WO2010103630A1 - 潤滑装置 - Google Patents

潤滑装置 Download PDF

Info

Publication number
WO2010103630A1
WO2010103630A1 PCT/JP2009/054661 JP2009054661W WO2010103630A1 WO 2010103630 A1 WO2010103630 A1 WO 2010103630A1 JP 2009054661 W JP2009054661 W JP 2009054661W WO 2010103630 A1 WO2010103630 A1 WO 2010103630A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
oil
valve
suction
spool
Prior art date
Application number
PCT/JP2009/054661
Other languages
English (en)
French (fr)
Inventor
謙大 木村
勇仁 服部
倫生 吉田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/203,432 priority Critical patent/US8556038B2/en
Priority to CN2009801579979A priority patent/CN102348904B/zh
Priority to DE112009004497.2T priority patent/DE112009004497B4/de
Priority to PCT/JP2009/054661 priority patent/WO2010103630A1/ja
Priority to JP2011503602A priority patent/JP5177280B2/ja
Publication of WO2010103630A1 publication Critical patent/WO2010103630A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • F16D25/123Details not specific to one of the before-mentioned types in view of cooling and lubrication

Definitions

  • the present invention relates to a lubricating device for lubricating a friction clutch of a transmission mounted on a vehicle.
  • a friction clutch such as a transmission is lubricated by a lubrication device.
  • a device using a jet pump has been proposed as a lubricating device for lubricating a friction clutch.
  • a jet pump as a lubrication device for lubricating a friction clutch, there is one that changes the flow rate of oil discharged from the jet pump to the friction clutch according to the torque transmitted through the friction clutch,
  • Patent Document 1 is disclosed in Patent Document 1 below.
  • the flow rate of oil supplied to the drive nozzle of the jet pump is changed by the torque sensor in accordance with the torque transmitted through the friction clutch, and as a result, the oil is discharged from the jet pump to the friction clutch.
  • the oil flow is changed. That is, since the lubricating device of Patent Document 1 is configured to change the flow rate of oil discharged from the jet pump to the friction clutch according to the torque transmitted through the friction clutch, a torque sensor is indispensable.
  • a jet pump is used in a driving force transmission device that does not include a torque / oil flow rate conversion mechanism that adjusts the flow rate of oil supplied to the jet pump in accordance with the torque transmitted from the friction clutch, such as a torque sensor.
  • the lubrication device requires a separate torque / oil flow rate conversion mechanism in order to adjust the flow rate of oil supplied to the jet pump.
  • a torque / oil flow rate conversion mechanism that the driving force transmission device did not have is separately provided to adjust the flow rate of oil supplied to the jet pump. Necessary. For this reason, the component of a lubrication apparatus increases and it leads to the enlargement of a lubrication apparatus. Therefore, it is difficult to reduce the size of the lubricating device.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a lubricating device that can be miniaturized.
  • a lubrication apparatus is a lubrication apparatus that supplies oil to a lubrication part of a friction clutch that can be engaged by a clutch engagement pressure.
  • a jet pump for discharging the high pressure oil supplied to the mixing section and the low pressure oil supplied to the mixing section from the suction section by supplying the mixing section to the lubrication section A hydraulic control circuit that is connected to the drive nozzle and supplies the high-pressure oil; an oil storage unit that is connected to the suction unit and supplies the low-pressure oil having a pressure lower than that of the high-pressure oil; the suction unit; And a flow rate adjusting valve that is provided between the oil reservoir and mechanically increases in accordance with an increase in the clutch engagement pressure.
  • the flow rate adjusting valve is provided in a suction oil passage that communicates the suction portion and the oil storage portion, and internally communicates the oil storage portion side and the suction portion side of the suction oil passage.
  • a valve housing a spool that is movable in the axial direction inside the valve housing, a biasing means for adjusting valve that biases the spool to one side in the axial direction, and the clutch engagement pressure.
  • an adjustment valve piston chamber that presses the spool to the other side in the axial direction by being introduced, and the spool moves to the other side in the axial direction in response to an increase in the clutch engagement pressure.
  • the biasing means for the regulating valve is made of a shape memory alloy whose spring constant becomes smaller as the temperature rises.
  • the adjustment of the clutch engagement pressure is performed by a pressure adjustment valve, and the pressure adjustment valve is provided in an engagement oil passage that communicates the friction clutch and the hydraulic control circuit.
  • the flow rate adjustment valve and the pressure adjustment valve are preferably one flow rate pressure adjustment interlocking valve.
  • the flow pressure adjustment interlocking valve is connected to a valve housing that internally communicates the friction clutch side and the hydraulic control circuit side of the engagement oil passage, and a shift lever.
  • a spool that is movable in the axial direction inside the valve housing in conjunction with the operation of the shift lever, and when the shift lever is in the neutral position, The communication between the friction clutch side of the road and the hydraulic control circuit side is blocked, and the communication between the oil storage part side and the suction part side of the suction oil path that connects the suction part and the oil storage part is blocked,
  • the spool causes the friction clutch of the engagement oil passage. With a side and a hydraulic control circuit side is communicated, the the oil reservoir side of the suction oil passage and the suction side is communicated, it is preferable.
  • the flow rate pressure adjustment interlocking valve includes a valve housing that internally communicates the friction clutch side and the hydraulic control circuit side of the engagement oil passage, and an axial direction within the valve housing.
  • the spool is made movable, the interlocking valve urging means for urging the spool to one side in the axial direction, and the command pressure is introduced from the hydraulic control circuit, so that the spool is moved to the other side in the axial direction.
  • An interlocking valve piston chamber that presses against the clutch, and the spool moves to the other side in the axial direction in response to an increase in the indicated pressure, thereby increasing the clutch engagement pressure.
  • a check valve is provided on the oil storage portion side of the flow rate adjusting valve.
  • the opening degree of the flow rate adjustment valve mechanically increases. Therefore, as the clutch engagement pressure increases, the oil is stored in the suction portion of the jet pump. Increased oil flow. For this reason, as the clutch engagement pressure increases, the flow rate of the oil discharged from the jet pump increases. That is, as the clutch engagement pressure increases, the flow rate of oil that lubricates the lubrication portion of the friction clutch increases. Therefore, the flow rate of oil discharged from the jet pump can be changed only by the flow rate adjustment valve without using a torque / oil flow rate conversion mechanism such as a torque sensor. As a result, the apparatus can be reduced in size.
  • the friction clutch shifts from the released state to the engaged state, and the amount of heat generated in the friction clutch increases.
  • the flow rate of the oil that lubricates the lubrication portion of the friction clutch increases. That is, in the present invention, as the amount of heat generated in the friction clutch increases, the flow rate of the oil that lubricates the lubrication portion of the friction clutch increases.
  • the friction clutch is operated in the direction in which the friction clutch is engaged, the amount of heat generated in the friction clutch increases, but the lubrication portion of the friction clutch is cooled by the oil whose flow rate has been increased, thereby increasing the temperature of the friction clutch. Can be suppressed.
  • the flow rate of oil supplied to the lubrication portion of the friction clutch decreases, so that the lubrication portion of the friction clutch (for example, between the mutually engageable members of the friction clutch). ) Can be suppressed. Therefore, the lubrication portion of the friction clutch is lubricated and cooled until the friction clutch transitions from the released state to the engaged state, or until the friction clutch transitions from the engaged state to the released state. There is an effect that an oil having a suitable flow rate can be supplied.
  • FIG. 1 is a schematic diagram showing an outline of the lubricating device according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating an outline of the lubricating device according to the second embodiment.
  • FIG. 3 is a table showing characteristics of the urging force of the regulating valve urging means, the opening degree of the flow regulating valve, the suction flow rate, and the lubricating flow rate with respect to temperature changes.
  • FIG. 4 is a schematic diagram showing an outline of the lubricating device according to the third embodiment.
  • FIG. 5 is a schematic diagram showing an outline of the lubricating device according to the fourth embodiment.
  • FIG. 6 is a schematic diagram showing an outline of a lubricating device according to the fifth embodiment.
  • Lubrication device 1-1 Lubrication device 1-2 Lubrication device 1-3 Lubrication device 1-4 Lubrication device 1-5 Lubrication device 10 Hydraulic control circuit 11 Jet pump 11a Drive nozzle 11b Suction unit 11c Mixing unit 11d Discharge unit 12 Oil pan (oil storage) Part) 13 Flow Control Valve 131 Valve Housing 132 Spool 133 Coil Spring (Adjusting Valve Biasing Unit) 134 Piston chamber for adjustment 16 Suction oil passage 17 Manual valve (flow pressure adjustment valve) 171 Valve housing 172 Spool 18 Clutch control valve (Flow-pressure adjustment valve) 181 Valve housing 182 Spool 183 Coil spring (linked valve biasing means) 184 Interlocking valve piston chamber 19 Check valve 20 Friction clutch 20a Lubrication part 21 Pressure adjustment valve 22 Engagement oil passage
  • FIG. 1 is a schematic diagram showing an outline of the lubricating device according to the first embodiment.
  • the lubrication device 1-1 supplies oil to the lubrication portion 20a of the friction clutch 20 that can be engaged by the clutch engagement pressure.
  • the friction clutch 20 is provided, for example, inside a transmission mounted on the vehicle.
  • the friction clutch 20 is completely released when a minimum pressure is applied as a clutch engagement pressure described later, and is completely engaged when a clutch original pressure is applied.
  • the lubrication device 1-1 includes a hydraulic control circuit 10, a jet pump 11, an oil pan 12, and a flow rate adjustment valve 13.
  • the clutch engagement pressure is adjusted by the pressure adjustment valve 21.
  • the pressure regulating valve 21 is provided in an engagement oil passage 22 that communicates the friction clutch 20 and the hydraulic control circuit 10 having a function of keeping the generated original pressure constant.
  • the pressure adjustment valve 21 is provided inside the hydraulic control circuit 10.
  • the opening of the pressure adjusting valve 21 is adjusted by, for example, a solenoid that is driven in accordance with an instruction from a control device that controls the transmission of the vehicle.
  • the pressure adjusting valve 21 mechanically adjusts a clutch base pressure generated by a hydraulic control circuit 10 to be described later by, for example, a solenoid, and from the lowest pressure to the highest pressure at which the friction clutch 20 is engaged, in other words, from the lowest pressure to the clutch.
  • a desired clutch engagement pressure is generated in the pressure range up to the original pressure, and this clutch engagement pressure is applied to the friction clutch 20 via the engagement oil passage 22. That is, the pressure adjustment valve 21 controls the engagement of the friction clutch 20 by adjusting the clutch engagement pressure.
  • the hydraulic control circuit 10 adjusts the pressure of the oil supplied by the oil pump 14 and generates a source pressure suitable for application to each discharge destination. More specifically, the hydraulic control circuit 10 generates and supplies a constant clutch original pressure, which is an original pressure with which the friction clutch 20 can be completely engaged, to the pressure adjusting valve 21.
  • the hydraulic control circuit 10 generates and supplies high-pressure oil having a constant pressure to the drive nozzle 11 a of the jet pump 11.
  • the supply side which is the oil supply side of the hydraulic control circuit 10, is connected to the oil pump 14.
  • the oil pump 14 is connected to the oil pan 15 via the strainer 141 and sucks the oil stored in the oil pan 15. The oil sucked by the oil pump 14 is pressurized and discharged to the hydraulic control circuit 10.
  • the oil stored in the oil pan 15 is pressurized by the oil pump 14 and supplied to the hydraulic control circuit 10.
  • the strainer 141 removes foreign matter from the oil sucked by the oil pump 14.
  • the discharge side which is the side for supplying high-pressure oil in the hydraulic control circuit 10, is connected to the drive nozzle 11 a of the jet pump 11.
  • the hydraulic control circuit 10 regulates the oil pressurized by the oil pump 14 to obtain a constant high pressure oil, and supplies the constant pressure high pressure oil to the drive nozzle 11 a of the jet pump 11.
  • the jet pump 11 supplies mixed oil to the lubrication part 20a of the friction clutch 20.
  • the jet pump 11 includes a drive nozzle 11a, a suction part 11b, a mixing part 11c, and a discharge part 11d.
  • the drive nozzle 11a drives the jet pump 11 by being supplied with high-pressure oil.
  • a supply port on the hydraulic control circuit 10 side of the drive nozzle 11 a is connected to the hydraulic control circuit 10. That is, high-pressure oil having a constant pressure is supplied to the drive nozzle 11 a by the hydraulic control circuit 10. Further, the injection port on the side opposite to the hydraulic control circuit 10 of the drive nozzle 11a communicates with the mixing unit 11c. Therefore, the high-pressure oil having a constant pressure supplied to the drive nozzle 11a by the hydraulic control circuit 10 is jetted to the mixing unit 11c by the drive nozzle 11a. That is, the drive nozzle 11a supplies high-pressure oil having a constant pressure supplied by the hydraulic control circuit 10 to the mixing unit 11c.
  • the suction part 11b is a part for supplying the mixing part 11c with the low pressure oil whose pressure is lower than that of the high pressure oil when the drive nozzle 11a supplies the high pressure oil to the mixing part 11c.
  • the suction portion 11b is formed so as to surround the injection port of the drive nozzle 11a.
  • the supply side, which is the side to which the low pressure oil is supplied, of the suction part 11 b is connected to the oil pan 12 via a suction oil passage 16 that connects the suction part 11 b of the jet pump 11 and the oil pan 12.
  • the discharge side which is the opposite side to the oil pan 12 of the suction part 11b, communicates with the mixing part 11c.
  • the mixing unit 11c mixes the high-pressure oil supplied from the drive nozzle 11a and the low-pressure oil supplied from the suction unit 11b.
  • the mixing unit 11c is a hollow oil passage whose diameter is larger than that of the injection port of the drive nozzle 11a.
  • the supply side which is the side to which the high pressure oil and low pressure oil are supplied, of the mixing unit 11c communicates with the drive nozzle 11a and the suction unit 11b. Further, the discharge side of the mixing unit 11c opposite to the drive nozzle 11a and the suction unit 11b communicates with the discharge unit 11d.
  • the mixing unit 11c has a smaller diameter on the discharge side than on the supply side (not shown).
  • the mixing unit 11c When the high pressure oil is injected from the drive nozzle 11a, the mixing unit 11c generates a negative pressure near the boundary with the drive nozzle 11a, and sucks the low pressure oil in the suction unit 11b by this negative pressure.
  • the mixing unit 11c mixes the high-pressure oil supplied from the drive nozzle 11a and the low-pressure oil supplied from the suction unit 11b, and discharges mixed oil that is an oil obtained by mixing these high-pressure oil and low-pressure oil. To the section 11d.
  • the discharge unit 11d discharges the mixed oil, which is the oil supplied from the mixing unit 11c, to the lubricating unit 20a of the friction clutch 20.
  • the discharge part 11d is a hollow oil passage, and the supply side, which is the mixing part 11c side, communicates with the discharge side of the mixing part 11c, while the discharge side opposite to the mixing part 11c is the lubrication part of the friction clutch 20 It communicates with 20a.
  • the discharge portion 11d is formed so that the diameter of the hollow portion increases as it goes from the supply side to the discharge side.
  • the jet pump 11 is driven by supplying high-pressure oil having a constant pressure to the drive nozzle 11 a, discharges the mixed oil, and supplies the mixed oil to the lubricating portion 20 a of the friction clutch 20.
  • the mixed oil supplied to the lubricating portion 20a of the friction clutch 20 returns to the oil pan 12 or the oil pan 15 via an oil passage (not shown). That is, the lubricating device 1-1 repeatedly uses the oil stored in the oil pan 12 and the oil pan 15 in order to lubricate the lubricating portion 20a of the friction clutch 20.
  • the oil pan 12 is an oil reservoir.
  • the oil pan 12 is connected to the suction portion 11 b of the jet pump 11 via the suction oil passage 16.
  • the oil stored in the oil pan 12 generates a negative pressure in the suction part 11b when the oil in the suction part 11b is sucked into the mixing part 11c in the jet pump 11, and the suction oil The air is sucked into the suction part 11 b of the jet pump 11 through the path 16.
  • the oil supplied from the oil pan 12 to the suction portion 11b of the jet pump 11 through the suction oil passage 16 has the same pressure as the oil supplied from the suction portion 11b to the mixing portion 11c. That is, the oil pan 12 supplies low pressure oil having a pressure lower than that of high pressure oil supplied from the drive nozzle 11a to the mixing unit 11c in the jet pump 11 to the suction unit 11b.
  • the flow rate adjusting valve 13 increases the flow rate of the low-pressure oil supplied from the oil pan 12 to the suction part 11b of the jet pump 11 as the clutch engagement pressure increases.
  • the flow rate adjustment valve 13 is provided between the suction portion 11 b of the jet pump 11 and the oil pan 12. In the first embodiment, the flow rate adjustment valve 13 is provided in the suction oil passage 16.
  • the flow rate adjustment valve 13 includes a valve housing 131, a spool 132, a coil spring 133, and an adjustment piston chamber 134.
  • the spool 132 and the coil spring 133 are essentially vertically symmetric with respect to the axial direction described later.
  • the spool 132 and the coil spring 133 indicate the state A in which the friction clutch 20 is engaged on the upper side with respect to the axial direction, and the friction clutch 20 is on the lower side.
  • State B which is a released state, is shown.
  • the valve housing 131 communicates the oil pan 12 side upstream of the suction oil passage 16 and the suction portion 11b side downstream.
  • the valve housing 131 has a substantially cylindrical shape and houses a spool 132 therein.
  • the spool 132 is formed in a columnar shape whose outer diameter is substantially the same as the inner diameter of the valve housing 131, and whose axial dimension is shorter than the axial dimension inside the valve casing 131. For this reason, the spool 132 is movable in the axial direction inside the valve housing 131.
  • the axial direction of the valve casing 131 and the axial direction of the spool 132 are simply referred to as the axial direction.
  • the coil spring 133 is an adjustment valve biasing means.
  • the coil spring 133 applies an urging force to the spool 132 in the axial direction.
  • the coil spring 133 is arranged in the valve casing 131 so as not to be always extended beyond the natural length between one wall portion in the axial direction of the valve casing 131 and the spool 132.
  • the coil spring 133 is arranged so as to be either the same as the natural length or shorter than the natural length, and when it is shorter than the natural length, the spool 132 Is urged to one side in the axial direction.
  • the adjustment piston chamber 134 is for applying a clutch engagement pressure to the spool 132.
  • the adjustment piston chamber 134 is a gap formed inside the valve housing 131 on the side opposite to the side where the coil spring 133 is disposed with respect to the spool 132.
  • the adjustment piston chamber 134 communicates with the engagement oil passage 22 and can introduce the clutch engagement pressure applied to the engagement oil passage 22 by introducing the oil inside the engagement oil passage 22. It is.
  • this clutch engagement pressure is introduced, the adjustment piston chamber 134 applies the clutch engagement pressure to one side in the axial direction of the spool 132 and causes the spool 132 to move in the axial direction with a pressing force based on the clutch engagement pressure. Press to the other side.
  • the spool 132 when the spool 132 receives a pressing force larger than the biasing force of the coil spring 133 by the adjustment piston chamber 134, the spool 132 moves until the received pressing force and the biasing force of the coil spring 133 become equal. It moves to the other side in the axial direction while resisting the urging force. That is, the spool 132 moves to the other side in the axial direction as the clutch engagement pressure increases.
  • the spool 132 has a suction valve opening part 132a, a suction valve closing part 132b, and an engagement valve closing part 132c, and the suction valve closing part extends from the other side in the axial direction along one side in the axial direction.
  • the part 132b, the suction valve opening part 132a, and the engagement valve closing part 132c are arranged in order.
  • the spool 132 has an axially intermediate portion that is reduced in diameter relative to other portions. The reduced diameter portion serves as a suction valve opening portion 132a, and a suction valve closing portion 132b and an engagement valve closing portion 132c. It is sandwiched between.
  • the suction valve opening portion 132a of the spool 132 has a predetermined outer diameter from the same outer diameter as the suction valve closing portion 132b along the one axial direction side from the other axial side. After being gradually reduced in diameter until reaching the diameter, it continues to the engagement valve closing portion 132c with a uniform outer diameter.
  • the clutch engagement pressure has reached a pressure at which the friction clutch 20 can be engaged
  • one side in the axial direction of the spool 132 receives this clutch engagement pressure, so that the engagement valve closing portion 132c is separated from the inner wall on one side in the axial direction of the valve housing 131, and the suction valve opening portion 132a is opposed to both the oil pan 12 side and the suction portion 11b side of the suction oil passage 16, so that the suction of the spool 132 is performed.
  • the oil pan 12 side and the suction part 11b side of the suction oil passage 16 are communicated by the valve opening part 132a.
  • the engagement valve closing portion 132c is connected to the valve housing.
  • the suction valve closing portion 132b is closest to the inner wall on one side in the axial direction of the body 131, and faces both the oil pan 12 side and the suction portion 11b side of the suction oil passage 16, so that the suction valve closing portion 132b of the spool 132 is provided. As a result, the communication between the oil pan 12 side and the suction portion 11b side of the suction oil passage 16 is blocked.
  • the spool 132 moves in the valve housing 131 in a direction in which the oil pan 12 side and the suction portion 11b side of the suction oil passage 16 communicate with each other according to an increase in clutch engagement pressure. That is, the opening degree of the flow rate adjusting valve 13 is mechanically increased as the clutch engagement pressure increases.
  • the increased clutch engagement pressure is increased in the other axial direction of the spool 132 via the engagement oil passage 22 and the adjustment piston chamber 134. Applied to the side. For this reason, as the clutch engagement pressure is increased by the pressure adjustment valve 21, the spool 132 is pressed to the other side in the axial direction against the urging force of the coil spring 133 by the oil in the adjustment piston chamber 134. The Thus, as the clutch engagement pressure is increased by the pressure adjusting valve 21, the spool 132 moves to the other side in the axial direction.
  • the spool 132 is provided inside the valve housing 131 so that the suction valve opening portion 132a is connected to the oil pan 12 side and the suction portion 11b side of the suction oil passage 16. Will move in a direction opposite to both. That is, as the clutch engagement pressure is increased by the pressure adjustment valve 21, the opening degree of the flow rate adjustment valve 13 is mechanically increased.
  • the flow rate adjusting valve 13 when the flow rate adjusting valve 13 is opened, the low pressure oil stored in the oil pan 12 is sucked into the mixing unit 11c through the suction oil passage 16 and the suction unit 11b due to the constant negative pressure generated in the mixing unit 11c.
  • the flow rate of the low-pressure oil sucked from the oil pan 12 into the mixing unit 11c through the suction oil passage 16 and the suction unit 11b is changed.
  • the high-pressure oil having a constant flow rate and the low-pressure oil having a flow rate variable by the flow rate adjustment valve 13 are combined, and the mixed oil is supplied to the lubrication unit 20 a of the friction clutch 20 by the discharge unit 11 d of the jet pump 11. It becomes.
  • the opening degree of the flow rate adjustment valve 13 is mechanically increased. Therefore, as the clutch engagement pressure increases, the oil pump 12 to the jet pump 11 are increased. The flow rate of the low-pressure oil sucked into the suction portion 11b increases. For this reason, as the clutch engagement pressure is increased by the pressure regulating valve 21, the flow rate of the low-pressure oil adjusted to the high-pressure oil having a constant flow rate is increased, and the flow rate of the mixed oil is increased by the mixing unit 11c of the jet pump 11. As a result, the flow rate of the mixed oil discharged from the discharge portion 11d of the jet pump 11 increases.
  • the flow rate of the mixed oil that lubricates the lubricating portion 20a of the friction clutch 20 increases. Therefore, for example, even if a torque / oil flow rate conversion mechanism that adjusts the flow rate of oil supplied to the jet pump according to the torque transmitted from the friction clutch, such as a torque sensor, is not used, only the flow rate adjusting valve 13 is used. The flow rate of the mixed oil discharged from the 11 discharge portions 11d can be changed. Thereby, size reduction of an apparatus can be achieved.
  • the flow rate amplifying function of the jet pump 11 allows the lubrication of the friction clutch 20 even when the flow rate of the high-pressure oil supplied from the hydraulic control circuit 10 to the drive nozzle 11a of the jet pump 11 is relatively small. Since the mixed oil at a flow rate sufficient to lubricate the portion 20a can be supplied, the small oil pump 14 can be used. Thereby, the drive torque for driving the oil pump 14 can be reduced. For this reason, the engine of the vehicle is less burdened to generate a driving torque for driving the oil pump 14. Therefore, the fuel consumption of the vehicle can be improved.
  • the friction clutch 20 shifts from the state B to the state A, that is, from the released state to the engaged state. That is, in the lubricating device 1-1, the amount of heat generated in the friction clutch 20 increases as the clutch engagement pressure increases by the pressure adjustment valve 21.
  • the flow rate of the mixed oil that lubricates the lubricating portion 20a of the friction clutch 20 increases as the clutch engagement pressure increases by the pressure adjusting valve 21.
  • the lubricating device 1-1 As the clutch engagement pressure is increased by the pressure adjusting valve 21, the flow rate of the mixed oil that lubricates the lubricating portion 20a of the friction clutch 20 increases. That is, the lubricating device 1-1 supplies mixed oil having a flow rate suitable for lubricating the lubricating portion 20a of the friction clutch 20 to the lubricating portion 20a of the friction clutch 20 in accordance with the engaged state of the friction clutch 20. It will be.
  • the friction clutch 20 when the friction clutch 20 is operated in the direction in which the friction clutch 20 is engaged, the amount of heat generated in the friction clutch 20 increases, but the lubricating portion 20a of the friction clutch 20 is cooled by the mixed oil whose flow rate is increased. Thereby, the temperature rise of the friction clutch 20 when operated in the direction in which the friction clutch 20 is engaged can be suppressed, and seizure of the lubricating portion 20a due to insufficient supply of mixed oil can be prevented.
  • the friction clutch 20 when the friction clutch 20 is operated in the releasing direction, the flow rate of the mixed oil supplied to the lubrication part 20a of the friction clutch 20 decreases, so the lubrication part 20a (here, for example, friction The mixed oil is not excessively supplied between the mutually engageable members of the clutch 20. For this reason, for example, when the friction clutch 20 is operated in the releasing direction, it is possible to suppress a stirring loss caused in the lubricating portion 20a of the friction clutch 20 due to excessive supply of mixed oil.
  • the lubrication device 1-1 is configured to adjust the flow rate of the low-pressure oil sucked into the suction portion 11b of the jet pump 11 without adjusting the flow rate of the high-pressure oil supplied to the drive nozzle 11a of the jet pump 11.
  • the efficiency of the jet pump 11 can be set near the highest point, for example. That is, the efficiency of the jet pump 11 can be improved.
  • the flow rate amplification function of the jet pump 11 can be effectively utilized to discharge the mixed oil having the optimum flow rate for lubricating the lubricating portion 20a of the friction clutch 20 from the discharge portion 11d of the jet pump 11, For example, seizure due to insufficient flow rate of the supplied mixed oil or an increase in stirring loss due to excessive flow rate of the supplied mixed oil can be further suppressed with respect to the lubricating portion 20a of the friction clutch 20.
  • FIG. 2 is a schematic diagram illustrating an outline of the lubricating device according to the second embodiment.
  • the lubricating device 1-2 according to the second embodiment is the same as the lubricating device 1-1 according to the first embodiment, except that the coil spring 133 is made of a shape memory alloy, and the clutch engagement pressure is not changed.
  • the flow rate of the mixed oil supplied to the lubricating portion 20a of the friction clutch 20 is increased as the temperature of the oil increases.
  • the same constituent elements as those of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 1 the same constituent elements as those of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • the spool 132 and the coil spring 133 are originally vertically symmetric with respect to the axial direction described later.
  • the spool 132 and the coil spring 133 are assumed to indicate the state A on the upper side and the state B on the lower side with respect to the axial direction.
  • the symbol F indicates the biasing force of the coil spring 133.
  • symbol Av corresponds to the opening of the flow rate adjustment valve 13 and indicates the opening area of the flow rate adjustment valve 13 with respect to the intake oil passage 16.
  • reference sign Q1 indicates a supply flow rate that is a flow rate of high-pressure oil supplied from the hydraulic control circuit 10 to the drive nozzle 11a of the jet pump 11.
  • reference sign Q2 indicates a suction flow rate that is a flow rate of low-pressure oil that is sucked into the suction portion 11b of the jet pump 11 from the oil pan 12 through the suction oil passage 16.
  • reference sign Q3 indicates a lubricating flow rate that is a flow rate of the mixed oil supplied from the discharge portion 11d of the jet pump 11 to the lubricating portion 20a of the friction clutch 20.
  • the coil spring 133 of the second embodiment is made of a shape memory alloy whose spring constant becomes smaller as the temperature rises. That is, even if the length of the coil spring 133 of the second embodiment is the same, the urging force F that urges the spool 132 to one side in the axial direction becomes weaker as the temperature of the coil spring 133 rises. Is.
  • FIG. 3 is a table showing characteristics of the urging force of the regulating valve urging means, the opening of the flow regulating valve, the suction flow rate, and the lubricating flow rate with respect to temperature changes. That is, FIG. 3 shows changes in the biasing force F with respect to the temperature change of the flow rate adjustment valve 13, changes in the opening area Av with respect to the temperature change of the flow rate adjustment valve 13, and changes in the suction flow rate Q2 with respect to the temperature change of the flow rate adjustment valve 13.
  • FIG. 6 is a table showing changes in the lubrication flow rate Q3 with respect to changes in the temperature of the flow rate adjustment valve 13.
  • the low pressure oil stored in the oil pan 12 and the oil pan 15 is repeatedly used to lubricate the lubrication portion 20a of the friction clutch 20.
  • the temperature of the coil spring 133 also increases via the valve housing 131 or the spool 132 as the oil temperature increases.
  • the opening area Av, the suction flow rate Q2, and the lubrication flow rate Q3 increase as the oil temperature rises.
  • the cooling effect of the mixed oil with respect to the lubricating portion 20a of the friction clutch 20 decreases as the temperature of the mixed oil increases. For this reason, the flow rate of the mixed oil necessary to lubricate the lubricating portion 20a of the friction clutch 20 increases as the temperature rises.
  • the mixed oil having a flow rate suitable for lubricating the lubricating portion 20a of the friction clutch 20 is supplied to the lubricating portion 20a in response to the temperature change of the flow rate adjusting valve 13.
  • the Rukoto thereby, while being able to suppress further the stirring loss by excessive supply of mixed oil with respect to the lubrication part 20a of the friction clutch 20, the seizure of the lubrication part 20a by insufficient supply of mixed oil can be prevented.
  • the viscosity of oil decreases with increasing temperature.
  • the inner wall surface adhering amount which is the amount of the mixed oil adhering to the inner wall surface of the transmission as the oil temperature rises.
  • the oil storage amount which is the total amount of oil stored in the tank, increases.
  • the two oil pans 12 and 15 communicate with each other to be substantially one oil pan, if the clutch engagement pressure is the same, the oil storage amount associated with the oil temperature rise Since the increased amount and the increased amount of the low-pressure oil supplied from the oil pan 12 to the suction part 11b of the jet pump 11 due to the oil temperature increase are at least partially offset, the actual oil storage amount with respect to the oil temperature change The change of is suppressed. Therefore, for example, when the temperature is low, it is possible to prevent the oil pump 14 from sucking air due to a decrease in the amount of stored oil.
  • FIG. 4 is a schematic diagram showing an outline of the lubricating device according to the third embodiment.
  • the lubrication device 1-3 according to the third embodiment is provided with a manual valve 17 described later instead of providing the flow rate adjustment valve 13 and the pressure adjustment valve 21 in the lubrication device 1-1 according to the first embodiment.
  • the clutch engagement pressure is adjusted, and the flow rate of oil supplied from the oil pan 12 to the suction portion 11b of the jet pump 11 is adjusted.
  • the same constituent elements as those of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • the manual valve 17 of the third embodiment is a single flow rate pressure adjustment interlocking valve, and the flow rate adjustment valve 13 and the pressure adjustment valve 21 are combined.
  • the manual valve 17 is provided in the engagement oil passage 22.
  • the pressure adjustment valve is provided in the engagement oil passage 22.
  • the manual valve 17 according to the third embodiment includes a valve housing 171 and a spool 172.
  • the spool 172 is essentially vertically symmetric with respect to the axial direction described later.
  • the spool 172 indicates the state when the shift lever is in the neutral position with respect to this axial direction, and the lower side indicates the shift lever when the friction clutch 20 is applied by the clutch engagement pressure.
  • the engagement position will be described by taking a forward position where the vehicle can move forward as an example.
  • the embodiment is not limited to this, and is a reverse position where the vehicle can move backward. Also good.
  • the valve housing 171 communicates the friction clutch 20 side that is the downstream side of the engagement oil passage 22 and the hydraulic control circuit 10 side that is the upstream side.
  • the valve housing 171 is a substantially cylindrical body that is open on the other side in the axial direction, and one side in the axial direction of the spool 172 is inserted therein.
  • the spool 172 is formed in a column shape whose outer diameter is substantially the same as the inner diameter of the valve housing 171. Further, the other side of the spool 172 in the axial direction is exposed from the valve housing 171, and this exposed portion is connected to a shift lever (not shown). For this reason, the spool 172 is movable in the axial direction inside the valve housing 171 in conjunction with the operation of the shift lever by the driver. Further, the spool 172 includes a suction valve opening portion 172a, a suction valve closing portion 172b, an engagement valve closing portion 172c, and an engagement valve opening portion 172d, and one side in the axial direction from the other side in the axial direction.
  • the engagement valve closing portion 172c, the engagement valve opening portion 172d, the suction valve closing portion 172b, and the suction valve opening portion 172a are arranged in this order.
  • the suction valve opening 172a is a portion formed in a tapered shape on one axial direction side of the spool 172, and the opening degree of the manual valve 17 as a flow rate adjusting valve according to the position in the axial direction with respect to the valve housing 171. That is, the opening area of the manual valve 17 with respect to the suction oil passage 16 is changed.
  • the axial direction of the valve housing 171 and the axial direction of the spool 172 are simply referred to as the axial direction.
  • the spool 172 has an intermediate portion in the axial direction reduced in diameter with respect to the other portions, and the reduced diameter portion serves as an engagement valve opening portion 172d, and the engagement valve closing portion 172c and the suction closed portion are closed. It is sandwiched between the valve portion 172b. More specifically, in the third embodiment, the engagement valve opening portion 172d of the spool 172 is a portion that is reduced in diameter so that the outer diameter is uniform from the other axial side to the one axial side. The engagement valve closing part 172c and the suction valve closing part 172b are continuous.
  • the engagement valve closing portion 172c faces the friction clutch 20 side of the engagement oil passage 22, and the suction valve closing portion 172b is inhaled.
  • the oil passage 16 faces both the oil pan 12 side and the suction portion 11b side, and the engagement valve closing portion 172c of the spool 172 causes the friction clutch 20 side and the hydraulic control circuit 10 side of the engagement oil passage 22 to be connected.
  • the communication is blocked and the suction valve closing portion 172b of the spool 172 blocks the communication between the oil pan 12 side and the suction portion 11b side of the suction oil passage 16.
  • the engagement valve opening 172d is connected to both the friction clutch 20 side and the hydraulic control circuit 10 side of the engagement oil passage 22.
  • the suction valve opening portion 172a faces both the oil pan 12 side and the suction portion 11b side of the suction oil passage 16, and the engagement valve portion 172d of the spool 172 causes the friction of the engagement oil passage 22 to face each other.
  • the clutch 20 side and the hydraulic control circuit 10 side communicate with each other, and the oil pan 12 side and the suction portion 11b side of the suction oil passage 16 communicate with each other through the suction valve opening portion 172a of the spool 172.
  • the engagement valve closing portion 172c of the spool 172 faces the friction clutch 20 side of the engagement oil passage 22, and this engagement closing is performed. Since the communication between the friction clutch 20 side and the hydraulic control circuit 10 side of the engagement oil passage 22 is blocked by the valve portion 172c, the engagement pressure of the friction clutch 20 becomes the minimum pressure, and the friction clutch 20 is released. At this time, the suction valve closing portion 172b of the spool 172 is opposed to both the oil pan 12 side and the suction portion 11b side of the suction oil passage 16, and the suction valve closing portion 172b is connected to the oil pan 12 side of the suction oil passage 16.
  • the supply flow rate of the mixed oil supplied to the lubrication portion 20a of the friction clutch 20 by the discharge portion 11d of the jet pump 11 becomes the minimum flow rate. That is, in the lubrication device 1-3, when the shift lever is in the neutral position, the flow rate of the mixed oil supplied to the lubricating portion 20a of the friction clutch 20 is suppressed, and the stirring loss generated in the lubricating portion 20a of the friction clutch 20 is suppressed. it can.
  • the engagement valve opening portion 172d of the spool 172 is connected to the friction clutch 20 side of the engagement oil passage 22 and the hydraulic pressure.
  • the engagement valve opening 172d is opposed to both the control circuit 10 side, and the friction clutch 20 side of the engagement oil passage 22 and the hydraulic control circuit 10 side are communicated with each other by the engagement valve opening portion 172d.
  • the pressure rises from the minimum pressure and finally becomes the clutch original pressure, and the friction clutch 20 is completely engaged. For this reason, when the shift lever is switched from the neutral position to the forward position, the amount of heat generated in the friction clutch 20 increases.
  • the suction valve opening portion 172a of the spool 172 is connected to the oil pan 12 side of the suction oil passage 16. Opposite both the suction part 11b side and the suction valve opening part 172a communicates the oil pan 12 side of the suction oil passage 16 and the suction part 11b side. That is, when the shift lever is switched from the neutral position to the forward position, the suction valve opening 172a of the spool 172 causes the manual valve 17 to open as the flow rate adjusting valve, that is, to the suction oil passage 16 of the manual valve 17. The opening area gradually increases.
  • the flow rate of the mixed oil supplied to the lubricating portion 20a of the friction clutch 20 is increased, and the lubricating portion of the friction clutch 20 by the mixed oil is increased. While cooling of 20a is accelerated
  • the friction clutch 20 shifts from the disengaged state to the engaged state or the friction clutch 20 shifts from the engaged state to the disengaged state according to the operation of the shift lever by the driver.
  • the mixed oil having a flow rate suitable for lubrication and cooling can be supplied to the lubricating portion 20a of the friction clutch 20.
  • the lubrication device 1-3 does not require the flow rate adjusting valve 13 as provided in the lubrication device 1-1 of the first embodiment. For this reason, for example, a change in which the oil pan 12 side of the suction oil passage 16 and the suction portion 11b side can communicate with each other by movement of the spool in the axial direction is changed in a general automatic transmission provided in the vehicle. Lubricating device 1-3 can be realized at low cost simply by applying it to the pressure regulating valve.
  • FIG. 5 is a schematic diagram showing an outline of the lubricating device according to the fourth embodiment.
  • the lubrication device 1-4 according to the fourth embodiment includes a clutch control valve 18 instead of the manual valve 17 in the lubrication device 1-3 according to the third embodiment, so that the command pressure generated by electronic control of the vehicle is increased. Based on this, the clutch engagement pressure is adjusted, and the flow rate of the low-pressure oil supplied to the suction portion 11b of the jet pump 11 is adjusted.
  • a command pressure adjusting valve (not shown) is provided inside the hydraulic pressure control circuit 10, and for example, a solenoid is driven by electronic control of the vehicle, and the opening degree of the command pressure adjusting valve is adjusted. A command pressure is generated.
  • the hydraulic pressure control circuit 10 applies the clutch original pressure to the clutch control valve 18 in the engagement oil passage 22 on the hydraulic control circuit 10 side. Note that the same constituent elements as those of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • the clutch control valve 18 of the fourth embodiment is one flow rate pressure adjustment interlocking valve, and is a combination of the flow rate control valve 13 and the pressure control valve 21 in the lubricating device 1-1 of the first embodiment.
  • the clutch control valve 18 according to the fourth embodiment includes a valve housing 181, a spool 182, a coil spring 183, and an interlocking valve piston chamber 184.
  • the spool 182 and the coil spring 183 are essentially symmetrical with respect to the axial direction described later.
  • the spool 182 and the coil spring 183 are assumed to indicate the state B on the right side and the state A on the left side with respect to the axial direction.
  • the valve housing 181 communicates the friction clutch 20 side that is the downstream side of the engagement oil passage 22 and the hydraulic control circuit 10 side that is the upstream side.
  • the valve housing 181 is a substantially cylindrical body and houses a spool 182 therein.
  • the opening portion of the valve housing 181 with respect to the engagement oil passage 22 has an opening portion on the friction clutch 20 side located on one side in the axial direction with respect to the opening portion on the hydraulic control circuit 10 side. Can move along the axial direction, so that the opening area of the valve housing 181 with respect to the engagement oil passage 22 can be changed.
  • the spool 182 is formed in a columnar shape whose outer diameter is substantially the same as the inner diameter of the valve casing 181 and whose axial dimension is shorter than the axial dimension inside the valve casing 181. For this reason, the spool 182 is movable in the axial direction inside the valve housing 181.
  • One side in the axial direction of the spool 182 receives a command pressure (a pilot pressure by a command pressure adjusting valve) by the oil introduced into the interlocking valve piston chamber 184.
  • a command pressure a pilot pressure by a command pressure adjusting valve
  • the coil spring 183 is an interlocking valve urging means.
  • the coil spring 183 applies a biasing force in the axial direction to the spool 182.
  • the coil spring 183 is arranged in the valve casing 181 between the one wall portion in the axial direction of the valve casing 181 and the spool 182 so as not to be always extended beyond the natural length. That is, the coil spring 183 is disposed so as to be either the same as the natural length or shorter than the natural length. When the coil spring 183 is shorter than the natural length, the spool 182 Is urged to one side in the axial direction.
  • the interlocking valve piston chamber 184 is for applying a command pressure to the spool 182.
  • the interlocking valve piston chamber 184 is a gap formed on the side opposite to the side where the coil spring 183 is disposed with respect to the spool 182 inside the valve housing 181.
  • the interlocking valve piston chamber 184 communicates with the hydraulic control circuit 10 through the indicating oil passage 184a, and is applied to the indicating oil passage by the hydraulic control circuit 10 by introducing oil inside the indicating oil passage 184a.
  • the indicated pressure can be introduced.
  • the interlocking valve piston chamber 184 applies the command pressure to the other axial direction side of the spool 182 when the command pressure is introduced from the hydraulic control circuit 10, and the spool 182 is a command pressure based on the command pressure.
  • the spool 182 When the spool 182 receives an instruction pressing force larger than the urging force of the coil spring 183 by the interlock valve piston chamber 184, the coil spring 183 until the received urging force and the urging force of the coil spring 183 become equal. It moves to the other side in the axial direction while resisting the urging force of 183. That is, the spool 182 moves to the other side in the axial direction in accordance with an increase in the indicated pressure.
  • the spool 182 has a suction valve opening part 182a, a suction valve closing part 182b, an engagement valve closing part 182c, an engagement valve opening part 182d, and an instruction valve closing part 182e, and the axis line
  • the suction valve closing portion 182b, the suction valve opening portion 182a, the engagement valve closing portion 182c, the engagement valve opening portion 182d, and the instruction valve closing portion 182e are sequentially arranged from the other side of the direction along the one side in the axial direction. Are lined up.
  • the spool 182 has an axially intermediate portion with a reduced diameter with respect to the other portions.
  • the reduced diameter portion serves as an engagement valve opening portion 182d, and the engagement valve closing portion 182c and the instruction valve closing portion 182e. It is sandwiched between.
  • the opposite side of the engagement valve closing portion 182c from the engagement valve opening portion 182d is reduced in diameter relative to the outer diameter of the engagement valve closing portion 182c, and this reduced diameter portion is the intake valve opening.
  • the portion is 182a.
  • a portion on the other side in the axial direction with respect to the suction valve opening portion 182a is a suction valve closing portion 182b. More specifically, in the fourth embodiment, the engagement valve-opening portion 182d is reduced in diameter so that the outer diameter is uniform from the other axial direction side to the one axial direction side.
  • the part 182c and the instruction valve closing part 182e are continuous. Further, the suction valve opening part 182a extends from one side in the axial direction to the other side in the axial direction with a uniform outer diameter, and then extends while expanding to the same diameter as the outer diameter of the suction valve closing part 182b. And continues to the suction valve closing portion 182b.
  • the suction valve closing portion 182b extends with the outer diameter being equal to the outer diameter of the engagement valve closing portion 182d, and is an end portion on the other side in the axial direction of the spool 182.
  • one side in the axial direction of the spool 182 receives the command pressure, so that the engagement valve opening portion 182d is connected between the friction clutch 20 side of the engagement oil passage 22 and the hydraulic control circuit 10 side.
  • the both sides face each other, and the engagement valve 182d of the spool 182 connects the friction clutch 20 side and the hydraulic control circuit 10 side of the engagement oil passage 22. Since the opening portion of the valve housing 181 with respect to the engagement oil passage 22 is located on one side in the axial direction with respect to the opening portion on the friction clutch 20 side, the engagement valve opening portion 182d. As the valve moves to the other side in the axial direction, the opening area of the clutch control valve 18 with respect to the engagement oil passage 22 increases.
  • the clutch control valve 18 As the engagement valve opening 182d moves to the other side in the axial direction, the clutch engagement pressure increases. Therefore, in the clutch control valve 18, as the engagement valve opening portion 182d moves to the other side in the axial direction, a clutch engagement pressure that can engage the friction clutch 20 is generated. Further, in the clutch control valve 18 of the fourth embodiment, the one side in the axial direction of the spool 182 receives the lowest command pressure, and the engagement valve closing portion 182 c on the other side in the axial direction controls the hydraulic pressure of the engagement oil passage 22. It will face the circuit 10 side, and the communication between the friction clutch 20 side of the engagement oil passage 22 and the hydraulic control circuit 10 side is blocked by the engagement valve closing portion 182c of the spool 182. Therefore, in the clutch control valve 18, when the engagement valve closing portion 182c is opposed to the hydraulic control circuit 10 side of the engagement oil passage 22, the lowest clutch engagement pressure is generated.
  • the clutch control valve 18 when the command pressure is applied to the other axial side of the spool 182, the clutch engagement pressure reaches a pressure at which the friction clutch 20 can be engaged.
  • the suction valve opening portion 182a faces both the oil pan 12 side and the suction portion 11b side of the suction oil passage 16, and the suction valve opening portion 182a of the spool 182 sucks the suction oil passage 16 from the oil pan 12 side.
  • the part 11b side communicates.
  • the command pressure is applied to the other side in the axial direction of the spool 182 with the lowest pressure, and when the clutch engagement pressure is the lowest pressure, the intake valve closing portion 182b.
  • the spool 182 increases the clutch engagement pressure by moving to the other side in the axial direction according to the increase in the command pressure, and increases the command pressure inside the valve housing 181. Accordingly, the oil pan 12 side of the suction oil passage 16 and the suction portion 11b side are made to communicate with each other, and the friction clutch 20 side and the hydraulic control circuit 10 side of the engagement oil passage 22 are made to communicate with each other. That is, the clutch control valve 18 is mechanically increased in opening as a flow rate adjustment valve and a pressure adjustment valve as the command pressure increases. In other words, the clutch control valve 18 mechanically increases the opening area of the valve housing 181 with respect to the suction oil passage 16 and the opening area with respect to the engagement oil passage 22 as the command pressure increases.
  • the command pressure generated by the hydraulic control circuit 10 by electronic control of the vehicle is transmitted to the other side in the axial direction of the spool 182 via the command oil passage 184a and the interlocking valve piston chamber 184. Applied. For this reason, as the indicated pressure generated in the hydraulic control circuit 10 increases, the spool 182 is pressed against the urging force of the coil spring 183 to the other side in the axial direction by the oil in the interlocking valve piston chamber 184. Is done. Thereby, as the command pressure generated by the hydraulic control circuit 10 increases, the spool 182 moves to the other side in the axial direction.
  • the spool 182 moves in a direction in which the engagement valve opening portion 182d faces both the friction clutch 20 side and the hydraulic control circuit 10 side of the engagement oil passage 22 in the valve housing 181 and sucks it.
  • the valve opening part 182a moves in a direction facing both the oil pan 12 side and the suction part 11b side of the suction oil passage 16. That is, as the command pressure generated in the hydraulic control circuit 10 increases, the clutch control valve 18 mechanically opens as the flow rate adjustment valve and the pressure adjustment valve, that is, the intake oil passage 16 of the valve housing 181. And the opening area for the engagement oil passage 22 are increased.
  • the engagement valve closing portion 182c on the other side in the axial direction is engaged.
  • the oil passage 22 faces the hydraulic control circuit 10 side
  • the suction valve closing portion 182b faces both the oil pan 12 side and the suction portion 11b side of the suction oil passage 16, thereby closing the engagement of the spool 182.
  • the valve portion 182c blocks communication between the friction clutch 20 side of the engagement oil passage 22 and the hydraulic control circuit 10 side, and the suction valve closing portion 182b of the spool 182 closes the oil pan 12 side and the suction portion of the suction oil passage 16. Communication with the 11b side is blocked.
  • the engagement pressure of the friction clutch 20 becomes the minimum pressure, and the friction clutch 20 is released.
  • the communication between the oil pan 12 side and the suction portion 11b side of the engagement oil passage 22 is blocked by the suction valve closing portion 182b of the spool 182.
  • the supply flow rate of the mixed oil supplied to the lubrication unit 20a of the friction clutch 20 by the discharge unit 11d of the jet pump 11 becomes the minimum flow rate.
  • the clutch engagement pressure is the lowest pressure
  • the flow rate of the mixed oil supplied to the lubrication unit 20a of the friction clutch 20 is suppressed, and the stirring loss generated in the lubrication unit 20a of the friction clutch 20 is reduced. Can be suppressed.
  • the engagement valve opening portion 182d is engaged with the engagement oil passage. 22 is opposed to both the friction clutch 20 side and the hydraulic control circuit 10 side, and the suction valve opening portion 182a is opposed to both the oil pan 12 side and the suction portion 11b side of the suction oil passage 16, thereby
  • the friction valve 20 side and the hydraulic pressure control circuit 10 side of the engagement oil passage 22 are communicated with each other by the engagement valve opening portion 182d of the spool 182, and the oil pan 12 of the suction oil passage 16 is connected by the suction valve opening portion 182a of the spool 182.
  • the oil pan 12 side and the suction part 11b side of the suction oil passage 16 are communicated with each other, so that the suction part 11d of the jet pump 11 causes the friction clutch 20 to be
  • the supply flow rate of the mixed oil supplied to the lubrication part 20a will increase. That is, when the clutch engagement pressure reaches the pressure at which the friction clutch 20 can be engaged from the lowest pressure, the suction valve opening portion 182a of the spool 182 causes the suction valve closing portion 182b to move to the other side in the axial direction.
  • the clutch control valve 18 has an opening as a flow rate adjustment valve, that is, an opening area of the valve housing 181 with respect to the intake oil passage 16 is increased.
  • the clutch engagement pressure reaches the pressure at which the friction clutch 20 can be engaged from the lowest pressure
  • the flow rate of the mixed oil supplied to the lubricating portion 20a of the friction clutch 20 is increased, Cooling of the lubricating portion 20a of the friction clutch 20 with the mixed oil can be promoted, and seizure of the lubricating portion 20a due to insufficient supply of the mixed oil can be prevented.
  • FIG. 6 is a schematic diagram showing an outline of a lubricating device according to the fifth embodiment.
  • the lubricating device 1-5 according to the fifth embodiment is the same as the lubricating device 1-1 according to the first embodiment, except that the check valve 19 is provided on the oil pan 12 side of the flow rate adjusting valve 13, and the jet pump 11 This prevents the low-pressure oil supplied to the suction portion 11b from flowing backward.
  • the same constituent elements as those of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 1 the same constituent elements as those of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • the spool 132 and the coil spring 133 are originally vertically symmetric with respect to the axial direction described later.
  • the spool 132 and the coil spring 133 are assumed to indicate the state A on the upper side and the state B on the lower side with respect to the axial direction.
  • the check valve 19 is provided on the oil pan 12 side of the flow rate adjustment valve 13.
  • the check valve 19 is provided at the end on the oil pan 12 side in the suction oil passage 16.
  • the check valve 19 is a case where a negative pressure is generated in the mixing portion 11c of the jet pump 11, and when the flow rate adjustment valve 13 is open, the check valve 19 is opened by an oil suction force based on the negative pressure. .
  • the check valve 19 is closed because the suction force based on the negative pressure generated in the mixing portion 11c of the jet pump 11 by the flow rate adjusting valve 13 does not act. I will speak.
  • the check valve 19 when the flow rate adjustment valve 13 is closed, the check valve 19 is closed, so that the check valve 19 causes air to be mixed into the suction oil passage 16. Can be prevented. That is, when the low pressure oil is not sucked from the oil pan 12 into the suction part 11b of the jet pump 11 by the flow rate adjusting valve 13 via the suction oil passage 16, the check valve 19 causes the flow rate adjusting valve 13 to Thus, air can be prevented from being mixed into the oil pan 12 side. For this reason, even if the low-pressure oil is sucked into the suction part 11 b of the jet pump 11 by opening the flow rate adjustment valve 13, air is not mixed into the jet pump 11.
  • the mixed oil can be supplied promptly.
  • the check valve 19 prevents air from being mixed into the jet pump 11, it is possible to prevent the generation of noise due to the air jamming of the jet pump 11.
  • the intake oil passage 16 is cut off by the spool.
  • the present invention may be configured such that the suction oil passage 16 is not blocked by the spool even when the clutch engagement pressure is the lowest pressure.
  • the lubrication apparatus according to the present invention is useful for lubricating the lubrication portion of the friction clutch of the vehicle, and particularly useful for lubricating the lubrication portion of the friction clutch constituting the transmission for the vehicle. It is.

Abstract

 小型化を図ることができる潤滑装置を提供すること。潤滑装置1-1では、クラッチ係合圧が増大するに伴い、機械的に流量調整弁13の開度が大きくなるので、このクラッチ係合圧が増大するに伴い、オイルパン12からジェットポンプ11の吸入部11bに吸い込まれるオイルの流量が増大する。このため、クラッチ係合圧が増大するに伴い、ジェットポンプ11の吐出部11dから吐出されるオイルの流量が増大する。つまり、クラッチ係合圧が増大するに伴い、摩擦クラッチ20の潤滑部20aを潤滑するオイルの流量が増大する。したがって、例えばトルクセンサのようなトルク/オイル流量変換機構を用いなくても、流量調整弁13だけでジェットポンプ11から吐出されるオイルの流量を変更できる。これにより、装置の小型化を図ることができる。

Description

潤滑装置
 本発明は、車両に搭載されている変速機の摩擦クラッチを潤滑する潤滑装置に関するものである。
 車両に搭載されているエンジンの駆動力を車輪側へ伝達する駆動力伝達装置では、潤滑装置により変速機などの摩擦クラッチが潤滑される。ここで、例えば、摩擦クラッチを潤滑する潤滑装置として、ジェットポンプを用いたものが提案されている。摩擦クラッチを潤滑する潤滑装置としてジェットポンプを用いたものの中には、摩擦クラッチを介して伝達されるトルクに応じて、ジェットポンプから摩擦クラッチへ吐出されるオイルの流量を変更するものがあり、その一例が下記の特許文献1に開示されている。
 特許文献1の潤滑装置では、摩擦クラッチを介して伝達されるトルクに応じて、トルクセンサによりジェットポンプの駆動ノズルに供給するオイルの流量が変更され、この結果、ジェットポンプから摩擦クラッチへ吐出されるオイルの流量が変更される。つまり、特許文献1の潤滑装置は、摩擦クラッチを介して伝達されるトルクに応じて、ジェットポンプから摩擦クラッチへ吐出するオイルの流量を変更する構成なので、トルクセンサが必要不可欠である。
特開平8-219267号公報
 ところで、例えばトルクセンサのように、摩擦クラッチから伝達されるトルクに応じてジェットポンプに供給するオイルの流量を調整するトルク/オイル流量変換機構を備えていない駆動力伝達装置において、ジェットポンプを用いて摩擦クラッチを潤滑しようとすると、潤滑装置は、ジェットポンプに供給するオイルの流量を調整するために、トルク/オイル流量変換機構が別途必要となる。つまり、潤滑装置は、ジェットポンプを用いて摩擦クラッチを潤滑しようとすると、ジェットポンプに供給するオイルの流量を調整するために、駆動力伝達装置が備えていなかったトルク/オイル流量変換機構が別途必要となる。このため、潤滑装置の構成要素が多くなり、潤滑装置の大型化に繋がってしまう。したがって、潤滑装置を小型化することは難しい。
 本発明は、上記に鑑みてなされたものであって、小型化を図ることができる潤滑装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る潤滑装置は、クラッチ係合圧により係合可能な摩擦クラッチの潤滑部にオイルを供給する潤滑装置において、駆動ノズルから混合部に供給される高圧オイルと、前記高圧オイルが前記混合部に供給されることで吸入部から前記混合部に供給される低圧オイルとを吐出部より吐出し、前記潤滑部に供給するジェットポンプと、前記駆動ノズルと接続され、前記高圧オイルを供給する油圧制御回路と、前記吸入部と接続され、前記高圧オイルよりも圧力が低い前記低圧オイルを供給するオイル貯留部と、前記吸入部と前記オイル貯留部との間に設けられ、前記クラッチ係合圧の増加に応じて機械的に開度が大きくなる流量調整弁と、を備えることを特徴としている。
 また、上記潤滑装置において、前記流量調整弁は、前記吸入部と前記オイル貯留部とを連通する吸入油路に設けられ、内部で前記吸入油路のオイル貯留部側と吸入部側とを連通する弁筐体と、前記弁筐体の内部で軸線方向に移動可能とされたスプールと、前記スプールを前記軸線方向一方側に付勢する調整弁用付勢手段と、前記クラッチ係合圧が導入されることで、前記スプールを前記軸線方向他方側に押圧する調整弁ピストン室と、を備え、前記スプールは、前記クラッチ係合圧の増加に応じて前記軸線方向他方側に移動するものであり、前記クラッチ係合圧が前記摩擦クラッチを係合できる圧力に達している場合には、前記スプールにより前記吸入油路のオイル貯留部側と吸入部側とが連通され、前記クラッチ係合圧が最低圧の場合には、前記スプールにより前記吸入油路のオイル貯留部側と吸入部側との連通が遮断される、ことが好ましい。
 また、上記潤滑装置において、前記調整弁用付勢手段は、温度上昇に伴い、ばね定数が小さくなる形状記憶合金から構成されている、ことが好ましい。
 また、上記潤滑装置において、前記クラッチ係合圧の調整は、圧力調整弁により行われるものであり、前記圧力調整弁は、前記摩擦クラッチと前記油圧制御回路とを連通する係合油路に設けられ、前記流量調整弁および前記圧力調整弁は、1つの流量圧力調整連動弁である、ことが好ましい。
 また、上記潤滑装置において、前記流量圧力調整連動弁は、内部で前記係合油路の摩擦クラッチ側と油圧制御回路側とを連通する弁筐体と、シフトレバーに連結され、運転者による前記シフトレバーの操作に連動して、前記弁筐体の内部で軸線方向に移動可能とされたスプールと、を備え、前記シフトレバーがニュートラルポジションである場合には、前記スプールにより、前記係合油路の摩擦クラッチ側と油圧制御回路側との連通が遮断されるとともに、前記吸入部と前記オイル貯留部とを連通する吸入油路のオイル貯留部側と吸入部側との連通が遮断され、前記シフトレバーが前記摩擦クラッチが前記クラッチ係合圧により係合されるポジションである係合ポジションである場合には、前記スプールにより、前記係合油路の摩擦クラッチ側と油圧制御回路側とが連通されるとともに、前記吸入油路のオイル貯留部側と吸入部側とが連通される、ことが好ましい。
 また、上記潤滑装置において、前記流量圧力調整連動弁は、内部で前記係合油路の摩擦クラッチ側と油圧制御回路側とを連通する弁筐体と、前記弁筐体の内部で軸線方向に移動可能とされたスプールと、前記スプールを前記軸線方向一方側に付勢する連動弁用付勢手段と、前記油圧制御回路から指示圧が導入されることで、前記スプールを前記軸線方向他方側に押圧する連動弁ピストン室と、を備え、前記スプールは、前記指示圧の増加に応じて前記軸線方向他方側に移動することで、前記クラッチ係合圧を増加するものであり、前記クラッチ係合圧が前記摩擦クラッチを係合できる圧力に達している場合には、前記スプールにより前記吸入油路のオイル貯留部側と吸入部側とが連通され、前記クラッチ係合圧が最低圧の場合には、前記スプールにより前記吸入油路のオイル貯留部側と吸入部側との連通が遮断される、ことが好ましい。
 また、上記潤滑装置において、前記流量調整弁の前記オイル貯留部側には、逆止弁が設けられている、ことが好ましい。
 本発明では、クラッチ係合圧が増大するに伴い、機械的に流量調整弁の開度が大きくなるので、このクラッチ係合圧が増大するに伴い、オイル貯留部からジェットポンプの吸入部に吸い込まれるオイルの流量が増大する。このため、クラッチ係合圧が増大するに伴い、ジェットポンプから吐出されるオイルの流量が増大する。つまり、クラッチ係合圧が増大するに伴い、摩擦クラッチの潤滑部を潤滑するオイルの流量が増大する。したがって、例えばトルクセンサのようなトルク/オイル流量変換機構を用いなくても、流量調整弁だけでジェットポンプから吐出されるオイルの流量を変更できる。これにより、装置の小型化を図ることができるという効果を奏する。
 また、本発明では、クラッチ係合圧が増大するに伴い、摩擦クラッチが解放状態から係合状態に移行し、この摩擦クラッチにおいて発生する熱量が増大する。一方、本発明では、クラッチ係合圧が増大するに伴い、摩擦クラッチの潤滑部を潤滑するオイルの流量が増大する。つまり、本発明では、摩擦クラッチにおいて発生する熱量が増大するに伴い、摩擦クラッチの潤滑部を潤滑するオイルの流量が増大することとなる。ここで、摩擦クラッチが係合される方向に動作すると、摩擦クラッチにおいて発生する熱量は増大するが、流量が増大されたオイルで摩擦クラッチの潤滑部が冷却され、これにより、摩擦クラッチの温度上昇を抑制できる。一方、摩擦クラッチが解放される方向に動作すると、摩擦クラッチの潤滑部に供給されるオイルの流量が減少するので、摩擦クラッチの潤滑部(例えば、摩擦クラッチにおける互いに係合可能な部材どうしの間)で生じる攪拌損失を抑制できる。したがって、摩擦クラッチが解放状態から係合状態に移行したり、摩擦クラッチが係合状態から解放状態に移行したりするまでの間に、摩擦クラッチの潤滑部に対して、潤滑および冷却するのに適した流量のオイルを供給できるという効果を奏する。
図1は、実施の形態1に係る潤滑装置の概略を示す模式図である。 図2は、実施の形態2に係る潤滑装置の概略を示す模式図である。 図3は、調整弁用付勢手段の付勢力と、流量調整弁の開度と、吸入流量と、潤滑流量との温度変化に対する特性を表で示す図である。 図4は、実施の形態3に係る潤滑装置の概略を示す模式図である。 図5は、実施の形態4に係る潤滑装置の概略を示す模式図である。 図6は、実施の形態5に係る潤滑装置の概略を示す模式図である。
符号の説明
 1-1 潤滑装置
 1-2 潤滑装置
 1-3 潤滑装置
 1-4 潤滑装置
 1-5 潤滑装置
 10  油圧制御回路
 11  ジェットポンプ
 11a 駆動ノズル
 11b 吸入部
 11c 混合部
 11d 吐出部
 12  オイルパン(オイル貯留部)
 13  流量調整弁
 131 弁筐体
 132 スプール
 133 コイルスプリング(調整弁用付勢手段)
 134 調整用ピストン室
 16  吸入油路
 17  マニュアルバルブ(流量圧力調整連動弁)
 171 弁筐体
 172 スプール
 18  クラッチコントロールバルブ(流量圧力調整連動弁)
 181 弁筐体
 182 スプール
 183 コイルスプリング(連動弁用付勢手段)
 184 連動弁ピストン室
 19  逆止弁
 20  摩擦クラッチ
 20a 潤滑部
 21  圧力調整弁
 22  係合油路
 以下に、本発明に係る潤滑装置の実施の形態を図面に基づいて詳細に説明する。なお、以下の各実施の形態によりこの発明が限定されるものではない。
〔実施の形態1〕
 以下、実施の形態1に係る潤滑装置について説明する。図1は、実施の形態1に係る潤滑装置の概略を示す模式図である。潤滑装置1-1は、クラッチ係合圧により係合可能な摩擦クラッチ20の潤滑部20aにオイルを供給するものである。摩擦クラッチ20は、例えば、車両に搭載されている変速機の内部に設けられたものである。この摩擦クラッチ20は、例えば、後述のクラッチ係合圧として最低圧が印加された場合には、完全に解放され、クラッチ元圧が印加された場合には、完全に係合する。潤滑装置1-1は、油圧制御回路10と、ジェットポンプ11と、オイルパン12と、流量調整弁13とを備えている。
 実施の形態1では、クラッチ係合圧の調整は、圧力調整弁21により行われる。この圧力調整弁21は、摩擦クラッチ20と、生成した元圧を一定にする機能を有する油圧制御回路10とを連通する係合油路22に設けられている。実施の形態1では、圧力調整弁21は、油圧制御回路10の内部に設けられている。圧力調整弁21は、車両の変速機を制御する制御装置からの指示に応じて駆動する例えばソレノイドにより、開度が調整される。圧力調整弁21は、後述の油圧制御回路10で生成されたクラッチ元圧を例えばソレノイドにより機械的に調整して、最低圧から摩擦クラッチ20が係合する最高圧、言い換えれば、最低圧からクラッチ元圧までの圧力範囲において所望のクラッチ係合圧を発生させ、このクラッチ係合圧を、係合油路22を介して摩擦クラッチ20に印加している。つまり、圧力調整弁21は、クラッチ係合圧を調整することで、摩擦クラッチ20の係合を制御するものである。
 油圧制御回路10は、オイルポンプ14により供給されたオイルの圧力を調整して、各吐出先に対して、印加するのに適切な元圧を生成するものである。より詳しく述べると、油圧制御回路10は、圧力調整弁21に対しては、摩擦クラッチ20が完全に係合できる元圧である一定のクラッチ元圧を生成し、供給するものである。また、油圧制御回路10は、ジェットポンプ11の駆動ノズル11aに対しては、一定圧の高圧オイルを生成し、供給するものである。油圧制御回路10のオイルが供給される側である供給側は、オイルポンプ14と接続されている。オイルポンプ14は、ストレーナ141を介してオイルパン15と接続されており、オイルパン15に貯留されているオイルを吸引する。オイルポンプ14により吸引されたオイルは加圧され、油圧制御回路10に吐出される。つまり、オイルポンプ14によりオイルパン15に貯留されているオイルが加圧され、油圧制御回路10に供給される。なお、ストレーナ141は、オイルポンプ14により吸引されるオイルから異物を除去するものである。また、油圧制御回路10の高圧オイルを供給する側である吐出側は、ジェットポンプ11の駆動ノズル11aと接続されている。つまり、油圧制御回路10は、オイルポンプ14により加圧されたオイルを調圧して一定圧の高圧オイルとし、この一定圧の高圧オイルをジェットポンプ11の駆動ノズル11aに供給する。
 ジェットポンプ11は、摩擦クラッチ20の潤滑部20aに混合オイルを供給するものである。ジェットポンプ11は、駆動ノズル11aと、吸入部11bと、混合部11cと、吐出部11dとから構成されている。
 駆動ノズル11aは、高圧オイルが供給されることで、ジェットポンプ11を駆動するものである。駆動ノズル11aの油圧制御回路10側である供給口は、油圧制御回路10に接続されている。つまり、駆動ノズル11aには、油圧制御回路10により一定圧の高圧オイルが供給される。また、駆動ノズル11aの油圧制御回路10と反対側である噴射口は、混合部11cに連通している。したがって、油圧制御回路10により駆動ノズル11aに供給された一定圧の高圧オイルは、駆動ノズル11aにより、混合部11cに噴射される。つまり、駆動ノズル11aは、油圧制御回路10により供給された一定圧の高圧オイルを、混合部11cに供給する。
 吸入部11bは、駆動ノズル11aが混合部11cに高圧オイルを供給することで、この高圧オイルよりも低圧とされた低圧オイルを混合部11cに供給する部分である。この吸入部11bは、駆動ノズル11aの噴射口を囲うように形成されている。吸入部11bの低圧オイルが供給される側である供給側は、ジェットポンプ11の吸入部11bとオイルパン12とを連通する吸入油路16を介して、オイルパン12と接続されている。吸入部11bのオイルパン12と反対側である吐出側は、混合部11cに連通している。ここで、駆動ノズル11aにより高圧オイルが混合部11cに供給されると、後述のように、混合部11cで負圧が発生する。この負圧により、吸入部11b内の低圧オイルが混合部11cに吸入される。つまり、駆動ノズル11aにより高圧オイルが混合部11cに供給されることで、吸入部11bから混合部11cに低圧オイルが供給される。なお、図1では、説明の都合上、オイルパン12とオイルパン15との2つのオイルパンを示しているが、これらの2つのオイルパン12、15は、互いに連通して、1つのオイルパンとされていてもよい。
