WO2022113484A1 - 排熱回収ボイラのサポート機構 - Google Patents
排熱回収ボイラのサポート機構 Download PDFInfo
- Publication number
- WO2022113484A1 WO2022113484A1 PCT/JP2021/033826 JP2021033826W WO2022113484A1 WO 2022113484 A1 WO2022113484 A1 WO 2022113484A1 JP 2021033826 W JP2021033826 W JP 2021033826W WO 2022113484 A1 WO2022113484 A1 WO 2022113484A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pedestal
- header
- support mechanism
- heat recovery
- gap
- Prior art date
Links
- 238000011084 recovery Methods 0.000 title claims abstract description 44
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims abstract description 87
- 230000005540 biological transmission Effects 0.000 claims abstract description 7
- 230000001105 regulatory effect Effects 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 10
- 229910000831 Steel Inorganic materials 0.000 description 30
- 239000010959 steel Substances 0.000 description 30
- 239000000463 material Substances 0.000 description 18
- 230000033228 biological regulation Effects 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000003466 welding Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000013016 damping Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000010795 Steam Flooding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/18—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/24—Supporting, suspending, or setting arrangements, e.g. heat shielding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/30—Technologies for a more efficient combustion or heat usage
Definitions
- the present invention relates to a support mechanism for suppressing runout of a group of heat transfer tubes provided in an exhaust heat recovery steam generator.
- the complex power plant which is attracting attention as a part of high-efficiency power generation, first generates power with a gas turbine and recovers the heat in the exhaust gas discharged from the gas turbine with an exhaust heat recovery steam generator (HRSG).
- HRSG exhaust heat recovery steam generator
- the steam generated by the heat recovery steam drives the steam turbine to generate electricity.
- each heat exchanger is composed of a plurality of heat transfer tubes arranged in the flow direction of the exhaust gas, and the upper and lower ends of each heat transfer tube are connected by an upper header and a lower header to form one heat transfer tube panel.
- a plurality of heat transfer tube panels are arranged in series in the casing along the flow direction of the exhaust gas, and each heat transfer tube panel is suspended from the upper wall surface of the casing via a support beam.
- a support mechanism has been provided between the heat transfer tube panel and the casing so that the horizontal load borne by this support mechanism is transmitted to the base of the casing to reduce the horizontal force acting during an earthquake or the like.
- the vibration damping structure is known.
- the upper headers of a plurality of heat transfer tube panels arranged in series with respect to the flow direction of the exhaust gas are collectively connected to the upper pedestal, and the upper pedestal is linked.
- the connecting metal fitting By supporting the casing below the support beam of the casing by the connecting metal fitting, the horizontal load borne by the connecting metal fitting is configured to be transmitted to the foundation portion via the supporting beam of the casing.
- each lower header of multiple heat transfer tube panels to the lower pedestal together and supporting this lower pedestal to the reinforcing beam that stands up from the lower wall surface of the casing with the support metal fittings, the horizontal load borne by the support metal fittings can be applied. It is configured to be transmitted to the foundation via the reinforcing beam.
- the upper header is connected to the upper pedestal by pin-connecting the connection body welded to the outer peripheral surface of the upper header to the upper pedestal.
- the lower header is connected to the lower pedestal by pin-connecting the connection body welded to the outer peripheral surface of the lower header to the lower pedestal.
- 9Cr steel may be used as a header material having excellent high-temperature strength.
- the same 9Cr steel as the header material is used for the connecting body welded to the outer peripheral surfaces of the upper header and the lower header.
- the exhaust gas temperature has risen due to the increase in size and performance of gas turbines, and it is predicted that the exhaust gas temperature will reach a high temperature of 650 ° C or higher, especially near the inlet of the casing on the upstream side of the exhaust gas. Will be done.
- the allowable stress of the 9Cr steel is up to 649 ° C. Therefore, when the exhaust gas temperature becomes 650 ° C. or higher, the allowable tensile strength of the 9Cr steel decreases, depending on the connecting body. There is a problem that the support function of the heat transfer tube panel cannot be guaranteed.
- the connecting body is changed to a material having a higher allowable stress than 9Cr steel, for example, stainless steel, it is possible to secure the support function even at a high temperature of 650 ° C. or higher, but in that case, it is welded to the connecting body.
- the material of the header to be welded must also be stainless steel, and since stainless steel is considerably more expensive than 9Cr steel, another problem arises that the cost is significantly increased.
- the present invention has been made from the actual situation of such a conventional technique, and an object thereof is to provide a support mechanism for an exhaust heat recovery boiler capable of cope with high temperature while suppressing cost increase.
- the present invention is typically a casing having a housing structure in which exhaust gas flows in a horizontal direction, a heat transfer tube group suspended inside the casing, and an end portion of the heat transfer tube group. It is a support mechanism of the exhaust heat recovery boiler which is applied to the exhaust heat recovery boiler provided with the header connected to and suppresses the runout of the heat transfer tube group, and is for maintaining the position of the header in the gas flow direction.
- FIG. 1 is an external perspective view of the exhaust heat recovery boiler
- FIG. 2 is a side view showing the internal structure of the exhaust heat recovery boiler
- FIG. 3 is a plan view showing the arrangement state of heat exchangers arranged in the exhaust heat recovery boiler. be.
- the exhaust heat recovery boiler 1 includes a duct 3 through which exhaust gas 2 from a gas turbine (not shown) is guided, and the duct 3 is placed on the ground via a plurality of frames 4. It is supported.
- the duct 3 has a casing 5 having a housing structure composed of upper and lower wall surfaces and left and right side wall surfaces, and a plurality of heat exchangers 6 such as a superheater, an evaporator, and an economizer are inside the casing 5. And the denitration device 7 and the like are arranged.
- the exhaust gas 2 discharged from the gas turbine is introduced into the casing 5 from the inlet of the duct 3, passes through the plurality of heat exchangers 6 and the denitration device 7 in sequence, and then is discharged to the outside from the chimney 8.
- These heat exchangers 6 have a plurality of heat transfer tubes (heat transfer tube group) 9 extending in the vertical direction so as to intersect the flow direction of the exhaust gas 2, and a plurality of heat transfer tubes (heat transfer tube group) 9 are provided above the outside of the casing 5.
- a brackish water separation drum 10 connected to the heat transfer tube 9 is installed.
- a plurality of heat transfer tubes 9 arranged in a plurality of rows in a horizontal direction orthogonal to the flow direction of the exhaust gas 2 have an upper header 11 connected to the upper end side and a lower header 12 connected to the lower end side, which are not shown. It is bundled by the honeycomb support of the above to form one heat transfer tube panel 9A.
- Each heat exchanger 6 is arranged in the casing 5 in a state where a plurality of rows of heat transfer tube panels 9A are unitized into one panel block. For example, in the heat exchanger 6 closest to the inlet of the duct 3, two rows (two) of heat transfer tube panels 9A arranged along the flow direction of the exhaust gas 2 are unitized in a panel block. Further, in the second heat exchanger 6 counting from the inlet of the duct 3, five rows (five) of heat transfer tube panels 9A arranged along the flow direction of the exhaust gas 2 are unitized in a panel block.
- Each heat transfer tube panel 9A is suspended from the upper wall surface of the casing 5 via a support beam 5a, and is supported in the front-rear direction of the gas flow by a link-type connecting metal fitting 13.
- the heat transfer tube panel 9A arranged in the region where the exhaust gas temperature becomes 650 ° C. or higher, that is, the two transfer tubes located on the upstream end side in the flow direction of the exhaust gas 2.
- the heat tube panel 9A is supported by the support beam 5a via a support mechanism described below. As a result, the runout of the gas flow of the heat transfer tube panel 9A in the front-rear direction is suppressed.
- 4 is a side view showing the support mechanism on the upper header side
- FIG. 5 is a perspective view showing a main part of the support mechanism on the upper header side
- FIG. 6 is a front view showing a connecting portion between the upper header and the upper pedestal
- FIG. 7 is a front view.
- FIG. 8 is an explanatory view showing a connected state of the upper slotted hole and the upper pin.
- upper headers 11 are provided on the upper end sides of the two heat transfer tube panels (heat transfer tube group 9) 9A arranged in series with respect to the flow direction of the exhaust gas 2, respectively, and the upper headers 11 are provided.
- the upper connecting body (connecting body) 14 is fixed to the outer peripheral surface by welding.
- a general 9Cr steel is used as the material of the upper header 11, and 9Cr steel of the same material is also used for the upper connecting body 14 in order to secure the welding strength.
- Each upper connecting body 14 is pin-coupled to an upper pedestal (pedestal) 15, and the upper pedestal 15 is placed below a support beam 5a on the ceiling of the casing 5 via a link-type connecting metal fitting (transmission member) 13. It is supported.
- the upper pedestal 15 is for holding the position of the upper header 11 in the gas flow direction and suppressing the runout of the heat transfer tube panel 9A.
- the upper pedestal 15 is composed of a pair of channel steel webs that are butted against each other at a predetermined interval and integrated, and two upper pins are straddled over both channel steels of the upper pedestal 15. 16 is erected. Further, the base plate 15a is fixed to the central portion of the upper surface of the upper pedestal 15, and the lower end portion of the connecting metal fitting 13 is connected to the base plate 15a.
- the upper connecting body 14 is made of a plate-shaped member whose lower end is cut out in an arc shape, and the upper round hole 14a for inserting the upper pin 16 is provided in this plate-shaped member. Then, the notched arcuate portion is welded to the outer peripheral surface of the upper header 11. Further, as shown in FIG. 5, the upper pedestal 15 is provided with an upper elongated hole 15b, and the upper connecting body 14 is provided with the upper pin 16 inserted through the upper elongated hole 15b and the upper round hole 14a. The upper portion is arranged within the space (between the webs of the pair of channel steels) of the upper pedestal 15 (see FIG. 6).
- the upper elongated hole 15b is a non-circular hole whose major axis is the flow direction of the exhaust gas 2 (left-right direction in FIG. 8), and is in the flow direction of the exhaust gas 2 between the upper pin 16 and the upper elongated hole 15b.
- a first extending gap t1 is secured.
- Three upper regulation members (regulatory members) 17 are vertically installed on the lower surface of the upper pedestal 15 at predetermined intervals, and two upper headers 11 are sandwiched between these upper regulation members 17. ..
- the two upper restricting members 17 located on both end sides of the upper pedestal 15 are made of, for example, channel steel having a flange cut diagonally, and the upper upper restricting member 17 in the middle is made of a plate-shaped steel material.
- one upper header 11 is sandwiched between the flat web of the upper regulating member 17 on one end side and the upper regulating member 17 in the middle, and the flat web of the upper regulating member 17 on the other end side and the upper regulating member 17 in the middle.
- the other upper header 11 is sandwiched between the member 17 and the member 17.
- the upper regulating member 17 may have a configuration other than the above.
- a cylindrical or cylindrical steel material having a recess formed on the outer peripheral surface. It is also possible to use.
- a member formed in a substantially L shape by welding an elbow or the like to a cylindrical steel material can also be used.
- Each upper restricting member 17 does not sandwich the upper header 11 in a tight state, and the two upper regulating members 17 sandwich the upper header 11 through the second gap t2 (see FIG. 4).
- the dimensional change due to thermal expansion is absorbed by the second gap t2.
- the second gap t2 has a relatively small size, and the first gap t1 secured between the upper pin 16 and the upper slot 15b is set to a value larger than the second gap t2. (T1> t2).
- FIGS. 9 to 13 is a side view showing the support mechanism on the lower header side
- FIG. 10 is a perspective view showing a main part of the support mechanism on the lower header side
- FIG. 11 is a front view showing a connecting portion between the lower header and the lower pedestal
- FIG. 12 is a front view.
- FIG. 13 is an explanatory view showing a connected state of a lower pin and a lower slotted hole.
- a lower header (header) 12 is provided on the lower end side of two heat transfer tube panels (heat transfer tube group 9) 9A arranged in series with respect to the flow direction of the exhaust gas 2, and is connected to the outer peripheral surface of each lower header 12 at the bottom.
- the body (connecting body) 18 is fixed by welding. Similar to the upper header 11 and the upper connecting body 14 described above, 9Cr steel is used for both the lower header 12 and the lower connecting body 18.
- Each lower connecting body 18 is pin-coupled to the lower pedestal (pedestal) 19 to support the lower pedestal 19.
- the lower pedestal 19 is slidably engaged with the support pillar (transmission member) 21 provided on the lower surface wall (floor surface portion) of the casing 5 via the guide member 20.
- the support pillar 21 supports a horizontal force in the flow direction of the exhaust gas acting on the heat transfer tube panel 9A due to an earthquake or the pressure of the exhaust gas.
- the lower pedestal 19 is for holding the position of the lower header 12 in the gas flow direction and suppressing the runout of the heat transfer tube panel 9A.
- the lower pedestal 19 is composed of a pair of channel steel webs that are butted against each other at a predetermined interval and integrated, and two lower pins 22 are erected so as to straddle both channel steels of the lower pedestal 19. Has been done.
- Two guide members 20 made of H-shaped steel are fixedly attached to the lower surface of the lower pedestal 19, and both guide members 20 extend in the vertical direction with a predetermined interval.
- the support column 21 is also made of H-shaped steel, and the support column 21 stands up from the lower surface wall of the casing 5 upward. Then, by inserting the support pillar 21 between the guide members 20 so that the flanges of each other come into contact with each other, the lower pedestal 19 moves in the vertical direction with the flanges of the guide member 20 and the support pillar 21 as sliding surfaces. It is possible.
- ribs 23 made of triangular plate materials are fixed to the four corners of the upper surface of the support pillar 21, and the vertical surfaces of the ribs 23 are brought into contact with the opposing flanges of both guide members 20. As a result, the tilt of both guide members 20 in the vertical direction is suppressed, so that the lower pedestal 19 orthogonal to both guide members 20 is prevented from tilting in the horizontal direction.
