WO2010101043A1 - 芳香族ポリカーボネート樹脂組成物、樹脂組成物の製造方法、および成形品 - Google Patents

芳香族ポリカーボネート樹脂組成物、樹脂組成物の製造方法、および成形品 Download PDF

Info

Publication number
WO2010101043A1
WO2010101043A1 PCT/JP2010/052701 JP2010052701W WO2010101043A1 WO 2010101043 A1 WO2010101043 A1 WO 2010101043A1 JP 2010052701 W JP2010052701 W JP 2010052701W WO 2010101043 A1 WO2010101043 A1 WO 2010101043A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
mass
resin composition
titanium oxide
aromatic
Prior art date
Application number
PCT/JP2010/052701
Other languages
English (en)
French (fr)
Inventor
黒川 晴彦
小川 泰史
豊 白石
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009050305A external-priority patent/JP5460078B2/ja
Priority claimed from JP2009121051A external-priority patent/JP5458662B2/ja
Priority claimed from JP2009183197A external-priority patent/JP5466901B2/ja
Priority claimed from JP2010033146A external-priority patent/JP2011168682A/ja
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to US13/144,659 priority Critical patent/US8835534B2/en
Priority to CN201080010490.3A priority patent/CN102341456B/zh
Priority to EP10748639.1A priority patent/EP2404969B1/en
Publication of WO2010101043A1 publication Critical patent/WO2010101043A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • the present invention relates to an aromatic polycarbonate resin composition, a method for producing a resin composition, and a molded article, and is excellent in thermal stability and flame retardancy comprising a combination of titanium oxide having a specific composition and an aromatic sulfonic acid metal salt.
  • the present invention relates to an aromatic polycarbonate resin composition. Specifically, while maintaining the original mechanical properties of polycarbonate resin, it has excellent light reflectivity, light shielding properties, light resistance, hue and other optical properties, as well as excellent thermal stability, flame retardancy and appearance.
  • the present invention relates to a group polycarbonate resin composition and a resin molded body.
  • Polycarbonate resin is a general-purpose engineering plastic that has excellent transparency, mechanical strength, electrical properties, heat resistance, dimensional stability, etc., so electrical / electronic equipment parts, OA equipment, machine parts, vehicle parts, building parts, It is used in a wide range of fields such as various containers, leisure goods and miscellaneous goods.
  • TFT thin film transistors
  • other information display devices such as computers and televisions, backlight reflectors for liquid crystal display devices, illuminated push switches and reflectors for photoelectric switches, etc. Display devices incorporating reflectors that require a high degree of light reflectance are becoming common.
  • These light reflecting members that require a high degree of light reflectivity are resin molded bodies formed by molding a polycarbonate resin composition with a high content of fine particles such as titanium oxide in terms of light reflectivity, moldability, and impact strength. Is used.
  • a light reflecting member made of a polycarbonate resin composition has a strong demand for flame retardant resin materials, and in order to meet these demands, an aromatic polycarbonate resin is combined with a halogen compound, a phosphorus compound, a siloxane compound, a polytetra compound.
  • a halogen compound e.g., a halogen compound, a phosphorus compound, a siloxane compound, a polytetra compound.
  • Many techniques for blending fluoroethylene or the like to make it flame retardant have been proposed. Recently, in consideration of the environment, a flame retardant resin composition using another flame retardant without using a brominated flame retardant or a phosphorus flame retardant has been desired.
  • Patent Document 1 describes a resin composition comprising a polycarbonate resin and an aromatic sulfonic acid sodium salt and polytetrafluoroethylene.
  • Patent Document 2 discloses that an aromatic sulfonic acid metal salt having a pH of 6.4 to 7.5 (specifically, a branched sodium dodecylbenzenesulfonate) (B) and polytetra A resin composition containing fluoroethylene is described.
  • B a branched sodium dodecylbenzenesulfonate
  • Patent Document 3 discloses a silicone flame retardant having a polyorganosiloxane polymer supported on silica, polytetra A resin composition having a UL flame retardancy of 1.5 mmV-0 made of fluoroethylene is described.
  • the flow mark at the time of molding with inorganic silica in the flame retardant and the appearance of defects such as silver streaks due to the removal of low-viscosity polydimethylsiloxane are likely to occur. Not good.
  • Patent Documents 4 to 6 are examples of flame retardant polycarbonate resin compositions using an organic metal salt and titanium oxide in combination.
  • Patent Document 4 describes a resin composition obtained by adding (B) titanium oxide and (C) 1 to 8 parts by weight (parts by mass) of an alkylbenzene sulfonate antistatic agent to (A) polycarbonate resin.
  • Patent Document 4 since the amount of alkali metal salt added is large, the decrease in the molecular weight of the polycarbonate tends to be large during molding, and the moldability and flame retardancy are likely to decrease.
  • Patent Document 5 describes a resin composition in which polytetrafluoroethylene (B), organometallic salt (E), silicone compound (D), and specific titanium oxide are added to polycarbonate resin (A). ing.
  • Patent Document 4 since an appearance defect such as silver streak largely depends on the state of secondary aggregation of titanium oxide, satisfactory results are hardly obtained with the titanium oxide described in the claims. Further, the addition of the silicone compound tends to cause poor appearance.
  • Patent Document 6 describes a flame retardant resin composition in which polytetrafluoroethylene, an organic metal salt, a silicone compound and titanium oxide are added to a polycarbonate resin.
  • these compositions have poor high temperature stability and residence stability, and are likely to be extremely inferior in impact properties and appearance.
  • Patent Document 7 describes the use of acicular titanium oxide obtained by treating polycarbonate resin with polyorganosiloxane. However, simply treating the surface of titanium oxide with polyorganosilane tends to cause appearance defects such as silver streak.
  • the object of the present invention is to maintain the original characteristics of a polycarbonate resin and to obtain a product having a good appearance with excellent light reflectivity, flame retardancy, impact and thermal stability even in a thin molded product.
  • the object is to provide a composition and a resin molded body obtained by molding the composition, specifically, a light reflecting member.
  • the present inventors have intensively studied an aromatic polycarbonate resin composition. Then, the state of the alumina and the polyorganosiloxane on the titanium oxide surface is intensively studied, and the amount of alumina and carbon on the titanium oxide is made a specific range in relation to the particle diameter of the titanium oxide, thereby further increasing the aromaticity.
  • an aromatic polycarbonate resin composition having excellent light reflectance, flame retardancy, impact resistance and thermal stability, good appearance and high reflectance, and light
  • the present inventors have found that a reflecting member can be obtained and have completed the present invention.
  • titanium oxide-based additive (B) surface-treated with alumina and organosiloxane is added to 100 parts by mass of aromatic polycarbonate resin (A).
  • aromatic polycarbonate resin (A) Group sulfonic acid metal salt (C) 0.01-1 part by weight, polytetrafluoroethylene (D) 0.05-0.9 part by weight, Aluminum content a (mass%) in the titanium oxide-based additive obtained by fluorescent X-ray analysis of the titanium oxide-based additive (B) and high-frequency combustion carbon analysis of the titanium oxide-based additive (B)
  • the amount of carbon c (% by mass) in the titanium oxide-based additive obtained by analysis using an apparatus and the average particle diameter d ( ⁇ m) of titanium oxide are expressed by the following equations (1) and (2).
  • An aromatic polycarbonate resin set characterized by satisfying the above is provided.
  • the carbon content c in the titanium oxide-based additive (B) is 0.2 to 2% by mass.
  • a polycarbonate resin composition is provided.
  • the content [B] (mass of the titanium oxide-based additive (B) with respect to 100 mass% of the total amount of the aromatic polycarbonate resin composition. %) And the carbon content c (mass%) satisfy the condition of the following formula (3): an aromatic polycarbonate resin composition is provided.
  • an aromatic polycarbonate resin composition characterized in that, in the first invention, the organosiloxane is a polyorganosiloxane having a Si—H group.
  • the aromatic ring of the aromatic sulfonic acid metal salt (C) does not have a substituent or has 1 to
  • an aromatic polycarbonate resin composition having only 4 alkyl groups and having a pH of 6.0 to 8.5 in an aqueous solution of an aromatic sulfonic acid metal salt (C).
  • the aromatic sulfonic acid metal salt (C) is sodium paratoluenesulfonate or potassium paratoluenesulfonate.
  • An aromatic polycarbonate resin composition is provided.
  • the polytetrafluoroethylene (D) when blended with the aromatic polycarbonate resin (A) in the first invention, the polytetrafluoroethylene having a crystal structure of 13/6 helical structure is used.
  • An aromatic polycarbonate resin composition characterized by using fluoroethylene is provided.
  • the polytetrafluoroethylene having a crystal structure of 13/6 helical structure has a specific surface area of 0.01 to 5 mm 2 / g and 60 to 95% by mass of 180 to 1700 ⁇ m.
  • a method for producing a polycarbonate resin composition according to the first invention which comprises a step of mixing a master batch blended with a polycarbonate resin powder having a particle size of 1 to obtain a polycarbonate resin composition.
  • the polycarbonate resin composition is characterized in that the polytetrafluoroethylene has a crystal structure of 13/6 helical structure by adjusting the temperature. Manufacturing method. Is provided.
  • a method for producing a polycarbonate resin composition according to the eighth or ninth aspect wherein the polytetrafluoroethylene is maintained at a temperature of 19 ° C. or lower. Provided.
  • the polytetrafluoroethylene having a crystal structure of 13/6 helical structure may have a specific surface area of 0.01 to 5 mm 2 /
  • a polycarbonate resin composition obtained by mixing a masterbatch obtained by mixing 60 to 95% by mass with a polycarbonate resin particle having a particle size of 180 to 1700 ⁇ m is formed, polytetrafluoroethylene crystals
  • a method for producing a polycarbonate resin composition characterized in that the structure is molded into a 15/7 helical structure.
  • the polycarbonate resin granular material in which polytetrafluoroethylene having a crystal structure of 13/6 helical structure is held at a temperature of 19 ° C. or lower is used.
  • a method for producing a polycarbonate resin composition characterized by blending is provided.
  • the obtained master batch is held at a temperature of 19 ° C. or lower and then mixed with the polycarbonate resin.
  • a manufacturing method is provided.
  • the aromatic sulfonic acid metal salt is a polycarbonate resin having a specific surface area of 0.01 to 5 mm 2 / g and a particle size of 60 to 95% by mass of 180 to 1700 ⁇ m.
  • a method for producing a polycarbonate resin composition according to the first invention which comprises a step of mixing a master batch blended in a powder.
  • the titanium oxide-based additive is a polycarbonate resin powder having a specific surface area of 0.01 to 5 mm 2 / g and a particle size of 60 to 95% by mass of 180 to 1700 ⁇ m.
  • the method for producing a polycarbonate resin composition according to the first aspect of the invention is characterized by including a step of mixing a masterbatch blended with granules.
  • the molded product according to the sixteenth aspect wherein the molded product is a light reflecting member.
  • the aromatic polycarbonate resin composition of the present invention is excellent in light resistance, light-shielding property, light reflectivity, hue, flame retardancy, molding stability, and is free from surface defects such as silver streak and excellent in appearance. Furthermore, it also has the impact resistance, heat resistance, dimensional stability, appearance characteristics, etc. inherent to the aromatic polycarbonate resin. Therefore, taking advantage of these features, light reflectors for backlights of liquid crystal display devices, light reflecting frames or sheets, electrical and electronic devices, lighting devices such as advertising lights, and automotive equipment such as automotive meter panels It can be used widely as a light reflecting member.
  • the aromatic polycarbonate resin composition of the present invention comprises an aromatic polycarbonate resin (A), a titanium oxide additive (B) surface-treated with alumina and organosiloxane, an aromatic sulfonic acid metal salt (C), and a polytetra Fluoroethylene (D) is contained in a specific amount, and the aluminum content and carbon content in the component (B) satisfy the specific relational expression with the titanium oxide particle size.
  • Aromatic polycarbonate resin (A) The aromatic polycarbonate resin (A) used in the present invention is a thermoplastic heavy chain which may be branched, obtained by reacting an aromatic dihydroxy compound or a small amount thereof with phosgene or a carbonic acid diester. It is a coalescence or copolymer.
  • the production method of the aromatic polycarbonate resin is not particularly limited, and those produced by a conventionally known phosgene method (interfacial polymerization method) or melting method (transesterification method) can be used. Further, when the melting method is used, a polycarbonate resin in which the amount of OH groups of terminal groups is adjusted can be used.
  • a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound can also be used.
  • aromatic dihydroxy compounds may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • a part of the above-mentioned aromatic dihydroxy compound is mixed with the following branching agent, ie, phloroglucin, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl).
  • Heptene-2,4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) heptane, 2,6-dimethyl-2,4,6-tri (4-hydroxyphenylheptene-3,1, Polyhydroxy compounds such as 3,5-tri (4-hydroxyphenyl) benzene and 1,1,1-tri (4-hydroxyphenyl) ethane, and 3,3-bis (4-hydroxyaryl) oxindole ( isa) Chin bisphenol), 5-chloruisatin, 5,7-dichloroisatin, 5-bromoisatin, etc.
  • These branching agents may be one kind. It may be used alone or may be used as a mixture of two or more. The amount of these branching agents used is 0.01 to 10 mol%, preferably 0.1 to 2 mol%, based on the aromatic dihydroxy compound.
  • aromatic polycarbonate resin (A) among the above-mentioned, polycarbonate resin derived from 2,2-bis (4-hydroxyphenyl) propane, or 2,2-bis (4-hydroxyphenyl) propane and other Polycarbonate copolymers derived from aromatic dihydroxy compounds are preferred. Further, it may be a copolymer mainly composed of a polycarbonate resin, such as a copolymer with a polymer or oligomer having a siloxane structure. Furthermore, you may mix and use 2 or more types of the aromatic polycarbonate resin mentioned above.
  • a monovalent aromatic hydroxy compound may be used.
  • the monovalent aromatic hydroxy compound for adjusting the molecular weight include m- and p-methylphenol, m -And p-propylphenol, p-tert-butylphenol, p-long chain alkyl-substituted phenol and the like. These may be used alone or in combination of two or more.
  • the molecular weight of the aromatic polycarbonate resin (A) used in the present invention is arbitrary and may be appropriately selected and determined. From the viewpoint of moldability, strength, etc., measurement is performed at a temperature of 25 ° C. using methylene chloride as a solvent.
  • the viscosity average molecular weight [Mv] calculated from the solution viscosity is preferably 10,000 to 40,000, more preferably 10,000 to 30,000.
  • the mechanical strength tends to be further improved, which is more preferable in the case of use in applications requiring high mechanical strength.
  • by setting it as 40,000 or less there exists a tendency to suppress and improve fluidity
  • the viscosity average molecular weight is preferably 10,000 to 22,000, more preferably 12,000 to 22,000, and particularly preferably 14,000 to 20,000.
  • Two or more types of aromatic polycarbonate resins having different viscosity average molecular weights may be mixed.
  • an aromatic polycarbonate resin having a viscosity average molecular weight outside the above preferred range may be mixed.
  • the viscosity average molecular weight of the mixture is preferably within the above range.
  • Titanium oxide based additive (B) is an alumina-based and organosiloxane-based surface treatment agent so that the surface of the titanium oxide is covered in a specific state as will be described in detail below. This is a surface-treated product, so that the dispersibility is very good, and the molded product obtained from the polycarbonate resin composition of the present invention functions to improve the light-shielding property, whiteness, light reflection property and the like.
  • the titanium oxide used for the titanium oxide-based additive (B) is not particularly limited in terms of production method, crystal form, average particle size, and the like.
  • titanium oxide produced by the sulfuric acid method tends to be inferior in whiteness of the composition to which this is added, the present invention In order to effectively achieve the above objective, those produced by the chlorine method are suitable.
  • the crystal form of titanium oxide includes a rutile type and an anatase type, but a rutile type crystal form is preferable from the viewpoint of light resistance.
  • the average particle size of the titanium oxide-based additive is usually 0.1 to 0.7 ⁇ m, preferably 0.1 to 0.4 ⁇ m.
  • the resulting molded product is inferior in light shielding properties, and if it exceeds 0.7 ⁇ m, the surface of the molded product may be roughened or the mechanical strength of the molded product may be reduced.
  • two or more types of titanium oxide having different average particle diameters may be mixed and used.
  • the titanium oxide-based additive (B) is preferably pretreated with an alumina-based surface treatment agent before being surface-treated with an organosiloxane-based surface treatment agent described later.
  • an alumina-based surface treatment agent alumina hydrate, aluminate or the like is preferably used.
  • it may be pretreated with silicic acid hydrate together with these alumina hydrates and the like.
  • silicic acid-based surface treatment agent silicic acid hydrate is preferably used.
  • the pretreatment method is not particularly limited, and any method can be used. Pretreatment with alumina hydrate and, if necessary, silicic acid hydrate is preferably carried out in the range of 1 to 15% by weight with respect to titanium oxide.
  • the use ratio is 35 to 90 mass of the silicate surface treatment agent with respect to the sum of the alumina surface treatment agent and the silicate surface treatment agent. It is preferable that the amount be about%.
  • Titanium oxide pretreated with alumina hydrate and, if necessary, silicic acid hydrate can further improve the thermal stability by surface treatment with an organosiloxane-based surface treatment agent. In addition, it improves the uniform dispersibility and the stability of the dispersed state in the polycarbonate resin composition.
  • an organosiloxane-based surface treatment agent a polyorganohydrogensiloxane compound is preferable.
  • a reactive functional group-containing organosilicon compound having a reactive functional group that reacts with the surface of the inorganic compound particles is particularly preferable.
  • reactive functional groups include Si—H groups, Si—OH groups, Si—NH groups, and Si—OR groups, but those having Si—H groups, Si—OH groups, and Si—OR groups. More preferred are Si—H group-containing organosilicon compounds having Si—H groups.
  • the Si—H group-containing organosilicon compound is not particularly limited as long as it is a compound having an Si—H group in the molecule, and may be appropriately selected and used.
  • a wet method and (2) a dry method as surface treatment methods using an organosiloxane-based surface treatment agent of titanium oxide.
  • a mixture of an organosiloxane-based surface treatment agent and a solvent is added with alumina hydrate, and if necessary, titanium oxide pretreated with silicic acid hydrate. Further, the heat treatment is then performed at 100 to 300 ° C.
  • pretreated titanium oxide and polyorganohydrogensiloxane are mixed with a Henschel mixer in the same manner as described above, and an organic solution of polyorganohydrogensiloxane is sprayed on the pretreated titanium oxide. And a method of heat treatment at 100 to 300 ° C.
  • the amount of the siloxane-based surface treatment agent is not particularly limited. However, considering the reflectivity of titanium oxide and the moldability of the resin composition, the amount is usually in the range of 1 to 5% by weight with respect to titanium oxide. is there.
  • the titanium oxide-based additive (B) used in the present invention is characterized by exhibiting good thermal stability in a polycarbonate composition in the presence of an aromatic sulfonic acid metal salt. Specifically, the following two expressions are satisfied.
  • the amount of carbon c (% by mass) in the titanium oxide-based additive obtained by analysis using the above and the average particle diameter d ( ⁇ m) of titanium oxide satisfy the following formulas (1) and (2) To do.
  • Formula (2) 5 ⁇ (c / d 2 ) ⁇ 25 When these formulas (1) and (2) are satisfied, an effect excellent in thermal stability, flame retardancy, and light reflectivity is exhibited.
  • the value of (a / d 2 ) in formula (1) is preferably 8 or more, more preferably 9 or more, further 10 or more, and particularly 11 or more.
  • the upper limit is preferably 14 or less, more preferably 13 or less, and further 12 or less, and the value of (c / d 2 ) in the formula (2) is preferably less than 20, more preferably less than 15. In particular, it is less than 13, and the lower limit thereof is preferably 6 or more, more preferably 10 or more, and particularly 11 or more.
  • the range of the (a / d 2 ) value of the formula (1) is 10 to 14, particularly 11 to 13, and the range of the (c / d 2 ) value of the formula (2) is 10 to 15, Of these, 11 to 14 is preferable.
  • the average particle size and surface area of titanium oxide have a correlation, and the surface area per unit mass increases as the average particle size decreases.
  • an excellent light reflectivity can be obtained by using a titanium oxide having a relatively small average particle diameter, that is, a fine particle diameter, and dispersing an appropriate amount of alumina or the like on the surface of the titanium oxide having a small particle diameter.
  • (A / d 2 ) in formula (1) represents the amount of aluminum relative to the unit surface area of titanium oxide
  • (c / d 2 ) in formula (2) represents organic carbon derived from organosiloxane relative to the unit surface area of titanium oxide. Represents the amount of.
  • the amount of the organosiloxane surface treatment agent can be defined as the carbon content c (% by mass) of the organosiloxane surface treatment agent that directly or indirectly coats the titanium oxide surface.
  • the carbon content c with respect to 100% by mass of the entire titanium oxide-based additive (B) component is preferably 0.2 to 2% by mass or more.
  • a more preferable carbon content c is 0.2 to 1.5% by mass, more preferably 0.3 to 1.0% by mass, and particularly preferably 0.4 to 0.9% by mass. If it is less than 0.2% by mass, the hydrophobicity of the titanium oxide surface is lost and the adhesion between the surface-treated titanium oxide and the polycarbonate is lowered, so that the strength and appearance are inferior.
  • the carbon content is lowered due to the insufficient amount of organosiloxane treatment, and the thermal stability is poor because sufficient surface treatment is not performed.
  • the adjustment of the carbon content c can be controlled by adjusting the concentration of the organosiloxane surface treating agent solution used, the dipping time, the spraying time, the temperature / time of the heat treatment, and the like during the surface treatment described above.
  • the carbon content c is measured from the amount of combustion gas by burning the carbon of the surface treatment agent on the surface of titanium oxide using a titanium oxide-based additive (component B) with a high-frequency induction heating furnace type carbon analyzer.
  • the carbon content c indicates the amount of carbon in the organosiloxane that directly or indirectly coats the titanium oxide surface.
  • polymethylhydrogensiloxane is used as a surface treating agent will be described as an example.
  • Polymethylhydrogensiloxane is composed of titanium oxide, and (1) its —OH group is replaced with —OH group on the surface of titanium oxide or other It exists as a chemical bond (covalent bond) with a reactive group, or (2) exists in a free state without any bond at all, and exists in a state with some interaction due to a weak hydrogen bond.
  • the carbon content c means the total amount of methyl carbon existing as (1) or (2).
  • the carbon content c can be divided into (1) the carbon content [c1] of the chemically bonded organosiloxane and the other (2) carbon content [c2].
  • the component (1) and component (2) can be separated by extracting (2) with a solvent such as methanol.
  • the content [B] of the component (B) is 100% by mass of the entire resin composition including other components, additives and the like further blended with the components (A) to (C) as necessary. It is the content when If the value of c ⁇ [B] in formula (3) exceeds 9, problems such as generation of gas during molding occur, and surface properties such as silver streak occur in the molded product.
  • the value of c ⁇ [B] is preferably 8 or less, more preferably 7 or less, and the lower limit thereof is 2 or more, further 3 or more.
  • the more preferable range of the value of c ⁇ [B] is 2 to 8, further 3 to 7, particularly 4 to 6.5.
  • the content of the titanium oxide-based additive (B) is in the range of 3 to 30 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
  • the compounding amount of the titanium oxide-based additive (B) is less than 3 parts by mass, the light-shielding properties and the reflection characteristics of the molded product obtained from the resin composition are insufficient, and when it exceeds 30 parts by mass, the resin composition Impact resistance is insufficient.
  • the preferred amount of the titanium oxide-based additive (B) is 3 to 25 parts by mass, more preferably 5 to 23 parts by mass, and further preferably 5 to 20 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A). In particular, it is 8 to 20 parts by mass.
  • the mass of the titanium oxide-based additive (B) means the mass including these treatment agents when surface treatment is performed with an alumina hydrate, silicic acid hydrate, or an organosiloxane-based surface treatment agent. To do.
  • Aromatic sulfonic acid metal salt (C) The aromatic sulfonic acid metal salt (C) used in the present invention is a metal salt that can be added to polycarbonate and function as a flame retardant for improving flame retardancy. Among these, from the viewpoint of thermal stability when mixed with a polycarbonate resin, aromatic alkylsulfonic acid metal salts and derivatives thereof are preferably used.
  • the aromatic ring of the aromatic sulfonic acid metal salt (C) is not limited to a single ring, but may be a bonded ring in which two or more aromatic rings are bonded.
  • the aromatic sulfonic acid metal salt (C) is not limited to having only one aromatic ring, and may have two or more.
  • the aromatic sulfonic acid metal salt (C) in the present invention includes an aromatic sulfonic acid metal salt compound and a derivative thereof.
  • the aromatic ring of the aromatic sulfonic acid metal salt (C) preferably has no substituent or has only an alkyl group having 1 to 4 carbon atoms as a substituent.
  • the substituent is an alkyl group having 1 to 4 carbon atoms (methyl group, ethyl group, propyl group, isopropyl group, butyl group). Group, isobutyl group, tert-butyl group).
  • the flame retardancy tends to be lowered due to the influence of the aliphatic groups and other substituents. If the substituent is an alkyl group having 1 to 4 carbon atoms, two or more substituents may be substituted on one aromatic ring.
  • the metal of the aromatic sulfonic acid metal salt (C) is preferably an alkali metal or an alkaline earth metal.
  • the alkali metal and alkaline earth metal include sodium, lithium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, and barium.
  • alkali metals sodium and potassium are preferable, and as alkaline earth metals, magnesium, calcium and cesium are preferable from the viewpoint of compatibility with polycarbonate resin and imparting flame retardancy, and aromatic sulfonic acid metal salts are: It may be a mixture of two or more.
  • Preferred examples of the aromatic sulfonic acid metal salt (C) include sodium diphenylsulfone-3-sulfonate, potassium diphenylsulfone-3-sulfonate, disodium diphenylsulfone-3 ⁇ 3′-disulfonate, diphenylsulfone-3 ⁇ 3'-disulfonic acid dipotassium, sodium benzenesulfonate, potassium benzenesulfonate, sodium paratoluenesulfonate, calcium paratoluenesulfonate, sodium dodecylbenzenesulfonate, sodium styrenesulfonate, etc. From the viewpoint of heat stability and handling, sodium paratoluenesulfonate or potassium paratoluenesulfonate is preferably used.
  • the pH (hydrogen ion concentration index) of the aromatic sulfonic acid metal salt (C) in the aqueous solution is preferably 6.0 to 8.5, more preferably 6.5 to 8.0, and particularly Is 6.6 to 8.3.
  • the pH in the aqueous solution of the aromatic sulfonic acid metal salt (C) refers to the pH at 23 ° C. of the 10% by mass aqueous solution of the aromatic sulfonic acid metal salt (C). Measured.
  • the pH of the aromatic sulfonic acid metal salt (C) is less than 6.0, the reaction activity between the aromatic sulfonic acid metal salt (C) and the aromatic polycarbonate resin is reduced at the time of combustion. If the pH is more than 8.5, the decomposition reaction of the aromatic polycarbonate resin by the aromatic sulfonic acid metal salt (C) proceeds greatly, so that the flame retardancy and thermal stability tend to be inferior.
  • the content of the aromatic sulfonic acid metal salt (C) is usually 0.01 to 1 part by mass with respect to 100 parts by mass of the aromatic polycarbonate (A). If the amount is less than 0.01 parts by mass, the effect of improving the flame retardancy of the obtained polycarbonate resin composition is insufficient. If the amount exceeds 1 part by mass, the thermal stability during molding of the polycarbonate resin composition and the deterioration of physical properties in the wet heat test are reduced. Arise.
  • the content of the aromatic sulfonic acid metal salt (C) is preferably 0.03 to 0.8 parts by mass, more preferably 0.05 to 0.8 parts by mass with respect to 100 parts by mass of the polycarbonate resin (A). Further, it is 0.1 to 0.6 parts by mass, particularly 0.1 to 0.4 parts by mass.
  • the polytetrafluoroethylene resin (D) is a polymer or copolymer containing a tetrafluoroethylene structure, and specific examples include tetrafluoroethylene resin and tetrafluoroethylene / hexafluoropropylene copolymer resin. Of these, tetrafluoroethylene resin is preferred. Moreover, as polytetrafluoroethylene resin (D), what has fibril formation ability is preferable, and dripping prevention at the time of combustion can be improved remarkably by having fibril formation ability.
  • Polytetrafluoroethylene having fibril-forming ability is classified as “Type 3” according to the ASTM standard.
  • Preferred examples of the polytetrafluoroethylene having fibril forming ability include Teflon (registered trademark) 6J manufactured by Mitsui DuPont Fluorochemical Co., Ltd., and Polyflon F201L, FA500B and FA500C manufactured by Daikin Chemical Industries, Ltd.
  • a polytetrafluoroethylene compound having a multilayer structure obtained by polymerizing the body Any type can be used for the resin composition of the present invention. Moreover, these may be used individually by 1 type and may be used in mixture of 2 or more types.
  • the average particle size of polytetrafluoroethylene is preferably 200 ⁇ m or more, more preferably 300 ⁇ m or more, still more preferably 400 ⁇ m or more, and preferably 600 ⁇ m or less, as measured by a method in accordance with JIS K6892. More preferably, it is 550 micrometers or less, More preferably, it is 500 micrometers or less.
  • the bulk density of polytetrafluoroethylene is a bulk density measured by a method in accordance with JIS K6892, preferably 0.3 g / ml or more, more preferably 0.35 g / ml or more, and still more preferably 0.4 g / ml. ml, preferably 0.6 g / ml or less, more preferably 0.55 g / ml or less, still more preferably 0.5 g / ml or less.
  • polytetrafluoroethylene In polytetrafluoroethylene, the tetrafluoroethylene chain is regularly connected, but the carbon main chain is twisted little by little to form a helical structure, but the helical structure changes depending on the temperature. When the temperature exceeds 19 ° C., the spiral structure is slightly disassembled and the 15/7 spiral structure (even if the number of carbon atoms is 15 is rotated 7 times) The structure returns to (1).
  • polytetrafluoroethylene has a 15/7 helical structure, it becomes viscous and dispersibility is lowered, and it is easy to cause lumps and classification, and the effect of improving flame retardancy tends to decrease.
  • the polytetrafluoroethylene (D) is preferably mixed with other components in a state where it is kept at a temperature of 19 ° C. or lower and has a 13/6 helical structure.
  • polytetrafluoroethylene (D) is stored at 19 ° C. or lower, if necessary, refrigerated, preferably premixed with a part of the aromatic polycarbonate resin (A) stored at 19 ° C. or lower in the same manner, It is preferable to mix and melt-knead this preliminary mixture with the remaining aromatic polycarbonate resin (A) and other components in the same manner as described above.
  • a resin composition containing polytetrafluoroethylene polytetrafluoroethylene coated with an organic polymer can be used.
  • the organic polymer-coated tetrafluoroethylene resin can be produced by various known methods. For example, (1) a polytetrafluoroethylene particle aqueous dispersion and an organic polymer particle aqueous dispersion are mixed and coagulated or spray-dried.
  • a method of polymerizing a monomer constituting an organic polymer in the presence of an aqueous dispersion of polytetrafluoroethylene particles, and then pulverizing or producing the powder by solidification or spray drying (3) In a dispersion obtained by mixing an aqueous dispersion of polytetrafluoroethylene particles and an aqueous dispersion of organic polymer particles, a monomer having an ethylenically unsaturated bond is emulsion-polymerized and then coagulated or spray-dried. And the like, and the like.
  • organic polymer-coated polytetrafluoroethylene those in which the content ratio of polytetrafluoroethylene in the coated polytetrafluoroethylene is within the range of 40 to 95% by mass are preferable, among which 43 to 80% by mass, It is preferably 45 to 70% by mass, particularly 47 to 60% by mass.
  • specific coated polytetrafluoroethylene of the present invention for example, Metablene A-3800, A-3700, KA-5503 manufactured by Mitsubishi Rayon Co., Ltd., Poly TS AD001 manufactured by PIC, etc. can be preferably used. .
  • the content of polytetrafluoroethylene (D) is 0.05 to 0.9 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A), and its preferred lower limit is 0.08 parts by mass,
  • the upper limit is preferably 0.7 parts by mass or less, and particularly preferably 0.5 parts by mass or less.
  • the amount added corresponds to the amount of pure polytetrafluoroethylene.
  • the content of polytetrafluoroethylene (D) is less than 0.05 parts by mass, the flame retardancy is not sufficient.
  • the content exceeds 0.9 parts by mass the appearance of the molded product tends to deteriorate.
  • aromatic polycarbonate resin composition of the present invention other resins, various resin additives, and the like may be used as necessary in addition to the above-described components as long as the effects of the present invention are not impaired.
  • resins include elastomers, aromatic vinyl-diene-vinyl cyanide copolymers, polyolefin resins such as polyethylene resins and polypropylene resins, polyamide resins, polyimide resins, and polyetherimides. Examples thereof include resins, polyurethane resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, polymethacrylate resins, and polyester resins.
  • the aromatic polycarbonate resin composition of the present invention may contain an elastomer as another component. By containing the elastomer, the impact resistance of the polycarbonate resin composition can be improved.
  • the elastomer used in the present invention is preferably a graft copolymer obtained by graft copolymerizing a rubber component with a monomer component copolymerizable therewith.
  • the production method of the graft copolymer may be any production method such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization, and the copolymerization method may be single-stage graft or multi-stage graft.
  • the rubber component generally has a glass transition temperature of 0 ° C. or lower, preferably ⁇ 20 ° C. or lower, more preferably ⁇ 30 ° C. or lower.
  • Specific examples of the rubber component include polybutadiene rubber, polyisoprene rubber, polybutyl acrylate and poly (2-ethylhexyl acrylate), polyalkyl acrylate rubber such as butyl acrylate / 2-ethyl hexyl acrylate copolymer, and polyorganosiloxane rubber.
  • Ethylene- ⁇ olefins such as silicone rubber, butadiene-acrylic composite rubber, IPN composite rubber made of polyorganosiloxane rubber and polyalkylacrylate rubber, styrene-butadiene rubber, ethylene-propylene rubber, ethylene-butene rubber, ethylene-octene rubber And rubbers such as ethylene-acrylic rubber and fluororubber. These may be used alone or in admixture of two or more.
  • polybutadiene rubber polyalkyl acrylate rubber, polyorganosiloxane rubber, IPN (Interpenetrating Polymer Network) type composite rubber composed of polyorganosiloxane rubber and polyalkyl acrylate rubber, styrene -Butadiene rubber is preferred.
  • IPN Interpenetrating Polymer Network
  • the monomer component that can be graft copolymerized with the rubber component include aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, (meth) acrylic acid compounds, glycidyl (meth) acrylates, and the like.
  • These monomer components may be used alone or in combination of two or more.
  • aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, and (meth) acrylic acid compounds are preferable from the viewpoint of mechanical properties and surface appearance, and (meth) acrylic acid esters are more preferable.
  • Specific examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, and the like. be able to.
  • the graft copolymer obtained by copolymerizing the rubber component is preferably a core / shell type graft copolymer type from the viewpoint of impact resistance and surface appearance.
  • at least one rubber component selected from polybutadiene-containing rubber, polybutyl acrylate-containing rubber, polyorganosiloxane rubber, IPN type composite rubber composed of polyorganosiloxane rubber and polyalkyl acrylate rubber is used as a core layer, and around it.
  • a core / shell type graft copolymer comprising a shell layer formed by copolymerizing (meth) acrylic acid ester is particularly preferred.
  • the core / shell type graft copolymer preferably contains 40% by mass or more of a rubber component, and more preferably contains 60% by mass or more. Moreover, what contains 10 mass% or more of (meth) acrylic acid is preferable.
  • these core / shell type graft copolymers include methyl methacrylate-butadiene-styrene copolymer (MBS), methyl methacrylate-acrylonitrile-butadiene-styrene copolymer (MABS), methyl methacrylate-butadiene copolymer.
  • MB methyl methacrylate-acrylic rubber copolymer
  • MA methyl methacrylate-acrylic rubber-styrene copolymer
  • MAS methyl methacrylate-acrylic-butadiene rubber copolymer
  • methacrylate-acrylic-butadiene rubber- Examples thereof include styrene copolymers and methyl methacrylate- (acryl / silicone IPN rubber) copolymers.
  • Such rubbery polymers may be used alone or in combination of two or more.
  • Examples of such a core / shell type graft copolymer include “Paraloid (registered trademark, hereinafter the same) EXL2602”, “Paraloid EXL2603”, “Paraloid EXL2655”, “Paraloid” manufactured by Rohm and Haas Japan. “EXL2311”, “Paraloid EXL2313”, “Paraloid EXL2315”, “Paraloid KM330”, “Paraloid KM336P”, “Paraloid KCZ201”, “Metabrene (registered trademark, the same applies hereinafter) C-223A”, “Metabrene E” manufactured by Mitsubishi Rayon Co., Ltd.
  • the preferable content of the elastomer is 0.1 to 10 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin.
  • the lower limit of the content is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and the upper limit of the content is preferably 7.5 parts by mass or less, more preferably 5 parts by mass or less.
  • the amount is particularly preferably 4 parts by mass or less.
  • the aromatic polycarbonate resin composition of the present invention may contain an aromatic vinyl-diene-vinyl cyanide copolymer.
  • the copolymer comprises an aromatic vinyl monomer and a diene, a vinyl cyanide monomer, and, if necessary, other copolymerizable monomers.
  • the diene is butadiene, isoprene or the like, preferably a prepolymerized diene rubber, such as polybutadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, polyisoprene rubber, etc. These can be mentioned, and these can be used alone or in combination of two or more. Particularly preferably, polybutadiene rubber and / or styrene-butadiene copolymer rubber is used.
  • Examples of the vinyl cyanide monomer include acrylonitrile and methacrylonitrile, and acrylonitrile is particularly preferable.
  • Examples of the aromatic vinyl monomer include styrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene and vinyltoluene, and styrene and / or ⁇ -methylstyrene is particularly preferable.
  • the copolymer composition ratio is not particularly limited, but 10 to 70 parts by weight of a diene rubber is preferable with respect to 100 parts by weight of the copolymer from the viewpoint of molding processability and impact resistance of the obtained resin composition.
  • the amount of vinyl cyanide monomer is preferably 8 to 40 parts by weight.
  • the aromatic vinyl monomer is preferably in the range of 20 to 80 parts by weight.
  • the method for producing the copolymer is not particularly limited, and known methods such as emulsion polymerization, solution polymerization, bulk polymerization, suspension polymerization or bulk / suspension polymerization are used.
  • the content of the aromatic vinyl-diene-vinyl cyanide copolymer is 5 to 30% by mass with respect to 100% by mass in total of the aromatic polycarbonate resin and the aromatic vinyl-diene-vinyl cyanide copolymer. is there.
  • a more preferable content is 7 to 25% by mass.
  • the aromatic polycarbonate resin composition of the present invention may contain one or more selected from various additives as long as the effects of the present invention are not impaired.
  • additives include phosphorus stabilizers, phenolic antioxidants, ultraviolet absorbers, mold release agents, fluorescent brighteners, inorganic fillers, and additives selected from the group consisting of dyes and pigments. It is done.
  • phosphorus-based heat stabilizer such as a phosphite ester or a phosphate ester
  • a phosphorus-based heat stabilizer such as a phosphite ester or a phosphate ester
  • phosphites include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, trinonyl phosphite, tridecyl phosphite, trioctyl phosphite , Trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tricyclohexyl phosphite, monobutyl diphenyl phosphite, monooctyl diphenyl phosphite, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butyl Phenyl) pentaerythritol phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pen
  • phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, 2-ethylphenyldiphenyl phosphate, tetrakis (2,4-di-). tert-butylphenyl) -4,4-diphenylphosphonite and the like.
  • distearyl pentaerythritol diphosphite bis (2,4-di-tert-butylphenyl) pentaerythritol phosphite, bis (2,6-di-tert-butyl-4) -Methylphenyl) pentaerythritol phosphite and tris (2,4-di-tert-butylphenyl) phosphite are preferred, and bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol phosphite Tris (2,4-di-t-butylphenyl) phosphite is particularly preferred.
  • a heat stabilizer may be used independently and may be used in combination of 2 or more type.
  • the content of the phosphorus stabilizer in the resin composition of the present invention is preferably 0.005 to 0.2 parts by mass, and 0.01 to 0.1 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin. It is more preferable that It is preferable for the content of the thermal stabilizer to be in the above-mentioned range since the thermal stability can be improved without causing hydrolysis or the like.
  • a phenolic antioxidant it is preferable to add a phenolic antioxidant to the resin composition of the present invention. More specifically, 2,6-di-tert-butyl-4-methylphenol, n-octadecyl-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate, tetrakis [ Methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 4,4'-butylidenebis -(3-methyl-6-tert-butylphenyl), triethylene glycol-bis [3- (3-tert-butyl-hydroxy-5-methylphenyl) propionate], and 3,9-bis ⁇ 2- [3 -(3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,
  • the content of the phenolic antioxidant in the resin composition of the present invention is preferably 0.02 to 0.5 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin component. This range is preferable because the antioxidant property can be improved without inhibiting the effects of the present invention.
  • An ultraviolet absorber can be added to the resin composition of the present invention. Molded articles made of the resin composition of the present invention tend to be yellowish by ultraviolet rays when exposed to light such as sunlight or fluorescent lamps for a long time, but by adding an ultraviolet absorber, It can prevent or delay that a molded article becomes yellowish.
  • the ultraviolet absorber include benzophenone, benzotriazole, phenyl salicylate, and hindered amine.
  • benzophenone ultraviolet absorber examples include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone 2-hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4 And '-tetrahydroxy-benzophenone.
  • benzotriazole ultraviolet absorber examples include 2- (2H-benzotriazol-2-yl) -p-cresol, 2- (2H-benzotriazol-2-yl) -4,6-bis (1- Methyl-1-phenylmethyl) phenol, 2- [5-chloro (2H) -benzotriazol-2-yl] -4-methyl-6- (tert-butyl) phenol, 2,4-di-tert-butyl- 6- (5-chlorobenzotriazol-2-yl) phenol, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetrabutyl) phenol, 2,2'-methylenebis [ 6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetrabutyl) phenol] and the like.
  • phenyl salicylate UV absorber examples include phenyl saltylate, 2,4-ditertiary-butylphenyl-3,5-ditertiarybutyl-4-hydroxybenzoate, and the like.
  • hindered amine ultraviolet absorber examples include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
  • An ultraviolet absorber may be used individually by 1 type, and may use 2 or more types together.
  • the content of the ultraviolet absorber in the resin composition of the present invention is preferably 0.001 to 1 part by mass, and 0.005 to 0.8 part by mass with respect to 100 parts by mass of the aromatic polycarbonate resin. More preferred is 0.01 to 0.5 parts by mass.
  • the weather resistance can be improved without causing a decrease in emission color due to absorption of excitation light of the organic ultraviolet light-emitting phosphor and without causing bleed-out on the surface of the molded product. Therefore, it is preferable.
  • the resin composition of the present invention preferably contains a release agent.
  • a preferred release agent is a compound selected from an aliphatic carboxylic acid, an aliphatic carboxylic acid ester, and an aliphatic hydrocarbon compound having a number average molecular weight of 200 to 15000. Among these, compounds selected from aliphatic carboxylic acids and aliphatic carboxylic acid esters are preferably used.
  • aliphatic carboxylic acid examples include saturated or unsaturated aliphatic monocarboxylic acid, dicarboxylic acid, and tricarboxylic acid.
  • the term “aliphatic carboxylic acid” is used to include alicyclic carboxylic acids.
  • mono- or dicarboxylic acids having 6 to 36 carbon atoms are preferable, and aliphatic saturated monocarboxylic acids having 6 to 36 carbon atoms are more preferable.
  • aliphatic carboxylic acids include palmitic acid, stearic acid, valeric acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellic acid, tetrariacontanoic acid. , Montanic acid, glutaric acid, adipic acid, azelaic acid and the like.
  • the same aliphatic carboxylic acid as that described above can be used.
  • the alcohol component constituting the aliphatic carboxylic acid ester examples include saturated or unsaturated monohydric alcohols and saturated or unsaturated polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these alcohols, monovalent or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or polyhydric alcohols having 30 or less carbon atoms are more preferable.
  • the aliphatic alcohol also includes an alicyclic alcohol.
  • these alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol.
  • Etc. These aliphatic carboxylic acid esters may contain an aliphatic carboxylic acid and / or alcohol as impurities, or may be a mixture of a plurality of compounds.
  • aliphatic carboxylic acid ester examples include beeswax (mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, octyldodecyl behenate, glycerin monopalmitate, glycerin monostearate, glycerin Examples thereof include distearate, glycerin tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, and pentaerythritol tetrastearate.
  • a mold release agent may be used individually by 1 type, and may use 2 or more types together.
  • the content of the release agent in the present invention is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the aromatic polycarbonate resin. It is preferable for the content of the release agent to be in the above-mentioned range since there is no decrease in hydrolysis resistance and a release effect can be obtained.
  • any conventionally known optical brightener may be used as long as the effects of the present invention are not impaired.
  • fluorescent brighteners include coumarin derivatives, naphthotriazolyl stilbene derivatives, benzoxazole derivatives, oxazole derivatives, benzimidazole derivatives, and diaminostilbene-disulfonate derivatives. Can be mentioned.
  • Hakkor PSR 3-phenyl-7- (2H-naphtho (1.2-d) -triazol-2-yl) coumarin
  • HOSTALUX KCB from Hoechst AG
  • Benzoxazole derivatives available from Sumitomo Chemical as trade name WHITEFLOUR PSN CONC (oxazole compounds).
  • the preferable content of the fluorescent brightening agent is 0.005 to 0.1 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin. If the content is less than 0.005 parts by mass, the whitening effect is small, and if it exceeds 0.1 parts by mass, the yellowing tends to be strong.
  • the content of the optical brightener is more preferably 0.01 to 0.05 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin.
  • the aromatic polycarbonate resin in the present invention can contain an inorganic filler for the purpose of improving strength and rigidity.
  • the shape of the inorganic filler is arbitrary such as a needle shape, a plate shape, a granular shape or an amorphous shape.
  • Specific examples of inorganic fillers include glass fillers such as glass fibers (chopped strands), glass short fibers (milled fibers), glass flakes, and glass beads; carbon fibers such as carbon fibers, carbon short fibers, carbon nanotubes, and graphite.
  • Whiskers such as potassium titanate and aluminum borate
  • Silicate compounds such as talc, mica, wollastonite, kaolinite, zonotlite, sepiolite, attabargite, montmorillonite, bentonite, smectite
  • silica alumina, calcium carbonate, etc. It is done.
  • talc, mica, wollastonite, and kaolinite are preferable for the purpose of obtaining good surface design. Two or more of these may be used in combination.
  • the content of the inorganic filler is 1 to 60 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin. When the content of the inorganic filler is less than 1 part by mass, the reinforcing effect may not be sufficient. Moreover, when it exceeds 60 mass parts, an external appearance and impact resistance may be inferior, and fluidity
  • the content of the inorganic filler is preferably 3 to 50 parts by mass, particularly preferably 5 to 30 parts by mass.