 混合部11cは、駆動ノズル11aから供給される高圧オイルと、吸入部11bから供給される低圧オイルとを混合するものである。混合部11cは、駆動ノズル11aの噴射口よりも拡径された中空状の油路である。混合部11cの高圧オイル及び低圧オイルが供給される側である供給側は、駆動ノズル11aおよび吸入部11bと連通している。また、混合部11cの駆動ノズル11a及び吸入部11bと反対側である吐出側は、吐出部11dに連通している。混合部11cは、吐出側が供給側よりも縮径されている(図示省略)。混合部11cは、駆動ノズル11aにより高圧オイルが噴射されることで、駆動ノズル11aとの境界付近で負圧が発生し、この負圧により吸入部11b内の低圧オイルを吸入する。そして、混合部11cは、駆動ノズル11aから供給された高圧オイルと、吸入部11bから供給された低圧オイルとを混合し、これらの高圧オイルと低圧オイルとを混合したオイルである混合オイルを吐出部11dに供給する。
 吐出部11dは、混合部11cから供給されたオイルである混合オイルを、摩擦クラッチ20の潤滑部20aに対して吐出するものである。吐出部11dは、中空状の油路であり、混合部11c側である供給側が混合部11cの吐出側と連通している一方、混合部11cと反対側である吐出側が摩擦クラッチ20の潤滑部20aに連通している。吐出部11dは、例えば、その供給側から吐出側に向かうに伴い、中空部分の径寸法が増大するように形成されている。
 以上のように、ジェットポンプ11は、駆動ノズル11aに一定圧の高圧オイルが供給されることで駆動して、混合オイルを吐出し、この混合オイルを摩擦クラッチ20の潤滑部20aに供給する。なお、摩擦クラッチ20の潤滑部20aに供給された混合オイルは、図示しない油路などを介して、オイルパン12あるいはオイルパン15に戻ることとなる。つまり、潤滑装置1-1は、オイルパン12およびオイルパン15に貯留されているオイルを、摩擦クラッチ20の潤滑部20aを潤滑するために、繰り返し使用する。
 オイルパン12は、オイル貯留部である。オイルパン12は、吸入油路16を介して、ジェットポンプ11の吸入部11bと接続されている。オイルパン12に貯留されているオイルは、ジェットポンプ11において吸入部11b内のオイルが混合部11cに吸入されると、この吸入部11b内で負圧が発生し、この負圧により、吸入油路16を介して、ジェットポンプ11の吸入部11bに吸入される。オイルパン12から吸入油路16を介してジェットポンプ11の吸入部11bに供給されるオイルは、吸入部11bから混合部11cに供給されるオイルと圧力が等しくなる。つまり、オイルパン12は、ジェットポンプ11において駆動ノズル11aが混合部11cに供給する高圧オイルよりも圧力が低い低圧オイルを、吸入部11bに供給する。
 流量調整弁13は、クラッチ係合圧の増加に伴い、オイルパン12からジェットポンプ11の吸入部11bに供給される低圧オイルの流量を増大させるものである。流量調整弁13は、ジェットポンプ11の吸入部11bとオイルパン12との間に設けられている。実施の形態1では、流量調整弁13は、吸入油路16に設けられている。
 実施の形態1では、流量調整弁13は、弁筐体131と、スプール132と、コイルスプリング133と、調整用ピストン室134とを備えている。なお、図1において、スプール132およびコイルスプリング133は、本来、後述の軸線方向に対して、上下対称である。ここでは、説明の都合上、スプール132およびコイルスプリング133は、この軸線方向に対して、上側が摩擦クラッチ20が係合している状態である状態Aを示すものとし、下側が摩擦クラッチ20が解放されている状態である状態Bを示すものとしている。
 弁筐体131は、内部で吸入油路16の上流側であるオイルパン12側と下流側である吸入部11b側とを連通するものである。弁筐体131は、略筒状体とされており、内部にスプール132を収容している。
 スプール132は、外径が弁筐体131の内径と略同一の柱状に形成されるとともに、軸線方向の寸法が弁筐体131の内部の軸線方向の寸法よりも短く形成されている。このため、スプール132は、弁筐体131の内部で軸線方向に移動可能とされている。以下、弁筐体131の軸線方向およびスプール132の軸線方向を、単に軸線方向と称することとする。
 コイルスプリング133は、調整弁用付勢手段である。コイルスプリング133は、スプール132に対して、軸線方向に付勢力を付与するものである。コイルスプリング133は、弁筐体131の内部において、弁筐体131の軸線方向における1つの壁部と、スプール132との間に、常に、自然長よりも伸ばされないように配置されている。つまり、コイルスプリング133は、自然長と同じか、あるいは、自然長よりも縮められているかのいずれか一方となるように配置されており、自然長よりも縮められている場合には、スプール132を軸線方向一方側に付勢する。
 調整用ピストン室134は、クラッチ係合圧をスプール132に付与するためのものである。調整用ピストン室134は、弁筐体131の内部において、スプール132に対し、コイルスプリング133が配置されている側と反対側に形成される空隙である。調整用ピストン室134は、係合油路22と連通しており、係合油路22の内部のオイルを導入することで、係合油路22に印加されているクラッチ係合圧を導入可能である。調整用ピストン室134は、このクラッチ係合圧が導入されることで、クラッチ係合圧をスプール132の軸線方向一方側に印加し、スプール132を、クラッチ係合圧に基づく押圧力で軸線方向他方側に押圧する。このため、スプール132は、調整用ピストン室134によりコイルスプリング133の付勢力よりも大きな押圧力を受けると、この受けた押圧力とコイルスプリング133の付勢力とが等しくなるまで、コイルスプリング133の付勢力に抗しながら軸線方向他方側に移動する。つまり、スプール132は、クラッチ係合圧の増加に応じて軸線方向他方側に移動する。
 ここで、スプール132は、吸入開弁部132aと、吸入閉弁部132bと、係合閉弁部132cとを有しており、軸線方向他方側から軸線方向一方側に沿って、吸入閉弁部132bと、吸入開弁部132aと、係合閉弁部132cとが順番に並んでいる。スプール132は、軸線方向の中間部分が他の部分に対して縮径されており、この縮径された部分が吸入開弁部132aとされ、吸入閉弁部132bと係合閉弁部132cとに挟まれている。より詳しく述べると、実施の形態1では、スプール132の吸入開弁部132aは、軸線方向他方側から軸線方向一方側へ沿って、吸入閉弁部132bの外径と同じ外径から所定の外径となるまで次第に縮径された後、均一の外径のまま係合閉弁部132cに連続している。実施の形態1では、例えばクラッチ係合圧が摩擦クラッチ20を係合できる圧力に達している場合には、スプール132の軸線方向一方側がこのクラッチ係合圧を受けることで、係合閉弁部132cが弁筐体131の軸線方向一方側の内壁と離間し、吸入開弁部132aが吸入油路16のオイルパン12側と吸入部11b側との双方と対向することとなり、スプール132の吸入開弁部132aにより吸入油路16のオイルパン12側と吸入部11b側とが連通される。また、実施の形態1では、例えばクラッチ係合圧が最低圧の場合には、スプール132の軸線方向一方側がこの最低圧のクラッチ係合圧を受けることで、係合閉弁部132cが弁筐体131の軸線方向一方側の内壁に最も近づき、吸入閉弁部132bが吸入油路16のオイルパン12側と吸入部11b側との双方と対向することとなり、スプール132の吸入閉弁部132bにより吸入油路16のオイルパン12側と吸入部11b側との連通が遮断される。
 以上のように、スプール132は、弁筐体131の内部を、クラッチ係合圧の増加に応じて、吸入油路16のオイルパン12側と吸入部11b側とを連通させる方向に移動する。すなわち、流量調整弁13は、クラッチ係合圧の増加に応じて機械的に開度が大きくなる。
 次に、実施の形態1の潤滑装置1-1の動作について説明する。
 潤滑装置1-1では、圧力調整弁21によりクラッチ係合圧が増大するに伴い、係合油路22および調整用ピストン室134を介して、増大したクラッチ係合圧がスプール132の軸線方向他方側に印加される。このため、圧力調整弁21によりクラッチ係合圧が増大するに伴い、スプール132は、調整用ピストン室134内のオイルにより、コイルスプリング133の付勢力に抗して、軸線方向他方側に押圧される。これにより、圧力調整弁21によりクラッチ係合圧が増大するに伴い、スプール132は、軸線方向他方側に移動する。したがって、圧力調整弁21によりクラッチ係合圧が増大するに伴い、スプール132は、弁筐体131の内部において、吸入開弁部132aが吸入油路16のオイルパン12側と吸入部11b側との双方と対向する方向に移動することとなる。つまり、圧力調整弁21によりクラッチ係合圧が増大するに伴い、流量調整弁13は、機械的に開度が大きくなる。
 一方、ジェットポンプ11の駆動ノズル11aには、油圧制御回路10により一定圧の高圧オイルが供給されており、混合部11cでは、駆動ノズル11aとの境界付近に一定の負圧が発生している。したがって、流量調整弁13が開くと、混合部11cで発生している一定の負圧により吸入部11bの内部の低圧オイルが混合部11cに吸入される。これに伴い、吸入部11bには、吸入油路16を介して、オイルパン12に貯留されている低圧オイルが吸入されることとなる。つまり、流量調整弁13が開くと、混合部11cで発生している一定の負圧によりオイルパン12に貯留されている低圧オイルが吸入油路16および吸入部11bを経て混合部11cに吸入されることとなり、オイルパン12から吸入油路16および吸入部11bを介して混合部11cに吸入される低圧オイルの流量が変更される。これにより、一定の流量の高圧オイルと流量調整弁13により可変とされる流量の低圧オイルとが合わさり、ジェットポンプ11の吐出部11dにより混合オイルが摩擦クラッチ20の潤滑部20aに供給されることとなる。
 つまり、圧力調整弁21によりクラッチ係合圧が増大するに伴い、機械的に流量調整弁13の開度が大きくなるので、このクラッチ係合圧が増大するに伴い、オイルパン12からジェットポンプ11の吸入部11bに吸い込まれる低圧オイルの流量が増大する。このため、圧力調整弁21によりクラッチ係合圧が増大するに伴い、一定の流量の高圧オイルに対して合わせられる低圧オイルの流量が増大され、ジェットポンプ11の混合部11cにより混合オイルの流量が増大され、これにより、ジェットポンプ11の吐出部11dから吐出される混合オイルの流量が増大することとなる。つまり、圧力調整弁21によりクラッチ係合圧が増大するに伴い、摩擦クラッチ20の潤滑部20aを潤滑する混合オイルの流量が増大する。したがって、例えばトルクセンサのように、摩擦クラッチから伝達されるトルクに応じてジェットポンプに供給するオイルの流量を調整するトルク/オイル流量変換機構を用いなくても、流量調整弁13だけでジェットポンプ11の吐出部11dから吐出される混合オイルの流量を変更できる。これにより、装置の小型化を図ることができる。
 また、潤滑装置1-1では、ジェットポンプ11が持つ流量増幅機能により、油圧制御回路10からジェットポンプ11の駆動ノズル11aに供給する高圧オイルの流量が比較的小さくても、摩擦クラッチ20の潤滑部20aに対して、潤滑するのに十分な流量の混合オイルを供給できるので、小型のオイルポンプ14を利用することができる。これにより、オイルポンプ14を駆動するための駆動トルクを減少させることができる。このため、車両のエンジンは、オイルポンプ14を駆動するための駆動トルクを発生させる負担が小さくなる。したがって、車両の燃費を向上させることができる。
 また、潤滑装置1-1では、圧力調整弁21によりクラッチ係合圧が増大するに伴い、摩擦クラッチ20が状態Bから状態A、すなわち、解放状態から係合状態に移行する。つまり、潤滑装置1-1では、圧力調整弁21によりクラッチ係合圧が増大するに伴い、摩擦クラッチ20において発生する熱量が増大する。一方、潤滑装置1-1では、前述のように、圧力調整弁21によりクラッチ係合圧が増大するに伴い、摩擦クラッチ20の潤滑部20aを潤滑する混合オイルの流量が増大する。つまり、潤滑装置1-1では、圧力調整弁21によりクラッチ係合圧が増大するに伴い、摩擦クラッチ20の潤滑部20aを潤滑する混合オイルの流量が増大することとなる。すなわち、潤滑装置1-1により、摩擦クラッチ20の係合状態に応じて、摩擦クラッチ20の潤滑部20aを潤滑するのに適した流量の混合オイルが摩擦クラッチ20の潤滑部20aに供給されることとなる。
 ここで、例えば、摩擦クラッチ20が係合される方向に動作すると、摩擦クラッチ20において発生する熱量は増大するが、流量が増大された混合オイルで摩擦クラッチ20の潤滑部20aが冷却される。これにより、摩擦クラッチ20が係合される方向に動作した場合の摩擦クラッチ20の温度上昇を抑制でき、混合オイルの供給不足による潤滑部20aの焼付きを防止できる。一方、例えば、摩擦クラッチ20が解放される方向に動作すると、摩擦クラッチ20の潤滑部20aに供給される混合オイルの流量が減少するので、摩擦クラッチ20の潤滑部20a(ここでは、例えば、摩擦クラッチ20における互いに係合可能な部材どうしの間)に混合オイルを過剰に供給することがない。このため、例えば、摩擦クラッチ20が解放される方向に動作した場合に、混合オイルの供給過多による、摩擦クラッチ20の潤滑部20aで生じる攪拌損失を抑制できる。
 また、潤滑装置1-1では、ジェットポンプ11の駆動ノズル11aに供給される高圧オイルの流量を調整せずに、ジェットポンプ11の吸入部11bに吸入される低圧オイルの流量を調整する構成なので、ジェットポンプ11の効率を、例えば、最高点付近に設定することができる。つまり、ジェットポンプ11の効率を向上させることができる。このため、ジェットポンプ11が持つ流量増幅機能を有効活用して、摩擦クラッチ20の潤滑部20aを潤滑するのに最適な流量の混合オイルをジェットポンプ11の吐出部11dから吐出することができ、例えば、摩擦クラッチ20の潤滑部20aに対して、供給する混合オイルの流量不足による焼付き、あるいは、供給する混合オイルの流量過多による攪拌損失の増大をより一層抑制することができる。
〔実施の形態2〕
 以下、実施の形態2に係る潤滑装置について説明する。図2は、実施の形態2に係る潤滑装置の概略を示す模式図である。実施の形態2に係る潤滑装置1-2は、実施の形態1に係る潤滑装置1-1において、コイルスプリング133を形状記憶合金から構成されるものとし、仮にクラッチ係合圧に変化がなかったとしても、オイルの温度に変化があった場合には、オイルの温度上昇に伴い、摩擦クラッチ20の潤滑部20aに供給する混合オイルの流量を増大させるものである。なお、前述の実施の形態1と同様の構成要件については、同一符号を付してその説明を省略する。また、図2において、スプール132およびコイルスプリング133は、本来、後述の軸線方向に対して、上下対称である。ここでは、説明の都合上、スプール132およびコイルスプリング133は、この軸線方向に対して、上側が状態Aを示すものとし、下側が状態Bを示すものとしている。また、図2において、符号Fは、コイルスプリング133の付勢力を示している。また、同図において、符号Avは、流量調整弁13の開度に相当するものであり、流量調整弁13の吸入油路16に対する開口面積を示している。また、同図において、符号Q1は、油圧制御回路10からジェットポンプ11の駆動ノズル11aに供給される、高圧オイルの流量である供給流量を示している。また、同図において、符号Q2は、オイルパン12から吸入油路16を介してジェットポンプ11の吸入部11bに吸入される、低圧オイルの流量である吸入流量を示している。また、同図において、符号Q3は、ジェットポンプ11の吐出部11dから摩擦クラッチ20の潤滑部20aに供給される、混合オイルの流量である潤滑流量を示している。
 実施の形態2のコイルスプリング133は、温度上昇に伴い、ばね定数が小さくなる形状記憶合金から構成されている。つまり、実施の形態2のコイルスプリング133は、その長さが同じであっても、コイルスプリング133の温度が上昇するに伴い、スプール132を軸線方向一方側へ付勢する付勢力Fが弱くなるものである。
 図3は、調整弁用付勢手段の付勢力と、流量調整弁の開度と、吸入流量と、潤滑流量との温度変化に対する特性を表で示す図である。つまり、図3は、流量調整弁13の温度変化に対する付勢力Fの変化と、流量調整弁13の温度変化に対する開口面積Avの変化と、流量調整弁13の温度変化に対する吸入流量Q2の変化と、流量調整弁13の温度変化に対する潤滑流量Q3の変化とを表で示した図である。実施の形態2の潤滑装置1-2では、オイルパン12およびオイルパン15に貯留されている低圧オイルを、摩擦クラッチ20の潤滑部20aを潤滑するために、繰り返し使用する。このとき、流量調整弁13では、オイルの温度上昇に伴い、弁筐体131あるいはスプール132を介して、コイルスプリング133の温度も上昇する。これにより、開口面積Avと、吸入流量Q2と、潤滑流量Q3とは、オイルの温度上昇に伴い、増大することとなる。
 一方、混合オイルは、混合オイルの温度上昇に伴い、摩擦クラッチ20の潤滑部20aに対する冷却効果が低下する。このため、摩擦クラッチ20の潤滑部20aを潤滑するのに必要な混合オイルの流量は、温度上昇に伴い、多くなる。
 つまり、実施の形態2の潤滑装置1-2では、流量調整弁13の温度変化に対して、摩擦クラッチ20の潤滑部20aを潤滑するのに適した流量の混合オイルが潤滑部20aに供給されることとなる。これにより、摩擦クラッチ20の潤滑部20aに対して、混合オイルの供給過多による攪拌損失をより一層抑制できるとともに、混合オイルの供給不足による潤滑部20aの焼付きを防止できる。
 ところで、一般に、オイルは、その温度上昇に伴い、粘度が低下する。このため、例えば摩擦クラッチ20が変速機の内部に設けられたものである場合には、オイルの温度上昇に伴い、混合オイルが変速機の内部の壁面に付着する量である内壁面付着量が減少することとなる。したがって、オイルの温度上昇に伴い、変速機の内部にある摩擦クラッチ20の潤滑部20aからオイルパン12あるいはオイルパン15に戻されるオイルの量が増加し、これにより、オイルパン12およびオイルパン15に貯留されているオイルの総量であるオイル貯留量が増加する。一方、仮にクラッチ係合圧が同じであったとした場合でも、オイルの温度上昇に伴い、開口面積Avが大きくなるため、オイルパン12からジェットポンプ11の吸入部11bに供給される低圧オイルの流量が増大する。これにより、仮にクラッチ係合圧が同じであったとした場合でも、オイルの温度上昇に伴い、オイルパン12に貯留されている低圧オイルの量が減少し、オイル貯留量が減少する。つまり、2つのオイルパン12、15が互いに連通して実質的に1つのオイルパンとされているならば、仮にクラッチ係合圧が同じであった場合、オイルの温度上昇に伴うオイル貯留量の増加分と、オイルの温度上昇に伴うオイルパン12からジェットポンプ11の吸入部11bに供給される低圧オイルの増加分とは少なくとも一部が相殺されるので、オイルの温度変化に対する実オイル貯留量の変化が抑制される。したがって、例えば、低温時では、オイル貯留量の減少に起因するオイルポンプ14のエア吸いが発生することを防止できる。
〔実施の形態3〕
 以下、実施の形態3に係る潤滑装置について説明する。図4は、実施の形態3に係る潤滑装置の概略を示す模式図である。実施の形態3に係る潤滑装置1-3は、実施の形態1に係る潤滑装置1-1において、流量調整弁13及び圧力調整弁21を設ける代わりに、後述のマニュアルバルブ17を設け、運転者によるシフトレバーの操作に連動して、クラッチ係合圧を調整するとともに、オイルパン12からジェットポンプ11の吸入部11bに供給するオイルの流量を調整するものである。なお、前述の実施の形態1と同様の構成要件については、同一符号を付してその説明を省略する。
 実施の形態3のマニュアルバルブ17は、1つの流量圧力調整連動弁であり、流量調整弁13と圧力調整弁21とが合わさったものである。このマニュアルバルブ17は、係合油路22に設けられている。このため、実施の形態3では、圧力調整弁が係合油路22に設けられていることとなる。実施の形態3のマニュアルバルブ17は、弁筐体171と、スプール172とを備えている。なお、図4において、スプール172は、本来、後述の軸線方向に対して、上下対称である。ここでは、説明の都合上、スプール172は、この軸線方向に対して、上側がシフトレバーがニュートラルポジションであるときの状態を示すものとし、下側がシフトレバーが摩擦クラッチ20がクラッチ係合圧により係合されるポジションである係合ポジションであるときの状態を示すものとしている。また、実施の形態3では、説明の都合上、係合ポジションとして、車両が前進可能な前進ポジションを例に挙げて説明するが、これに限定されず、車両が後進可能な後進ポジションであってもよい。
 弁筐体171は、内部で係合油路22の下流側である摩擦クラッチ20側と上流側である油圧制御回路10側とを連通するものである。弁筐体171は、軸線方向他方側が開口された略筒状体とされており、内部にスプール172の軸線方向一方側が挿入されている。
 スプール172は、外径が弁筐体171の内径と略同一の柱状に形成されている。また、スプール172は、軸線方向他方側が弁筐体171から露出しており、この露出部分が図示しないシフトレバーに連結されている。このため、スプール172は、運転者によるシフトレバーの操作に連動して、弁筐体171の内部で軸線方向に移動可能とされている。また、スプール172は、吸入開弁部172aと、吸入閉弁部172bと、係合閉弁部172cと、係合開弁部172dとを有しており、軸線方向他方側から軸線方向一方側に沿って、係合閉弁部172cと、係合開弁部172dと、吸入閉弁部172bと、吸入開弁部172aとが順番に並んでいる。吸入開弁部172aは、スプール172の軸線方向一方側において、テーパー状に形成された部分であり、弁筐体171に対する軸線方向の位置に応じて、マニュアルバルブ17の流量調整弁としての開度、すなわち、マニュアルバルブ17の吸入油路16に対する開口面積を変更する。以下、弁筐体171の軸線方向およびスプール172の軸線方向を、単に軸線方向と称することとする。
 ここで、スプール172は、軸線方向の中間部分が他の部分に対して縮径されており、この縮径された部分が係合開弁部172dとされ、係合閉弁部172cと吸入閉弁部172bとに挟まれている。より詳しく述べると、実施の形態3では、スプール172の係合開弁部172dは、軸線方向他方側から軸線方向一方側へ沿って、外径が均一となるように縮径された部分であり、係合閉弁部172cと、吸入閉弁部172bとに連続している。実施の形態3のマニュアルバルブ17では、シフトレバーがニュートラルポジションである場合には、係合閉弁部172cが係合油路22の摩擦クラッチ20側と対向するとともに、吸入閉弁部172bが吸入油路16のオイルパン12側と吸入部11b側との双方に対向することとなり、スプール172の係合閉弁部172cにより係合油路22の摩擦クラッチ20側と油圧制御回路10側との連通が遮断されるとともに、スプール172の吸入閉弁部172bにより吸入油路16のオイルパン12側と吸入部11b側との連通が遮断される。また、実施の形態3のマニュアルバルブ17では、シフトレバーが前進ポジションである場合には、係合開弁部172dが係合油路22の摩擦クラッチ20側と油圧制御回路10側との双方と対向するとともに、吸入開弁部172aが吸入油路16のオイルパン12側と吸入部11b側との双方に対向することとなり、スプール172の係合開弁部172dにより係合油路22の摩擦クラッチ20側と油圧制御回路10側とが連通されるとともに、スプール172の吸入開弁部172aにより吸入油路16のオイルパン12側と吸入部11b側とが連通される。
 実施の形態3の潤滑装置1-3では、シフトレバーがニュートラルポジションである場合に、スプール172の係合閉弁部172cが係合油路22の摩擦クラッチ20側と対向し、この係合閉弁部172cにより係合油路22の摩擦クラッチ20側と油圧制御回路10側との連通が遮断されるので、摩擦クラッチ20の係合圧は最低圧となり、摩擦クラッチ20は解放される。このとき、スプール172の吸入閉弁部172bが吸入油路16のオイルパン12側と吸入部11b側との双方に対向し、この吸入閉弁部172bにより吸入油路16のオイルパン12側と吸入部11b側との連通が遮断されるので、ジェットポンプ11の吐出部11dにより摩擦クラッチ20の潤滑部20aに供給される混合オイルの供給流量が最低流量となる。つまり、潤滑装置1-3では、シフトレバーがニュートラルポジションである場合に、摩擦クラッチ20の潤滑部20aに供給する混合オイルの流量を抑制し、摩擦クラッチ20の潤滑部20aで生じる攪拌損失を抑制できる。
 また、実施の形態3の潤滑装置1-3では、シフトレバーがニュートラルポジションから前進ポジションに切り替えられる場合に、スプール172の係合開弁部172dが係合油路22の摩擦クラッチ20側と油圧制御回路10側との双方と対向し、この係合開弁部172dにより係合油路22の摩擦クラッチ20側と油圧制御回路10側とが連通されるので、摩擦クラッチ20の係合圧は最低圧から上昇して、最終的には、クラッチ元圧となり、摩擦クラッチ20は完全に係合する。このため、シフトレバーがニュートラルポジションから前進ポジションに切り替えられる場合には、摩擦クラッチ20において発生する熱量が増大することとなる。このとき、運転者によるシフトレバーの操作に連動して、吸入閉弁部172bが軸線方向他方側へ移動するに伴い、スプール172の吸入開弁部172aが吸入油路16のオイルパン12側と吸入部11b側との双方に対向し、この吸入開弁部172aにより吸入油路16のオイルパン12側と吸入部11b側とが連通される。つまり、シフトレバーがニュートラルポジションから前進ポジションに切り替えられる場合に、スプール172の吸入開弁部172aにより、マニュアルバルブ17は、流量調整弁としての開度、すなわち、マニュアルバルブ17の吸入油路16に対する開口面積が次第に大きくなる。これにより、シフトレバーがニュートラルポジションから前進ポジションに切り替えられる場合に、スプール172の軸線方向他方側への移動に伴い、オイルパン12からジェットポンプ11の吸入部11bに供給される低圧オイルの流量が増大する。したがって、シフトレバーがニュートラルポジションから前進ポジションに切り替えられる場合に、スプール172の軸線方向他方側への移動に伴い、ジェットポンプ11の吐出部11dにより摩擦クラッチ20の潤滑部20aに供給される混合オイルの供給流量が最低流量から増大する。つまり、潤滑装置1-3では、シフトレバーがニュートラルポジションから前進ポジションに切り替えられる場合に、摩擦クラッチ20の潤滑部20aに供給する混合オイルの流量を増大させ、混合オイルによる摩擦クラッチ20の潤滑部20aの冷却を促進するとともに、混合オイルの供給不足による潤滑部20aの焼付きを防止できる。
 以上のように、潤滑装置1-3は、運転者によるシフトレバーの操作に応じて、摩擦クラッチ20が解放状態から係合状態に移行したり、摩擦クラッチ20が係合状態から解放状態に移行したりするまでの間に、摩擦クラッチ20の潤滑部20aに対して、潤滑および冷却するのに適した流量の混合オイルを供給できる。
 また、潤滑装置1-3では、実施の形態1の潤滑装置1-1が備えているような流量調整弁13が不要である。このため、例えば、スプールの軸線方向の移動により吸入油路16のオイルパン12側と吸入部11b側とを連通可能にするような変更を、車両に設けられている一般的な自動変速機の圧力調整弁に対して施すだけで、潤滑装置1-3を低コストで実現できる。
〔実施の形態4〕
 以下、実施の形態4に係る潤滑装置について説明する。図5は、実施の形態4に係る潤滑装置の概略を示す模式図である。実施の形態4に係る潤滑装置1-4は、実施の形態3に係る潤滑装置1-3において、マニュアルバルブ17の代わりにクラッチコントロールバルブ18を設け、車両の電子制御により生成される指示圧に基づいて、クラッチ係合圧を調整するとともに、ジェットポンプ11の吸入部11bに供給する低圧オイルの流量を調整するものである。実施の形態4では、図示しない指示圧調整弁が油圧制御回路10の内部に設けられており、車両の電子制御により例えばソレノイドが駆動され、指示圧調整弁の開度が調整されることで、指示圧が生成される。また、実施の形態4では、油圧制御回路10によりクラッチ元圧が係合油路22のうちクラッチコントロールバルブ18に対して油圧制御回路10側の内部に印加される。なお、前述の実施の形態1と同様の構成要件については、同一符号を付してその説明を省略する。
 実施の形態4のクラッチコントロールバルブ18は、1つの流量圧力調整連動弁であり、実施の形態1の潤滑装置1-1における流量調整弁13と圧力調整弁21とが合わさったものである。実施の形態4のクラッチコントロールバルブ18は、弁筐体181と、スプール182と、コイルスプリング183と、連動弁ピストン室184とを備えている。なお、図5において、スプール182およびコイルスプリング183は、本来、後述の軸線方向に対して、左右対称である。ここでは、説明の都合上、スプール182およびコイルスプリング183は、この軸線方向に対して、右側が状態Bを示すものとし、左側が状態Aを示すものとしている。
 弁筐体181は、内部で係合油路22の下流側である摩擦クラッチ20側と上流側である油圧制御回路10側とを連通するものである。弁筐体181は、略筒状体とされており、内部にスプール182を収容している。弁筐体181の係合油路22に対する開口部分は、摩擦クラッチ20側の開口部分が油圧制御回路10側の開口部分よりも軸線方向一方側に位置しており、後述のように、スプール182が軸線方向に沿って移動することで、弁筐体181の係合油路22に対する開口面積を変更することができる。
 スプール182は、外径が弁筐体181の内径と略同一の柱状に形成されるとともに、軸線方向の寸法が弁筐体181の内部の軸線方向の寸法よりも短く形成されている。このため、スプール182は、弁筐体181の内部で軸線方向に移動可能とされている。スプール182の軸線方向一方側は、連動弁ピストン室184に導入されたオイルにより指示圧(指示圧調整弁によるパイロット圧)を受ける。以下、弁筐体181の軸線方向およびスプール182の軸線方向を、単に軸線方向と称することとする。
 コイルスプリング183は、連動弁用付勢手段である。コイルスプリング183は、スプール182に対して、軸線方向に付勢力を付与するものである。コイルスプリング183は、弁筐体181の内部において、弁筐体181の軸線方向における1つの壁部と、スプール182との間に、常に、自然長よりも伸ばされないように配置されている。つまり、コイルスプリング183は、自然長と同じか、あるいは、自然長よりも縮められているかのいずれか一方となるように配置されており、自然長よりも縮められている場合には、スプール182を軸線方向一方側に付勢する。
 連動弁ピストン室184は、指示圧をスプール182に付与するためのものである。連動弁ピストン室184は、弁筐体181の内部において、スプール182に対し、コイルスプリング183が配置されている側と反対側に形成される空隙である。連動弁ピストン室184は、指示油路184aを介して油圧制御回路10と連通しており、指示油路184aの内部のオイルを導入することで、油圧制御回路10により指示油路に印加されている指示圧を導入可能である。連動弁ピストン室184は、油圧制御回路10から指示圧が導入されることで、指示圧をスプール182の軸線方向他方側に印加し、スプール182を、指示圧に基づく押圧力である指示押圧力で軸線方向他方側に押圧する。このため、スプール182は、連動弁ピストン室184によりコイルスプリング183の付勢力よりも大きな指示押圧力を受けると、この受けた指示押圧力とコイルスプリング183の付勢力とが等しくなるまで、コイルスプリング183の付勢力に抗しながら軸線方向他方側に移動する。つまり、スプール182は、指示圧の増加に応じて軸線方向他方側に移動する。
 ここで、スプール182は、吸入開弁部182aと、吸入閉弁部182bと、係合閉弁部182cと、係合開弁部182dと、指示閉弁部182eとを有しており、軸線方向他方側から軸線方向一方側に沿って、吸入閉弁部182bと、吸入開弁部182aと、係合閉弁部182cと、係合開弁部182dと、指示閉弁部182eとが順番に並んでいる。スプール182は、軸線方向の中間部分が他の部分に対して縮径されており、この縮径された部分が係合開弁部182dとされ、係合閉弁部182cと指示閉弁部182eとに挟まれている。そして、係合閉弁部182cに対して係合開弁部182dと反対側は、係合閉弁部182cの外径に対して縮径されており、この縮径された部分が吸入開弁部182aとされている。さらに、吸入開弁部182aに対して軸線方向他方側の部分が吸入閉弁部182bとされている。より詳しく述べると、実施の形態4では、係合開弁部182dは、軸線方向他方側から軸線方向一方側へ沿って、外径が均一となるように縮径されており、係合閉弁部182cと、指示閉弁部182eとに連続している。また、吸入開弁部182aは、軸線方向一方側から軸線方向他方側へ沿って、均一の外径のまま延在した後、吸入閉弁部182bの外径と等しくなるまで拡径しながら延在し、吸入閉弁部182bに連続している。吸入閉弁部182bは、外径が係合閉弁部182dの外径と等しいまま延在し、スプール182の軸線方向他方側の端部となっている。
 実施の形態4のクラッチコントロールバルブ18では、スプール182の軸線方向一方側が指示圧を受けることで、係合開弁部182dが係合油路22の摩擦クラッチ20側と油圧制御回路10側との双方と対向することとなり、スプール182の係合開弁部182dにより係合油路22の摩擦クラッチ20側と油圧制御回路10側とが連通される。弁筐体181の係合油路22に対する開口部分は、摩擦クラッチ20側の開口部分が油圧制御回路10側の開口部分よりも軸線方向一方側に位置しているので、係合開弁部182dが軸線方向他方側へ移動するに伴い、クラッチコントロールバルブ18の係合油路22に対する開口面積が増大する。つまり、係合開弁部182dが軸線方向他方側へ移動するに伴い、クラッチ係合圧が増大する。したがって、クラッチコントロールバルブ18では、係合開弁部182dが軸線方向他方側へ移動するに伴い、摩擦クラッチ20を係合できる圧力のクラッチ係合圧を発生させることとなる。また、実施の形態4のクラッチコントロールバルブ18では、スプール182の軸線方向一方側が最低圧の指示圧を受けることで、軸線方向他方側の係合閉弁部182cが係合油路22の油圧制御回路10側と対向することとなり、スプール182の係合閉弁部182cにより係合油路22の摩擦クラッチ20側と油圧制御回路10側との連通が遮断される。したがって、クラッチコントロールバルブ18では、係合閉弁部182cが係合油路22の油圧制御回路10側と対向している場合、最低圧のクラッチ係合圧を発生させることとなる。
 また、実施の形態4のクラッチコントロールバルブ18では、指示圧がスプール182の軸線方向他方側に印加されることで、クラッチ係合圧が摩擦クラッチ20を係合できる圧力に達している場合には、吸入開弁部182aが吸入油路16のオイルパン12側と吸入部11b側との双方と対向することとなり、スプール182の吸入開弁部182aにより吸入油路16のオイルパン12側と吸入部11b側とが連通される。また、実施の形態4のクラッチコントロールバルブ18では、指示圧が最低圧でスプール182の軸線方向他方側に印加されることで、クラッチ係合圧が最低圧の場合には、吸入閉弁部182bが吸入油路16のオイルパン12側と吸入部11b側との双方と対向することとなり、スプール182の吸入閉弁部182bにより吸入油路16のオイルパン12側と吸入部11b側との連通が遮断される。
 以上のように、スプール182は、指示圧の増加に応じて軸線方向他方側に移動することで、クラッチ係合圧を増加するものであり、弁筐体181の内部を、指示圧の増加に応じて、吸入油路16のオイルパン12側と吸入部11b側とを連通させるとともに、係合油路22の摩擦クラッチ20側と油圧制御回路10側とを連通させる方向に移動する。すなわち、クラッチコントロールバルブ18は、指示圧の増加に応じて機械的に流量調整弁および圧力調整弁としての開度が大きくなる。言い換えれば、クラッチコントロールバルブ18は、指示圧の増加に応じて機械的に、弁筐体181の吸入油路16に対する開口面積および係合油路22に対する開口面積が大きくなる。
 実施の形態4の潤滑装置1-4では、車両の電子制御により油圧制御回路10で生成された指示圧が指示油路184aおよび連動弁ピストン室184を介して、スプール182の軸線方向他方側に印加される。このため、油圧制御回路10で生成される指示圧が増大するに伴い、スプール182は、連動弁ピストン室184内のオイルにより、コイルスプリング183の付勢力に抗して、軸線方向他方側に押圧される。これにより、油圧制御回路10で生成される指示圧が増大するに伴い、スプール182は、軸線方向他方側に移動する。したがって、スプール182は、弁筐体181の内部において、係合開弁部182dが係合油路22の摩擦クラッチ20側と油圧制御回路10側との双方と対向する方向に移動するとともに、吸入開弁部182aが吸入油路16のオイルパン12側と吸入部11b側との双方と対向する方向に移動することとなる。つまり、油圧制御回路10で生成される指示圧が増大するに伴い、クラッチコントロールバルブ18は、機械的に流量調整弁及び圧力調整弁としての開度、すなわち、弁筐体181の吸入油路16に対する開口面積および係合油路22に対する開口面積が大きくなる。
 ここで、実施の形態4の潤滑装置1-4では、指示圧が最低圧でスプール182の軸線方向他方側に印加される場合には、軸線方向他方側の係合閉弁部182cが係合油路22の油圧制御回路10側と対向するとともに、吸入閉弁部182bが吸入油路16のオイルパン12側と吸入部11b側との双方と対向し、これにより、スプール182の係合閉弁部182cにより係合油路22の摩擦クラッチ20側と油圧制御回路10側との連通が遮断されるとともに、スプール182の吸入閉弁部182bにより吸入油路16のオイルパン12側と吸入部11b側との連通が遮断される。このとき、摩擦クラッチ20の係合圧は最低圧となり、摩擦クラッチ20は解放される。またこのとき、つまり、クラッチ係合圧が最低圧の場合には、スプール182の吸入閉弁部182bにより係合油路22のオイルパン12側と吸入部11b側との連通が遮断されるので、ジェットポンプ11の吐出部11dにより摩擦クラッチ20の潤滑部20aに供給される混合オイルの供給流量が最低流量となる。つまり、潤滑装置1-4では、クラッチ係合圧が最低圧の場合に、摩擦クラッチ20の潤滑部20aに供給する混合オイルの流量を抑制し、摩擦クラッチ20の潤滑部20aで生じる攪拌損失を抑制できる。
 また、実施の形態4の潤滑装置1-4では、最低圧に対して増大した指示圧がスプール182の軸線方向他方側に印加される場合には、係合開弁部182dが係合油路22の摩擦クラッチ20側と油圧制御回路10側との双方と対向するとともに、吸入開弁部182aが吸入油路16のオイルパン12側と吸入部11b側との双方と対向し、これにより、スプール182の係合開弁部182dにより係合油路22の摩擦クラッチ20側と油圧制御回路10側とが連通されるとともに、スプール182の吸入開弁部182aにより吸入油路16のオイルパン12側と吸入部11b側とが連通される。このとき、摩擦クラッチ20の係合圧は最低圧から上昇して、最終的には、クラッチ元圧となり、摩擦クラッチ20は完全に係合する。このため、クラッチ係合圧が最低圧から摩擦クラッチ20を係合できる圧力に達した場合には、摩擦クラッチ20において発生する熱量が増大することとなる。またこのとき、つまり、クラッチ係合圧が最低圧から摩擦クラッチ20を係合できる圧力に達した場合には、吸入閉弁部182bが軸線方向他方側へ移動するに伴い、吸入開弁部182aにより吸入油路16のオイルパン12側と吸入部11b側とが連通されるので、吸入閉弁部182bが軸線方向他方側へ移動するに伴い、ジェットポンプ11の吐出部11dにより摩擦クラッチ20の潤滑部20aに供給される混合オイルの供給流量が増大することとなる。つまり、クラッチ係合圧が最低圧から摩擦クラッチ20を係合できる圧力に達した場合には、吸入閉弁部182bが軸線方向他方側へ移動するに伴い、スプール182の吸入開弁部182aにより、クラッチコントロールバルブ18は、流量調整弁としての開度、すなわち、弁筐体181の吸入油路16に対する開口面積が大きくなる。これにより、クラッチ係合圧が最低圧から摩擦クラッチ20を係合できる圧力に達した場合には、スプール182の軸線方向他方側への移動に伴い、オイルパン12からジェットポンプ11の吸入部11bに供給される低圧オイルの流量が増大する。したがって、クラッチ係合圧が最低圧から摩擦クラッチ20を係合できる圧力に達した場合には、スプール182の軸線方向他方側への移動に伴い、ジェットポンプ11の吐出部11dにより摩擦クラッチ20の潤滑部20aに供給される混合オイルの供給流量が最低流量から増大する。つまり、潤滑装置1-4では、クラッチ係合圧が最低圧から摩擦クラッチ20を係合できる圧力に達した場合には、摩擦クラッチ20の潤滑部20aに供給する混合オイルの流量を増大させ、混合オイルによる摩擦クラッチ20の潤滑部20aの冷却を促進し、混合オイルの供給不足による潤滑部20aの焼付きを防止できる。
〔実施の形態5〕
 以下、実施の形態5に係る潤滑装置について説明する。図6は、実施の形態5に係る潤滑装置の概略を示す模式図である。実施の形態5に係る潤滑装置1-5は、実施の形態1に係る潤滑装置1-1において、逆止弁19を流量調整弁13のオイルパン12側に設け、オイルパン12からジェットポンプ11の吸入部11bに供給される低圧オイルが逆流してしまうことを防止するものである。なお、前述の実施の形態1と同様の構成要件については、同一符号を付してその説明を省略する。また、図6において、スプール132およびコイルスプリング133は、本来、後述の軸線方向に対して、上下対称である。ここでは、説明の都合上、スプール132およびコイルスプリング133は、この軸線方向に対して、上側が状態Aを示すものとし、下側が状態Bを示すものとしている。
 逆止弁19は、流量調整弁13のオイルパン12側に設けられている。実施の形態5では、逆止弁19は、吸入油路16において、オイルパン12側の端部に設けられている。逆止弁19は、ジェットポンプ11の混合部11cにおいて負圧が発生している場合であって、流量調整弁13が開いているときに、この負圧に基づくオイルの吸引力で開弁する。なお、逆止弁19は、流量調整弁13が閉じている場合には、この流量調整弁13によりジェットポンプ11の混合部11cにおいて発生している負圧に基づく吸引力が作用しないため、閉弁することとなる。
 実施の形態5の潤滑装置1-5では、流量調整弁13が閉じている場合、逆止弁19は閉弁するので、逆止弁19により吸入油路16に空気が混入してしまうことを防止できる。つまり、流量調整弁13によりオイルパン12から吸入油路16を介してジェットポンプ11の吸入部11bに低圧オイルが吸入されない場合、逆止弁19により、吸入油路16の流量調整弁13に対してオイルパン12側に空気が混入してしまうことを防止できる。このため、流量調整弁13を開いてジェットポンプ11の吸入部11bに低圧オイルが吸入されても、ジェットポンプ11の内部に空気が混入することがない。つまり、摩擦クラッチ20の潤滑部20aに対して、ジェットポンプ11の吐出部11dにより混合オイルへの供給を開始する際に、速やかに混合オイルを供給することができる。また、逆止弁19によりジェットポンプ11の内部に空気が混入することがないので、ジェットポンプ11の空気の噛み込みによる異音の発生を防止できる。
 以上、実施の形態1~5について説明したように、本発明では、クラッチ係合圧が最低圧である場合には、スプールにより吸入油路16が遮断される構成としたが、本発明はこれに限らない。本発明は、例えば、クラッチ係合圧が最低圧である場合であっても、スプールにより吸入油路16が遮断されない構成であってもよい。
 以上のように、本発明に係る潤滑装置は、車両の摩擦クラッチの潤滑部を潤滑するのに有用であり、特に、車両用の変速機を構成する摩擦クラッチの潤滑部を潤滑するのに有用である。

Claims (7)

  1.  クラッチ係合圧により係合可能な摩擦クラッチの潤滑部にオイルを供給する潤滑装置において、
     駆動ノズルから混合部に供給される高圧オイルと、前記高圧オイルが前記混合部に供給されることで吸入部から前記混合部に供給される低圧オイルとを吐出部より吐出し、前記潤滑部に供給するジェットポンプと、
     前記駆動ノズルと接続され、前記高圧オイルを供給する油圧制御回路と、
     前記吸入部と接続され、前記高圧オイルよりも圧力が低い前記低圧オイルを供給するオイル貯留部と、
     前記吸入部と前記オイル貯留部との間に設けられ、前記クラッチ係合圧の増加に応じて機械的に開度が大きくなる流量調整弁と、
     を備えることを特徴とする潤滑装置。
  2.  前記流量調整弁は、前記吸入部と前記オイル貯留部とを連通する吸入油路に設けられ、
     内部で前記吸入油路のオイル貯留部側と吸入部側とを連通する弁筐体と、
     前記弁筐体の内部で軸線方向に移動可能とされたスプールと、
     前記スプールを前記軸線方向一方側に付勢する調整弁用付勢手段と、
     前記クラッチ係合圧が導入されることで、前記スプールを前記軸線方向他方側に押圧する調整弁ピストン室と、
     を備え、前記スプールは、前記クラッチ係合圧の増加に応じて前記軸線方向他方側に移動するものであり、
     前記クラッチ係合圧が前記摩擦クラッチを係合できる圧力に達している場合には、前記スプールにより前記吸入油路のオイル貯留部側と吸入部側とが連通され、
     前記クラッチ係合圧が最低圧の場合には、前記スプールにより前記吸入油路のオイル貯留部側と吸入部側との連通が遮断される、
     ことを特徴とする請求項1に記載の潤滑装置。
  3.  前記調整弁用付勢手段は、温度上昇に伴い、ばね定数が小さくなる形状記憶合金から構成されている、
     ことを特徴とする請求項2に記載の潤滑装置。
  4.  前記クラッチ係合圧の調整は、圧力調整弁により行われるものであり、
     前記圧力調整弁は、前記摩擦クラッチと前記油圧制御回路とを連通する係合油路に設けられ、
     前記流量調整弁および前記圧力調整弁は、1つの流量圧力調整連動弁である、
     ことを特徴とする請求項1に記載の潤滑装置。
  5.  前記流量圧力調整連動弁は、
     内部で前記係合油路の摩擦クラッチ側と油圧制御回路側とを連通する弁筐体と、
     シフトレバーに連結され、運転者による前記シフトレバーの操作に連動して、前記弁筐体の内部で軸線方向に移動可能とされたスプールと、
     を備え、
     前記シフトレバーがニュートラルポジションである場合には、前記スプールにより、前記係合油路の摩擦クラッチ側と油圧制御回路側との連通が遮断されるとともに、前記吸入部と前記オイル貯留部とを連通する吸入油路のオイル貯留部側と吸入部側との連通が遮断され、
     前記シフトレバーが前記摩擦クラッチが前記クラッチ係合圧により係合されるポジションである係合ポジションである場合には、前記スプールにより、前記係合油路の摩擦クラッチ側と油圧制御回路側とが連通されるとともに、前記吸入油路のオイル貯留部側と吸入部側とが連通される、
     ことを特徴とする請求項4に記載の潤滑装置。
  6.  前記流量圧力調整連動弁は、
     内部で前記係合油路の摩擦クラッチ側と油圧制御回路側とを連通する弁筐体と、
     前記弁筐体の内部で軸線方向に移動可能とされたスプールと、
     前記スプールを前記軸線方向一方側に付勢する連動弁用付勢手段と、
     前記油圧制御回路から指示圧が導入されることで、前記スプールを前記軸線方向他方側に押圧する連動弁ピストン室と、
     を備え、前記スプールは、前記指示圧の増加に応じて前記軸線方向他方側に移動することで、前記クラッチ係合圧を増加するものであり、
     前記クラッチ係合圧が前記摩擦クラッチを係合できる圧力に達している場合には、前記スプールにより前記吸入油路のオイル貯留部側と吸入部側とが連通され、
     前記クラッチ係合圧が最低圧の場合には、前記スプールにより前記吸入油路のオイル貯留部側と吸入部側との連通が遮断される、
     ことを特徴とする請求項4に記載の潤滑装置。
  7.  前記流量調整弁の前記オイル貯留部側には、逆止弁が設けられている、
     ことを特徴とする請求項1に記載の潤滑装置。
PCT/JP2009/054661 2009-03-11 2009-03-11 潤滑装置 WO2010103630A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/203,432 US8556038B2 (en) 2009-03-11 2009-03-11 Lubricating device
CN2009801579979A CN102348904B (zh) 2009-03-11 2009-03-11 润滑装置
DE112009004497.2T DE112009004497B4 (de) 2009-03-11 2009-03-11 Schmiervorrichtung einer Reibkupplung
PCT/JP2009/054661 WO2010103630A1 (ja) 2009-03-11 2009-03-11 潤滑装置
JP2011503602A JP5177280B2 (ja) 2009-03-11 2009-03-11 潤滑装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/054661 WO2010103630A1 (ja) 2009-03-11 2009-03-11 潤滑装置

Publications (1)

Publication Number Publication Date
WO2010103630A1 true WO2010103630A1 (ja) 2010-09-16

Family

ID=42727938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054661 WO2010103630A1 (ja) 2009-03-11 2009-03-11 潤滑装置

Country Status (5)

Country Link
US (1) US8556038B2 (ja)
JP (1) JP5177280B2 (ja)
CN (1) CN102348904B (ja)
DE (1) DE112009004497B4 (ja)
WO (1) WO2010103630A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189672A (zh) * 2010-11-04 2013-07-03 丰田自动车株式会社 具备储压器的油压控制装置
WO2014123027A1 (ja) * 2013-02-06 2014-08-14 本田技研工業株式会社 自動変速機の油圧供給装置
WO2017090624A1 (ja) * 2015-11-26 2017-06-01 いすゞ自動車株式会社 作動油制御装置
CN109424663A (zh) * 2017-08-30 2019-03-05 丰田自动车株式会社 用于车辆的动力传递装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9334766B2 (en) * 2011-09-27 2016-05-10 GM Global Technology Operations LLC Method and apparatus for controlling oil flow in an internal combustion engine
TWI603020B (zh) 2016-11-04 2017-10-21 財團法人工業技術研究院 流體機械潤滑系統總成
DE102021214356A1 (de) 2021-12-15 2023-06-15 Zf Friedrichshafen Ag Vorrichtung zum Befüllen eines hydrodynamischen Drehmomentwandlers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500683A (ja) * 1983-12-12 1986-04-10 キヤタピラ− トラクタ− コムパニ− 作動に応答する摩擦連結装置の冷却装置
JPH05149418A (ja) * 1991-11-25 1993-06-15 Honda Motor Co Ltd 変速機の制御装置
JPH0754972A (ja) * 1993-08-20 1995-02-28 Honda Motor Co Ltd 車両用油圧作動式変速機の潤滑油供給装置
JPH08219267A (ja) * 1994-12-15 1996-08-27 Luk Getriebe Syst Gmbh 円錐プーリ形巻掛け伝動装置を備えた駆動ユニット

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826747A1 (de) 1997-07-14 1999-01-21 Luk Getriebe Systeme Gmbh Getriebe
US6690734B1 (en) * 2000-06-02 2004-02-10 Qualcomm, Incorporated Method and apparatus for puncturing code symbols in a communications system
DE102005019516A1 (de) * 2004-05-15 2005-12-08 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Vorrichtung zum Ansteuern einer Mehrzahl von hydraulischen Schaltzylindern sowie Hydraulikversorgungssystem für ein Doppelkupplungsgetriebe
EP1596104B1 (de) 2004-05-15 2009-01-21 LuK Lamellen und Kupplungsbau Beteiligungs KG Vorrichtung zum Ansteuern einer Mehrzahl von hydraulischen Schaltzylindern sowie Hydraulikversorgungssystem für ein Doppelkupplungsgetriebe
JP4248492B2 (ja) * 2004-12-28 2009-04-02 トヨタ自動車株式会社 軽油等燃料潤滑ディーゼルエンジン
JP2006308257A (ja) 2005-05-02 2006-11-09 Matsushita Electric Ind Co Ltd 蒸発器、冷媒混合器、およびこれらを用いたヒートポンプ
JP5088102B2 (ja) 2007-11-08 2012-12-05 トヨタ自動車株式会社 オイル潤滑装置
JP4849055B2 (ja) 2007-11-08 2011-12-28 トヨタ自動車株式会社 油圧制御装置および変速機
JP2009115066A (ja) 2007-11-09 2009-05-28 Toyota Motor Corp ジェットポンプ
JP4862830B2 (ja) 2008-01-24 2012-01-25 トヨタ自動車株式会社 流体伝動装置用の制御装置
JP2009250044A (ja) 2008-04-01 2009-10-29 Toyota Motor Corp ジェットポンプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500683A (ja) * 1983-12-12 1986-04-10 キヤタピラ− トラクタ− コムパニ− 作動に応答する摩擦連結装置の冷却装置
JPH05149418A (ja) * 1991-11-25 1993-06-15 Honda Motor Co Ltd 変速機の制御装置
JPH0754972A (ja) * 1993-08-20 1995-02-28 Honda Motor Co Ltd 車両用油圧作動式変速機の潤滑油供給装置
JPH08219267A (ja) * 1994-12-15 1996-08-27 Luk Getriebe Syst Gmbh 円錐プーリ形巻掛け伝動装置を備えた駆動ユニット

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189672A (zh) * 2010-11-04 2013-07-03 丰田自动车株式会社 具备储压器的油压控制装置
CN103189672B (zh) * 2010-11-04 2015-07-29 丰田自动车株式会社 具备储压器的油压控制装置
WO2014123027A1 (ja) * 2013-02-06 2014-08-14 本田技研工業株式会社 自動変速機の油圧供給装置
JPWO2014123027A1 (ja) * 2013-02-06 2017-02-02 本田技研工業株式会社 自動変速機の油圧供給装置
US9739374B2 (en) 2013-02-06 2017-08-22 Honda Motor Co., Ltd. Hydraulic pressure supply apparatus for automatic transmission
WO2017090624A1 (ja) * 2015-11-26 2017-06-01 いすゞ自動車株式会社 作動油制御装置
CN108291588A (zh) * 2015-11-26 2018-07-17 五十铃自动车株式会社 工作油控制装置
US10837503B2 (en) 2015-11-26 2020-11-17 Isuzu Motors Limited Hydraulic-oil control device
CN109424663A (zh) * 2017-08-30 2019-03-05 丰田自动车株式会社 用于车辆的动力传递装置

Also Published As

Publication number Publication date
US8556038B2 (en) 2013-10-15
DE112009004497B4 (de) 2014-01-23
US20110308912A1 (en) 2011-12-22
JP5177280B2 (ja) 2013-04-03
DE112009004497T5 (de) 2012-08-02
CN102348904B (zh) 2013-12-04
JPWO2010103630A1 (ja) 2012-09-10
CN102348904A (zh) 2012-02-08

Similar Documents

Publication Publication Date Title
JP5177280B2 (ja) 潤滑装置
US9157544B2 (en) Solenoid valve
US8636483B2 (en) Pump apparatus, power transmission apparatus, and vehicle
US8974347B2 (en) Fluid pressure control device for automatic transmission
US8347918B2 (en) Solenoid valve apparatus
US8887498B2 (en) Transmission hydraulic control system having an accumulator bypass valve assembly
JP2005090659A (ja) 駆動力伝達システム
US8312895B2 (en) Solenoid valve device
JP6419946B2 (ja) 電磁弁およびこの電磁弁を用いた変速機の油圧制御装置
KR20080073233A (ko) 자동 변속기 시스템의 2단계 체크 밸브
WO2012043325A1 (ja) 流体圧制御装置
JPWO2013183162A1 (ja) 油圧制御装置
JP6469156B2 (ja) 流体圧回路
JP2018151014A (ja) 切替弁装置
CN112240380A (zh) 通气装置
JP5262617B2 (ja) 流体制御弁および流体制御回路
JP6469155B2 (ja) 流体圧回路
JP2008518176A (ja) 制御装置を備える無段変速機
JP2009174644A (ja) 流体伝動装置用の制御装置
JP2924628B2 (ja) 油圧制御装置
JP2007270985A (ja) トランスミッション付きトルクコンバータのクラッチ油圧制御装置
JP2007270862A (ja) トランスミッション付きトルクコンバータのバルブ装置
KR101414904B1 (ko) 오일펌프
CN116892611A (zh) 用于机动车的变速器的液压系统
JP5287469B2 (ja) 圧力制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157997.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841458

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011503602

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13203432

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120090044972

Country of ref document: DE

Ref document number: 112009004497

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841458

Country of ref document: EP

Kind code of ref document: A1