- the lower connecting body 18 is made of a plate-shaped member whose upper end is cut out in an arc shape, and the lower round hole 18a for inserting the lower pin 22 is provided in this plate-shaped member. Then, the notched arcuate portion is welded to the outer peripheral surface of the lower header 12. Further, as shown in FIG. 10, the lower pedestal 19 is provided with a lower elongated hole 19a, and the lower connecting body 18 is provided with the lower pin 22 inserted through the lower elongated hole 19a and the lower round hole 18a. The lower portion is arranged within the space (between the webs of the pair of channel steels) of the lower pedestal 19 (see FIG. 11). Here, as shown in FIG.
- the lower elongated hole 19a is a non-circular hole having a major axis in the vertical direction, and a fifth gap extending along the vertical direction between the lower pin 22 and the lower elongated hole 19a. Since S is secured, a difference in the amount of extension (elongation difference) of the individual heat transfer tube panels 9A downward due to heating of the heat transfer tube group 9 is allowed by the fifth gap S.
- Three lower regulation members (regulatory members) 24 are vertically installed on the upper surface of the lower pedestal 19 at predetermined intervals, and two lower headers 12 are sandwiched between these lower regulation members 24. .. Similar to the upper regulating member 17 described above, the two lower regulating members 24 located on both ends of the lower connecting body 18 are made of channel steel with the flange cut diagonally, and the lower regulating member 24 in the middle is plate-shaped. It is made of steel. Of course, the shape of the lower regulating member 24 is not limited to this. Then, one lower header 12 is sandwiched between the flat web of the lower regulation member 24 on one end side and the lower regulation member 24 in the middle, and the flat web of the lower regulation member 24 on the other end side and the lower regulation member 24 in the middle. The other lower header 12 is sandwiched between the member 24 and the member 24.
- each lower regulating member 24 does not sandwich the lower header 12 in a tight state, and the two lower regulating members 24 sandwich the lower header 12 through the fourth gap t4 (see FIG. 9).
- the dimensional change accompanying the thermal expansion of 12 is absorbed by the fourth gap t4.
- the third gap t3 is set to a value larger than the fourth gap t4 (t3> t4), similarly to the support mechanism on the upper header side.
- the third gap t3 may be the same as or different from the first gap t1 described above.
- the fourth gap t4 may be the same as or different from the second gap t2 described above.
- the upper portion welded to the upper header 11 is attached to the upper pedestal 15 supported by the connecting metal fitting 13 on the upper wall surface side of the casing 5.
- the connecting body 14 is pin-coupled, and an upper regulating member 17 for sandwiching the upper header 11 is provided. Therefore, the horizontal force in the front-rear direction of the gas flow acting on the upper header 11 at the time of an earthquake or the like is not transmitted to the joint portion between the upper header 11 and the upper connecting body 14, but is borne by the upper regulating member 17 and the upper pedestal 15. , Is transmitted to the foundation portion via the connecting metal fitting 13, the support beam 5a, and the frame 4.
- the horizontal force generated at the time of an earthquake or the like does not act on the upper connecting body 14. Therefore, although 9Cr steel is used as the material of the upper header 11 and the upper connecting body 14, the runout of the heat transfer tube panel 9A can be suppressed even under the high temperature condition of the exhaust gas 2 exceeding 650 ° C., for example. That is, the support function of the heat transfer tube panel 9A can be ensured.
- the lower connecting body 18 welded to the lower header 12 is pin-coupled to the lower pedestal 19, and the lower regulating member 24 that sandwiches the lower header 12 is the lower portion. It is provided on the pedestal 19. Therefore, the horizontal force of the gas flow acting on the lower header 12 in the event of an earthquake or the like in the front-rear direction is borne by the lower regulating member 24 and the lower pedestal 19, and is borne by the support column 21, the support beam 5a, and the frame 4. It is transmitted to the department. That is, the horizontal force in the front-rear direction of the gas flow generated at the time of an earthquake or the like is supported by the support column 21 and does not act on the lower connecting body 18.
- the upper pin 16 is inserted through the upper elongated hole 15b provided in the upper pedestal 15 and the upper round hole 14a provided in the upper connecting body 14.
- the pedestal 15 and the upper connecting body 14 are pin-coupled, and a first gap t1 extending in the flow direction of the exhaust gas 2 is secured between the upper pin 16 and the upper elongated hole 15b. Therefore, when the upper pin 16 moves in the upper slot 15b, the horizontal load along the flow direction of the exhaust gas 2 is absorbed, and the horizontal load acts directly on the pin coupling portion of the upper connecting body 14 and the upper pedestal 15. Can be prevented.
- the lower pedestal 19 and the lower connecting body 18 are pin-coupled by inserting the lower pin 22 into the lower elongated hole 19a provided in the lower pedestal 19 and the lower round hole 18a provided in the lower connecting body 18, and these lower portions are formed.
- a third gap t3 extending in the flow direction of the exhaust gas 2 is secured between the pin 22 and the lower elongated hole 19a. Therefore, when the lower pin 22 moves in the lower elongated hole 19a, the horizontal load along the flow direction of the exhaust gas 2 is absorbed, and the horizontal load acts directly on the pin coupling portion between the lower connecting body 18 and the lower pedestal 19. Can be prevented.
- the upper regulating member 17 sandwiches the upper header 11 through the second gap t2
- the lower regulating member 24 sandwiches the upper header 11 through the second gap t2. Since the lower header 12 is sandwiched via t4, the dimensional change due to the thermal expansion of the upper header 11 and the lower header 12 can be absorbed by the second gap t2 and the fourth gap t4, respectively.
- the lower pin 22 is inserted into the lower elongated hole 19a provided in the lower pedestal 19 and the lower round hole 18a provided in the lower connecting body 18.
- the pedestal 19 and the lower connecting body 18 are pin-coupled, and a fifth gap S extending in the vertical direction is secured between the lower pin 22 and the lower elongated hole 19a. Therefore, the downward elongation difference due to the heating of the heat transfer tube group 9 can be allowed by the fifth gap S.
- a pair of guide members 20 fixed to the lower pedestal 19 are slidably supported by a support pillar 21 standing up from the lower wall of the casing 5, and the guide member 20 slides on the upper surface of the support pillar 21. Since the rib 23 in contact with the surface is fixed, the inclination of the lower pedestal 19 that supports the horizontal force in the gas flow direction of the lower header 12 can be reliably prevented.
- the present invention is not limited to the above-described embodiment, and includes various modifications.
- the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
- the support mechanism according to the present invention is applied to the two rows of heat transfer tube panels 9A located on the upstream end side in the flow direction of the exhaust gas 2 has been described, but other heat transfer tube panels 9A have been described.
- the same support mechanism may be applied to the above.
