WO2010098322A1 - 多層フィルムおよびそのフィルムで形成したバッグ - Google Patents

多層フィルムおよびそのフィルムで形成したバッグ Download PDF

Info

Publication number
WO2010098322A1
WO2010098322A1 PCT/JP2010/052767 JP2010052767W WO2010098322A1 WO 2010098322 A1 WO2010098322 A1 WO 2010098322A1 JP 2010052767 W JP2010052767 W JP 2010052767W WO 2010098322 A1 WO2010098322 A1 WO 2010098322A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
density
polyethylene
multilayer film
melting point
Prior art date
Application number
PCT/JP2010/052767
Other languages
English (en)
French (fr)
Other versions
WO2010098322A9 (ja
Inventor
康一 五十嵐
齋藤 哲也
泰士 永田
敏史 森
森 仁志
Original Assignee
三井化学株式会社
株式会社大塚製薬工場
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社, 株式会社大塚製薬工場 filed Critical 三井化学株式会社
Priority to AU2010218831A priority Critical patent/AU2010218831B2/en
Priority to CA2749761A priority patent/CA2749761C/en
Priority to EP10746203.8A priority patent/EP2402156B1/en
Priority to JP2011501603A priority patent/JP5566369B2/ja
Priority to KR1020117017569A priority patent/KR101547722B1/ko
Priority to US13/203,453 priority patent/US20120014625A1/en
Priority to SG2011059474A priority patent/SG173753A1/en
Priority to CN201080008150.7A priority patent/CN102325651B/zh
Publication of WO2010098322A1 publication Critical patent/WO2010098322A1/ja
Publication of WO2010098322A9 publication Critical patent/WO2010098322A9/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/54Cards, coupons, or other inserts or accessories
    • B65D75/56Handles or other suspension means
    • B65D75/566Hand holes or suspension apertures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/10Bag-type containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/58Opening or contents-removing devices added or incorporated during package manufacture
    • B65D75/5861Spouts
    • B65D75/5872Non-integral spouts
    • B65D75/5883Non-integral spouts connected to the package at the sealed junction of two package walls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24992Density or compression of components

Definitions

  • the present invention relates to a multilayer film and a bag formed of the multilayer film.
  • a chemical solution bag made of a flexible plastic film is mainly used as a container for storing a chemical solution such as an infusion solution.
  • This type of chemical solution bag has the advantage of being easy to handle and easy to dispose of.
  • medical solution bag is a thing which contacts a chemical
  • Patent Document 1 discloses linear low density polyethylene or ethylene- ⁇ -olefin copolymer (herein referred to as “metallocene”) that is polymerized using a metallocene catalyst having a density of 0.920 to 0.930 g / cm 3.
  • Polyethylene a metallocene polyethylene having a density of 0.890 to 0.920 g / cm 3, a metallocene polyethylene having a density of 0.920 to 0.930 g / cm 3 , and a density of 0.910 to 0
  • a medical container comprising a laminate with an inner layer formed of a polymer composition comprising linear low density polyethylene or ethylene- ⁇ -olefin copolymer polymerized by a 930 g / cm 3 Ziegler-Natta catalyst It is disclosed.
  • Patent Document 2 discloses that metallocene catalyst-based linear polyethylene having a density of 0.928 g / cm 3 or more is 45 to 75% by weight, high-pressure low-density polyethylene is 5 to 35% by weight, and density is 0.91 g / cm 3.
  • a heat-resistant sheet formed from a polymer composition containing 15 to 45% by weight of the following metallocene catalyst-based linear polyethylene and an infusion bag formed using the heat-resistant sheet are disclosed.
  • Patent Document 3 discloses a seal layer composed of a mixture of a propylene- ⁇ -olefin random copolymer and a propylene homopolymer, and formed on the surface of the seal layer.
  • a first flexible layer made of a mixture of a polymer elastomer, a reinforcing layer formed on the surface of the first flexible layer, made of propylene homopolymer, polycyclic olefin, and the like; formed on the surface of the reinforcing layer;
  • a five-layer plastic comprising a second flexible layer made of the same mixture as the one flexible layer and an outermost layer made of a propylene homopolymer, propylene / ⁇ -olefin random copolymer, etc., formed on the surface of the second flexible layer
  • a film and a container formed using the plastic film are disclosed That.
  • a chemical solution such as an infusion solution is usually subjected to a heat sterilization process such as high-pressure steam sterilization or hot water shower sterilization in a sealed state in a chemical solution bag.
  • the temperature conditions for these heat sterilization treatments are generally about 105 to 110 ° C., but sterilization treatments at high temperatures of 118 to 121 ° C. may be required depending on the type of chemical solution, usage, and usage environment. .
  • the chemical solution bag is made of general polyethylene, the heat resistance of the chemical solution bag tends to be low, and the sterilization treatment under the high temperature condition causes problems such as deformation, breakage, and reduced transparency of the chemical solution bag. Occurs.
  • the chemical solution bag is formed of general polypropylene
  • the flexibility of the chemical solution bag tends to be reduced.
  • the impact strength at low temperature is inferior, and the bag may be damaged due to an impact received during transport of the bag at a low temperature.
  • a problem is sufficiently solved even when a flexible layer made of a mixture of a propylene-based polymer and an ethylene-based polymer is provided in a multilayer film as in the container described in Patent Document 3. Can not do it. Therefore, the container described in Patent Document 3 is difficult in terms of flexibility and impact strength at low temperatures.
  • An object of the present invention is to provide a multilayer film that has excellent heat resistance that can withstand sterilization treatment at 118 to 121 ° C., can maintain flexibility and transparency after such sterilization treatment, and a bag formed from the film, It is in providing the bag which accommodates especially a chemical
  • the multilayer film of the present invention is a multilayer film in which the outermost layer and the innermost layer are laminated via an intermediate layer composed of 1 to 3 layers as a first aspect.
  • the intermediate layer is 0 to 55% by weight of linear polyethylene having a density of 0.910 to 0.930 g / cm 3 and a high density polyethylene having a density of 0.950 to 0.970 g / cm 3.
  • the outermost layer and the innermost layer comprising 5 to 15% by weight and 35 to 85% by weight of linear polyethylene polymerized with a single-site catalyst having a density of 0.900 to 0.910 g / cm 3.
  • the outermost layer and the innermost layer are made of polyethylene or a mixture of two or more kinds of polyethylene.
  • the outermost layer is an A-1 layer
  • the intermediate layer is an A-2 layer
  • the innermost layer is an A-3 layer
  • a three-layer film having a laminated structure formed by laminating the A-1 layer, the A-2 layer, and the A-3 layer in this order may be used.
  • It is made of polyethylene having a DSC melting point of more than 126 ° C. and not more than 132 ° C. and a density higher than that of the A-2 layer or a mixture of two or more polyethylenes
  • the A-3 layer is more than 125 ° C. and less than 130 °
  • 920g made of polyethylene mixture having a cm 3, the polyethylene mixture forming the A-2 layer, a linear polyethylene 0-55 wt% with a density of 0.910 ⁇ 0.930g / cm 3, 0.950 High-density polyethylene having a density of ⁇ 0.970 g / cm 3 5 to 15% by weight and linear polyethylene 35 to 85 polymerized with a single site catalyst having a density of 0.900 to 0.910 g / cm 3
  • the total thickness of the film is preferably 180 to 280 ⁇ m.
  • the outermost layer is a B-1 layer
  • the intermediate layer is a B-2 layer to a B-4 layer
  • the innermost layer is a B-1 layer.
  • the B-1 layer, the B-3 layer, and the B-5 layer may be made of polyethylene having a higher density than the B-2 layer and the B-4 layer.
  • the B-2 layer and the B-4 layer are made of a polyethylene mixture having a DSC melting point of 120 ° C. or higher and 126 ° C.
  • the polyethylene mixture constituting the B-4 layer is 0.900 to 0.9. 35 to 85% by weight of linear polyethylene polymerized with a single site catalyst having a density of 10 g / cm 3 and 0 to 55% by weight of linear polyethylene having a density of 0.910 to 0.930 g / cm 3 And 5 to 15% by weight of high density polyethylene having a density of 0.950 to 0.970 g / cm 3 .
  • the multilayer film of the first to third aspects of the present invention a decrease in transparency can be suppressed even after sterilization at 118 to 121 ° C., and appropriate flexibility can be maintained.
  • the multilayer film of the present invention of the second aspect in the A-1 layer and the A-3 layer, from the viewpoint of suppressing a decrease in transparency of the multilayer film due to sterilization treatment and thermal deformation, In the A-2 layer, the DSC melting point and density of each layer are set to specific ranges from the viewpoint of imparting appropriate flexibility, impact resistance and transparency to the multilayer film.
  • the heat resistance can be extremely excellent. Further, a bag formed using this multilayer film can be subjected to sterilization treatment at 118 to 121 ° C. Moreover, according to the multilayer film of the second aspect, the flexibility, transparency, and impact resistance can be made extremely good, and even after sterilization at 118 to 121 ° C., moderate flexibility And can maintain excellent transparency and impact resistance.
  • the density of the A-1 layer is 0.940 to 0.951 g / cm 3 and the density of the A-3 layer is 0.937 to 0.946 g / cm 3. Preferably it is cm 3 .
  • the A-1 layer comprises 55 to 85% by weight of linear polyethylene having a DSC melting point of 120 to 125 ° C. and a density of 0.930 to 0.940 g / cm 3.
  • the A-3 layer has a DSC melting point of 120 to 125 ° C. and a 0.930 to 0.940 g / cm 3 high density polyethylene having a density of 0.950 to 0.970 g / cm 3.
  • a polyethylene mixture comprising 70 to 85% by weight of linear polyethylene having a density of cm 3 and 15 to 30% by weight of high density polyethylene having a density of 0.950 to 0.970 g / cm 3 is preferable. is there.
  • the heat resistance against sterilization at 118 to 121 ° C. can be further improved without impairing transparency.
  • the thickness of the A-1 layer is 10 to 30 ⁇ m
  • the thickness of the A-2 layer is 140 to 250 ⁇ m
  • the thickness of the A-3 layer Is preferably 15 to 45 ⁇ m.
  • the DSC curve of the polyethylene mixture constituting the A-2 layer has a DSC melting point peak in the range of 120 to 126 ° C and the DSC melting point in the range of 90 to 105 ° C. At least a second peak lower than the peak, and a ratio (HL / Hp) of the second peak height HL to the peak height Hp of the DSC melting point is 0.20 to 0.50. Is preferred.
  • the bag of the present invention uses the multilayer film of the second aspect, and is formed so that the A-1 layer is an outer layer and the A-3 layer is an inner layer. It is characterized by that. Since the bag is formed using the multilayer film of the second aspect, the bag has extremely high heat resistance and can be subjected to sterilization at 118 to 121 ° C. Furthermore, flexibility, transparency, and impact resistance are extremely good, and moderate flexibility, excellent transparency, and impact resistance can be maintained even after sterilization at 118 to 121 ° C. it can. According to the multilayer film of the present invention of the third aspect, linear polyethylene is used in all the layers from the B-1 layer to the B-5 layer.
  • the B-2 layer and the B-4 layer are suitable for the multilayer film from the viewpoint of suppressing a decrease in transparency of the multilayer film due to sterilization treatment and thermal deformation.
  • the DSC melting point and density of each layer are set within specific ranges from the viewpoint of imparting flexibility, impact resistance and transparency, and from the viewpoint of suppressing thermal deformation of the multilayer film in the B-3 layer. Has been. Therefore, according to the multilayer film of the third aspect, the heat resistance can be made extremely excellent, and a bag formed using this multilayer film can be subjected to a sterilization treatment at 118 to 121 ° C. it can. In addition, according to the multilayer film, the flexibility and transparency can be made extremely good, and moderate flexibility and excellent transparency can be obtained even after sterilization at 118 to 121 ° C. Can be maintained.
  • the B-1 layer and the B-5 layer have a DSC melting point of more than 125 ° C. and not more than 130 ° C. and a density of 0.935 to 0.946 g / cm 3.
  • the B-3 layer preferably has a DSC melting point of 120 ° C. or more and 125 ° C. or less and a density of 0.930 to 0.940 g / cm 3 .
  • the polyethylene constituting the B-1 layer and the B-5 layer has a DSC melting point of 120 ° C. to 125 ° C. and a density of 0.930 to 0.940 g / cm 3 . It is preferable to comprise 75 to 90% by weight of linear polyethylene having a density of 10 to 25% by weight of high density polyethylene having a density of 0.950 to 0.970 g / cm 3 .
  • the heat resistance against sterilization treatment at 118 to 121 ° C. can be further improved.
  • the B-1 layer and the B-3 layer have a thickness of 10 to 30 ⁇ m
  • the B-2 layer and the B-4 layer have a thickness of 70 to 110 ⁇ m.
  • the B-5 layer has a thickness of 15 to 45 ⁇ m.
  • the bag of the present invention uses the multilayer film of the third aspect, and is formed so that the B-1 layer is an outer layer and the B-5 layer is an inner layer. It is characterized by that.
  • the bag is formed using the multilayer film of the third aspect, the bag is extremely excellent in heat resistance and can be subjected to sterilization treatment at 118 to 121 ° C. Furthermore, the flexibility, transparency, and impact resistance are extremely good, and moderate flexibility, excellent transparency, and impact resistance can be maintained even after sterilization at 118 to 121 ° C. it can.
  • the multilayer film of the present invention and the bag formed of the multilayer film, it is possible to provide a bag that is excellent in flexibility, transparency, and impact resistance and can withstand sterilization under high temperature conditions. Therefore, the present invention is particularly suitable for application to storing and storing a chemical that requires sterilization under high temperature conditions depending on the type, application, use environment, and the like.
  • FIG. 3 is a schematic cross-sectional view (cross section taken along a cutting plane A1-A1) of the chemical solution bag of FIG. 2; It is a photograph of a falling plate test apparatus. It is a DSC curve obtained by differential scanning calorimetry (DSC). It is a DSC curve obtained by differential scanning calorimetry (DSC). It is a DSC curve obtained by differential scanning calorimetry (DSC). It is a DSC curve obtained by differential scanning calorimetry (DSC). It is a DSC curve obtained by differential scanning calorimetry (DSC). It is a DSC curve obtained by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • DSC differential scanning calorimetry
  • FIG. 49 is a schematic cross-sectional view of the chemical solution bag of FIG. 48 (cross section taken along section A2-A2).
  • FIG. 1 is a schematic configuration diagram showing a layer configuration of a multilayer film (II) according to an embodiment of the present invention.
  • FIG. 2 is a schematic front view of a chemical solution bag according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view (cross section taken along the cutting plane A1-A1) of the chemical solution bag of FIG.
  • the multilayer film (II) of the present invention will be described with reference to FIG.
  • the same or similar parts are denoted by the same reference numerals through a plurality of embodiments.
  • this multilayer film (II) includes A-1 layer 1 as a first layer, A-2 layer 2 as a second layer laminated on A-1 layer 1, and A- A-3 layer 3 as a third layer laminated on two layers 2, and is formed by laminating A-1 layer 1, A-2 layer 2 and A-3 layer 3 in this order. It has a three-layer structure.
  • the A-1 layer 1 is a layer disposed on one surface of the multilayer film (II) and forms an outer layer of the chemical solution bag 6 described later.
  • the A-1 layer 1 is made of polyethylene having a DSC melting point of more than 126 ° C. and not more than 132 ° C. and a density of 0.940 to 0.951 g / cm 3 or a mixture of two or more kinds of polyethylene.
  • the DSC melting point is the temperature at the apex of the melting peak of the DSC curve obtained by differential scanning calorimetry (DSC).
  • the highest peak temperature refers to the melting peak temperature T pm (° C.) (hereinafter the same).
  • the DSC melting point can be measured, for example, by the following method (the same applies hereinafter).
  • Teflon registered trademark
  • a product in which each polyethylene is mixed in an appropriate ratio is heated to a resin temperature of 200 ° C., kneaded with a single screw extruder, and extruded into a strand having a diameter of about 2 mm.
  • Pellets are prepared by cooling with tap water and cutting into pellets.
  • the pellets sandwiched between the sheets are left in an atmosphere of 200 ° C. for 2 minutes and then pressed at 200 ° C. for 10 seconds.
  • the melted sample is immediately sandwiched between metal plates cooled with tap water so as to have a thickness of 0.1 to 0.5 mm and cooled for 1 minute.
  • the sample is cut out with a razor, and about 5 mg of a measurement sample is weighed.
  • the cut measurement sample is packed in an aluminum pan, heated from 30 ° C. to 200 ° C. at a heating rate of 500 ° C./min, and held at 200 ° C. for 10 minutes. Thereafter, the temperature is lowered to 30 ° C. at a rate of 10 ° C./minute, held at 30 ° C.
  • the DSC melting point can be obtained from an endothermic curve when the temperature is raised to 200 ° C. at a rate of 10 ° C./minute.
  • Specific examples of commercially available measuring devices include a Diamond DSC device manufactured by PerkinElmer.
  • the density of polyethylene can be measured, for example, by the following method (the same applies hereinafter).
  • a sample polyethylene or polyethylene mixture is put into a melt indexer set at 190 ° C. and held for 6 minutes.
  • the load is 2.16 kg and the MFR is 0.1 to 1 g.
  • strands are collected with a load of 5 kg.
  • the strand is dropped directly on the metal plate and quenched.
  • the collected strand is annealed in boiling water for 30 minutes, and then cooled to room temperature (30 ° C.) over 1 hour. Thereafter, the strand is taken out and cut into a length of 2 to 3 mm.
  • the cut strand is put into a density gradient tube, and the density is determined at a sample stationary position after 1 hour.
  • the DSC melting point of the polyethylene forming the A-1 layer 1 is preferably 127 to 130 ° C. in the above range. Further, the density is preferably 0.940 to 0.949 g / cm 3 in the above range.
  • the polyethylene for forming the A-1 layer 1 a polyethylene whose DSC melting point and density satisfy the above ranges can be used alone. Moreover, it is a mixture of two or more types of polyethylene, and the DSC melting point and density of the mixture can be adjusted so that both satisfy the above range.
  • the polyethylene forming the A-1 layer 1 is a linear polyethylene alone having a DSC melting point and density satisfying the above ranges
  • examples of such a linear polyethylene include an ethylene- ⁇ -olefin copolymer.
  • examples of the ⁇ -olefin in the ethylene- ⁇ -olefin copolymer include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene and 1-nonene.
  • ⁇ -olefins having 3 to 12 carbon atoms such as 1-decene, 1-undecene and 1-dodecene.
  • ⁇ -olefins may be used alone or in combination of two or more.
  • the ⁇ -olefin is preferably 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene or 1-octene among the above examples, and more preferably 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene.
  • the content ratio of the ⁇ -olefin in the ethylene- ⁇ -olefin copolymer is appropriately set according to the density required for the ethylene- ⁇ -olefin copolymer.
  • the polyethylene forming the A-1 layer 1 is a mixture of two or more kinds of polyethylene
  • examples of the polyethylene forming the mixture include linear polyethylene and high density polyethylene.
  • a mixture in which linear polyethylene is the main component and high density polyethylene is mixed with this is exemplified.
  • the density of the linear polyethylene is preferably 0.932 to 0.944 g / cm 3 , more preferably 0.934 to 0.939 g / cm 3 . If the density of the linear polyethylene is below the above range, it is necessary to mix with a large amount of high-density polyethylene in order to maintain heat resistance, and the transparency of the A-1 layer 1 deteriorates or impact resistance decreases. There is a risk of Moreover, if it exceeds the said range, heat resistance and transparency cannot be balanced, and transparency will not improve even if the addition amount of high-density polyethylene is reduced.
  • the density of the high density polyethylene is preferably 0.970 g / cm 3 or less, more preferably 0.950 to 0.970 g / cm 3 , and particularly preferably 0.955 to 0.968 g. / Cm 3 . If the density of the high density polyethylene exceeds the above range, the rigidity of the A-1 layer 1 becomes too high, and the flexibility of the entire multilayer film (II) may be lowered. On the other hand, if the density of the high-density polyethylene is below the above range, sufficient heat resistance may not be imparted.
  • the mixing ratio of the linear polyethylene and the high-density polyethylene is appropriately set according to the density and the density required for the mixture.
  • a preferred embodiment of the polyethylene mixture forming the A-1 layer 1 is, for example, 55 to 85% by weight of linear polyethylene having a DSC melting point of 120 to 125 ° C. and a density of 0.930 to 0.940 g / cm 3. And a mixture of 15 to 45% by weight of high-density polyethylene having a density of 0.950 to 0.970 g / cm 3 .
  • the polyethylene forming the A-1 layer 1 is a mixture of two or more types of polyethylene, for example, polyethylenes having different melt flow rates (MFR) can be used.
  • MFR melt flow rates
  • the thickness of the A-1 layer 1 may be appropriately set from the viewpoint of the impact resistance of the multilayer film (II) and the chemical solution bag formed using the multilayer film (II). Preferably, the thickness is about 5 to 15%.
  • the thickness of the A-1 layer 1 is preferably 10 to 30 ⁇ m, more preferably 15 to 25 ⁇ m, for example, when the total thickness of the multilayer film (II) is 180 to 280 ⁇ m.
  • the A-2 layer 2 is a layer disposed between the A-1 layer 1 and the A-3 layer 3 and forms an intermediate layer of the chemical solution bag 6 described later.
  • the A-2 layer 2 is made of a polyethylene mixture having a DSC melting point of 120 to 126 ° C. and a density of 0.910 to 0.920 g / cm 3 .
  • DSC melting point and density of the polyethylene mixture forming the A-2 layer 2 satisfy the above ranges, transparency and flexibility are good. In addition, this makes it possible to prevent the occurrence of problems such as a decrease in transparency and the occurrence of wrinkles when a high-temperature sterilization treatment is performed on a later-described chemical solution bag 6 made of the multilayer film (II). Further, the adhesive strength (interlayer strength) between the A-2 layer 2 and the A-1 layer 1 and the A-3 layer 3 can be improved.
  • the DSC melting point of the polyethylene mixture forming the A-2 layer 2 is preferably 122 to 126 ° C. within the above range, and the upper limit of the density is preferably 0.918 g / cm 2 within the above range. 3 and more preferably 0.916 g / cm 3 .
  • the upper limit of the density exceeds the above range, the transparency is lowered and the impact resistance represented by the falling plate strength may be lowered.
  • the lower limit of the density is lower than the above range, it is difficult to maintain heat resistance, which may cause deformation or whitening.
  • the falling plate strength can be measured, for example, by the following method. First, a chemical solution bag (500 mL) formed of the multilayer film (II) is immersed in ice water at 0 ° C. for 5 hours or more and taken out in a sufficiently cooled state. Next, as shown in FIG. 4, the chemical solution bag is placed on the iron plate, and a 6.8 kg metal plate (size: about 37 cm ⁇ 37 cm, thickness: 0.5 cm) is placed on the top, and the surface of the metal plate is the chemical solution bag. Drop in parallel on top. Then, the falling plate strength is measured by measuring the height (falling height) of the metal plate that the chemical solution bag breaks.
  • the polyethylene forming the A-2 layer 2 is a mixture of two or more types of polyethylene.
  • Examples of the polyethylene forming the mixture include linear polyethylene polymerized with a single site catalyst, linear polyethylene, And a mixture with high density polyethylene.
  • a linear polyethylene polymerized by a single site catalyst is mainly used, and a mixture obtained by mixing linear polyethylene and high density polyethylene is used.
  • the lower limit of the density of the linear polyethylene polymerized with the single site catalyst is preferably 0.901 g / cm 3 , and more preferably 0.902 g / cm 3 . If the lower limit of the density is below the limit, the heat resistance of the A-2 layer 2 may not be maintained.
  • the upper limit of the density of linear polyethylene polymerized with a single site catalyst is preferably 0.907 g / cm 3 , and more preferably 0.906 g / cm 3 . If the upper limit of the density exceeds the limit, the transparency may be deteriorated.
  • the lower limit of the density of the linear polyethylene is preferably a 0.912 g / cm 3, more preferably 0.915 g / cm 3.
  • the upper limit of the density of the linear polyethylene is preferably 0.927 g / cm 3 , and more preferably 0.925 g / cm 3 . If the upper limit of the density exceeds the upper limit, the transparency will not be improved even if the amount of high density polyethylene added is reduced.
  • the density and preferred examples of the high-density polyethylene are the same as in the case of the A-1 layer 1.
  • the mixing ratio of the linear polyethylene polymerized by the single site catalyst, the linear polyethylene, and the high-density polyethylene is appropriately set according to the density and the density required for the mixture.
  • a preferred embodiment of the polyethylene forming the A-2 layer 2 is, for example, 35 to 85% by weight of linear polyethylene polymerized with a single site catalyst having a density of 0.900 to 0.910 g / cm 3 (preferably Is 50 to 85% by weight, more preferably 60 to 80% by weight) and 0 to 55% by weight (preferably 0 to 40% by weight) of linear polyethylene having a density of 0.910 to 0.930 g / cm 3 . More preferred is a mixture of 10 to 30% by weight) and 5 to 15% by weight of high-density polyethylene having a density of 0.950 to 0.970 g / cm 3 .
  • the peak of the DSC curve of linear polyethylene polymerized with a single-site catalyst having a density of 0.900 to 0.910 g / cm 3 is preferably 115 to 125 ° C. as shown in FIG. In addition to the DSC melting point peak in the range, it has at least a second peak lower than the DSC melting point peak in the range of 85 to 110 ° C. in addition to the DSC melting point peak.
  • the peak of the DSC curve of the linear polyethylene having a density of 0.910 to 0.930 g / cm 3 is preferably a DSC melting point peak in the range of 115 to 125 ° C. as shown in FIG. In addition to the DSC melting point peak, it has at least a second peak in the range of 85 to 110 ° C. that is lower than the DSC melting point peak height.
  • the DSC curve of the polyethylene mixture (m-PE-LLD + PE-LLD + PE-HD) in which these polyethylenes are mixed is preferably any of the following conditions (1) to (3) as shown in FIG. Fulfill.
  • (1) It has a DSC melting point peak in the range of 120 to 126 ° C and a second peak lower than the DSC melting point peak in the range of 90 to 105 ° C.
  • (2) ⁇ H is 85 J / g or more. Note that ⁇ H is the amount of heat necessary for melting all the crystals in polyethylene.
  • the baseline for calculating ⁇ H is formed by extending the slope of the line that exceeds the peak on the highest temperature side to the low temperature side. ⁇ H is the sum of the portions above the baseline.
  • HL / Hp The ratio (HL / Hp) of the peak height HL of the second peak to the peak height Hp of the DSC melting point is 0.20 to 0.50.
  • HL / Hp is a ratio of values obtained by measuring HL and Hp from a DSC chart using a ruler.
  • the measuring method of DSC is the method shown by description of DSC melting
  • the polyethylene forming the A-2 layer 2 is a mixture of two or more types of polyethylene, for example, a mixture of two or more types of polyethylene having different MFR and the like can be used.
  • the A-2 layer 2 is made of polyethylene having the above composition and the DSC melting point and density satisfy the above ranges, the flexibility and resistance of the multilayer film (II) are used. Good impact. In addition, this can prevent the occurrence of problems such as a decrease in transparency and wrinkles after high-temperature sterilization. Further, in the chemical solution bag 6 described later, the adhesive strength between the A-1 layer 1 and the A-2 layer 2 (interlayer strength) and the adhesive strength between the A-2 layer 2 and the A-3 layer 3 ( Interlayer strength).
  • the thickness of the A-2 layer 2 may be appropriately set from the viewpoint of the flexibility of the multilayer film (II) and the chemical solution bag formed using the multilayer film (II).
  • the total thickness of the multilayer film (II) On the other hand, it is preferably about 60 to 90%, more preferably about 80 to 90%.
  • the thickness of the A-2 layer 2 is, for example, 140 to 250 ⁇ m, preferably 160 to 240 ⁇ m, more preferably 180 to 240 ⁇ m when the total thickness of the multilayer film (II) is 180 to 280 ⁇ m. is there.
  • the A-3 layer 3 is a layer disposed on the other surface of the multilayer film (II) and forms an inner layer of a chemical solution bag 6 to be described later.
  • the A-3 layer 3 is made of polyethylene, has a DSC melting point of more than 125 ° C. and not more than 130 ° C., and a density of 0.937 to 0.946 g / cm 3. It is.
  • the DSC melting point of the polyethylene forming the A-3 layer 3 is preferably 126 to 129 ° C. in the above range, and the density is preferably 0.939 to 0.945 g / in the above range. cm 3 .
  • the polyethylene for forming the A-3 layer 3 a polyethylene whose DSC melting point and density satisfy the above ranges can be used alone. Moreover, it is a mixture of 2 or more types of polyethylene, Comprising: Both the DSC melting
  • the polyethylene forming the A-3 layer 3 is a mixture of two or more kinds of polyethylene
  • examples of the polyethylene forming the mixture include linear polyethylene and high density polyethylene.
  • linear polyethylene is the main component and high density polyethylene is mixed with this is exemplified.
  • a preferred embodiment of the polyethylene mixture forming the A-3 layer 3 is, for example, 70 to 85% by weight of linear polyethylene having a DSC melting point of 120 to 125 ° C. and a density of 0.930 to 0.940 g / cm 3.
  • a mixture of 15 to 30% by weight of high-density polyethylene having a density of 0.950 to 0.970 g / cm 3 .
  • A-3 layer 3 can be used up to a region where both density and DSC melting point are lower than A-1 layer 1.
  • A-1 layer 1 directly touches hot water or shower during high-temperature sterilization. This is because the third layer 3 is not touched directly. Thereby, transparency further improves.
  • polyethylene forming the A-3 layer 3 is a mixture of two or more kinds of polyethylene, for example, polyethylenes having different melt flow rates (MFR) can be used.
  • the heat resistance of the multilayer film (II) is good. It will be something. In addition, it is possible to prevent the occurrence of defects such as a decrease in transparency and wrinkles after high-temperature sterilization. Furthermore, it is possible to impart excellent impact resistance such as impact strength to the chemical solution bag 6 described later, and the adhesive strength (interlayer strength) between the A-3 layer 3 and the A-2 layer 2 Can be made good.
  • the thickness of the A-3 layer 3 may be set as appropriate from the viewpoint of the mechanical strength of the multilayer film (II) and the chemical solution bag formed using the multilayer film (II).
  • the total thickness of the multilayer film (II) The thickness is preferably about 5 to 25%.
  • the thickness of the A-3 layer 3 is preferably 15 to 45 ⁇ m, more preferably 20 to 40 ⁇ m, for example, when the total thickness of the multilayer film (II) is 180 to 280 ⁇ m.
  • the oxygen permeability at a temperature of 25 ° C. and a humidity of 60% RH within 12 hours after high-temperature sterilization is, for example, 660 to 860 cc / m 2 ⁇ day ⁇ atm. is there.
  • the water vapor permeability of the multilayer film (II) measured in accordance with A method (humidity sensor method) defined in JIS K 7129 (1992) is, for example, at a temperature of 25 ° C. and a humidity of 90% RH. 1.3 to 2.2 g / m 2 ⁇ day.
  • the method for producing the multilayer film (II) is not particularly limited, and examples thereof include a water-cooled or air-cooled coextrusion inflation method, a coextrusion T-die method, a dry lamination method, and an extrusion lamination method.
  • a water-cooled or air-cooled coextrusion inflation method for producing the multilayer film (II)
  • a coextrusion T-die method for forming the multilayer film (II)
  • a dry lamination method a dry lamination method
  • an extrusion lamination method exemplified.
  • the production of the multilayer film (II) must be carried out at a temperature at which the resin forming each layer melts.
  • the production temperature is not limited to this, but is preferably 150 to 250 ° C., more preferably 170 to 200 ° C.
  • the multilayer film (II) is excellent in properties such as transparency, flexibility, heat resistance against high-temperature sterilization, and mechanical strength. Therefore, the multilayer film (II) is suitable as a material for forming a chemical solution bag such as an infusion bag.
  • a chemical solution bag such as an infusion bag.
  • FIGS. 2 and 3 The bag of the present invention will be described with reference to FIGS. 2 and 3.
  • the chemical solution bag 6 is formed, and the multilayer film (II) shown in FIG. 1 is formed with the A-1 layer 1 as the outermost layer and the A-3 layer 3 as the innermost layer.
  • the chemical solution bag 6 includes a peripheral seal portion 9 formed by overlapping the A-3 layers 3 of the two multilayer films (II) 4 and 5 and welding the peripheral portions thereof.
  • the peripheral seal portion 9 is formed, for example, by forming the multilayer film (II) into a bag shape or a tube shape by an inflation method so that the A-3 layer 3 is on the inside, and the bag shape or tube thus obtained It can also be formed by welding the peripheral portion of the multilayer film (II).
  • the container 10 of the chemical solution bag 6 is partitioned by the peripheral seal 9.
  • This chemical solution bag 6 is a single-chamber bag provided with one accommodating portion 10 therein.
  • a cylindrical member 11 for allowing a chemical solution to flow in and out between the container 10 and the outside of the chemical solution bag 6 is formed by two multilayer films (II) 4 and 5 at a part of the peripheral seal portion 9. It is welded in the sandwiched state.
  • the peripheral seal portion 9 is formed by stacking two multilayer films (II) 4 and 5 so that each A-1 layer 1 is an outer layer and each A-3 layer 3 is an inner layer.
  • the multilayer film (II) 4 and 5 is formed by heat-pressing the surface of each A-1 layer 1 side at the peripheral edge of the multilayer films (II) 4 and 5 with a welding die.
  • the conditions for thermocompression bonding with the welding mold are not particularly limited.
  • the mold temperature is preferably 130 to 200 ° C., more preferably 150 to 180 ° C.
  • the pressure is preferably 0.1 to 0.8 MPa, more preferably 0.15 to 0.5 MPa.
  • the pressurization time is preferably 1 to 5 seconds, and more preferably 1.5 to 3 seconds.
  • the cylindrical member 11 is not particularly limited, and a known cylindrical member can be applied.
  • the cylindrical member 11 causes the chemical solution stored in the storage unit 10 of the chemical solution bag 6 to flow out of the chemical solution bag 6 or flows the chemical solution into the storage unit 10 from the outside of the chemical solution bag 6.
  • a sealing body for example, a rubber plug or the like
  • a hollow needle or the like for sealing the cylindrical member 11 is disposed therein.
  • the method for accommodating and sealing the chemical solution and other items in the accommodating portion 10 is not particularly limited, and a known method can be adopted. Further, after storing the chemical solution and other stored items in the storage unit 10 and sealing, the chemical solution bag 6 is sterilized.
  • the sterilization method is not particularly limited, and a known heat sterilization method such as high-pressure steam sterilization or hot water shower sterilization can be employed.
  • FIG. 47 is a schematic configuration diagram showing a layer configuration of a multilayer film (III) according to another embodiment of the present invention.
  • FIG. 48 is a schematic front view of a drug solution bag according to another embodiment of the present invention.
  • FIG. 49 is a schematic cross-sectional view (cross section taken along section A2-A2) of the drug solution bag of FIG.
  • this multilayer film (III) includes B-1 layer 21, B-2 layer 22 laminated on B-1 layer 21, and B-3 laminated on B-2 layer 22. A layer 23, a B-4 layer 24 stacked on the B-3 layer 23, and a B-5 layer 25 stacked on the B-4 layer 24.
  • the B-1 layer 21 is a layer disposed on one surface of the multilayer film (III) and forms the outermost layer of a chemical solution bag to be described later.
  • the B-1 layer 21 is made of polyethylene, has a DSC melting point of more than 125 ° C. and not more than 130 ° C., and a density of 0.935 to 0.946 g / cm 3 .
  • the DSC melting point is the temperature at the apex of the melting peak of the DSC curve obtained by differential scanning calorimetry (DSC).
  • the highest peak temperature refers to the melting peak temperature T pm (° C.) (the same applies hereinafter).
  • the DSC melting point can be measured, for example, by the same method as described in the embodiment of the multilayer film (II).
  • the density was measured by the following method (hereinafter the same).
  • Sample polyethylene is put into a melt indexer set at 200 ° C., and a strand is collected.
  • the strand is dropped directly onto the metal plate.
  • the collected strand is annealed in boiling water for 30 minutes, and then cooled to room temperature (30 ° C.) over 1 hour. Thereafter, the strand is taken out, cut into a length of 2 to 3 mm, put into a density gradient tube, and the density is determined at the sample stationary position after 1 hour.
  • the chemical solution bag made of the multilayer film (III) is sterilized at 118 to 121 ° C. (hereinafter, sterilization in this temperature range is referred to as “high temperature sterilization”).
  • high temperature sterilization sterilization in this temperature range
  • excellent mechanical strength such as strength against impact can be imparted to the chemical solution bag described later, and the adhesive strength (interlayer) between the B-1 layer 21 and the B-2 layer 22 described later. Strength) can be improved.
  • the DSC melting point of the polyethylene forming the B-1 layer 21 is preferably 126 ° C. or more and 129 ° C. or less in the above range, and the density is preferably 0.937 to 0.00 in the above range. 943 g / cm 3 .
  • a polyethylene having a DSC melting point and density satisfying the above ranges can be used alone, or a mixture of two or more kinds of polyethylene, What was adjusted so that all may satisfy the said range may also be used.
  • examples of such a linear polyethylene include an ethylene- ⁇ -olefin copolymer.
  • examples of the ⁇ -olefin in the ethylene- ⁇ -olefin copolymer include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene and 1-nonene.
  • ⁇ -olefins having 3 to 12 carbon atoms such as 1-decene, 1-undecene and 1-dodecene.
  • ⁇ -olefins may be used alone or in combination of two or more.
  • the ⁇ -olefin is preferably 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene or 1-octene among the above examples, and more preferably 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene.
  • the content ratio of the ⁇ -olefin in the ethylene- ⁇ -olefin copolymer is appropriately set according to the density required for the ethylene- ⁇ -olefin copolymer.
  • the polyethylene forming the B-1 layer 21 is a mixture of two or more types of polyethylene
  • examples of the polyethylene forming the mixture include linear polyethylene and high-density polyethylene.
  • a mixture in which linear polyethylene is the main component and high-density polyethylene is mixed with this is exemplified.
  • the density of the linear polyethylene is preferably 0.932 to 0.944 g / cm 3 , more preferably 0.934 to 0.939 g / cm 3 . If the density of the linear polyethylene is below the above range, it is necessary to mix with a large amount of high-density polyethylene in order to maintain heat resistance, and the transparency of the B-1 layer 21 may deteriorate or the mechanical strength may decrease. There is. Moreover, if it exceeds the said range, heat resistance and transparency cannot be balanced, and transparency will not improve even if the addition amount of high-density polyethylene is reduced.
  • the density of the high density polyethylene is preferably 0.970 g / cm 3 or less, more preferably 0.950 to 0.970 g / cm 3 , and particularly preferably 0.955 to 0.968 g. / Cm 3 . If the density of the high-density polyethylene exceeds the above range, the rigidity of the B-1 layer 21 becomes too high, and the flexibility of the entire multilayer film (III) decreases. If the density is lower, sufficient heat resistance can be imparted. There is a risk of disappearing.
  • the mixing ratio of the linear polyethylene and the high-density polyethylene is appropriately set according to the density and the density required for the mixture.
  • a preferred embodiment of the polyethylene forming the B-1 layer 21 is, for example, 75 to 90% by weight of linear polyethylene having a DSC melting point of 120 ° C. or more and 125 ° C. or less and a density of 0.930 to 0.940 g / cm 3. And a mixture of 10 to 25% by weight of high density polyethylene having a density of 0.950 to 0.970 g / cm 3 .
  • the polyethylene forming the B-1 layer 21 is a mixture of two or more types of polyethylene, for example, two or more types of ethylene- ⁇ -olefin copolymers having different melt flow rates (MFR) and the like are used. A mixture of these can also be used.
  • the thickness of the B-1 layer 21 may be appropriately set from the viewpoint of the mechanical strength of the multilayer film (III) or a chemical solution bag formed using the multilayer film (III). For example, the total thickness of the multilayer film (III) On the other hand, it is preferably about 5 to 15%.
  • the thickness of the B-1 layer 21 is preferably 10 to 30 ⁇ m, more preferably 15 to 25 ⁇ m, for example, when the total thickness of the multilayer film (III) is 180 to 260 ⁇ m.
  • the B-2 layer 22 is a layer disposed between the B-1 layer 21 and a B-3 layer 23 described later, and forms a middle and outer layer of a chemical solution bag described later.
  • the B-2 layer 22 is made of polyethylene, has a DSC melting point of 120 ° C. or higher and 126 ° C. or lower, and a density of 0.910 to 0.920 g / cm 3 .
  • the flexibility is good.
  • this makes it possible to prevent the occurrence of inconveniences such as a decrease in transparency and the occurrence of wrinkles even when the chemical solution bag made of the multilayer film (III) is subjected to high-temperature sterilization treatment.
  • the adhesive strength (interlayer strength) between the B-2 layer 22, the B-1 layer 21 and the B-3 layer 23 described later can be improved.
  • the DSC melting point of the polyethylene forming the B-2 layer 22 is preferably 122 ° C. or higher and 126 ° C. or lower in the above range, and the upper limit of the density is preferably 0.918 g / in the above range. cm 3 , more preferably 0.916 g / cm 3 .
  • the upper limit exceeds the range, the transparency is lowered and the strength against impact represented by the falling plate strength is also lowered.
  • the lower limit is below the range, it is difficult to maintain heat resistance, causing deformation and whitening.
  • the falling plate strength can be measured, for example, by the same method as described in the embodiment of the multilayer film (II).
  • the polyethylene forming the B-2 layer 22 is a mixture of two or more kinds of polyethylene. Examples of the polyethylene forming the mixture include linear low density polyethylene polymerized with a metallocene catalyst and linear A mixture of low-density or medium-density polyethylene and high-density polyethylene can be mentioned, preferably, mainly composed of linear low-density polyethylene polymerized with a metallocene catalyst, and linear low-density or medium-density polyethylene, The mixture which mixed high density polyethylene is mentioned.
  • the lower limit of the density of the linear low-density polyethylene polymerized with the metallocene catalyst is preferably 0.901 g / cm 3 , and more preferably 0.902 g / cm 3 . If the lower limit of the density is below the limit, the heat resistance of the B-2 layer 22 may not be maintained.
  • the upper limit is preferably 0.907 g / cm 3 , more preferably 0.906 g / cm 3 . If the upper limit of the density exceeds the limit, the transparency may be deteriorated.
  • the lower limit of the density of the linear low or medium density polyethylene is preferably a 0.912 g / cm 3, more preferably 0.915 g / cm 3. If the density of the linear low density or medium density polyethylene is below the lower limit, it is necessary to mix with a large amount of high density polyethylene to maintain heat resistance, and the transparency of the B-2 layer 22 may be deteriorated. .
  • the upper limit is preferably a 0.927 g / cm 3, more preferably 0.925 g / cm 3. If the upper limit is exceeded, transparency will not improve even if the amount of high-density polyethylene added is reduced.
  • the density and preferred examples of the high-density polyethylene are the same as in the case of the B-1 layer 21.
  • linear low density polyethylene polymerized with metallocene catalyst linear low density or medium density polyethylene
  • high density polyethylene matches the density and density required for the mixture. Is set as appropriate.
  • a preferred embodiment of the polyethylene forming the B-2 layer 22 is, for example, 35 to 85% by weight, preferably 50% linear polyethylene polymerized with a single-site catalyst having a density of 0.900 to 0.910 g / cm 3.
  • the density is polymerized in a single site catalyst of 0.900 ⁇ 0.910g / cm 3 was linear polyethylene and (m-PE-LLD), a density of 0.910 ⁇ 0.930g / cm 3 straight
  • the peak of the DSC curve of chain polyethylene (PE-LLD) is a peak lower than the DSC melting point in the region of 85 ° C. to 110 ° C. in addition to the DSC melting point, from 115 to 125 ° C. It is desirable to have at least one peak, and as a result, it is preferable to satisfy any of the following conditions as shown in FIG. A DSC melting point of 120 ° C. or higher and 126 ° C.
  • ⁇ H 85 J / g or higher. Note that ⁇ H is the amount of heat necessary for the entire crystal to melt.
  • the ratio HL / Hp of the peak height Hp of the DSC melting point of 120 ° C. to 126 ° C. and the peak height HL lower than the DSC melting point of 90 ° C. to 105 ° C. is 0.20 to 0.50 (Table 5).
  • the measuring method of DSC is the method shown by description of DSC melting
  • the polyethylene forming the B-2 layer 22 is a mixture of two or more types of polyethylene, for example, a mixture of two or more types of ethylene- ⁇ -olefin copolymers having different MFR and the like is used as the polyethylene. It can also be used.
  • the B-2 layer 22 is made of polyethylene having the above composition, and the DSC melting point and density satisfy the above ranges. Good impact. Thereby, it is possible to prevent the occurrence of problems such as a decrease in transparency and the occurrence of wrinkles after sterilization. Further, in the chemical solution bag described later, the adhesive strength between the B-1 layer 21 and the B-2 layer 22 (interlayer strength), and the adhesive strength between the B-2 layer 22 and the B-3 layer 23 described later. (Interlayer strength) can be made favorable.
  • the thickness of the B-2 layer 22 may be set as appropriate from the viewpoint of the flexibility of the multilayer film (III) and the chemical solution bag formed using the multilayer film (III). On the other hand, it is preferably about 30 to 60%, more preferably about 40 to 50%.
  • the thickness of the B-2 layer 22 is preferably 70 to 110 ⁇ m, more preferably 70 to 100 ⁇ m, for example, when the total thickness of the multilayer film (III) is 180 to 260 ⁇ m.
  • the thickness of the B-2 layer 22 is preferably 0.8 to 1.25 times the thickness of the B-4 layer 24 described later, and particularly preferably the same as the thickness of the B-4 layer 24. It is.
  • the B-3 layer 23 is a layer disposed opposite to the B-1 layer 21 with the B-2 layer 22 in between, and forms a middle layer of a chemical solution bag to be described later.
  • the B-3 layer 23 is made of polyethylene, has a DSC melting point of 120 ° C. or higher and 125 ° C. or lower, and a density of 0.930 to 0.940 g / cm 3 .
  • the heat resistance of the multilayer film (III) is good.
  • the DSC melting point of polyethylene forming the B-3 layer 23 is preferably 123 ° C. or more and 125 ° C. or less in the above range, and the density is preferably 0.934 to 0.00 in the above range. 939 g / cm 3 .
  • a linear polyethylene whose DSC melting point and density satisfy the above ranges can be used alone, or a mixture of two or more kinds of polyethylene, A DSC melting point and density adjusted so as to satisfy the above ranges can be used.
  • the polyethylene forming the B-3 layer 23 is a mixture of two or more kinds of polyethylene
  • examples of the polyethylene forming the mixture include linear low density or medium density polyethylene and high density polyethylene.
  • a mixture in which linear low-density or medium-density polyethylene is mainly used and high-density polyethylene is mixed therewith can be mentioned.
  • the density and preferred example for linear low density or medium density polyethylene the density and preferred example for high density polyethylene, and the mixing ratio of linear low density or medium density polyethylene and high density polyethylene. These are the same as the case where the linear low density or medium density polyethylene and the high density polyethylene are mixed in the B-1 layer 21.
  • linear polyethylene forming the B-3 layer 23 for example, (A) an embodiment consisting only of linear polyethylene having a DSC melting point of 120 ° C. or more and 125 ° C. or less and a density of 0.930 to 0.940 g / cm 3 ; (B) 90 to 95% by weight of linear polyethylene having a DSC melting point of 120 ° C. or more and 125 ° C. or less and a density of 0.930 to 0.940 g / cm 3 , and a density of 0.950 to 0.970 g / cm 3 And a mixture of 5 to 10% by weight of high-density polyethylene.
  • polyethylene When two or more kinds of polyethylene are mixed, for example, a mixture of two or more kinds of ethylene- ⁇ -olefin copolymers having different melt flow rates (MFR) can be used as the polyethylene. Further, by using the high pressure polyethylene in combination with the B-3 layer, it is possible to prevent the film from being thinned by heat sealing or welding of other parts without impairing transparency and flexibility.
  • MFR melt flow rates
  • the thickness of the B-3 layer 23 may be set as appropriate from the viewpoint of the mechanical strength of the multilayer film (III) or a chemical solution bag formed using the multilayer film (III).
  • the total thickness of the multilayer film (III) On the other hand, it is preferably about 5 to 15%.
  • the thickness of the B-3 layer 23 is preferably 10 to 30 ⁇ m, more preferably 15 to 25 ⁇ m, for example, when the total thickness of the multilayer film (III) is 180 to 260 ⁇ m.
  • the B-4 layer 24 is a layer disposed opposite to the B-2 layer 22 with the B-3 layer 23 interposed therebetween, and is a layer forming an inner layer of a chemical solution bag to be described later.
  • the B-4 layer 24 is made of polyethylene, has a DSC melting point of 120 ° C. or higher and 126 ° C. or lower, and a density of 0.910 to 0.920, g / cm 3 . When the DSC melting point and density of the polyethylene forming the B-4 layer 24 of the multilayer film (III) satisfy the above ranges, the flexibility is good.
  • the DSC melting point of the polyethylene forming the B-4 layer 24 is preferably 122 ° C. or higher and 126 ° C. or lower in the above range, and the density is preferably 0.910 to 0.918 g in the above range. / Cm 3 , more preferably 0.910 to 0.915 / cm 3 . If it exceeds the range, the transparency is lowered, and the mechanical strength against impact represented by falling plate strength is lowered. If it is below, it will be difficult to maintain heat resistance, causing deformation and whitening.
  • polyethylene forming the B-4 layer 24 a mixture of two or more kinds of polyethylenes, in which the DSC melting point and density of the mixture are both adjusted to satisfy the above range, can be used. Further, the kind of polyethylene forming the B-4 layer 24, the combination of the mixture, the mixing ratio, and the like are all the same as in the case of the B-2 layer 22 described above.
  • the preferred embodiment of the polyethylene forming the B-4 layer 24 includes the same preferred embodiment as the polyethylene forming the B-2 layer 22.
  • the thickness of the B-4 layer 24 may be set as appropriate from the viewpoint of the flexibility of the multilayer film (III) and the chemical solution bag formed using the multilayer film (III). On the other hand, it is preferably about 30 to 60%, more preferably about 40 to 50%.
  • the thickness of the B-4 layer 24 is preferably 70 to 110 ⁇ m, more preferably 70 to 100 ⁇ m, for example, when the total thickness of the multilayer film (III) is 180 to 260 ⁇ m. Further, the thickness of the B-4 layer 24 is preferably 0.8 to 1.25 times the thickness of the B-2 layer 22, and particularly preferably the same as the thickness of the B-2 layer 22. .
  • the B-5 layer 25 is a layer disposed on the other surface of the multilayer film (III), and forms the innermost layer of a chemical solution bag to be described later.
  • the B-5 layer 25 is made of polyethylene, has a DSC melting point of more than 125 ° C and not more than 130 ° C, and a density of 0.935 to 0.946 g / cm 3. It is.
  • the DSC melting point of the polyethylene forming the B-5 layer 25 is preferably 126 ° C. or more and 129 ° C. or less in the above range, and the density is preferably 0.937 to 0.00 in the above range. 942 g / cm 3 .
  • a polyethylene whose DSC melting point and density satisfy the above ranges can be used alone, or a mixture of two or more types of polyethylene, What was adjusted so that all may satisfy the said range may be used.
  • the polyethylene forming the B-5 layer 25 may be a polyethylene alone having a DSC melting point and density satisfying the above ranges.
  • examples of the polyethylene forming the mixture include linear low density or medium density polyethylene and high density polyethylene.
  • a mixture in which linear low-density or medium-density polyethylene is mainly used and high-density polyethylene is mixed therewith can be mentioned.
  • the density and preferred example for linear low density or medium density polyethylene the density and preferred example for high density polyethylene, and the mixing ratio of linear low density or medium density polyethylene and high density polyethylene. These are the same as the case where the linear low density or medium density polyethylene and the high density polyethylene are mixed in the B-1 layer 21.
  • the preferred embodiment of the polyethylene forming the B-5 layer 25 is the same as the preferred embodiment of the polyethylene forming the B-1 layer 21. Since the multilayer film (III) is a polyethylene having the above composition for the B-5 layer 25, and the DSC melting point and density satisfy the above ranges, the multilayer film (III) has good heat resistance. It will be something. In addition, it is possible to prevent the occurrence of problems such as a decrease in transparency and generation of wrinkles after sterilization. Furthermore, it is possible to impart excellent mechanical strength such as strength against impact to a chemical solution bag described later, and to provide an adhesive strength (interlayer strength) between the B-5 layer 25 and the B-4 layer 24. It can be good.
  • the thickness of the B-5 layer 25 may be set as appropriate from the viewpoint of the mechanical strength of the multilayer film (III) or a chemical solution bag formed using the multilayer film (III).
  • the total thickness of the multilayer film (III) On the other hand, it is preferably about 5 to 25%. Therefore, the thickness of the B-5 layer 25 is preferably 15 to 45 ⁇ m, more preferably 20 to 40 ⁇ m, for example, when the total thickness of the multilayer film (III) is 180 to 260 ⁇ m.
  • the total thickness of the multilayer film (III) is not particularly limited, and depends on the size required for the chemical solution bag (amount of chemical solution), that is, according to the use and purpose of use of the multilayer film (III), It can be set appropriately. Therefore, the present invention is not limited to this. For example, when the capacity of the drug solution bag is about 100 to 1000 mL used for general infusion, the total thickness of the multilayer film (III) is 100 ⁇ 300 ⁇ m, preferably 180 ⁇ 260 ⁇ m.
  • the method for producing the multilayer film (III) is not particularly limited, and examples thereof include a water-cooled or air-cooled coextrusion inflation method, a coextrusion T-die method, a dry lamination method, and an extrusion lamination method.
  • a water-cooled or air-cooled coextrusion inflation method for producing the multilayer film (III)
  • a coextrusion T-die method for forming a multilayer film (III)
  • a dry lamination method a dry lamination method
  • an extrusion lamination method exemplified.
  • the production of the multilayer film (III) must be carried out at a temperature at which the resin forming each layer melts.
  • the production temperature of the multilayer film (III) is not limited to this, but is preferably 150 to 250 ° C., more preferably 170 to 200 ° C.
  • the multilayer film (III) is excellent in properties such as transparency, flexibility, heat resistance to high-temperature sterilization, and mechanical strength. Therefore, the multilayer film (III) is suitable as a material for forming a chemical solution bag such as an infusion bag.
  • a chemical solution bag 26 is formed, and the multilayer film (III) shown in FIG. 47 is formed with the B-1 layer 21 as an outer layer and the B-5 layer 25 as an inner layer. Further, the chemical solution bag 26 includes a peripheral seal portion 29 formed by overlapping the B-5 layers 25 of the two multilayer films (III) 27 and 28 and welding the peripheral portions thereof.
  • the peripheral seal portion 29 is formed, for example, by forming the multilayer film (III) into a bag shape or a tube shape by an inflation method so that the B-5 layer 25 is on the inside, and the bag shape or tube thus obtained is used. It can also be formed by welding the peripheral portion of the multilayer film (III).
  • the accommodating part 30 of the chemical solution bag 26 is partitioned by a peripheral seal part 29.
  • This chemical solution bag 26 is a single-chamber bag provided with one accommodating portion 30 inside.
  • a cylindrical member 31 for allowing a chemical solution to flow in and out between the container 30 and the outside of the chemical solution bag 26 is formed by two multilayer films (III) 27 and 28 in a part of the peripheral seal portion 29. It is welded in a sandwiched state.
  • the peripheral seal portion 29 is formed by stacking two multilayer films (III) 27 and 28 so that each B-1 layer 21 becomes an outer layer and each B-5 layer 25 becomes an inner layer, and then the layers are overlapped in this way.
  • the surface of each of the B-1 layers 21 at the peripheral portions of the multilayer films (III) 27 and 28 is formed by heat-pressing with a welding die.
  • the conditions for thermocompression bonding with the welding mold are not particularly limited.
  • the mold temperature is preferably 130 to 200 ° C., more preferably 150 to 180 ° C.
  • pressure is preferably 0.1 to 0.8 MPa, more preferably 0.15 to 0.5 MPa
  • pressurization time is preferably 1 to 5 seconds, more preferably 1. 5 to 3 seconds.
  • the cylindrical member 31 is not particularly limited, and a known cylindrical member can be applied.
  • the cylindrical member 31 causes the chemical solution stored in the storage unit 30 of the chemical solution bag 26 to flow out of the chemical solution bag 26, or flows the chemical solution into the storage unit 30 from the outside of the chemical solution bag 26.
  • a sealing body for example, a rubber plug or the like
  • a hollow needle or the like for sealing the cylindrical member 31 is disposed therein.
  • the method for accommodating and sealing the chemical solution and other accommodated items in the accommodating portion 30 is not particularly limited, and a known method can be adopted. Further, after storing the chemical solution and other stored items in the storage unit 30 and sealing, the chemical solution bag 26 is sterilized.
  • the sterilization method is not particularly limited, and a known heat sterilization method such as high-pressure steam sterilization or hot water shower sterilization can be employed.
  • the sterilization temperature in these heat sterilization processes is generally about 105 to 110 ° C., but the sterilization temperature can also be set to 118 to 121 ° C. according to the type of chemical solution, usage, and usage environment. Since the said chemical
  • the pellets sandwiched between the sheets are left in an atmosphere of 200 ° C. for 2 minutes and then pressed at 200 ° C. for 10 seconds.
  • the melted sample is immediately sandwiched between metal plates cooled with tap water so as to have a thickness of 0.1 to 0.5 mm and cooled for 1 minute.
  • the sample is cut out with a razor, and about 5 mg of a measurement sample is weighed.
  • the cut measurement sample is packed in an aluminum pan, and heated from 30 ° C. to 200 ° C. at a heating rate of 500 ° C./min by a “Diamond DSC apparatus” manufactured by PerkinElmer, and held at 200 ° C. for 10 minutes. Thereafter, the temperature was lowered to 30 ° C.
  • Density Sample polyethylene is put into a melt indexer set at 200 ° C., and a strand is collected. The strand is dropped directly onto the metal plate. The collected strand is annealed in boiling water for 30 minutes, and then cooled to room temperature (30 ° C.) over 1 hour. Thereafter, the strand is taken out and cut into a length of 2 to 3 mm.
  • copolymerization was carried out under the conditions of a polymerization temperature of 170 ° C., a total pressure of 2.8 MPa, and a residence time of 1.5 hours to obtain an ethylene-1-butene copolymer represented by PE-L.
  • ethylene 15 was continuously fed into the polymerization vessel at a rate of kg / hr, 4-methyl-1-pentene at 2 kg / hr, and hydrogen at a rate of 17 L / hr. Then, by conducting copolymerization under the conditions of a polymerization temperature of 170 ° C., a total pressure of 2.8 MPa, and a residence time of 1.5 hours, an ethylene-4-methyl-1-pentene copolymer represented by PE-LLD is obtained. Obtained.
  • (3) PE-HD Using a 200 L continuous polymerization reactor, the dehydrated and purified solvent hexane was 56 L / hr, triethylaluminum was 9 mmol / hr, and the same supported catalyst as the PE-LLD was converted to Ti and continuously at a rate of 0.18 mmol / hr. Supplied. At the same time, ethylene was continuously supplied at a rate of 10.5 kg / hr and hydrogen at 52 L / hr in the polymerization vessel.
  • ethylene was continuously supplied at a rate of 28 kg / hr and hydrogen at a rate of 160 L / hr in the polymerization vessel. Then, copolymerization was carried out under the conditions of a polymerization temperature of 85 ° C., a total pressure of 0.6 MPa, and a residence time of 2 hours to obtain a high-density polyethylene polymer represented by PE-HD (2).
  • Production of m-PE-LLD (1) Preparation of Solid Catalyst 10 kg of silica (SiO 2 ) dried at 250 ° C.
  • the obtained solid component was washed twice with toluene and then resuspended in 100 L of toluene to make the total amount 160 L.
  • an ethylene-1-hexene copolymer represented by m-PE-LLD was obtained.
  • the physical properties of the polymer thus obtained are shown in Table 1 and FIGS.
  • the density shown in Table 1 is a measurement result by the above-described density measurement method for each polymer.
  • the DSC charts shown in the density diagrams 5 to 10 are measurement results obtained by the above-described DSC measurement method for each polymer, and the DSC melting point is displayed.
  • the peak temperature is shown in the upper measurement line (Hp).
  • the lower line (HL) represents the height of the central temperature of a population of polyethylene crystals having a low melting point.
  • the horizontal axis is temperature, which means the thickness of polyethylene crystals. That is, the thicker the crystal, the higher the temperature.
  • the vertical axis represents the number of crystals and indicates the number of crystals that melt at that temperature.
  • thick polyethylene crystals (a crystal group indicated by Hp) tend to deteriorate the transparency (flexibility) although heat resistance is good
  • thin polyethylene crystals (HL The crystal group shown) has poor heat resistance but good transparency (flexibility). Therefore, in the present invention, transparency and flexibility are ensured by a crystal group of HL that melts at a low temperature, and heat resistance is ensured by a crystal group of HP that melts at a high temperature. That is, transparency and heat resistance are simultaneously satisfied by sharing the role of the resin constituting the film. Note that the depression between HL and HP means that there are no half-pitch polyethylene crystals.
  • HL / Hp in each table is an index of the balance between HL and Hp.
  • Tables 2 to 8 show the composition and physical properties of the resin material forming each layer of the multilayer film, together with their abbreviations. ⁇ Examples and Comparative Examples> Examples 1-28 and Comparative Examples 1-17 (Multilayer Film (II)) 1. Production of Multilayer Film A multilayer film (3-layer film) having the layer constitution shown in Tables 9 to 25 below was produced by three-layer coextrusion water-cooled inflation molding. The abbreviations of the resin materials shown in Tables 9 to 25 below are as described above.
  • the thickness of each layer of the multilayer film was set to the values shown in Tables 9 to 25 below. Specifically, the thickness of the resin material used as a raw material was appropriately selected so that the thickness of each layer after production by three-layer coextrusion inflation molding would have the values shown in Tables 9 to 25 below.
  • the multilayer film of Example 1 uses “1-5”, “2-1”, and “1-6” as resin materials in the order of the A-1 layer to the A-3 layer. Further, the resin material thickness of each layer was selected and used in the order of 20 ⁇ m, 200 ⁇ m, and 20 ⁇ m after molding by the three-layer coextrusion inflation molding method. 2. Manufacture of chemical solution bag Furthermore, the chemical solution bag 6 shown in FIG.
  • the peripheral seal portion 9 was formed by heat-welding two multilayer films 4 and 5 with a welding die (see FIG. 3).
  • the conditions for heat welding of the peripheral seal portion 9 were a mold temperature of 135 ° C., a pressure of 0.4 MPa, and 1.5 seconds.
  • the size of the medical solution bag 6 is such that the capacity of the storage unit 10 is about 1000 mL, the vertical length (L1) of the storage unit 10 is 30.5 cm, and the horizontal width (W1) is 21.3 cm. (See FIG. 2).
  • the drop bag test chemical solution bag has the same capacity as that described above, and the capacity of the accommodating part 10 is about 500 mL, the longitudinal length (L1) of the accommodating part 10 is 20.0 cm, and the lateral direction is Examples 29 to 55 and Comparative Examples 18 to 34 having a width (W1) of 12.5 cm (multilayer film (III)) 1.
  • the capacity of the accommodating part 10 is about 500 mL
  • the longitudinal length (L1) of the accommodating part 10 is 20.0 cm
  • the lateral direction is Examples 29 to 55 and Comparative Examples 18 to 34 having a width (W1) of 12.5 cm (multilayer film (III)) 1.
  • Manufacture of multilayer film A multilayer film (5-layer film) having the layer constitution shown in Tables 26 to 33 below was manufactured by co-extrusion inflation molding with 5 layers. The abbreviations for the resin materials shown in Tables 26 to 33 below are as described above.
  • the thickness of each layer of the multilayer film was set to the values shown in Tables 26 to 33 below. Specifically, the thickness of the resin material used as a raw material was appropriately selected so that the thickness of each layer after production by five-layer coextrusion inflation molding had values shown in Tables 26 to 33 below.
  • resin materials “1-1”, “2-1” are used as resin materials in the order of B-1 (first layer) to B-5 layer (fifth layer). ”,“ 3-1 ”,“ 2-1 ”, and“ 1-2 ”, and the thickness of the resin material of each layer is 20 ⁇ m in order after molding by the five-layer coextrusion inflation molding method.
  • the chemical solution bag 26 shown in FIG. 48 was manufactured from the obtained film.
  • the peripheral seal portion 29 was formed by heat-welding two multilayer films 27 and 28 with a welding die.
  • the heat sealing conditions for the peripheral seal part 29 were a mold temperature of 135 ° C., a pressure of 0.4 MPa, and 1.5 seconds.
  • the size of the medical solution bag 26 is such that the storage capacity of the storage section 30 is about 1000 mL, the vertical length (L2) of the storage section 30 is 30.5 cm, and the horizontal width (W2) is 21.3 cm. (See FIG. 48).
  • the drop bag test chemical bag has the same capacity as the above conditions, and the capacity of the accommodating part 30 is about 500 mL, the longitudinal length (L2) of the accommodating part 30 is 20.0 cm, and the lateral direction is The width (W2) was 12.5 cm ⁇ Evaluation test of chemical solution bag>
  • the container portions 10 and 30 of the drug solution bags 6 and 26 obtained in the above examples and comparative examples are filled and sealed with 500 mL and 1000 mL of water for injection, and the drug solution bag 6 is autoclaved at 118 ° C. for 30 minutes.
  • the chemical bag 26 was subjected to high-pressure shower sterilization at 121 ° C. for 15 minutes. 1.
  • a multilayer film was cut out from the accommodating portions 10 and 30 of the chemical solution bags 6 and 26 to prepare a sample piece. After about 48 hours, this sample piece was manufactured by Shimadzu Corporation, Shimadzu spectrophotometer. Using a meter (UV-1200, P / N 206-61700), the light transmittance (%) in water at 450 nm was measured, and the transparency of the multilayer film was evaluated based on the measurement result.
  • the transparency of the multilayer film is good (A) when the light transmittance at 450 nm is 75% or more for the sample piece, and is slightly inferior when it is 70% or more and less than 75%. It was set as (B) which is sufficient above, and when it was less than 70%, it was set as reject (C).
  • the evaluation results are shown in Tables 9 to 33 below. 2. Evaluation of the presence or absence of whitening and wrinkles Further, after the steam sterilization treatment, the presence or absence of whitening of the head space portion (the portion not in contact with the content liquid in the accommodating portions 10 and 30) of the chemical solution bags 6 and 26, The presence or absence of 26 wrinkles was visually observed.
  • Oxygen permeability The surface of the chemical solution bag after the steam sterilization treatment was dehydrated with warm air of about 40 ° C. for 1 minute. Furthermore, it was left in an environment of temperature 25 ° C. and humidity 60% RH, and the oxygen concentration of the water for injection in the drug solution bag was measured with a nondestructive oxygen concentration meter (product name “Fibox 3” manufactured by PreSens). The oxygen concentration was measured after 6 hours from the steam sterilization, and then every day after the steam sterilization. For measurement of oxygen permeability, a trade name “OX-TRAN (registered trademark)” manufactured by MOCON was used. 5).
  • Water vapor transmission rate The water vapor transmission rate of the chemical solution bag after the sterilization treatment is stipulated in JIS K 7129 (1992) “Test method for water vapor transmission rate of plastic film and sheet (instrument measurement method)” (Method A (moisture sensitive sensor method)). Measured according to As a measuring instrument, a model “L80-5000” manufactured by Lissy was used. The measurement conditions were 40 ° C. and 90% RH. 6). Discussion Regarding the examples and comparative examples of the multilayer film (II), the chemical solution bags of Examples 1 to 5 (Tables 9 and 10) use the resin material (2-1) having the same composition as the A-2 layer. In this example, resin materials having different compositions are used as the first layer and the A-3 layer. The transparency of the multilayer film of these chemical solution bags was practically sufficient (A or B), and no whitening or wrinkles in the head space portion were observed.
  • the density of the polyethylene mixture constituting the A-2 layer is 0.910 to 0.916 g / cm 3 .
  • the composition of the polyethylene mixture is as follows: linear polyethylene having a density of 0.919 g / cm 3 (PE-LLD in Table 1) 10 to 30% by weight, high density polyethylene having a density of 0.959 g / cm 3 (PE-HD in Table 1) 5 to 15% by weight, and 60 to 80% by weight of polyethylene polymerized with metallocene catalyst (m-PE-LLD in Table 1) having a density of 0.904 g / cm 3 .
  • the transparency of the multilayer film is good (A) or (B), and the falling plate strength, in which the density of the A-2 layer is dominant, is all (A). Further, no whitening or wrinkles in the headspace portion were observed.
  • the shape of the DSC curve of the A-2 layer is lower than the DSC melting point peak in the range of 120 to 126 ° C. and lower than the DSC melting point peak in the range of 90 to 105 ° C., as is apparent from FIGS. Has a second peak.
  • ⁇ H is 85 J / g or more. Further, the value of HL / Hp satisfies 0.20 to 0.50. Thereby, transparency and falling plate strength are compatible.
  • the composition of the polyethylene mixture is as follows: linear polyethylene having a density of 0.919 g / cm 3 (PE-LLD in Table 1) 0 to 40% by weight, high density polyethylene having a density of 0.959 g / cm 3 (PE-HD in Table 1) 5 to 15% by weight, and metallocene-catalyzed polyethylene (m-PE-LLD in Table 1) having a density of 0.904 g / cm 3 and consisting of 50 to 85% by weight. .
  • the transparency of the multilayer film is good (A) or (B), and the falling plate strength is also good (A) or (B). Further, no whitening or wrinkles in the headspace portion were observed.
  • the DSC curve shape of the A-2 layer is lower than the DSC melting point peak in the range of 120 to 126 ° C. and lower than the DSC melting point peak in the range of 90 to 105 ° C., as is apparent from FIGS. Has a second peak.
  • ⁇ H is 85 J / g or more. Further, the value of HL / Hp satisfies 0.20 to 0.50. Thereby, transparency and falling plate strength are compatible.
  • the composition of the polyethylene mixture is as follows: linear polyethylene having a density of 0.919 g / cm 3 (PE-LLD in Table 1) 40 to 55% by weight, high density polyethylene having a density of 0.959 g / cm 3 (PE-HD in Table 1) 5-15% by weight and 35-50% by weight of polyethylene polymerized with metallocene catalyst (m-PE-LLD in Table 1) having a density of 0.904 g / cm 3 .
  • the transparency of the multilayer film is good (A) or (B), and the falling plate strength is also (A) or (B). Further, no whitening or wrinkles in the headspace portion were observed.
  • the shape of the DSC curve of the A-2 layer is lower than the peak of the DSC melting point in the range of 120 to 126 ° C. and lower than the peak of the DSC melting point in the range of 90 to 105 ° C. Has a second peak.
  • ⁇ H is 85 J / g or more. Further, the value of HL / Hp satisfies 0.20 to 0.50. Thereby, transparency and falling plate strength are compatible.
  • the content of high-density polyethylene (PE-HD in Table 1) in the A-2 layer is 0% by weight. Therefore, the DSC melting point of the A-2 layer is 117.2 ° C. (the DSC melting point of the A-2 layer in the present invention is 120 to 126 ° C.) (see FIG. 34), and wrinkles are generated.
  • Comparative Example 7 the content of polyethylene polymerized with a metallocene catalyst (m-PE-LLD in Table 1) in the A-2 layer is 30% by weight. Therefore, in the DSC curve of the A-2 layer (see FIG. 38), the temperature of the second peak that is lower than the peak of the DSC melting point is 107.7 ° C. (the preferred range in the present invention is 90 to 105 ° C.). Transparency is unacceptable and falling plate strength is low.
  • the density of the A-2 layer is 0.908 g / cm 3, which is lower than that of the example. Therefore, ⁇ H is 80.4 J / g (the preferred range in the present invention is 85 J / g or more), and wrinkles are generated.
  • the chemical solution bags of Examples 29 to 32 are examples relating to the B-1 layer and the B-5 layer. In any case, the transparency of the multilayer film was good (A), and no whitening or wrinkles in the headspace portion were observed.
  • the chemical solution bags of Comparative Examples 22 to 23 (Table 31), at least one of the evaluation items of transparency of the multilayer film, whitening of the head space portion, and wrinkles of the chemical solution bag was insufficient.
  • the chemical solution bags of Examples 34 to 42 (Tables 27 and 28) are the most preferable examples among the examples relating to the B-2 layer and the B-4 layer.
  • the density of the mixture is from 0.910 to 0.916 g / cm 3
  • the composition is from 60 to 60 (polyethylene (m-PE-LLD in Table 1)) polymerized with a single-site catalyst having a density of 0.904 g / cm 3.
  • High-density polyethylene having a linear polyethylene (PE-LLD of Table 1) of 80 to 30% by weight and a density of 0.919 g / cm 3 (PE-LLD of Table 1) of 10 to 30% by weight and a density of 0.959 g / cm 3 ) 5 to 15% by weight.
  • the transparency of the multilayer film is good (A) or (B), and the falling plate strength, in which the density of the B-2 layer and B-4 layer is dominant, is all (A). Further, no whitening or wrinkles in the headspace portion were observed.
  • the DSC curve has a DSC melting point of 120 ° C. or higher and 126 ° C. or lower and a peak lower than the DSC melting point of 90 ° C. or higher and 105 ° C. or lower.
  • ⁇ H is also 85 J / g or more.
  • the value of HL / Hp also satisfies 0.20 to 0.50. Thereby, transparency and falling plate strength are compatible.
  • the chemical solution bags of Examples 43 to 48 are the next preferred examples of the B-2 layer and the B-4 layer.
  • the density of the mixture is 0.910 to 0.918 g / cm 3
  • the composition is 50 to 50% of polyethylene (m-PE-LLD in Table 1) polymerized with a single site catalyst having a density of 0.904 g / cm 3.
  • Linear polyethylene (85% by weight, density 0.919 g / cm 3 ) (PE-LLD in Table 1) 0 to 40% by weight, 0.959 g / cm 3 high density polyethylene (PE-HD in Table 1) ) 5 to 15% by weight.
  • the transparency of the multilayer film is good (A) or (B), and the falling plate strength is also good (A) or (B). Further, no whitening or wrinkles in the headspace portion were observed.
  • the DSC curve has a DSC melting point of 120 ° C. or higher and lower than 126 ° C. and a peak lower than the DSC melting point of 90 ° C. or higher and 105 ° C. or lower.
  • ⁇ H is 85 J / g or more, and the value of HL / Hp also satisfies 0.20 to 0.50. Thereby, transparency and falling plate strength are compatible.
  • the chemical solution bags of Examples 49 to 52 are examples in a preferable range among the examples relating to the B-2 layer and the B-4 layer.
  • the density of the mixture is 0.910 to 0.920 g / cm 3
  • the composition thereof is a polyethylene (m-PE-LLD in Table 1) 35 to 35 polymerized with a single site catalyst having a density of 0.904 g / cm 3.
  • Linear polyethylene (85% by weight, 0.919 g / cm 3 ) (PE-LLD in Table 1) 0-55% by weight, 0.959 g / cm 3 high density polyethylene (PE-HD in Table 1) ) 5 to 15% by weight.
  • the transparency of the multilayer film is good (A) or (B), and the falling plate strength is also (A) or (B). Further, no whitening or wrinkles in the headspace portion were observed.
  • the DSC curve has a DSC melting point of 120 ° C. or higher and lower than 126 ° C. and a peak lower than the DSC melting point of 90 ° C. or higher and 105 ° C. or lower.
  • ⁇ H is 85 J / g or more, and the value of HL / Hp also satisfies 0.20 to 0.50. Thereby, transparency and falling plate strength are compatible.
  • the chemical solution bags of Examples 53 and 54 are examples in which the ratio of the thickness of each layer is changed among the examples related to the B-2 layer and the B-4 layer. In any case, the transparency of the multilayer film is good (A) or (B), and the falling plate strength is good (A). Further, no whitening or wrinkles in the headspace portion were observed.
  • the chemical solution bag of Example 55 is an example in which high-pressure polyethylene (HP-LDPE in Table 1) is used in combination with the B-3 layer. In this example, due to the effect of the high-pressure polyethylene, the effect of reducing the thickness of the seal at the time of peripheral sealing and reducing the generation of pinholes that can be formed in the film by welding the mouth member can be expected.
  • the chemical solution bags of Comparative Examples 24 to 34 failed at least one of the evaluation items of the transparency of the multilayer film, the whitening of the head space, the wrinkles of the chemical solution bag, and the falling plate test.
  • Met For example, in FIG. 34 (Comparative Example 24), since the high-density polyethylene (PE-HD in Table 1) is 0% by weight, the DSC melting point is 117 ° C. (preferable range is 120 ° C. or higher and 126 ° C. or lower). appear.
  • FIG. 38 shows that the peak lower than the DSC melting point is 108 because polyethylene (m-PE-LLD in Table 1) polymerized with a single-site catalyst having a density of 0.904 g / cm 3 is 30% by weight. (Preferable temperature is 105 ° C. or lower), transparency is unacceptable, and falling plate strength is low.
  • ⁇ H is 80 J / g (preferred value is 85 J / g or more), and wrinkles are generated.
  • Manufacture of multilayer film A plurality of combinations of the A-1, A-2 and A-3 layers exemplified in the previous embodiment are selected, and a multilayer film having a three-layer structure having a thickness of 240 ⁇ m is formed in three layers. A plurality of products were produced by extrusion inflation molding. 2. Manufacture of chemical solution bag Furthermore, the chemical solution bag 6 shown in FIG. 2 was manufactured with the obtained film.
  • the peripheral seal portion 9 was formed by heat-welding two multilayer films 4 and 5 with a welding die (see FIG. 3). The conditions for heat welding of the peripheral seal portion 9 were a mold temperature of 135 ° C., a pressure of 0.4 MPa, and 1.5 seconds.
  • the size of the medical solution bag 6 is such that the capacity of the storage unit 10 is about 1000 mL, the vertical length (L1) of the storage unit 10 is 30.5 cm, and the horizontal width (W1) is 21.3 cm. (See FIG. 2).
  • the container 10 of the chemical solution bag 6 obtained in the above test example was filled with 500 mL and 1000 mL of water for injection, sealed, and subjected to high pressure shower sterilization at 121 ° C. for 15 minutes.
  • Oxygen permeability The oxygen permeability of the chemical solution bag was measured by the same method as the oxygen permeability measurement method in the above examples.
  • (2) Water vapor permeability The water vapor permeability of the chemical solution bag was measured by the same method as the method for measuring the water vapor permeability in the above Examples.
  • a multilayer film having a three-layer structure of A-1 layer 1, A-2 layer 2 and A-3 layer 3, and B-1 layer 21, B-2 layer 22, B-3 layer 23, the multilayer film composed of the B-4 layer 24 and the B-5 layer 25, and the chemical solution bags 6 and 26 formed using these multilayer films are taken as an example.

Abstract

 本発明の多層フィルムは、最外層と最内層とが、1~3つの層から構成される中間層を介して積層されている多層フィルムであって、前記中間層が、0.910~0.930g/cmの密度を有する直鎖状ポリエチレン0~55重量%と、0.950~0.970g/cmの密度を有する高密度ポリエチレン5~15重量%と、0.900~0.910g/cmの密度を有する、シングルサイト触媒で重合された直鎖状ポリエチレン35~85重量%とからなり、かつ前記最外層および前記最内層よりも密度が低い層を少なくとも1層含み、前記最外層および前記最内層が、ポリエチレンまたは2種以上のポリエチレンの混合物からなることを特徴とする。

Description

多層フィルムおよびそのフィルムで形成したバッグ
 本発明は、多層フィルムおよびその多層フィルムで形成したバッグに関する。
 近年、輸液などの薬液を収容するための容器としては、柔軟なプラスチックフィルムからなる薬液バッグが主流である。この種の薬液バッグは、取扱いやすく、廃棄が容易であるという利点を有している。そして、この種の薬液バッグは、薬液と直接に接触するものであることから、安全性が確立されているポリエチレン、ポリプロピレンなどのポリオレフィンで形成されたものが汎用されている。
 特許文献1には、密度0.920~0.930g/cmのメタロセン触媒を使用して重合される線状低密度ポリエチレン、またはエチレン-α-オレフィン共重合体(これらを、ここでは「メタロセンポリエチレン」という。)により形成される外層と、密度0.890~0.920g/cmのメタロセンポリエチレンと、密度0.920~0.930g/cmのメタロセンポリエチレンと、密度0.910~0.930g/cmのチーグラー・ナッタ触媒により重合される線状低密度ポリエチレンまたはエチレン-α-オレフィン共重合体とからなる重合体組成物により形成される内層との積層体からなる医療用容器が開示されている。
 また、特許文献2には、密度0.928g/cm以上のメタロセン触媒系直鎖状ポリエチレン45~75重量%と、高圧法低密度ポリエチレン5~35重量%と、密度0.91g/cm以下のメタロセン触媒系直鎖状ポリエチレン15~45重量%とを含む重合体組成物から形成される耐熱性シートと、この耐熱性シートを用いて形成された輸液バッグとが開示されている。
 特許文献3には、プロピレン-α-オレフィンランダムコポリマーとプロピレンホモポリマーとの混合物からなるシール層と、このシール層の表面に形成され、プロピレン・α-オレフィンランダムコポリマーなどとエチレン・α-オレフィン共重合体エラストマーとの混合物からなる第1柔軟層と、この第1柔軟層の表面に形成され、プロピレンホモポリマー、ポリ環状オレフィンなどからなる補強層と、この補強層の表面に形成され、上記第1柔軟層と同様の混合物からなる第2柔軟層と、この第2柔軟層の表面に形成され、プロピレンホモポリマー、プロピレン・α-オレフィンランダムコポリマーなどからなる最外層とを備える5層構造のプラスチックフィルムと、このプラスチックフィルムを用いて形成された容器とが開示されている。
特開2002-238975号公報 特開2001-172441号公報 特開2006-21504号公報
 しかるに、輸液などの薬液は、通常、薬液バッグに収容、密封された状態で、高圧蒸気滅菌、熱水シャワー滅菌などの加熱滅菌処理が施される。これら加熱滅菌処理の温度条件は、一般に、105~110℃程度であるが、薬液の種類、用法、使用環境などにより、118~121℃の高温条件下での滅菌処理が必要になる場合もある。
 しかしながら、薬液バッグが一般的なポリエチレンで作製されている場合には、薬液バッグの耐熱性が低くなる傾向があり、高温条件下の滅菌処理によって薬液バッグの変形、破損、透明性の低下といった不具合が生じる。
 しかも、このような不具合は、特許文献1および2に記載の薬液バッグ(医療用容器、輸液バッグ)のように、ポリエチレンとして、メタロセン触媒で重合された直鎖状低密度ポリエチレンを使用した場合であっても、十分な解決を図ることができない。それゆえ、これら特許文献1および2に記載の容器は、118~121℃での滅菌処理に供することができない。
 また、薬液バッグが一般的なポリプロピレンで形成されている場合には、薬液バッグの柔軟性が低下する傾向がある。また、ポリプロピレンの特性として、低温での衝撃強度が劣り、低温状態でのバッグの搬送中に受ける衝撃によりバッグが破損する場合がある。
 しかも、このような不具合は、特許文献3に記載の容器のように、多層フィルム中に、プロピレン系ポリマーとエチレン系ポリマーとの混合物からなる柔軟層を設けた場合であっても、十分に解決することができない。それゆえ、特許文献3に記載の容器は、柔軟性と低温での衝撃強度の点で難がある。
 このため、薬液バッグの柔軟性、透明性、低温での衝撃強度などの基本的な性能を維持しながら、耐熱性を向上させることが求められている。
 本発明の目的は、118~121℃での滅菌処理に耐え得る優れた耐熱性を備え、かかる滅菌処理後に柔軟性や透明性を維持することができる多層フィルムと、そのフィルムで形成したバッグ、特に薬液を収容するバックを提供することにある。
 上記目的を達成するために、本発明の多層フィルムは、第1の態様として、最外層と最内層とが、1~3つの層から構成される中間層を介して積層されている多層フィルムであって、前記中間層が、0.910~0.930g/cmの密度を有する直鎖状ポリエチレン0~55重量%と、0.950~0.970g/cmの密度を有する高密度ポリエチレン5~15重量%と、0.900~0.910g/cmの密度を有する、シングルサイト触媒で重合された直鎖状ポリエチレン35~85重量%とからなり、かつ前記最外層および前記最内層よりも密度が低い層を少なくとも1層含み、前記最外層および前記最内層が、ポリエチレンまたは2種以上のポリエチレンの混合物からなることを特徴としている。
 また、本発明の多層フィルムは、第2の態様として、前記最外層がA-1層であり、前記中間層がA-2層であり、前記最内層がA-3層であって、前記A-1層、前記A-2層および前記A-3層がこの順に積層されることにより形成された積層構造を有する3層フィルムであってもよく、その場合、前記A-1層は、126℃を上回り132℃以下のDSC融点および前記A-2層の密度よりも高い密度を有するポリエチレンまたは2種以上のポリエチレンの混合物からなり、前記A-3層は、125℃を上回り130℃以下のDSC融点および前記A-2層の密度よりも高い密度を有するポリエチレンまたは2種以上のポリエチレンの混合物からなり、前記A-2層は、120~126℃のDSC融点および0.910~0.920g/cmを有するポリエチレン混合物からなり、前記A-2層を構成する前記ポリエチレン混合物は、0.910~0.930g/cmの密度を有する直鎖状ポリエチレン0~55重量%と、0.950~0.970g/cmの密度を有する高密度ポリエチレン5~15重量%と、0.900~0.910g/cmの密度を有する、シングルサイト触媒で重合された直鎖状ポリエチレン35~85重量%とからなり、フィルム全体の厚さが180~280μmであることが好適である。
 また、本発明の多層フィルムは、第3の態様として、前記最外層がB-1層であり、前記中間層がB-2層~B-4層の3層であり、前記最内層がB-5層であって、前記B-1層、前記B-2層、前記B-3層、前記B-4層および前記B-5層がこの順に積層されることにより形成された積層構造を有する5層フィルムであってもよく、その場合、前記B-1層、前記B-3層および前記B-5層が、前記B-2層および前記B-4層よりも密度の高いポリエチレンからなり、前記B-2層および前記B-4層が、120℃以上126℃以下のDSC融点および0.910~0.920g/cmの密度を有するポリエチレン混合物からなり、前記B-2層および前記B-4層を構成する前記ポリエチレン混合物は、0.900~0.910g/cmの密度を有する、シングルサイト触媒で重合された直鎖状ポリエチレン35~85重量%と、0.910~0.930g/cmの密度を有する直鎖状ポリエチレン0~55重量%と、0.950~0.970g/cmの密度を有する高密度ポリエチレン5~15重量%とからなることが好適である。
 第1~第3の態様の本発明の多層フィルムによれば、118~121℃の滅菌処理後においても、透明性の低下を抑制でき、適度な柔軟性を維持することができる。
 また、第2の態様の本発明の多層フィルムによれば、A-1層およびA-3層において、滅菌処理による多層フィルムの透明性の低下、および熱変形を抑制するという観点より、また、A-2層において、多層フィルムに適度な柔軟性、耐衝撃性および透明性を付与するという観点より、各層のDSC融点および密度のそれぞれが、特定の範囲に設定されている。
 このため、第2の態様の多層フィルムによれば、耐熱性を極めて優れたものとすることができる。また、この多層フィルムを用いて形成されたバッグを118~121℃での滅菌処理に供することができる。しかも、第2の態様の多層フィルムによれば、その柔軟性や透明性、耐衝撃性を極めて良好なものとすることができ、118~121℃での滅菌処理後においても、適度な柔軟性と優れた透明性と耐衝撃性を維持することができる。
 また、第2の態様の多層フィルムでは、前記A-1層の密度が、0.940~0.951g/cmであり、前記A-3層の密度が、0.937~0.946g/cmであることが好適である。
 また、第2の態様の多層フィルムでは、前記A-1層は、120~125℃のDSC融点および0.930~0.940g/cmの密度を有する直鎖状ポリエチレン55~85重量%と、0.950~0.970g/cmの密度を有する高密度ポリエチレン15~45重量%とからなり、前記A-3層は、120~125℃のDSC融点および0.930~0.940g/cmの密度を有する直鎖状ポリエチレン70~85重量%と、0.950~0.970g/cmの密度を有する高密度ポリエチレン15~30重量%とからなるポリエチレン混合物であることが好適である。
 この態様によれば、透明性を損なわずに118~121℃での滅菌処理に対する耐熱性をさらに向上させることができる。
 また、第2の態様の多層フィルムでは、前記A-1層の厚さが10~30μmであり、前記A-2層の厚さが140~250μmであり、かつ前記A-3層の厚さが15~45μmであることが好適である。
 A-1~A-3層の各層の厚さを上記範囲に設定することにより、多層フィルムや、この多層フィルムを用いて形成されるバッグの柔軟性、透明性を維持しつつ、十分な耐衝撃性を付与することができる。
 また、第2の態様の多層フィルムでは、前記A-2層を構成する前記ポリエチレン混合物のDSC曲線が、120~126℃の範囲にDSC融点ピークと、90~105℃の範囲に前記DSC融点のピークよりも低い第2ピークとを少なくとも有し、前記DSC融点のピークの高さHpに対する前記第2のピークの高さHLの比率(HL/Hp)が、0.20~0.50であることが好適である。
 また、上記目的を達成するために、本発明のバッグは、第2の態様の多層フィルムを用い、前記A-1層が外層となり、前記A-3層が内層となるように形成されていることを特徴としている。
 上記バッグは、第2の態様の多層フィルムを用いて形成されているため、耐熱性が極めて優れており、118~121℃での滅菌処理に供することができる。さらに、柔軟性や透明性、耐衝撃性が極めて良好なものとなり、118~121℃での滅菌処理後においても、適度な柔軟性と、優れた透明性、耐衝撃性とを維持することができる。

 また、第3の態様の本発明の多層フィルムによれば、B-1層からB-5層の全ての層において、直鎖状ポリエチレンが用いられている。さらに、B-1層およびB-5層では、滅菌処理による多層フィルムの透明性の低下、および熱変形を抑制するという観点より、B-2層およびB-4層では、多層フィルムに適度な柔軟性、対衝撃性および透明性を付与するという観点より、ならびに、B-3層では、多層フィルムの熱変形を抑制するという観点より、各層のDSC融点や密度が、それぞれ特定の範囲に設定されている。 このため、第3の態様の多層フィルムによれば、耐熱性を極めて優れたものとすることができ、この多層フィルムを用いて形成されたバッグを118~121℃での滅菌処理に供することができる。しかも、上記多層フィルムによれば、その柔軟性や透明性を極めて良好なものとすることができ、118~121℃での滅菌処理後においても、適度な柔軟性と、優れた透明性とを維持することができる。
 また、B-3層に高圧法ポリエチレンを併用することにより、透明性や柔軟性を損なうことなく、ヒートシールや他の部品の溶着によるフィルムの薄膜化を防止することもできる。
 また、第3の態様の多層フィルムでは、前記B-1層および前記B-5層は、125℃を上回り130℃以下のDSC融点および0.935~0.946g/cmの密度を有し、前記B-3層は、120℃以上125℃以下のDSC融点および0.930~0.940g/cmの密度を有することが好適である。
 また、第3の態様の多層フィルムでは、前記B-1層およびB-5層を構成する前記ポリエチレンは、120℃以上125℃以下のDSC融点および0.930~0.940g/cmの密度を有する直鎖状ポリエチレン75~90重量%と、0.950~0.970g/cmの密度を有する高密度ポリエチレン10~25重量%とからなることが好適である。
 この態様によれば、118~121℃での滅菌処理に対する耐熱性をさらに向上させることができる。
 また、第3の態様の多層フィルムでは、前記B-1層および前記B-3層の厚さが10~30μmであり、前記B-2層および前記B-4層の厚さが70~110μmであり、かつ前記B-5層の厚さが15~45μmであることが好適である。
 B-1層からB-5層の各層の厚みをそれぞれ上記範囲に設定することにより、多層フィルムや、この多層フィルムを用いて形成されるバッグの柔軟性を維持しつつ、十分な機械的強度を付与することができる。
 また、上記目的を達成するために、本発明のバッグは、第3の態様の多層フィルムを用い、前記B-1層が外層となり、前記B-5層が内層となるように形成されていることを特徴としている。
 上記バッグは、第3の態様の多層フィルムを用いて形成されているため、耐熱性が極めて優れており、118~121℃での滅菌処理に供することができる。さらに、柔軟性や透明性、耐衝撃性が極めて良好なものとなり、118~121℃での滅菌処理後においても、適度な柔軟性と、優れた透明性、耐衝撃性とを維持することができる。
 本発明の多層フィルム、およびその多層フィルムで形成されたバッグによれば、柔軟性や透明性、耐衝撃性に優れ、高温条件下での滅菌処理に耐え得るバッグを提供することができる。
 それゆえ、本発明は、種類、用途、使用環境などにより高温条件下での滅菌処理が必要となる薬液を収容、保存する用途への適用に、特に好適である。
本発明の一実施形態に係る多層フィルム(II)の層構成を示す概略構成図である。 本発明の一実施形態に係る薬液バッグの模式的な正面図である。 図2の薬液バッグの模式的な断面図(切断面A1-A1での断面)である。 落板試験装置の写真である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 示差走査熱量測定(DSC)で得られるDSC曲線である。 厚さ240μmのフィルムの平均密度と酸素透過度との関係を示すグラフである。 厚さ240μmのフィルムにおける、酸素透過度と水蒸気透過度との関係を示すグラフである。 本発明の他の実施形態に係る多層フィルム(III)の層構成を示す概略構成図である。 本発明の他の実施形態に係る薬液バッグの模式的な正面図である。 図48の薬液バッグの模式的な断面図(切断面A2-A2での断面)である。
<多層フィルム(II)>
 図1は、本発明の一実施形態に係る多層フィルム(II)の層構成を示す概略構成図である。図2は、本発明の一実施形態に係る薬液バッグの模式的な正面図である。図3は、図2の薬液バッグの模式的な断面図(切断面A1-A1での断面)である。
 以下、まず、図1を参照しつつ、本発明の多層フィルム(II)について説明する。なお、以下の説明において、複数の実施形態を通じて、同一または同種の部分に同一の符号を示す。
 図1を参照して、この多層フィルム(II)は、第1層としてのA-1層1と、A-1層1に積層される第2層としてのA-2層2と、A-2層2に積層される第3層としてのA-3層3とを備えており、A-1層1、A-2層2およびA-3層3がこの順に積層されることにより形成された3層構造からなる。
 A-1層1は、多層フィルム(II)の一方側表面に配置される層であって、後述する薬液バッグ6の外層を形成する層である。
 A-1層1は、126℃を上回り132℃以下のDSC融点および0.940~0.951g/cmの密度を有するポリエチレンまたは2種以上のポリエチレンの混合物からなる。
 なお、多層フィルム(II)を形成する各層において、DSC融点とは、示差走査熱量測定(DSC)で得られるDSC曲線の融解ピークの頂点の温度(ピークが複数ある場合は、その高さが一番高いピークの温度):融解ピーク温度Tpm(℃)をいう(以下同じ)。
 DSC融点は、例えば、以下の方法により測定することができる(以下同じ)。
 まず、ポリエチレンのペレット約1gを、100μmのテフロン(登録商標)シートで挟む。なお、複数のポリエチレンからなるポリエチレン混合物を測定する場合、各ポリエチレンが適正な比率で混合された物を樹脂温度200℃に加熱して一軸押出し機で混練し、直径約2mmのストランド状に押出して水道水で冷却し、ペレット状にカッティングすることによりペレットを調製する。
 次いで、シートで挟まれたペレットを200℃の雰囲気で2分間放置後、10秒間200℃でプレスする。これにより溶けたサンプルを、0.1~0.5mmの厚さになるように、水道水で冷却されている金属板を用いて直ぐに挟んで1分間冷却する。冷却後、当該サンプルをかみそりで切り出し、約5mgの測定試料を秤量する。
 切り出された測定試料をアルミパンに詰め、500℃/分の加熱速度で、30℃から200℃まで昇温し、200℃で10分間保持する。その後、10℃/分の速度で30℃まで降温し、30℃で1分保持した後、10℃/分の速度で、200℃まで昇温する際の吸熱曲線よりDSC融点を求めることができる。測定装置の具体的な市販品としては、例えば、パーキンエルマー社製 Diamond DSC装置が挙げられる。
 また、ポリエチレンの密度は、例えば、以下の方法により測定することができる(以下同じ)。
 まず、試料のポリエチレンまたはポリエチレン混合物を、190℃に設定されたメルトインデクサーに投入し、6分間保持し、MFRが1g/10min以上の場合は、荷重2.16kg、MFRが0.1~1g/10minの場合は、荷重5kgでストランドを採取する。ストランドは、金属板の上に直接落とし急冷する。採取したストランドを沸騰水の中で30分アニールし、そのまま1時間かけて室温(30℃)まで冷却する。その後、ストランドを取り出し、2~3mmの長さに切り出す。そして、切り出されたストランドを密度勾配管に投入し、1時間後のサンプル静止位置で密度を決定する。
 A-1層1を形成するポリエチレンまたは2種以上のポリエチレンの混合物のDSC融点および密度が上記範囲を満たしていると、耐熱性や透明性が良好である。また、これにより、上記多層フィルム(II)からなる後述する薬液バッグ6に118~121℃での滅菌処理(以下、この温度範囲での滅菌処理を「高温滅菌処理」という。)を施したときDSC融点が充分に高いために高温処理滅菌による再結晶化が少ないため、透明性の低下、しわの発生といった不具合の発生を防止することができる。さらに、後述する薬液バッグ6に対し、衝撃に対する強度などの優れた耐衝撃性を付与することができ、また、A-1層1と、A-2層2との間の接着強度(層間強度)を良好なものとすることができる。
 A-1層1を形成するポリエチレンのDSC融点は、上記範囲のなかでも、好ましくは、127~130℃である。また、密度は、上記範囲のなかでも、好ましくは、0.940~0.949g/cmである。
 A-1層1を形成するポリエチレンとしては、そのDSC融点および密度が上記範囲を満たすポリエチレンを単独で用いることができる。また、2種以上のポリエチレンの混合物であって、その混合物のDSC融点と密度とがいずれも上記範囲を満たすように調整されたものを用いることもできる。
 A-1層1を形成するポリエチレンが、DSC融点および密度が上記範囲を満たす直鎖状ポリエチレン単独である場合、このような直鎖状ポリエチレンとしては、例えば、エチレン-α-オレフィン共重合体が挙げられる。
 エチレン-α-オレフィン共重合体におけるα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセンなどの炭素数3~12のα-オレフィンが挙げられる。これらα-オレフィンは、単独で用いてもよく、または2種以上を混合して用いてもよい。また、α-オレフィンは、上記例示のなかでも、好ましくは、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテンであり、さらに好ましくは、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテンである。エチレン-α-オレフィン共重合体中のα-オレフィンの含有割合は、エチレン-α-オレフィン共重合体に要求される密度に合わせて適宜設定される。
 一方、A-1層1を形成するポリエチレンが、2種以上のポリエチレンの混合物である場合、この混合物を形成するポリエチレンとしては、例えば、直鎖状ポリエチレンと、高密度ポリエチレンとが挙げられる。好ましくは、直鎖状ポリエチレンを主体とし、これに高密度ポリエチレンを混合した混合物が挙げられる。
 また、直鎖状ポリエチレンの密度は、好ましくは、0.932~0.944g/cmであり、さらに好ましくは、0.934~0.939g/cmである。直鎖状ポリエチレンの密度が上記範囲を下回ると、耐熱性を維持するために大量の高密度ポリエチレンと混合する必要が生じ、A-1層1の透明性が悪化したり耐衝撃性が低下したりするおそれがある。また、上記範囲を上回ると、耐熱性と透明性のバランスが取れず、高密度ポリエチレンの添加量を少なくしても透明性がよくならない。
 一方、高密度ポリエチレンの密度は、好ましくは、0.970g/cm以下であり、さらに好ましくは、0.950~0.970g/cmであり、特に好ましくは、0.955~0.968g/cmである。高密度ポリエチレンの密度が上記範囲を上回ると、A-1層1の剛性が高くなりすぎて、多層フィルム(II)全体の柔軟性が低下するおそれがある。一方、高密度ポリエチレンの密度が上記範囲を下回ると、充分な耐熱性を付与することができなくなるおそれがある。
 直鎖状ポリエチレンと、高密度ポリエチレンとの混合割合は、それぞれの密度や、混合物に要求される密度に合わせて、適宜設定される。
 A-1層1を形成するポリエチレン混合物の好適態様としては、例えば、120~125℃のDSC融点および0.930~0.940g/cmの密度を有する直鎖状ポリエチレン55~85重量%と、0.950~0.970g/cmの密度を有する高密度ポリエチレン15~45重量%とからなる混合物が挙げられる。
 また、A-1層1を形成するポリエチレンが、2種以上のポリエチレンの混合物である場合においては、例えば、互いにメルトフローレート(MFR)などが異なるポリエチレンを用いることもできる。
 A-1層1の厚さは、多層フィルム(II)や、これを用いて形成される薬液バッグの耐衝撃性などの観点から適宜設定すればよいが、例えば、多層フィルム(II)の全体の厚さ(以下、総厚さ)に対し、好ましくは、約5~15%である。
 また、A-1層1の厚さは、例えば、多層フィルム(II)の総厚さが180~280μmである場合、好ましくは、10~30μmであり、さらに好ましくは、15~25μmである。
 A-2層2は、A-1層1とA-3層3との間に配置される層であって、後述する薬液バッグ6の中間層を形成する層である。
 A-2層2は、120~126℃のDSC融点および0.910~0.920g/cmの密度を有するポリエチレン混合物からなる。
 A-2層2を形成するポリエチレン混合物のDSC融点および密度が上記範囲を満たしていると、透明性、柔軟性が良好である。また、これにより、上記多層フィルム(II)からなる後述する薬液バッグ6に高温滅菌処理を施したとき、透明性の低下、しわの発生といった不具合の発生を防止することができる。さらに、A-2層2と、A-1層1およびA-3層3との間の接着強度(層間強度)を良好なものとすることができる。
 A-2層2を形成するポリエチレン混合物のDSC融点は、上記範囲のなかでも、好ましくは、122~126℃であり、密度の上限は、上記範囲のなかでも、好ましくは、0.918g/cm、さらに好ましくは0.916g/cmである。密度の上限が上記範囲を上回ると、透明性が低下し、落板強度で代表される耐衝撃性も低下するおそれがある。また、密度の下限が当該範囲を下回ると、耐熱性を維持することが困難となり、変形や白化を起こすおそれがある。
 なお、落板強度は、例えば、以下の方法により測定することができる。
 まず、多層フィルム(II)により形成された薬液バッグ(500mL)を0℃の氷水に5時間以上漬けておき、十分冷えた状態で取り出す。次いで、図4に示すように、薬液バッグを鉄板の上に置き、その上から6.8kgの金属板(大きさ約37cm×37cm、厚さ0.5cm)を、金属板の面が薬液バッグの上に並行に落下させる。そして、薬液バッグが破袋する金属板の高さ(落下高)を測ることにより、落板強度を測定する。
 A-2層2を形成するポリエチレンは、2種以上のポリエチレンの混合物であり、この混合物を形成するポリエチレンとしては、例えば、シングルサイト触媒で重合された直鎖状ポリエチレンと、直鎖状ポリエチレンと、高密度ポリエチレンとの混合物が挙げられる。好ましくは、シングルサイト触媒で重合された直鎖状ポリエチレンを主体とし、これに直鎖状ポリエチレンと、高密度ポリエチレンとを混合した混合物が挙げられる。
 なぜなら、シングルサイト触媒で重合された直鎖状ポリエチレンは、同じ密度、DSC融点であったとしてもαオレフィン共重合体をほとんど含まない大きな結晶を生成するような成分が少ないため、透明性が良く、結晶間のタイ分子も多いため耐衝撃性に優れるからである。
 この場合において、シングルサイト触媒で重合された直鎖状ポリエチレンの密度の下限は、好ましくは、0.901g/cmであり、さらに好ましくは、0.902g/cmである。密度の下限が当該限界を下回ると、A-2層2の耐熱性が保てなくなるおそれがある。一方、シングルサイト触媒で重合された直鎖状ポリエチレンの密度の上限は、好ましくは、0.907g/cmであり、さらに好ましくは、0.906g/cmである。密度の上限が当該限界を上回ると透明性が悪化するおそれがある。
 直鎖状ポリエチレンの密度の下限は、好ましくは、0.912g/cmであり、さらに好ましくは、0.915g/cmである。密度の下限が当該限界を下回ると、耐熱性を維持するために大量の高密度ポリエチレンと混合する必要が生じ、A-2層2の透明性が悪化するおそれがある。また、直鎖状ポリエチレンの密度の上限は、好ましくは、0.927g/cmであり、さらに好ましくは、0.925g/cmである。密度の上限が当該上限を上回ると、高密度ポリエチレンの添加量を少なくしても透明性がよくならない。また、高密度ポリエチレンの密度および好適例は、A-1層1の場合と同じである。
 また、シングルサイト触媒で重合された直鎖状ポリエチレンと、直鎖状ポリエチレンと、高密度ポリエチレンとの混合割合は、それぞれの密度や、混合物に要求される密度に合わせて、適宜設定される。
 A-2層2を形成するポリエチレンの好適態様としては、例えば、0.900~0.910g/cmの密度を有する、シングルサイト触媒で重合された直鎖状ポリエチレン35~85重量%(好ましくは50~85重量%、さらに好ましくは60~80重量%)と、0.910~0.930g/cmの密度を有する直鎖状ポリエチレン0~55重量%(好ましくは0~40重量%、さらに好ましくは10~30重量%)と、0.950~0.970g/cmの密度を有する高密度ポリエチレン5~15重量%とからなる混合物が挙げられる。
 また、0.900~0.910g/cmの密度を有する、シングルサイト触媒で重合された直鎖状ポリエチレンのDSC曲線のピークは、好ましくは、図10に示すように、115~125℃の範囲にDSC融点のピークと、DSC融点のピークの他に、85~110℃の範囲にDSC融点のピークの高さよりも低い第2のピークとを少なくとも持つ。また、0.910~0.930g/cmの密度を有する直鎖状ポリエチレンのDSC曲線のピークは、好ましくは、図7に示すように、115~125℃の範囲にDSC融点のピークと、DSC融点のピークの他に、85~110℃の範囲にDSC融点のピークの高さよりも低い第2のピークとを少なくとも持つ。
 そして、これらのポリエチレンが混合されたポリエチレン混合物(m-PE-LLD+PE-LLD+PE-HD)のDSC曲線は、好ましくは、図15に示すように、以下の条件(1)~(3)のいずれも満たす。
(1) 120~126℃の範囲にDSC融点のピークと、90~105℃の範囲にDSC融点のピークの高さよりも低い第2のピークを持つ。
(2) ΔHが、85J/g以上である。なお、ΔHとは、ポリエチレン中の全結晶が溶けるために必要な熱量である。ΔHを算出する上でのベースラインは、もっとも高温側のピークを超えた部分のラインの傾きを低温側に伸ばして作る。ΔHはベースラインより上の部分の総和である。
(3) DSC融点のピークの高さHpに対する、2のピークの高さHLの比率(HL/Hp)が、0.20~0.50である。HL/Hpは、HL、HpをDSCチャートから定規を用いて測定した値の比率である。
 HL/Hpが上記した範囲であることにより、フィルムの透明性および耐熱性を向上させることができる。これにより、透明性を保ちながら耐熱性を維持することが可能となる。なお、DSCの測定方法は、DSC融点の説明で示された方法である。
 また、A-2層2を形成するポリエチレンが、2種以上のポリエチレンを混合する場合、ポリエチレンとして、例えば、互いにMFRなどが異なる2種以上のポリエチレンの混合物を用いることもできる。
 上記多層フィルム(II)は、A-2層2に、上記組成のポリエチレンであって、DSC融点および密度がそれぞれ上記範囲を満たすものが用いられることから、多層フィルム(II)の柔軟性、耐衝撃性が良好である。また、これにより、高温滅菌処理後における透明性の低下、しわの発生といった不具合の発生を防止することができる。さらに、後述する薬液バッグ6において、A-1層1とA-2層2との間の接着強度(層間強度)と、A-2層2とA-3層3との間の接着強度(層間強度)と、を良好なものとすることができる。
 A-2層2の厚さは、多層フィルム(II)や、これを用いて形成される薬液バッグの柔軟性などの観点から適宜設定すればよいが、例えば、多層フィルム(II)の総厚さに対し、好ましくは、約60~90%であり、より好ましくは、約80~90%である。
 また、A-2層2の厚さは、例えば、多層フィルム(II)の総厚さが180~280μmである場合、140~250μmであり、好ましくは160~240μm、さらに好ましくは180~240μmである。
 A-3層3は、多層フィルム(II)の他方側表面に配置される層であって、後述する薬液バッグ6の内層を形成する層である。
 また、A-3層3は、A-1層1と同様に、ポリエチレンから形成され、そのDSC融点が125℃を上回り130℃以下であり、その密度が0.937~0.946g/cmである。
 A-3層3を形成するポリエチレンのDSC融点および密度が上記範囲を満たしていると、耐熱性や透明性が良好である。また、これにより、上記多層フィルム(II)からなる後述する薬液バッグ6に高温滅菌処理を施したとき、透明性の低下、しわの発生といった不具合の発生を防止することができる。さらには、ヘッドスペース部で薬液バッグの内層(A-3層3)が白っぽくなる現象(白化現象)の発生を防止することができる。これは、高温滅菌時に内層の一部が溶け、表面が荒れることがなくなるからと考えられる。また、A-3層3と、A-2層2との間の接着強度(層間強度)を良好なものとすることができる。
 A-3層3を形成するポリエチレンのDSC融点は、上記範囲のなかでも、好ましくは、126~129℃であり、密度は、上記範囲のなかでも、好ましくは、0.939~0.945g/cmである。
 A-3層3を形成するポリエチレンとしては、そのDSC融点および密度が上記範囲を満たすポリエチレンを単独で用いることができる。また、2種以上のポリエチレンの混合物であって、その混合物のDSC融点と密度とがいずれも上記範囲を満たすように調整されたものを用いることができる。
 一方、A-3層3を形成するポリエチレンが、2種以上のポリエチレンの混合物である場合、この混合物を形成するポリエチレンとしては、例えば、直鎖状ポリエチレンと、高密度ポリエチレンとが挙げられる。好ましくは、直鎖状ポリエチレンを主体とし、これに高密度ポリエチレンを混合した混合物が挙げられる。
 A-3層3を形成するポリエチレン混合物の好適態様としては、例えば、120~125℃のDSC融点および0.930~0.940g/cmの密度を有する直鎖状ポリエチレン70~85重量%と、0.950~0.970g/cmの密度を有する高密度ポリエチレン15~30重量%とからなる混合物が挙げられる。
 A-1層1よりA-3層3の方が、密度、DSC融点ともに低い領域まで使用可能なのは、A-1層1は、高温処理滅菌時に高温の温水やシャワーに直接触れるが、A-3層3は、直接触れることが無いからである。これにより、透明性がさらに向上する。
 また、A-3層3を形成するポリエチレンが、2種以上のポリエチレンの混合物である場合においては、例えば、互いにメルトフローレート(MFR)などが異なるポリエチレンを用いることもできる。
 上記多層フィルム(II)は、A-3層3に、上記組成のポリエチレンであって、DSC融点および密度がそれぞれ上記範囲を満たすものが用いられることから、多層フィルム(II)の耐熱性が良好なものとなる。また、高温滅菌処理後における透明性の低下、しわの発生といった不具合の発生を防止することができる。さらに、後述する薬液バッグ6に対し、衝撃に対する強度などの優れた耐衝撃性を付与することができ、また、A-3層3とA-2層2との間の接着強度(層間強度)を良好なものとすることができる。
 A-3層3の厚さは、多層フィルム(II)や、これを用いて形成される薬液バッグの機械的強度などの観点から適宜設定すればよいが、例えば、多層フィルム(II)の総厚さに対し、好ましくは、約5~25%である。
 また、A-3層3の厚さは、例えば、多層フィルム(II)の総厚さが180~280μmである場合、好ましくは、15~45μmであり、さらに好ましくは、20~40μmである。
 例えば、総厚さ240μmの多層フィルム(II)において、高温滅菌処理後12時間以内における温度25℃、湿度60%RHでの酸素透過度は、例えば、660~860cc/m・day・atmである。また、JIS K 7129(1992)に規定のA法(感湿センサー法)に準拠して測定される、多層フィルム(II)の水蒸気透過度は、例えば、温度25℃、湿度90%RHにおいて、1.3~2.2g/m・dayである。
 上記多層フィルム(II)の製造方法としては、特に限定されず、例えば、水冷式または空冷式共押出しインフレーション法、共押出しTダイ法、ドライラミネーション法、押出しラミネーション法などが挙げられる。なかでも、多層フィルム(II)の特性、とりわけ、透明性や、多層フィルム(II)製造時の経済性、多層フィルム(II)の衛生性などの観点から、好ましくは、水冷共押出しインフレーション法および共押出しTダイ法が挙げられる。
 上記のいずれの方法においても、多層フィルム(II)の製造は、各層を形成する樹脂が溶融する温度で実施する必要があるが、製造温度が高過ぎると、樹脂の一部が熱分解して、分解生成物による性能の低下を生じるおそれがある。それゆえ、上記多層フィルム(II)の製造温度は、これに限定されないが、好ましくは、150~250℃、より好ましくは、170~200℃である。
 上記の多層フィルム(II)は、透明性、柔軟性、高温滅菌処理に対する耐熱性、機械的強度などの特性に優れている。それゆえ、上記多層フィルム(II)は、例えば、輸液バッグなどの薬液バッグの形成材料として好適である。
 図2および図3を参照して、本発明のバッグについて説明する。この実施形態では、薬液バッグ6が作られており、図1に示す多層フィルム(II)のA-1層1を最外層とし、A-3層3を最内層として形成されている。また、薬液バッグ6は、2枚の多層フィルム(II)4,5のA-3層3同士を重ね合わせ、その周縁部を溶着することによって形成される周縁シール部9を備えている。
 なお、周縁シール部9は、例えば、多層フィルム(II)を、そのA-3層3が内側となるように、インフレーション法によって袋状またはチューブ状に形成し、こうして得られた袋状またはチューブ状の多層フィルム(II)の周縁部を溶着することによっても形成することができる。
 薬液バッグ6の収容部10は、周縁シール部9によって区画されている。この薬液バッグ6は、内部に1つの収容部10を備える単室バッグである。
 また、周縁シール部9の一部には、収容部10と薬液バッグ6の外部との間で薬液などを流出入させるための筒部材11が、2枚の多層フィルム(II)4,5で挟み込まれた状態で溶着されている。
 周縁シール部9は、例えば、2枚の多層フィルム(II)4,5を、各A-1層1が外層となり、各A-3層3が内層となるように重ね合わせた後、こうして重ね合わされた多層フィルム(II)4,5の周縁部における各A-1層1側表面を、溶着金型で加熱圧着することにより形成される。
 溶着金型による加熱圧着の条件は、特に限定されないが、例えば、総厚さ180~280μmの多層フィルム(II)を用いる場合において、金型温度が、好ましくは、130~200℃、さらに好ましくは、150~180℃である。また、この場合において、圧力が、好ましくは、0.1~0.8MPa、さらに好ましくは、0.15~0.5MPaである。さらに、この場合において、加圧時間が、好ましくは、1~5秒、さらに好ましくは、1.5~3秒である。
 筒部材11は、特に限定されず、公知の筒部材を適用できる。例えば、この筒部材11は、薬液バッグ6の収容部10内に収容されている薬液を、薬液バッグ6の外部へ流出させ、または、薬液バッグ6の外部から収容部10内へと薬液を流入させるための部材であって、通常、その内部に、筒部材11を封止するための、中空針などにより穿刺可能な封止体(例えば、ゴム栓など。)が配置されている。
 図2に示す薬液バッグ6において、収容部10内に薬液、その他の収容物を収容し、密閉する方法は、特に限定されず、公知の方法を採用することができる。
 また、収容部10内に薬液、その他の収容物を収容し、密閉した後に、薬液バッグ6には、滅菌処理が施される。
 滅菌処理方法は、特に限定されず、例えば、高圧蒸気滅菌、熱水シャワー滅菌等の、公知の加熱滅菌方法を採用することができる。
 これら加熱滅菌処理における滅菌処理温度は、一般に、105~110℃程度であるが、薬液の種類、用法、使用環境などに合わせて、滅菌処理温度を118~121℃に設定することもできる。
 上記薬液バッグ6は、本発明の多層フィルム(II)から形成されていることから、高温滅菌処理に対する耐熱性が優れている。それゆえ、上記薬液バッグに対し、118~121℃での滅菌処理(高温滅菌処理)を施した場合であっても、適度な柔軟性や良好な透明性を維持することができる。
<多層フィルム(III)>
 図47は、本発明の他の実施形態に係る多層フィルム(III)の層構成を示す概略構成図である。図48は、本発明の他の実施形態に係る薬液バッグの模式的な正面図である。図49は、図48の薬液バッグの模式的な断面図(切断面A2-A2での断面)である。
 以下、図47を参照しつつ、本発明の多層フィルム(III)について説明する。
 図47を参照して、この多層フィルム(III)は、B-1層21と、B-1層21に積層されるB-2層22と、B-2層22に積層されるB-3層23と、B-3層23に積層されるB-4層24と、B-4層24に積層されるB-5層25とを備えている。
 B-1層21は、多層フィルム(III)の一方側表面に配置される層であって、後述する薬液バッグの最外層を形成する層である。
 また、B-1層21は、ポリエチレンから形成され、そのDSC融点が125℃を上回り130℃以下であり、その密度が0.935~0.946g/cmである。
 なお、多層フィルム(III)を形成する各層において、DSC融点とは、示差走査熱量測定(DSC)で得られるDSC曲線の融解ピークの頂点の温度(ピークが複数ある場合は、その高さが一番高いピークの温度):融解ピーク温度Tpm(℃)をいう(以下同じ)。
 DSC融点は、例えば、上記多層フィルム(II)の実施形態で説明した方法と同様の方法により測定することができる。
 密度は、以下の方法で測定した(以下同じ)。
 試料のポリエチレンを200℃に設定したメルトインデクサーに投入しストランドを採取する。ストランドは、金属板の上に直接落とす。採取したストランドを沸騰水の中で30分アニールし、その後、そのまま1時間かけて室温(30℃)まで冷却する。その後、ストランドを取り出し2~3mmの長さに切り出し、密度勾配管に投入し、1時間後のサンプル静止位置で密度を決定する。
 上記多層フィルム(III)のB-1層21を形成するポリエチレンのDSC融点や密度が上記範囲を満たしていると、耐熱性や透明性が良好である。また、これにより、上記多層フィルム(III)からなる薬液バッグに118~121℃での滅菌処理(以下、この温度範囲での滅菌処理を「高温滅菌処理」という。)を施したときであっても、透明性の低下、しわの発生といった不具合の発生を防止することができる。さらに、後述する薬液バッグに対し、衝撃に対する強度などの優れた機械的強度を付与することができ、また、B-1層21と、後述するB-2層22との間の接着強度(層間強度)を良好なものとすることができる。
 B-1層21を形成するポリエチレンのDSC融点は、上記範囲のなかでも、好ましくは、126℃以上129℃以下であり、密度は、上記範囲のなかでも、好ましくは、0.937~0.943g/cmである。
 B-1層21を形成するポリエチレンとしては、そのDSC融点および密度が上記範囲を満たすポリエチレンを単独で用いることができ、また、2種以上のポリエチレンの混合物であって、その混合物のDSC融点と密度とがいずれも上記範囲を満たすように調整されたものを用いることもできる。
 B-1層21を形成するポリエチレンが、DSC融点および密度が上記範囲を満たす直鎖状ポリエチレン単独である場合において、このような直鎖状ポリエチレンとしては、例えば、エチレン-α-オレフィン共重合体が挙げられる。
 エチレン-α-オレフィン共重合体におけるα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセンなどの炭素数3~12のα-オレフィンが挙げられる。これらα-オレフィンは、単独で用いてもよく、または2種以上を混合して用いてもよい。また、α-オレフィンは、上記例示のなかでも、好ましくは、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテンであり、さらに好ましくは、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテンである。エチレン-α-オレフィン共重合体中のα-オレフィンの含有割合は、エチレン-α-オレフィン共重合体に要求される密度に合わせて適宜設定される。
 一方、B-1層21を形成するポリエチレンが、2種以上のポリエチレンの混合物である場合において、この混合物を形成するポリエチレンとしては、例えば、直鎖状ポリエチレンと、高密度ポリエチレンとが挙げられ、好ましくは、直鎖状ポリエチレンを主体とし、これに高密度ポリエチレンを混合した混合物が挙げられる。
 また、直鎖状ポリエチレンの密度は、好ましくは、0.932~0.944g/cmであり、さらに好ましくは、0.934~0.939g/cmである。直鎖状ポリエチレンの密度が上記範囲を下回ると、耐熱性を維持するため大量の高密度ポリエチレンと混合する必要が生じ、B-1層21の透明性が悪化したり機械的強度が低下するおそれがある。また、上記範囲を上回ると耐熱性と透明性のバランスが取れず、高密度ポリエチレンの添加量を少なくしても透明性がよくならない。
 一方、高密度ポリエチレンの密度は、好ましくは、0.970g/cm以下であり、さらに好ましくは、0.950~0.970g/cmであり、特に好ましくは、0.955~0.968g/cmである。高密度ポリエチレンの密度が上記範囲を上回ると、B-1層21の剛性が高くなりすぎて、多層フィルム(III)全体の柔軟性が低下し、下回ると充分な耐熱性を付与することが出来なくなる恐れがある。
 直鎖状ポリエチレンと、高密度ポリエチレンとの混合割合は、それぞれの密度や、混合物に要求される密度に合わせて、適宜設定される。
 B-1層21を形成するポリエチレンの好適態様としては、例えば、DSC融点が120℃以上125℃以下、密度が0.930~0.940g/cmの直鎖状ポリエチレン75~90重量%と、密度が0.950~0.970g/cmの高密度ポリエチレン10~25重量%と、からなる混合物が挙げられる。
 また、B-1層21を形成するポリエチレンが、2種以上のポリエチレンの混合物である場合においては、例えば、互いにメルトフローレート(MFR)などが異なる2種以上のエチレン-α-オレフィン共重合体の混合物を用いることもできる。
 B-1層21の厚みは、多層フィルム(III)や、これを用いて形成される薬液バッグの機械的強度などの観点から適宜設定すればよいが、例えば、多層フィルム(III)の総厚みに対し、好ましくは、約5~15%である。
 また、B-1層21の厚みは、例えば、多層フィルム(III)の総厚みが180~260μmである場合において、好ましくは、10~30μmであり、さらに好ましくは、15~25μmである。
 B-2層22は、B-1層21と後述するB-3層23との間に配置される層であって、後述する薬液バッグの中外層を形成する層である。
 また、B-2層22は、ポリエチレンから形成され、そのDSC融点が120℃以上126℃以下であり、その密度が0.910~0.920g/cmである。
 上記多層フィルム(III)のB-2層22を形成するポリエチレンのDSC融点や密度が上記範囲を満たしていると、柔軟性が良好である。また、これにより、上記多層フィルム(III)からなる薬液バッグに高温滅菌処理を施したときであっても、透明性の低下、しわの発生といった不具合の発生を防止することができる。さらに、B-2層22と、B-1層21および後述するB-3層23との間の接着強度(層間強度)を良好なものとすることができる。
 B-2層22を形成するポリエチレンのDSC融点は、上記範囲のなかでも、好ましくは、122℃以上126℃以下であり、密度の上限は、上記範囲のなかでも、好ましくは、0.918g/cm、さらに好ましくは0.916g/cmである。上限が当該範囲を上回ると透明性が低下し、落板強度で代表される衝撃に対する強度も低下する。また、下限が当該範囲を下回ると耐熱性を維持することが困難となり変形や白化を起こす。
 なお、落板強度は、例えば、上記多層フィルム(II)の実施形態で説明した方法と同様の方法により測定することができる。
 B-2層22を形成するポリエチレンは、2種以上のポリエチレンの混合物であるが、この混合物を形成するポリエチレンとしては、例えば、メタロセン触媒で重合された直鎖状低密度ポリエチレンと、直鎖状低密度または中密度ポリエチレンと、高密度ポリエチレンとの混合物が挙げられ、好ましくは、メタロセン触媒で重合された直鎖状低密度ポリエチレンを主体とし、これに直鎖状低密度または中密度ポリエチレンと、高密度ポリエチレンとを混合した混合物が挙げられる。
 この場合において、メタロセン触媒で重合された直鎖状低密度ポリエチレンの密度の下限は、好ましくは、0.901g/cmであり、さらに好ましくは、0.902g/cmである。密度の下限が当該限界を下回ると、B-2層22の耐熱性が保てなくなるおそれがある。上限は、好ましくは、0.907g/cmであり、さらに好ましくは、0.906g/cmである。密度の上限が当該限界を上回ると透明性が悪化するおそれがある。
 直鎖状低密度または中密度ポリエチレンの密度の下限は、好ましくは、0.912g/cmであり、さらに好ましくは、0.915g/cmである。直鎖状低密度または中密度ポリエチレンの密度が当該下限を下回ると、耐熱性を維持するため大量の高密度ポリエチレンと混合する必要が生じ、B-2層22の透明性が悪化するおそれがある。上限は、好ましくは、0.927g/cmであり、さらに好ましくは、0.925g/cmである。当該上限を上回ると高密度ポリエチレンの添加量を少なくしても透明性がよくならない。また、高密度ポリエチレンの密度および好適例は、B-1層21の場合と同じである。
 また、メタロセン触媒で重合された直鎖状低密度ポリエチレンと、直鎖状低密度または中密度ポリエチレンと、高密度ポリエチレンとの混合割合は、それぞれの密度や、混合物に要求される密度に合わせて、適宜設定される。
 B-2層22を形成するポリエチレンの好適態様としては、例えば、密度が0.900~0.910g/cmのシングルサイト触媒で重合された直鎖状ポリエチレン35~85重量%、好ましくは50~85重量%、さらに好ましくは60~80重量%と、密度が0.910~0.930g/cmの直鎖状ポリエチレン0~55重量%、好ましくは0~40重量%、さらに好ましくは10~30重量%と、密度が0.950~0.970g/cmの高密度ポリエチレン5~15重量%と、からなる混合物が挙げられる。
 さらに、前記密度が0.900~0.910g/cmのシングルサイト触媒で重合された直鎖状ポリエチレン(m-PE-LLD)と、密度が0.910~0.930g/cmの直鎖状ポリエチレン(PE-LLD)のDSC曲線のピークとしては、図10、7に示す様に、DSC融点のほかに85℃以上110℃以下の部分にDSC融点より低いピーク、115~125℃に少なくとも一つのピークをもつことが望ましく、結果として、図15に示す様に以下の条件のいずれも満たすものが好ましい。
・120℃以上126℃以下のDSC融点と90℃以上105℃以下のDSC融点より低いピークをもつ
・ΔHが85J/g以上である。なお、ΔHは全結晶が溶けるために必要な熱量である。
・120℃以上126℃以下のDSC融点のピークの高さHpと90℃以上105℃以下のDSC融点より低いピークの高さHLの比率HL/Hpが0.20~0.50である(表5)。
 これにより、透明性を保ちながら耐熱性を維持することが可能となる。なお、DSCの測定方法は、DSC融点の説明で示された方法である。
 また、B-2層22を形成するポリエチレンが、2種以上のポリエチレンを混合する場合においては、ポリエチレンとして、例えば、互いにMFRなどが異なる2種以上のエチレン-α-オレフィン共重合体の混合物を用いることもできる。
 上記多層フィルム(III)は、B-2層22に、上記組成のポリエチレンであって、DSC融点および密度がそれぞれ上記範囲を満たすものが用いられることから、多層フィルム(III)の柔軟性、対衝撃性が良好である。また、これにより、滅菌処理後における透明性の低下、しわの発生といった不具合の発生を防止することができる。さらに、後述する薬液バッグにおいて、B-1層21とB-2層22との間の接着強度(層間強度)と、B-2層22と後述するB-3層23との間の接着強度(層間強度)と、を良好なものとすることができる。
 B-2層22の厚みは、多層フィルム(III)や、これを用いて形成される薬液バッグの柔軟性などの観点から適宜設定すればよいが、例えば、多層フィルム(III)の総厚みに対し、好ましくは、約30~60%であり、より好ましくは、約40~50%である。
 また、B-2層22の厚みは、例えば、多層フィルム(III)の総厚みが180~260μmである場合において、好ましくは、70~110μmであり、さらに好ましくは、70~100μmである。また、B-2層22の厚みは、後述するB-4層24の厚みに対し、好ましくは、0.8~1.25倍であり、特に好ましくは、B-4層24の厚みと同じである。
 B-3層23は、B-2層22を挟んで、B-1層21と対向配置される層であって、後述する薬液バッグの中間層を形成する層である。
 また、B-3層23は、ポリエチレンから形成され、そのDSC融点が120℃以上125℃以下であり、その密度が0.930~0.940g/cmである。
 上記多層フィルム(III)のB-3層23を形成するポリエチレンのDSC融点や密度が上記範囲を満たしていると、多層フィルム(III)の耐熱性が良好である。また、これにより、多層フィルム(III)からなる薬液バッグに高温滅菌処理を施した場合であっても、しわの発生といった不具合の発生を防止することができ、高温滅菌処理後における多層フィルム(III)の変形を抑制することができる。さらに、B-3層23と、B-2層22および後述するB-4層24との間の接着強度(層間強度)を良好なものとすることができる。
 B-3層23を形成するポリエチレンのDSC融点は、上記範囲のなかでも、好ましくは、123℃以上125℃以下であり、密度は、上記範囲のなかでも、好ましくは、0.934~0.939g/cmである。
 B-3層23を形成するポリエチレンとしては、そのDSC融点および密度が上記範囲を満たす直鎖状ポリエチレンを単独で用いることができ、また、2種以上のポリエチレンの混合物であって、その混合物のDSC融点と密度とがいずれも上記範囲を満たすように調整されたものを用いることができる。
 一方、B-3層23を形成するポリエチレンが、2種以上のポリエチレンの混合物である場合において、この混合物を形成するポリエチレンとしては、例えば、直鎖状低密度または中密度ポリエチレンと、高密度ポリエチレンとが挙げられ、好ましくは、直鎖状低密度または中密度ポリエチレンを主体とし、これに高密度ポリエチレンを混合した混合物が挙げられる。
 この場合において、直鎖状低密度または中密度ポリエチレンについての密度および好適例、高密度ポリエチレンについての密度および好適例、ならびに、直鎖状低密度または中密度ポリエチレンと、高密度ポリエチレンとの混合割合は、いずれも、B-1層21において、直鎖状低密度または中密度ポリエチレンと、高密度ポリエチレンとを混合する場合と同じである。
 B-3層23を形成する直鎖状ポリエチレンの好適態様としては、例えば、
(a)DSC融点が120℃以上125℃以下、密度が0.930~0.940g/cmの直鎖状ポリエチレンのみからなる態様と、
(b)DSC融点が120℃以上125℃以下、密度が0.930~0.940g/cmの直鎖状ポリエチレン90~95重量%と、密度が0.950~0.970g/cmの高密度ポリエチレン5~10重量%と、からなる混合物
が挙げられる。
 また、2種以上のポリエチレンを混合する場合においては、ポリエチレンとして、例えば、互いにメルトフローレート(MFR)などが異なる2種以上のエチレン-α-オレフィン共重合体の混合物を用いることもできる。
 また、B-3層に高圧法ポリエチレンを併用することにより、透明性や柔軟性を損なうことなく、ヒートシールや他の部品の溶着によるフィルムの薄膜化を防止することもできる。
 B-3層23の厚みは、多層フィルム(III)や、これを用いて形成される薬液バッグの機械的強度などの観点から適宜設定すればよいが、例えば、多層フィルム(III)の総厚みに対し、好ましくは、約5~15%である。
 また、B-3層23の厚みは、例えば、多層フィルム(III)の総厚みが180~260μmである場合において、好ましくは、10~30μmであり、さらに好ましくは、15~25μmである。
 B-4層24は、B-3層23を挟んでB-2層22と対向配置される層であって、後述する薬液バッグの中内層を形成する層である。
 また、B-4層24は、ポリエチレンから形成され、そのDSC融点が120℃以上126℃以下であり、その密度が0.910~0.920、g/cmである。
 上記多層フィルム(III)のB-4層24を形成するポリエチレンのDSC融点や密度が上記範囲を満たしていると、柔軟性が良好である。また、これにより、上記多層フィルム(III)からなる薬液バッグに高温滅菌処理を施したときであっても、透明性の低下、しわの発生といった不具合の発生を防止することができる。さらに、B-4層24と、B-3層23および後述するB-5層25との間の接着強度(層間強度)を良好なものとすることができる。
 B-4層24を形成するポリエチレンのDSC融点は、上記範囲のなかでも、好ましくは、122℃以上126℃以下であり、密度は、上記範囲のなかでも、好ましくは0.910~0.918g/cm、さらに好ましくは0.910~0.915/cmである。
 当該範囲を上回ると透明性が低下し、落板強度で代表される衝撃に対する機械的強度が低下する。下回ると耐熱性を維持することが困難となり変形や白化を起こす。
 B-4層24を形成するポリエチレンとしては、2種以上のポリエチレンの混合物であって、その混合物のDSC融点と密度とがいずれも上記範囲を満たすように調整されたものを用いることができる。
 また、これらB-4層24を形成するポリエチレンの種類、混合物の組み合わせ、混合割合などは、いずれも、上述のB-2層22の場合と同じである。
 また、B-4層24を形成するポリエチレンの好適態様としては、B-2層22を形成するポリエチレンの好適態様と同じものが挙げられる。
 B-4層24の厚みは、多層フィルム(III)や、これを用いて形成される薬液バッグの柔軟性などの観点から適宜設定すればよいが、例えば、多層フィルム(III)の総厚みに対し、好ましくは、約30~60%であり、より好ましくは、約40~50%である。
 また、B-4層24の厚みは、例えば、多層フィルム(III)の総厚みが180~260μmである場合において、好ましくは、70~110μmであり、さらに好ましくは、70~100μmである。
 また、B-4層24の厚みは、B-2層22の厚みに対し、好ましくは、0.8~1.25倍であり、特に好ましくは、B-2層22の厚みと同じである。
 B-5層25は、多層フィルム(III)の他方側表面に配置される層であって、後述する薬液バッグの最内層を形成する層である。
 また、B-5層25は、B-1層21と同様に、ポリエチレンから形成され、そのDSC融点が125℃を上回り130℃以下であり、その密度が0.935~0.946g/cmである。
 上記多層フィルム(III)のB-5層25を形成するポリエチレンのDSC融点や密度が上記範囲を満たしていると、耐熱性や透明性が良好である。また、これにより、多層フィルム(III)からなる薬液バッグに高温滅菌処理を施した場合であっても、透明性の低下、しわの発生といった不具合の発生を防止することができ、さらには、ヘッドスペース部で薬液バッグの内層(B-5層25)が白っぽくなる現象(白化現象)の発生を防止することができる。また、B-5層25と、B-4層24との間の接着強度(層間強度)を良好なものとすることができる。
 B-5層25を形成するポリエチレンのDSC融点は、上記範囲のなかでも、好ましくは、126℃以上129℃以下であり、密度は、上記範囲のなかでも、好ましくは、0.937~0.942g/cmである。
 B-5層25を形成するポリエチレンとしては、そのDSC融点および密度が上記範囲を満たすポリエチレンを単独で用いることができ、また、2種以上のポリエチレンの混合物であって、その混合物のDSC融点と密度とがいずれも上記範囲を満たすように調整されたものを用いることができる。
 B-5層25を形成するポリエチレンは、DSC融点および密度が上記範囲を満たすポリエチレン単独でもよい。一方、B-5層25を形成するポリエチレンが、2種以上のポリエチレンの混合物である場合において、この混合物を形成するポリエチレンとしては、例えば、直鎖状低密度または中密度ポリエチレンと、高密度ポリエチレンとが挙げられ、好ましくは、直鎖状低密度または中密度ポリエチレンを主体とし、これに高密度ポリエチレンを混合した混合物が挙げられる。
 この場合において、直鎖状低密度または中密度ポリエチレンについての密度および好適例、高密度ポリエチレンについての密度および好適例、ならびに、直鎖状低密度または中密度ポリエチレンと、高密度ポリエチレンとの混合割合は、いずれも、B-1層21において、直鎖状低密度または中密度ポリエチレンと、高密度ポリエチレンとを混合する場合と同じである。
 B-5層25を形成するポリエチレンの好適態様としては、B-1層21を形成するポリエチレンの好適態様と同じものが挙げられる。
 上記多層フィルム(III)は、B-5層25に、上記組成のポリエチレンであって、DSC融点および密度がそれぞれ上記範囲を満たすものが用いられることから、多層フィルム(III)の耐熱性が良好なものとなる。また、滅菌処理後における透明性の低下、しわの発生といった不具合の発生を防止することができる。さらに、後述する薬液バッグに対し、衝撃に対する強度などの優れた機械的強度を付与することができ、また、B-5層25とB-4層24との間の接着強度(層間強度)を良好なものとすることができる。
 B-5層25の厚みは、多層フィルム(III)や、これを用いて形成される薬液バッグの機械的強度などの観点から適宜設定すればよいが、例えば、多層フィルム(III)の総厚みに対し、好ましくは、約5~25%である。
 それゆえ、B-5層25の厚みは、例えば、多層フィルム(III)の総厚みが180~260μmである場合において、好ましくは、15~45μmであり、さらに好ましくは、20~40μmである。
 多層フィルム(III)の総厚みは、特に限定されず、薬液バッグに要求される大きさ(薬液の収容量)などに応じて、すなわち、多層フィルム(III)の用途、使用目的に合わせて、適宜設定することができる。
 それゆえ、これに限定されないが、例えば、薬液バッグの収容量が、一般的な輸液などの用途に用いられる、100~1000mL程度である場合には、多層フィルム(III)の総厚みは、100~300μmであり、好ましくは、180~260μmである。
 上記多層フィルム(III)の製造方法としては、特に限定されず、例えば、水冷式または空冷式共押出しインフレーション法、共押出しTダイ法、ドライラミネーション法、押出しラミネーション法などが挙げられる。なかでも、多層フィルム(III)の特性、とりわけ、透明性や、多層フィルム(III)製造時の経済性、多層フィルム(III)の衛生性などの観点から、好ましくは、水冷共押出しインフレーション法および共押出しTダイ法が挙げられる。
 上記のいずれの方法においても、多層フィルム(III)の製造は、各層を形成する樹脂が溶融する温度で実施する必要があるが、製造温度が高過ぎると、樹脂の一部が熱分解して、分解生成物による性能の低下を生じるおそれがある。それゆえ、上記多層フィルム(III)の製造温度は、これに限定されないが、好ましくは、150~250℃、より好ましくは、170~200℃である。
 上記の多層フィルム(III)は、透明性、柔軟性、高温滅菌処理に対する耐熱性、機械的強度などの特性に優れている。それゆえ、上記多層フィルム(III)は、例えば、輸液バッグなどの薬液バッグの形成材料として好適である。
 図48および図49を参照して、本発明のバッグについて説明する。この実施形態では、薬液バッグ26が作られており、図47に示す多層フィルム(III)のB-1層21を外層とし、B-5層25を内層として形成されている。また、薬液バッグ26は、2枚の多層フィルム(III)27,28のB-5層25同士を重ね合わせ、その周縁部を溶着することによって形成される周縁シール部29を備えている。
 なお、周縁シール部29は、例えば、多層フィルム(III)を、そのB-5層25が内側となるように、インフレーション法によって袋状またはチューブ状に形成し、こうして得られた袋状またはチューブ状の多層フィルム(III)の周縁部を溶着することによっても形成することができる。
 薬液バッグ26の収容部30は、周縁シール部29によって区画されている。この薬液バッグ26は、内部に1つの収容部30を備える単室バッグである。
 また、周縁シール部29の一部には、収容部30と薬液バッグ26の外部との間で薬液などを流出入させるための筒部材31が、2枚の多層フィルム(III)27,28で挟み込まれた状態で溶着されている。
 周縁シール部29は、例えば、2枚の多層フィルム(III)27,28を、各B-1層21が外層となり、各B-5層25が内層となるように重ね合わせた後、こうして重ね合わされた多層フィルム(III)27,28の周縁部における各B-1層21側表面を、溶着金型で加熱圧着することにより形成される。
 溶着金型による加熱圧着の条件は、特に限定されないが、例えば、総厚み100~300μmの多層フィルム(III)を用いる場合において、金型温度が、好ましくは、130~200℃、さらに好ましくは、150~180℃、圧力が、好ましくは、0.1~0.8MPa、さらに好ましくは、0.15~0.5MPa、加圧時間が、好ましくは、1~5秒、さらに好ましくは、1.5~3秒である。
 筒部材31は、特に限定されず、公知の筒部材を適用できる。例えば、この筒部材31は、薬液バッグ26の収容部30内に収容されている薬液を、薬液バッグ26の外部へ流出させ、または、薬液バッグ26の外部から収容部30内へと薬液を流入させるための部材であって、通常、その内部に、筒部材31を封止するための、中空針などにより穿刺可能な封止体(例えば、ゴム栓など。)が配置されている。
 図48に示す薬液バッグ26において、収容部30内に薬液、その他の収容物を収容し、密閉する方法は、特に限定されず、公知の方法を採用することができる。
 また、収容部30内に薬液、その他の収容物を収容し、密閉した後に、薬液バッグ26には、滅菌処理が施される。
 滅菌処理方法は、特に限定されず、例えば、高圧蒸気滅菌、熱水シャワー滅菌等の、公知の加熱滅菌方法を採用することができる。
 これら加熱滅菌処理における滅菌処理温度は、一般に、105~110℃程度であるが、薬液の種類、用法、使用環境などに合わせて、滅菌処理温度を118~121℃に設定することもできる。
 上記薬液バッグ26は、本発明の多層フィルム(III)から形成されていることから、高温滅菌処理に対する耐熱性が優れている。それゆえ、上記薬液バッグに対し、118~121℃での滅菌処理(高温滅菌処理)を施した場合であっても、適度な柔軟性や良好な透明性を維持することができる。
 以下、実施例および比較例を挙げて、本発明を詳細に説明する。
<ポリマー物性の測定方法>
 ポリマーの物性は以下の方法で測定した。
1.DSC融点
 まず、ポリエチレンのペレット約1gを、100μmのテフロン(登録商標)シートで挟む。なお、複数のポリエチレンからなる混合物を測定する場合、各ポリエチレンが適正な比率で混合された物を樹脂温度200℃に加熱して一軸押出し機で混練し、直径約2mmのストランド状に押出して水道水で冷却し、ペレット状にカッティングすることによりペレットを調製する。
 次いで、シートで挟まれたペレットを200℃の雰囲気で2分間放置後、10秒間200℃でプレスする。これにより溶けたサンプルを、0.1~0.5mmの厚さになるように、水道水で冷却されている金属板を用いて直ぐに挟んで1分間冷却する。冷却後、当該サンプルをかみそりで切り出し、約5mgの測定試料を秤量する。
 切り出された測定試料をアルミパンに詰め、パーキンエルマー社製「Diamond DSC装置」により、500℃/分の加熱速度で、30℃から200℃まで昇温し、200℃で10分間保持する。その後、10℃/分の速度で30℃まで降温し、30℃で1分保持した後、10℃/分の速度で、200℃まで昇温させて、融点を測定した。なお、得られたDSC曲線より、ΔHならびにHL、HPを算出した。
2.密度
 試料のポリエチレンを、200℃に設定されたメルトインデクサーに投入し、ストランドを採取する。ストランドは、金属板の上に直接落とす。採取したストランドを沸騰水の中で30分アニールし、そのまま1時間かけて室温(30℃)まで冷却する。その後、ストランドを取り出し、2~3mmの長さに切り出す。そして、切り出されたストランドを密度勾配管に投入し、1時間後のサンプル静止位置で密度を決定した。
<ポリマーの製造>
1.PE-LおよびPE-L(2)の製造
(1)触媒の調製
 窒素雰囲気下、市販の無水塩化マグネシウム10molを脱水精製したヘキサン20Lに懸濁させ、攪拌しながらエタノール58molを1時間かけて滴下後、室温にて1時間反応させた。これに26molのジエチルアルミニウムクロライドを室温で滴下し、2時間攪拌を続けた。次に、四塩化チタン22molを加えた後、反応系を80℃に昇温して2時間攪拌しながら反応を行った。そして、反応後の固体部を分離し、精製ヘキサンにより繰り返し洗浄後、精製ヘキサン16Lを加え懸濁液を調製した。
 次に、該懸濁液16Lに60molのエタノールを室温で加え、80℃に昇温して2時間反応させた。反応後、室温まで放冷した。
 放冷後、懸濁液にトリエチルアルミニウム2molを室温で徐々に滴下し、1.5時間室温にて反応させた。反応後、固体部を精製ヘキサンにて繰り返し洗浄した後、ヘキサン懸濁液とした。
(2)PE-Lの重合
 内容量200Lの連続重合反応器を用いて、脱水精製した溶媒ヘキサンを70kg/hr、エチルアルミニウムセスキクロライドを7.5mmol/hr、ジエチルアルミニウムクロライドを7.5mmol/hr、(1)で得られた触媒をTi換算して0.26mmol/hrの割合で連続的に供給した。また、これと同時に、重合器内において、エチレンを15kg/hr、1-ブテンを0.35kg/hr、水素を21.5L/hrの割合で連続的に供給した。そして、重合温度170℃、全圧2.8MPa、滞留時間1.5時間の条件下で共重合を行なうことにより、PE-Lで示される、エチレン-1-ブテン共重合体を得た。得られた共重合体は、密度が0.937g/cm、MFR=2.25g/10分(190℃、2.16kg荷重)であった。
(3)PE-L(2)の重合
 内容量200Lの連続重合反応器を用いて、脱水精製した溶媒ヘキサンを70L/hr、エチルアルミニウムセスキクロライドを8.5mmol/hr、ジエチルアルミニウムクロライドを8.5mmol/hr、PE-Lと同じ前記触媒をTi換算して0.26mmol/hrの割合で連続的に供給した。また、これと同時に、重合器内において、エチレンを15kg/hr、1-ブテンを0.70kg/hr、水素18L/hrの割合で連続供給した。そして、重合温度170℃、全圧2.8MPa、滞留時間1.5時間の条件下で共重合を行なうことにより、PE-L(2)で示される、エチレン-1-ブテン共重合体を得た。得られた共重合体は、密度が0.928g/cm、MFR=2.25g/10分(190℃、2.16kg荷重)であった。
2.PE-LLDおよびPE-HDの製造
(1)触媒の調製
 窒素雰囲気下、市販の無水塩化マグネシウム10molを脱水精製したヘキサン20Lに懸濁させ、攪拌しながらエタノール58molを1時間かけて滴下後、室温にて1時間反応させた。これに26molのジエチルアルミニウムクロライドを室温で滴下し、2時間攪拌を続けた。次に、四塩化チタン22molを加えた後、反応系を80℃に昇温して2時間攪拌しながら反応を行った。そして、反応後の固体部を分離し、精製ヘキサンにより繰り返し洗浄した後、ヘキサン懸濁液とした。
(2)PE-LLDの重合
 200Lの連続重合反応器を用いて、脱水精製した溶媒ヘキサンを70L/hr、ジエチルアルミニウムクロライドを14mmol/hr、(1)で得られた担体付触媒をTi換算して0.26mmol/hrの割合で連続的に供給した。また、これと同時に、重合器内において、エチレン15をkg/hr、4-メチル-1-ペンテンを2kg/hr、水素を17L/hrの割合で連続的に供給した。そして、重合温度170℃、全圧2.8MPa、滞留時間1.5時間の条件下で共重合を行なうことにより、PE-LLDで示される、エチレン-4-メチル-1-ペンテン共重合体を得た。得られた共重合体は、密度が0.919g/cm、MFR=2.1g/10分(190℃、2.16kg荷重)であった。
(3)PE-HD
 200Lの連続重合反応器を用いて、脱水精製した溶媒ヘキサンを56L/hr、トリエチルアルミニウムを9mmol/hr、前記PE-LLDと同じ担体付触媒をTi換算して0.18mmol/hrの割合で連続的に供給した。また、これと同時に、重合器内において、エチレンを10.5kg/hr、水素を52L/hrの割合で連続的に供給した。そして、重合温度157℃、全圧2.8MPa、滞留時間2時間の条件下で共重合を行なうことにより、PE-HDで示される、高密度ポリエチレン重合体を得た。得られた重合体は、密度が0.959g/cm、MFR=17g/10分(190℃、2.16kg荷重)であった。
3.PE-HD(2)の製造
(1)触媒の調製
 窒素雰囲気下、市販の無水塩化マグネシウム8molを脱水精製したヘキサン20Lに懸濁させ、攪拌しながらエタノール46molを1時間かけて滴下後、室温にて2時間反応させた。これに20molのジエチルアルミニウムクロライドを室温で滴下し、1時間攪拌を続けた。次に、四塩化チタン48molを加えた後、室温にて1時間攪拌しながら反応を行った。そして、反応後の固体部を分離し、精製ヘキサンにより繰り返し洗浄した後、ヘキサン懸濁液とした。
(2)PE-HD(2)の重合
 200Lの連続重合反応器を用いて、脱水精製した溶媒ヘキサンを50L/hr、トリエチルアルミニウムを14mmol/hr、前記担体付触媒をTi換算して1.4mmol/hrの割合で連続的に供給した。また、これと同時に、重合器内において、エチレンを28kg/hr、水素を160L/hrの割合で連続的に供給した。そして、重合温度85℃、全圧0.6MPa、滞留時間2時間の条件下で共重合を行なうことにより、PE-HD(2)で示される、高密度ポリエチレン重合体を得た。得られた重合体は、密度が0.967g/cm、MFR=15g/10分(190℃、2.16kg荷重)であった。
4.m-PE-LLDの製造
(1)固体触媒の調製
 250℃で10時間乾燥したシリカ(SiO)10kgを、154Lのトルエンに懸濁した後、0℃まで冷却した。この懸濁液に、メチルアルミノオキサンのトルエン溶液(Al=1.52mol/L)50.5Lを1時間かけて滴下した。この際、反応系内の温度を0~5℃に保った。引き続き30分間反応させ、次いで、1.5時間かけて95℃まで昇温し、その温度で4時間反応させた。その後、60℃まで降温し、上澄み液をデカンテーションにより除去した。得られた固体成分をトルエンで2回洗浄した後、トルエン100Lで再懸濁して全量を160Lとした。得られた懸濁液に、ビス(1,3-n-ブチルメチルシクロペンタジエニル)ジルコニウムジクロリドのトルエン溶液(Zr=25.7mmol/L)22.0Lを、80℃で30分間かけて滴下し、さらに80℃で2時間反応させた。その後、上澄み液を除去し、ヘキサンで2回洗浄することにより、シリカ1g当たり3.2mgのジルコニウムを含有する固体触媒成分を得た。
(2)予備重合触媒の調製
 充分に窒素置換した350Lの反応器に、(1)で得られた固体触媒成分7.0kgとヘキサンとを装入し、全容積を285Lにした。反応系内を10℃まで冷却した後、エチレンを8Nm/hrの流量で5分間、固体触媒成分のヘキサン懸濁液中に吹き込んだ。この間、反応系内の温度は10~15℃に保持した。その後、エチレンの供給を停止し、トリイソブチルアルミニウムを2.4mol、および1-ヘキセンを1.2kg装入した。反応系内を密閉系にした後、8Nm/hrのエチレンの供給を再度開始した。15分後、エチレンの流量を2Nm/hrに下げ、反応系内の圧力を0.08MPaにした。この間、反応系内の温度は35℃まで上昇した。その後、反応系内の温度を32~35℃にコントロールしながら、エチレンを4Nm/hrの流量で3.5時間供給した。この間、反応系内の圧力は、0.07~0.08MPaに保持した。次いで、反応系内を窒素により置換し、上澄み液を除去し、ヘキサンで2回洗浄した。このようにして、固体触媒成分1g当たり3gのポリマーが予備重合された予備重合触媒を得た。
(3)予備重合触媒の乾燥
 内容量130Lのジャケット付濾過乾燥機に(2)で得られた予備重合触媒のヘキサン懸濁液を予備重合触媒として20kg投入し、ヘキサンを濾過した。その後、ジャケットを40℃に昇温し、反応系内にガス(窒素濃度10ppm、水分含有量5ppm)を6Nm/hで通気させながら3時間乾燥した。その間、系内温度は20℃から35℃まで上昇した。
(4)気相重合
 連続式流動床気相重合装置を用い、全圧2MPa、重合温度72℃、ガス線速0.6m/s、でエチレンと1-ヘキセンとの共重合を行なった。(2)で調製した予備重合触媒を60g/hrの割合で連続的に供給し、重合の間一定のガス組成を維持するために、エチレン、1-ヘキセン、水素および窒素を連続的に供給した(ガス組成:1-ヘキセン/エチレン=0.04、水素/エチレン=5.3×10-4、エチレン濃度65%)。これにより、m-PE-LLDで示される、エチレン-1-ヘキセン共重合体を得た。得られた共重合体は、密度が0.904g/cm、MFR=1.25g/10分(190℃、2.16kg荷重)であった。
 以上にように得られたポリマーの物性を、表1および図5~10に示す。
 表1に示す密度は、各ポリマーについての前述した密度測定方法による測定結果である。また、密度図5~図10に示すDSCチャートは、各ポリマーについての前述したDSC測定方法による測定結果であり、DSC融点が表示されている。
 なお、図5~10の各DSCチャートおよび、実施例で示す各DSCチャートにおいて、上側の測定ライン(Hp)にピーク温度が示されている。下側のライン(HL)は、融点が低いポリエチレンの結晶の集団の中心温度の高さを表している。各DSCチャートにおいて、横軸は温度であり、この温度はポリエチレンの結晶の厚さを意味している。すなわち、結晶が厚いほど高温で溶解する。縦軸は結晶の数を表しており、その温度で溶ける結晶数を示す。
 つまり、厚さの厚いポリエチレンの結晶(Hpで示される結晶集団)は、耐熱性は良いが透明性(柔軟性)を悪化させる傾向にあり、逆に、厚さの薄いポリエチレンの結晶(HLで示される結晶集団)は、耐熱性は悪いが、透明性(柔軟性)は良い。そこで、この発明では、低い温度で溶けるHLの結晶集団で透明性と柔軟性とを確保し、高い温度で溶けるHPの結晶集団で耐熱性を確保したものである。つまり、フィルムを構成する樹脂の役割を分担させることで透明性と耐熱性とを同時に満たしている。なお、HLとHPの間にある落ち込みは、中途半端な厚さのポリエチレンの結晶がないことを意味している。
 また、各表のHL/Hpは、上記HLおよびHpのバランスの指標である。
 次に、多層フィルムの各層を形成する樹脂材料の組成と物性とを、その略号とともに、表2~8に示す。
<実施例および比較例>
実施例1~28および比較例1~17(多層フィルム(II))
1.多層フィルムの製造
 下記表9~25に示す層構成の多層フィルム(3層フィルム)を、3層共押出し水冷インフレーション成形により製造した。後記表9~25に示す樹脂材料の略号は、上記のとおりである。
 また、多層フィルムの各層の厚さは、後記表9~25に示す値に設定した。具体的には、3層共押出しインフレーション成形により製造後の各層の厚さが、後記表9~25にそれぞれ示している値となるように、原料となる樹脂材料の厚さを適宜選択した。例えば、実施例1(表9参照)の多層フィルムは、A-1層からA-3層の順に、樹脂材料として、「1-5」、「2-1」、「1-6」を使用し、さらに、各層の樹脂材料の厚さを、3層共押出しインフレーション成形法による成形後において、順に、20μm、200μm、20μmとなるものを選択して使用した。
2.薬液バッグの製造
 さらに、得られたフィルムより、図2に記載の薬液バッグ6を製造した。周縁シール部9は、2枚の多層フィルム4,5を溶着金型で加熱溶着することにより形成した(図3参照)。周縁シール部9の加熱溶着の条件は、金型温度135℃、圧力0.4MPa、1.5秒の条件とした。また、薬液バッグ6のサイズは、収容部10の収容量を約1000mLとし、収容部10の縦方向の長さ(L1)を30.5cm、横方向の幅(W1)を21.3cmとした(図2参照)。
 また、落板試験用の薬液バッグは、前記条件と同条件にて、収容部10の収容量を約500mLとし、収容部10の縦方向の長さ(L1)を20.0cm、横方向の幅(W1)を12.5cmとした
実施例29~55および比較例18~34(多層フィルム(III))
1.多層フィルムの製造
 下記表26~33に示す層構成の多層フィルム(5層フィルム)を、5層共押出しインフレーション成形により製造した。後記表26~33に示す樹脂材料の略号は、上記のとおりである。
 また、多層フィルムの各層の厚みは、後記表26~33に示す値に設定した。具体的には、5層共押出しインフレーション成形により製造後の各層の厚みが、後記表26~33にそれぞれ示している値となるように、原料となる樹脂材料の厚みを適宜選択した。例えば、実施例29(表26参照)の多層フィルムは、B-1(第1層)からB-5層(第5層)の順に、樹脂材料として、「1-1」、「2-1」、「3-1」、「2-1」、および「1-2」を使用し、さらに、各層の樹脂材料の厚みを、5層共押出しインフレーション成形法による成形後において、順に、20μm、90μm、20μm、90μm、および30μmとなるものを選択して使用した。
2.薬液バッグの製造
 さらに、得られたフィルムより、図48に記載の薬液バッグ26を製造した。周縁シール部29は、2枚の多層フィルム27,28を溶着金型で加熱溶着することにより形成した。周縁シール部29の加熱溶着の条件は、金型温度135℃、圧力0.4MPa、1.5秒の条件とした。また、薬液バッグ26のサイズは、収容部30の収容量を約1000mLとし、収容部30の縦方向の長さ(L2)を30.5cm、横方向の幅(W2)を21.3cmとした(図48参照)。
 また、落板試験用の薬液バッグは、前記条件と同条件にて、収容部30の収容量を約500mLとし、収容部30の縦方向の長さ(L2)を20.0cm、横方向の幅(W2)を12.5cmとした
<薬液バッグの評価試験>
 上記実施例および比較例で得られた薬液バッグ6,26の収容部10,30に、注射用水を500mL、および1000mL充填、密封し、薬液バッグ6には、118℃、30分の高圧蒸気滅菌処理を、薬液バッグ26には、121℃で15分間高圧シャワー滅菌処理を施した。
1.透明性の評価
 蒸気滅菌処理後、薬液バッグ6,26の収容部10,30から多層フィルムを切り取って試料片を作製し、約48時間経過後、この試料片について、島津製作所製、島津分光光度計(UV-1200、P/N206-61700)を用い、450nmでの水中光線透過度(%)を測定し、その測定結果に基づいて、多層フィルムの透明性を評価した。
 多層フィルムの透明性は、上記試料片について、450nmでの光線透過度が75%以上である場合に良好である(A)とし、70%以上75%未満である場合に、やや劣るものの、実用上十分である(B)とし、70%未満の場合に、不合格(C)とした。この評価結果を、後記の表9~33にそれぞれ示す。
2.白化およびしわの有無の評価
 また、蒸気滅菌処理後、薬液バッグ6,26のヘッドスペース部(収容部10,30内において、内容液と接していない部分)の白化の有無と、薬液バッグ6,26のしわ発生の有無とを、目視で観察した。
 ヘッドスペース部の白化(表9~33において、単に「白化」と示す。)については、その有無について評価した。
 一方、しわの有無については、しわが観察されなかった場合、薬液バッグ6,26全体にしわが観察された場合、筒部材11,31の溶着部分(口部)にしわが観察された場合、および薬液バッグ6,26の周縁シール部9,29における角部にしわが観察された場合の4つに分けて評価した。これらの観察結果を、後記の表9~33に示す。
3.落板強度
 蒸気滅菌処理後、500mL収容の薬液バッグを氷入りの水中に沈め、薬液バッグが浮き上がらないように氷をその上にかぶせ、5時間放置した。その間、氷がなくならないように適宜追加した。5時間以上経過後、一つの薬液バッグを取り出し、温度計を中に差し込んで薬液の温度を測り、薬液温が4℃以下であることを確認した。
 その後、他の薬液バッグを図4に示す装置の下の鉄板の上に置き、10cmから5cm刻みで15cm、20cm、・・・、100cmまで同じサンプルの上に鉄板を落とし、薬液バッグから薬液が漏れるか、破裂する高さの値を落板強度とした。
 落板強度が60cm以上である場合に良好である(A)とし、40cm以上60cm未満である場合に、やや劣るものの、実用上十分である(B)とし、40cm未満の場合に、不合格(C)とした。なお、試験サンプルは5~10個用意し、その平均値を結果として採用した。なお、ABC評価の後のカッコ内の数値は高さ(cm)である。
4.酸素透過度
 蒸気滅菌処理後の薬液バッグの表面を、約40℃の温風で1分間除水させた。さらに、温度25℃、湿度60%RHの環境下に放置し、薬液バッグ中の注射用水の酸素濃度を非破壊酸素濃度計(PreSens社製 製品名「Fibox 3」)で測定した。酸素濃度の測定は、まず、蒸気滅菌処理から6時間経過後に実施し、次いで、蒸気滅菌処理から1日経過する毎に実施した。なお、酸素透過度の測定には、MOCON社製の商品名「OX-TRAN(登録商標)」を使用した。
5.水蒸気透過度
 上記滅菌処理後の薬液バッグの水蒸気透過度を、JIS K 7129(1992)「プラスチックフィルム及びシートの水蒸気透過度試験方法(機器測定法)」に規定のA法(感湿センサー法)に従って測定した。測定機器には、Lissy社製の型式「L80-5000型」を使用した。また、測定条件は、40℃、90%RHとした。
6.考察
 多層フィルム(II)の実施例および比較例に関して、実施例1~5(表9および10)の薬液バッグは、A-2層として同一組成の樹脂材料(2-1)を用い、A-1層およびA-3層として異なる組成の樹脂材料を用いた実施例である。これらの薬液バッグの多層フィルムの透明性はいずれも実用上十分(AまたはB)であり、ヘッドスペース部の白化やしわが観察されなかった。
 一方、比較例1および2(表19)の薬液バッグは、多層フィルムの透明性、ヘッドスペース部の白化、および薬液バッグのしわの、少なくともいずれか1つの評価項目が不合格であった。
 実施例6~14(表10~13)の薬液バッグは、A-1層およびA-3層として同一組成の樹脂材料(A-1層:1-5 A-3層:1-6)を用い、A-2層として異なる組成の樹脂材料を用いた実施例であり、当該実施例のうち、最も好ましい実施例である。
 A-2層を構成するポリエチレン混合物の密度は、0.910~0.916g/cmである。また、当該ポリエチレン混合物の組成は、0.919g/cmの密度を有する直鎖状ポリエチレン(表1のPE-LLD)10~30重量%、0.959g/cmの密度を有する高密度ポリエチレン(表1のPE-HD)5~15重量%、および0.904g/cmの密度を有する、メタロセン触媒で重合されたポリエチレン(表1のm-PE-LLD)60~80重量%からなる。
 いずれも、多層フィルムの透明性が良好(A)または(B)であり、特にA-2層の密度が支配的な落板強度は全て(A)である。またヘッドスペース部の白化やしわが観察されなかった。
 また、A-2層のDSC曲線の形状は、図15~23で明らかなように、120~126℃の範囲にDSC融点のピークと、90~105℃の範囲にDSC融点のピークよりも低い第2のピークを有する。また、ΔHは、85J/g以上である。また、HL/Hpの値は、0.20~0.50を満たしている。これにより、透明性と落板強度が両立している。
 実施例15~20(表13~15)の薬液バッグは、A-1層およびA-3層として同一組成の樹脂材料(A-1層:1-5 A-3層:1-6)を用い、A-2層として異なる組成の樹脂材料を用いた実施例であり、当該実施例のうち、次に好ましい範囲の実施例である。
 A-2層を構成するポリエチレン混合物の密度は、0.910~0.918g/cmである。また、当該ポリエチレン混合物の組成は、0.919g/cmの密度を有する直鎖状ポリエチレン(表1のPE-LLD)0~40重量%、0.959g/cmの密度を有する高密度ポリエチレン(表1のPE-HD)5~15重量%、および0.904g/cmの密度を有する、メタロセン触媒で重合されたポリエチレン(表1のm-PE-LLD)50~85重量%からなる。
 いずれも、多層フィルムの透明性が良好(A)または(B)であり、落板強度も良好(A)または(B)である。またヘッドスペース部の白化やしわが観察されなかった。
 また、A-2層のDSC曲線の形状は、図24~図29で明らかなように、120~126℃の範囲にDSC融点のピークと、90~105℃の範囲にDSC融点のピークより低い第2のピークを有する。また、ΔHは、85J/g以上である。また、HL/Hpの値は、0.20~0.50を満たしている。これにより、透明性と落板強度が両立している。
 実施例21~24(表15および16)の薬液バッグは、A-1層およびA-3層として同一組成の樹脂材料(A-1層:1-5 A-3層:1-6)を用い、A-2層として異なる組成の樹脂材料を用いた実施例であり、当該実施例のうち、好ましい範囲の実施例である。
 A-2層を構成するポリエチレン混合物の密度は、0.910~0.920g/cmである。また、当該ポリエチレン混合物の組成は、0.919g/cmの密度を有する直鎖状ポリエチレン(表1のPE-LLD)40~55重量%、0.959g/cmの密度を有する高密度ポリエチレン(表1のPE-HD)5~15重量%、および0.904g/cmの密度を有する、メタロセン触媒で重合されたポリエチレン(表1のm-PE-LLD)35~50重量%からなる。
 いずれも、多層フィルムの透明性が良好(A)または(B)であり、落板強度も(A)または(B)である。またヘッドスペース部の白化やしわが観察されなかった。
 また、A-2層のDSC曲線の形状は、図30~33で明らかなように、120~126℃の範囲にDSC融点のピークと、90~105℃の範囲にDSC融点のピークよりも低い第2のピークを有する。また、ΔHは、85J/g以上である。また、HL/Hpの値は、0.20~0.50を満たしている。これにより、透明性と落板強度が両立している。
 実施例25および26(表17)の薬液バッグは、多層フィルムの3層のいずれもが実施例1の3層と同一組成の樹脂材料からなり、A-2層の厚さの比率を変えた例である。いずれも、多層フィルムの透明性が良好(A)または(B)であり、落板強度は良好(A)である。また、ヘッドスペース部の白化やしわが観察されなかった。
 一方、比較例3~17(表20~25)の薬液バッグは、多層フィルムの透明性、ヘッドスペース部の白化、および薬液バッグのしわ、落板試験の少なくともいずれか1つの評価項目が不合格であった。
 例えば、比較例3では、A-2層における高密度ポリエチレン(表1のPE-HD)の含有量が0重量%である。そのため、A-2層のDSC融点が117.2℃(本発明におけるA-2層のDSC融点は、120~126℃)であり(図34参照)、シワが発生する。
 また、比較例4では、A-2層における高密度ポリエチレン(表1のPE-HD)の含有量が20重量%である。そのため、A-2層のDSC曲線(図35参照)において、HL/Hp=0.17(本発明での好ましい範囲は、0.20~0.50)であり、透明性が不合格である。
 また、比較例7では、A-2層におけるメタロセン触媒で重合されたポリエチレン(表1のm-PE-LLD)の含有量が30重量%である。そのため、A-2層のDSC曲線(図38参照)において、DSC融点のピークよりも低い第2のピークの温度が107.7℃(本発明での好ましい範囲は、90~105℃)であり、透明性が不合格で、落板強度も低い。
 さらに、比較例10では、A-2層の密度が0.908g/cmであり、実施例のものに比べて低い。そのため、ΔHが80.4J/g(本発明での好ましい範囲は、85J/g以上)であり、シワが発生する。
 また、多層フィルム(III)の実施例および比較例に関して、実施例29~32(表26)の薬液バッグには、B-1層、およびB-5層に関する実施例である。いずれも、多層フィルムの透明性が良好(A)であり、ヘッドスペース部の白化やしわが観察されなかった。
 一方、比較例18~21(表31)の薬液バッグは、多層フィルムの透明性、ヘッドスペース部の白化、および薬液バッグのしわの、少なくともいずれか1つの評価項目が不合格であった。
 実施例29(表26)と実施例33(表26)の薬液バッグは、B-3層に関する実施例である。いずれも多層フィルムの透明性が良好(A)であり、ヘッドスペース部の白化やしわが観察されなかった。
 一方、比較例22~23(表31)の薬液バッグは、多層フィルムの透明性、ヘッドスペース部の白化、および薬液バッグのしわの、少なくともいずれか1つの評価項目が不十分であった。
 実施例34~42(表27、表28)の薬液バッグは、B-2層、およびB-4層に関する実施例のうち、最も好ましい実施例である。混合物の密度は0.910~0.916g/cmであり、その組成は、密度が0.904g/cmのシングルサイト触媒で重合されたポリエチレン(表1のm-PE-LLD)60~80重量%、密度が0.919g/cmの直鎖状ポリエチレン(表1のPE-LLD)10~30重量%、密度が0.959g/cmの高密度ポリエチレン(表1のPE-HD)5~15重量%からなる。
 いずれも、多層フィルムの透明性が良好(A)または(B)であり、特にB-2層、B-4層の密度が支配的な落板強度は全て(A)である。またヘッドスペース部の白化やしわが観察されなかった。DSC曲線の形状も図15~図23で明らかなように、120℃以上126℃以下のDSC融点と90℃以上105℃以下のDSC融点より低いピークをもつ。また、ΔHも85J/g以上である。またHL/Hpの値も0.20~0.50を満たしている。これにより、透明性と落板強度が両立している。
 実施例43~48(表28、29)の薬液バッグは、B-2層、およびB-4層に関する実施例のうち、次に好ましい範囲の実施例である。混合物の密度は0.910~0.918g/cmであり、その組成は、密度が0.904g/cmのシングルサイト触媒で重合されたポリエチレン(表1のm-PE-LLD)50~85重量%、密度が0.919g/cmの直鎖状ポリエチレン(表1のPE-LLD)0~40重量%、密度が0.959g/cmの高密度ポリエチレン(表1のPE-HD)5~15重量%からなる。
 いずれも、多層フィルムの透明性が良好(A)または(B)であり、落板強度も良好(A)または(B)である。またヘッドスペース部の白化やしわが観察されなかった。DSC曲線の形状も図24~図29で明らかなように、120℃以上126℃未満のDSC融点と90℃以上105℃以下のDSC融点より低いピークをもつ。また、ΔHも85J/g以上であり、かつHL/Hpの値も0.20~0.50を満たしている。これにより、透明性と落板強度が両立している。
 実施例49~52(表29、表30)の薬液バッグは、B-2層、およびB-4層に関する実施例のうち、好ましい範囲の実施例である。混合物の密度は0.910~0.920g/cmであり、その組成は、密度が0.904g/cmのシングルサイト触媒で重合されたポリエチレン(表1のm-PE-LLD)35~85重量%、密度が0.919g/cmの直鎖状ポリエチレン(表1のPE-LLD)0~55重量%、密度が0.959g/cmの高密度ポリエチレン(表1のPE-HD)5~15重量%からなる。
 いずれも、多層フィルムの透明性が良好(A)または(B)であり、落板強度も(A)または(B)である。またヘッドスペース部の白化やしわが観察されなかった。DSC曲線の形状も図30~33で明らかなように、120℃以上126℃未満のDSC融点と90℃以上105℃以下のDSC融点より低いピークをもつ。また、ΔHも85J/g以上であるまた、HL/Hpの値も0.20~0.50を満たしている。これにより、透明性と落板強度が両立している。
 実施例53、54(表30)の薬液バッグは、B-2層、およびB-4層に関する実施例のうち、各層の厚みの比率を変えた例である。いずれも、多層フィルムの透明性が良好(A)または(B)であり、落板強度は良好(A)である。また、ヘッドスペース部の白化やしわが観察されなかった。
 実施例55の薬液バッグはB-3層に高圧法ポリエチレン(表1のHP-LDPE)を併用した例である。この例は、高圧法ポリエチレンの効果により、周縁シール時のシールフ゛の薄膜化や、口部材溶着によるフィルムに出来るピンホールの発生を軽減させる効果が期待できる。
 一方、比較例24~34(表32~33)の薬液バッグは、多層フィルムの透明性、ヘッドスペース部の白化、および薬液バッグのしわ、落板試験の少なくともいずれか1つの評価項目が不合格であった。
 例えば、図34(比較例24)は、高密度ポリエチレン(表1のPE-HD)が0重量%であるためDSC融点が117℃(好ましい範囲は120℃以上126℃以下)であり、シワが発生する。図35(比較例25)は、高密度ポリエチレン(表1のPE-HD)が20重量%であるためHL/Hp=0.17であり(好ましい範囲は、0.20~0.50)、透明性が不合格である。
 図38(比較例28)は、密度が0.904g/cmのシングルサイト触媒で重合されたポリエチレン(表1のm-PE-LLD)が30重量%であるためDSC融点より低いピークが108℃であり(好ましい温度は105℃以下)、透明性が不合格で、落板強度も低い。
 図41(比較例31)は、密度が0.908と低いためΔHが80J/gであり(好ましい値は85J/g以上)、シワが発生してしまう。
<試験例>
1.多層フィルムの製造
 前述の実施形態に例示したA-1層、A-2層およびA-3層の組み合わせを複数種選択して、厚さ240μmの3層構造からなる多層フィルムを、3層共押出しインフレーション成形により複数製造した。
2.薬液バッグの製造
 さらに、得られたフィルムにより、図2に記載の薬液バッグ6を製造した。周縁シール部9は、2枚の多層フィルム4,5を溶着金型で加熱溶着することにより形成した(図3参照)。周縁シール部9の加熱溶着の条件は、金型温度135℃、圧力0.4MPa、1.5秒の条件とした。また、薬液バッグ6のサイズは、収容部10の収容量を約1000mLとし、収容部10の縦方向の長さ(L1)を30.5cm、横方向の幅(W1)を21.3cmとした(図2参照)。
3.薬液バッグの評価試験
 上記試験例で得られた薬液バッグ6の収容部10に、注射用水を500mL、および1000mL充填、密封し、121℃で15分間高圧シャワー滅菌処理を施した。
(1)酸素透過度
 上記実施例における酸素透過度の測定方法と同じ方法により、薬液バッグの酸素透過度を測定した。
(2)水蒸気透過度
 上記実施例における水蒸気透過度の測定方法と同じ方法により、薬液バッグの水蒸気透過度を測定した。
 (1)および(2)により得られた結果に基づき、フィルムの平均密度と酸素透過度との関係、および酸素透過度と水蒸気透過度との関係をそれぞれグラフ化した。結果を図45および図46に示す。
 以上の通り、比較例と比べた本発明の実施例は、いずれも、耐熱性、透明性および柔軟性を兼ね備えた薬液収容バックに好適な多層フィルムを得ることができた。
 本発明は、以上の記載に限定されるものではなく、特許請求の範囲に記載した事項の範囲において、種々の設計変更を施すことが可能である。
 例えば、前述の実施形態では、A-1層1、A-2層2およびA-3層3の3層構造からなる多層フィルムおよびB-1層21、B-2層22、B-3層23、B-4層24およびB-5層25からなる多層フィルム、ならびにこれらの多層フィルムを用いて形成された薬液バッグ6,26を一例として採りあげたが、本発明の多層フィルムは、4層、6層およびそれ以上の複数層からなる態様であってもよい。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 1・・・A-1層(第1層)、2・・・A-2層(第2層)、3・・A-3層(第3層)、4・・・多層フィルム(II)、5・・・多層フィルム(II)、6・・・薬液バッグ、9・・・周縁シール部、21・・・B-1層(第1層)、22・・・B-2層(第2層)、23・・・B-3層(第3層)、24・・・B-4層(第4層)、25・・・B-5(第5層)、26・・・薬液バッグ、27・・・多層フィルム(III)、28・・・多層フィルム(III)、29・・・周縁シール部

Claims (12)

  1.  最外層と最内層とが、1~3つの層から構成される中間層を介して積層されている多層フィルムであって、
     前記中間層が、
     0.910~0.930g/cmの密度を有する直鎖状ポリエチレン0~55重量%と、
     0.950~0.970g/cmの密度を有する高密度ポリエチレン5~15重量%と、
     0.900~0.910g/cmの密度を有する、シングルサイト触媒で重合された直鎖状ポリエチレン35~85重量%とからなり、かつ前記最外層および前記最内層よりも密度が低い層を少なくとも1層含み、
     前記最外層および前記最内層が、ポリエチレンまたは2種以上のポリエチレンの混合物からなることを特徴とする、多層フィルム。
  2.  前記最外層がA-1層であり、前記中間層がA-2層であり、前記最内層がA-3層であって、前記A-1層、前記A-2層および前記A-3層がこの順に積層されることにより形成された積層構造を有する3層フィルムであって、
     前記A-1層は、126℃を上回り132℃以下のDSC融点および前記A-2層の密度よりも高い密度を有するポリエチレンまたは2種以上のポリエチレンの混合物からなり、
     前記A-3層は、125℃を上回り130℃以下のDSC融点および前記A-2層の密度よりも高い密度を有するポリエチレンまたは2種以上のポリエチレンの混合物からなり、
     前記A-2層は、120~126℃のDSC融点および0.910~0.920g/cmを有するポリエチレン混合物からなり、
     前記A-2層を構成する前記ポリエチレン混合物は、
      0.910~0.930g/cmの密度を有する直鎖状ポリエチレン0~55重量%と、
      0.950~0.970g/cmの密度を有する高密度ポリエチレン5~15重量%と、
      0.900~0.910g/cmの密度を有する、シングルサイト触媒で重合された直鎖状ポリエチレン35~85重量%とからなり、
     フィルム全体の厚さが180~280μmであることを特徴とする、請求項1に記載の多層フィルム。
  3.  前記A-1層の密度が、0.940~0.951g/cmであり、
     前記A-3層の密度が、0.937~0.946g/cmであることを特徴とする、請求項2に記載の多層フィルム。
  4.  前記A-1層は、
      120~125℃のDSC融点および0.930~0.940g/cmの密度を有する直鎖状ポリエチレン55~85重量%と、
      0.950~0.970g/cmの密度を有する高密度ポリエチレン15~45重量%とからなり、
     前記A-3層は、
      120~125℃のDSC融点および0.930~0.940g/cmの密度を有する直鎖状ポリエチレン70~85重量%と、
      0.950~0.970g/cmの密度を有する高密度ポリエチレン15~30重量%とからなるポリエチレン混合物であることを特徴とする、請求項2または3に記載の多層フィルム。
  5.  前記A-1層の厚さが10~30μmであり、前記A-2層の厚さが140~250μmであり、かつ前記A-3層の厚さが15~45μmであることを特徴とする、請求項2~4のいずれかに記載の多層フィルム。
  6.  前記A-2層を構成する前記ポリエチレン混合物のDSC曲線が、120~126℃の範囲にDSC融点ピークと、90~105℃の範囲に前記DSC融点のピークよりも低い第2ピークとを少なくとも有し、
     前記DSC融点のピークの高さHpに対する前記第2のピークの高さHLの比率(HL/Hp)が、0.20~0.50であることを特徴とする、請求項2~5のいずれかに記載の多層フィルム。
  7.  請求項2~6のいずれかに記載の多層フィルムを用い、前記A-1層が外層となり、前記A-3層が内層となるように形成されていることを特徴とする、バッグ。
  8.  前記最外層がB-1層であり、前記中間層がB-2層~B-4層の3層であり、前記最内層がB-5層であって、前記B-1層、前記B-2層、前記B-3層、前記B-4層および前記B-5層がこの順に積層されることにより形成された積層構造を有する5層フィルムであって、
     前記B-1層、前記B-3層および前記B-5層が、前記B-2層および前記B-4層よりも密度の高い直鎖状ポリエチレンからなり、
     前記B-2層および前記B-4層が、120℃以上126℃以下のDSC融点および0.910~0.920g/cmの密度を有する直鎖状ポリエチレン混合物からなり、
     前記B-2層および前記B-4層を構成する前記直鎖状ポリエチレン混合物は、
      0.900~0.910g/cmの密度を有する、シングルサイト触媒で重合された直鎖状ポリエチレン35~85重量%と、
      0.910~0.930g/cmの密度を有する直鎖状ポリエチレン0~55重量%と、
      0.950~0.970g/cmの密度を有する高密度ポリエチレン5~15重量%とからなることを特徴とする、請求項1に記載の多層フィルム。
  9.  前記B-1層および前記B-5層は、125℃を上回り130℃以下のDSC融点および0.935~0.946g/cmの密度を有し、
     前記B-3層は、120℃以上125℃以下のDSC融点および0.930~0.940g/cmの密度を有することを特徴とする、請求項8に記載の多層フィルム。
  10.  前記B-1層およびB-5層を構成する前記直鎖状ポリエチレンは、
      120℃以上125℃以下のDSC融点および0.930~0.940g/cmの密度を有する直鎖状ポリエチレン75~90重量%と、
      0.950~0.970g/cmの密度を有する高密度ポリエチレン10~25重量%とからなることを特徴とする、請求項8または9に記載の多層フィルム。
  11.  前記B-1層および前記B-3層の厚さが10~30μmであり、前記B-2層および前記B-4層の厚さが70~110μmであり、かつ前記B-5層の厚さが15~45μmであることを特徴とする、請求項8~10のいずれかに記載の多層フィルム。
  12.  請求項8~11のいずれかに記載の多層フィルムを用い、前記B-1層が外層となり、前記B-5層が内層となるように形成されていることを特徴とする、バッグ。
PCT/JP2010/052767 2009-02-26 2010-02-23 多層フィルムおよびそのフィルムで形成したバッグ WO2010098322A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2010218831A AU2010218831B2 (en) 2009-02-26 2010-02-23 Multilayer film and bag formed of the film
CA2749761A CA2749761C (en) 2009-02-26 2010-02-23 Multilayer film and bag formed of the film
EP10746203.8A EP2402156B1 (en) 2009-02-26 2010-02-23 Multilayer film and bag formed of the film
JP2011501603A JP5566369B2 (ja) 2009-02-26 2010-02-23 多層フィルムおよびそのフィルムで形成したバッグ
KR1020117017569A KR101547722B1 (ko) 2009-02-26 2010-02-23 다층 필름 및 그 필름으로 형성한 백
US13/203,453 US20120014625A1 (en) 2009-02-26 2010-02-23 Multilayer film and bag formed of the film
SG2011059474A SG173753A1 (en) 2009-02-26 2010-02-23 Multilayer film and bag formed of the film
CN201080008150.7A CN102325651B (zh) 2009-02-26 2010-02-23 多层膜以及使用该膜形成的袋子

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009044625 2009-02-26
JP2009-044625 2009-02-26
JP2009-223116 2009-09-28
JP2009223116 2009-09-28
JP2009268514 2009-11-26
JP2009-268514 2009-11-26

Publications (2)

Publication Number Publication Date
WO2010098322A1 true WO2010098322A1 (ja) 2010-09-02
WO2010098322A9 WO2010098322A9 (ja) 2010-11-04

Family

ID=42665529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052767 WO2010098322A1 (ja) 2009-02-26 2010-02-23 多層フィルムおよびそのフィルムで形成したバッグ

Country Status (11)

Country Link
US (1) US20120014625A1 (ja)
EP (1) EP2402156B1 (ja)
JP (1) JP5566369B2 (ja)
KR (1) KR101547722B1 (ja)
CN (1) CN102325651B (ja)
AU (1) AU2010218831B2 (ja)
CA (1) CA2749761C (ja)
MY (1) MY159221A (ja)
SG (2) SG196861A1 (ja)
TW (1) TWI480159B (ja)
WO (1) WO2010098322A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081494A (ja) * 2011-10-05 2013-05-09 Tosoh Corp 医薬用容器
JP2013203980A (ja) * 2012-03-29 2013-10-07 Japan Polyethylene Corp 圧力容器ライナー用熱可塑性樹脂、圧力容器及びその製造方法
JP2015033783A (ja) * 2013-08-08 2015-02-19 東ソー株式会社 ポリエチレン製積層体およびそれよりなる医療容器
WO2016158905A1 (ja) * 2015-03-31 2016-10-06 株式会社ジェイ・エム・エス 液体収容バッグ
JP2016178990A (ja) * 2015-03-23 2016-10-13 日本ポリエチレン株式会社 医療用袋
JP2016178988A (ja) * 2015-03-23 2016-10-13 日本ポリエチレン株式会社 医療用袋
WO2019059170A1 (ja) * 2017-09-25 2019-03-28 川澄化学工業株式会社 医療用保存容器を製造するための樹脂組成物、シートおよび医療用保存容器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5363794B2 (ja) * 2008-12-12 2013-12-11 カルソニックカンセイ株式会社 基板支持構造
CA2801202C (en) * 2010-05-31 2019-03-12 Otsuka Pharmaceutical Factory, Inc. Multilayer film and bag formed of multilayer film
CN104309240B (zh) * 2014-11-07 2016-08-24 浏阳市源友印务包装有限公司 一种用于焊边型包装袋的同质复合膜
CN104494207B (zh) * 2014-11-07 2017-02-01 浏阳市源友印务包装有限公司 一种塑料包装袋集成式加工方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309939A (ja) * 1995-05-15 1996-11-26 Nippon Petrochem Co Ltd 積層体と積層体からなる容器
JPH09308683A (ja) * 1996-05-24 1997-12-02 Fujimori Kogyo Kk 医療用液体容器用プラスチックフィルム
JP2000177077A (ja) * 1998-12-14 2000-06-27 Otsuka Pharmaceut Factory Inc 多層フィルムおよび容器
JP2001172441A (ja) 1999-10-08 2001-06-26 Nipro Corp 耐熱性シート及びこれを用いた輸液バッグ
JP2002238975A (ja) 2001-02-19 2002-08-27 Kawasumi Lab Inc 医療用容器
JP2002301796A (ja) * 2001-04-04 2002-10-15 Otsuka Pharmaceut Factory Inc 多層フィルムおよびそれを用いた容器
JP2003237002A (ja) * 2001-01-15 2003-08-26 Showa Denko Plastic Products Co Ltd 積層体及び容器
JP2006021504A (ja) 2004-07-09 2006-01-26 Otsuka Pharmaceut Factory Inc 可撓性プラスチックフィルムおよびそれを用いた容器
WO2007102336A1 (ja) * 2006-03-03 2007-09-13 Otsuka Pharmaceutical Factory, Inc. 多層フィルムおよび容器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550256B2 (ja) * 1992-04-22 1996-11-06 昭和電工株式会社 医療用バッグ
JP3021258B2 (ja) * 1992-12-04 2000-03-15 株式会社大塚製薬工場 多層フィルム及び容器
JP3091069B2 (ja) 1992-12-28 2000-09-25 三井化学株式会社 樹脂積層体およびその用途
MY117691A (en) * 1997-07-17 2004-07-31 Otsuka Pharma Co Ltd Multilayer film and container
CN100572047C (zh) * 2001-01-15 2009-12-23 株式会社细川洋行 层压材料和容器
AU2002219614A1 (en) * 2001-01-15 2002-07-24 Showa Denko Plastic Products Co., Ltd. Laminate and container
US20050208240A1 (en) * 2002-05-17 2005-09-22 Yuki Manabe Multi-layer film and medicine container using the same
JP4505321B2 (ja) * 2004-01-09 2010-07-21 日本ポリエチレン株式会社 積層体及びそれからなる医療用袋

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309939A (ja) * 1995-05-15 1996-11-26 Nippon Petrochem Co Ltd 積層体と積層体からなる容器
JPH09308683A (ja) * 1996-05-24 1997-12-02 Fujimori Kogyo Kk 医療用液体容器用プラスチックフィルム
JP2000177077A (ja) * 1998-12-14 2000-06-27 Otsuka Pharmaceut Factory Inc 多層フィルムおよび容器
JP2001172441A (ja) 1999-10-08 2001-06-26 Nipro Corp 耐熱性シート及びこれを用いた輸液バッグ
JP2003237002A (ja) * 2001-01-15 2003-08-26 Showa Denko Plastic Products Co Ltd 積層体及び容器
JP2002238975A (ja) 2001-02-19 2002-08-27 Kawasumi Lab Inc 医療用容器
JP2002301796A (ja) * 2001-04-04 2002-10-15 Otsuka Pharmaceut Factory Inc 多層フィルムおよびそれを用いた容器
JP2006021504A (ja) 2004-07-09 2006-01-26 Otsuka Pharmaceut Factory Inc 可撓性プラスチックフィルムおよびそれを用いた容器
WO2007102336A1 (ja) * 2006-03-03 2007-09-13 Otsuka Pharmaceutical Factory, Inc. 多層フィルムおよび容器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081494A (ja) * 2011-10-05 2013-05-09 Tosoh Corp 医薬用容器
JP2013203980A (ja) * 2012-03-29 2013-10-07 Japan Polyethylene Corp 圧力容器ライナー用熱可塑性樹脂、圧力容器及びその製造方法
JP2015033783A (ja) * 2013-08-08 2015-02-19 東ソー株式会社 ポリエチレン製積層体およびそれよりなる医療容器
JP2016178990A (ja) * 2015-03-23 2016-10-13 日本ポリエチレン株式会社 医療用袋
JP2016178988A (ja) * 2015-03-23 2016-10-13 日本ポリエチレン株式会社 医療用袋
WO2016158905A1 (ja) * 2015-03-31 2016-10-06 株式会社ジェイ・エム・エス 液体収容バッグ
JP2016189934A (ja) * 2015-03-31 2016-11-10 株式会社ジェイ・エム・エス 液体収容バッグ
WO2019059170A1 (ja) * 2017-09-25 2019-03-28 川澄化学工業株式会社 医療用保存容器を製造するための樹脂組成物、シートおよび医療用保存容器
JPWO2019059170A1 (ja) * 2017-09-25 2020-10-22 川澄化学工業株式会社 医療用保存容器を製造するための樹脂組成物、シートおよび医療用保存容器
US11613635B2 (en) 2017-09-25 2023-03-28 SB-Kawasumi Laboratories, Inc. Resin composition for manufacturing medical storage container, sheet and medical storage container
JP7281404B2 (ja) 2017-09-25 2023-05-25 Sbカワスミ株式会社 医療用保存容器を製造するための樹脂組成物、シートおよび医療用保存容器

Also Published As

Publication number Publication date
CA2749761A1 (en) 2010-09-02
AU2010218831A1 (en) 2011-07-28
TWI480159B (zh) 2015-04-11
JP5566369B2 (ja) 2014-08-06
KR20110120879A (ko) 2011-11-04
CN102325651A (zh) 2012-01-18
WO2010098322A9 (ja) 2010-11-04
SG196861A1 (en) 2014-02-13
EP2402156B1 (en) 2018-02-14
TW201100250A (en) 2011-01-01
KR101547722B1 (ko) 2015-08-26
JPWO2010098322A1 (ja) 2012-09-06
MY159221A (en) 2016-12-30
AU2010218831B2 (en) 2014-02-27
CA2749761C (en) 2014-11-25
CN102325651B (zh) 2014-05-07
EP2402156A1 (en) 2012-01-04
SG173753A1 (en) 2011-09-29
US20120014625A1 (en) 2012-01-19
EP2402156A4 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5566369B2 (ja) 多層フィルムおよびそのフィルムで形成したバッグ
JP5317513B2 (ja) 多層フィルム、薬液バッグとその製造方法、および薬液バッグの滅菌処理方法
JP6311562B2 (ja) ポリエチレン樹脂組成物、それよりなる積層体およびこの積層体を用いた医療容器
CN102248735B (zh) 包装用聚烯烃薄膜及其制备方法
TWI526310B (zh) 多層薄膜及由該多層薄膜形成之袋
JP6311262B2 (ja) ポリエチレン製積層体およびそれよりなる医療容器
CN113165327B (zh) 层压结构和并有其的柔性包装材料
TW202235285A (zh) 積層膜
JP7310445B2 (ja) ポリエチレン樹脂組成物、積層体および医療容器
JP7192445B2 (ja) 積層体及びそれよりなる医療容器
EP4045312A1 (en) Multi-layered polyethylene films oriented in the machine direction and articles comprising the same
JP6163952B2 (ja) ポリエチレン製積層体およびそれよりなる医療容器
JP2005097358A (ja) ポリプロピレン系成形体及び容器
JP6343886B2 (ja) ポリエチレン製医療容器
JP2017018290A (ja) 複室容器
JPWO2007102336A1 (ja) 多層フィルムおよび容器
TW201902792A (zh) 具有三維無規迴路材料之可撓性容器
JP2023059726A (ja) レトルト食品包装容器用シーラントフィルム
JP2011231330A (ja) 包装用フィルム及びその包装用フィルムを使用した積層包装材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008150.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010218831

Country of ref document: AU

Ref document number: 2749761

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011501603

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12011501403

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20117017569

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010218831

Country of ref document: AU

Date of ref document: 20100223

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010746203

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13203453

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7303/DELNP/2011

Country of ref document: IN