  • the inorganic filler is preferably in the form of granules obtained by granulating an average particle size of 0.01 to 100 ⁇ m using a binder. More preferably, the average particle size is 0.05 to 50 ⁇ m, more preferably 0.1 to 25 ⁇ m. If the average particle size is too small, the reinforcing effect tends to be insufficient. Conversely, if the average particle size is too large, the product appearance tends to be adversely affected, and the impact resistance may be insufficient.
  • the most preferable average particle size of the inorganic filler is 0.2 to 15 ⁇ m, particularly 0.3 to 10 ⁇ m.
  • the average particle size of the inorganic filler in the present invention refers to a D 50 measured by a liquid phase precipitation method using X-ray transmission.
  • a Sedigraph particle size analyzer (“Model 5100” manufactured by Micromeritics Instruments) can be mentioned.
  • Examples of the inorganic filler that is a raw material for the granular inorganic filler include silicate compounds such as wollastonite, talc, mica, zonotlite, sepiolite, attabargite, and kaolinite; complex oxides such as potassium titanate, alumina oxide, and zinc oxide; Carbonate compounds such as calcium carbonate; sulfate compounds such as barium sulfate and calcium sulfate; carbon-based fillers such as graphite; silica; glass-based fillers such as glass flakes and glass beads; aluminum borate and the like. May be used alone or in combination of two or more.
  • silicate compounds such as wollastonite, talc, mica, zonotlite, sepiolite, attabargite, and kaolinite
  • complex oxides such as potassium titanate, alumina oxide, and zinc oxide
  • Carbonate compounds such as calcium carbonate
  • sulfate compounds such as barium sulfate and calcium
  • the aromatic polycarbonate resin composition of the present invention may contain a dye / pigment.
  • the dye / pigment include inorganic pigments, organic pigments, and organic dyes, and the content of the dye / pigment in the present invention is less than 3 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin.
  • inorganic pigments include carbon black; sulfide pigments such as cadmium red and cadmium yellow; silicate pigments such as ultramarine blue; zinc white, petal, chromium oxide, iron black, titanium yellow, and zinc-iron brown. , Titanium-cobalt green, cobalt green, cobalt blue, oxide-based pigments such as copper-chromium black, copper-iron-based black; chromic pigments such as yellow lead and molybdate orange; ferrocyan pigments such as bitumen Etc.
  • organic pigments and organic dyes include phthalocyanine dyes such as copper phthalocyanine blue and copper phthalocyanine green; azo dyes such as nickel azo yellow; thioindigo, perinone, perylene, quinacridone, dioxazine, iso Examples thereof include condensed polycyclic dyes such as indolinone and quinophthalone; anthraquinone, heterocyclic and methyl dyes.
  • carbon black, cyanine-based, quinoline-based, anthraquinone-based, and phthalocyanine-based compounds are preferable from the viewpoint of thermal stability.
  • 1 type may contain the dye / pigment, and 2 or more types may contain it by arbitrary combinations and a ratio.
  • dyes and pigments may be used as masterbatches with polystyrene resins, polycarbonate resins, and acrylic resins for the purpose of improving handling during extrusion and improving dispersibility in the resin composition. Good.
  • an antistatic agent In the resin composition of the present invention, an antistatic agent, an antifogging agent, a lubricant / antiblocking agent, a fluidity improving agent, a plasticizer, a dispersant, an antibacterial agent can be used as long as the purpose of the present invention is not impaired.
  • An agent can be contained. These may be used alone or in combination of two or more.
  • the aromatic polycarbonate resin composition of the present invention is produced by mixing and melting and kneading each component constituting the aromatic polycarbonate resin composition.
  • a method applied to a conventionally known thermoplastic resin composition can be applied. Examples thereof include a method using a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, a single-screw or twin-screw extruder, a kneader, and the like.
  • the temperature for melt kneading is not particularly limited, but is usually in the range of 240 to 320 ° C.
  • the aromatic polycarbonate resin composition of the present invention is a production method in which an aromatic polycarbonate, the titanium oxide-based additive, a flame retardant, and polytetrafluoroethylene as a flame retardant aid and other necessary components are blended together.
  • the method may be used, the following production method is preferred in which the master batch is obtained and then melt-kneaded with the polycarbonate resin composition.
  • the aromatic polycarbonate resin composition of the present invention has a polytetrafluoroethylene having a 13/6 helical structure in order to improve the dispersibility of polytetrafluoroethylene in the resin composition and in the molded product.
  • ethylene By blending ethylene into a polycarbonate resin in the form of granules having a specific surface area of 0.01 to 5 mm 2 / g and a particle size of 60 to 95% by mass of 180 to 1700 ⁇ m, a larger amount of poly
  • the masterbatch After obtaining a polycarbonate-polytetrafluoroethylene masterbatch containing tetrafluoroethylene, the masterbatch is melt-kneaded with a required amount of polycarbonate resin in the form of pellets or granules to obtain an aromatic polycarbonate resin composition It is preferable.
  • polytetrafluoroethylene has a crystal structure of 13/6 helix at 19 ° C. or lower
  • a tetrafluoroethylene masterbatch can be obtained.
  • the method for producing the polycarbonate-polytetrafluoroethylene masterbatch includes a method of mixing using a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, etc., and the use of a drum tumbler is preferred.
  • the blending amount of polytetrafluoroethylene in the polycarbonate-polytetrafluoroethylene masterbatch is preferably 20 to 100 parts by mass, more preferably 25 to 50 parts by mass with respect to 100 parts by mass of the polycarbonate resin.
  • Titanium oxide additive (B) is mixed with at least a part of the aromatic polycarbonate resin (A) in advance to form a master batch, and then mixed and melt-kneaded with the remaining polycarbonate resin (A) and other components. It is also preferable. Titanium oxide additive (B) is masterbatched with at least part of the aromatic polycarbonate resin (A), so that the titanium oxide additive surface-treated with organosiloxane has greatly improved affinity with polycarbonate resin To do.
  • the titanium oxide-based additive has a specific surface area of 0.01 to 5 mm 2 / g, and 60 to 95% by mass has a particle size of 180 to 1700 ⁇ m. It is preferable to obtain a polycarbonate-titanium oxide additive masterbatch containing a titanium oxide-based additive in an amount larger than the final blending amount by blending with a body-shaped polycarbonate resin.
  • the obtained master batch is melt-kneaded with the required amount of polycarbonate resin in the form of pellets or granules and other desired components to obtain a polycarbonate resin composition of a predetermined formulation.
  • Examples of the method for producing a polycarbonate-titanium oxide additive masterbatch include a method of mixing using a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, etc., but the use of a Henschel mixer is preferred.
  • the compounding amount of the titanium oxide-based additive in the polycarbonate-titanium oxide-based additive master batch is preferably 20 to 100 parts by mass, more preferably 25 to 50 parts by mass with respect to 100 parts by mass of the polycarbonate resin. .
  • an aromatic sulfonic acid metal salt is blended with a polycarbonate resin in the form of a granular material having a specific surface area of 0.01 to 5 mm 2 / g and a particle size of 60 to 95% by mass of 180 to 1700 ⁇ m.
  • a polycarbonate-metal salt flame retardant masterbatch containing an aromatic sulfonic acid metal salt in an amount greater than the final blending amount is melt-kneaded with the required amount of polycarbonate resin in the form of pellets or granules and other desired components to obtain an aromatic polycarbonate resin composition of a predetermined formulation.
  • the method for producing the polycarbonate-metal salt flame retardant master batch includes a method of mixing using a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, etc., and the use of a Henschel mixer is preferred.
  • the compounding amount of the aromatic sulfonic acid metal salt in the polycarbonate-metal salt flame retardant masterbatch is 0.5 parts by mass or more, preferably 0.8 parts by mass or more, more preferably 1 part per 100 parts by mass of the polycarbonate resin. It is at least 5 parts by mass, preferably at most 4 parts by mass, more preferably at most 3 parts by mass.
  • the polycarbonate-metal salt flame retardant master batch is melt-kneaded together with the polycarbonate-polytetrafluoroethylene master batch and / or the polycarbonate-titanium oxide additive master batch to improve the appearance of the molded product. In addition, variations in combustibility can be suppressed.
  • the temperature for melt kneading is not particularly limited, but is usually in the range of 240 to 320 ° C.
  • polytetrafluoroethylene (D) since the crystal structure of polytetrafluoroethylene (D) changes at a temperature of 19 ° C., the polytetrafluoroethylene (D) is kept at 19 ° C. or lower and is a 13/6 helix. It is preferable to mix with other components in the structure state. Specifically, polytetrafluoroethylene (D) is stored at 19 ° C. or lower, if necessary, refrigerated, preferably premixed with a part of the aromatic polycarbonate resin (A) stored at 19 ° C. or lower in the same manner, It is preferable to mix and melt-knead this preliminary mixture with the remaining aromatic polycarbonate resin (A) and other components in the same manner as described above. By doing in this way, polytetrafluoroethylene (D) can reduce the occurrence of lumps and classification, and can improve the flame retardancy effect.
  • the aromatic polycarbonate resin composition of the present invention can be used as a molding material for various molded articles.
  • an injection molding method is suitably applied as the applicable molding method.
  • the injection molding method used here was an ultra-high speed injection molding method, an injection compression molding method, a two-color molding method, a hollow molding method such as gas assist, a molding method using a heat insulating mold, and a rapid heating mold.
  • a wide range of injection methods including molding methods, foam molding (including supercritical fluid) methods, insert molding methods, IMC (in-mold coating molding) molding methods, and the like.
  • the molded product of the present invention is formed by molding the above-described aromatic polycarbonate resin composition of the present invention, and is excellent in light resistance, light shielding properties, light reflectivity, hue, flame retardancy, and molding stability. In addition, the impact resistance, heat resistance, dimensional stability, appearance characteristics, etc. inherent to polycarbonate resin are maintained at the same time. Taking advantage of these features, light reflectors and backlight frames for backlights of liquid crystal display devices are used.
  • light reflecting member for lighting devices such as light reflecting sheets, electric / electronic devices, advertising lamps, and automotive devices such as automotive meter panels, especially its excellent flame retardancy and light Because of its reflectivity and impact resistance, it is useful for light reflectors for liquid crystal backlights and reflector frame parts.
  • ⁇ Measurement of surface treatment components of titanium oxide Regarding the Al amount a of the titanium oxide-based additive, a wavelength dispersive X-ray fluorescence analyzer ZSXminiII manufactured by Rigaku Corporation was used, a palladium tube for the X-ray tube, a voltage of 40 kV / tube current of 1.2 mA, a measurement area diameter of 30 mm, a vacuum atmosphere It calculated using the intensity ratio of the spectrum of Ti and Al under conditions.
  • the carbon amount c was calculated by applying a high frequency current of anode power: 2.3 kW, frequency: 18 MHz, 175 mA using a high frequency induction heating furnace type EMIA-921V carbon analyzer manufactured by Horiba, Ltd.
  • the primary particle diameters of the titanium oxide additives (B-1) to (B-8) used in the examples and comparative examples were measured by preparing samples by the following method.
  • the aromatic polycarbonate resin (A) 5 parts by mass of the titanium oxide-based additive (B) used in Examples and Comparative Examples was added, and pellets were produced by the same kneading method as in the Comparative Examples. From this pellet, an ultra-thin section having a thickness of about 200 nm for STEM observation was cut out with an ultramicrotome and oxidized by STEM observation (magnification: 50,000 times) using a scanning electron microscope S-4800 manufactured by Hitachi High-Technologies Corporation. A primary particle image of titanium was obtained. The average value of the major axis and minor axis of the primary particles was taken as the primary particle size, and the average value of 30 primary particles (value in increments of 0.05 ⁇ m) was used for the measurement of the primary particle size.
  • the flow value (Q value) of the pellet was evaluated by the method described in Appendix C of JIS K7210. Measurement was performed using a flow tester CFD500D manufactured by Shimadzu Corporation, using a die with a hole diameter of 1.0 mm ⁇ and a length of 10 mm, under conditions of a test temperature of 280 ° C., 300 ° C. and 320 ° C., a test force of 160 kg / cm 2 , and a preheating time of 420 sec. The amount of molten resin discharged ( ⁇ 0.01 cc / sec) was measured.
  • Reflectance The reflectance of the 3 mm thick part of the plate used in the appearance evaluation was measured. The measurement was performed using a spectrocolorimeter CM3600d manufactured by Konica Minolta, in a D65 / 10 degree field of view and SCI normal measurement mode, and a reflectance value at a wavelength of 440 nm was used.
  • (B) Titanium oxide additives The following titanium oxide additives (B-1) to (B-8) which were surface-treated with alumina and organosiloxane were used.
  • B-1 “Kronos (trade name) 2233” manufactured by Kronos (B-2) “Tipure (trade name) PCX-01” manufactured by Du Pont (B-3) “PC-5” manufactured by Resino Color (B-4) “Kronos (trade name) 2230” manufactured by Kronos (B-5) “Ishihara Sangyo Co., Ltd.,” Taipeku (trade name) PC-3 " (B-6) Ishihara Sangyo Co., Ltd., “Taipeke (trade name) PF-740” (B-7) “TiONA (trade name) 188” manufactured by Millennium Chemical (B-8) “RCL-69” manufactured by Millennium Chemical
  • Table 1 shows the results of component analysis of the titanium oxide used in the examples and comparative examples.
  • C Aromatic sulfonic acid metal salt
  • C-1 Toluene sulfonic acid sodium salt “Chemguard (trade name) NATS” manufactured by Chemebridge International
  • C-2 Toluenesulfonic acid potassium salt “Chemguard (trade name) PABS” manufactured by Chemebridge International
  • D Polytetrafluoroethylene (PTFE) (D-1) “Polyflon (trade name) F-201L” manufactured by Daikin Industries, Ltd.
  • E Heat stabilizer (E-1) Tris (2,4-di-tert-butylphenyl) phosphite manufactured by ADEKA Corporation, trade name “AS2112” (E-2) Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, manufactured by ADEKA Corporation, trade name “PEP36”
  • Examples 1 to 6 and Comparative Examples 1 to 12 Each component described above was blended in the proportions (parts by mass) shown in Tables 2 to 4, mixed with a tumbler, and then charged into a hopper of a twin screw extruder (12 blocks, TEX30XCT) manufactured by Nippon Steel Works. . Each resin component was melt-kneaded under conditions of a cylinder temperature of 270 ° C., 200 rpm, and an extrusion speed of 25 kg / hour, the molten resin composition extruded in a strand shape was rapidly cooled in a water tank, pelletized with a pelletizer, and Table 2 A pellet of the polycarbonate resin composition described in Table 4 was obtained. The obtained resin composition was subjected to various evaluations by the methods described above. The results are shown in Tables 2-4.
  • Example 3 The resin compositions of Examples 1 to 6 described in the claims have excellent thermal stability, flammability, appearance, strength, and reflection characteristics.
  • Example 3 the metal of the sulfonic acid metal salt was made different, but the same effect as in Examples 1 and 2 was exhibited.
  • Examples 4 and 5 are obtained by changing the type of titanium oxide-based additive used in Examples 1 to 3 and exhibit the same effects as the compositions of Examples 1 to 3. However, Example 4 is slightly inferior in impact property at high temperature.
  • Example 6 the amount of the titanium oxide-based additive was changed, and while having the same thermal stability as that of Example 1, it has more excellent reflection characteristics.
  • Comparative Examples 1 and 2 are inferior in reflectance because the amount of titanium oxide-based additive is insufficient, and Comparative Example 3 is insufficient in the amount of aromatic sulfonic acid metal salt. Therefore, sufficient combustibility cannot be obtained, and in Comparative Example 4, the amount of the aromatic sulfonic acid metal salt is excessive and combustibility is obtained, but the appearance is deteriorated.
  • Comparative Example 5 the amount of polytetrafluoroethylene added is small and the flammability becomes insufficient.
  • Comparative Example 6 the amount of polytetrafluoroethylene added is large and the appearance and impact characteristics are poor.
  • Comparative Example 7 In Comparative Example 7, sufficient flammability is obtained, but impact resistance at high temperature (300 ° C.) molding is inferior. Comparative Examples 8, 10 to 12 are inferior in thermal stability, impact characteristics, appearance, and flammability because the surface treatment amount of the titanium oxide-based additive under the use of the aromatic sulfonic acid metal salt is not appropriate. In Comparative Example 8, in the absence of the aromatic sulfonic acid metal salt, even if a titanium oxide-based additive other than the present invention is used, it has good thermal stability but is inferior in flame retardancy.
  • Example 7 to 13 and Comparative Examples 13 to 14 [Materials used] The raw materials used in Examples 7 to 13 and Comparative Examples 13 to 14 are as follows. ⁇ Aromatic polycarbonate resin (A)> The same “Iupilon® H-3000” used in Examples 1 to 6 and Comparative Examples 1 to 12 was used.
  • Aromatic sulfonic acid metal salt compounds (C-3) to (C-5) Aromatic sulfonic acid metal salts having different pHs were prepared as follows. Paratoluenesulfonic acid was dissolved in ion exchange water to prepare a 20% aqueous solution. Thereafter, an aqueous sodium hydroxide solution was added, and an aqueous sodium paratoluenesulfonate solution having different pH was prepared by adjusting the addition amount. Thereafter, the aqueous solution was heated to evaporate the water, thereby obtaining paratoluenesulfonic acid sodium salts (C-3) to (C-5) having different pHs.
  • the prepared paratoluenesulfonic acid sodium salts (C-3) to (C-5) were each dissolved again with ion-exchanged water to prepare 10% aqueous solution, and the pH at 23 ° C. was measured with a pH meter. In order to confirm that the neutralization reaction was completed, it was confirmed that the pH values of the 10% aqueous solution and 20% aqueous solution of paratoluenesulfonic acid sodium salt were almost the same.
  • Aromatic sulfonic acid metal salt compounds (C-1) p-toluenesulfonic acid sodium salt (same as C-1 above)
  • C-2 p-Toluenesulfonic acid potassium salt (same as C-2 above)
  • a heat stabilizer (E) and a release agent (F) were blended and mixed by a tumbler, and then charged into a hopper of a twin-screw extruder (12 blocks, TEX30XCT).
  • Each resin component was melt-kneaded under the conditions of a cylinder temperature of 270 ° C., 200 rpm, and an extrusion rate of 25 kg / hour to obtain resin composition pellets.
  • the obtained resin composition was evaluated for (1) flammability, (2) flow value, (3) appearance, and (4) reflectance by the same method as in the previous examples and comparative examples. The results are shown in Table 5.
  • Example 12 The resin compositions of Examples 7 to 13 that satisfy the conditions of the present invention have excellent flammability, thermal stability, appearance, and reflection characteristics.
  • Example 12 the metal of the sulfonic acid metal salt was made different, but the same effect as in Examples 7 and 8 was exhibited.
  • Comparative Example 13 is inferior in reflectance because the amount of the titanium oxide-based additive is insufficient, and Comparative Example 14 cannot obtain sufficient combustibility because the amount of the aromatic sulfonic acid metal salt is insufficient. .
  • Example 14 to 15 and Comparative Example 15 [Materials used]
  • the raw materials used in Examples 14 to 15 and Comparative Example 15 are as follows.
  • Each component described above was blended in the proportions (parts by mass) shown in Table 6, mixed with a tumbler, and then charged into a hopper of a twin screw extruder (12 blocks, TEX30XCT) manufactured by Nippon Steel Works. Each resin component is melt-kneaded under the conditions of a cylinder temperature of 270 ° C., 200 rpm, and an extrusion speed of 25 kg / hour, and the molten resin composition extruded in a strand form is rapidly cooled in a water tank, pelletized by a pelletizer, and polycarbonate resin A pellet of the composition was obtained.
  • Appearance evaluation was performed as follows. For each of the obtained resin compositions, a box-shaped product having a cylinder temperature of 280 ° C., a mold temperature of 80 ° C. and a thickness of 2 mm (bottom surface: 150 mm ⁇ 150 mm, side surface) using an injection molding machine EC160N-II-4A manufactured by Toshiba Machine Co., Ltd. : 20 mm ⁇ 150 mm, pin gate diameter ⁇ 1 mm) was molded and visually observed to evaluate the appearance of the molded product. Silver and resin burns were not recognized, and those with good appearance were evaluated as “ ⁇ ”, and those with large appearance defects were determined as “x”. The evaluation results are shown in Table 6.
  • Comparative Example 15 is inferior in combustibility because a sufficient reflectance cannot be obtained because the addition amount of the titanium oxide-based additive is insufficient.
  • Example 16 to 37 and Comparative Examples 16 to 18 [Materials used]
  • the raw materials used in Examples 16 to 37 and Comparative Examples 16 to 18 are as follows.
  • [Aromatic polycarbonate resin (A)] (A1) Poly-4,4-isopropylidene diphenyl carbonate: Product name “Iupilon (registered trademark) S-3000F” manufactured by Mitsubishi Engineering Plastics Co., Ltd., viscosity-average molecular weight 21,000, polycarbonate resin in the form of granular material, specific surface area 1.24 mm 2 / g, particle size of 180-1700 ⁇ m Is 83 mass%
  • Poly-4,4-isopropylidene diphenyl carbonate Product name “Iupilon (registered trademark) S-3000” manufactured by Mitsubishi Engineering Plastics Co., Ltd., viscosity average molecular weight 21,000, polycarbonate resin in pellet form, specific surface area 0.003 mm 2 / g, particle size of 180-1700 ⁇ m
  • PC-PTFE masterbatch A master batch blended under any of the following conditions (a) to (d) was used.
  • PC-PTFE master batch-2 A master batch blended under the following conditions (e) was used.
  • PC-TiO 2 masterbatch (F) (F1)
  • PC-TiO 2 master batch-1 70% by mass of a granular resin polycarbonate resin (A1) and 30% by mass of a titanium oxide-based additive (B) blended in a Henschel mixer for 1 minute
  • PC-TiO 2 Masterbatch-2 80% by mass of powdery polycarbonate resin (A1) and 20% by mass of titanium oxide additive (B) blended for 1 minute using a Henschel mixer
  • PC-metal salt masterbatch-1 99% by mass of powdery polycarbonate resin (A1) and 1% by mass of metal salt flame retardant (C2) blended for 1 minute with a Henschel mixer (G2)
  • PC-metal salt masterbatch-2 99% by mass of powdery polycarbonate resin (A1) and 1% by mass of metal salt flame retardant (C3) blended for 1 minute using a Henschel mixer
  • the cylinder temperature is 280 ° C. and the mold temperature is 80 ° C.
  • the plate-shaped test piece (150 mm ⁇ 100 mm ⁇ 3 mm thickness) was molded by injection molding under the following conditions.
  • the cylinder temperature was 280 ° C. and the mold temperature was 80 ° C.
  • the test piece for UL test having a length of 125 mm, a width of 13 mm, and a thickness of 2 mm was molded under the conditions described above.
  • Comparative Example 18 uses a polycarbonate resin-polytetrafluoroethylene masterbatch.
  • the thickness was 2 mm and V-0.
  • the flammability variation was large compared to the examples.
  • the production stability was better than Comparative Examples 16-17.
  • the aromatic polycarbonate resin composition of the present invention is superior in thermal stability, flame retardancy, appearance, impact properties, and light reflectance as compared to conventional flame retardant polycarbonate compositions. It can be said that the material is suitable for a reflecting member such as a liquid crystal display member.
  • a reflecting member such as a liquid crystal display member.
  • polyfluoroethylene having a 13/6 helical structure as a crystal structure is used at the time of blending.
  • the productivity at the time of manufacture is stable, and there is no occurrence of surface defects such as silver streaks due to the polytetrafluoroethylene aggregates in the molded product, and it has excellent appearance and excellent impact resistance. Furthermore, a highly reflective and flame-retardant polycarbonate resin composition can be produced.
  • the polycarbonate resin composition of the present invention can be used in a wide range of fields such as electric and electronic equipment, OA equipment, information terminal equipment, home appliances, and lighting equipment, and in particular, a light reflector for backlight of a liquid crystal display device, light Since it can be widely used as a light reflecting member for a reflecting frame or a light reflecting sheet, an illumination device such as an electric / electronic device, an advertisement light, or an automotive device such as an automotive meter panel, the industrial applicability is very high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 熱安定性、難燃性、光反射性に優れた芳香族ポリカーボネート組成物およびその樹脂成形体からなる光反射部材を提供する。 芳香族ポリカーボネート樹脂(A)100質量部に対し、アルミナおよびオルガノシロキサンで表面処理された酸化チタン系添加剤(B)3~30質量部、芳香族スルホン酸金属塩(C)0.05~0.9質量部、ポリテトラフルオロエチレン(D)0.01~1.5質量部を含有して成り、酸化チタン系添加剤(B)中のアルミニウム含有量a(質量%)、炭素量c(質量%)、および酸化チタンの平均粒径(μm)dが、式(1)および式(2)を満足することを特徴とする芳香族ポリカーボネート樹脂組成物。 式(1)6.5≦(a/d)≦15 かつ 式(2) 5≦(c/d)≦25