- the number of the upper header 11 sandwiched between the upper regulating member 17 on the upper pedestal 15 side and the lower header 12 sandwiched between the lower regulating member 24 on the lower pedestal 19 side is not limited to two, and may be one row or three or more rows.
- the heat transfer tube panel 9A may be used.
- 9Cr steel is used as the material of the upper header 11 and the lower header 12
- 9Cr steel is also used as the material of the upper connecting body 14 and the lower connecting body 18 to be welded to them.
- a steel material other than 9Cr steel can be used as the material of the upper connecting body 14 and the lower connecting body 18.
- support mechanism according to the present invention can be applied only to the upper header 11 or only to the lower header 12.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
コストアップを抑えた上で高温化に対応可能な排熱回収ボイラのサポート機構を提供する。排ガス(2)が水平方向に流れる筐体構造のケーシング(5)と、ケーシングの内部に吊り下げられた伝熱管群(9)と、伝熱管群の端部に接続されたヘッダ(11)と、を備えた排熱回収ボイラに適用され、伝熱管群の振れを抑止する排熱回収ボイラのサポート機構であって、ヘッダのガス流れ方向における位置を保持するための台座(15)と、ヘッダに溶接されると共に台座に結合された接続体(14)と、ヘッダを挟み込むように台座に設けられた複数の規制部材(17)と、ケーシングと台座との間に設けられ、台座に作用する力をケーシングへと伝達する伝達部材(13)と、を備えることを特徴とする。
Description
本発明は、排熱回収ボイラ内に設けられた伝熱管群の振れを抑止するためのサポート機構に関する。
高効率発電の一環として注目されている複合発電プラントは、まず、ガスタービンによる発電を行うと共に、ガスタービンから排出される排ガス中の熱を排熱回収ボイラ(HRSG)にて回収し、この排熱回収ボイラで発生した蒸気によって蒸気タービンを駆動させて発電する。
この種の排熱回収ボイラにおいて、一般的に、排ガスの煙道であるケーシングの内部には、ガスタービンの排ガスの熱を回収する過熱器、蒸発器、節炭器などの熱交換器が複数配置されている。各熱交換器は排ガスの流れ方向に整列した複数の伝熱管によって構成されており、各伝熱管の上下両端を上部ヘッダと下部ヘッダで接続して1枚の伝熱管パネルとなしている。複数の伝熱管パネルは、ケーシング内に排ガスの流れ方向に沿って直列配置されており、各伝熱管パネルはケーシングの上壁面から支持梁を介して吊り下げられている。
従来より、伝熱管パネルとケーシングとの間にサポート機構を設け、このサポート機構で負担した水平荷重がケーシングの基礎部に伝達されることにより、地震時等に作用する水平力を低減するようにした制振構造が知られている。例えば、特許文献1に記載された制振構造では、排ガスの流れ方向に対して直列配置された複数の伝熱管パネルの各上部ヘッダを上部台座に一纏めに接続し、この上部台座をリンク式の連結金具によりケーシングの支持梁の下方に支持することにより、連結金具で負担した水平荷重がケーシングの支持梁を経由して基礎部に伝達されるように構成されている。また、複数の伝熱管パネルの各下部ヘッダを下部台座に一纏めに接続し、この下部台座をサポート金具によりケーシングの下壁面から起立する補強梁に支持することにより、サポート金具で負担した水平荷重が補強梁を経由して基礎部に伝達されるように構成されている。
ここで、上部ヘッダの外周面に溶接した接続体を上部台座にピン結合することにより、上部ヘッダを上部台座に接続するようにしている。同様に、下部ヘッダの外周面に溶接した接続体を下部台座にピン結合することにより、下部ヘッダを下部台座に接続するようにしている。なお、高温の排ガスからの熱回収により蒸気を発生する排熱回収ボイラにおいては、高温強度に優れたヘッダ材料として9Cr鋼が用いられる場合がある。この場合、上部ヘッダと下部ヘッダの外周面に溶接される接続体も、ヘッダ材料と同じ9Cr鋼が用いられる。
近年、ガスタービンの大型化/高性能化に伴って排ガス温度が高温化しており、特に、排ガスの上流側であるケーシングの入口付近においては、排ガス温度が650℃以上の高温になることも予測される。しかし、接続体の材料として9Cr鋼を用いた場合、9Cr鋼の許容応力は649℃までであるため、排ガス温度が650℃以上になると9Cr鋼の許容引張強度が低下してしまい、接続体による伝熱管パネルのサポート機能が担保されなくなるという問題が発生する。なお、接続体を9Cr鋼よりも許容応力が高い材料、例えばステンレス鋼に変更すれば、650℃以上の高温下においてもサポート機能を担保することは可能となるが、その場合、接続体に溶接されるヘッダの材料もステンレス鋼にする必要があり、ステンレス鋼は9Cr鋼に比べてかなり高価であるため、著しくコストアップになってしまうという別の問題が発生する。
本発明は、このような従来技術の実情からなされたもので、その目的は、コストアップを抑えた上で高温化に対応可能な排熱回収ボイラのサポート機構を提供することにある。
上記の目的を達成するために、代表的な本発明は、排ガスが水平方向に流れる筐体構造のケーシングと、前記ケーシングの内部に吊り下げられた伝熱管群と、前記伝熱管群の端部に接続されたヘッダと、を備えた排熱回収ボイラに適用され、前記伝熱管群の振れを抑止する排熱回収ボイラのサポート機構であって、前記ヘッダのガス流れ方向における位置を保持するための台座と、前記ヘッダに溶接されると共に前記台座に結合された接続体と、前記ヘッダを挟み込むように前記台座に設けられた複数の規制部材と、前記ケーシングと前記台座との間に設けられ、前記台座に作用する力を前記ケーシングへと伝達する伝達部材と、を備えることを特徴とする。
本発明に係る排熱回収ボイラのサポート機構によれば、コストアップを抑えた上で排ガスの高温化に対応することができる。なお、上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
以下、本発明の実施形態を図1~図13を参照しつつ説明する。
図1は排熱回収ボイラの外観斜視図、図2は排熱回収ボイラの内部構造を示す側面図、図3は排熱回収ボイラ内に配置された熱交換器の配列状態を示す平面図である。
図1~図3に示すように、排熱回収ボイラ1は、ガスタービン(図示せず)からの排ガス2が導かれるダクト3を備えており、ダクト3は複数の架構4を介して地面に支持されている。ダクト3は、上下壁面と左右側壁面とで構成された筐体構造のケーシング5を有しており、ケーシング5の内部には過熱器、蒸発器、節炭器等の複数の熱交換器6と、脱硝装置7等が配置されている。ガスタービンから排出された排ガス2は、ダクト3の入口からケーシング5の内部に導入され、複数の熱交換器6および脱硝装置7を順次通過した後、煙突8から外部に排出される。これら熱交換器6は、排ガス2の流れ方向と交差するように鉛直方向に延設された複数の伝熱管(伝熱管群)9を有しており、ケーシング5の外部上方には、複数の伝熱管9に接続された汽水分離ドラム10が設置されている。
排ガス2の流れ方向と直交する水平方向に複数列に配置された複数の伝熱管9は、上端側に上部ヘッダ11が接続されると共に、下端側に下部ヘッダ12が接続されており、不図示のハニカムサポートによって束ねられて1枚の伝熱管パネル9Aを構成している。各熱交換器6は、複数列の伝熱管パネル9Aを1つのパネルブロックにユニット化した状態でケーシング5内に配置されている。例えば、ダクト3の入口に最も近い熱交換器6では、排ガス2の流れ方向に沿って配置された2列(2枚)の伝熱管パネル9Aがパネルブロックにユニット化されている。また、ダクト3の入口から数えて2番目の熱交換器6では、排ガス2の流れ方向に沿って配置された5列(5枚)の伝熱管パネル9Aがパネルブロックにユニット化されている。
各伝熱管パネル9Aは、ケーシング5の上壁面から支持梁5aを介して吊り下げられ、リンク式の連結金具13によりガス流れの前後方向を支持されている。本実施形態においては、これら各伝熱管パネル9Aのうち、排ガス温度が650℃以上になる領域に配置された伝熱管パネル9A、すなわち、排ガス2の流れ方向の上流端側に位置する2つの伝熱管パネル9Aが、以下に説明するサポート機構を介して支持梁5aに支持されている。これにより、伝熱管パネル9Aのガス流れの前後方向の振れが抑止される。
まず、図4~図8に基づいて上部ヘッダ側のサポート機構(上部サポート機構)について説明する。図4は上部ヘッダ側のサポート機構を示す側面図、図5は上部ヘッダ側のサポート機構の要部を示す斜視図、図6は上部ヘッダと上部台座の連結部分を示す正面図、図7は上部接続体を示す説明図、図8は上部長穴と上部ピンの結合状態を示す説明図である。
前述したように、排ガス2の流れ方向に対して直列配置された2つの伝熱管パネル(伝熱管群9)9Aの上端側にはそれぞれ上部ヘッダ(ヘッダ)11が設けられ、各上部ヘッダ11の外周面にそれぞれ上部接続体(接続体)14が溶接により固着されている。上部ヘッダ11の材料としては一般的な9Cr鋼が用いられており、溶接強度を確保するために、上部接続体14にも同種材料の9Cr鋼が用いられている。各上部接続体14は上部台座(台座)15とピン結合されており、この上部台座15がリンク式の連結金具(伝達部材)13を介してケーシング5の天井部にある支持梁5aの下方に支持されている。
上部台座15は、上部ヘッダ11のガス流れ方向における位置を保持して、伝熱管パネル9Aの振れを抑止するためのものである。上部台座15は、一対の溝形鋼(チャンネル)のウェブ同士を所定の間隔を存して突き合わせて一体化したものからなり、上部台座15の両溝形鋼に跨るように2本の上部ピン16が架設されている。また、上部台座15の上面中央部に基台板15aが固着されており、この基台板15aに連結金具13の下端部が連結されている。
上部接続体14は、図7に示すように下端部を円弧状に切り欠いた板状部材から成り、この板状部材に上部ピン16が挿通するための上部丸穴14aが設けられている。そして、切り欠かれた円弧状部分が上部ヘッダ11の外周面に溶接されている。また、図5に示すように、上部台座15には上部長穴15bが設けられており、この上部長穴15bおよび上部丸穴14aに上部ピン16を挿通させた状態で、上部接続体14の上側部分が上部台座15の前記間隔内(一対の溝形鋼のウェブ間)に配置されている(図6参照)。ここで、上部長穴15bは、排ガス2の流れ方向(図8の左右方向)を長軸とする非円形孔であり、上部ピン16と上部長穴15bとの間に排ガス2の流れ方向に延びる第1の隙間t1が確保されている。第1の隙間t1は上部ピン16の両側に存する隙間t1aと隙間t1bを足した値(t1=t1a+t1b)であり、このような第1の隙間t1により、排ガス2の流れ方向に沿った水平荷重が上部接続体14と上部台座15のピン結合部分に直接作用しないようになっている。
上部台座15の下面には、3つの上部規制部材(規制部材)17が所定の間隔を存して垂設されており、これら上部規制部材17の間に2つの上部ヘッダ11が挟み込まれている。上部台座15の両端側に位置する2つの上部規制部材17は、例えばフランジを斜めにカットした溝形鋼からなり、真ん中の上部規制部材17は板状の鋼材からなる。そして、一端側の上部規制部材17の平坦なウェブと真ん中の上部規制部材17との間に一方の上部ヘッダ11が挟み込まれ、他端側の上部規制部材17の平坦なウェブと真ん中の上部規制部材17との間に他方の上部ヘッダ11が挟み込まれている。なお、上部ヘッダ11を挟み込むことができれば、上部規制部材17は上記以外の構成であっても良く、例えば、真ん中の上部規制部材17として、外周面に凹部を形成した円柱状や円筒状の鋼材を用いることも可能である。また、両端側の上部規制部材17は、円筒状の鋼材にエルボ等を溶接して略L字状に形成された部材を用いることもできる。
各上部規制部材17は上部ヘッダ11を緊密状態に挟み込んでおらず、2つの上部規制部材17は第2の隙間t2を介して上部ヘッダ11を挟み込んでおり(図4参照)、上部ヘッダ11の熱膨張に伴う寸法変化が第2の隙間t2によって吸収されるようになっている。なお、第2の隙間t2は比較的小さめな寸法であり、上部ピン16と上部長穴15bとの間に確保された前記第1の隙間t1は、第2の隙間t2よりも大きい値に設定されている(t1>t2)。
次に、図9~図13に基づいて下部ヘッダ側のサポート機構(下部サポート機構)について説明する。図9は下部ヘッダ側のサポート機構を示す側面図、図10は下部ヘッダ側のサポート機構の要部を示す斜視図、図11は下部ヘッダと下部台座の連結部分を示す正面図、図12は下部接続体を示す説明図、図13は下部ピンと下部長穴の結合状態を示す説明図である。
排ガス2の流れ方向に対して直列配置された2つの伝熱管パネル(伝熱管群9)9Aの下端側には下部ヘッダ(ヘッダ)12が設けられ、各下部ヘッダ12の外周面にそれぞれ下部接続体(接続体)18が溶接により固着されている。前述した上部ヘッダ11と上部接続体14と同様に、下部ヘッダ12と下部接続体18の材料は両方共に9Cr鋼が用いられている。
各下部接続体18は下部台座(台座)19とピン結合して、この下部台座19を支持している。下部台座19は、ガイド部材20を介してケーシング5の下面壁(床面部)に設けられた支持柱(伝達部材)21に摺動可能に係合している。支持柱21は、地震や排ガスの圧力によって伝熱管パネル9Aに作用する排ガスの流れ方向の水平力を支持する。
下部台座19は、下部ヘッダ12のガス流れ方向における位置を保持して、伝熱管パネル9Aの振れを抑止するためのものである。下部台座19は、一対の溝形鋼のウェブ同士を所定の間隔を存して突き合わせて一体化したものからなり、下部台座19の両溝形鋼に跨るように2本の下部ピン22が架設されている。
下部台座19の下面にH形鋼からなる2本のガイド部材20が固設されており、両ガイド部材20は所定の間隔を存して鉛直方向に延びている。支持柱21もH形鋼からなり、支持柱21はケーシング5の下面壁から上方に向けて起立している。そして、両ガイド部材20の間に互いのフランジ同士が接触するように支持柱21を挿入することにより、下部台座19は、ガイド部材20と支持柱21のフランジを摺動面として鉛直方向に移動可能となっている。また、支持柱21の上面四隅に三角形状の板材からなるリブ23が固定されており、これら各リブ23の垂直面を両ガイド部材20の対向するフランジに接触させている。これにより、両ガイド部材20の鉛直方向に対する傾きが抑制されるため、両ガイド部材20に直交する下部台座19の水平方向に対する傾きが防止されている。
下部接続体18は、図12に示すように上端部を円弧状に切り欠いた板状部材から成り、この板状部材に下部ピン22が挿通するための下部丸穴18aが設けられている。そして、切り欠かれた円弧状部分が下部ヘッダ12の外周面に溶接されている。また、図10に示すように、下部台座19には下部長穴19aが設けられており、この下部長穴19aおよび下部丸穴18aに下部ピン22を挿通させた状態で、下部接続体18の下側部分が下部台座19の前記間隔内(一対の溝形鋼のウェブ間)に配置されている(図11参照)。ここで、図13に示すように、下部長穴19aは鉛直方向を長軸とする非円形孔であり、下部ピン22と下部長穴19aとの間に鉛直方向に沿って延びる第5の隙間Sが確保されているため、伝熱管群9の加熱に伴う下方への個別の伝熱管パネル9Aの伸び量の違い(伸び差)が第5の隙間Sにより許容されるようになっている。
下部台座19の上面には、3つの下部規制部材(規制部材)24が所定の間隔を存して垂設されており、これら下部規制部材24の間に2つの下部ヘッダ12が挟み込まれている。前述した上部規制部材17と同様に、下部接続体18の両端側に位置する2つの下部規制部材24は、フランジを斜めにカットした溝形鋼からなり、真ん中の下部規制部材24は板状の鋼材からなる。勿論、下部規制部材24の形状はこれに限定されない。そして、一端側の下部規制部材24の平坦なウェブと真ん中の下部規制部材24との間に一方の下部ヘッダ12が挟み込まれ、他端側の下部規制部材24の平坦なウェブと真ん中の下部規制部材24との間に他方の下部ヘッダ12が挟み込まれている。
また、各下部規制部材24は下部ヘッダ12を緊密状態に挟み込んでおらず、2つの下部規制部材24は第4の隙間t4を介して下部ヘッダ12を挟み込んでおり(図9参照)、下部ヘッダ12の熱膨張に伴う寸法変化が第4の隙間t4によって吸収されるようになっている。
ここで、図13に示すように、下部ピン22と下部長穴19aとの間には、排ガス2の流れ方向(図中の左右方向)に第3の隙間t3(t3=t3a+t3b)が設けられている。この第3の隙間t3は、上部ヘッダ側のサポート機構と同様に、第4の隙間t4よりも大きい値に設定されている(t3>t4)。なお、第3の隙間t3は、上記した第1の隙間t1と同一であっても、異なる値であっても良い。また、第4の隙間t4は、上記した第2の隙間t2と同一であっても、異なる値であっても良い。
以上説明したように、本実施形態に係る排熱回収ボイラ1のサポート機構では、ケーシング5の上壁面側に連結金具13を介して支持された上部台座15に、上部ヘッダ11に溶接された上部接続体14がピン結合されると共に、上部ヘッダ11を挟み込む上部規制部材17が設けられている。そのため、地震時等に上部ヘッダ11に作用するガス流れの前後方向の水平力は、上部ヘッダ11と上部接続体14との結合部に伝わらず、上部規制部材17および上部台座15で負担されて、連結金具13、支持梁5a、および架構4を介して基礎部に伝達される。即ち、地震時等に発生する水平力が上部接続体14に作用しない。したがって、上部ヘッダ11と上部接続体14の材料として9Cr鋼を用いているのにも関わらず、例えば650℃を超える排ガス2の高温条件下においても伝熱管パネル9Aの振れを抑止できる。即ち、伝熱管パネル9Aのサポート機能を確保することができる。
また、本実施形態に係る排熱回収ボイラ1のサポート機構では、下部ヘッダ12に溶接された下部接続体18が下部台座19にピン結合されると共に、下部ヘッダ12を挟み込む下部規制部材24が下部台座19に設けられている。そのため、地震時等に下部ヘッダ12に作用するガス流れの前後方向の水平力は、下部規制部材24および下部台座19で負担されて、支持柱21、支持梁5a、および架構4を介して基礎部に伝達される。即ち、地震時等に発生するガス流れの前後方向の水平力は支持柱21によって支持され、下部接続体18に作用しない。したがって、上部側のサポート機構と同様に、下部ヘッダ12と下部接続体18の材料として9Cr鋼を用いているのにも関わらず、排ガス2の高温条件下においても伝熱管パネル9Aの振れを抑止できる。即ち、伝熱管パネル9Aのサポート機能をより確実に確保することができる。
また、本実施形態に係る排熱回収ボイラ1のサポート機構では、上部台座15に設けた上部長穴15bと上部接続体14に設けた上部丸穴14aとに上部ピン16を挿通することで上部台座15と上部接続体14がピン結合され、これら上部ピン16と上部長穴15bとの間に排ガス2の流れ方向に延びる第1の隙間t1が確保されている。そのため、上部ピン16が上部長穴15b内を移動することで排ガス2の流れ方向に沿った水平荷重が吸収され、上部接続体14と上部台座15のピン結合部分に水平荷重が直接作用することを防止できる。
同様に、下部台座19に設けた下部長穴19aと下部接続体18に設けた下部丸穴18aとに下部ピン22を挿通することで下部台座19と下部接続体18がピン結合され、これら下部ピン22と下部長穴19aとの間に排ガス2の流れ方向に延びる第3の隙間t3が確保されている。そのため、下部ピン22が下部長穴19a内を移動することで排ガス2の流れ方向に沿った水平荷重が吸収され、下部接続体18と下部台座19のピン結合部分に水平荷重が直接作用することを防止できる。
また、本実施形態に係る排熱回収ボイラ1のサポート機構では、上部規制部材17が第2の隙間t2を介して上部ヘッダ11を挟み込んでおり、同様に、下部規制部材24が第4の隙間t4を介して下部ヘッダ12を挟み込んでいるため、上部ヘッダ11と下部ヘッダ12の熱膨張に伴う寸法変化を、それぞれ第2の隙間t2と第4の隙間t4によって吸収することができる。
また、本実施形態に係る排熱回収ボイラ1のサポート機構では、下部台座19に設けた下部長穴19aと下部接続体18に設けた下部丸穴18aとに下部ピン22を挿通することで下部台座19と下部接続体18とがピン結合され、これら下部ピン22と下部長穴19aとの間に鉛直方向に沿って延びる第5の隙間Sが確保されている。そのため、伝熱管群9の加熱に伴う下方への伸び差を第5の隙間Sによって許容することができる。さらに、下部台座19に固設された一対のガイド部材20がケーシング5の下面壁から起立する支持柱21に摺動可能に支持されており、この支持柱21の上面にガイド部材20の摺動面に接触するリブ23が固着されているため、下部ヘッダ12のガス流れ方向水平力を支持する下部台座19の傾きを確実に防止することができる。
なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
例えば、上記実施形態では、排ガス2の流れ方向の上流端側に位置する2列の伝熱管パネル9Aに、本発明に係るサポート機構を適用した場合について説明したが、それ以外の伝熱管パネル9Aについても、同様のサポート機構を適用しても良い。また、上部台座15側の上部規制部材17に挟み込まれる上部ヘッダ11や、下部台座19側の下部規制部材24に挟み込まれる下部ヘッダ12の数は2つに限らず、1列または3列以上の伝熱管パネル9Aであっても良い。
また、上記実施形態では、上部ヘッダ11と下部ヘッダ12の材料として9Cr鋼を用いている関係上、それらに溶接される上部接続体14と下部接続体18の材料にも9Cr鋼を用いているが、上部ヘッダ11および下部ヘッダ12と同種材料であれば、上部接続体14や下部接続体18の材料として9Cr鋼以外の鋼材を用いることも可能である。
また、本発明に係るサポート機構は、上部ヘッダ11のみに適用することも、あるいは下部ヘッダ12のみに適用することも可能である。
1 排熱回収ボイラ
2 排ガス
3 ダクト
4 架構
5 ケーシング
5a 支持梁
6 熱交換器
7 脱硝装置
8 煙突
9 伝熱管(伝熱管群)
9A 伝熱管パネル
10 汽水分離ドラム
11 上部ヘッダ(ヘッダ)
12 下部ヘッダ(ヘッダ)
13 連結金具(伝達部材)
14 上部接続体(接続体)
14a 上部丸穴(丸穴)
15 上部台座(台座)
15a 基台板
15b 上部長穴(長穴)
16 上部ピン(ピン)
17 上部規制部材(規制部材)
18 下部接続体(接続体)
18a 下部丸穴(丸穴)
19 下部台座(台座)
19a 下部長穴(長穴)
20 ガイド部材
21 支持柱(伝達部材)
22 下部ピン(ピン)
23 リブ
24 下部規制部材(規制部材)
t1 第1の隙間
t2 第2の隙間
t3 第3の隙間
t4 第4の隙間
S 第5の隙間
2 排ガス
3 ダクト
4 架構
5 ケーシング
5a 支持梁
6 熱交換器
7 脱硝装置
8 煙突
9 伝熱管(伝熱管群)
9A 伝熱管パネル
10 汽水分離ドラム
11 上部ヘッダ(ヘッダ)
12 下部ヘッダ(ヘッダ)
13 連結金具(伝達部材)
14 上部接続体(接続体)
14a 上部丸穴(丸穴)
15 上部台座(台座)
15a 基台板
15b 上部長穴(長穴)
16 上部ピン(ピン)
17 上部規制部材(規制部材)
18 下部接続体(接続体)
18a 下部丸穴(丸穴)
19 下部台座(台座)
19a 下部長穴(長穴)
20 ガイド部材
21 支持柱(伝達部材)
22 下部ピン(ピン)
23 リブ
24 下部規制部材(規制部材)
t1 第1の隙間
t2 第2の隙間
t3 第3の隙間
t4 第4の隙間
S 第5の隙間
Claims (8)
- 排ガスが水平方向に流れる筐体構造のケーシングと、前記ケーシングの内部に吊り下げられた伝熱管群と、前記伝熱管群の端部に接続されたヘッダと、を備えた排熱回収ボイラに適用され、前記伝熱管群の振れを抑止する排熱回収ボイラのサポート機構であって、
前記ヘッダのガス流れ方向における位置を保持するための台座と、
前記ヘッダに溶接されると共に前記台座に結合された接続体と、
前記ヘッダを挟み込むように前記台座に設けられた複数の規制部材と、
前記ケーシングと前記台座との間に設けられ、前記台座に作用する力を前記ケーシングへと伝達する伝達部材と、
を備えることを特徴とする排熱回収ボイラのサポート機構。 - 請求項1に記載の排熱回収ボイラのサポート機構において、
前記台座と前記接続体とは、一方に設けられた長穴と他方に設けられた丸穴とにピンが挿入されることにより連結されており、前記ピンと前記長穴との間に排ガスの流れ方向に延びる第1の隙間が形成されている、ことを特徴とする排熱回収ボイラのサポート機構。 - 請求項2に記載の排熱回収ボイラのサポート機構において、
前記複数の規制部材は第2の隙間を介して前記ヘッダを挟み込んでおり、前記第1の隙間が前記第2の隙間よりも大きく設定されている、ことを特徴とする排熱回収ボイラのサポート機構。 - 排ガスが水平方向に流れる筐体構造のケーシングと、前記ケーシングの内部に吊り下げられた伝熱管群と、前記伝熱管群の上端部に接続されて排ガスの流れに直交する水平方向に延びる上部ヘッダと、前記伝熱管群の下端部に接続されて排ガスの流れに直交する水平方向に延びる下部ヘッダと、を備えた排熱回収ボイラに適用され、前記伝熱管群の振れを抑止する排熱回収ボイラのサポート機構であって、
前記排熱回収ボイラのサポート機構は、前記伝熱管群の上端部の振れを抑止する上部サポート機構と、前記伝熱管群の下端部の振れを抑止する下部サポート機構とを有し、
前記上部サポート機構が、前記上部ヘッダのガス流れ方向における位置を保持するための上部台座と、前記上部ヘッダに溶接されると共に前記上部台座に結合された上部接続体と、前記上部ヘッダを挟み込むように前記上部台座に設けられた複数の上部規制部材と、前記ケーシングの天井部に設けられ、前記上部台座と連結する連結金具と、を備え、
前記下部サポート機構は、前記下部ヘッダのガス流れ方向における位置を保持するための下部台座と、前記下部ヘッダに溶接されると共に前記下部台座に結合された下部接続体と、前記下部ヘッダを挟み込むように前記下部台座に設けられた複数の下部規制部材と、前記ケーシングの床面部に設けられ、前記下部台座に作用する水平力を支持する支持柱と、を備えることを特徴とする排熱回収ボイラのサポート機構。 - 請求項4に記載の排熱回収ボイラのサポート機構において、
前記上部台座と前記上部接続体とは、一方に設けられた上部長穴と他方に設けられた上部丸穴とに上部ピンが挿入されることにより連結されており、前記上部ピンと前記上部長穴との間に排ガスの流れ方向に延びる第1の隙間が形成され、
前記下部台座と前記下部接続体とは、一方に設けられた下部長穴と他方に設けられた下部丸穴とに下部ピンが挿入されることにより連結されており、前記下部ピンと前記下部長穴との間に排ガスの流れ方向に延びる第3の隙間が形成されている、ことを特徴とする排熱回収ボイラのサポート機構。 - 請求項5に記載の排熱回収ボイラのサポート機構において、
前記複数の上部規制部材は第2の隙間を介して前記上部ヘッダを挟み込んでおり、前記第1の隙間が前記第2の隙間よりも大きく設定され、
前記複数の下部規制部材は第4の隙間を介して前記下部ヘッダを挟み込んでおり、前記第3の隙間が前記第4の隙間よりも大きく設定されている、ことを特徴とする排熱回収ボイラのサポート機構。 - 請求項5または6に記載の排熱回収ボイラのサポート機構において、
前記下部ピンと前記下部長穴との間に鉛直方向に沿って延びる第5の隙間が形成されている、ことを特徴とする排熱回収ボイラのサポート機構。 - 請求項4~7の何れか1項に記載の排熱回収ボイラのサポート機構において、
前記下部台座は、前記支持柱と鉛直方向に摺動可能に係合されており、前記支持柱の上面に前記下部台座の傾きを防止するリブが設けられている、ことを特徴とする排熱回収ボイラのサポート機構。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180075467.0A CN116438406A (zh) | 2020-11-24 | 2021-09-15 | 废热回收锅炉的支撑机构 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-194569 | 2020-11-24 | ||
JP2020194569A JP7465792B2 (ja) | 2020-11-24 | 2020-11-24 | 排熱回収ボイラのサポート機構 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022113484A1 true WO2022113484A1 (ja) | 2022-06-02 |
Family
ID=81755459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/033826 WO2022113484A1 (ja) | 2020-11-24 | 2021-09-15 | 排熱回収ボイラのサポート機構 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7465792B2 (ja) |
CN (1) | CN116438406A (ja) |
WO (1) | WO2022113484A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2165656A1 (de) * | 1971-01-07 | 1972-07-20 | Waagner-Biro Ag, Wien | Rohrwand, insbesondere Flossenrohrwand |
JPS60105801A (ja) * | 1983-11-15 | 1985-06-11 | バブコツク日立株式会社 | 廃熱回収ボイラ |
JPS62266301A (ja) * | 1986-05-05 | 1987-11-19 | ザ・バブコツク・アンド・ウイルコツクス・カンパニ− | 共通ボイラケーシングを具備するモジュール式の排ガス蒸気発生器 |
JPH085001A (ja) * | 1994-06-23 | 1996-01-12 | Babcock Hitachi Kk | 伝熱管群支持装置 |
JPH1122906A (ja) * | 1997-07-01 | 1999-01-26 | Babcock Hitachi Kk | 伝熱管パネルの振れ止め装置と排熱回収ボイラ |
WO2005012791A1 (ja) * | 2003-07-30 | 2005-02-10 | Babcock-Hitachi Kabushiki Kaisha | 伝熱管群パネルモジュールと該モジュールを用いる排熱回収ボイラの建設方法 |
-
2020
- 2020-11-24 JP JP2020194569A patent/JP7465792B2/ja active Active
-
2021
- 2021-09-15 WO PCT/JP2021/033826 patent/WO2022113484A1/ja active Application Filing
- 2021-09-15 CN CN202180075467.0A patent/CN116438406A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2165656A1 (de) * | 1971-01-07 | 1972-07-20 | Waagner-Biro Ag, Wien | Rohrwand, insbesondere Flossenrohrwand |
JPS60105801A (ja) * | 1983-11-15 | 1985-06-11 | バブコツク日立株式会社 | 廃熱回収ボイラ |
JPS62266301A (ja) * | 1986-05-05 | 1987-11-19 | ザ・バブコツク・アンド・ウイルコツクス・カンパニ− | 共通ボイラケーシングを具備するモジュール式の排ガス蒸気発生器 |
JPH085001A (ja) * | 1994-06-23 | 1996-01-12 | Babcock Hitachi Kk | 伝熱管群支持装置 |
JPH1122906A (ja) * | 1997-07-01 | 1999-01-26 | Babcock Hitachi Kk | 伝熱管パネルの振れ止め装置と排熱回収ボイラ |
WO2005012791A1 (ja) * | 2003-07-30 | 2005-02-10 | Babcock-Hitachi Kabushiki Kaisha | 伝熱管群パネルモジュールと該モジュールを用いる排熱回収ボイラの建設方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7465792B2 (ja) | 2024-04-11 |
JP2022083238A (ja) | 2022-06-03 |
CN116438406A (zh) | 2023-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2338007B1 (en) | Shop-assembled solar receiver heat exchanger | |
US5207184A (en) | Boiler buckstay system for membranded tube wall end connection | |
AU2004261837B2 (en) | Heat transfer tube panel module and method of constructing exhaust heat recovery boiler using the module | |
US5557901A (en) | Boiler buckstay system | |
KR20080113284A (ko) | 순환 유동층 보일러용 증발기 표면 구조와 이러한 증발기 표면 구조를 갖는 순환 유동층 보일러 | |
WO2022113484A1 (ja) | 排熱回収ボイラのサポート機構 | |
KR20110132314A (ko) | 벅스테이 시스템 | |
JP6142518B2 (ja) | 排熱回収ボイラの支持構造 | |
JP3763856B2 (ja) | 伝熱管群支持装置 | |
JP2753176B2 (ja) | 伝熱管パネル | |
JP2021139514A (ja) | 排熱回収ボイラ、連結具、排熱回収ボイラの施工方法 | |
JP5931599B2 (ja) | 舶用ボイラ構造、船舶及び舶用ボイラの過熱器ヘッダ支持方法 | |
JP7220992B2 (ja) | 伝熱管支持構造および伝熱管支持方法 | |
US5762032A (en) | Field adjustable boltless stirrup | |
JP7090492B2 (ja) | 排熱回収ボイラ | |
JP6665242B2 (ja) | 排熱回収ボイラ | |
JP5787154B2 (ja) | 排熱回収ボイラ | |
JPH0714461B2 (ja) | 脱硝装置 | |
JPH0443682Y2 (ja) | ||
JP2653570B2 (ja) | 排熱回収ボイラの管寄せ支持装置 | |
JPH0820041B2 (ja) | 排熱回収ボイラ | |
JPH0311524Y2 (ja) | ||
JPS61143698A (ja) | 排熱回収熱交換器 | |
JP2003336803A (ja) | ボイラ装置 | |
JPH09257202A (ja) | 排熱回収装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21897462 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21897462 Country of ref document: EP Kind code of ref document: A1 |