WO2010093208A2 - 하이드로포밀화 반응용 촉매 조성물 및 이를 이용하는 알데히드의 제조방법 - Google Patents

하이드로포밀화 반응용 촉매 조성물 및 이를 이용하는 알데히드의 제조방법 Download PDF

Info

Publication number
WO2010093208A2
WO2010093208A2 PCT/KR2010/000921 KR2010000921W WO2010093208A2 WO 2010093208 A2 WO2010093208 A2 WO 2010093208A2 KR 2010000921 W KR2010000921 W KR 2010000921W WO 2010093208 A2 WO2010093208 A2 WO 2010093208A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
ligand
carbon atoms
substituted
phosphine
Prior art date
Application number
PCT/KR2010/000921
Other languages
English (en)
French (fr)
Other versions
WO2010093208A3 (ko
Inventor
최재희
고동현
엄성식
홍무호
권오학
김대철
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42562207&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010093208(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to EP10741425.2A priority Critical patent/EP2404671B2/en
Priority to CN201080004413.7A priority patent/CN102271812B/zh
Priority to ES10741425.2T priority patent/ES2515266T5/es
Publication of WO2010093208A2 publication Critical patent/WO2010093208A2/ko
Publication of WO2010093208A3 publication Critical patent/WO2010093208A3/ko
Priority to US13/092,817 priority patent/US8426651B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/1875Phosphinites (R2P(OR), their isomeric phosphine oxides (R3P=O) and RO-substitution derivatives thereof)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/46Phosphinous acids [R2POH], [R2P(= O)H]: Thiophosphinous acids including[R2PSH]; [R2P(=S)H]; Aminophosphines [R2PNH2]; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having sulfur atoms, with or without selenium or tellurium atoms, as the only ring hetero atoms
    • C07F9/655345Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having sulfur atoms, with or without selenium or tellurium atoms, as the only ring hetero atoms the sulfur atom being part of a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657109Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms esters of oxyacids of phosphorus in which one or more exocyclic oxygen atoms have been replaced by (a) sulfur atom(s)
    • C07F9/657127Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms esters of oxyacids of phosphorus in which one or more exocyclic oxygen atoms have been replaced by (a) sulfur atom(s) condensed with carbocyclic or heterocyclic rings or ring systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt

Definitions

  • the present invention relates to a catalyst composition for hydroformylation reaction and a method for preparing an aldehyde using the same, more particularly triarylphosphine ligand; Phosphine oxide or phosphine sulfide ligands represented by certain formulas; And it relates to a catalyst composition for hydroformylation reaction comprising a transition metal catalyst and a method for producing an aldehyde using the same.
  • Hydroformylation reaction is a linear increase in the number of carbon atoms in an olefin due to the reaction of various olefins and syngas (CO / H 2 ) in the presence of metal catalysts and ligands. linear, normal) and branched (iso) aldehydes are produced.
  • the oxo reaction was first discovered by Otto Roelen of Germany in 1938, and as of 2001, around 8.4 million tonnes of various aldehydes (including alcohol derivatives) are produced and consumed through the oxo process worldwide ( SRI report , November 2002, 682. 700 A).
  • aldehydes synthesized by the oxo reaction are transformed into aldehyde derivatives acid and alcohol through oxidation or reduction.
  • condensation reaction such as Aldol (Aldol) may be transformed into various acids and alcohols containing a long alkyl group through oxidation or reduction reaction.
  • alcohols and acids are used as solvents, additives, and raw materials for various plasticizers.
  • the catalysts used in the oxo process are mainly cobalt (Co) and rhodium (Rh) series, and the N / I selectivity of the aldehyde produced according to the type of ligand and the operating conditions applied (iso) of linear (normal) to branched (iso ) isomers) are different. More than 70% of the world's oxo plants employ a low pressure OXO process with rhodium-based catalysts.
  • the core metals of the oxo catalyst are iridium (Ir), ruthenium (Ru), osmium (Os), platinum (Pt), palladium (Pd), iron (Fe) and nickel (Ni).
  • Ir iridium
  • Ru ruthenium
  • Os osmium
  • Pt platinum
  • Pd palladium
  • Fe iron
  • Ni nickel
  • TEP triarylphosphine
  • rhodium (Rh) metal is used as a catalyst and TPP is used as a ligand.
  • Rh catalyst is a considerably expensive metal
  • triarylphosphine ligands such as triphenylphosphine should be applied at least 100 equivalents to the Rh catalyst in order to increase the stability of the Rh catalyst.
  • the higher the ligand equivalent to the Rh catalyst the more the activity of the catalyst is lost. Too high a ligand concentration is also undesirable from a commercial point of view.
  • the present invention is to provide a catalyst composition for hydroformylation reaction having excellent catalyst activity and stability, showing a high selectivity to normal-aldehyde, and a method for producing an aldehyde using the same in order to solve the problems of the prior art as described above. .
  • the present invention as a means for solving the above problems, (a) a triaryl phosphine ligand represented by the formula (1); (b) a phosphine oxide or phosphine sulfide ligand represented by the following formula (2) or (3); And (c) provides a catalyst composition for hydroformylation reaction comprising a transition metal catalyst represented by the following formula (4).
  • R 1 to R 15 are each independently hydrogen, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms; A substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms,
  • R 1 to R 15 are substituted by a substituent
  • the substituents are each independently nitro group (-NO 2 ), fluorine (F), chlorine (Cl), bromine (Br), silyl group (-SiR, where R Is hydrogen, an alkyl group or an alkoxy group).
  • R 16 and R 17 each independently represent a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms; A substituted or unsubstituted cycloalkyl group having 5 to 20 carbon atoms or cycloalkenyl group; Substituted or unsubstituted aryl group having 6 to 36 carbon atoms; A substituted or unsubstituted hetero alkyl group having 1 to 20 carbon atoms; A substituted or unsubstituted hetero aryl group having 4 to 36 carbon atoms; Or a substituted or unsubstituted hetero ring group having 4 to 36 carbon atoms,
  • heteroalkyl group, heteroaryl group and heterocyclic group each independently contain at least one atom selected from N, O and S,
  • R 16 and R 17 are substituted by a substituent
  • the substituents are each independently nitro group (-NO 2 ), fluorine (F), chlorine (Cl), bromine (Br), silyl group (-SiR, where R Is hydrogen, an alkyl group or an alkoxy group), an alkoxy group, a carboxyl group, a carboalkoxy group or an alkyl group having 1 to 4 carbon atoms,
  • X is O or S, phosphine oxide when O, phosphine sulfide when S,
  • n is an integer of 1 or 2.
  • A is O, S or an amine group (NR 'wherein R' is hydrogen, an alkyl group, a cycloalkyl group, an aryl group, a heteroalkyl group or a heteroaryl group),
  • R 18 to R 25 are each independently hydrogen, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms; Substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, carboalkoxy group, aryloxy group, alkylcarbonyl group, amide group (-CONH), nitro group (-NO 2 ), halogen group, cyano group (-CN), Silyl group (-SiR, where R is hydrogen, alkyl or alkoxy) or cyanyl group (-SR, where R is hydrogen, alkyl or alkoxy)
  • X is O or S, phosphine oxide when O and phosphine sulfide when S.
  • M is cobalt (Co), rhodium (Rh) or iridium (Ir),
  • L 1 , L 2 and L 3 are each independently hydrogen, CO, cyclooctadiene, norbornene, chlorine, triphenylphosphine or acetylacetonato ,
  • x, y and z are each independently integers of 0 to 5, and x, y and z are not zero at the same time.
  • the present invention provides a method for producing an aldehyde comprising the step of obtaining an aldehyde by reacting an olefin compound and a synthetic gas (CO / H 2 ) in the presence of a catalyst composition according to the present invention. do.
  • the present invention (a) a triaryl phosphine ligand represented by the formula (1); (b) a phosphine oxide or phosphine sulfide ligand represented by the following formula (2) or (3); And (c) relates to a catalyst composition for hydroformylation reaction comprising a transition metal catalyst represented by the following formula (4).
  • R 1 to R 15 are each independently hydrogen, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms; A substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms,
  • R 1 to R 15 are substituted by a substituent
  • the substituents are each independently nitro group (-NO 2 ), fluorine (F), chlorine (Cl), bromine (Br), silyl group (-SiR, where R Is hydrogen, an alkyl group or an alkoxy group).
  • R 16 and R 17 each independently represent a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms; A substituted or unsubstituted cycloalkyl group having 5 to 20 carbon atoms or cycloalkenyl group; Substituted or unsubstituted aryl group having 6 to 36 carbon atoms; A substituted or unsubstituted hetero alkyl group having 1 to 20 carbon atoms; A substituted or unsubstituted hetero aryl group having 4 to 36 carbon atoms; Or a substituted or unsubstituted hetero ring group having 4 to 36 carbon atoms,
  • heteroalkyl group, heteroaryl group and heterocyclic group each independently contain at least one atom selected from N, O and S,
  • R 16 and R 17 are substituted by a substituent
  • the substituents are each independently nitro group (-NO 2 ), fluorine (F), chlorine (Cl), bromine (Br), silyl group (-SiR, where R Is hydrogen, an alkyl group or an alkoxy group), an alkoxy group, a carboxyl group, a carboalkoxy group or an alkyl group having 1 to 4 carbon atoms,
  • X is O or S, phosphine oxide when O, phosphine sulfide when S,
  • n is an integer of 1 or 2.
  • A is O, S or an amine group (NR 'wherein R' is hydrogen, an alkyl group, a cycloalkyl group, an aryl group, a heteroalkyl group or a heteroaryl group),
  • R 18 to R 25 are each independently hydrogen, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms; Substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, carboalkoxy group, aryloxy group, alkylcarbonyl group, amide group (-CONH), nitro group (-NO 2 ), halogen group, cyano group (-CN), Silyl group (-SiR, where R is hydrogen, alkyl or alkoxy) or cyanyl group (-SR, where R is hydrogen, alkyl or alkoxy)
  • X is O or S, phosphine oxide when O and phosphine sulfide when S.
  • M is cobalt (Co), rhodium (Rh) or iridium (Ir),
  • L 1 , L 2 and L 3 are each independently hydrogen, CO, cyclooctadiene, norbornene, chlorine, triphenylphosphine or acetylacetonato ,
  • x, y and z are each independently integers of 0 to 5, and x, y and z are not zero at the same time.
  • the catalyst composition for the hydroformylation reaction of the present invention includes a phosphine oxide or phosphine sulfide compound represented by the following Chemical Formula 2 or 3 together with the triarylphosphine compound represented by Chemical Formula 1 as a ligand for hydroformylation of an olefin. In the reaction, it is characterized by excellent catalyst activity and stability and high selectivity to normal-aldehyde.
  • the catalyst composition for hydroformylation reaction of the present invention comprises a triarylphosphine ligand represented by the formula (1).
  • triarylphosphine ligands have excellent catalytic activity and stability, and are inexpensive compared to other types of phosphine compounds and are used in most hydroformylation reactions.
  • triarylphosphine ligand should be applied at least 100 equivalents to the catalyst.
  • the activity of the catalyst decreases in proportion. Therefore, there is a need for a catalyst system capable of increasing the activity of the catalyst while maintaining high catalyst stability.
  • the present invention has been developed a catalyst system having high catalytic activity while maintaining the stability of the catalyst system by applying the phosphine oxide or phosphine sulfide ligand described below together with the triaryl phosphine ligand.
  • the content of the triarylphosphine ligand represented by Formula 1 is preferably 0.5 to 200 mole fraction, more preferably 10 to 150 mole fraction, with respect to 1 mole of the central metal of the transition metal catalyst represented by Formula 4 above. If the content is less than 0.5 mole fraction, there is a fear that the reactivity of the catalyst does not appear due to the lack of a suitable ligand, if the content exceeds 200 mole fraction excess ligand is present is not advantageous in terms of reaction rate.
  • triaryl phosphine ligand represented by the formula (1) is more specifically expressed as follows, but is not limited to the compounds illustrated below.
  • the catalyst composition for hydroformylation reaction of the present invention comprises a phosphine oxide or phosphine sulfide ligand represented by the formula (2) or 3 together with the triaryl phosphine ligand represented by the formula (1).
  • the catalyst composition of the present invention exhibits excellent catalytic activity and stability while maintaining high selectivity to normal-aldehydes, including phosphine oxide or phosphine sulfide with triarylphosphine ligands.
  • the catalyst composition of the present invention may include phosphine oxide or phosphine sulfide ligands alone or together.
  • phosphine oxide or phosphine sulfide ligand represented by Formula 2 or 3 is as follows, but is not limited to the compounds illustrated below.
  • the content of the phosphine oxide or phosphine sulfide ligand represented by Formula 2 or 3 is preferably 0.5 to 100 moles, more preferably 1 to 20 moles, relative to 1 mole of the central metal of the transition metal catalyst represented by Formula 4. Do. If the content is less than 0.5 moles, the effect of mixing the ligand with the triaryl phosphine ligand may be insignificant. If the content exceeds 100 moles, the excess ligand is used without additional effects, thereby increasing the operating cost.
  • the catalyst composition for hydroformylation reaction of the present invention includes a transition metal catalyst represented by the formula (4).
  • the transition metal catalyst represented by Chemical Formula 4 is not particularly limited, but preferably, in Chemical Formula 4, L 1 is CO, L 2 is acetylacetonato, and x, y and z are each independently 2, 1 And when 0, L 1 is CO, L 2 is acetylacetonato, L 3 is triphenylphosphine, and all of x, y and z are 1, or L 1 is CO, L 2 Is hydrogen, L 3 is triphenylphosphine and x, y and z are each independently 1, 1 and 3;
  • the transition metal catalyst represented by Chemical Formula 4 may be, for example, cobalt carbonyl [Co 2 (CO) 8 ], acetylacetonatodicarbonyldium [Rh (AcAc) (CO) 2 ], acetylacetonane Tocarbonyltriphenylphosphinrhodium [Rh (AcAc) (CO) (TPP)], hydridocarbonyltri (triphenylphosphine) rhodium [HRh (CO) (TPP) 3 ], acetylacetonatodicarbonyl Iridium [Ir (AcAc) (CO) 2 ] or hydridocarbonyltri (triphenylphosphine) iridium [HIr (CO) (TPP) 3 ] and the like, and in the present invention, these may be used alone or in combination of two or more thereof. Can be.
  • the transition metal catalyst represented by Chemical Formula 4 preferably has a core metal content of 10 to 1000 ppm, more preferably 50 to 500 ppm based on the weight or volume of the catalyst composition. If the content of the core metal is less than 10 ppm, the hydroformylation reaction rate is slow and commercially undesirable. If the content of the core metal is more than 500 ppm, the core metal is expensive, so the cost increases, and the reaction rate does not show an excellent effect.
  • the present invention also relates to a process for preparing an aldehyde comprising the step of obtaining an aldehyde by reacting an olefinic compound and a synthetic gas (CO / H 2 ) in the presence of a catalyst composition according to the invention.
  • the catalyst composition of the present invention can be prepared by dissolving the aforementioned components in a solvent.
  • the solvent that can be used in the present invention is not limited thereto, but is preferably aldehydes such as propane aldehyde, butyl aldehyde, pentyl aldehyde, or baler aldehyde, and more preferably aldehyde produced after the hydroformylation reaction.
  • the olefin compound used in the aldehyde production method of the present invention includes a compound represented by the following formula (5).
  • R 26 and R 27 each independently represent hydrogen, an alkyl group having 1 to 20 carbon atoms, fluorine (F), chlorine (Cl), bromine (Br), trifluoromethyl group (-CF 3 ) or 0 to 5 substituents
  • Substituents of the aryl group are nitro group (-NO 2 ), fluorine (F), chlorine (Cl), bromine (Br), methyl group, ethyl group, propyl group or butyl group.
  • R 11 or R 12 is an aryl group
  • the aryl group is preferably a phenyl group.
  • the olefin compound represented by Formula 5 includes ethene, propene, 1-butene, 1-pentene, 1-hexene, 1-octene or styrene, and these may be used alone or in combination of two or more thereof. have.
  • the synthesis gas used in the aldehyde production method of the present invention is a mixed gas of carbon monoxide and hydrogen, the mixing ratio of CO: H 2 is not limited thereto, but is preferably 30:70 to 70:30, 40:60 It is more preferable that it is to 60:40, and it is most preferable that it is 50: 50-40: 60.
  • the mixing ratio of the synthesis gas (CO: H 2 ) is less than 30:70 or more than 70:30, there is a risk that the gas not used for the reaction is accumulated too much in the reactor to reduce the reactivity of the catalyst.
  • the reaction temperature of the olefin compound and the synthetic gas (CO / H 2 ) in the presence of the catalyst composition is preferably 20 to 180 ° C, more preferably 50 to 150 degreeC, Most preferably, it is 65-125 degreeC. If the reaction temperature is less than 20 °C hydroformylation reaction does not proceed, there is a problem that the catalyst activity is reduced rather than 180 °C stability of the catalyst is greatly impaired. Also, the reaction pressure is preferably 1 to 700 bar, more preferably 1 to 300 bar, and most preferably 5 to 30 bar.
  • reaction pressure When the reaction pressure is less than 1 bar, the hydroformylation reaction is hardly proceeded, and when the reaction pressure is more than 700 bar, it is not preferable from the commercial point of view because a very expensive reactor is used because of the explosion risk of the process without any gain of special activity.
  • the method for producing an aldehyde according to the present invention can be schematically represented by the following scheme 1 or 2.
  • a transition metal catalyst (4), ligand (1), ligand (2) or (3) is dissolved in a solvent such as butylaldehyde or pentylaldehyde to prepare a mixed solution of the transition metal catalyst and ligand.
  • a solvent such as butylaldehyde or pentylaldehyde.
  • the olefin compound (5) and the synthesis gas 6 of carbon monoxide and hydrogen are injected into the reactor together with the mixed solution, and then heated and pressurized while stirring to proceed to the hydroformylation reaction to prepare an aldehyde.
  • the catalyst composition for hydroformylation according to the present invention includes a phosphine oxide or a phosphine sulfide compound together with triarylphosphine as a ligand, and the hydroformylation reaction of the olefin using the same has high selectivity to normal-aldehyde, and is excellent. Catalyst activity and stability. In addition, even if a small amount of phosphine oxide or phosphine sulfide ligand is included in the catalyst composition, a great effect can be seen, which has the advantage of being directly applicable to an oxo process to which a triarylphosphine ligand is applied.
  • Ligand I, Ligand II, Ligand III, Ligand IV, Ligand V or Ligand VI, which are TPP, phosphine oxide compound or phosphine sulfide compound (L2), which are the pin compounds (L1) are dissolved in a normal-butylaldehyde solvent. This amount was added to 100 g.
  • N / I selectivity is the amount of normal-butyraldehyde produced in the reaction divided by the amount of iso-butyraldehyde produced, and the amount of each aldehyde is determined by the solution mass before and after the reaction. The value was obtained through gas chromatography (GC) analysis.
  • Catalytic activity is the value divided by the volume of the catalyst solution using the total amount of aldehyde produced in the reaction, and the reaction time. In this case, the unit of catalytic activity is gmol (BAL) / L (Cat) / h.
  • TPP Triphenylphosphine compound
  • a condenser equipped with a BPR (BACK PRESSURE REGURATOR) is attached to the upper part of the reactor to allow a portion of unreacted gas to flow out of the reactor so that the partial pressure of H 2 / CO in the reactor is kept constant and the total pressure in the reactor is 8 bar. It was made to react for 1.5 hours, stirring at 90 degreeC, maintaining.
  • transition metal catalyst type of ligand, molar ratio of ligand to catalyst, N / I selectivity and catalytic activity for the reaction are shown in detail in Table 2 below.
  • Triarylphosphine compound (L1), TPP or TMSTP or DPMPP or TDMPP or TPTP or TMPP, as a ligand, was applied in the same manner as Examples 14 to 24 according to the molar ratios shown in Table 2 below, and the results are shown in the following table. 2 is shown.
  • Ligand I and Ligand III were applied as ligands, respectively, and were carried out in the same manner as Examples 14 to 24 according to the molar ratios described in Table 2 below, and the results are shown in Table 2 below. Shown in
  • reaction solution having a molar ratio of CO: H 2 of 1: 1 was injected into the reaction solution to maintain the pressure in the reactor at 10 bar, and reacted for 4 hours with stirring at 85 ° C. After the reaction the reaction solution was analyzed by gas chromatography (GC) and the results are shown in Table 3.
  • GC gas chromatography
  • Example 26 After the catalyst composition was prepared in the same manner as in Example 26 except that only TPP was applied as a ligand, an aging test and a catalytic activity test were performed, and the results are shown in Table 4 below.
  • Examples 1 to 1 in which the triaryl phosphine ligand and phosphine oxide or phosphine sulfide ligand are simultaneously applied are compared to the triaryl phosphine (TAP) ligand alone.
  • the catalytic activity is about 1.1 to 1.4 times better than 1 to 4 and Comparative Examples 8 to 17, and the selectivity to normal-aldehyde is high.
  • Comparative Examples 3 and 4 show the same high selectivity for normal-aldehyde as in Examples 1 to 11, but the amount of triphenylphosphine ligand used is high, and the catalytic activity is lowered.
  • Example 26 to which a triphenylphosphine ligand and a phosphine oxide or phosphine sulfide ligand are simultaneously applied, has excellent catalyst activity and stability compared to Comparative Examples 23 to 24 to which only triphenylphosphine ligand is applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 트리아릴포스핀 리간드; 특정의 화학식으로 표시되는 포스핀 옥사이드 또는 포스핀 설파이드 리간드; 및 전이금속 촉매를 포함하는 하이드로포밀화 반응용 촉매 조성물 및 이를 이용하는 알데히드의 제조방법에 관한 것으로, 상기 촉매 조성물을 올레핀으로부터 알데히드를 제조하는 하이드로포밀화 반응에 이용할 경우 촉매 활성 및 안정성이 우수하고, 노르말-알데히드에 대한 높은 선택성을 보인다.

Description

하이드로포밀화 반응용 촉매 조성물 및 이를 이용하는 알데히드의 제조방법
본 발명은 하이드로포밀화 반응용 촉매 조성물 및 이를 이용하는 알데히드의 제조방법에 것으로서, 보다 상세하게는 트리아릴포스핀 리간드; 특정의 화학식으로 표시되는 포스핀 옥사이드 또는 포스핀 설파이드 리간드; 및 전이금속 촉매를 포함하는 하이드로포밀화 반응용 촉매 조성물 및 이를 이용한 알데히드의 제조방법에 관한 것이다.
일반적으로 옥소(OXO) 반응으로 잘 알려진 하이드로포르밀화 (hydroformylation) 반응은 금속촉매와 리간드의 존재 하에서 각종 올레핀과 합성기체(Synthesis Gas, CO/H2)가 반응하여 올레핀에 탄소수가 하나 증가한 선형(linear, normal) 및 가지형(branched, iso) 알데히드(aldehyde)가 생성되는 과정을 말한다. 옥소반응은 1938년 독일의 Otto Roelen에 의해 처음 발견되었으며, 2001년을 기준으로 세계적으로 약 8백 40만 톤의 각종 알데히드(알코올 유도체 포함)가 옥소 공정을 통해 생산 및 소비되고 있다(SRI 보고서, November 2002, 682. 700A).
옥소반응에 의해 합성된 각종 알데히드는 산화 또는 환원 과정을 통해 알데히드 유도체인 산과 알코올로 변형된다. 뿐만 아니라 알돌(Aldol) 등의 축합반응 후 산화 또는 환원반응을 통하여 긴 알킬기가 포함된 다양한 산과 알코올로 변형되기도 한다. 이러한 알코올과 산은 용매, 첨가제, 및 각종 가소제의 원료 등으로 사용되고 있다.
현재 옥소 공정에 사용되는 촉매는 주로 코발트(Co)와 로듐(Rh) 계열이고, 적용하는 리간드의 종류 및 운전 조건에 따라 생성되는 알데히드의 N/I 선택성 (ratio of linear (normal) to branched (iso) isomers)이 달라진다. 현재 전 세계 70% 이상의 옥소 공장이 로듐계 촉매를 적용한 저압 옥소공정(Low Pressure OXO Process)을 채택하고 있다.
옥소 촉매의 중심금속으로는 코발트(Co)와 로듐(Rh) 외에도 이리듐(Ir), 루테늄(Ru), 오스뮴(Os), 플라티늄(Pt), 팔라듐(Pd), 철(Fe), 니켈(Ni) 등의 적용이 가능하다. 그러나 각 금속들은 Rh ≫ Co > Ir, Ru > Os > Pt > Pd > Fe > Ni 등의 순으로 촉매 활성을 보이는 것으로 알려져 있으므로 대부분의 공정 및 연구는 로듐과 코발트에 집중되고 있다. 리간드로는 포스핀(Phosphine, PR3, R은 C6H5, 또는 n-C4H9), 포스핀 옥사이드(Phosphine Oxide, O=P(C6H5)3), 포스파이트(Phosphite), 아민(Amine), 아미드(Amide), 또는 이소니트릴(Isonitrile) 등이 적용 가능하지만 촉매의 활성과 안정성 그리고 가격 면에서 트리아릴포스핀(TAP)을 능가하는 리간드는 거의 없다.
특히 대부분의 옥소공정에서 촉매로는 로듐(Rh) 금속을 사용하고 리간드로는 TPP를 적용하고 있는 것으로 알려져 있다.
이러한 Rh 촉매의 경우 상당한 고가의 금속이므로 트리페닐포스핀과 같은 트리아릴포스핀 리간드의 경우 Rh 촉매의 안정성을 높이기 위하여 Rh 촉매에 대하여 100 당량 이상을 적용하여야 한다고 알려져 있다. 그러나 촉매계의 안정성을 높이기 위하여 Rh촉매에 대하여 리간드 당량을 높일수록 촉매의 활성은 손실을 입게 되므로 너무 높은 리간드 농도는 또한 상업적 측면에서 바람직하지 못한 면이 있다.
오늘날 노르말 알데히드의 산업적 중요성이 현저하게 커가고 있는 바, 노르말-알데히드에 대한 높은 선택성을 나타내고, 촉매계의 안정성이 우수하면서 촉매의 활성이 높은 촉매 조성물이 절실히 요구되고 있다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여, 촉매 활성 및 안정성이 우수하고, 노르말-알데히드에 대한 높은 선택성을 나타내는 하이드로포밀화 반응용 촉매 조성물 및 이를 이용한 알데히드의 제조방법을 제공하는 것이다.
본 발명은 상기의 과제를 해결하기 위한 수단으로서, (a) 하기 화학식 1로 표시되는 트리아릴포스핀 리간드; (b) 하기 화학식 2 또는 3으로 표시되는 포스핀 옥사이드 또는 포스핀 설파이드 리간드; 및 (c) 하기 화학식 4로 표시되는 전이금속 촉매를 포함하는 하이드로포밀화 반응용 촉매 조성물을 제공한다.
[규칙 제91조에 의한 정정 07.05.2010] 
화학식 1
Figure WO-DOC-CHEMICAL-1
상기 식에서,
R1 내지 R15는 각각 독립적으로 수소, 치환 또는 비치환된 탄소수 1 내지 5의 알킬기; 치환 또는 비치환된 탄소수 1 내지 5의 알콕시기이고,
R1 내지 R15가 치환기에 의해 치환되는 경우, 상기 치환기는 각각 독립적으로 니트로기(-NO2), 불소(F), 염소(Cl), 브롬(Br), 실릴기(-SiR, 여기서 R은 수소, 알킬기 또는 알콕시기)이다.
[규칙 제91조에 의한 정정 07.05.2010] 
화학식 2
Figure WO-DOC-CHEMICAL-2
상기 식에서,
R16 및 R17는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 치환 또는 비치환된 탄소수 5 내지 20의 시클로 알킬기 또는 시클로 알케닐기; 치환 또는 비치환된 탄소수 6 내지 36의 아릴기; 치환 또는 비치환된 탄소수 1 내지 20의 헤테로 알킬기; 치환 또는 비치환된 탄소수 4 내지 36의 헤테로 아릴기; 또는 치환 또는 비치환된 탄소수 4 내지 36의 헤테로 고리기이고,
여기서 헤테로 알킬기, 헤테로 아릴기 및 헤테로 고리기는 각각 독립적으로 N, O 및 S 중 선택되는 하나 이상의 원자를 함유하며,
R16 및 R17가 치환기에 의해 치환되는 경우, 상기 치환기는 각각 독립적으로 니트로기(-NO2), 불소(F), 염소(Cl), 브롬(Br), 실릴기(-SiR, 여기서 R은 수소, 알킬기 또는 알콕시기), 알콕시기, 카복실기, 카르보알콕시기 또는 탄소수 1 내지 4의 알킬기이고,
X는 O 또는 S이며, O일 때 포스핀 옥사이드이고, S일 때 포스핀 설파이드이며,
n은 1 또는 2의 정수이다.
[규칙 제91조에 의한 정정 07.05.2010] 
화학식 3
Figure WO-DOC-CHEMICAL-3
상기 식에서,
A는 O, S 또는 아민기(NR', 여기서 R'는 수소, 알킬기, 시클로 알킬기, 아릴기, 헤테로 알킬기 또는 헤테로 아릴기)이고,
R18 내지 R25는 각각 독립적으로 수소, 치환 또는 비치환된 탄소수 1 내지 5의 알킬기; 치환 또는 비치환된 탄소수 1 내지 5의 알콕시기, 카르보알콕시기, 아릴옥시기, 알킬카르보닐기, 아미드기(-CONH), 니트로기(-NO2), 할로겐기, 시아노기(-CN), 실릴기(-SiR, 여기서 R은 수소, 알킬기 또는 알콕시기) 또는 사이오닐기(-SR, 여기서 R은 수소, 알킬기 또는 알콕시기)이며,
X는 O 또는 S이며, O일 때 포스핀 옥사이드이고, S일 때 포스핀 설파이드 이다.
[규칙 제91조에 의한 정정 07.05.2010] 
화학식 4
Figure WO-DOC-CHEMICAL-4
상기 식에서,
M은 코발트(Co), 로듐(Rh) 또는 이리듐(Ir)이고,
L1, L2 및 L3은 각각 독립적으로 수소, CO, 시클로옥타디엔(cyclooctadiene), 노보넨(norbornene), 염소(chlorine), 트리페닐포스핀(triphenylphosphine) 또는 아세틸아세토네이토(acetylacetonato) 이며,
x, y 및 z는 각각 독립적으로 0 내지 5의 정수이고, x, y 및 z가 동시에 0은 아니다.
본 발명은 상기 과제를 해결하기 위한 다른 수단으로서, 본 발명에 따른 촉매 조성물의 존재 하에서 올레핀계 화합물 및 합성기체(CO/H2)를 반응시켜 알데히드를 얻는 단계를 포함하는 알데히드의 제조방법을 제공한다.
본 발명은 (a)하기 화학식 1로 표시되는 트리아릴포스핀 리간드; (b)하기 화학식 2 또는 3으로 표시되는 포스핀 옥사이드 또는 포스핀 설파이드 리간드; 및 (c)하기 화학식 4로 표시되는 전이금속 촉매를 포함하는 하이드로포밀화 반응용 촉매 조성물에 관한 것이다.
[화학식 1]
[규칙 제26조에 의한 보정 17.03.2010] 
Figure WO-DOC-FIGURE-1
상기 식에서,
R1 내지 R15는 각각 독립적으로 수소, 치환 또는 비치환된 탄소수 1 내지 5의 알킬기; 치환 또는 비치환된 탄소수 1 내지 5의 알콕시기이고,
R1 내지 R15가 치환기에 의해 치환되는 경우, 상기 치환기는 각각 독립적으로 니트로기(-NO2), 불소(F), 염소(Cl), 브롬(Br), 실릴기(-SiR, 여기서 R은 수소, 알킬기 또는 알콕시기)이다.
[화학식 2]
[규칙 제26조에 의한 보정 17.03.2010] 
Figure WO-DOC-FIGURE-2
상기 식에서,
R16 및 R17는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 치환 또는 비치환된 탄소수 5 내지 20의 시클로 알킬기 또는 시클로 알케닐기; 치환 또는 비치환된 탄소수 6 내지 36의 아릴기; 치환 또는 비치환된 탄소수 1 내지 20의 헤테로 알킬기; 치환 또는 비치환된 탄소수 4 내지 36의 헤테로 아릴기; 또는 치환 또는 비치환된 탄소수 4 내지 36의 헤테로 고리기이고,
여기서 헤테로 알킬기, 헤테로 아릴기 및 헤테로 고리기는 각각 독립적으로 N, O 및 S 중 선택되는 하나 이상의 원자를 함유하며,
R16 및 R17가 치환기에 의해 치환되는 경우, 상기 치환기는 각각 독립적으로 니트로기(-NO2), 불소(F), 염소(Cl), 브롬(Br), 실릴기(-SiR, 여기서 R은 수소, 알킬기 또는 알콕시기), 알콕시기, 카복실기, 카르보알콕시기 또는 탄소수 1 내지 4의 알킬기이고,
X는 O 또는 S이며, O일 때 포스핀 옥사이드이고, S일 때 포스핀 설파이드이며,
n은 1 또는 2의 정수이다.
[화학식 3]
[규칙 제26조에 의한 보정 17.03.2010] 
Figure WO-DOC-FIGURE-3
상기 식에서,
A는 O, S 또는 아민기(NR', 여기서 R'는 수소, 알킬기, 시클로 알킬기, 아릴기, 헤테로 알킬기 또는 헤테로 아릴기)이고,
R18 내지 R25는 각각 독립적으로 수소, 치환 또는 비치환된 탄소수 1 내지 5의 알킬기; 치환 또는 비치환된 탄소수 1 내지 5의 알콕시기, 카르보알콕시기, 아릴옥시기, 알킬카르보닐기, 아미드기(-CONH), 니트로기(-NO2), 할로겐기, 시아노기(-CN), 실릴기(-SiR, 여기서 R은 수소, 알킬기 또는 알콕시기) 또는 사이오닐기(-SR, 여기서 R은 수소, 알킬기 또는 알콕시기)이며,
X는 O 또는 S이며, O일 때 포스핀 옥사이드이고, S일 때 포스핀 설파이드 이다.
[화학식 4]
[규칙 제26조에 의한 보정 17.03.2010] 
Figure WO-DOC-FIGURE-4
상기 식에서,
M은 코발트(Co), 로듐(Rh) 또는 이리듐(Ir)이고,
L1, L2 및 L3은 각각 독립적으로 수소, CO, 시클로옥타디엔(cyclooctadiene), 노보넨(norbornene), 염소(chlorine), 트리페닐포스핀(triphenylphosphine) 또는 아세틸아세토네이토(acetylacetonato) 이며,
x, y 및 z는 각각 독립적으로 0 내지 5의 정수이고, x, y 및 z가 동시에 0은 아니다.
본 발명의 하이드로포밀화 반응용 촉매 조성물은 상기 화학식 1로 표시되는 트리아릴포스핀 화합물과 함께 하기 화학식 2 또는 3으로 표시되는 포스핀 옥사이드 또는 포스핀 설파이드 화합물을 리간드로 포함하여 올레핀의 하이드로포밀화 반응에 있어서, 촉매 활성 및 안정성이 우수하고, 노르말-알데히드에 대한 높은 선택성을 나타내는 것을 특징으로 한다.
이하, 본 발명의 하이드로포밀화 반응용 촉매 조성물의 각 구성성분을 구체적으로 설명한다.
(a) 트리아릴포스핀 리간드
본 발명의 하이드로포밀화 반응용 촉매 조성물은 상기 화학식 1로 표시되는 트리아릴포스핀 리간드를 포함한다. 일반적으로 트리아릴포스핀 리간드는 촉매 활성 및 안정성이 우수하고, 다른 종류의 포스핀화합물에 비하여 가격이 저렴하여 대부분의 하이드로포밀화 반응에 사용되고 있다. 그러나 촉매 계의 안정성을 높이기 위하여 이러한 트리아릴포스핀 리간드는 촉매에 대하여 100 당량 이상을 적용하여야 한다고 알려져 있다. 촉매계의 안정성을 높이기 위하여 리간드/촉매 당량 비율이 높아질수록 촉매의 활성은 이와 비례하여 감소하게 된다. 따라서 촉매의 안정성은 높이 유지하면서 촉매의 활성을 높일 수 있는 촉매 시스템이 필요하다. 본 발명은 트리아릴포스핀 리간드와 함께 하기에서 설명하는 포스핀 옥사이드 또는 포스핀 설파이드 리간드를 적용하여 촉매계의 안정성을 유지하면서 높은 촉매활성을 갖는 촉매시스템을 개발하였다.
상기 화학식 1로 표시되는 트리아릴포스핀 리간드의 함량은 상기 화학식 4로 표시되는 전이금속 촉매의 중심금속 1몰에 대하여 0.5 내지 200몰 분율인 것이 바람직하고, 10 내지 150몰 분율이 보다 바람직하다. 상기 함량이 0.5 몰 분율미만이면 적절한 리간드의 부족으로 촉매의 반응성이 나타나지 않을 우려가 있고, 200몰 분율을 초과하면 과량의 리간드가 존재하게 되어 반응속도 면에서 유리하지 못하다.
상기 화학식 1로 표시되는 트리아릴포스핀 리간드를 보다 구체적으로 표현하면 하기와 같으나, 하기 예시된 화합물에 한정되는 것은 아니다.
[화학식 1로 표시되는 리간드의 예]
Figure PCTKR2010000921-appb-I000005
(b) 포스핀 옥사이드 또는 포스핀 설파이드 리간드
본 발명의 하이드로포밀화 반응용 촉매 조성물은 상기 화학식 1로 표시되는 트리아릴포스핀 리간드와 함께 상기 화학식 2 또는 3으로 표시되는 포스핀 옥사이드 또는 포스핀 설파이드 리간드를 포함한다. 본 발명의 촉매 조성물은 트리아릴포스핀 리간드와 함께 포스핀 옥사이드 또는 포스핀 설파이드를 포함하여 노르말-알데히드에 대한 높은 선택성을 유지하면서 우수한 촉매 활성 및 안정성을 나타낸다. 본 발명의 촉매 조성물은 포스핀 옥사이드 또는 포스핀 설파이드 리간드를 단독으로 포함하거나 각각을 함께 포함할 수도 있다.
상기 화학식 2 또는 3으로 표시되는 포스핀 옥사이드 또는 포스핀 설파이드 리간드를 보다 구체적으로 표현하면 하기와 같으나, 하기 예시된 화합물에 한정되는 것은 아니다.
표 1 [화학식 2로 표시되는 리간드의 예]
1)
Figure PCTKR2010000921-appb-I000006
Dipropylphosphine oxide
2)
Figure PCTKR2010000921-appb-I000007
Diphenylphosphine oxide
3)
Figure PCTKR2010000921-appb-I000008
Bis(4-methoxyphenyl)phosphine oxdie
4)
Figure PCTKR2010000921-appb-I000009
Bis(phenylphosphinoyl)benzene
5)
Figure PCTKR2010000921-appb-I000010
Bis(phenylphosphinoyl)oligothiophene
6)
Figure PCTKR2010000921-appb-I000011
Dimethylphosphine sulfide
7)
Figure PCTKR2010000921-appb-I000012
Diphenylphosphine sulfide
8)
Figure PCTKR2010000921-appb-I000013
Bis(3,5-bis(trimethylsilyl)phenyl)phosphine sulfide
표 2 [화학식 3으로 표시되는 리간드의 예]
1)
Figure PCTKR2010000921-appb-I000014
2,8-Dimethylphenoxaphosphine oxide
2)
Figure PCTKR2010000921-appb-I000015
2,8-Dimethylphenophosphazine oxide
3)
Figure PCTKR2010000921-appb-I000016
2,8-Dimethylphenoxaphosphine sulfide
4)
Figure PCTKR2010000921-appb-I000017
2,8-Dichlorophenoxaphosphine sulfide
상기 화학식 2 또는 3으로 표시되는 포스핀 옥사이드 또는 포스핀 설파이드 리간드의 함량은 상기 화학식 4로 표시되는 전이금속 촉매의 중심금속 1몰에 대하여 0.5 내지 100몰인 것이 바람직하고, 1 내지 20몰인 것이 보다 바람직하다. 상기 함량이 0.5몰 미만이면 트리아릴포스핀 리간드에 상기 리간드를 혼합하여 나타나는 효과가 미미할 우려가 있고, 100몰을 초과하면 추가의 효과 없이 과량의 리간드가 사용되므로 운전비용이 증가할 우려가 있다.
(c) 전이금속 촉매
본 발명의 하이드로포밀화 반응용 촉매 조성물은 상기 화학식 4로 표시되는 전이금속 촉매를 포함한다.
상기 화학식 4로 표시되는 전이금속 촉매는 특별히 제한되지 않으나, 바람직하게는 상기 화학식 4에서, L1은 CO이고, L2는 아세틸아세토네이토이며, x, y 및 z는 각각 독립적으로 2, 1, 및 0인 경우, L1은 CO이고, L2는 아세틸아세토네이토이며, L3는 트리페닐포스핀이고, x, y 및 z 모두가 1인 경우, 또는 L1은 CO이고, L2는 수소이며, L3는 트리페닐포스핀이고, x, y 및 z가 각각 독립적으로 1, 1 및 3인 경우이다.
보다 구체적으로 상기 화학식 4로 표시되는 전이금속 촉매는 예를 들면, 코발트카보닐[Co2(CO)8], 아세틸아세토네이토디카보닐로듐 [Rh(AcAc)(CO)2], 아세틸아세토네이토카보닐트리페닐포스핀로듐 [Rh(AcAc)(CO)(TPP)], 하이드리도카보닐트리(트리페닐포스핀)로듐 [HRh(CO)(TPP)3], 아세틸아세토네이토디카보닐이리듐[Ir(AcAc)(CO)2] 또는 하이드리도카보닐트리(트리페닐포스핀)이리듐[HIr(CO)(TPP)3] 등이 있으며, 본 발명에서는 이들을 단독 또는 2종 이상 혼합하여 사용할 수 있다. 바람직하게는 아세틸아세토네이토카보닐트리페닐포스핀로듐[Rh(AcAc)(CO) (TPP)]을 사용하는 것이다.
상기 화학식 4로 표시되는 전이금속 촉매는 촉매 조성물의 무게 또는 부피를 기준으로 중심금속 함량이 10 내지 1000 ppm인 것이 바람직하고, 50 내지 500 ppm인 것이 보다 바람직하다. 상기 중심금속의 함량이 10 ppm 미만이면 하이드로포밀화 반응 속도가 늦어지므로 상업적으로 바람직하지 못하고, 500 ppm을 초과하면 중심금속이 고가이므로 비용이 증가하고, 반응 속도 면에서도 우수한 효과가 나타나지 않는다.
본 발명은 또한 본 발명에 따른 촉매 조성물의 존재 하에서 올레핀계 화합물 및 합성기체(CO/H2)를 반응시켜 알데히드를 얻는 단계를 포함하는 알데히드의 제조방법에 관한 것이다.
본 발명에 따른 촉매 조성물의 구체적인 성분 및 함량은 상술한 바와 같다. 본 발명의 촉매 조성물은 상술한 성분을 용매에 녹여서 제조할 수 있다. 본 발명에서 사용할 수 있는 용매는 이에 제한되는 것은 아니나, 바람직하게는 프로판 알데히드, 부틸 알데히드, 펜틸 알데히드, 또는 발러 알데히드 등의 알데히드류이고, 보다 바람직하게는 하이드로포밀화 반응 후 생성되는 알데히드이다.
본 발명의 알데히드 제조방법에 사용되는 상기 올레핀계 화합물은 하기 화학식 5로 표시되는 화합물을 포함한다.
화학식 5
Figure PCTKR2010000921-appb-C000005
상기 식에서,
R26 및 R27은 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 불소(F), 염소(Cl), 브롬(Br), 트리플루오로메틸기(-CF3) 또는 0 내지 5개의 치환기를 갖는 탄소수 6 내지 20의 아릴기이고,
여기서 아릴기의 치환기는 니트로기(-NO2), 불소(F), 염소(Cl), 브롬(Br), 메틸기, 에틸기, 프로필기 또는 부틸기이다.
상기 식에서 R11 또는 R12이 아릴기인 경우에 상기 아릴기는 페닐기인 것이 바람직하다.
구체적으로, 상기 화학식 5로 표시되는 올레핀계 화합물은 에텐, 프로펜, 1-부텐, 1-펜텐, 1-헥센, 1-옥텐 또는 스티렌 등이 있으며, 이들을 단독 또는 2종 이상을 혼합하여 사용할 수 있다.
본 발명의 알데히드 제조방법에 사용되는 상기 합성기체는 일산화탄소와 수소의 혼합 기체로서, CO:H2 의 혼합비율은 이에 제한되는 것은 아니나, 30:70 내지 70:30 인 것이 바람직하고, 40:60 내지 60:40인 것이 보다 바람직하며, 50:50 내지 40:60인 것이 가장 바람직하다. 합성기체(CO:H2)의 혼합비율이 30:70 미만 또는 70:30 초과일 때에는 반응에 사용되지 않는 기체가 반응기 내에 너무 많이 축척 되어 촉매의 반응성을 줄일 위험이 있다.
본 발명에 따른 알데히드의 제조방법은 본 발명에 따른 촉매 조성물 이외에 다른 반응 조건은 일반적으로 공지된 방법을 사용할 수 있다.
이에 제한되는 것은 아니나 본 발명의 알데히드 제조방법에 있어서, 촉매 조성물의 존재 하에서 올레핀계 화합물 및 합성기체(CO/H2)의 반응온도는 바람직하게는 20 내지 180℃이고, 보다 바람직하게는 50 내지 150℃이며, 가장 바람직하게는 65 내지 125℃이다. 반응온도는 20℃ 미만일 때는 하이드로포밀화 반응이 진행되지 않는 문제점이 있으며 180℃ 초과일 때에는 촉매의 안정성이 크게 훼손되므로 오히려 촉매활성이 감소하는 문제점이 있다. 또한, 반응압력은 1 내지 700 bar가 바람직하고, 1 내지 300 bar가 보다 바람직하며, 5 내지 30bar가 가장 바람직하다. 반응압력이 1 bar 미만일 때에는 하이드로포밀화 반응이 거의 진행되지 않으며 700 bar 초과일 때는 특별한 활성의 이득 없이 공정의 폭발 위험성 때문에 매우 고가의 반응기를 사용하여야 하므로 상업적인 측면에서 바람직하지 못하다.
구체적으로, 본 발명에 따른 알데히드의 제조방법은 개략적으로 하기 반응식 1 또는 2로 나타낼 수 있다.
[반응식 1]
Figure PCTKR2010000921-appb-I000018
[반응식 2]
Figure PCTKR2010000921-appb-I000019
먼저, 전이금속 촉매(4), 리간드(1), 리간드(2) 또는 (3)을 부틸알데히드 또는 펜틸알데히드 등의 용매에 녹여 전이금속 촉매와 리간드의 혼합용액을 제조한다. 이후 상기 혼합용액과 함께 올레핀계 화합물(5) 및 일산화탄소와 수소의 합성기체(6)를 반응기에 주입하고 교반하면서 승온, 가압하여 하이드로포밀화 반응을 진행시켜 알데히드를 제조할 수 있다.
본 발명에 따른 하이드로포밀화 반응용 촉매 조성물은 리간드로 트리아릴포스핀과 함께 포스핀 옥사이드 또는 포스핀 설파이드 화합물을 포함하여 이를 이용한 올레핀의 하이드로포밀화 반응은 노르말-알데히드에 대한 선택성이 높고, 우수한 촉매 활성 및 안정성을 나타낸다. 또한 상기 촉매 조성물에 포스핀 옥사이드 또는 포스핀 설파이드 리간드를 소량 포함하더라도 큰 효과를 볼 수 있어 트리아릴포스핀 리간드를 적용하고 있는 옥소 공정에 바로 적용될 수 있는 장점을 가진다.
이하, 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명하지만, 이는 발명의 구체적인 이해를 돕기 위한 것으로 본 발명의 기술적 범위가 실시예에 의해 한정되는 것은 아니다.
[실시예]
1. 하이드로포밀화 반응에서의 촉매 활성 및 N/I 선택성
[실시예 1 내지 13]
600ml용량의 오토클레이브(Auto Clave) 반응기에 촉매인 아세틸아세토네이토카보닐트리페닐포스핀로듐{[Rh(AcAc)(CO)(TPP)]: ROPAC} 0.101g (0.205 mmol), 트리아릴포스핀 화합물(L1)인 TPP, 포스핀 옥사이드 화합물 또는 포스핀 설파이드 화합물(L2)인 하기의 Ligand Ⅰ, Ligand Ⅱ, Ligand Ⅲ, Ligand Ⅳ, Ligand Ⅴ 또는 Ligand Ⅵ를 노말-부틸알데히드 용매에 녹여 전체 용액이 100g이 되도록 첨가하였다. 상기 반응 용액에 프로필렌 및 합성기체(CO/H2) (CO와 H2의 혼합비율=1:1)를 주입하여 반응기 내의 압력은 6 bar가 되도록 유지하고, 90℃에서 교반하면서 1.5 시간 반응시켰다.
표 3
Ligand Ⅰ
Figure PCTKR2010000921-appb-I000020
Diphenylphosphine oxide
Ligand Ⅱ
Figure PCTKR2010000921-appb-I000021
Bis(4-methoxyphenyl)phosphine oxdie
Ligand Ⅲ
Figure PCTKR2010000921-appb-I000022
Bis(phenylphosphinoyl)benzene
Ligand Ⅳ
Figure PCTKR2010000921-appb-I000023
Diphenylphosphine sulfide
Ligand Ⅴ
Figure PCTKR2010000921-appb-I000024
2,8-Dimethylphenoxaphosphine oxide
상기 반응에 대한 전이금속 촉매, 리간드의 종류, 촉매에 대한 리간드의 몰비, N/I 선택성 및 촉매활성은 하기 표 1에 상세히 나타내었다. N/I 선택성은 반응에서 생성된 노말-부틸알데히드(normal-butyraldehyde)의 양을 생성된 이소-부틸알데히드(iso-butyraldehyde)의 양으로 나눈 값이고, 각 알데히드의 생성량은 반응 전후의 용액 질량과 기체 크로마토그래피(GC)분석을 통하여 구한 값이다. 촉매활성은 상기 반응에서 생성된 알데히드의 총량을 사용한 촉매용액의 부피, 그리고 반응시간으로 나누어준 값이다. 이때 촉매활성의 단위는 gmol(BAL)/L(Cat)/h이다.
[비교예 1 내지 4]
리간드로서 트리페닐포스핀 화합물(TPP)을 적용하여 하기 표 1에 기재된 몰비에 따라 실시예 1 내지 13과 동일한 방법으로 수행하였으며, 그 결과를 하기 표 1에 나타내었다.
[비교예 5 내지 7]
트리페닐포스핀 화합물의 영향을 배제하기 위하여, 촉매인 아세틸아세토네이토디카보닐로듐 {(Rh(AcAc)(CO)2): Rh(AcAc)} 0.053g(0.205 mmol), 리간드로서 Ligand Ⅰ 및 Ligand Ⅳ를 각각 적용하고, 하기 표 1에 기재된 몰비에 따라 실시예 1 내지 13과 동일한 방법으로 수행하였으며, 그 결과를 하기 표 1에 나타내었다.
표 4
비교 전이금속촉매 L1 L2 L1/Rhmol/mol L2/Rhmol/mol N/I 촉매활성(gmol(BAL)/L(Cat)/h)
실시예 1 ROPAC TPP Ligand Ⅰ 115 3.7 3.0 0.93
실시예 2 ROPAC TPP Ligand Ⅰ 115 7.5 3.5 0.99
실시예 3 ROPAC TPP Ligand Ⅰ 155 7.5 4.4 0.85
실시예 4 ROPAC TPP Ligand Ⅱ 115 7.5 3.4 0.97
실시예 5 ROPAC TPP Ligand Ⅱ 155 7.5 4.3 0.83
실시예 6 ROPAC TPP Ligand Ⅲ 115 7.5 3.7 1.06
실시예 7 ROPAC TPP Ligand Ⅲ 155 7.5 4.6 0.90
실시예 8 ROPAC TPP Ligand Ⅳ 115 7.5 3.1 0.84
실시예 9 ROPAC TPP Ligand Ⅳ 155 7.5 4.0 0.72
실시예 10 ROPAC TPP Ligand Ⅴ 115 7.5 3.8 0.97
실시예 11 ROPAC TPP Ligand Ⅴ 155 7.5 4.8 0.84
실시예 12 ROPAC TPP Ligand Ⅵ 115 5 4.1 0.94
실시예 13 ROPAC TPP Ligand Ⅵ 155 5 4.4 0.82
비교예 1 ROPAC TPP - 115 - 2.5 0.76
비교예 2 ROPAC TPP - 122.5 - 2.7 0.74
비교예 3 ROPAC TPP - 155 - 3.6 0.65
비교예 4 ROPAC TPP - 162.5 - 3.8 0.62
비교예 5 Rh(AcAc) - Ligand Ⅰ - 3.5 - 0.0
비교예 6 Rh(AcAc) - Ligand Ⅰ - 7.5 - 0.0
비교예 7 Rh(AcAc) - Ligand Ⅳ - 7.5 - 0.0
L1: 트리페닐포스핀 화합물, L2: 포스핀 옥사이드 화합물 또는 포스핀 설파이드 화합물
[실시예 14지 24]
600ml용량의 오토클레이브(Auto Clave) 반응기에 촉매인 아세틸아세토네이토디카보닐로듐 {(Rh(AcAc)(CO)2): Rh(AcAc)} 0.05g(0.194 mmol), 트리아릴포스핀 화합물(L1)인 TPP 또는 TMSTP 또는 DPMPP 또는 TDMPP 또는 TPTP 또는 TMPP, 포스핀 옥사이드 화합물(L2)인 하기의 Ligand Ⅰ또는 Ligand Ⅲ을 노말-부틸알데히드 용매에 녹여 전체 용액이 100g이 되도록 첨가하였다. 상기 반응 용액에 프로필렌와 수소 및 일산화탄소의 비율을 1:0.85:0.75가 되도록 주입하였다. 반응기 상단부에는 BPR(BACK PRESSURE REGURATOR)이 달린 냉각기(condenser)를 달아 미반응 기체의 일정부분이 반응기 밖으로 나가게 하여 반응기내의 H2/CO 부분압이 일정하게 유지되게 하였고 반응기 내의 전체압력을 8 bar가 되도록 유지시키면서, 90℃에서 교반하면서 1.5 시간 반응시켰다.
상기 반응에 대한 전이금속 촉매, 리간드의 종류, 촉매에 대한 리간드의 몰비, N/I 선택성 및 촉매활성은 하기 표 2에 상세히 나타내었다.
[비교예 8 내지 17]
리간드로서 트리아릴포스핀 화합물(L1)인 TPP 또는 TMSTP 또는 DPMPP 또는 TDMPP 또는 TPTP 또는 TMPP를 적용하여 하기 표 2에 기재된 몰비에 따라 실시예 14 내지 24와 동일한 방법으로 수행하였으며, 그 결과를 하기 표 2에 나타내었다.
[비교예 18 내지 19]
트리아릴포스핀 화합물의 영향을 배제하기 위하여, 리간드로서 Ligand Ⅰ 및 Ligand Ⅲ를 각각 적용하고, 하기 표 2에 기재된 몰비에 따라 실시예 14 내지 24와 동일한 방법으로 수행하였으며, 그 결과를 하기 표 2에 나타내었다.
표 5
비교 전이금속촉매 L1 L2 L1/Rhmol/mol L2/Rhmol/mol N/I 촉매활성(gmol(BAL)/L(Cat)/h)
실시예 14 Rh(AcAc) TPP Ligand Ⅰ 117 7.5 12.5 1.78
실시예 15 Rh(AcAc) TPP Ligand Ⅰ 117 50 12.6 1.74
실시예 16 Rh(AcAc) TPP Ligand Ⅲ 117 7.5 13.9 1.90
실시예 17 Rh(AcAc) TMSTP Ligand Ⅰ 117 7.5 18.2 1.69
실시예 18 Rh(AcAc) TMSTP Ligand Ⅲ 117 7.5 20.3 1.82
실시예 19 Rh(AcAc) DPMPP Ligand Ⅰ 117 7.5 15.6 1.90
실시예 20 Rh(AcAc) TDMPP Ligand Ⅲ 117 7.5 19.4 2.23
실시예 21 Rh(AcAc) TPTP Ligand Ⅰ 100 0.5 5.0 0.98
실시예 22 Rh(AcAc) TPTP Ligand Ⅰ 100 7.5 5.7 1.08
실시예 23 Rh(AcAc) TPTP Ligand Ⅰ 100 50 5.8 1.05
실시예 24 Rh(AcAc) TDMPP Ligand Ⅲ 100 7.5 5.1 0.97
비교예 8 Rh(AcAc) TPP - 58 - 7.1 1.79
비교예 9 Rh(AcAc) TPP - 117 - 9.2 1.38
비교예 10 Rh(AcAc) TPP - 123.5 - 9.3 1.36
비교예 11 Rh(AcAc) TPP - 190 - 11.5 1.12
비교예 12 Rh(AcAc) TMSTP - 117 - 13.8 1.30
비교예 13 Rh(AcAc) TMSTP - 123.5 - 14.0 1.27
비교예 14 Rh(AcAc) DPMPP - 117 - 11.5 1.49
비교예 15 Rh(AcAc) TDMPP - 117 - 13.5 1.63
비교예 16 Rh(AcAc) TPTP - 100 - 4.9 0.83
비교예 17 Rh(AcAc) TMPP - 100 - 4.0 0.69
비교예 18 Rh(AcAc) - Ligand Ⅰ - 7.5 - 0.0
비교예 19 Rh(AcAc) - Ligand Ⅰ - 50 - 0.0
비교예 20 Rh(AcAc) - Ligand Ⅲ - 7.5 - 0.0
L1: 트리아릴포스핀화합물, L2: 포스핀 옥사이드 화합물 또는 포스핀 설파이드 화합물
[실시예 25]
600ml용량의 오토클레이브(Auto Clave) 반응기에 촉매인 Rh(AcAc)(CO)2 0.100 mg (0.390 mmol), GC 분석의 내표 물질인 헥사데칸 (Hexadecane) 0.2 mL, 1-Octene 4ml(255 mmol) 및 하기 표 1에 기재된 로듐에 대한 몰비에 따라서 트리아릴포스핀 리간드인 TPP와 포스핀 옥사이드 화합물(L2)인 하기의 Ligand Ⅰ을 톨루엔 용매에 녹여 전체 용액이 100g이 되도록 한 후 첨가하였다. 상기 반응 용액에 CO:H2의 몰비가 1:1인 반응기체를 주입하여 반응기 내의 압력은 10 bar가 되도록 유지하고 85℃ 에서 교반하면서 4 시간 반응시켰다. 반응 후 반응용액을 기체크로마토크래피(GC)로 분석하였으며 그 결과를 표 3에 나타내었다.
[비교예 21 내지 22]
TPP를 리간드로 사용하고 실시예 25와 동일한 방법으로 촉매활성 실험을 수행하였으며 그 결과를 표 3에 나타내었다.
표 6
비교 전이금속촉매 L1 L2 L1/Rhmol/mol L2/Rhmol/mol Conversion(%) Total nonanal(yield(%)) Fraction of n-nonanal(%)
실시예 25 Rh(AcAc) TPP Ligand Ⅰ 117 7.5 97 91 90
비교예 21 Rh(AcAc) TPP - 117 - 92 86 80
비교예 22 Rh(AcAc) TPP - 123 - 91 86 82
2. 촉매 조성물의 안정성 실험
[ 실시예 26]
300ml용량의 오토클레이브 반응기에 촉매인 ROPAC 0.101g (0.205 mmol), 트리페닐 포스핀 화합물(L1)인 TPP와 포스핀 옥사이드 화합물(L2)인 Ligand Ⅰ을 하기 표 2에 기재된 ROPAC의 메탈(Rh)에 대한 리간드의 몰비(L/Rh)에 따라서 노말-부틸알데히드 용매에 녹여 전체 용액이 100g이 되도록 첨가하였다. 상기 용액에 CO:H2의 몰비가 1:1인 합성기체를 주입하여 반응기 내의 압력은 6 bar가 되도록 유지하고 125℃에서 교반하면서 시효실험(aging test)을 수행하였다. 가열 후 하기 표 3에 기재된 시간에 도달하면 용액의 온도를 낮춘 후 내부 기체를 제거하고, 프로필렌 및 혼합기체(CO/H2)를 주입하여 반응기 내의 압력은 6 bar가 되도록 유지하며 90℃에서 교반하면서 1.5 시간 반응시켰다. 각 조건에서 얻어진 촉매활성을 하기 표 4에 나타내었다. 괄호 안에는 시효실험을 실시하지 않은 촉매용액(Fresh catalyst solution)의 촉매 활성을 100으로 하여 시간에 따른 촉매활성 손실률을 상대적인 값으로 나타내었다.
[ 비교예 23 내지 24]
리간드로 TPP만을 적용한 것을 제외하고 실시예 26과 동일한 방법으로 촉매 조성물을 제조한 후, 시효실험 및 촉매활성 실험을 수행하였으며 그 결과를 하기 표 4에 나타내었다.
표 7
비교 촉매 L1 L2 L1/Rhmol/mol L2/Rhmol/mol 촉매활성 gmol( BAL )/L( Cat )/h(촉매활성 손실률%)
Fresh 2.5 hr 3.5hr 5hr
실시예 26 ROPAC TPP Ligand I 115 7.5 0.992(100) 0.531(54) 0.499(50) 0.489(49)
비교예 23 ROPAC TPP - 115 - 0.763(100) 0.425(56) 0.391(51) 0.377(49)
비교예 24 ROPAC TPP 57 0.992(100) 0.396(40) 0.358(36) 0.328(33)
L1: 트리페닐포스핀 화합물, L2: 포스핀 옥사이드 화합물
상기 실시예 및 비교예를 참고하면, 트리아릴포스핀 리간드 및 포스핀 옥사이드 또는 포스핀 설파이드 리간드를 동시에 적용한 실시예 1 내지 1은 동일한 조건에서 트리아릴포스핀(TAP) 리간드만을 단독으로 적용한 비교예 1 내지 4, 비교예 8 내지 17보다 촉매 활성이 1.1 내지 1.4 배 정도 우수하고, 노르말-알데히드에 대한 선택성이 높다. 비교예 3 및 4는 실시예 1 내지 11과 같은 수준의 노르말-알데히드에 대한 높은 선택성을 나타내나 트리페닐포스핀 리간드의 사용량이 많고, 촉매 활성이 저하된다. 트리아릴포스핀 리간드를 적용하지 않고, 포스핀 옥사이드 또는 포스핀 설파이드 리간드만을 적용한 비교예 5 내지 7 및 18 내지 20은 하이드로포밀화 반응이 진행되지 않는다. 또한, 트리페닐포스핀 리간드 및 포스핀 옥사이드 또는 포스핀 설파이드 리간드를 동시에 적용한 적용한 실시예 26는 트리페닐포스핀 리간드만을 적용한 비교예 23 내지 24과 비교하여 촉매 활성 및 안정성이 우수하다.

Claims (13)

  1. [규칙 제26조에 의한 보정 17.03.2010] 
    (a) 하기 화학식 1로 표시되는 트리아릴포스핀 리간드; (b) 하기 화학식 2 또는 3으로 표시되는 포스핀 옥사이드 또는 포스핀 설파이드 리간드; 및 (c) 전이금속 촉매를 포함하는 하이드로포밀화 반응용 촉매 조성물. [화학식 1]
    Figure WO-DOC-FIGURE-5
    상기 식에서, R1 내지 R15는 각각 독립적으로 수소, 치환 또는 비치환된 탄소수 1 내지 5의 알킬기; 치환 또는 비치환된 탄소수 1 내지 5의 알콕시기이고, R1 내지 R15가 치환기에 의해 치환되는 경우, 상기 치환기는 각각 독립적으로 니트로기(-NO2), 불소(F), 염소(Cl), 브롬(Br), 실릴기(-SiR, 여기서 R은 수소, 알킬기 또는 알콕시기)이다. [화학식 2]
    Figure WO-DOC-FIGURE-6
    상기 식에서, R16 및 R17는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 치환 또는 비치환된 탄소수 5 내지 20의 시클로 알킬기 또는 시클로 알케닐기; 치환 또는 비치환된 탄소수 6 내지 36의 아릴기; 치환 또는 비치환된 탄소수 1 내지 20의 헤테로 알킬기; 치환 또는 비치환된 탄소수 4 내지 36의 헤테로 아릴기; 또는 치환 또는 비치환된 탄소수 4 내지 36의 헤테로 고리기이고, 여기서 헤테로 알킬기, 헤테로 아릴기 및 헤테로 고리기는 각각 독립적으로 N, O 및 S 중 선택되는 하나 이상의 원자를 함유하며, R16 및 R17가 치환기에 의해 치환되는 경우, 상기 치환기는 각각 독립적으로 니트로기(-NO2), 불소(F), 염소(Cl), 브롬(Br), 실릴기(-SiR, 여기서 R은 수소, 알킬기 또는 알콕시기), 알콕시기, 카복실기, 카르보알콕시기 또는 탄소수 1 내지 4의 알킬기이고, X는 O 또는 S이며, O일 때 포스핀 옥사이드이고, S일 때 포스핀 설파이드이며, n은 1 또는 2의 정수이다. [화학식 3]
    Figure WO-DOC-FIGURE-7
    상기 식에서, A는 O, S 또는 아민기(NR', 여기서 R'는 수소, 알킬기, 시클로 알킬기, 아릴기, 헤테로 알킬기 또는 헤테로 아릴기)이고, R18 내지 R25는 각각 독립적으로 수소, 치환 또는 비치환된 탄소수 1 내지 5의 알킬기; 치환 또는 비치환된 탄소수 1 내지 5의 알콕시기, 카르보알콕시기, 아릴옥시기, 알킬카르보닐기, 아미드기(-CONH), 니트로기(-NO2), 할로겐기, 시아노기(-CN), 실릴기(-SiR, 여기서 R은 수소, 알킬기 또는 알콕시기) 또는 사이오닐기(-SR, 여기서 R은 수소, 알킬기 또는 알콕시기)이며, X는 O 또는 S이며, O일 때 포스핀 옥사이드이고, S일 때 포스핀 설파이드 이다.
  2. [규칙 제26조에 의한 보정 17.03.2010] 
    제 1 항에 있어서, 상기 (c) 전이금속 촉매는 하기 화학식 4로 표시되는 것을 특징으로 하는 하이드로포밀화 반응용 촉매 조성물. [화학식 4]
    Figure WO-DOC-FIGURE-8
    상기 식에서, M은 코발트(Co), 로듐(Rh) 또는 이리듐(Ir)이고, L1, L2 및 L3은 각각 독립적으로 수소, CO, 시클로옥타디엔(cyclooctadiene), 노보넨(norbornene), 염소(chlorine), 트리페닐포스핀(triphenylphosphine) 또는 아세틸아세토네이토(acetylacetonato) 이며, x, y 및 z는 각각 독립적으로 0 내지 5의 정수이고, x, y 및 z가 동시에 0은 아니다.
  3. 제 1 항에 있어서,
    상기 트리아릴포스핀은 트리페닐포스핀, 트리메시틸포스핀, 디페닐(2-메톡시페닐)포스핀, 트리스(2,6-디메톡시페닐)포스핀, 트리-p-톨릴포스핀 및 트리스(4-메톡시페닐)포스핀으로 이루어진 군에서 선택되는 것을 특징으로 하는 하이드로포밀화 반응용 촉매 조성물.
  4. 제 1 항에 있어서,
    상기 트리아릴포스핀 리간드의 함량은 상기 전이금속 촉매의 중심금속 1몰에 대하여 0.5 내지 200몰 분율인 것을 특징으로 하는 하이드로포밀화 반응용 촉매 조성물.
  5. 제 1 항에 있어서,
    상기 포스핀 옥사이드 또는 포스핀 설파이드 리간드의 함량은 전이금속 촉매의 중심금속 1몰에 대하여 0.5 내지 100 몰인 것을 특징으로 하는 하이드로포밀화 반응용 촉매 조성물.
  6. 제 2 항에 있어서,
    상기 전이금속 촉매는 코발트카보닐[Co2(CO)8], 아세틸아세토네이토디카보닐로듐[Rh(AcAc)(CO)2], 아세틸아세토네이토카보닐트리페닐포스핀로듐[Rh(AcAc)(CO)(TPP)], 하이드리도카보닐트리(트리페닐포스핀)로듐[HRh(CO)(TPP)3], 아세틸아세토네이토디카보닐이리듐[Ir(AcAc)(CO)2] 및 하이드리도카보닐트리(트리페닐포스핀)이리듐[HIr(CO)(TPP)3]로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 하이드로포밀화 반응용 촉매 조성물.
  7. 제 2 항에 있어서,
    상기 전이금속 촉매의 중심 금속 함량은 촉매 조성물의 무게 또는 부피를 기준으로 10 내지 500ppm인 것을 특징으로 하는 하이드로포밀화 반응용 촉매 조성물.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 따른 촉매 조성물의 존재 하에서 올레핀계 화합물 및 합성기체(CO/H2)를 반응시켜 알데히드를 얻는 단계를 포함하는 알데히드의 제조방법.
  9. 제 8 항에 있어서,
    상기 올레핀계 화합물은 하기 화학식 5로 표시되는 화합물을 포함하는 것을 특징으로 하는 알데히드의 제조방법.
    [화학식 5]
    Figure PCTKR2010000921-appb-I000029
    상기 식에서,
    R26 및 R27은 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 불소(F), 염소(Cl), 브롬기(Br), 트리플루오로메틸기(-CF3) 또는 0 내지 5개의 치환기를 갖는 탄소수 6 내지 20의 아릴기이고,
    여기서 아릴기의 치환기는 니트로기(-NO2), 불소(F), 염소(Cl), 브롬(Br), 메틸기, 에틸기, 프로필기 또는 부틸기이다.
  10. 제 8 항에 있어서,
    상기 올레핀계 화합물은 에텐, 프로펜, 1-부텐, 1-펜텐, 1-헥센, 1-옥텐 및 스티렌으로 이루어진 군으로부터 선택된 1종 이상의 화합물인 것을 특징으로 하는 알데히드의 제조방법.
  11. 제 8 항에 있어서,
    상기 합성기체(CO:H2)의 혼합비율은 30:70 내지 70:30인 것을 특징으로 하는 알데히드의 제조방법.
  12. 제 8 항에 있어서,
    반응온도는 20 내지 180℃인 것을 특징으로 하는 알데히드의 제조방법.
  13. 제 8 항에 있어서,
    반응압력은 1 내지 700 bar인 것을 특징으로 하는 알데히드의 제조방법.
PCT/KR2010/000921 2009-02-12 2010-02-12 하이드로포밀화 반응용 촉매 조성물 및 이를 이용하는 알데히드의 제조방법 WO2010093208A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10741425.2A EP2404671B2 (en) 2009-02-12 2010-02-12 Catalyst composition for hydroformylation and method for preparing aldehydes using the same
CN201080004413.7A CN102271812B (zh) 2009-02-12 2010-02-12 用于加氢甲酰化反应的催化剂组合物以及使用该催化剂组合物制备醛的方法
ES10741425.2T ES2515266T5 (es) 2009-02-12 2010-02-12 Composición de catalizador para hidroformilación y procedimiento para la preparación de aldehídos utilizando la misma
US13/092,817 US8426651B2 (en) 2009-02-12 2011-04-22 Catalyst composition for hydroformylation and method for producing aldehyde using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090011408 2009-02-12
KR10-2009-0011408 2009-02-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/092,817 Continuation US8426651B2 (en) 2009-02-12 2011-04-22 Catalyst composition for hydroformylation and method for producing aldehyde using the same

Publications (2)

Publication Number Publication Date
WO2010093208A2 true WO2010093208A2 (ko) 2010-08-19
WO2010093208A3 WO2010093208A3 (ko) 2010-11-25

Family

ID=42562207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000921 WO2010093208A2 (ko) 2009-02-12 2010-02-12 하이드로포밀화 반응용 촉매 조성물 및 이를 이용하는 알데히드의 제조방법

Country Status (6)

Country Link
US (1) US8426651B2 (ko)
EP (1) EP2404671B2 (ko)
KR (1) KR101150557B1 (ko)
CN (1) CN102271812B (ko)
ES (1) ES2515266T5 (ko)
WO (1) WO2010093208A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2611538A2 (en) * 2010-09-02 2013-07-10 LG Chem, Ltd. Catalyst composition for hydroformylation reaction and a hydroformylation process using the same

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8627965B2 (en) 2001-05-17 2014-01-14 Rtc Industries, Inc. Multi-component display and merchandise systems
US8047385B2 (en) 2004-02-03 2011-11-01 Rtc Industries, Inc. Product securement and management system
US9375100B2 (en) 2004-02-03 2016-06-28 Rtc Industries, Inc. Product securement and management system
US11375826B2 (en) 2004-02-03 2022-07-05 Rtc Industries, Inc. Product securement and management system
US9706857B2 (en) 2004-02-03 2017-07-18 Rtc Industries, Inc. Product securement and management system
DE102012014396B4 (de) * 2012-07-13 2018-01-11 Oxea Gmbh Verfahren zur Herstellung eines Vinylestergemisches aus einem Gemisch stellungsisomerer aliphatischer Isononansäuren ausgehend von 2-Ethylhexanol
WO2015046924A1 (ko) * 2013-09-30 2015-04-02 (주) 엘지화학 히드로포밀화 반응용 촉매 조성물 및 이를 이용한 올레핀의 히드로포밀화 방법
KR101615028B1 (ko) 2013-09-30 2016-04-22 주식회사 엘지화학 히드로포밀화 반응용 촉매 조성물 및 이를 이용한 올레핀의 히드로포밀화 방법
KR101962092B1 (ko) 2015-10-05 2019-03-26 주식회사 엘지화학 인계 리간드를 포함하는 촉매 조성물 및 이를 이용한 하이드로포밀화 방법
KR102092803B1 (ko) 2016-01-13 2020-03-24 주식회사 엘지화학 인계 리간드를 포함하는 촉매 조성물을 이용한 하이드로포밀화 방법
WO2018008928A1 (ko) 2016-07-08 2018-01-11 (주) 엘지화학 하이드로포밀화 촉매, 이를 포함하는 촉매 조성물 및 이를 이용한 알데히드 제조방법
KR102073732B1 (ko) 2016-07-08 2020-02-05 주식회사 엘지화학 하이드로포밀화 촉매, 이를 포함하는 촉매 조성물 및 이를 이용한 알데히드 제조방법
KR102131788B1 (ko) 2017-05-29 2020-07-09 주식회사 엘지화학 히드로포밀화 반응용 촉매 조성물 및 이를 이용한 알데히드 제조방법
EP3466540B1 (en) 2017-05-29 2022-04-06 LG Chem, Ltd. Catalyst composition for hydroformylation reaction and method for preparing aldehyde using same
CN109776294B (zh) * 2017-11-14 2022-01-04 中国石油化工股份有限公司 一种烯烃氢甲酰化反应方法
KR20210013702A (ko) * 2018-05-30 2021-02-05 다우 테크놀로지 인베스트먼츠 엘엘씨. 하이드로포밀화 공정에서 촉매의 탈활성화를 느리게 하고/하거나 테트라포스핀 리간드 사용을 느리게 하는 방법
JP2021525166A (ja) * 2018-05-30 2021-09-24 ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー モノホスフィン、テトラホスフィン配位子の組み合わせを含む触媒組成物、およびそれを使用するヒドロホルミル化プロセス
KR20210004392A (ko) 2019-07-04 2021-01-13 주식회사 엘지화학 하이드로포밀화 반응용 촉매 조성물 및 이를 이용한 알데히드의 제조방법
KR20210048748A (ko) 2019-10-24 2021-05-04 주식회사 엘지화학 하이드로포밀화 반응용 촉매 및 이를 이용한 알데히드의 제조방법
CN115397555A (zh) * 2020-04-01 2022-11-25 埃克森美孚化学专利公司 包含氟膦配体及其前体的加氢甲酰化催化剂
KR20220011989A (ko) 2020-07-22 2022-02-03 주식회사 엘지화학 하이드로포밀화 반응용 촉매 조성물 및 이를 이용한 하이드로포밀화 방법
JP2022547456A (ja) 2020-07-30 2022-11-14 エルジー・ケム・リミテッド ヒドロホルミル化方法
KR20220015128A (ko) 2020-07-30 2022-02-08 주식회사 엘지화학 알데히드의 제조방법 및 알코올의 제조방법
KR20220015126A (ko) 2020-07-30 2022-02-08 주식회사 엘지화학 하이드로포밀화 방법
KR20220026295A (ko) 2020-08-25 2022-03-04 주식회사 엘지화학 알데히드의 제조방법 및 알코올의 제조방법
KR20220053229A (ko) 2020-10-22 2022-04-29 주식회사 엘지화학 하이드로포밀화 반응용 촉매 조성물 및 이를 이용한 알데히드의 제조방법
CN114057558B (zh) * 2021-12-01 2024-01-30 上海簇睿低碳能源技术有限公司 一种3,5,5-三甲基己醛的合成方法、催化体系及应用
KR20230115562A (ko) 2022-01-27 2023-08-03 주식회사 엘지화학 알데히드의 제조방법
KR20230115559A (ko) 2022-01-27 2023-08-03 주식회사 엘지화학 하이드로포밀화 방법
KR20230115563A (ko) 2022-01-27 2023-08-03 주식회사 엘지화학 알코올의 제조방법
KR20230115558A (ko) 2022-01-27 2023-08-03 주식회사 엘지화학 하이드로포밀화 방법
KR20230115501A (ko) 2022-01-27 2023-08-03 주식회사 엘지화학 알코올의 제조방법
KR20230115560A (ko) 2022-01-27 2023-08-03 주식회사 엘지화학 하이드로포밀화용 용매의 제조방법 및 알데히드의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2428021A1 (fr) * 1978-06-05 1980-01-04 Kuraray Co Hydroformylation de composes olefiniques
JPS5829928B2 (ja) * 1978-08-07 1983-06-25 株式会社クラレ オレフイン性化合物のカルボニル化方法
US4408078A (en) * 1981-12-23 1983-10-04 Shell Oil Company Process for the hydroformylation of olefins
US4528403A (en) * 1982-10-21 1985-07-09 Mitsubishi Chemical Industries Ltd. Hydroformylation process for preparation of aldehydes and alcohols
FR2763938B1 (fr) * 1997-05-27 1999-10-22 Inst Francais Du Petrole Procede pour l'hydroformylation d'olefines
US7169953B2 (en) * 2001-11-09 2007-01-30 The Penn State Research Foundation P-chiral phospholanes and phosphocyclic compounds and their use in asymmetric catalytic reactions
KR100596365B1 (ko) 2004-06-12 2006-07-03 주식회사 엘지화학 인을 포함하는 촉매 조성물 및 이를 이용한히드로포르밀화 방법
KR100547587B1 (ko) * 2004-06-12 2006-01-31 주식회사 엘지화학 인을 포함하는 촉매 조성물 및 이를 이용한히드로포르밀화 방법
KR100744477B1 (ko) 2004-09-15 2007-08-01 주식회사 엘지화학 인 화합물을 포함하는 촉매 조성물 및 이를 이용한히드로포르밀화 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2404671A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2611538A2 (en) * 2010-09-02 2013-07-10 LG Chem, Ltd. Catalyst composition for hydroformylation reaction and a hydroformylation process using the same
EP2611538A4 (en) * 2010-09-02 2014-08-27 Lg Chemical Ltd CATALYTIC COMPOSITION FOR HYDROFORMYLATION REACTION AND HYDROFORMYLATION PROCESS USING THE SAME
US8889916B2 (en) 2010-09-02 2014-11-18 Lg Chem, Ltd. Catalyst composition for hydroformylation reaction and hydroformylation process using the same

Also Published As

Publication number Publication date
EP2404671A2 (en) 2012-01-11
WO2010093208A3 (ko) 2010-11-25
US20110201844A1 (en) 2011-08-18
EP2404671B1 (en) 2014-09-10
KR101150557B1 (ko) 2012-06-01
EP2404671B2 (en) 2018-07-25
US8426651B2 (en) 2013-04-23
ES2515266T5 (es) 2018-12-03
ES2515266T3 (es) 2014-10-29
CN102271812B (zh) 2014-04-02
KR20100092399A (ko) 2010-08-20
EP2404671A4 (en) 2012-05-09
CN102271812A (zh) 2011-12-07

Similar Documents

Publication Publication Date Title
WO2010093208A2 (ko) 하이드로포밀화 반응용 촉매 조성물 및 이를 이용하는 알데히드의 제조방법
WO2017010618A1 (ko) 인계 리간드를 포함하는 촉매 조성물 및 이를 이용한 하이드로포밀화 방법
WO2012030065A2 (en) Catalyst composition for hydroformylation reaction and a hydroformylation process using the same
US5264616A (en) Preparation of ω-formylalkanecarboxylic esters
WO2017061745A1 (ko) 인계 리간드를 포함하는 촉매 조성물 및 이를 이용한 하이드로포밀화 방법
US9359278B2 (en) Organophosphorus compounds based on anthracenetriol
US6342605B1 (en) Valeraldehyde and process for its preparation
US20060100453A1 (en) Novel phosoxophite legands and use thereof in carbonylation processes
WO2013176345A1 (ko) 히드로포밀화 반응용 촉매 조성물 및 이를 이용한 히드로포밀화 방법
GB2056874A (en) Hydroformylation of olefinic compounds
KR20020080416A (ko) 디아릴-아넬레이트화된 비시클로[2.2.n] 원료 물질에기초한 인, 비소 및 안티몬 화합물 및 그를 포함하는 촉매
WO2018008928A1 (ko) 하이드로포밀화 촉매, 이를 포함하는 촉매 조성물 및 이를 이용한 알데히드 제조방법
WO2018221830A1 (ko) 히드로포밀화 반응용 촉매 조성물 및 이를 이용한 알데히드 제조방법
WO2017057849A1 (ko) 하이드로포밀화 반응용 촉매 조성물 및 이를 이용한 하이드로포밀화 방법
CN112480170B (zh) 一种双膦化合物、包含其的催化剂体系及其应用
KR20050118024A (ko) 인을 포함하는 촉매 조성물 및 이를 이용한히드로포르밀화 방법
JP2001114794A (ja) 第8族貴金属及び/又は有機ホスファイト化合物の回収方法
WO2013183796A1 (en) Hydroformylation method having improved catalyst stability in reaction
US11667657B2 (en) Diphosphites based on cis-butene-1,4-diol
KR102340629B1 (ko) 하이드로포밀화 반응용 헤테로 리간드 배위결합 촉매 조성물 및 이의 용도
JP3846020B2 (ja) ビスホスファイト化合物及び該化合物を用いたアルデヒド類の製造方法
WO2022059959A1 (ko) 알데히드의 제조방법 및 알데히드의 제조장치
KR102131788B1 (ko) 히드로포밀화 반응용 촉매 조성물 및 이를 이용한 알데히드 제조방법
WO2015046924A1 (ko) 히드로포밀화 반응용 촉매 조성물 및 이를 이용한 올레핀의 히드로포밀화 방법
US20230381764A1 (en) Use of highly isoselective, thermally stable ferrocene catalysts for propylene hydroformylation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004413.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741425

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010741425

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE