WO2018139669A1 - ガスガス熱交換器 - Google Patents
ガスガス熱交換器 Download PDFInfo
- Publication number
- WO2018139669A1 WO2018139669A1 PCT/JP2018/002944 JP2018002944W WO2018139669A1 WO 2018139669 A1 WO2018139669 A1 WO 2018139669A1 JP 2018002944 W JP2018002944 W JP 2018002944W WO 2018139669 A1 WO2018139669 A1 WO 2018139669A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- bundle
- heat transfer
- heat
- transfer tube
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/007—Auxiliary supports for elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/26—Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/08—Arrangements of devices for treating smoke or fumes of heaters
Definitions
- the present invention relates to a gas gas heat exchanger for exchanging heat between a heat medium and exhaust gas, and more particularly to a heat exchanger suitable for exchanging heat with exhaust gas discharged from a boiler or the like.
- Patent Document 1 The technology described in Patent Document 1 below is conventionally known with respect to a flue gas treatment system for treating exhaust gas (smoke) from a boiler used in a thermal power plant or the like.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2011-58679 describes a technique of using a gas gas heat exchanger (GGH) in a flue gas treatment system.
- GGH gas gas heat exchanger
- Exhaust gas whose gas temperature has decreased through the GGH heat recovery unit (4) is introduced into the dust collector (5) in a state where the electrical resistance value of the dust in the gas is reduced, and most of the dust in the exhaust gas is removed. Is done. Thereafter, the exhaust gas is pressurized by the fan (6) and introduced into the wet flue gas desulfurization device (7), and sulfur oxides and part of the dust in the exhaust gas are removed by gas-liquid contact.
- the wet flue gas desulfurization device (7) the exhaust gas cooled to the saturated gas temperature is heated (heat exchange) by the GGH reheater (8) using the heat recovered by the GGH heat recovery device (4). Reheated).
- the exhaust gas that has passed through the GGH reheater (8) is pressurized by the desulfurization fan (9) and discharged from the chimney (10).
- JP 2011-58679 A ("0002", "0022", FIG. 1, FIG. 7)
- one set of heat transfer tubes and heat transfer tube headers are arranged in multiple stages (upstream, intermediate, downstream) in the exhaust gas flow direction.
- a plurality of stages (upper stage, middle stage, lower stage) are also arranged in the direction (gravity direction) intersecting the flow direction of the exhaust gas and the direction in which the heat transfer tube extends (gravity direction).
- the GGH heat recovery unit uses ash erosion (the heat transfer tube surface is roughened or scraped by coal ash in the exhaust gas) with respect to the gas flowing in the horizontal direction. )) (It is possible to respond by installing a soot blower).
- the lower heat transfer tube in the gravity direction flowing in the horizontal direction is easily exposed to the mist by gravity, and is likely to corrode and break down.
- the gas flow is in the direction of gravity, ash erosion and mist corrosion are likely to occur in the most upstream heat transfer tube.
- This invention makes it a technical subject to make maintenance of a gas gas heat exchanger easy compared with the structure accommodated in the conventional casing.
- the gas gas heat exchanger comprises: A first mounting portion that supports one end of a heat transfer tube that performs heat exchange between the heat medium and the exhaust gas; A second mounting portion for supporting the other end of the heat transfer tube; A connecting member that is detachably supported between the first mounting portion and the second mounting portion, and connects the first mounting portion and the second mounting portion at the time of mounting, It is provided with.
- the invention described in claim 2 is the gas gas heat exchanger according to claim 1, A plurality of said heat transfer tubes, It is provided with.
- the invention described in claim 3 is the gas gas heat exchanger according to claim 1 or 2, Each of the mounting portions formed in a columnar shape, It is provided with.
- the invention according to claim 4 is the gas gas heat exchanger according to any one of claims 1 to 3, A plurality of bundles each including the first attachment portion, the second attachment portion, and the connection member; and supporting the first attachment portion of the upper bundle on the upper surface of the first attachment portion of the lower bundle, The upper bundle is stacked on the lower bundle by supporting the second attachment portion of the upper bundle on the upper surface of the second attachment portion of the lower bundle.
- the invention according to claim 5 is the gas gas heat exchanger according to claim 4, A lower cover that covers a lower surface of the lowermost bundle, an upper cover that covers an upper surface of the uppermost bundle, and a back cover that is disposed on the opposite side of each connection member with the heat transfer tube interposed therebetween.
- the invention according to claim 6 is the gas gas heat exchanger according to claim 4 or 5, wherein
- the heat transfer tube is constituted by a bare tube, and the upstream side and the downstream side of the heat transfer tube are arranged at positions shifted in the direction of gravity
- the downstream bundle is characterized in that bowl-shaped fins are arranged on the surface of the heat transfer tube, and the upstream side and the downstream side of the heat transfer tube correspond to each other in the direction of gravity.
- the heat transfer tube when the heat transfer tube fails, the heat transfer tube can be accessed by removing the connecting member. Compared to the configuration accommodated in the conventional casing, the gas gas heat exchanger Maintenance can be facilitated. According to the invention described in claim 2, even when one of the plurality of heat transfer tubes fails, the connection member is removed so that the non-failed heat transfer tube is not hindered and has failed. Easy access to the heat transfer tube and easy maintenance.
- the mounting portion can be used as a strength member, and the weight can be reduced and the cost can be reduced as compared with the case where the supporting steel frame is used.
- the maintenance of the failed heat transfer tube can be performed by removing the connecting member of the lower bundle without removing the upper bundle. This is possible and can facilitate maintenance.
- the housing can be reduced in weight and the cost can be reduced as compared with the conventional casing configuration in which the front cover is also present.
- the invention described in claim 6 even when a failure occurs in the heat transfer tube of the downstream lower bundle that is easily corroded by mist from the wet flue gas desulfurization apparatus, maintenance can be performed without removing the upper bundle.
- FIG. 1 is an explanatory diagram of a flue gas treatment system including a heat exchanger of the present invention.
- FIG. 2 is a fluid system diagram of GGH.
- FIG. 3 is an explanatory diagram of the heat exchanger according to the first embodiment of the present invention.
- FIG. 4 is an exploded view of the heat exchanger of FIG.
- FIG. 5 is an explanatory diagram of a bundle of heat exchangers according to the first embodiment.
- 6A and 6B are explanatory views of the arrangement of the end portions of the heat transfer tube of the first embodiment corresponding to the section taken along the line VI-VI in FIG. 5,
- FIG. 6A is an explanatory view of a square arrangement, and FIG. It is explanatory drawing of arrangement
- FIG. 1 is an explanatory diagram of a flue gas treatment system including a heat exchanger of the present invention.
- FIG. 2 is a fluid system diagram of GGH.
- FIG. 3 is an explanatory diagram of the heat exchanger according to the first
- FIG. 7 is an explanatory view of a heat exchanger in which the exhaust gas flows in the vertical direction.
- FIG. 8 is an explanatory diagram of a heat exchanger in which an empty box is installed between the heat exchanger bundles in FIG.
- FIG. 9 is an explanatory view of the entire heat exchanger in which the exhaust gas flows in the vertical direction.
- the front-rear direction is the X-axis direction
- the left-right direction is the Y-axis direction
- the up-down direction is the Z-axis direction
- arrows X, -X, Y, -Y The direction indicated by Z and -Z or the indicated side is defined as front, rear, right, left, upper, lower, or front, rear, right, left, upper, and lower, respectively.
- FIG. 1 is an explanatory diagram of a flue gas treatment system including a heat exchanger of the present invention.
- the flue gas treatment system (plant) S to which the heat exchanger of Example 1 is applied after exhaust gas from the boiler 1 is introduced into the denitration device 2 and nitrogen oxides in the exhaust gas are removed, The air preheater (A / H) 3 exchanges heat with the combustion air to the boiler 1.
- the exhaust gas is introduced into a GGH heat recovery unit 4 as an example of a gas gas heat exchanger, and heat exchange (heat recovery) is performed.
- the exhaust gas whose gas temperature has decreased after passing through the GGH heat recovery device 4 is introduced into the dust collector (EP: Electrostatic Precipitator) 5 with the electrical resistance value of the dust in the gas lowered, and most of the dust in the exhaust gas. Is removed. Thereafter, the exhaust gas is pressurized by a fan 6 and introduced into a wet flue gas desulfurization device (FGD: FGD) 7, and sulfur oxides and part of soot and dust in the exhaust gas are removed by gas-liquid contact.
- FGD wet flue gas desulfurization apparatus 7
- the exhaust gas cooled to the saturated gas temperature is heated by a GGH reheater 8 as an example of a gas gas heat exchanger using the heat recovered by the GGH heat recovery device 4 ( Heat exchange, reheating).
- the exhaust gas that has passed through the GGH reheater 8 is discharged from the chimney 9.
- FIG. 2 is a fluid system diagram of GGH.
- the connecting pipe 13 is a connecting pipe 13-1 that is a heat medium flow path from the GGH heat recovery device 4 to the GGH reheater 8 and a heat medium flow path from the GGH reheater 8 to the GGH heat recovery device 4.
- the communication pipe 13 is provided with a heat medium circulation pump 14, and the heat medium circulation pump 14 circulates the heat medium.
- the heat medium circulation system is provided with a heat medium tank 15 for the purpose of absorbing expansion of the heat medium in the system.
- the heat medium heater 16 recovers the GGH heat for the purpose of controlling the heat medium temperature (controlling the temperature of the heat medium to be a certain value or more) so that stable operation is possible even under various conditions such as boilers. It is installed in a communication pipe 13-1 that is a flow path of the heat medium from the vessel 4 to the GGH reheater 8.
- the heat medium heater 16 adjusts the opening degree of the GGH heat medium heater steam amount adjusting valve 30 according to a signal from an inlet thermometer (not shown) of the GGH heat recovery device 4 at which the heat medium temperature becomes the lowest in the system. Steam is supplied.
- the steam drain generated in the heat medium heater 16 is collected in the heat medium heater drain tank 17 and then transferred to a boiler side tank (not shown).
- FIG. 3 is an explanatory diagram of the heat exchanger according to the first embodiment of the present invention.
- FIG. 4 is an exploded view of the heat exchanger of FIG. 3 and 4, the GGH heat recovery device 4 includes a housing 31 as an example of a housing.
- the housing 31 includes a plate-like bottom plate 32 as an example of a lower cover, a plate-like back plate 33 as an example of a back cover, and a plate-like top plate 34 as an example of an upper cover.
- An inter-bundle cover 35 extending in the vertical direction is supported on the front portion of the housing 31.
- the inter-bundle cover 35 extends in the vertical direction (gravity direction), and a plurality of the bundle covers 35 are arranged at predetermined intervals in the left-right direction (the direction in which exhaust gas (smoke) flows). A plurality of heat exchange bundles 41 are accommodated inside the housing 31.
- FIG. 5 is an explanatory diagram of a bundle of heat exchangers according to the first embodiment. 4 and 5, each heat exchange bundle 41 includes a first header 42 as an example of a first attachment portion and a second header 43 as an example of a second attachment portion.
- the first header 42 and the second header 43 of the first embodiment are formed in a column shape extending in the vertical direction.
- Each of the headers 42 and 43 is formed in a shape in which the inside is hollow and the upper end and the lower end are closed, and a flowable space is formed inside.
- Each header 42 and 43 supports a mounting plate 44 that projects in the left-right direction.
- the rear surfaces of the headers 42 and 43 support the heat transfer tubes 11 and 12 extending rearward.
- the heat transfer tubes 11 and 12 are configured to bend at the rear end or the front end inside the housing 31 and reciprocate in the front-rear direction a plurality of times.
- a plurality of heat transfer tubes 11 and 12 are supported on the headers 42 and 43 at intervals in the vertical direction. Both ends of each heat transfer tube 11, 12 are supported by headers 42, 43, so that a heat medium can enter and leave each heat transfer tube 11, 12 from headers 42, 43.
- Each of the heat transfer tubes 11 and 12 is supported by a support member 47 at the center in the front-rear direction.
- the support member 47 is formed in a shape in which a plurality of holes through which the heat transfer tubes 11 and 12 pass are formed in the plate. Therefore, the heat transfer tubes 11 and 12 are not supported in a cantilever state only by the headers 42 and 43 but are held by the headers 42 and 43 and the support member 47.
- one support member 47 is illustrated in the front-rear direction and the left-right direction, a plurality of support members 47 are provided in the front-rear direction or a plurality are provided in the left-right direction depending on the length of the heat transfer tubes 11, 12. It is also possible.
- plug holes 48 are formed in the headers 42 and 43 at positions corresponding to the heat transfer tubes 11 and 12.
- the plug hole 48 is a hole penetrating in the front-rear direction, and the rear end is connected to the inlet or outlet of the heat transfer tubes 11 and 12.
- the front end of the plug hole 48 is closed with a plug (not shown) during normal use.
- the plug hole 48 is removed and the inlet or outlet of the heat transfer tubes 11 and 12 is closed with a plug (not shown) through the plug hole 48. It is possible to stop the leakage of the heat medium.
- the casing board 49 as an example of a connection member is supported so that attachment or detachment is possible.
- the casing plate 49 has a height corresponding to the height in the vertical direction of the headers 42 and 43.
- the casing plate 49 is detachably supported on the mounting plate 44 by bolts (not shown).
- the method of fixing the casing plate 49 to the mounting plate 44 so as to be detachable is not limited to bolts.
- any detachable fixing method in which the casing plate 49 and the headers 42 and 43 are fillet welded and attached and removed by gouging or the like can be employed. Therefore, when the casing plate 49 is attached, the headers 42 and 43 are connected. Therefore, when the casing plate 49 is attached, the headers 42 and 43 and the heat transfer tubes 11 and 12 are integrated with high rigidity, and leakage of exhaust gas from between the headers 42 and 43 is also suppressed.
- the casing plate 49 has a height corresponding to the height in the vertical direction of the headers 42 and 43.
- the heat exchange bundle 41 of the first embodiment is configured by the members having the reference numerals 42 to 49.
- the heat exchange bundle 41 is configured to be housed in the housing 31 as a single unit.
- the exhaust gas flows inside the bottom plate 32, the back plate 33, the top plate 34, the inter-bundle cover 35, the headers 42 and 43, and the casing plate 49.
- An exhaust gas path is constructed.
- the heat exchanger tubes 11 and 12 are arrange
- the GGH heat recovery device 4 and the GGH reheater 8 according to the first embodiment are arranged in three rows along the upstream, the middle flow, and the downstream with respect to the flow direction of the exhaust gas. In each downstream row, three stages of heat exchange bundles 41 are stacked in the vertical direction. Therefore, the GGH heat recovery device 4 of the first embodiment includes nine heat exchange bundles 41 of the upstream lower bundle 101 to the upstream upper bundle 103, the middle flow lower bundle 104 to the middle flow upper bundle 106, and the downstream lower bundle 107 to the downstream upper bundle 109. Have.
- the GGH reheater 8 has nine heat exchange bundles 41 including an upstream lower bundle 111 to an upstream upper bundle 113, a middle flow lower bundle 114 to a middle flow upper bundle 116, and a downstream lower bundle 117 to a downstream upper bundle 119.
- the middle bundles 102, 105, 108, 112, 115, 118 have the lower ends of the headers 42, 43 directly stacked on the upper ends of the lower bundles 101, 104, 107, 111, 114, 117, and are fixed with bolts. ing.
- the upper bundles 103, 106, 109, 113, 116, and 119 have their lower ends of the headers 42 and 43 directly stacked on the upper ends of the middle bundles 102, 105, 108, 112, 115, and 118, and are fixed with bolts.
- the upper headers 42 and 43 are not limited to be stacked directly on the lower headers 42 and 43, but may be stacked via spacers, plates, frames, or the like.
- the heat exchange bundles 41 are connected to each other by connecting pipes 51 so that the heat medium can move.
- the GGH heat recovery unit 4 is configured such that the heat medium flows in the order of the downstream bundles 107 to 109, the midstream bundles 104 to 106, and the upstream bundles 101 to 103. Has been.
- the upstream bundles 101 to 103 have the largest temperature difference between the heat medium and the exhaust gas.
- connection pipe 51 is connected so that the heat medium flows in the order of the upstream bundles 111 to 113, the downstream bundles 117 to 119, and the midstream bundles 114 to 116.
- the heat medium flows through the upstream bundles 111 to 113 in the hottest state, and the mist from the wet flue gas desulfurization device 7 is likely to evaporate quickly.
- the heat medium flows in the order of the downstream bundles 117 to 119 and the midstream bundles 114 to 116, so that the temperature of the heat medium becomes midstream ⁇ downstream.
- Example 1 When the temperature of the heat medium is intermediate flow> downstream, the exhaust gas is warmed in the high temperature intermediate flow and then passes through the low temperature downstream, so that the exhaust gas is difficult to warm downstream and the heat exchange efficiency is low.
- Example 1 when the temperature of the heat medium is intermediate flow ⁇ downstream, the exhaust gas passing through the exhaust gas passage is warmed in the order of the intermediate flow and downstream, and the efficiency of heat exchange is improved.
- each heat transfer tube 11 of the upstream bundle 101 to 103 to the downstream bundle 107 to 109 is configured by a fin tube provided with a number of bowl-shaped fins. . Therefore, the use of the fin tube increases the contact surface area with the exhaust gas and improves the efficiency of heat exchange compared to the case where a tube without fins, that is, a so-called bare tube is used.
- the heat transfer tubes 12 of the upstream bundles 111 to 113 are constituted by bare tubes, and the midstream bundles 114 to 116 and the downstream bundles 117 to 119 are constituted by fin tubes.
- the heat transfer tubes 12 of the upstream bundles 111 to 113 are configured by fin tubes, mist from the wet flue gas desulfurization device 7 is attached and is likely to corrode.
- the heat transfer tubes 12 of the upstream bundles 111 to 113 are It consists of a bare tube and is less likely to corrode than when a fin tube is used.
- FIG. 6A and 6B are explanatory views of the arrangement of the end portions of the heat transfer tube of the first embodiment corresponding to the section taken along the line VI-VI in FIG. 5,
- FIG. 6A is an explanatory view of a square arrangement, and
- the heat transfer tubes 11 are set at the same position in the height direction. Therefore, in Example 1, as shown in FIG. 6, in the cross section of the heat transfer tube 11, the heat transfer tube 11 is a square array arranged at a position corresponding to the intersection of the square lattice. Therefore, the main-body part extended in the front-back direction of the heat exchanger tube 11 is arrange
- the heat transfer tubes 12 are arranged in a square array.
- the upstream bundles 111 to 113 as shown in FIG. 6B, in the cross section of the heat transfer tube 12, the downstream side is shifted in the direction of gravity with respect to the upstream side, so-called staggered arrangement. Therefore, in the upstream bundles 111 to 113, when the heat transfer tube 12 is bent in the folding direction at the rear end or the front end, it is bent not only in the horizontal direction but also in the vertical direction.
- the exhaust gas contacts the most upstream portion of the heat transfer tubes 11 and 12, but in the downstream portion, the contact with the exhaust gas becomes a shadow of the upstream portion with respect to the flow direction of the exhaust gas. In addition to being reduced, the amount of contact is reduced, and the exhaust gas tends to flow.
- the downstream portion of the heat transfer tube 12 is less likely to be a shadow of the upstream portion, so that the contact with the exhaust gas is increased, but resistance to the flow of the exhaust gas accordingly.
- ash erosion is reduced by adopting a square arrangement.
- a fin tube is used and contact with the exhaust gas is ensured.
- the mist from the wet flue gas desulfurization device 7 is likely to flow in, and the contact probability with the mist is increased by the heat transfer tubes 12 in a staggered arrangement so that the mist is easily removed. ing.
- the headers 42 and 43 are formed in a column shape, and are used (also used) as strength members of the heat exchangers 4 and 8. Therefore, it is not necessary to separately provide a strength member such as a supporting steel frame. Therefore, the heat exchangers 4 and 8 can be reduced in weight and the cost can be reduced. Furthermore, it is possible to configure the heat exchangers 4 and 8 simply by stacking the heat exchange bundle 41, and the assembly work can be simplified and the assembly cost can be reduced as compared with the conventional configuration accommodated in the casing. Moreover, the scale of the heat exchangers 4 and 8 can be easily changed only by changing the number of stacked heat exchange bundles 41, and the scale of the target for installing the heat exchangers 4 and 8 can be flexibly dealt with.
- the casing plate 49 is detachably supported with respect to the headers 42 and 43.
- the header and the heat transfer tube are accommodated in the conventional casing, when the lower heat transfer tube breaks down, it is necessary to take out the whole from the casing, including a portion that does not break down.
- the concentration of coal ash is higher in the lower part due to the influence of gravity, and ash erosion is more likely to occur in the lower heat transfer tube 11.
- the mist that cannot be stopped by the upstream bundles 111 to 113 tends to corrode the heat transfer tubes 12 of the low temperature middle stream bundles 114 to 116, particularly the middle stream lower bundle 114, due to the influence of gravity.
- Example 1 even when the heat transfer tubes 11 and 12 of the lower bundles 101, 104, 107, 111, 114, and 117 fail, as shown in FIG. 3, the lower bundles 101, 104, By removing the casing plates 49 of 107, 111, 114, and 117, the heat transfer tubes 11 and 12 can be accessed without removing the upper and middle heat exchange bundles 41. Therefore, compared to the conventional configuration, maintenance such as inspection, replacement, and repair of the heat transfer tubes 11 and 12 can be easily performed. Moreover, in Example 1, since replacement
- the present invention is not limited to this.
- the present invention can also be applied when the direction in which the exhaust gas flows is up and down.
- the bottom plate 32 and the top plate 34 can be replaced by installing left and right side plates or changing the connection of the connection pipe 51.
- the headers 42 and 43 are arranged along the horizontal direction as shown in FIG. 7, for example, the header 43, the casing plate 49, the header 42, and the bundle from the bottom.
- the intermediate cover 35, the header 43, the casing plate 49,... Can be arranged in this order.
- the strength members in the gravity direction are not the headers 42 and 43, but the strength is secured by the steel member 50 such as H steel or U-shaped steel, the cover 35 between the bundles, and the plates 32 to 34.
- the headers 42 and 43 are preferably firmly fixed to the cover 35 between bundles by welding or the like.
- an ash recovery hopper 52 in the exhaust gas in the upstream portion of the gas flow of the GGH heat recovery device 4 (FIG. 9A).
- a duct 53 is required to be started up in front of the GGH heat recovery device 4 (FIG. 9B).
- the fin tube, the bare tube, the square array, and the staggered array are not limited to the illustrated combinations. Depending on the design, specifications, costs, required heat exchange efficiency, etc., arbitrary modifications are possible, such as all fin tubes or all bare tubes, or all square tubes.
- H04 In the above-described embodiment, the configuration in which a plurality of heat transfer tubes 11 and 12 are provided for one heat exchange bundle 41 is illustrated. However, one heat transfer tube 11 and 12 is provided for one heat exchange bundle 41. A configuration is also possible.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
重力方向に複数段配置した場合、GGH熱回収器では、水平方向に流れるガスに対して最下段(もしくは下方)の伝熱管がアッシュエロージョン(排ガス中の石炭灰で伝熱管表面が荒れたり、削れること)で故障する事がある(なお、スートブロアを設けることで対応も可能)。また、GGH再加熱器では、湿式排煙脱硫装置からミスト状の液体が流入するため、水平方向に流れる重力方向の下段の伝熱管が重力でミストにさらされやすく、腐食して故障しやすい。なお、ガスの流れが重力方向の場合は、アッシュエロージョンも、ミストによる腐食も、最上流の伝熱管で発生しやすい。
熱媒と排ガスの熱交換を行う伝熱管の一端を支持する第1取付部と、
前記伝熱管の他端を支持する第2取付部と、
前記第1取付部と前記第2取付部との間に着脱可能に支持され、装着時に前記第1取付部と前記第2取付部とを接続する接続部材と、
を備えたことを特徴とする。
複数の前記伝熱管、
を備えたことを特徴とする。
柱状に形成された前記各取付部と、
を備えたことを特徴とする。
前記第1取付部と、前記第2取付部と、前記接続部材とを有するバンドルを複数備え、下段のバンドルの第1取付部の上面に、上段のバンドルの第1取付部を支持し、前記下段のバンドルの第2取付部の上面に、上段のバンドルの第2取付部を支持することで、下段のバンドルに上段のバンドルを積み上げた
ことを特徴とする。
最下段の前記バンドルの下面を覆う下カバーと、最上段の前記バンドルの上面を覆う上カバーと、前記伝熱管を挟んで前記各接続部材の反対側に配置された背面カバーと、を有し、内部に水平方向に沿って設定された排ガス路が形成された筐体と、
を備えたことを特徴とする。
湿式排煙脱硫装置を通過した排ガスの流れ方向に沿って、上流のバンドルの下流側に下流のバンドルを隣接して配置すると共に、
前記上流のバンドルは、前記伝熱管が裸管により構成され且つ前記伝熱管の上流側と下流側とが重力方向でずれた位置に配置され、
前記下流のバンドルは、前記伝熱管の表面に襞状のフィンが配置され且つ前記伝熱管の上流側と下流側とが重力方向で対応する位置に配置された
ことを特徴とする。
請求項2に記載の発明によれば、複数の伝熱管の中の1つの伝熱管が故障した場合でも、接続部材を取り外すことで、故障していない伝熱管が妨げとならずに、故障した伝熱管にアクセスしやすく、メンテナンスを容易に行うことができる。
請求項3に記載の発明によれば、取付部を強度部材として兼用することができ、支持鉄骨を使用する場合に比べて、軽量化できるとともに、コストも削減できる。
請求項5に記載の発明によれば、前側のカバーも存在する従来のケーシングの構成に比べて、筐体を軽量化すると共に、費用を削減することができる。
請求項6に記載の発明によれば、湿式排煙脱硫装置からのミストで腐食しやすい下流の下段のバンドルの伝熱管で故障した場合でも、上段のバンドルを取り外さずにメンテナンスができる。
なお、以後の説明の理解を容易にするために、図面において、前後方向をX軸方向、左右方向をY軸方向、上下方向をZ軸方向とし、矢印X,-X,Y,-Y,Z,-Zで示す方向または示す側をそれぞれ、前方、後方、右方、左方、上方、下方、または、前側、後側、右側、左側、上側、下側とする。
また、図中、「○」の中に「・」が記載されたものは紙面の裏から表に向かう矢印を意味し、「○」の中に「×」が記載されたものは紙面の表から裏に向かう矢印を意味するものとする。
なお、以下の図面を使用した説明において、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
図1において、実施例1の熱交換器が適用された排煙処理システム(プラント)Sでは、ボイラ1からの排ガスが脱硝装置2に導入され、排ガス中の窒素酸化物が除去された後、空気予熱器(A/H)3においてボイラ1への燃焼用空気と熱交換される。次に、排ガスは、ガスガス熱交換器の一例としてのGGH熱回収器4に導入されて熱交換(熱回収)が行われる。GGH熱回収器4を通過してガス温度が低下した排ガスは、ガス中の煤塵の電気抵抗値が低下した状態で集塵装置(EP:Electrostatic Precipitator)5に導入され、排ガス中の煤塵の大半が除去される。その後、排ガスはファン6により昇圧されて、湿式排煙脱硫装置(FGD:Flue Gas Desulfurization)7に導入され、気液接触により排ガス中の硫黄酸化物および煤塵の一部が除去される。湿式排煙脱硫装置7において、飽和ガス温度まで冷却された排ガスは、GGH熱回収器4で回収された熱を利用して、ガスガス熱交換器の一例としてのGGH再加熱器8により昇温(熱交換、再加熱)される。GGH再加熱器8を通過した排ガスは煙突9より排出される。
図2において、実施例1の排煙処理システムSでは、GGH熱回収器4の伝熱管11とGGH再加熱器8の伝熱管12を連絡配管13で連絡されている。連絡配管13は、GGH熱回収器4からGGH再加熱器8への熱媒体の流路である連絡配管13-1とGGH再加熱器8からGGH熱回収器4への熱媒体の流路である連絡配管13-2とを有する。連絡配管13には熱媒循環ポンプ14が設けられ、熱媒循環ポンプ14により熱媒を循環させる系統となっている。
前記熱媒循環系統には、系内の熱媒の膨張を吸収する目的で熱媒タンク15が設けられている。
図4は図3の熱交換器の分解図である。
図3、図4において、GGH熱回収器4は、筐体の一例としてのハウジング31を有する。ハウジング31は、下カバーの一例としての板状の底板32と、背面カバーの一例としての板状の背面板33と、上カバーの一例としての板状の天板34とを有する。ハウジング31の前部には、上下方向に延びるバンドル間カバー35が支持されている。バンドル間カバー35は、上下方向(重力方向)に延びており、左右方向(排ガス(排煙)の流れる方向)に予め設定された間隔をあけて複数配置されている。ハウジング31の内部には、熱交換バンドル41が複数収容される。
図4、図5において、各熱交換バンドル41は、第1の取付部の一例としての第1のヘッダ42と、第2の取付部の一例としての第2のヘッダ43とを有する。実施例1の第1のヘッダ42および第2のヘッダ43は、上下方向に延びる柱状に形成されている。各ヘッダ42,43は、内部が中空且つ上端および下端が閉塞された形状に形成されており、内部に流動可能な空間が形成されている。また、各ヘッダ42,43には、左右方向に張り出す取付プレート44が支持されている。
各伝熱管11,12は、前後方向の中央部において、サポート部材47で支持されている。サポート部材47は、板に、伝熱管11,12が通過する穴が複数形成された形状に形成されている。したがって、伝熱管11,12が、ヘッダ42,43のみで片持ち状態で支持されておらず、ヘッダ42,43とサポート部材47で保持されている。なお、サポート部材47は、前後方向および左右方向に1つを図示しているが、伝熱管11,12の長さに応じて、前後方向に複数枚設けたり、左右方向に複数枚設けたりすることも可能である。
したがって、ケーシング板49が装着された場合には、ヘッダ42,43が接続される。よって、ケーシング板49が装着された場合は、ヘッダ42,43、伝熱管11,12が高い剛性を有する状態で一体化されると共に、ヘッダ42,43の間から排ガスが漏出することも抑制される。
一方、実施例1では、GGH再加熱器8では、上流バンドル111~113の伝熱管12が裸管で構成され、中流バンドル114~116および下流バンドル117~119はフィンチューブで構成されている。上流バンドル111~113の伝熱管12をフィンチューブで構成すると、湿式排煙脱硫装置7からのミストが付着して腐食しやすくなるが、実施例1では、上流バンドル111~113の伝熱管12が裸管で構成されており、フィンチューブを採用する場合に比べて、腐食しにくくなっている。
図6において、実施例1のGGH熱回収器4では、伝熱管11が、高さ方向で同一の位置に設定されている。したがって、実施例1では、図6に示すように、伝熱管11の断面において、伝熱管11が正方格子の交点に対応する位置に配置された正方配列となっている。よって、伝熱管11の前後方向に延びる本体部分は水平に沿って配置されている。
一方で、実施例1のGGH再加熱器8では、中流バンドル114~116および下流バンドル117~119は、GGH熱回収器4と同様に、伝熱管12が正方配列となっている。一方で、上流バンドル111~113では、図6(B)に示すように伝熱管12の断面において、上流側に対して下流側が重力方向でずれた位置、いわゆる千鳥配列となっている。したがって、上流バンドル111~113では、伝熱管12が後端または前端で折り返し方向に湾曲する際に、水平方向だけでなく上下方向にも曲げられている。
GGH熱回収器4では、正方配列とすることで、アッシュエロージョンが低減される。なお、GGH熱回収器4では、フィンチューブが使用されており排ガスとの接触は確保されている。また、GGH再加熱器8の上流バンドル111~113では、湿式排煙脱硫装置7からのミストが流入しやすく、千鳥配列の伝熱管12でミストとの接触確率を高めてミストを除去しやすくなっている。
前記構成を備えた実施例1の熱交換器4,8では、従来はケーシングに収容されていた熱交換バンドル41がケーシングに収容されておらず、熱交換バンドル41のヘッダ42,43およびケーシング板49が、排ガス路の前面を構成している。したがって、ケーシングを使用する場合に比べて、前面のカバーを省略することができる。よって、熱交換器4,8を軽量化できるとともに、コストを削減することができる。また、従来構成のようにケーシングから取り出さなくても直接プラグ孔48にアクセス可能であり、故障した伝熱管11,12を塞ぐ作業も容易である。
(変更例)
以上、本発明の実施例を詳述したが、本発明は、前記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内で、種々の変更を行うことが可能である。本発明の変更例(H01)~(H04)を下記に例示する。
(H01)前記実施例において、熱交換器4,8において、排ガスの流れる方向に対して上流、中流、下流の3段設ける構成を例示したが、これに限定されない。例えば、2段以下または4段以上設ける構成とすることも可能である。同様に、重力方向に3段積み重ねる構成を例示したが、2段以下や4段以上とすることも可能である。
また、図8に示すようにバンドル間に空箱61を入れて設置することも可能である。ガスが下から上に流れる場合には、GGH熱回収器4のガス流れ上流部に、排ガス中の灰回収用のホッパ52を設置する必要がある(図9(A))。また、ガスが上から下に流れる場合にはGGH熱回収器4の前流で立ち上げるダクト53が必要となる(図9(B))。
(H04)前記実施例において、1つの熱交換バンドル41に対して、伝熱管11,12を複数本設ける構成を例示したが、1つの熱交換バンドル41に対して伝熱管11,12が1つの構成とすることも可能である。
7…湿式排煙脱硫装置、
11,12…伝熱管、
11a,12a…伝熱管の一端、
11b,12b…伝熱管の他端、
31…筐体、
32…下カバー、
33…背面カバー、
34…上カバー、
41,101~109,111~119…バンドル、
42…第1取付部、
43…第2取付部、
49…接続部材、
50…鉄骨部材、
52…灰回収用ホッパ、
53…立ち上げダクト、
61…空箱。
Claims (6)
- 熱媒と排ガスの熱交換を行う伝熱管の一端を支持する第1取付部と、
前記伝熱管の他端を支持する第2取付部と、
前記第1取付部と前記第2取付部との間に着脱可能に支持され、装着時に前記第1取付部と前記第2取付部とを接続する接続部材と、
を備えたことを特徴とするガスガス熱交換器。 - 複数の前記伝熱管、
を備えたことを特徴とする請求項1に記載のガスガス熱交換器。 - 柱状に形成された前記各取付部と、
を備えたことを特徴とする請求項1または2に記載のガスガス熱交換器。 - 前記第1取付部と、前記第2取付部と、前記接続部材とを有するバンドルを複数備え、下段のバンドルの第1取付部の上面に、上段のバンドルの第1取付部を支持し、前記下段のバンドルの第2取付部の上面に、上段のバンドルの第2取付部を支持することで、下段のバンドルに上段のバンドルを積み上げた
ことを特徴とする請求項1ないし3のいずれかに記載のガスガス熱交換器。 - 最下段の前記バンドルの下面を覆う下カバーと、最上段の前記バンドルの上面を覆う上カバーと、前記伝熱管を挟んで前記各接続部材の反対側に配置された背面カバーと、を有し、内部に水平方向に沿って設定された排ガス路が形成された筐体と、
を備えたことを特徴とする請求項4に記載のガスガス熱交換器。 - 湿式排煙脱硫装置を通過した排ガスの流れ方向に沿って、上流のバンドルの下流側に下流のバンドルを隣接して配置すると共に、
前記上流のバンドルは、前記伝熱管が裸管により構成され且つ前記伝熱管の上流側と下流側とが重力方向でずれた位置に配置され、
前記下流のバンドルは、前記伝熱管の表面に襞状のフィンが配置され且つ前記伝熱管の上流側と下流側とが重力方向で対応する位置に配置された
ことを特徴とする請求項4または5に記載のガスガス熱交換器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018564705A JP6718525B2 (ja) | 2017-01-30 | 2018-01-30 | ガスガス熱交換器 |
KR1020197025334A KR102288553B1 (ko) | 2017-01-30 | 2018-01-30 | 가스-가스 열교환기 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017014058 | 2017-01-30 | ||
JP2017-014058 | 2017-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018139669A1 true WO2018139669A1 (ja) | 2018-08-02 |
Family
ID=62979549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/002944 WO2018139669A1 (ja) | 2017-01-30 | 2018-01-30 | ガスガス熱交換器 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6718525B2 (ja) |
KR (1) | KR102288553B1 (ja) |
WO (1) | WO2018139669A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020026939A (ja) * | 2018-08-15 | 2020-02-20 | 三菱日立パワーシステムズ株式会社 | 熱交換器 |
WO2021085513A1 (ja) * | 2019-10-31 | 2021-05-06 | 三菱パワー株式会社 | ガスガス熱交換器 |
WO2022163860A1 (ja) * | 2021-02-01 | 2022-08-04 | 三菱重工業株式会社 | 熱交換器および排煙処理システム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62118976U (ja) * | 1986-01-20 | 1987-07-28 | ||
JP2001012878A (ja) * | 1999-06-28 | 2001-01-19 | Babcock Hitachi Kk | 熱交換器 |
JP2004060933A (ja) * | 2002-07-25 | 2004-02-26 | Toyo Radiator Co Ltd | 複数熱交換器の一体化構造 |
JP2012241964A (ja) * | 2011-05-18 | 2012-12-10 | Babcock Hitachi Kk | 熱回収部の伝熱管群の交換方法及び伝熱管群を交換するための仮設構造体 |
JP2015034651A (ja) * | 2013-08-07 | 2015-02-19 | 三菱重工環境・化学エンジニアリング株式会社 | 熱交換器の補修方法 |
JP2016142515A (ja) * | 2015-02-05 | 2016-08-08 | 三菱日立パワーシステムズ株式会社 | 熱交換器及び熱交換器の制御方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5010635B2 (ja) * | 2009-03-18 | 2012-08-29 | 三菱重工業株式会社 | 熱交換器 |
JP5410209B2 (ja) | 2009-09-08 | 2014-02-05 | バブコック日立株式会社 | ガスガス熱交換器の漏洩検出方法と装置 |
-
2018
- 2018-01-30 JP JP2018564705A patent/JP6718525B2/ja active Active
- 2018-01-30 KR KR1020197025334A patent/KR102288553B1/ko active IP Right Grant
- 2018-01-30 WO PCT/JP2018/002944 patent/WO2018139669A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62118976U (ja) * | 1986-01-20 | 1987-07-28 | ||
JP2001012878A (ja) * | 1999-06-28 | 2001-01-19 | Babcock Hitachi Kk | 熱交換器 |
JP2004060933A (ja) * | 2002-07-25 | 2004-02-26 | Toyo Radiator Co Ltd | 複数熱交換器の一体化構造 |
JP2012241964A (ja) * | 2011-05-18 | 2012-12-10 | Babcock Hitachi Kk | 熱回収部の伝熱管群の交換方法及び伝熱管群を交換するための仮設構造体 |
JP2015034651A (ja) * | 2013-08-07 | 2015-02-19 | 三菱重工環境・化学エンジニアリング株式会社 | 熱交換器の補修方法 |
JP2016142515A (ja) * | 2015-02-05 | 2016-08-08 | 三菱日立パワーシステムズ株式会社 | 熱交換器及び熱交換器の制御方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020026939A (ja) * | 2018-08-15 | 2020-02-20 | 三菱日立パワーシステムズ株式会社 | 熱交換器 |
JP7229697B2 (ja) | 2018-08-15 | 2023-02-28 | 三菱重工業株式会社 | 熱交換器 |
WO2021085513A1 (ja) * | 2019-10-31 | 2021-05-06 | 三菱パワー株式会社 | ガスガス熱交換器 |
JP2021071263A (ja) * | 2019-10-31 | 2021-05-06 | 三菱パワー株式会社 | ガスガス熱交換器 |
TWI757942B (zh) * | 2019-10-31 | 2022-03-11 | 日商三菱動力股份有限公司 | 氣體對氣體的熱交換器 |
KR20220061236A (ko) | 2019-10-31 | 2022-05-12 | 미츠비시 파워 가부시키가이샤 | 가스 가스 열교환기 |
CN114599928A (zh) * | 2019-10-31 | 2022-06-07 | 三菱重工业株式会社 | 气气热交换器 |
JP7334105B2 (ja) | 2019-10-31 | 2023-08-28 | 三菱重工業株式会社 | ガスガス熱交換器 |
WO2022163860A1 (ja) * | 2021-02-01 | 2022-08-04 | 三菱重工業株式会社 | 熱交換器および排煙処理システム |
KR20230038760A (ko) | 2021-02-01 | 2023-03-21 | 미츠비시 파워 가부시키가이샤 | 열교환기 및 배연 처리 시스템 |
Also Published As
Publication number | Publication date |
---|---|
JP6718525B2 (ja) | 2020-07-08 |
KR102288553B1 (ko) | 2021-08-10 |
JPWO2018139669A1 (ja) | 2019-11-07 |
KR20190112770A (ko) | 2019-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018139669A1 (ja) | ガスガス熱交換器 | |
US20070261646A1 (en) | Multiple pass economizer and method for SCR temperature control | |
US20110139426A1 (en) | Heat exchanger | |
KR101588892B1 (ko) | 원자력 증기발생기용 튜브 지지시스템 | |
WO2015001666A1 (ja) | 廃熱ボイラ | |
JP7229697B2 (ja) | 熱交換器 | |
JP2023533908A (ja) | リアルタイムの腐食監視に基づく熱交換器制御のシステムおよび方法 | |
WO2021085513A1 (ja) | ガスガス熱交換器 | |
JP6971867B2 (ja) | シール装置およびこれを備えた排熱回収ボイラならびに排熱回収ボイラのシール方法 | |
JP5780520B2 (ja) | 排熱回収ボイラ | |
JP6552904B2 (ja) | 排ガスの潜熱回収装置 | |
JP5209952B2 (ja) | 高ダスト排ガス熱回収処理装置 | |
WO2019208496A1 (ja) | 熱交換器 | |
JP7272852B2 (ja) | ボイラ装置 | |
JP5717425B2 (ja) | ボイラ | |
US7275589B2 (en) | Anti-vibration bars for boiler tubes with protective shields | |
WO2022163860A1 (ja) | 熱交換器および排煙処理システム | |
CN220567963U (zh) | 支撑元件、支撑水平热交换器管的系统及锅炉的烟气通路 | |
JP7221439B1 (ja) | バンドルおよび熱交換器並びに排煙処理装置、バンドルの製造方法 | |
JP2022117579A (ja) | 熱交換器および排煙処理システム | |
WO2019203300A1 (ja) | 伝熱管支持構造および伝熱管支持方法 | |
EP3889501B1 (en) | Heat transmission pipe block, waste heat recovery boiler, and method for constructing waste heat recovery boiler | |
WO2022113484A1 (ja) | 排熱回収ボイラのサポート機構 | |
EP4130572B1 (en) | Heat exchange bank | |
CA2508382C (en) | Anti-vibration bars for boiler tubes with protective shields |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18745226 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2018564705 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197025334 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18745226 Country of ref document: EP Kind code of ref document: A1 |