Description

芳香族ポリカーボネート樹脂組成物、樹脂組成物の製造方法、および成形品
 本発明は、芳香族ポリカーボネート樹脂組成物、樹脂組成物の製造方法、および成形品に関し、特定の組成を有する酸化チタンと芳香族スルホン酸金属塩の組合せからなる熱安定性と難燃性に優れた芳香族ポリカーボネート樹脂組成物に関する。詳しくは、ポリカーボネート樹脂本来の機械的特性を維持しつつ、優れた光線反射率、遮光性、耐光性、色相等の光学特性、さらには優れた熱安定性、難燃性および外観性を有する芳香族ポリカーボネート樹脂組成物、及び樹脂成形体に関する。
 ポリカーボネート樹脂は、汎用エンジニアリングプラスチックとして透明性、機械的強度、電気的性質、耐熱性、寸法安定性などに優れているので、電気・電子機器部品、OA機器、機械部品、車輌部品、建築部材、各種容器、レジャー用品・雑貨類などの幅広い分野で使用されている。
 これらの使用分野の中で、薄膜トランジスタ(TFT)を初めとする、コンピュータやテレビ等の情報表示装置では、液晶表示装置のバックライト用反射板、そして照光式プッシュスイッチや光電スイッチの反射板など、高度の光線反射率が要求される反射板を組み込んだ表示装置が一般的になりつつある。
 これらの高度の光線反射率が要求される光反射部材は、光反射性、成形性、衝撃強度の点から酸化チタン等の微粒子含有量の高いポリカーボネート樹脂組成物を成形してなる樹脂成形体等が使用されている。
 ポリカーボネート樹脂組成物からなる光反射部材は、樹脂材料の難燃化の要望が強く、これらの要望に応えるために、芳香族ポリカーボネート樹脂に、ハロゲン系化合物、リン系化合物、シロキサン系化合物、ポリテトラフルオロエチレン等を配合して難燃化する技術が多数提案されている。最近では、環境に対する配慮から、臭素系難燃剤あるいはリン系難燃剤を使用せず、他の難燃剤を用いた難燃性樹脂組成物が望まれている。
 有機金属塩を配合した難燃性ポリカーボネートとして、例えば、特許文献1には、ポリカーボネート樹脂に芳香族スルホン酸ナトリウム塩、ポリテトラフルオロエチレンからなる樹脂組成物について記載されている。しかしながら、特許文献1では、酸化チタンの添加がないため、反射特性および薄肉での難燃性に劣るため、難燃性光反射材料として充分な性能とはいえない。
 また、特許文献2には、ポリカーボネート樹脂(A)にpH6.4~7.5である芳香族スルホン酸金属塩(具体的には、分岐化ドデシルベンゼンスルホン酸ナトリウム塩)(B)とポリテトラフルオロエチレンを配合した樹脂組成物について記載されている。しかしながら、この特許文献2でも、酸化チタンの添加がないため、1.5mmより薄い厚みでの燃焼性がV-0にならず、薄肉用途には不十分である。
 また、非リン系難燃剤および酸化チタンを併用した難燃性ポリカーボネートの例として、例えば、特許文献3には、ポリカーボネート樹脂に、シリカにポリオルガノシロキサン重合体を担持したシリコーン系難燃剤、ポリテトラフルオロエチレンからなるUL難燃性が1.5mmV-0からなる樹脂組成物について記載されている。しかしながら難燃剤中の無機シリカによる成形時のフローマーク、および低粘度のポリジメチルシロキサンの脱離によるシルバーストリーク等の外観不良を生じやすく、特に意匠性が要求される部材としては充分な性能とはいいにくい。
 これに対して、有機金属塩および酸化チタンを併用した難燃性ポリカーボネート樹脂組成物の例として、特許文献4~6が挙げられる。
 特許文献4には、(A)ポリカーボネート樹脂に(B)酸化チタン、(C)アルキルベンゼンスルホン酸塩系帯電防止剤1~8重量部(質量部)を添加した樹脂組成物について記載されている。しかしながら、この特許文献4では、アルカリ金属塩の添加量が多いため成形時にポリカーボネートの分子量低下が大きくなりやすく、成形性および難燃性能が低下しやすい。
 また、特許文献5には、ポリカーボネート樹脂(A)にポリテトラフルオロエチレン(B)、有機金属塩(E)、シリコーン化合物(D)と、更に特定の酸化チタンを加えた樹脂組成物について記載されている。しかしながら、特許文献4では、シルバーストリークスのような外観不良は、むしろ酸化チタンの二次凝集の状態に大きく依存するため、その請求項に記載の酸化チタンでは、満足な結果は得られにくい。またシリコーン化合物の添加により、外観不良が発生しやすくなる。
 さらに、特許文献6には、ポリカーボネート樹脂にポリテトラフルオロエチレン、有機金属塩、シリコーン化合物と酸化チタンを加えた難燃性樹脂組成物について記載されている。しかしながらこれらの組成物は高温安定性および滞留安定性に乏しく、衝撃性および外観が著しく劣りやすい。
 酸化チタンを表面処理することについては、例えば、特許文献7に、ポリカーボネート樹脂にポリオルガノシロキサンで処理した針状酸化チタンを使用することが記載されている。しかしながら、単に酸化チタンをポリオルガノシランで表面処理するだけでは、シルバーストリークス等の外観不良が発生しやすくなる。
特開2000-239509号公報 特開2007-119554号公報 特許第3124488号公報 特開平11-181267号公報 特開2006-241262号公報 特開2003-183491号公報 特開平8-59976号公報
 本発明の目的は、ポリカーボネート樹脂本来の特性を維持し、薄肉の成形品にしても光線反射率、難燃性、衝撃性そして熱安定性に優れ、良好な外観を有する製品が得られるポリカーボネート樹脂組成物、及びこれを成形してなる樹脂成形体、具体的には光反射部材を提供することにある。
 本発明者らは上記問題を解決するため、芳香族ポリカーボネート樹脂組成物について鋭意検討した。そして、アルミナとポリオルガノシロキサンの酸化チタン表面上での状態を鋭意検討し、酸化チタン上のアルミナと炭素の量を酸化チタンの粒径との関係で特定の範囲にすることにより、さらに芳香族スルホン酸金属塩とポリテトラフルオロエチレンと組合せることにより、光線反射率、難燃性、耐衝撃性および熱安定性に優れ、良好な外観と高い反射率を有する芳香族ポリカーボネート樹脂組成物および光反射部材が得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明の第1の発明によれば、芳香族ポリカーボネート樹脂(A)100質量部に対し、アルミナおよびオルガノシロキサンで表面処理された酸化チタン系添加剤(B)3~30質量部、芳香族スルホン酸金属塩(C)0.01~1質量部、ポリテトラフルオロエチレン(D)0.05~0.9質量部を含有して成り、
 酸化チタン系添加剤(B)を蛍光X線分析することによって得られた酸化チタン系添加剤中のアルミニウム含有量a(質量%)と、酸化チタン系添加剤(B)を高周波燃焼式炭素分析装置を用いて分析して得られた酸化チタン系添加剤中の炭素量c(質量%)と、酸化チタンの平均粒径d(μm)とが、以下の式(1)および式(2)を満足することを特徴とする芳香族ポリカーボネート樹脂組が提供される。
  式(1) 6.5≦(a/d)≦15
  式(2)   5≦(c/d)≦25
 また、本発明の第2の発明によれば、第1の発明において、酸化チタン系添加剤(B)における炭素含有量cが、0.2~2質量%であることを特徴とする芳香族ポリカーボネート樹脂組成物が提供される。
 また、本発明の第3の発明によれば、第1または第2の発明において、芳香族ポリカーボネート樹脂組成物の総量100質量%に対する酸化チタン系添加剤(B)の含有量[B](質量%)と前記炭素量c(質量%)とが、以下の式(3)の条件を満足することを特徴とする芳香族ポリカーボネート樹脂組成物が提供される。
  式(3) 1≦c×[B]≦9
 また、本発明の第4の発明によれば、第1の発明において、オルガノシロキサンが、Si-H基を有するポリオルガノシロキサンであることを特徴とする芳香族ポリカーボネート樹脂組成物が提供される。
 また、本発明の第5の発明によれば、第1の発明において、芳香族スルホン酸金属塩(C)の芳香族環は、置換基を有さないか、或いは置換基として炭素数1~4のアルキル基のみを有し、芳香族スルホン酸金属塩(C)の水溶液中でのpHが6.0~8.5であることを特徴とする芳香族ポリカーボネート樹脂組成物が提供される。
 また、本発明の第6の発明によれば、第1または第5の発明において、芳香族スルホン酸金属塩(C)がパラトルエンスルホン酸ナトリウムまたはパラトルエンスルホン酸カリウムであることを特徴とする芳香族ポリカーボネート樹脂組成物が提供される。
 また、本発明の第7の発明によれば、第1の発明において、芳香族ポリカーボネート樹脂(A)にポリテトラフルオロエチレン(D)を配合するに際し、結晶構造が13/6らせん構造のポリテトラフルオロエチレンを用いたことを特徴とする芳香族ポリカーボネート樹脂組成物が提供される。
 また、本発明の第8の発明によれば、結晶構造が13/6らせん構造のポリテトラフルオロエチレンを、比表面積が0.01~5mm/gで、60~95質量%が180~1700μmの粒径を有するポリカーボネート樹脂粉粒体に配合したマスターバッチを混合してポリカーボネート樹脂組成物を得る工程を含むことを特徴とする第1の発明のポリカーボネート樹脂組成物の製造方法が提供される。
 また、本発明の第9の発明によれば、第8の発明において、ポリテトラフルオロエチレンが、温度調整することにより結晶構造を13/6らせん構造とされることを特徴とするポリカーボネート樹脂組成物の製造方法。が提供される。
 また、本発明の第10の発明によれば、第8または第9の発明において、ポリテトラフルオロエチレンを、19℃以下の温度下に保持することを特徴とするポリカーボネート樹脂組成物の製造方法が提供される。
 また、本発明の第11の発明によれば、第8~第10のいずれかの発明において、結晶構造が13/6らせん構造のポリテトラフルオロエチレンを、比表面積が0.01~5mm/gで、60~95質量%が180~1700μmの粒径を有するポリカーボネート樹脂粉粒体に配合したマスターバッチを混合して得られたポリカーボネート樹脂組成物を成形する際に、ポリテトラフルオロエチレンの結晶構造を15/7らせん構造にして成形することを特徴とするポリカーボネート樹脂組成物の製造方法が提供される。
 また、本発明の第12の発明によれば、第11の発明において、結晶構造が13/6らせん構造のポリテトラフルオロエチレンを、19℃以下の温度下で保持した前記ポリカーボネート樹脂粉粒体に配合することを特徴とするポリカーボネート樹脂組成物の製造方法が提供される。
 また、本発明の第13の発明によれば、第8の発明において、得られたマスターバッチを19℃以下の温度下で保持した後、ポリカーボネート樹脂と混合することを特徴とするポリカーボネート樹脂組成物の製造方法が提供される。
 また、本発明の第14の発明によれば、芳香族スルホン酸金属塩を、比表面積が0.01~5mm/gで、60~95質量%が180~1700μmの粒径を有するポリカーボネート樹脂粉粒体に配合したマスターバッチを混合する工程を含むことを特徴とする第1の発明のポリカーボネート樹脂組成物の製造方法が提供される。
 また、本発明の第15の発明によれば、酸化チタン系添加剤を、比表面積が0.01~5mm/gで、60~95質量%が180~1700μmの粒径を有するポリカーボネート樹脂粉粒体に配合したマスターバッチを混合する工程を含むことを特徴とすることを特徴とする第1の発明のポリカーボネート樹脂組成物の製造方法が提供される。
 また、本発明の第16の発明によれば、第1~7のいずれかの発明の芳香族ポリカーボネート樹脂組成物から得られた成形品が提供される。
 さらに、本発明の第17の発明によれば、第16の発明において、成形品が光反射部材である成形品が提供される。
 本発明の芳香族ポリカーボネート樹脂組成物は、耐光性、遮光性、光線反射性、色相、難燃性、成形安定性に優れ、さらにシルバーストリーク等の表面欠陥の発生がなく、外観性に優れる上に、芳香族ポリカーボネート樹脂が本来有する耐衝撃性、耐熱性、寸法安定性、外観特性等をも同時に有している。
 したがって、これらの特長を生かして、液晶表示装置のバックライト用光線反射板、光反射枠または光反射シート、電気・電子機器、広告灯などの照明用装置、自動車用メーターパネルなどの自動車用機器などの、光反射部材として幅広く使用することができる。
 以下に本発明の実施の形態を詳細に説明する。
[1.概要]
 本発明の芳香族ポリカーボネート樹脂組成物は、芳香族ポリカーボネート樹脂(A)、アルミナおよびオルガノシロキサンで表面処理された酸化チタン系添加剤(B)、芳香族スルホン酸金属塩(C)、およびポリテトラフルオロエチレン(D)を、それぞれ特定の量で含有し、さらに(B)成分におけるアルミニウム量と炭素量が、酸化チタンの粒径と特定の関係式を満足することを特徴とする。
 以下、本発明の芳香族ポリカーボネート樹脂組成物に使用される各成分について、詳細に説明する。
[2.芳香族ポリカーボネート樹脂(A)]
 本発明に使用される芳香族ポリカーボネート樹脂(A)は、芳香族ジヒドロキシ化合物又はこれと少量のポリヒドロキシ化合物を、ホスゲン又は炭酸ジエステルと反応させることによって得られる、分岐していてもよい熱可塑性重合体又は共重合体である。芳香族ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、従来公知のホスゲン法(界面重合法)や溶融法(エステル交換法)により製造したものを使用することができる。また、溶融法を用いた場合には、末端基のOH基量を調整したポリカーボネート樹脂を使用することができる。
 原料の芳香族ジヒドロキシ化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(=ビスフェノールA)、テトラメチルビスフェノールA、ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4-ジヒドロキシジフェニル等が挙げられ、好ましくは、ビスフェノールAが挙げられる。また、上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物を使用することもできる。
 これらの芳香族ジヒドロキシ化合物は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 分岐した芳香族ポリカーボネート樹脂を得るには、上述した芳香族ジヒドロキシ化合物の一部を、以下の分岐剤、即ち、フロログルシン、4,6-ジメチル-2,4,6-トリ(4-ヒドロキシフェニル)ヘプテン-2、4,6-ジメチル-2,4,6-トリ(4-ヒドロキシフェニル)ヘプタン、2,6-ジメチル-2,4,6-トリ(4-ヒドロキシフェニルヘプテン-3、1,3,5-トリ(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリ(4-ヒドロキシフェニル)エタン等のポリヒドロキシ化合物や、3,3-ビス(4-ヒドロキシアリール)オキシインドール(=イサチンビスフェノール)、5-クロルイサチン、5,7-ジクロルイサチン、5-ブロムイサチン等の化合物で置換すればよい。これらの分岐剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 これら分岐剤の使用量は、芳香族ジヒドロキシ化合物に対して、0.01~10モル%であり、好ましくは0.1~2モル%である。
 芳香族ポリカーボネート樹脂(A)としては、上述した中でも、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導されるポリカーボネート樹脂、又は、2,2-ビス(4-ヒドロキシフェニル)プロパンと他の芳香族ジヒドロキシ化合物とから誘導されるポリカーボネート共重合体が好ましい。また、シロキサン構造を有するポリマー又はオリゴマーとの共重合体等の、ポリカーボネート樹脂を主体とする共重合体であってもよい。更には、上述した芳香族ポリカーボネート樹脂の2種以上を混合して用いてもよい。
 芳香族ポリカーボネート樹脂の分子量を調節するには、一価の芳香族ヒドロキシ化合物を用いればよく、分子量調整のための一価の芳香族ヒドロキシ化合物としては、例えば、m-及びp-メチルフェノール、m-及びp-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 本発明に用いる芳香族ポリカーボネート樹脂(A)の分子量は、任意であり、適宜選択して決定すればよいが、成形性、強度等の点から、溶媒としてメチレンクロライドを用い、温度25℃で測定された溶液粘度より換算した粘度平均分子量[Mv]で、10,000~40,000、更には10,000~30,000のものが好ましい。この様に、粘度平均分子量を10,000以上とすることで機械的強度がより向上する傾向にあり、機械的強度の要求の高い用途に用いる場合により好ましいものとなる。一方、40,000以下とすることで流動性低下を、より抑制し改善する傾向にあり、成形加工性容易の観点からより好ましい。
 粘度平均分子量は中でも、10,000~22,000、更には12,000~22,000、特に14,000~20,000であることが好ましい。また粘度平均分子量の異なる2種類以上の芳香族ポリカーボネート樹脂を混合してもよく、この際には、粘度平均分子量が上記好適範囲外である芳香族ポリカーボネート樹脂を混合してもよい。この場合、混合物の粘度平均分子量は上記範囲となるのが望ましい。
[3.酸化チタン系添加剤(B)]
 本発明における酸化チタン系添加剤(B)は、酸化チタン表面をアルミナおよびオルガノシロキサンが以下に詳記するように、特定の状態で表面を覆うように、アルミナ系およびオルガノシロキサン系表面処理剤で表面処理したものであり、これにより分散性が極めて良好であって、本発明のポリカーボネート樹脂組成物から得られる成形品の遮光性、白度、光線反射特性などを向上させるように機能する。
 酸化チタン系添加剤(B)に用いられる酸化チタンは、製造方法、結晶形態および平均粒子径などは、特に限定されるものではない。酸化チタンの製造方法には(1)硫酸法および(2)塩素法があるが、硫酸法で製造された酸化チタンは、これを添加した組成物の白度が劣る傾向があるため、本発明の目的を効果的に達成するには、塩素法で製造されたものが好適である。
 酸化チタンの結晶形態には、ルチル型とアナターゼ型があるが、耐光性の観点からルチル型の結晶形態のものが好適である。酸化チタン系添加剤の平均粒子径は、通常0.1~0.7μm、好ましくは0.1~0.4μmである。平均粒子径が0.1μm未満では得られる成形品の光線遮蔽性に劣り、0.7μmを超える場合は、成形品表面に肌荒れを起こしたり、成形品の機械的強度が低下したりする。なお、本発明においては平均粒径の異なる酸化チタンを2種類以上混合して使用してもよい。
 酸化チタン系添加剤(B)は、後記するオルガノシロキサン系の表面処理剤で表面処理する前に、アルミナ系表面処理剤で前処理するのが好ましい。アルミナ系表面処理剤としてはアルミナ水和物、アルミン酸塩等が好適に用いられる。さらにこれらアルミナ水和物等とともに珪酸水和物で前処理しても良い。珪酸系表面処理剤としては珪酸水和物が好適に用いられる。
 前処理の方法は特に限定されるものではなく、任意の方法によることが出来る。アルミナ水和物、さらに必要に応じて珪酸水和物による前処理は、酸化チタンに対して1~15重量%の範囲で行うのが好ましい。なお、アルミナ系表面処理剤と珪酸系表面処理剤を併用する場合、その使用割合は、アルミナ系表面処理剤と珪酸系表面処理剤の和に対して、珪酸系表面処理剤が35~90質量%程度となるような量とすることが好ましい。
 アルミナ水和物、さらに必要に応じて珪酸水和物前処理された酸化チタンは、更にその表面をオルガノシロキサン系の表面処理剤で表面処理することによって、熱安定性を大幅に改善することが出来る他、ポリカーボネート樹脂組成物中での均一分散性および分散状態の安定性を向上させる。オルガノシロキサン系の表面処理剤としては、ポリオルガノハイドロジェンシロキサン化合物が好ましい。
 オルガノシロキサン系表面処理剤としては、なかでも無機化合物粒子の表面と反応する反応性の官能基を持つ反応性官能基含有有機珪素化合物が好ましい。反応性の官能基としては、Si-H基、Si-OH基、Si-NH基、Si-OR基が挙げられるが、Si-H基、Si-OH基、Si-OR基を持つものがより好ましく、Si-H基をもつSi-H基含有有機珪素化合物が、特に好ましい。
 Si-H基含有有機珪素化合物としては、分子中にSi-H基を持つ化合物であれば特に制限されず、適宜選択して用いればよいが、なかでも、ポリ(メチルハイドロジェンシロキサン)、ポリシクロ(メチルハイドロジェンシロキサン)、ポリ(エチルハイドロジェンシロキサン)、ポリ(フェニルハイドロジェンシロキサン)、ポリ[(メチルハイドロジェンシロキサン)(ジメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(エチルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジエチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ヘキシルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(オクチルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(フェニルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジエトキシシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジメトキシシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(3,3,3-トリフルオロプロピルメチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)((2-メトキシエトキシ)メチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)(フェノキシメチルシロキサン)]コポリマー等のポリオルガノ水素シロキサンが好ましい。
 酸化チタンのオルガノシロキサン系の表面処理剤による表面処理法には(1)湿式法と(2)乾式法とがある。湿式法は、オルガノシロキサン系の表面処理剤と溶剤との混合物に、アルミナ水和物、さらに必要に応じて珪酸水和物で前処理された酸化チタンを加え、撹拌した後に脱溶媒を行い、更にその後100~300℃で熱処理する方法である。
 乾式法は、上記と同様に前処理された酸化チタンとポリオルガノハイドロジェンシロキサン類とをヘンシェルミキサーなどで混合する方法、前処理された酸化チタンにポリオルガノハイドロジェンシロキサン類の有機溶液を噴霧して付着させ、100~300℃で熱処理する方法などが挙げられる。
 シロキサン系の表面処理剤の量は、特に制限されるものではないが、酸化チタンの反射性、樹脂組成物の成形性などを勘案すると、酸化チタンに対し、通常1~5重量%の範囲である。
 なかでも本発明に使用される酸化チタン系添加剤(B)は、芳香族スルホン酸金属塩存在下でのポリカーボネート組成物中において良好な熱安定性を示すことを特徴とする。具体的には以下の2式を満たすことを特徴とする。
 酸化チタン系添加剤(B)を蛍光X線分析することによって得られた酸化チタン系添加剤中のアルミニウム含有量a(質量%)、酸化チタン系添加剤(B)を高周波燃焼式炭素分析装置を用いて分析して得られた酸化チタン系添加剤中の炭素量c(質量%)と、酸化チタンの平均粒径d(μm)が、下記の式(1)および式(2)を満足する。
  式(1)6.5≦(a/d)≦15
  式(2)  5≦(c/d)≦25
 これら式(1)および式(2)を満足する場合に、熱安定性、難燃性、光反射性に優れた効果を発揮する。
 さらに良好な熱安定性を得るためには式(1)の(a/d)の値が8以上であることが好ましく、より好ましくは9以上、さらには10以上、特には11以上であり、その上限は好ましくは14以下、より好ましくは13以下、さらには12以下であり、また式(2)の(c/d)の値は好ましくは20未満であり、さらに好ましくは15未満、特には13未満であり、その下限は好ましくは6以上、より好ましくは10以上、特には11以上である。
 特に、式(1)の(a/d)値の範囲としては、10~14、なかでも11~13、式(2)の(c/d)値の範囲としては、10~15、なかでも11~14であることが好ましい。
 酸化チタンの平均粒径と表面積は相関があり、平均粒径が小さくなるほど単位質量あたりの表面積は大きくなる。本発明では比較的平均粒径の小さい、すなわち細かい粒径の酸化チタンを用い、小さな粒径の酸化チタンの表面に適量のアルミナ等を分散させることにより優れた光反射性が得られるものである。式(1)での(a/d)は、酸化チタンの単位表面積に対するアルミニウム量を表し、式(2)での(c/d)は酸化チタンの単位表面積に対するオルガノシロキサン由来の有機炭素の量を表す。
 式(1)および式(2)の範囲を満たすことにより、酸化チタンの表面状態が適切となり、熱安定性、難燃性、光反射性に優れたポリカーボネート樹脂を得ることが出来る。
 式(1)の(a/d)の値が6.5未満だと、組成物中の酸化チタンの分散が不充分となり、二次凝集を生じやすく外観および反射率の良好な成形品が得られない。また、15を超えるとアルミナ処理により酸化チタン粒子の塩基性がより高まるためポリカーボネート樹脂組成物の熱安定性が低下し、衝撃性・成形安定性に劣る場合がある。式(2)の(c/d)の値が5未満だと酸化チタンによる表面活性およびアルミナにより塩基性を不要された酸化チタン粒子の活性を充分に被覆できないため、ポリカーボネート樹脂組成物の熱安定性および密着性が低下し衝撃性・成形安定性に劣る場合がある。また、25を超えると酸化チタンと化学結合していないオルガノシロキサン系表面処理剤が成形時に揮発しやすくなり、金型汚染の原因となる。
 オルガノシロキサン系表面処理剤の量は、酸化チタン表面を直接又は間接に被覆するオルガノシロキサン系表面処理剤の炭素含有量c(質量%)として規定することができる。酸化チタン系添加剤(B)成分全体の質量100質量%に対する炭素含有量cは、0.2~2質量%以上であることが好ましい。より好ましい炭素含有量cは、0.2~1.5質量%、さらに好ましくは0.3~1.0質量%、特に好ましくは、0.4~0.9質量%である。0.2質量%未満では、酸化チタン表面の疎水性が失われ表面処理酸化チタンとポリカーボネートとの密着性が低下するため、強度・外観に劣る。またオルガノシロキサン処理量の不足により炭素含有量が低下、充分な表面処理が施されないため熱安定性に劣る。
 炭素含有量cの調整は、前記した表面処理の際に、使用するオルガノシロキサン表面処理剤溶液の濃度、浸漬時間、噴霧時間、熱処理の温度・時間等を調整することによって制御できる。
 なお、炭素含有量cは、酸化チタン系添加剤(B成分)を、高周波誘導加熱炉方式の炭素分析装置用い、酸化チタン表面の表面処理剤の炭素を燃焼させ、燃焼ガスの量から測定される。
 前記のとおり、炭素含有量cは、酸化チタン表面を直接に又は間接に被覆するオルガノシロキサンの炭素の存在量を示すものである。表面処理剤としてポリメチルハイドロジェンシロキサンを使用した場合を例に説明すると、ポリメチルハイドロジェンシロキサンは、酸化チタン上で、(1)その-OH基が酸化チタン表面の-OH基とあるいは他の反応性の基と化学結合(共有結合)して存在するか、(2)全くいかなる結合もせずに遊離状態で存在するもの並びに弱い水素結合により何らかの相互作用がある状態で存在するものからなる。そして、本発明において、炭素含有量cは、これら(1)又は(2)として存在しているメチル炭素の総量を意味している。
 したがって、炭素含有量cは、この(1)化学結合したオルガノシロキサンの炭素含有量[c1]と、それ以外の上記(2)の炭素含有量[c2]に区分けすることができ、[c1]と[c2]の好ましい割合は、[c1]:[c2]=10~90:90~10、より好ましくは[c1]:[c2]=20~90:80~10、さらには30~80:70~20であり、特には[c1]が50%以上であることが好ましい。なお、上記(1)成分と(2)成分の分離は、(2)をメタノール等の溶剤で抽出することにより分離可能である。
 さらに、本発明においては、芳香族ポリカーボネート樹脂組成物全体100質量%に対する上記酸化チタン系添加剤(B)の含有量[B](質量%)と前記炭素含有量cとの関係が、
  式(3) 1≦c×[B]≦9
の条件を満足することが好ましい。
 この際の(B)成分の含有量[B]は、前記(A)~(C)成分に、必要によりさらに配合される他の成分、添加剤等を含む樹脂組成物全体を100質量%としたときの含有量である。
 式(3)のc×[B]の値が、9を超えると、成形時にガスを発生する等の問題が生じてしまい、また成形品にシルバーストリークが発生する等の表面性状が悪くなる。9以下にすることで、樹脂組成物の耐衝撃強度の低下が改善され、ポリカーボネート樹脂の分解が抑制される。
 好ましいc×[B]の値は、8以下、さらには7以下であり、その下限は、2以上、さらには3以上であり、c×[B]の値のより好ましい範囲としては、2~8、さらには3~7、特には4~6.5である。
 本発明において、酸化チタン系添加剤(B)の含有量は、芳香族ポリカーボネート樹脂(A)100質量部に対し、3~30質量部の範囲である。酸化チタン系添加剤(B)の配合量が3質量部未満の場合は、樹脂組成物から得られる成形品の遮光性および反射特性が不十分となり、30質量部を超える場合は樹脂組成物の耐衝撃性が不十分となる。酸化チタン系添加剤(B)の好ましい配合量は、芳香族ポリカーボネート樹脂(A)100質量部に対し、3~25質量部、より好ましくは5~23質量部、さらに好ましくは5~20質量部、特には8~20質量部である。なお、酸化チタン系添加剤(B)の質量は、アルミナ水和物、珪酸水和物、オルガノシロキサン系の表面処理剤によって表面処理されている場合は、これらの処理剤も含めた質量を意味する。
[4、芳香族スルホン酸金属塩(C)]
 本発明に用いる芳香族スルホン酸金属塩(C)としては、ポリカーボネートに添加し、難燃性を改良するための難燃剤として機能することが出来る金属塩である。なかでも、ポリカーボネート樹脂と混合した場合の熱安定性の点から、芳香族アルキルスルホン酸金属塩およびその誘導体が好ましく用いられる。
 なお、芳香族スルホン酸金属塩(C)の芳香族環は、単環に限らず、2個以上の芳香族環が結合した結合環であってもよい。また、芳香族スルホン酸金属塩(C)は、芳香族環を1個のみ有するものに限らず、2個以上有するものであってもよい。また、本発明における芳香族スルホン酸金属塩(C)とは、芳香族スルホン酸金属塩化合物とその誘導体を包含するものである。
 この芳香族スルホン酸金属塩(C)の芳香族環は、置換基を有さないか、或いは置換基として炭素数1~4のアルキル基のみを有するものが好ましい。
 芳香族スルホン酸金属塩(C)の芳香族環に置換基が結合している場合は、その置換基は炭素数1~4のアルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基)であることが好ましい。芳香族環に炭素数が5以上のアルキル基やその他の置換基を有する芳香族スルホン酸金属塩(C)では、脂肪族基やその他の置換基の影響で難燃性が低下しやすい。なお、置換基は、炭素数1~4のアルキル基であれば、一つの芳香族環に2個以上置換していてもよい。
 芳香族スルホン酸金属塩(C)の金属としては、アルカリ金属またはアルカリ土類金属が好ましい。アルカリ金属およびアルカリ土類金属としては、ナトリウム、リチウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、及びバリウム等が挙げられる。中でもアルカリ金属としては、ナトリウム、カリウムが、またアルカリ土類金属としては、マグネシウム、カルシウム、セシウムが、ポリカーボネート樹脂との相溶性及び難燃性付与の点から好ましく、芳香族スルホン酸金属塩は、2種以上の混合物であってもよい。
 芳香族スルホン酸金属塩(C)の好ましい例として、ジフェニルスルホン-3-スルホン酸ナトリウム、ジフェニルスルホン-3-スルホン酸カリウム、ジフェニルスルホン-3・3’-ジスルホン酸ジナトリウム、ジフェニルスルホン-3・3’-ジスルホン酸ジカリウム、ベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸カリウム、パラトルエンスルホン酸ナトリウム、パラトルエンスルホン酸カルシウム、ドデシルベンゼンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム等が挙げられ、なかでも難燃性・熱安定性・取り扱いの面からパラトルエンスルホン酸ナトリウム、またはパラトルエンスルホン酸カリウムが好ましく用いられる。
 また、芳香族スルホン酸金属塩(C)の水溶液中でのpH(水素イオン濃度指数)は、6.0~8.5であることが好ましく、より好ましくは6.5~8.0、特には6.6~8.3である。
 ここで、芳香族スルホン酸金属塩(C)の水溶液中でのpHとは、芳香族スルホン酸金属塩(C)の10質量%水溶液の23℃でのpHをいい、pHは、pHメーターにより測定される。
 上記芳香族スルホン酸金属塩(C)のpHが6.0未満の場合は、燃焼時に芳香族スルホン酸金属塩(C)と芳香族ポリカーボネート樹脂との反応活性が低下するため、難燃性が不充分となりやすく、pHが8.5を超えると、芳香族スルホン酸金属塩(C)による芳香族ポリカーボネート樹脂の分解反応が大きく進むため、難燃性、熱安定性が劣ることになりやすい。
 芳香族スルホン酸金属塩(C)の含有量は、芳香族ポリカーボネート(A)100質量部に対し、通常0.01~1質量部である。0.01質量部未満では、得られるポリカーボネート樹脂組成物の難燃性改良効果が不十分であり、1質量部を超えるとポリカーボネート樹脂組成物の成形時における熱安定性および湿熱試験における物性低下が生じる。芳香族スルホン酸金属塩(C)の含有量は、ポリカーボネート樹脂(A)100質量部に対して、0.03~0.8質量部が好ましく、より好ましくは0.05~0.8質量部、さらには0.1~0.6質量部、特には0.1~0.4質量部である。
[5.ポリテトラフルオロエチレン(D)]
 ポリテトラフルオロエチレン樹脂(D)は、テトラフルオロエチレン構造を含む重合体あるいは共重合体であり、具体例としては、テトラフルオロエチレン樹脂、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合樹脂等が挙げられるが、なかでもテトラフルオロエチレン樹脂が好ましい。
 また、ポリテトラフルオロエチレン樹脂(D)としては、フィブリル形成能を有するものが好ましく、フィブリル形成能を有することで、燃焼時の滴下防止性が著しく向上させることができる。
 フィブリル形成能を有するポリテトラフルオロエチレンは、ASTM規格で「タイプ3」に分類される。フィブリル形成能を有するポリテトラフルオロエチレンとしては、例えば三井・デュポンフロロケミカル(株)製のテフロン(登録商標)6Jや、ダイキン化学工業(株)製のポリフロンF201L、FA500B、FA500Cが好ましく挙げられる。また、ポリテトラフルオロエチレンの水性分散液として、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)31-JRや、ダイキン化学工業(株)製のフルオンD-1や、ビニル系単量体を重合してなる多層構造を有するポリテトラフルオロエチレン化合物が挙げられる。いずれのタイプも本発明の樹脂組成物に用いることができる。また、これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 ポリテトラフルオロエチレンの平均粒径としては、JIS K6892準拠の方法で測定する平均粒径が、200μm以上であることが好ましく、より好ましくは300μm以上、さらに好ましくは400μm以上であり、好ましくは600μm以下、より好ましくは550μm以下、さらに好ましくは、500μm以下である。
 また、ポリテトラフルオロエチレンのかさ密度は、JIS K6892準拠の方法で測定されるかさ密度で、0.3g/ml以上が好ましく、より好ましくは0.35g/ml以上、さらに好ましくは0.4g/mlであり、好ましくは0.6g/ml以下、より好ましくは0.55g/ml以下、さらに好ましくは0.5g/ml以下である。
 ポリテトラフルオロエチレンは、テトラフルオロエチレン連鎖が規則正しくつながるが、その炭素主鎖が少しずつ捩れてらせん構造をとるが、そのらせん構造は温度によって変化し、19℃以下では13/6らせん構造(炭素数13個毎に6回転してもとに戻る構造)であるが、19℃を超えると、そのらせん構造は少しほどけて15/7らせん構造(炭素数15個毎に7回転してもとに戻る構造)に転移する。
 ポリテトラフルオロエチレンは、15/7らせん構造となると、粘調性になり分散性が低下し、ダマが出来たり分級を起こしやすく、難燃性向上効果が低下してしまうことが起きやすい。したがって、ポリテトラフルオロエチレン(D)は、19℃以下の温度下に保持して13/6らせん構造である状態で他の成分と混合することが好ましい。
 具体的には、ポリテトラフルオロエチレン(D)を19℃以下に、必要ならば冷蔵保管し、好ましくは同様に19℃以下に保管した芳香族ポリカーボネート樹脂(A)の一部と予め混合し、この予備混合物を前記と同様に、残部の芳香族ポリカーボネート樹脂(A)および他の成分と混合・溶融混練することが好ましい。
 ポリテトラフルオロエチレンを含有した樹脂組成物を射出成形した成形品の外観をより向上させるためには、有機系重合体で被覆されたポリテトラフルオロエチレンを使用することができる。
 有機重合体被覆テトラフルオロエチレン樹脂を用いることで、分散性が向上し、成形品の表面外観が向上し、表面異物を抑制できる。有機重合体被覆フルオロエチレン樹脂は、公知の種々の方法により製造でき、例えば(1)ポリテトラフルオロエチレン粒子水性分散液と有機系重合体粒子水性分散液とを混合して、凝固またはスプレードライにより粉体化して製造する方法、(2)ポリテトラフルオロエチレン粒子水性分散液存在下で、有機系重合体を構成する単量体を重合した後、凝固またはスプレードライにより粉体化して製造する方法、(3)ポリテトラフルオロエチレン粒子水性分散液と有機系重合体粒子水性分散液とを混合した分散液中で、エチレン性不飽和結合を有する単量体を乳化重合した後、凝固またはスプレードライにより粉体化して製造する方法、等が挙げられる。
 有機重合体被覆ポリテトラフルオロエチレンとしては、被覆ポリテトラフルオロエチレン中のポリテトラフルオロエチレンの含有比率が40~95質量%の範囲内となるものが好ましく、中でも、43~80質量%、更には45~70質量%、特には47~60質量%となるものが好ましい。本発明の特定の被覆ポリテトラフルオロエチレンとしては、例えば三菱レイヨン(株)製のメタブレンA-3800、A-3700、KA-5503や、PIC社製のPoly TS AD001等を好ましく使用することができる。
 本発明において、ポリテトラフルオロエチレン(D)の含有量は、芳香族ポリカーボネート樹脂(A)100質量部に対し、0.05~0.9質量部であり、その好ましい下限0.08質量部、特に好ましくは0.1質量部以上であり、また、上限は好ましくは0.7質量部以下、特に好ましくは0.5質量部以下である。なお、被覆ポリテトラフルオロエチレンの場合、添加量はポリテトラフルオロエチレン純分の量に相当する。ポリテトラフルオロエチレン(D)の含有量が0.05質量部未満の場合には、難燃性が十分ではなく、一方0.9質量部を超えると成形品外観の低下が起きやすい。
[6.その他の成分]
 本発明の芳香族ポリカーボネート樹脂組成物には、必要に応じて、本発明の効果を損なわない範囲で、上述した成分に加えて、更に他の樹脂、各種の樹脂添加剤などを用いてもよい。
 他の樹脂としては、具体的には例えば、エラストマー、芳香族ビニル-ジエン-シアン化ビニル系共重合体、また、ポリエチレン樹脂やポリプロピレン樹脂などのポリオレフィン系樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリメタクリレート樹脂、ポリエステル樹脂などが挙げられる。
<エラストマ->
 本発明の芳香族ポリカーボネート樹脂組成物は、その他の成分としてエラストマーを含有してもよい。エラストマーを含有することで、ポリカーボネート樹脂組成物の耐衝撃性を改良することができる。
 本発明に用いるエラストマーは、なかでもゴム成分にこれと共重合可能な単量体成分とをグラフト共重合したグラフト共重合体が好ましい。グラフト共重合体の製造方法としては、塊状重合、溶液重合、懸濁重合、乳化重合などのいずれの製造方法であってもよく、共重合の方式は一段グラフトでも多段グラフトであってもよい。
 ゴム成分は、ガラス転移温度が通常0℃以下、中でも-20℃以下が好ましく、更には-30℃以下が好ましい。ゴム成分の具体例としては、ポリブタジエンゴム、ポリイソプレンゴム、ポリブチルアクリレートやポリ(2-エチルヘキシルアクリレート)、ブチルアクリレート・2-エチルヘキシルアクリレート共重合体などのポリアルキルアクリレートゴム、ポリオルガノシロキサンゴムなどのシリコーン系ゴム、ブタジエン-アクリル複合ゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN型複合ゴム、スチレン-ブタジエンゴム、エチレン-プロピレンゴムやエチレン-ブテンゴム、エチレン-オクテンゴムなどのエチレン-αオレフィン系ゴム、エチレン-アクリルゴム、フッ素ゴムなど挙げることができる。これらは、単独でも2種以上を混合して使用してもよい。これらの中でも、機械的特性や表面外観の面から、ポリブタジエンゴム、ポリアルキルアクリレートゴム、ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN(Interpenetrating Polymer Network)型複合ゴム、スチレン-ブタジエンゴムが好ましい。
 ゴム成分とグラフト共重合可能な単量体成分の具体例としては、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物、グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル化合物;マレイミド、N-メチルマレイミド、N-フェニルマレイミド等のマレイミド化合物;マレイン酸、フタル酸、イタコン酸等のα,β-不飽和カルボン酸化合物やそれらの無水物(例えば無水マレイン酸等)などが挙げられる。これらの単量体成分は1種を単独で用いても2種以上を併用してもよい。これらの中でも、機械的特性や表面外観の面から、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物が好ましく、より好ましくは(メタ)アクリル酸エステル化合物である。(メタ)アクリル酸エステル化合物の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル等を挙げることができる。
 ゴム成分を共重合したグラフト共重合体は、耐衝撃性や表面外観の点からコア/シェル型グラフト共重合体タイプのものが好ましい。なかでもポリブタジエン含有ゴム、ポリブチルアクリレート含有ゴム、ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN型複合ゴムから選ばれる少なくとも1種のゴム成分をコア層とし、その周囲に(メタ)アクリル酸エステルを共重合して形成されたシェル層からなる、コア/シェル型グラフト共重合体が特に好ましい。上記コア/シェル型グラフト共重合体において、ゴム成分を40質量%以上含有するものが好ましく、60質量%以上含有するものがさらに好ましい。また、(メタ)アクリル酸は、10質量%以上含有するものが好ましい。
 これらコア/シェル型グラフト共重合体の好ましい具体例としては、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS)、メチルメタクリレート-アクリロニトリル-ブタジエン-スチレン共重合体(MABS)、メチルメタクリレート-ブタジエン共重合体(MB)、メチルメタクリレート-アクリルゴム共重合体(MA)、メチルメタクリレート-アクリルゴム-スチレン共重合体(MAS)、メチルメタクリレート-アクリル-ブタジエンゴム共重合体、メチルメタクリレート-アクリル・ブタジエンゴム-スチレン共重合体、メチルメタクリレート-(アクリル・シリコーンIPNゴム)共重合体等が挙げられる。このようなゴム性重合体は、1種を単独で用いても2種以上を併用してもよい。
 このようなコア/シェル型グラフト共重合体としては、例えば、ローム・アンド・ハース・ジャパン社製の「パラロイド(登録商標、以下同じ)EXL2602」、「パラロイドEXL2603」、「パラロイドEXL2655」、「パラロイドEXL2311」、「パラロイドEXL2313」、「パラロイドEXL2315」、「パラロイドKM330」、「パラロイドKM336P」、「パラロイドKCZ201」、三菱レイヨン社製の「メタブレン(登録商標、以下同じ)C-223A」、「メタブレンE-901」、「メタブレンS-2001」、「メタブレンSRK-200」、カネカ社製の「カネエース(登録商標、以下同じ)M-511」、「カネエースM-600」、「カネエースM-400」、「カネエースM-580」、「カネエースMR-01」等が挙げられる。
 エラストマーの好ましい含有量は、芳香族ポリカーボネート樹脂100質量部に対して、0.1~10質量部である。0.1質量部より少ないと、エラストマーによる耐衝撃性向上効果が不十分となり、10質量部を超えると、芳香族ポリカーボネート樹脂組成物を成形した成形品の外観不良や耐熱性の低下が生じる。含有量の下限は、好ましくは0.5質量部以上、より好ましくは1質量部以上であり、また、含有量の上限は、好ましくは7.5質量部以下、より好ましくは5質量部以下、特に好ましくは4質量部以下である。
<芳香族ビニル-ジエン-シアン化ビニル系共重合体>
 本発明の芳香族ポリカーボネート樹脂組成物は、芳香族ビニル-ジエン-シアン化ビニル系共重合体を含有することができる。
 本共重合体は、芳香族ビニル単量体とジエン、及びシアン化ビニル単量体、および必要に応じて他の共重合可能な単量体からなる。
 ジエンとしては、ブタジエン、イソプレン等であり、好ましくは予め重合されたジエン系ゴムであり、例えばポリブタジエン系ゴム、アクリロニトリル-ブタジエン共重合体系ゴム、スチレン-ブタジエン共重合体系ゴム、ポリイソプレン系ゴムなどを挙げることができ、これらは一種または二種以上併用することができる。特に好ましくは、ポリブタジエン系ゴムおよび/またはスチレン-ブタジエン共重合体系ゴムが用いられる。
 シアン化ビニル単量体としてはアクリロニトリルおよびメタクリロニトリルなどが挙げられ、特にアクリロニトリルが好ましい。
 芳香族ビニル単量体としては、スチレン、α-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレンおよびビニルトルエンなどが挙げられ、特にスチレンおよび/またはα-メチルスチレンが好ましい。
 共重合組成比については特に制限はないが、得られる樹脂組成物の成形加工性、耐衝撃性の点から共重合体100重量部に対してジエン系ゴム10~70重量部が好ましい。また同様にシアン化ビニル単量体の量は8~40重量部が好ましい。芳香族ビニル単量体は、20~80重量部の範囲が好ましい。
 上記共重合体の製造方法に関しては、特に制限なく、乳化重合、溶液重合、塊状重合、懸濁重合あるいは塊状・懸濁重合等の公知の方法が用いられる。
 芳香族ビニル-ジエン-シアン化ビニル系共重合体の含有量は、芳香族ポリカーボネート樹脂と芳香族ビニル-ジエン-シアン化ビニル系共重合体の合計100質量%に対し、5~30質量%である。このように芳香族ビニル-ジエン-シアン化ビニル系共重合体を含有することで、本発明の芳香族ポリカーボネート樹脂組成物の耐衝撃性と流動性を向上させることができる。より好ましい含有量は7~25質量%である。
[7.その他の添加剤]
 本発明の芳香族ポリカーボネート樹脂組成物は、本発明の効果を損なわない範囲で、種々の添加剤から選ばれる1種又は2種以上を含有していてもよい。このような添加剤としては、リン系安定剤、フェノール系酸化防止剤、紫外線吸収剤、離型剤、蛍光増白剤,無機充填材、および染顔料からなる群から選ばれる添加剤などが挙げられる。
<リン系安定剤>
 本発明の樹脂組成物には、熱安定性を向上させるために亜リン酸エステル、リン酸エステル等のリン系熱安定剤を添加するのが好ましい。
 亜リン酸エステルとしては、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリノニルホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリシクロヘキシルホスファイト、モノブチルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等の亜リン酸のトリエステル、ジエステル、モノエステル等が挙げられる。
 リン酸エステルとしては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリス(ノニルフェニル)ホスフェート、2-エチルフェニルジフェニルホスフェート、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4-ジフェニルホスフォナイト等が挙げられる。
 上記のリン系熱安定剤の中では、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイトが好ましく、中でもビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイトやトリス(2,4-ジ-t-ブチルフェニル)ホスファイトが特に好ましい。
 なお、熱安定剤は、単独で使用しても良く、2種以上を組み合わせて使用しても良い。
 本発明の樹脂組成物におけるリン系安定剤の含有量は、芳香族ポリカーボネート樹脂100質量部に対し、0.005~0.2質量部であることが好ましく、0.01~0.1質量部であることがより好ましい。熱安定剤の含有量が上記範囲であると、加水分解等を発生させることなく、熱安定性を改善できるので好ましい。
<フェノール系酸化防止剤>
 本発明の樹脂組成物には、フェノール系酸化防止剤を添加するのが好ましい。
 より具体的には、2,6-ジ-tert-ブチル-4-メチルフェノール、n-オクタデシル-3-(3′,5′-ジ-tert-ブチル-4′-ヒドロキシフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、4,4′-ブチリデンビス-(3-メチル-6-tert-ブチルフェニル)、トリエチレングリコール-ビス[3-(3-tert-ブチル-ヒドロキシ-5-メチルフェニル)プロピオネート]、及び3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,6]ウンデカン等が挙げられる。中でも、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンが好ましい。これらの酸化防止剤は一種を単独で用いても良いし、2種以上を併用しても良い。
 本発明の樹脂組成物におけるフェノール系酸化防止剤の含有量は、芳香族ポリカーボネート樹脂成分100質量部に対し、0.02~0.5質量部であることが好ましい。この範囲であると、本発明の効果を阻害せずに、酸化防止性を改善できるので好ましい。
<紫外線吸収剤>
 本発明の樹脂組成物には、紫外線吸収剤を添加することができる。本発明の樹脂組成物から成る成形品は、太陽光や蛍光灯のような光線下に長期間曝されると、紫外線によって黄色味を帯びる傾向があるが、紫外線吸収剤を添加することで、成形品が黄色味を帯びるのを、防止又は遅延させることができる。紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、ヒンダードアミン系などが挙げられる。
 ベンゾフェノン系紫外線吸収剤の具体例としては、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシ-ベンゾフェノン、2,2′,4,4′-テトラヒドロキシ-ベンゾフェノン等が挙げられる。
 ベンゾトリアゾール系紫外線吸収剤の具体例としては、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルメチル)フェノール、2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(tert-ブチル)フェノール、2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラブチル)フェノール、2,2′-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラブチル)フェノール]等が挙げられる。
 サリチル酸フェニル系紫外線吸収剤の具体例としては、フェニルサルチレート、2,4-ジターシャリ-ブチルフェニル-3,5-ジターシャリ-ブチル-4-ヒドロキシベンゾエート等が挙げられる。
 ヒンダードアミン系紫外線吸収剤の具体例としては、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等が挙げられる。
 紫外線吸収剤は、1種を単独で用いても良く、2種以上を併用しても良い。
 本発明の樹脂組成物における紫外線吸収剤の含有量は、芳香族ポリカーボネート樹脂100質量部に対して、0.001~1質量部であることが好ましく、0.005~0.8質量部であることがより好ましく、0.01~0.5質量部であることがさらに好ましい。紫外線吸収剤の含有量が上記範囲であると、有機紫外線発光蛍光体の励起光吸収による発光色の低下が生じず、且つ成形品表面にブリードアウト等を発生させずに、耐候性を改善できるので好ましい。
<離型剤>
 本発明の樹脂組成物は、離型剤を含有するのが好ましい。
 好ましい離型剤は、脂肪族カルボン酸、脂肪族カルボン酸エステル、及び数平均分子量200~15000の脂肪族炭化水素化合物から選ばれる化合物である。中でも、脂肪族カルボン酸、及び脂肪族カルボン酸エステルから選ばれる化合物が好ましく用いられる。
 脂肪族カルボン酸としては、飽和又は不飽和の脂肪族モノカルボン酸、ジカルボン酸又はトリカルボン酸を挙げることができる。本明細書では、脂肪族カルボン酸の用語は、脂環式カルボン酸も包含する意味で用いる。脂肪族カルボン酸の中でも、炭素数6~36のモノ又はジカルボン酸が好ましく、炭素数6~36の脂肪族飽和モノカルボン酸がより好ましい。このような脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、吉草酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、グルタル酸、アジピン酸、アゼライン酸等を挙げることができる。
 脂肪族カルボン酸エステルを構成する脂肪族カルボン酸成分としては、前記脂肪族カルボン酸と同じものが使用できる。一方、脂肪族カルボン酸エステルを構成するアルコール成分としては、飽和又は不飽和の1価アルコール、飽和又は不飽和の多価アルコール等を挙げることができる。これらのアルコールは、フッ素原子、アリール基等の置換基を有していても良い。これらのアルコールのうち、炭素数30以下の1価又は多価の飽和アルコールが好ましく、さらに炭素数30以下の脂肪族飽和1価アルコール又は多価アルコールが好ましい。ここで脂肪族アルコールは、脂環式アルコールも包含する。これらのアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等を挙げることができる。これらの脂肪族カルボン酸エステルは、不純物として脂肪族カルボン酸及び/又はアルコールを含有していても良く、複数の化合物の混合物であっても良い。脂肪族カルボン酸エステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸オクチルドデシル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレートを挙げることができる。
 離型剤は1種を単独で用いても良く、2種以上を併用しても良い。
 本発明における離型剤の含有量は、芳香族ポリカーボネート樹脂100質量部に対し、0.01~1質量部であることが好ましい。離型剤の含有量が上記範囲であると、耐加水分解性の低下がなく、離型効果が得られるので好ましい。
<蛍光増白剤>
 本発明においては、本発明の効果を損ねない範囲で、従来公知の任意の蛍光増白剤を用いてもよい。この様な蛍光増白剤には、種々のものがあるが、具体的にはクマリン誘導体、ナフトトリアゾリルスチルベン誘導体、ベンズオキサゾール誘導体、オキサゾール誘導体、ベンズイミダゾール誘導体及びジアミノスチルベン-ジスルホネート誘導体等が挙げられる。また、市販品としては、ハコール産業から商品名ハッコールPSR(3-フェニル-7-(2H-ナフト(1.2-d)-トリアゾール-2-イル)クマリン)、ヘキストAGから商品名HOSTALUX KCB(ベンズオキサゾール誘導体)、住友化学から商品名WHITEFLOUR PSN CONC(オキサゾール系化合物)として、入手することができる。
 蛍光増白剤の好ましい含有量は、芳香族ポリカーボネート樹脂100質量部に対して、0.005~0.1質量部である。含有量が0.005質量部未満であると増白効果が少なく、0.1質量部を超えると黄味が強くなりやすい。蛍光増白剤の含有量は、より好ましくは芳香族ポリカーボネート樹脂100質量部に対して、好ましくは0.01~0.05質量部である。
<無機充填材>
 本発明における芳香族ポリカーボネート樹脂は、強度と剛性を向上させる目的で、無機充填材を含有することができる。無機充填材の形状は針状、板状、粒状または無定型状など任意である。無機充填材の具体例としては、ガラス繊維(チョップドストランド)、ガラス短繊維(ミルドファイバー)、ガラスフレーク、ガラスビーズ等のガラス系フィラー;炭素繊維、炭素短繊維、カーボンナノチューブ、黒鉛などの炭素系フィラー;チタン酸カリウム、ホウ酸アルミニウム等のウィスカー;タルク、マイカ、ウォラストナイト、カオリナイト、ゾノトライト、セピオライト、アタバルジャイト、モンモリロナイト、ベントナイト、スメクタイトなどの珪酸塩化合物;シリカ、アルミナ、炭酸カルシウム等が挙げられる。これらの中では良好な表面意匠性を得る目的で、タルク、マイカ、ウォラストナイト、カオリナイトが好ましい。これらは2種以上を併用してもよい。
 無機充填材の含有量は、芳香族ポリカーボネート樹脂100質量部に対し、1~60質量部である。無機充填材の含有量が1質量部未満の場合は補強効果が十分でない場合がある。また60質量部を超える場合は、外観や耐衝撃性が劣り、流動性が十分でない場合がある。無機充填材の好ましい含有量は3~50質量部、特に好ましくは5~30質量部である。
 無機充填材は、樹脂組成物に含有させたときの熱安定性の観点から、平均粒子径0.01~100μmのものをバインダーを用いて造粒した顆粒状のものが好ましい。平均粒子径が0.05~50μm、更には0.1~25μmであればより好ましい。平均粒子径が小さすぎると補強効果が不充分となり易く、逆に大きすぎても製品外観に悪影響を与えやすく、更に耐衝撃性も不十分となる場合がある。無機フィラーの最も好ましい平均粒子径は、0.2~15μm、特に0.3~10μmである。なお本発明において無機フィラーの平均粒子径とは、X線透過による液相沈降方式で測定されたD50をいう。このような測定ができる装置としては、Sedigraph粒子径分析器(Micromeritics Instruments社製「モデル5100」)が挙げられる。
 顆粒状無機フィラーの原料である無機フィラーとしては、ウォラストナイト、タルク、マイカ、ゾノトライト、セピオライト、アタバルジャイト、カオリナイトなどの珪酸塩化合物;チタン酸カリウム、酸化アルミナ、酸化亜鉛などの複合酸化物;炭酸カルシウムなどの炭酸塩化合物;硫酸バリウム、硫酸カルシウムなどの硫酸塩化合物;黒鉛などの炭素系フィラー;シリカ;ガラスフレーク、ガラスビーズなどのガラス系フィラー;硼酸アルミニウム等が挙げられ、これらは1種を単独で用いても2種以上を併用してもよい。
<染顔料>
 本発明の芳香族ポリカーボネート樹脂組成物は、染顔料を含有することができる。染顔料としては、例えば、無機顔料、有機顔料、有機染料があげられ、本発明における染顔料の含有量は、芳香族ポリカーボネート樹脂100質量部に対し3質量部未満である。
 無機顔料としては、例えば、カーボンブラック;カドミウムレッド、カドミウムイエロー等の硫化物系顔料;群青などの珪酸塩系顔料;亜鉛華、弁柄、酸化クロム、鉄黒、チタンイエロー、亜鉛-鉄系ブラウン、チタンコバルト系グリーン、コバルトグリーン、コバルトブルー、銅-クロム系ブラック、銅-鉄系ブラック等の酸化物系顔料;黄鉛、モリブデートオレンジ等のクロム酸系顔料;紺青などのフェロシアン系顔料などが挙げられる。
 有機顔料及び有機染料としては、例えば、銅フタロシアニンブルー、銅フタロシアニングリーン等のフタロシアニン系染顔料;ニッケルアゾイエロー等のアゾ系染顔料;チオインジゴ系、ペリノン系、ペリレン系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系などの縮合多環染顔料;アンスラキノン系、複素環系、メチル系の染顔料などが挙げられる。
 これらのなかでは、熱安定性の点から、カーボンブラック、シアニン系、キノリン系、アンスラキノン系、フタロシアニン系化合物などが好ましい。
 なお、染顔料は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。また、染顔料は、押出時のハンドリング性改良、樹脂組成物中への分散性改良の目的のために、ポリスチレン系樹脂、ポリカーボネート系樹脂、アクリル系樹脂とマスターバッチ化されたものも用いてもよい。
<その他添加剤>
 本発明の樹脂組成物には、必要に応じて本発明の目的を損なわない範囲で、帯電防止剤、防曇剤、滑剤・アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、防菌剤などを含有できる。これらは、1種を単独で用いても良く、2種以上を併用しても良い。
[8.ポリカーボネート樹脂組成物の製造方法]
 本発明の芳香族ポリカーボネート樹脂組成物は、芳香族ポリカーボネート樹脂組成物を構成する各成分を混合して溶融混練することにより製造される。その方法としては、従来公知の熱可塑性樹脂組成物に適用される方法を適用できる。例えば、リボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラー、単軸又は二軸スクリュー押出機、コニーダーなどを使用する方法等が挙げられる。なお、溶融混練の温度は特に制限されないが、通常240~320℃の範囲である。
[8.1 マスターバッチ]
<ポリカーボネート-ポリテトラフルオロエチレンマスターバッチ>
 本発明の芳香族ポリカーボネート樹脂組成物は、芳香族ポリカーボネート、前記酸化チタン系添加剤、難燃剤、および難燃助剤としてのポリテトラフルオロエチレンおよびその他必要な成分を一括してブレンドする製造方法を用いてもよいが、以下に記載の、マスターバッチを得た後、該マスターバッチをポリカーボネート樹脂組成物と溶融混練する製造方法が好ましい。
 具体的には、本発明の芳香族ポリカーボネート樹脂組成物は、樹脂組成物中および成形品中のポリテトラフルオロエチレンの分散性を向上させるために、結晶構造が13/6らせん構造のポリテトラフルオロエチレンを、比表面積が0.01~5mm/gで、60~95質量%が180~1700μmの粒径を有する粉粒体形状のポリカーボネート樹脂に配合することにより、最終配合量より多量のポリテトラフルオロエチレンを含有するポリカーボネート-ポリテトラフルオロエチレンマスターバッチを得た後、該マスターバッチを、ペレット形状あるいは粉粒体形状の必要量のポリカーボネート樹脂と溶融混練して芳香族ポリカーボネート樹脂組成物を得ることが好ましい。
 ポリテトラフルオロエチレンは19℃以下で結晶構造が13/6らせん構造を有することから、具体的には19℃以下の状態で保持したポリテトラフルオロエチレンをポリカーボネート樹脂に配合することにより、ポリカーボネート-ポリテトラフルオロエチレンマスターバッチを得ることができる。
 この際に、ポリカーボネート樹脂についても19℃以下の状態で保持したポリカーボネート樹脂を使用するのが好ましく、混合時の雰囲気温度が19℃以下であることがさらに好ましく、さらには配合後のポリカーボネート-ポリテトラフルオロエチレンマスターバッチを19℃以下で保持しておくのが特に好ましい。
 ポリカーボネート-ポリテトラフルオロエチレンマスターバッチの製造方法はリボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラーなどを使用して混合する方法が挙げられるが、ドラムタンブラーの使用が好ましい。ポリカーボネート-ポリテトラフルオロエチレンマスターバッチ中のポリテトラフルオロエチレンの配合量は、ポリカーボネート樹脂100質量部に対し、20~100質量部であることが好ましく、さらに好ましくは25~50質量部である。このようなポリカーボネート-ポリテトラフルオロエチレンマスターバッチを製造時に溶融混練することで、成形品の外観がより良好になる。
<ポリカーボネート-酸化チタン系添加剤マスターバッチ>
 また、酸化チタン系添加剤(B)を芳香族ポリカーボネート樹脂(A)の少なくとも一部と予め混合しマスターバッチとした上で、残部のポリカーボネート樹脂(A)および他の成分と混合・溶融混練することも好ましい。
 酸化チタン系添加剤(B)を芳香族ポリカーボネート樹脂(A)の少なくとも一部とマスターバッチ化することで、オルガノシロキサンで表面処理された酸化チタン系添加剤はポリカーボネート樹脂との親和性が極めて向上する。このマスターバッチを残部の芳香族ポリカーボネート樹脂(A)および他の成分と混合・溶融混練することで、酸化チタン系添加剤(B)の成形時の二次凝集が防止され、成形品の光線反射率、遮光性、耐光性、色相、外観性の向上効果をより向上させることができる。
 ポリカーボネート-酸化チタン系添加剤マスターバッチを得るには、酸化チタン系添加剤を、比表面積が0.01~5mm/gで、60~95質量%が180~1700μmの粒径を有する粉粒体形状のポリカーボネート樹脂に配合して、最終配合量より多い量の酸化チタン系添加剤を含有するポリカーボネート-酸化チタン系添加剤マスターバッチを得ることが好ましい。得られたマスターバッチは、ペレット形状あるいは粉粒体形状の必要量のポリカーボネート樹脂、および所望する他の成分と溶融混練して、所定処方のポリカーボネート樹脂組成物を得る。
 ポリカーボネート-酸化チタン系添加剤マスターバッチの製造方法は、リボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラーなどを使用して混合する方法が挙げられるが、ヘンシェルミキサーの使用が好ましい。ポリカーボネート-酸化チタン系添加剤マスターバッチ中の酸化チタン系添加剤の配合量は、ポリカーボネート樹脂100質量部に対し、20~100質量部であることが好ましく、さらに好ましくは25~50質量部である。このようなポリカーボネート-酸化チタン系添加剤マスターバッチを製造時に溶融混練することで、成形品の外観がより良好になる。
<ポリカーボネート-金属塩系難燃剤マスターバッチ>
 また、芳香族スルホン酸金属塩の分散性を向上させ、その結果、安定した燃焼性を得るために、芳香族スルホン酸金属塩を、芳香族ポリカーボネート樹脂と予めマスターバッチ化することが好ましい。マスターバッチ化は、芳香族スルホン酸金属塩を、比表面積が0.01~5mm/gで、60~95質量%が180~1700μmの粒径を有する粉粒体形状のポリカーボネート樹脂に配合し、最終配合量より多い量の芳香族スルホン酸金属塩を含有するポリカーボネート-金属塩系難燃剤マスターバッチを得ることが好ましい。得られたマスターバッチは、ペレット形状あるいは粉粒体形状の必要量のポリカーボネート樹脂、および所望する他の成分と溶融混練して、所定処方の芳香族ポリカーボネート樹脂組成物を得る。
 ポリカーボネート-金属塩系難燃剤マスターバッチの製造方法はリボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラーなどを使用して混合する方法が挙げられるが、ヘンシェルミキサーの使用が好ましい。ポリカーボネート-金属塩系難燃剤マスターバッチ中の芳香族スルホン酸金属塩の配合量は、ポリカーボネート樹脂100質量部に対し、0.5質量部以上、好ましくは0.8質量部以上、さらに好ましくは1質量部以上であり、5質量部以下、好ましくは4質量部以下、さらに好ましくは3質量部以下である。
 ポリカーボネート-金属塩系難燃剤マスターバッチは、ポリカーボネート-ポリテトラフルオロエチレンマスターバッチおよび/またはポリカーボネート-酸化チタン系添加剤マスターバッチとともに、製造時に溶融混練することで、成形品の外観がより良好になるだけでなく、燃焼性のばらつきも抑制することができる。
 上記したマスターバッチと、残部の芳香族ポリカーボネート樹脂(A)および他の成分とを混合し溶融混練する方法としては、上記と同様の慣用の方法を適用できる。なお、溶融混練の温度は特に制限されないが、通常240~320℃の範囲である。
 また、前述したようにポリテトラフルオロエチレン(D)は、温度19℃を境にして、その結晶構造が変化するので、ポリテトラフルオロエチレン(D)を19℃以下に保持して13/6らせん構造である状態で他の成分と混合することが好ましい。
 具体的には、ポリテトラフルオロエチレン(D)を19℃以下に、必要ならば冷蔵保管し、好ましくは同様に19℃以下に保管した芳香族ポリカーボネート樹脂(A)の一部と予め混合し、この予備混合物を前記と同様に、残部の芳香族ポリカーボネート樹脂(A)および他の成分と混合・溶融混練することが好ましい。
 このようにすることで、ポリテトラフルオロエチレン(D)は、ダマが出来たり分級を起こすことが少なくなり、難燃性効果を向上させることができる。
[9.成形方法]
 本発明の芳香族ポリカーボネート樹脂組成物は、各種成形体の成形材料として使用できる。その際、適用できる成形方法は、射出成形法が好適に適用される。なお、ここでの射出成形法は、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)法、インサート成形法、IMC(インモールドコーティング成形)成形法等を含んだ広範囲の射出方法のことである。
[10.ポリカーボネート樹脂成形体]
 本発明の成形体は、上述の本発明の芳香族ポリカーボネート樹脂組成物を成形してなるものであり、耐光性、遮光性、光線反射性、色相、難燃性、成形安定性に優れる上に、ポリカーボネート樹脂が本来有する耐衝撃性、耐熱性、寸法安定性、外観特性等をも同時に維持しているため、これらの特長を生かして、液晶表示装置のバックライト用光線反射板、光反射枠又は光反射シート、電気・電子機器、広告灯などの照明用装置、自動車用メーターパネルなどの自動車用機器などの、光反射部材として幅広く使用することができ、特にその優れた難燃性、光反射性、耐衝撃性から、液晶バックライト用光線反射板および反射枠部品用途に有用である。
 以下に実施例及び比較例を示し、本発明を更に具体的に説明するが、本発明は、以下の例に限定して解釈されるものではない。
 なお、以下の実施例、比較例において部及び%は、特に断りがない限り、質量部及び質量%を意味する。
 実施例及び比較例で用いた測定・評価方法は、以下のとおりである。
・測定・評価方法
[酸化チタンの表面処理成分の測定]
 酸化チタン系添加剤のAl量aについては、リガク社製波長分散型蛍光X線分析装置ZSXminiIIを用い、X線管にパラジウム管、電圧40kV/管電流1.2mA、測定面積径30mm、真空雰囲気条件でTi、Alのスペクトルの強度比を用いて算出した。また炭素量cについては、堀場製作所社製の高周波誘導加熱炉方式EMIA-921V炭素分析装置を用い、陽極出力:2.3kW、周波数:18MHz、175mAの高周波電流を負荷することにより算出した。
[酸化チタンの平均粒径測定方法]
実施例および比較例に使用した酸化チタン系添加剤(B-1)~(B-8)の1次粒子径の測定は、以下の方法にて試料を調製し、測定を行った。
 芳香族ポリカーボネート樹脂(A)中に、実施例および比較例に使用した酸化チタン系添加剤(B)5質量部を添加し、実施例比較例と同様の混練方法にてペレットを製造した。このペレットからSTEM観察用の約200nmの厚さの超薄肉切片をウルトラミクロトームで切り出し、日立ハイテクノロジーズ社製走査型電子顕微鏡S-4800を用い、STEM観察(倍率:50,000倍)で酸化チタンの1次粒子像を得た。1次粒子の長径と短径の平均値を1次粒径とし、1次粒径の測定は1次粒子30個の平均値(0.05μm刻みの値)を用いた。
[成形品の物性評価方法]
(1)燃焼性
 実施例及び比較例で得られた各樹脂組成物について、日本製鋼所社製射出成形機J50を用い設定温度280℃、金型温度80℃の条件下で射出成形を行い、長さ127mm、幅12.7mm、肉厚1.0mmの成形品を試験片として得た。得られた試験片について、UL94に準拠した垂直燃焼試験を行い、燃焼性結果は良好な順からV-0、V-1、V-2とし、規格外のものをNGと分類した。
(2)流れ値
 樹脂組成物の流動性および熱安定性の評価として、JIS K7210 付属書Cに記載の方法にてペレットの流れ値(Q値)を評価した。測定は島津製作所社製フローテスターCFD500Dを用い、穴径1.0mmφ、長さ10mmのダイを用い、試験温度280℃、300℃および320℃、試験力160kg/cm、余熱時間420secの条件で排出された溶融樹脂量(×0.01cc/sec)を測定した。
(3)衝撃性
 衝撃性の評価として、シャルピー衝撃強さを用い、ISO179-2に準拠し、厚み3mm、ノッチあり試験片を用いて測定した。試験片の成形は住友重機械工業社製射出成形機SG75を用い設定温度280℃および300℃、金型温度80℃の条件下で射出成形を行った。
(4)外観
 実施例及び比較例で得られた各樹脂組成物について、日本製鋼所社製射出成形機J50を用いシリンダー温度280℃、金型温度80℃で厚み1mmおよび3mm部分をもつ2段プレートを成形し、目視観察して成形品外観を評価した。
 シルバーストリークス、樹脂焼けなどが認められず外観の良好なものを「○」とし、外観不良が大きく発生したものを「×」と判定した。
(5)反射率
 外観評価で使用したプレート3mm厚部分の反射率を測定した。測定はコニカミノルタ社製分光測色計CM3600dを用い、D65/10度視野、SCI通常測定モードにて行い、波長440nmでの反射率の値を用いた。
[使用材料]
 実施例1~6及び比較例1~12にて使用した原材料は、以下のとおりである。
(A)芳香族ポリカーボネート樹脂
 ポリ-4,4-イソプロピリデンジフェニルカーボネート:
  三菱エンジニアリングプラスチックス(株)製「ユーピロン(登録商標)H-3000」、粘度平均分子量18,000、流れ値Q値:17、(以下、「PC」と略すことがある。)
(B)酸化チタン系添加剤
 アルミナおよびオルガノシロキサンで表面処理された以下の酸化チタン系添加剤(B-1)~(B-8)を使用した。
(B-1)Kronos社製、「Kronos(商品名)2233」
(B-2)Du Pont社製、「Tipure(商品名)PCX-01」
(B-3)レジノカラー社製、「PC-5」
(B-4)Kronos社製、「Kronos(商品名)2230」
(B-5)石原産業(株)製、「タイペーク(商品名)PC-3」
(B-6)石原産業(株)製、「タイペーク(商品名)PF-740」
(B-7)Millenium Chemical社製「TiONA(商品名)188」
(B-8)Millenium Chemical社製、「RCL-69」
 実施例および比較例に使用した酸化チタンの成分分析の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(C)芳香族スルホン酸金属塩
 (C-1)トルエンスルホン酸ナトリウム塩
   Chembridge International社製
   「Chemguard(商品名)NATS」
 (C-2)トルエンスルホン酸カリウム塩
   Chembridge International社製
   「Chemguard(商品名)PABS」
(D)ポリテトラフルオロエチレン(PTFE)
(D-1)ダイキン工業社製「ポリフロン(商品名)F-201L」
(E)熱安定剤
(E-1)トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト
  (株)ADEKA社製、商品名「AS2112」
(E-2)ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、(株)ADEKA製、商品名「PEP36」
(F)離型剤
  ペンタエリスリト-ルジステアレート
   日油社製「ユニスター(商品名)H476D」
(実施例1~6及び比較例1~12)
 上記した各成分を、表2~表4に示した割合(質量部)で配合し、タンブラーにて混合した後、日本製鋼所社製2軸押出機(12ブロック、TEX30XCT)のホッパーに投入した。各樹脂成分を、シリンダー温度270℃、200rpm、押出速度25kg/hourの条件下で溶融混練し、ストランド状に押出された溶融樹脂組成物を水槽にて急冷し、ペレタイザーにてペレット化し、表2~表4に記載のポリカーボネート樹脂組成物のペレットを得た。得られた樹脂組成物は、上述した方法により各種評価を行った。
 結果を表2~表4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2の結果より、次のことがわかる。
 請求項に記載の実施例1~6の樹脂組成物は、優れた熱安定性、燃焼性、外観、強度、反射特性を有する。実施例3はスルホン酸金属塩の金属を異種にしたものであるが、実施例1および2と同等の効果を発揮する。実施例4および5は実施例1~3に使用の酸化チタン系添加剤の種類を変更したものであり、実施例1~3の組成物と同等の効果を発揮する。ただし実施例4に関しては高温での衝撃性にやや劣る。実施例6は酸化チタン系添加剤量を変更したものであり、実施例1と同等の熱安定性を有しながら、さらに優れた反射特性を有する。
 一方、表3および表4を見ると、比較例1および2は酸化チタン系添加剤の量が不足しているため反射率に劣り、比較例3は芳香族スルホン酸金属塩の量が不足しているため充分な燃焼性が得られず、比較例4では芳香族スルホン酸金属塩量が過多となり燃焼性は得られるが外観が悪化する。比較例5はポリテトラフルオロエチレンの添加が少量のため燃焼性が不充分となり、逆に比較例6はポリテトラフルオロエチレンの添加が多量のため外観、衝撃特性に劣る。比較例7は充分な燃焼性は得られているが、高温(300℃)成形での耐衝撃性が劣る。比較例8、10~12は芳香族スルホン酸金属塩使用下での酸化チタン系添加剤の表面処理量が適切でないため、熱安定性、衝撃特性、外観および燃焼性に劣る。比較例8は芳香族スルホン酸金属塩非存在下では、本発明以外の酸化チタン系添加剤を用いても良好な熱安定性を有するが、難燃性に劣る。
(実施例7~13及び比較例13~14)
[使用材料]
 実施例7~13及び比較例13~14において、使用した原材料は、以下のとおりである。
<芳香族ポリカーボネート樹脂(A)>
 先の実施例1~6および比較例1~12で使用したのと同じ「ユーピロン(登録商標)H-3000」を使用した。
<酸化チタン系添加剤(B)>
 先の実施例で使用した酸化チタン系添加剤(B-1)Kronos社製商品名「Kronos2233」(粒径d:0.20μm、Al含量Al:0.46質量%、炭素量c:0.49質量%、a/d=11.4、c/d=12.25)を使用した。
<芳香族スルホン酸金属塩化合物(C)>
 芳香族スルホン酸金属塩化合物(C-3)~(C-5)
 以下のようにしてpHの異なる芳香族スルホン酸金属塩を調製した。
 パラトルエンスルホン酸をイオン交換水に溶解して、20%水溶液を調製した。その後、水酸化ナトリウム水溶液を添加し、添加量の調整によりpHの異なるパラトルエンスルホン酸ナトリウム水溶液を調製した。その後、水溶液を加熱処理し水分を揮発させることにより、pHの異なるパラトルエンスルホン酸ナトリウム塩(C-3)~(C-5)を得た。
 調製したパラトルエンスルホン酸ナトリウム塩(C-3)~(C-5)をそれぞれイオン交換水で再度溶解して10%水溶液を調製し、各々その23℃におけるpHをpHメーターにて測定した。なお、中和反応が完了していることを確認するため、パラトルエンスルホン酸ナトリウム塩の10%水溶液と20%水溶液のpH値がほぼ同値であることを確認した。各パラトルエンスルホン酸ナトリウム塩(C-3)~(C-5)のpHは以下の通りであった。
  (C-3):pH=7.8
  (C-4):pH=6.7
  (C-5):pH=8.3
 芳香族スルホン酸金属塩化合物:
 (C-1)パラトルエンスルホン酸ナトリウム塩(先のC-1に同じ)
   Chembridge International社製
   商品名「Chemguard NATS」(上記方法で測定したpH=7.6)
 (C-2)パラトルエンスルホン酸カリウム塩(先のC-2に同じ)
   Chembridge International社製
   商品名「Chemguard PABS」(上記方法で測定したpH=7.4)
<ポリテトラフルオロエチレン(D)>
 (D-2)ダイキン工業社製、商品名「ポリフロンFA-500B」
<熱安定剤(E)>
 先の実施例1~6および比較例1~12で使用したのと同じ、熱安定剤(E-1)および熱安定剤(E-2)を使用した。
<離型剤(F)>
 先の実施例1~6および比較例1~12で使用したのと同じペンタエリスリト-ルジステアレートを使用した。
 表5に示した割合(質量比)となるよう、芳香族ポリカーボネート樹脂(A)、酸化チタン系添加剤(B)、芳香族スルホン酸金属塩化合物(C)、ポリテトラフルオロエチレン(D)、熱安定剤(E)、および離型剤(F)を配合し、タンブラーにて混合した後、2軸押出機(12ブロック、TEX30XCT)のホッパーに投入した。各樹脂成分を、シリンダー温度270℃、200rpm、押出速度25kg/時間の条件下で溶融混練して樹脂組成物のペレットを得た。
 得られた樹脂組成物について、先の実施例および比較例と同じ方法により、(1)燃焼性、(2)流れ値、(3)外観および(4)反射率の評価を行った。
 結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5の結果より、次のことがわかる。
 本発明の条件を満たす実施例7~13の樹脂組成物は、優れた燃焼性、熱安定性、外観、反射特性を有する。実施例12はスルホン酸金属塩の金属を異種にしたものであるが、実施例7および8と同等の効果を発揮する。
 一方、比較例13は酸化チタン系添加剤の量が不足しているため反射率に劣り、比較例14は芳香族スルホン酸金属塩の量が不足しているため十分な燃焼性が得られない。
(実施例14~15及び比較例15)
[使用材料]
 実施例14~15及び比較例15で使用した原材料は、以下のとおりである。
<芳香族ポリカーボネート樹脂(A)>
 先の実施例およびで使用したのと同じポリカーボネート樹脂を使用した。
<酸化チタン系添加剤(B)>
 先に使用した酸化チタン系添加剤(B-1)Kronos社製商品名「Kronos2233」(粒径d:0.20μm、Al含量Al:0.46質量%、炭素量c:0.49質量%、a/d=11.4、c/d=12.25)を使用した。
<芳香族スルホン酸金属塩化合物(C)>
 先の実施例で使用したパラトルエンスルホン酸ナトリウム塩(NATS(C-1))を使用した。
<ポリテトラフルオロエチレン(D)>
 (D-1)ダイキン工業社製、「ポリフロンF-201L」
<熱安定剤(E)および離型剤(F)>
 先の実施例1~6および比較例1~12で使用したのと同じ熱安定剤(E-1)、熱安定剤(E-2)、離型剤(F)を使用した。
 上記した各成分を表6に示した割合(質量部)で配合し、タンブラーにて混合した後、日本製鋼所社製2軸押出機(12ブロック、TEX30XCT)のホッパーに投入した。各樹脂成分を、シリンダー温度270℃、200rpm、押出速度25kg/時間の条件下で溶融混練し、ストランド状に押出された溶融樹脂組成物を水槽にて急冷し、ペレタイザーにてペレット化し、ポリカーボネート樹脂組成物のペレットを得た。
 得られた樹脂組成物について、燃焼性と反射率は先の実施例および比較例と同様にして、評価を行った。
 衝撃性の評価は、設定温度を280℃のみとして以外は、同様に行った。
 外観評価は、以下のようにして行った。
 得られた各樹脂組成物について、東芝機械社製射出成形機EC160N-II-4Aを用い、シリンダー温度280℃、金型温度80℃で厚み2mmの箱型成形品(底面:150mm×150mm、側面:20mm×150mm、ピンゲート径φ1mm)を成形し、目視観察して成形品外観を評価した。
 シルバー、樹脂焼けなどが認められず外観の良好なものを「○」とし、外観不良が大きく発生したものを「×」と判定した。
 評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6の結果より、本発明の実施例14~15の樹脂組成物は、優れた外観、燃焼性、強度、反射特性を有する。一方、比較例15は酸化チタン系添加剤の添加量が不足しているため充分な反射率が得られず燃焼性に劣る。
(実施例16~37及び比較例16~18)
[使用材料]
 実施例16~37及び比較例16~18で使用した原材料は、以下のとおりである。
[芳香族ポリカーボネート樹脂(A)]
 (A1)ポリ-4,4-イソプロピリデンジフェニルカーボネート:
  三菱エンジニアリングプラスチックス社製、商品名「ユーピロン(登録商標)S-3000F」、粘度平均分子量21,000、粉粒体形状のポリカーボネート樹脂、比表面積1.24mm/g、180~1700μmの粒径が83質量%
 (A2)ポリ-4,4-イソプロピリデンジフェニルカーボネート:
  三菱エンジニアリングプラスチックス社製、商品名「ユーピロン(登録商標)S-3000」、粘度平均分子量21,000、ペレット形状のポリカーボネート樹脂、比表面積0.003mm/g、180~1700μmの粒径が1質量%以下(実質0質量%)
[酸化チタン系添加剤(B)]
 先の実施例で使用した酸化チタン系添加剤(B-1)Kronos社製商品名「Kronos2233」(粒径d:0.20μm、Al含量Al:0.46質量%、炭素量c:0.49質量%、a/d=11.4、c/d=12.25)を使用した。
[芳香族スルホン酸金属塩(C)]
(C-1)先の実施例比較例で使用した金属塩系難燃剤-1:
  パラトルエンスルホン酸ナトリウム
(C-2)先の実施例比較例で使用した金属塩系難燃剤-2:
  パラトルエンスルホン酸カリウム
[ポリテトラフルオロエチレン(D)]
 フィブリル形成能を有する以下のポリテトラフルオロエチレンを下記条件(1)または(2)のいずれかで保持したPTFE-1、PTFE-2を使用した。
 (D-3)三井デュポンフロロケミカル社製、商品名「テフロン(登録商標)6J」
    平均粒径470μm、カサ密度0.47g/ml
  条件(1):19℃以下の温度で保持したもの(PTFE-1)
        (結晶構造は13/6らせん構造である)
  条件(2):19℃を超えた温度で保持したもの(PTFE-2)
        (結晶構造は15/7らせん構造である)
[ポリカーボネート-ポリテトラフルオロエチレンマスターバッチ(E)(以下、PC-PTFEマスターバッチという。)]
(E1)PC-PTFEマスターバッチ-1:以下(a)~(d)のいずれかの条件で配合したマスターバッチを使用した。
 条件(a):19℃を超えた温度で保持した上記粉粒体形状のポリカーボネート樹脂(A1)60質量%と、19℃以下の温度で保持したポリテトラフルオロエチレン(PTFE-1)40質量%を、タンブラーミキサーで5分ブレンドしたもの
 条件(b):19℃以下の温度で保持した上記粉粒体形状のポリカーボネート樹脂(A1)60質量%と、19℃以下の温度で保持したポリテトラフルオロエチレン(PTFE-1)40質量%を、19℃以下の雰囲気下、タンブラーミキサーで5分ブレンドしたもの
 条件(c):上記条件(b)でブレンドして得たマスターバッチを19℃以下の雰囲気で保管したもの
 条件(d):19℃を超えた温度で保持した上記粉粒体形状のポリカーボネート樹脂(A1)60質量%と、19℃を超えた温度で保持したポリテトラフルオロエチレン(PTFE-2)40質量%を、タンブラーミキサーで5分ブレンドしたもの
(E2)PC-PTFEマスターバッチ-2:以下の条件(e)で配合したマスターバッチを使用した。
 条件(e):19℃を超えた温度で保持した上記粉粒体形状のポリカーボネート樹脂(A1)80質量%と、19℃以下の温度で保持したポリテトラフルオロエチレン(PTFE-1)20質量%を、タンブラーミキサーで5分ブレンドしたもの
[ポリカーボネート-TiOマスターバッチ(F)]
 (F1)PC-TiOマスターバッチ-1:粉粒体形状のポリカーボネート樹脂(A1)70質量%と、酸化チタン系添加剤(B)30質量%をヘンシェルミキサーで1分ブレンドしたもの
 (F2)PC-TiOマスターバッチ-2:粉粒体形状のポリカーボネート樹脂(A1)80質量%と、酸化チタン系添加剤(B)20質量%をヘンシェルミキサーで1分ブレンドしたもの
[ポリカーボネート-金属塩マスターバッチ(G)]
 (G1)PC-金属塩マスターバッチ-1:粉粒体形状のポリカーボネート樹脂(A1)99質量%と、金属塩系難燃剤(C2)1質量%をヘンシェルミキサーで1分ブレンドしたもの
 (G2)PC-金属塩マスターバッチ-2:粉粒体形状のポリカーボネート樹脂(A1)99質量%と、金属塩系難燃剤(C3)1質量%をヘンシェルミキサーで1分ブレンドしたもの
[リン系安定剤(H)]
 トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト:
   ADEKA社製、商品名「アデカスタブ2112」
(ペレットおよび試験片の製造)
 (A)~(H)成分として表7~表9に示した材料を用い、各成分を、表7~表9に記した割合(全て質量%)で配合し、タンブラーにて20分混合した後、1ベントを備えた日本製鋼所社製二軸押出機(TEX30HSST)に供給し、スクリュー回転数200rpm、吐出量15kg/時間、バレル温度290℃の条件で混練し、ストランド状に押出された溶融樹脂組成物を水槽にて急冷し、ペレタイザーを用いてペレット化し、ポリカーボネート樹脂組成物のペレットを得た。
 次に、上述の製造方法で得られたペレットを120℃で5時間乾燥させた後、名機製作所社製のM150AII-SJ型射出成形機を用いて、シリンダー温度280℃、金型温度80℃の条件で射出成形し、平板状試験片(150mm×100mm×3mm厚)を成形した。
 また、同様に上述の製造方法で得られたペレットを120℃で5時間乾燥させた後、日本製鋼所製のJ50-EP型射出成形機を用いて、シリンダー温度280℃、金型温度80℃の条件で射出成形し、長さ125mm、幅13mm、厚さ2mmのUL試験用試験片を成形した。
[成形品外観]
 成形品の外観評価は、上記方法で得られた5枚の平板状試験片の表面のシルバーストリークの個数をカウントし、1枚あたりの平均値を求め、以下のA~Eの5段階で分類評価した。
  A:シルバーストリーク数が0~2個
  B:シルバーストリーク数が3~5個
  C:シルバーストリーク数が6~8個
  D:シルバーストリーク数が9~11個
  E:シルバーストリーク数が12個以上
 各評価の結果を、表7~表9に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 実施例16~37に記載の樹脂組成物は、比較例16~18に比べて、溶融混練時の生産性が良好であり、かつ、成形品外観も良好であることがわかる。また、ポリカーボネート樹脂-TiOマスターバッチを用いた樹脂組成物は、マスターバッチを用いなかった例よりシルバーストリーク数が少なく成形品外観は良好であった。
 実施例16~37および比較例16~18の樹脂組成物の燃焼性(2mm厚)は、いずれもV-0であったが、その中でポリカーボネート樹脂-金属塩マスターバッチを用いた実施例27~31、実施例33および実施例35は、燃焼性のバラツキが少なかった。難燃剤の分散性を高めた効果が現れていることがわかる。
 一方比較例18の樹脂組成物は、ポリカーボネート樹脂-ポリテトラフルオロエチレンマスターバッチを用いているが、19℃を超える温度で保持したポリテトラフルオロエチレンを用いたため、2mm厚みでV-0であったものの、実施例に比べ燃焼性のバラツキは大きかった。なお、生産安定性は比較例16~17よりは良好であった。
 以上のように、本発明の芳香族ポリカーボネート樹脂組成物は、従来の難燃性ポリカーボネート組成物と比べて、熱安定性、難燃性、外観、衝撃性、光線反射率に優れているため、液晶表示部材等の反射部材に好適な材料といえる。
 また、アルミナおよびオルガノシロキサンで表面処理が施された酸化チタン系難燃剤と、難燃助剤であるポリテトラフルオロエチレンとして、結晶構造が13/6らせん構造を有するポリフルオロエチレンを、配合時に用いることで、製造時の生産性が安定し、また、成形品中にはポリテトラフルオロエチレン凝集物に起因するシルバーストリーク等の表面欠陥の発生がなく、外観性に優れ、優れた耐衝撃性を有し、さらに、高反射性で難燃性のポリカーボネート樹脂組成物を製造することができる。
 したがって、本発明のポリカーボネート樹脂組成物は、電気電子機器、OA機器、情報端末機器、家電製品、照明機器などの広範囲の分野に利用でき、特に、液晶表示装置のバックライト用光線反射板、光反射枠または光反射シート、電気・電子機器、広告灯などの照明用装置、自動車用メーターパネルなどの自動車用機器などの光反射部材として幅広く使用できるので、産業上の利用性は非常に高い。

Claims (17)

  1.  芳香族ポリカーボネート樹脂(A)100質量部に対し、アルミナおよびオルガノシロキサンで表面処理された酸化チタン系添加剤(B)3~30質量部、芳香族スルホン酸金属塩(C)0.01~1質量部、ポリテトラフルオロエチレン(D)0.05~0.9質量部を含有して成り、
     酸化チタン系添加剤(B)を蛍光X線分析することによって得られた酸化チタン系添加剤中のアルミニウム含有量a(質量%)と、酸化チタン系添加剤(B)を高周波燃焼式炭素分析装置を用いて分析して得られた酸化チタン系添加剤中の炭素量c(質量%)と、酸化チタンの平均粒径d(μm)とが、以下の式(1)および式(2)を満足することを特徴とする芳香族ポリカーボネート樹脂組成物。
      式(1) 6.5≦(a/d)≦15
      式(2)   5≦(c/d)≦25
  2.  酸化チタン系添加剤(B)における炭素含有量cが、0.2~2質量%であることを特徴とする請求項1に記載の芳香族ポリカーボネート樹脂組成物。
  3.  芳香族ポリカーボネート樹脂組成物の総量100質量%に対する酸化チタン系添加剤(B)の含有量[B](質量%)と前記炭素量c(質量%)とが、以下の式(3)の条件を満足することを特徴とする請求項1または2に記載の芳香族ポリカーボネート樹脂組成物。
      式(3) 1≦c×[B]≦9
  4.  オルガノシロキサンが、Si-H基を有するポリオルガノシロキサンであることを特徴とする請求項1に記載の芳香族ポリカーボネート樹脂組成物。
  5.  芳香族スルホン酸金属塩(C)の芳香族環は、置換基を有さないか、或いは置換基として炭素数1~4のアルキル基のみを有し、芳香族スルホン酸金属塩(C)の水溶液中でのpHが6.0~8.5であることを特徴とする請求項1に記載の芳香族ポリカーボネート樹脂組成物。
  6.  芳香族スルホン酸金属塩(C)がパラトルエンスルホン酸ナトリウムまたはパラトルエンスルホン酸カリウムであることを特徴とする請求項1または5に記載の芳香族ポリカーボネート樹脂組成物。
  7.  芳香族ポリカーボネート樹脂(A)にポリテトラフルオロエチレン(D)を配合するに際し、結晶構造が13/6らせん構造のポリテトラフルオロエチレンを用いたことを特徴とする請求項1に記載の芳香族ポリカーボネート樹脂組成物。
  8.  結晶構造が13/6らせん構造のポリテトラフルオロエチレンを、比表面積が0.01~5mm/gで、60~95質量%が180~1700μmの粒径を有するポリカーボネート樹脂粉粒体に配合したマスターバッチを混合してポリカーボネート樹脂組成物を得る工程を含むことを特徴とする請求項1に記載のポリカーボネート樹脂組成物の製造方法。
  9.  ポリテトラフルオロエチレンが、温度調整することにより結晶構造を13/6らせん構造とされることを特徴とする請求項8に記載のポリカーボネート樹脂組成物の製造方法。
  10.  ポリテトラフルオロエチレンを、19℃以下の温度下に保持することを特徴とする請求項8または9に記載のポリカーボネート樹脂組成物の製造方法。
  11.  結晶構造が13/6らせん構造のポリテトラフルオロエチレンを、比表面積が0.01~5mm/gで、60~95質量%が180~1700μmの粒径を有するポリカーボネート樹脂粉粒体に配合したマスターバッチを混合して得られたポリカーボネート樹脂組成物を成形する際に、ポリテトラフルオロエチレンの結晶構造を15/7らせん構造にして成形することを特徴とする請求項8~10のいずれか1項に記載のポリカーボネート樹脂組成物の製造方法。
  12.  結晶構造が13/6らせん構造のポリテトラフルオロエチレンを、19℃以下の温度下で保持した前記ポリカーボネート樹脂粉粒体に配合することを特徴とする請求項11に記載のポリカーボネート樹脂組成物の製造方法。
  13.  得られたマスターバッチを19℃以下の温度下で保持した後、ポリカーボネート樹脂と混合することを特徴とする請求項8に記載のポリカーボネート樹脂組成物の製造方法。
  14.  芳香族スルホン酸金属塩を、比表面積が0.01~5mm/gで、60~95質量%が180~1700μmの粒径を有するポリカーボネート樹脂粉粒体に配合したマスターバッチを混合する工程を含むことを特徴とする請求項1に記載のポリカーボネート樹脂組成物の製造方法。
  15.  酸化チタン系添加剤を、比表面積が0.01~5mm/gで、60~95質量%が180~1700μmの粒径を有するポリカーボネート樹脂粉粒体に配合したマスターバッチを混合する工程を含むことを特徴とする請求項1に記載のポリカーボネート樹脂組成物の製造方法。
  16.  請求項1~7のいずれか1項に記載の芳香族ポリカーボネート樹脂組成物から得られた成形体。
  17.  成形品が、光反射部材である請求項16に記載の成形体。
PCT/JP2010/052701 2009-03-04 2010-02-23 芳香族ポリカーボネート樹脂組成物、樹脂組成物の製造方法、および成形品 WO2010101043A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/144,659 US8835534B2 (en) 2009-03-04 2010-02-23 Aromatic polycarbonate resin composition, method for producing the resin composition, and molded article of the same
CN201080010490.3A CN102341456B (zh) 2009-03-04 2010-02-23 芳族聚碳酸酯树脂组合物、所述树脂组合物的生产方法及其成型品
EP10748639.1A EP2404969B1 (en) 2009-03-04 2010-02-23 Aromatic polycarbonate resin composition, process for producing resin composition, and molded article

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009050305A JP5460078B2 (ja) 2009-03-04 2009-03-04 芳香族ポリカーボネート樹脂組成物および成形品
JP2009-050305 2009-03-04
JP2009121051A JP5458662B2 (ja) 2009-05-19 2009-05-19 芳香族ポリカーボネート樹脂組成物および成形体
JP2009-121051 2009-05-19
JP2009-183197 2009-08-06
JP2009183197A JP5466901B2 (ja) 2009-08-06 2009-08-06 芳香族ポリカーボネート樹脂組成物および成形品
JP2010-033146 2010-02-18
JP2010033146A JP2011168682A (ja) 2010-02-18 2010-02-18 ポリカーボネート樹脂組成物の製造方法およびそれからなる成形品

Publications (1)

Publication Number Publication Date
WO2010101043A1 true WO2010101043A1 (ja) 2010-09-10

Family

ID=42709603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052701 WO2010101043A1 (ja) 2009-03-04 2010-02-23 芳香族ポリカーボネート樹脂組成物、樹脂組成物の製造方法、および成形品

Country Status (4)

Country Link
US (1) US8835534B2 (ja)
EP (1) EP2404969B1 (ja)
CN (1) CN102341456B (ja)
WO (1) WO2010101043A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184414A (ja) * 2014-03-24 2015-10-22 東洋インキScホールディングス株式会社 光線反射樹脂組成物
WO2023199901A1 (ja) * 2022-04-15 2023-10-19 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、ペレット、および、成形品

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059531A1 (de) * 2010-11-05 2012-05-10 Bayer Materialscience Ag Flammhemmend ausgestattete, uv-geschützte polycarbonatformmassen mit geringem molekulargewichtsabbau
CN109135200B (zh) * 2013-01-10 2021-11-09 三菱工程塑料株式会社 聚对苯二甲酸丁二酯类树脂组合物和成型体
CN105431487A (zh) 2013-06-30 2016-03-23 三菱瓦斯化学株式会社 聚碳酸酯树脂组合物和使用聚碳酸酯树脂组合物得到的荧光检测分析基板
CN106103544A (zh) 2014-01-06 2016-11-09 沙特基础工业公司 用于改善的聚碳酸酯稳定性的改性的脱模剂
US10336901B2 (en) 2014-03-20 2019-07-02 Sabic Global Technologies B.V. Polycarbonate compositions, methods of their manufacture, and articles thereof
JP6695342B2 (ja) 2015-08-31 2020-05-20 三菱瓦斯化学株式会社 難燃ポリカーボネート樹脂組成物、それを用いたシート及びフィルム、ならびにそれらの製造方法
US10696818B2 (en) 2015-08-31 2020-06-30 Mitsubishi Gas Chemical Company, Inc. Flame-retardant polycarbonate resin composition, sheet and film using same, and manufacturing method for each
DE112016005889T5 (de) * 2015-12-22 2018-08-30 Idemitsu Kosan Co., Ltd. Harzzusammensetzung auf Polycarbonat-Basis und Formgegenstand daraus
CN105968771B (zh) * 2016-06-28 2018-04-10 中广核俊尔新材料有限公司 高阻燃高强度高反射聚碳酸酯材料及其制备方法和应用
JP7307679B2 (ja) * 2017-09-06 2023-07-12 住化ポリカーボネート株式会社 難燃性ポリカーボネート樹脂組成物
JP7238631B2 (ja) * 2019-06-26 2023-03-14 コニカミノルタ株式会社 活性線硬化型インクジェットインク、および画像形成方法
KR20210016928A (ko) * 2019-08-06 2021-02-17 현대모비스 주식회사 광반사성 및 차광성이 우수한 폴리카보네이트 수지 조성물 및 이를 이용하여 제조된 자동차용 성형품
CN112608588A (zh) * 2020-12-03 2021-04-06 上海中镭新材料科技有限公司 仿陶瓷超高耐磨聚碳酸酯树脂及其制备方法
CN112646342B (zh) * 2020-12-21 2022-11-04 安徽卡洛塑业科技有限公司 静电耗散聚碳酸酯合金及其应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859976A (ja) 1994-08-19 1996-03-05 Ishihara Sangyo Kaisha Ltd ポリカーボネート樹脂組成物
JPH10279814A (ja) * 1997-04-07 1998-10-20 Asahi Chem Ind Co Ltd 難燃性樹脂組成物の製造方法
JPH11181267A (ja) 1997-12-25 1999-07-06 Idemitsu Petrochem Co Ltd 難燃性ポリカーボネート樹脂組成物及びそれを用 いた光線反射板
JP2000239509A (ja) 1999-02-18 2000-09-05 Sumitomo Dow Ltd 熱安定性に優れた難燃性ポリカーボネート樹脂組成物
JP3124488B2 (ja) 1996-06-18 2001-01-15 出光石油化学株式会社 光線反射板
JP2003183491A (ja) 2001-12-18 2003-07-03 Teijin Chem Ltd 難燃性熱可塑性樹脂組成物
JP2005240012A (ja) * 2004-01-28 2005-09-08 Mitsubishi Engineering Plastics Corp 難燃性ポリカーボネート樹脂組成物およびそれからなる光反射板
JP2006117860A (ja) * 2004-10-25 2006-05-11 Asahi Kasei Chemicals Corp 芳香族ポリカーボネート樹脂組成物および成形体
JP2006241262A (ja) 2005-03-02 2006-09-14 Sumitomo Dow Ltd 熱安定性に優れた光反射性難燃ポリカーボネート樹脂組成物
JP2007509208A (ja) * 2003-10-16 2007-04-12 ゼネラル・エレクトリック・カンパニイ 淡色ポリカーボネート組成物及び製造方法
JP2007119554A (ja) 2005-10-26 2007-05-17 Mitsubishi Engineering Plastics Corp 難燃性ポリカーボネート樹脂組成物及びポリカーボネート樹脂成形品
JP2008195818A (ja) * 2007-02-13 2008-08-28 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物及び光反射部材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2806991B2 (ja) 1989-10-06 1998-09-30 帝人株式会社 書き替え可能な光記録媒体
US5723526A (en) 1993-09-08 1998-03-03 Teijin Chemicals Ltd Resin composition and molded article
JP2006089599A (ja) 2004-09-24 2006-04-06 Sumitomo Dow Ltd 光反射性に優れた難燃性ポリカーボネート樹脂組成物およびそれからなる光反射板
CN102942774B (zh) * 2009-02-09 2015-02-25 三菱工程塑胶株式会社 聚碳酸酯树脂组合物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859976A (ja) 1994-08-19 1996-03-05 Ishihara Sangyo Kaisha Ltd ポリカーボネート樹脂組成物
JP3124488B2 (ja) 1996-06-18 2001-01-15 出光石油化学株式会社 光線反射板
JPH10279814A (ja) * 1997-04-07 1998-10-20 Asahi Chem Ind Co Ltd 難燃性樹脂組成物の製造方法
JPH11181267A (ja) 1997-12-25 1999-07-06 Idemitsu Petrochem Co Ltd 難燃性ポリカーボネート樹脂組成物及びそれを用 いた光線反射板
JP2000239509A (ja) 1999-02-18 2000-09-05 Sumitomo Dow Ltd 熱安定性に優れた難燃性ポリカーボネート樹脂組成物
JP2003183491A (ja) 2001-12-18 2003-07-03 Teijin Chem Ltd 難燃性熱可塑性樹脂組成物
JP2007509208A (ja) * 2003-10-16 2007-04-12 ゼネラル・エレクトリック・カンパニイ 淡色ポリカーボネート組成物及び製造方法
JP2005240012A (ja) * 2004-01-28 2005-09-08 Mitsubishi Engineering Plastics Corp 難燃性ポリカーボネート樹脂組成物およびそれからなる光反射板
JP2006117860A (ja) * 2004-10-25 2006-05-11 Asahi Kasei Chemicals Corp 芳香族ポリカーボネート樹脂組成物および成形体
JP2006241262A (ja) 2005-03-02 2006-09-14 Sumitomo Dow Ltd 熱安定性に優れた光反射性難燃ポリカーボネート樹脂組成物
JP2007119554A (ja) 2005-10-26 2007-05-17 Mitsubishi Engineering Plastics Corp 難燃性ポリカーボネート樹脂組成物及びポリカーボネート樹脂成形品
JP2008195818A (ja) * 2007-02-13 2008-08-28 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物及び光反射部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2404969A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184414A (ja) * 2014-03-24 2015-10-22 東洋インキScホールディングス株式会社 光線反射樹脂組成物
WO2023199901A1 (ja) * 2022-04-15 2023-10-19 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、ペレット、および、成形品

Also Published As

Publication number Publication date
US8835534B2 (en) 2014-09-16
EP2404969A1 (en) 2012-01-11
EP2404969B1 (en) 2019-08-07
CN102341456B (zh) 2014-01-08
EP2404969A4 (en) 2013-11-20
US20110269882A1 (en) 2011-11-03
CN102341456A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2010101043A1 (ja) 芳香族ポリカーボネート樹脂組成物、樹脂組成物の製造方法、および成形品
JP5900499B2 (ja) 芳香族ポリカーボネート樹脂組成物及びそれからなる成形品
PH12014501194B1 (en) Flame retardant resin composition comprising a polycarbonate-polydiorganosiloxane copolymer resin and molded article thereof
WO2011030772A1 (ja) ポリカーボネート樹脂組成物及び成形体
JP5304836B2 (ja) ポリカーボネート樹脂組成物
JP5636329B2 (ja) ポリカーボネート樹脂組成物及び成形体
JP2011168633A (ja) ポリカーボネート樹脂組成物の製造方法、およびそれからなる成形品
JP2011168682A (ja) ポリカーボネート樹脂組成物の製造方法およびそれからなる成形品
JP2009215415A (ja) 熱可塑性樹脂組成物及び成形体
JP2013082786A (ja) 難燃性ポリカーボネート樹脂組成物及びそれからなる成形品
WO2012081391A1 (ja) 難燃性ポリカーボネート樹脂組成物、ポリカーボネート樹脂用難燃剤及びその製造方法
JP2010159319A (ja) 蓄光蛍光性ポリカーボネート樹脂組成物及び成形品
JP5352568B2 (ja) ポリカーボネート樹脂成形品
JP4863627B2 (ja) 熱安定性に優れた光反射性難燃ポリカーボネート樹脂組成物
JP2010270221A (ja) ポリカーボネート樹脂組成物及びその成形品
JP2005240012A (ja) 難燃性ポリカーボネート樹脂組成物およびそれからなる光反射板
JP5880307B2 (ja) 芳香族ポリカーボネート樹脂組成物及びその成形品
JP5460078B2 (ja) 芳香族ポリカーボネート樹脂組成物および成形品
JP5484256B2 (ja) 屋外設置成形品用ポリカーボネート樹脂組成物及び屋外設置用成形品
JP5673509B2 (ja) 芳香族ポリカーボネート樹脂組成物及びそれからなる成形品
JP5521565B2 (ja) ポリカーボネート樹脂組成物
JP2010229191A (ja) 芳香族ポリカーボネート樹脂組成物および成形品
JP5466901B2 (ja) 芳香族ポリカーボネート樹脂組成物および成形品
JP6471433B2 (ja) 樹脂被覆金属長繊維ペレットの製造方法
JP5039848B1 (ja) 難燃性ポリカーボネート樹脂組成物及びそれからなる成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010490.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748639

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13144659

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010748639

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE