスダクト断面積
 S1  1段目の導入部整流板の開口の総断面積
 S2  2段目の導入部整流板の開口の総断面積
 S3  3段目の導入部整流板の開口の総断面積
 Sd  伝熱管バンドル収納ダクト断面積
 Si  導入部整流板の各開口
 D   孔の直径
 L   距離
 Px  横平板
 Py  縦平板

Claims (8)

  1.  ダクト拡張部と伝熱管バンドル収納ダクトと前記伝熱管バンドル収納ダクト内に排ガスに流れ方向に間隔を明けて複数段設けられた伝熱管バンドルとを有する熱交換器において、
     前記各伝熱管バンドルのベアチューブ部の上流側及び後流側に各々設けられたベアチューブ部上流側整流板及びベアチューブ部後流側整流板と、
     前記ダクト拡張部内及び又は前記伝熱管バンドルより上流側の前記伝熱管バンドル収納ダクト内に設けられた複数段の導入部整流板と、
     を備えたことを特徴とする熱交換器。
  2.  前記各ベアチューブ部上流側整流板又は前記各ベアチューブ部後流側整流板は、平板であることを特徴とする請求項1に記載の熱交換器。
  3.  前記各ベアチューブ部上流側整流板は、多数の孔を有するものであることを特徴とする請求項1に記載の熱交換器。
  4.  前記各ベアチューブ部上流側整流板の多数の孔の開口率は、20~50%であることを特徴とする請求項3に記載の熱交換器。
  5.  前記各ベアチューブ部上流側整流板と前記各伝熱管バンドルの最も上流側の熱媒体チューブとの間の距離は、前記孔の直径Dの10倍以上であることを特徴とする請求項3又は4に記載の熱交換器。
  6.  前記各導入部整流板には、圧損係数が1~3の範囲内となるように複数の開口が形成されていることを特徴とする請求項1に記載の熱交換器。
  7.  前記複数段の導入部整流板は、帯状の平板を井桁状に組み合わせたものであることを特徴とする請求項1に記載の熱交換器。
  8.  後流側の前記各導入部整流板に形成された複数の開口は、その総面積が上流側の前記導入部整流板に明けられた複数の開口の総面積と同等もしくはより大きくなるように形成されていることを特徴とする請求項1乃至7のいずれかに記載の熱交換器。
PCT/JP2009/063965 2009-03-18 2009-08-06 熱交換器 WO2010106699A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/059,884 US9400102B2 (en) 2009-03-18 2009-08-06 Heat exchanger including flow regulating plates
EP09841901.3A EP2410241A4 (en) 2009-03-18 2009-08-06 Heat exchanger
KR1020117003860A KR101277001B1 (ko) 2009-03-18 2009-08-06 열교환기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009065610A JP5010635B2 (ja) 2009-03-18 2009-03-18 熱交換器
JP2009-065610 2009-03-18

Publications (1)

Publication Number Publication Date
WO2010106699A1 true WO2010106699A1 (ja) 2010-09-23

Family

ID=42739365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063965 WO2010106699A1 (ja) 2009-03-18 2009-08-06 熱交換器

Country Status (6)

Country Link
US (1) US9400102B2 (ja)
EP (1) EP2410241A4 (ja)
JP (1) JP5010635B2 (ja)
KR (1) KR101277001B1 (ja)
TW (1) TW201035494A (ja)
WO (1) WO2010106699A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123209A1 (ja) * 2016-12-28 2018-07-05 三菱重工業株式会社 熱交換器及び船舶

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721472B2 (ja) * 2011-02-28 2015-05-20 三菱重工業株式会社 熱交換器
JP5705717B2 (ja) * 2011-12-16 2015-04-22 東京エレクトロン株式会社 熱処理装置用熱交換器、及び、これを備えた熱処理装置
TWI547674B (zh) * 2012-11-01 2016-09-01 bao-ming Li Heat supply system for heat supply systems
JP6296233B2 (ja) * 2014-03-13 2018-03-20 株式会社Ihi 排ガスの整流構造、この整流構造を備えた排熱回収ボイラ及び整流方法
JP6373058B2 (ja) * 2014-05-19 2018-08-15 株式会社サムソン 管群構造ボイラ
JP2017032232A (ja) * 2015-08-04 2017-02-09 パナソニック株式会社 蒸発器及びランキンサイクルシステム
WO2017053499A1 (en) * 2015-09-25 2017-03-30 Fuel Tech, Inc. Process and apparatus for reducing plume
CN108700392A (zh) * 2016-02-17 2018-10-23 株式会社Ihi 热处理装置
CN106090973B (zh) * 2016-06-22 2018-04-10 上海和衡能源科技发展有限公司 烟气处理系统及方法
WO2018139669A1 (ja) * 2017-01-30 2018-08-02 三菱日立パワーシステムズ株式会社 ガスガス熱交換器
KR101983969B1 (ko) * 2017-11-17 2019-09-03 한국전력공사 순환유동층 보일러
JP7130569B2 (ja) * 2019-02-01 2022-09-05 三菱重工業株式会社 熱交換器及びボイラ並びに熱交換器の吸熱量調整方法
IT201900022395A1 (it) * 2019-11-28 2021-05-28 Ac Boilers S P A Caldaia a recupero e impianto comprendente detta caldaia a recupero
CN112696550B (zh) * 2020-12-28 2022-04-22 中国航空工业集团公司沈阳空气动力研究所 一种扩散整流的均流结构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912671U (ja) 1982-07-15 1984-01-26 共同印刷株式会社 縦三折封書帳票
JPS6076708U (ja) * 1983-10-25 1985-05-29 三菱重工業株式会社 流体加熱装置
JPS60128107U (ja) 1984-02-01 1985-08-28 三菱重工業株式会社 伝熱管
JPS6418101A (en) 1987-07-13 1989-01-20 Yasuto Ozaki Prism for unidirectional diffusion
JPH066901U (ja) * 1992-06-17 1994-01-28 石川島播磨重工業株式会社 排熱回収ボイラのガス偏流防止装置
JPH072202A (ja) 1993-03-11 1995-01-06 Denco Inc プラスチックチューブの無菌封じ込め溶接装置及び溶接方法
JPH08110007A (ja) 1994-10-12 1996-04-30 Ishikawajima Harima Heavy Ind Co Ltd 後部伝熱部のループ管摩耗防止装置
JPH08145301A (ja) * 1994-11-25 1996-06-07 Babcock Hitachi Kk 廃熱回収ボイラ
JPH09137906A (ja) 1995-11-14 1997-05-27 Mitsubishi Heavy Ind Ltd 排熱回収装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3191630A (en) * 1963-04-11 1965-06-29 Cottrell Res Inc Gas flow control system for sub-sonic divergent diffusers
DE2439144C3 (de) * 1974-08-14 1979-04-05 Siemens Ag, 1000 Berlin Und 8000 Muenchen Vorrichtung zum Verteilen strömender Medien von einem Strömungsquerschnitt auf einen davon verschiedenen Strömungsquerschnitt
US4285838A (en) * 1977-12-08 1981-08-25 Babcock-Hitachi Kabushiki Kaisha Method of producing plate-shaped catalyst unit for NOx reduction of exhaust gas
DE2934137C2 (de) * 1978-08-25 1985-05-15 Nissan Motor Co., Ltd., Yokohama, Kanagawa Strömungsmeßanordnung zum Messen einer Strömungsmenge in einem rohrförmigen Kanal
US4685426A (en) * 1986-05-05 1987-08-11 The Babcock & Wilcox Company Modular exhaust gas steam generator with common boiler casing
US5131459A (en) * 1991-10-08 1992-07-21 Deltak Corporation Heat exchanger with movable tube assemblies
JP3426675B2 (ja) * 1993-12-24 2003-07-14 関西電力株式会社 整流装置
JPH0828808A (ja) * 1994-07-19 1996-02-02 Babcock Hitachi Kk 廃熱回収ボイラ装置およびその制御方法
JPH08159402A (ja) * 1994-12-09 1996-06-21 Babcock Hitachi Kk ボイラ装置と伝熱器補修方法
JP3572139B2 (ja) 1996-04-09 2004-09-29 三菱重工業株式会社 熱交換器及びこれを備えた排煙処理装置
JP3848750B2 (ja) 1997-08-29 2006-11-22 三菱重工業株式会社 横置き型熱交換器
JPH11118101A (ja) 1997-10-20 1999-04-30 Mitsubishi Heavy Ind Ltd ボイラにおける横置型熱交換器
JP3546132B2 (ja) 1997-12-22 2004-07-21 三菱重工業株式会社 排煙処理方法
DE19959342A1 (de) * 1999-12-09 2001-06-13 Abb Alstom Power Ch Ag Abhitzedampferzeuger
JP2006214625A (ja) * 2005-02-02 2006-08-17 Babcock Hitachi Kk 排熱回収ボイラ
JP4842007B2 (ja) * 2006-05-02 2011-12-21 バブコック日立株式会社 排熱回収ボイラ
JP4854422B2 (ja) * 2006-07-31 2012-01-18 バブコック日立株式会社 貫流型排熱回収ボイラの制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912671U (ja) 1982-07-15 1984-01-26 共同印刷株式会社 縦三折封書帳票
JPS6076708U (ja) * 1983-10-25 1985-05-29 三菱重工業株式会社 流体加熱装置
JPS60128107U (ja) 1984-02-01 1985-08-28 三菱重工業株式会社 伝熱管
JPS6418101A (en) 1987-07-13 1989-01-20 Yasuto Ozaki Prism for unidirectional diffusion
JPH066901U (ja) * 1992-06-17 1994-01-28 石川島播磨重工業株式会社 排熱回収ボイラのガス偏流防止装置
JPH072202A (ja) 1993-03-11 1995-01-06 Denco Inc プラスチックチューブの無菌封じ込め溶接装置及び溶接方法
JPH08110007A (ja) 1994-10-12 1996-04-30 Ishikawajima Harima Heavy Ind Co Ltd 後部伝熱部のループ管摩耗防止装置
JPH08145301A (ja) * 1994-11-25 1996-06-07 Babcock Hitachi Kk 廃熱回収ボイラ
JPH09137906A (ja) 1995-11-14 1997-05-27 Mitsubishi Heavy Ind Ltd 排熱回収装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2410241A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123209A1 (ja) * 2016-12-28 2018-07-05 三菱重工業株式会社 熱交換器及び船舶
JP2018109464A (ja) * 2016-12-28 2018-07-12 三菱重工業株式会社 熱交換器及び船舶

Also Published As

Publication number Publication date
EP2410241A4 (en) 2017-08-23
KR101277001B1 (ko) 2013-06-24
KR20110043698A (ko) 2011-04-27
TWI372843B (ja) 2012-09-21
US20110139426A1 (en) 2011-06-16
TW201035494A (en) 2010-10-01
EP2410241A1 (en) 2012-01-25
US9400102B2 (en) 2016-07-26
JP2010216749A (ja) 2010-09-30
JP5010635B2 (ja) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5010635B2 (ja) 熱交換器
US7021248B2 (en) Passive system for optimal NOx reduction via selective catalytic reduction with variable boiler load
US8959916B2 (en) Thermal power plant
TWI605225B (zh) boiler
WO2016133116A1 (ja) 排ガス熱回収システム
CN202284787U (zh) 一种火电站工业锅炉和电站锅炉烟气余热回收装置
JP6050567B2 (ja) フィン管式熱交換器
EP3236025A1 (en) System and method for improving the performance of a selective catalyst reduction system in a heat recovery steam generator
JP2001272001A (ja) ボイラ装置
WO2021085513A1 (ja) ガスガス熱交換器
US6405791B1 (en) Air heater gas inlet plenum
CN111351066A (zh) 锅炉的密封结构及锅炉、以及锅炉的运转方法
JP3737186B2 (ja) 排熱回収装置
JP2005140370A (ja) 排熱回収ボイラ
CN220489167U (zh) 一种焚烧锅炉烟气系统
JP5144447B2 (ja) ボイラ装置
JP2006010110A (ja) 熱交換装置
CN106871101A (zh) 高效耐磨低温省煤器
JP2001090905A (ja) ボイラ
JP6109716B2 (ja) フィンチューブ式熱交換器
CN111351215A (zh) 一种新型煤粉锅炉
JP2000028101A (ja) 排熱回収ボイラの伝熱管構造
RU109119U1 (ru) Узел утилизации тепла отходящих газов в агрегате укл производства азотной кислоты
JP2011002159A (ja) 熱交換器
JPS597890A (ja) 伝熱管支持体の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117003860

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13059884

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1176/CHENP/2011

Country of ref document: IN

Ref document number: 2009841901

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE