WO2010093010A1 - 積層体、その製造方法、電子デバイス用部材及び電子デバイス - Google Patents

積層体、その製造方法、電子デバイス用部材及び電子デバイス Download PDF

Info

Publication number
WO2010093010A1
WO2010093010A1 PCT/JP2010/052058 JP2010052058W WO2010093010A1 WO 2010093010 A1 WO2010093010 A1 WO 2010093010A1 JP 2010052058 W JP2010052058 W JP 2010052058W WO 2010093010 A1 WO2010093010 A1 WO 2010093010A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
laminate
barrier layer
atoms
Prior art date
Application number
PCT/JP2010/052058
Other languages
English (en)
French (fr)
Inventor
慎一 星
近藤 健
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to US13/144,856 priority Critical patent/US20120121917A1/en
Priority to CN201080007613.8A priority patent/CN102317070B/zh
Priority to EP10741287.6A priority patent/EP2397324A4/en
Priority to JP2010550556A priority patent/JP5725541B2/ja
Publication of WO2010093010A1 publication Critical patent/WO2010093010A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a laminate having a gas barrier layer and a conductor layer having excellent gas barrier properties and excellent interlayer adhesion, a method for producing the laminate, an electronic device member comprising the laminate, and the electronic device
  • the present invention relates to an electronic device including a member.
  • Patent Documents 1 and 2, etc. there is a conductive electrode substrate in which a surface smooth layer and an inorganic barrier layer are laminated on a plastic substrate, and a conductive electrode layer is formed on the outermost layer. Proposed.
  • the gas barrier performance of the conductive electrode substrate described in these documents is sufficiently satisfactory, and further improvement is required.
  • the adhesion between the surface smooth layer and the inorganic barrier layer and between these layers and the electrode (conductive electrode layer) is lacking, a functional thin film for improving the adhesion must be provided between the layers.
  • the manufacturing process is complicated, and there is a problem that it is contrary to thinning, weight reduction, and flexibility.
  • Patent Document 3 discloses that ions formed on one surface of a plastic film by a plasma ion implantation method using at least one kind of gas among a rare gas, hydrogen, nitrogen, and ammonia gas as a plasma source.
  • a transparent conductive gas barrier film is described in which a gas barrier layer and a transparent electrode layer are formed on an injection layer.
  • the present invention has been made in view of the above-described prior art, and an object thereof is a laminate having a gas barrier layer and a conductor layer, which has excellent gas barrier properties and excellent interlayer adhesion, and the production thereof.
  • the inventors of the present invention are made of a material containing at least an oxygen atom, a carbon atom, and a silicon atom, and the abundance ratio of oxygen atoms gradually increases from the surface toward the depth direction. It has been found that a layer (gas barrier layer) in which the ratio of carbon atoms is gradually decreased and a laminate having a conductor layer has excellent gas barrier properties and interlayer adhesion. Further, the inventors of the present invention can simplify the gas barrier layer by injecting ions into the surface portion of the layer containing the polyorganosiloxane compound of the molded product having the layer containing the polyorganosiloxane compound on the surface portion. And it discovered that it could form efficiently and came to complete this invention based on these knowledge.
  • the following laminates (1) to (7) are provided.
  • a gas barrier layer made of a material containing at least oxygen atoms, carbon atoms, and silicon atoms, and a laminate having a conductor layer, wherein the gas barrier layer has a depth direction from the surface of the gas barrier layer.
  • a laminate comprising a gas barrier layer in which an oxygen atom content ratio is gradually decreased and a carbon atom content ratio is gradually increased.
  • the oxygen atom is present in an amount of 10 to 70%
  • the carbon atom is present in an amount of 10 to 70%
  • the silicon atoms are present in a total amount of oxygen atoms, carbon atoms, and silicon atoms.
  • the layered product according to (1) characterized in that the abundance ratio is 5 to 35%.
  • the peak position of the binding energy of the 2p electron orbit of silicon atoms is 102 to 104 eV (1 ).
  • the laminate according to (1) further having an inorganic compound layer.
  • the ions are those obtained by ionizing at least one gas selected from the group consisting of nitrogen, oxygen, argon, and helium.
  • the polyorganosiloxane compound is the following (a) or (b)
  • Rx and Ry are each independently a non-hydrophilic hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alkenyl group, an unsubstituted or substituted aryl group, etc. And a plurality of Rx in the formula (a) and a plurality of Ry in the formula (b) may be the same as or different from each other, provided that both Rx in the formula (a) are the same. It is not a hydrogen atom.
  • the laminate according to (5) which is a polyorganosiloxane having a repeating unit represented by:
  • the manufacturing method of the laminated body which has process (I) formed by implanting ion into a layer.
  • step (10) The manufacturing method according to (8), wherein the step (I) is plasma ion implantation.
  • step (I) ions are implanted into the layer containing the polyorganosiloxane compound while conveying a long shaped product having a layer containing the polyorganosiloxane compound on the surface in a certain direction.
  • step (I) The manufacturing method according to (8).
  • the member for electronic devices as described in following (12) is provided.
  • (12) An electronic device member comprising the laminate according to any one of (1) to (7).
  • (123) An electronic device comprising the electronic device member according to (12).
  • the laminate of the present invention has excellent gas barrier properties and interlayer adhesion (adhesion between a gas barrier layer and a conductor layer). Moreover, the conductor layer of the laminate of the present invention has high surface smoothness. According to the production method of the present invention, the laminate of the present invention can be efficiently produced. Since the laminate of the present invention can be flexible and lightweight, it can be suitably used as a member for electronic devices such as displays such as organic EL and solar cells. Furthermore, since mass production with roll-to-roll is possible, cost reduction can be realized. Since the electronic device member of the present invention comprises the laminate of the present invention, it has excellent gas barrier properties, interlayer adhesion, and the like, and therefore can be suitably used for electronic devices such as displays and solar cells.
  • FIG. 3 is a diagram showing the abundance ratio (%) of oxygen atoms, carbon atoms, and silicon atoms in the gas barrier layer of the molded body 1 of Example 1.
  • FIG. 5 is a diagram showing the abundance ratio (%) of oxygen atoms, carbon atoms, and silicon atoms in the gas barrier layer of the molded body 2 of Example 2.
  • FIG. 5 is a diagram showing the abundance ratio (%) of oxygen atoms, carbon atoms, and silicon atoms in the gas barrier layer of the molded article 3 of Example 3.
  • FIG. 6 is a diagram showing the abundance ratio (%) of oxygen atoms, carbon atoms, and silicon atoms in the gas barrier layer of the molded body 4 of Example 4.
  • FIG. 6 is a diagram showing the abundance ratio (%) of oxygen atoms, carbon atoms, and silicon atoms in the gas barrier layer of the molded body 5 of Example 5.
  • FIG. 10 is a diagram showing the abundance ratio (%) of oxygen atoms, carbon atoms, and silicon atoms in the gas barrier layer of the molded body 6 of Example 6.
  • FIG. 10 is a diagram illustrating the abundance ratio (%) of oxygen atoms, carbon atoms, and silicon atoms in the gas barrier layer of the molded body 7 of Example 7.
  • FIG. 10 is a diagram showing the abundance ratio (%) of oxygen atoms, carbon atoms, and silicon atoms in the gas barrier layer of the molded article 8 of Example 8.
  • FIG. 10 is a diagram illustrating the abundance ratio (%) of oxygen atoms, carbon atoms, and silicon atoms in the gas barrier layer of the molded body 9 of Example 9. It is a figure showing the presence rate (%) of an oxygen atom, a carbon atom, and a silicon atom in the gas barrier layer of the molded object 10 of Example 10.
  • FIG. 10 is a diagram illustrating the abundance ratio (%) of oxygen atoms, carbon atoms, and silicon atoms in the gas barrier layer of the molded body 7 of Example 7.
  • FIG. 10 is a diagram showing the abundance ratio (%) of oxygen atoms, carbon atoms, and silicon atom
  • FIG. 5 is a diagram illustrating the abundance ratio (%) of oxygen atoms, carbon atoms, and silicon atoms in the gas barrier layer of the molded body 19 of Comparative Example 1. It is a figure showing the bond energy distribution of the 2p electron orbit of a silicon atom in the XPS analysis of the gas barrier layer of the molded object 2 of Example 2.
  • FIG. 5 is a diagram illustrating the abundance ratio (%) of oxygen atoms, carbon atoms, and silicon atoms in the gas barrier layer of the molded body 19 of Comparative Example 1. It is a figure showing the bond energy distribution of the 2p electron orbit of a silicon atom in the XPS analysis of the gas barrier layer of the molded object 2 of Example 2.
  • the laminate of the present invention is a laminate comprising a gas barrier layer composed of a material containing at least oxygen atoms, carbon atoms, and silicon atoms, and a conductor layer, and the gas barrier From the surface of the layer to the depth direction, the existence ratio of oxygen atoms in the gas barrier layer gradually decreases, and the existence ratio of carbon atoms gradually increases.
  • the “surface of the gas barrier layer” includes an interface with another layer such as a conductor layer in the gas barrier layer.
  • the gas barrier layer (hereinafter sometimes referred to as “A layer”) of the laminate of the present invention is composed of a material containing at least an oxygen atom, a carbon atom and a silicon atom, and has a depth from the surface of the layer. In the direction, the ratio of oxygen atoms in the layer gradually decreases and the ratio of carbon atoms increases gradually.
  • the material containing at least an oxygen atom, a carbon atom and a silicon atom is not particularly limited as long as it is a polymer containing at least an oxygen atom, a carbon atom and a silicon atom, but from the viewpoint of exhibiting better gas barrier properties.
  • the proportion of oxygen atoms present relative to the total amount of oxygen atoms, carbon atoms and silicon atoms in the surface layer portion of the gas barrier layer (that is, when the total amount of oxygen atoms, carbon atoms and silicon atoms is 100%) Is preferably 10 to 70%, carbon atom content is 10 to 70%, silicon atom content is 5 to 35%, oxygen atom content is 15 to 65%, carbon atom content is More preferably, the content is 15 to 65% and the silicon atom content is 10 to 30%.
  • the measurement of the abundance ratio of oxygen atoms, carbon atoms and silicon atoms is performed by the method described in the examples.
  • the region where the oxygen atom content rate gradually decreases and the carbon atom content rate increases gradually from the surface toward the depth direction is a region corresponding to the gas barrier layer, and the thickness is usually 5 to 100 nm.
  • the thickness is preferably 10 to 50 nm.
  • Examples of such a gas barrier layer include, as will be described later, a layer obtained by implanting ions into a layer containing a polyorganosiloxane compound (hereinafter sometimes referred to as “implanted layer”), polyorganosiloxane, and the like. Examples thereof include a layer obtained by subjecting a layer containing a compound to plasma treatment.
  • the gas barrier layer preferably has a peak position of the binding energy of the 2p electron orbit of silicon atoms of 102 to 104 eV in X-ray photoelectron spectroscopy (XPS) measurement in the surface layer portion of the gas barrier layer.
  • XPS X-ray photoelectron spectroscopy
  • the peak position of the binding energy of the 2p electron orbit of a silicon atom is about 101.5 eV in the X-ray photoelectron spectroscopy (XPS) measurement
  • the polydimethylsiloxane layer has an argon
  • the peak position of the binding energy of the 2p electron orbit of silicon atoms is about 103 eV in the X-ray photoelectron spectroscopy (XPS) measurement in the surface layer portion.
  • This value is almost the same as the peak position of the binding energy of the 2p electron orbit of the silicon atom contained in a conventionally known silicon-containing polymer having a gas barrier property such as glass or silicon dioxide film (X-ray photoelectron).
  • a gas barrier property such as glass or silicon dioxide film (X-ray photoelectron).
  • the peak position of the binding energy of the 2p electron orbit of silicon atoms in spectroscopic (XPS) measurement is about 102.5 eV for glass and about 103 eV for silicon dioxide film). Therefore, the laminate of the present invention in which the peak position of the binding energy of the 2p electron orbit of silicon atoms in the surface layer portion of the gas barrier layer is 102 to 104 eV has the same or similar structure as the glass or silicon dioxide film. Therefore, it is estimated that the gas barrier performance is excellent.
  • the measurement of the peak position of the binding energy of the 2p electron orbit of the silicon atom is performed by the method described in the examples.
  • the gas barrier layer of the laminate of the present invention is formed on the surface portion of a layer containing a polyorganosiloxane compound having a thickness of 30 nm to 200 ⁇ m, and the depth of the gas barrier layer is preferably 5 nm to 100 nm. More preferably, it is 50 nm.
  • the laminate of the present invention is a laminate having a gas barrier layer and a conductor layer, wherein the gas barrier layer is a molded product having a layer containing a polyorganosiloxane compound on the surface portion. It may be a layer obtained by step (I) formed by implanting ions into a layer containing a compound.
  • the layer containing the polyorganosiloxane compound By injecting ions into the layer containing the polyorganosiloxane compound, it is composed of a material containing at least oxygen atoms, carbon atoms, and silicon atoms, and oxygen atoms in the layer are formed in the depth direction from the layer surface. Therefore, it is possible to easily form a gas barrier layer having a structure in which the abundance ratio is gradually decreased and the abundance ratio of carbon atoms is gradually increased.
  • the linear main chain structure includes a structure represented by the following formula (a)
  • the ladder main chain structure includes a structure represented by the following formula (b)
  • the main chain structure include a structure represented by the following formula (c).
  • each of Rx, Ry, and Rz independently represents a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alkenyl group, an unsubstituted or substituted aryl group, etc. Represents a hydrolyzable group.
  • the plurality of Rx in the formula (a), the plurality of Ry in the formula (b), and the plurality of Rz in the formula (c) may be the same or different. However, both Rx in the formula (a) are not hydrogen atoms.
  • alkyl group of the unsubstituted or substituted alkyl group examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n
  • alkyl groups having 1 to 10 carbon atoms such as -pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group and n-octyl group.
  • alkenyl group examples include alkenyl groups having 2 to 10 carbon atoms such as vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group and 3-butenyl group.
  • Examples of the substituent for the alkyl group and alkenyl group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a hydroxyl group; a thiol group; an epoxy group; a glycidoxy group; a (meth) acryloyloxy group; And unsubstituted or substituted aryl groups such as 4-methylphenyl group and 4-chlorophenyl group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom
  • a hydroxyl group such as a hydroxyl group; a thiol group
  • an epoxy group such as 4-methylphenyl group and 4-chlorophenyl group.
  • aryl group of an unsubstituted or substituted aryl group examples include aryl groups having 6 to 10 carbon atoms such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • substituent of the aryl group examples include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkyl groups having 1 to 6 carbon atoms such as methyl group and ethyl group; carbon numbers such as methoxy group and ethoxy group 1-6 alkoxy groups; nitro groups; cyano groups; hydroxyl groups; thiol groups; epoxy groups; glycidoxy groups; (meth) acryloyloxy groups; unsubstituted phenyl groups, 4-methylphenyl groups, 4-chlorophenyl groups, etc.
  • Rx, Ry, and Rz each independently, an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms or a phenyl group is preferable, and a methyl group, an ethyl group, a propyl group, 3 A glycidoxypropyl group or a phenyl group is particularly preferred.
  • the polyorganosiloxane compound is preferably a linear compound represented by the formula (a) or a ladder-shaped compound represented by the formula (b), and is easily available and excellent.
  • two Rx are linear compounds in which they are methyl groups or phenyl groups
  • two Ry are methyl groups.
  • a ladder-like compound which is a propyl group, a 3-glycidoxypropyl group or a phenyl group is particularly preferred.
  • the polyorganosiloxane compound can be obtained by a known production method in which a silane compound having a hydrolyzable functional group is polycondensed.
  • the silane compound to be used may be appropriately selected according to the structure of the target polyorganosiloxane compound.
  • Preferred specific examples include bifunctional silane compounds such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, and diethyldiethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, trifunctional silane compounds such as n-propyltrimethoxysilane, n-butyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyldiethoxymethoxysilane; tetramethoxysilane, Tetraethoxysilane, tetra-n-propoxysilane,
  • polyorganosiloxane compound a commercially available product as a release agent, an adhesive, a sealant, a paint, or the like can be used as it is.
  • the layer containing the polyorganosiloxane compound may contain other components in addition to the polyorganosiloxane compound as long as the object of the present invention is not impaired.
  • other components include curing agents, other polymers, anti-aging agents, light stabilizers, and flame retardants.
  • the content of the polyorganosiloxane compound in the layer containing the polyorganosiloxane compound is preferably 50% by weight or more from the viewpoint of forming an injection layer having excellent gas barrier properties, and is 70% by weight. More preferably, it is more preferably 90% by weight or more.
  • the method for forming a layer containing a polyorganosiloxane compound is not particularly limited.
  • a layer forming solution containing at least one polyorganosiloxane compound, optionally other components, a solvent, etc. is suitable.
  • coating on a transparent base material, drying the obtained coating film, and forming by heating etc. as needed is mentioned.
  • the thickness of the layer containing the polyorganosiloxane compound to be formed is not particularly limited, but is usually 30 nm to 200 ⁇ m, preferably 50 nm to 100 ⁇ m.
  • the injection layer is formed by implanting ions into a layer containing a polyorganosiloxane compound.
  • the amount of ions implanted may be appropriately determined in accordance with the purpose of use of the laminate to be formed (necessary gas barrier properties, transparency, etc.).
  • rare gases such as argon, helium, neon, krypton, and xenon
  • ions such as fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, and sulfur
  • gold silver, copper, platinum, And ions of conductive metals such as nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten, and aluminum.
  • At least one ion selected from the group consisting of hydrogen, oxygen, nitrogen, rare gas, and fluorocarbon can be obtained because it can be more easily injected and an injection layer having particularly excellent gas barrier properties and transparency can be obtained.
  • ions of nitrogen, oxygen, argon or helium are particularly preferred.
  • the method for implanting ions is not particularly limited, and examples thereof include a method of forming a layer containing a polyorganosiloxane compound and then implanting ions into the layer containing the polyorganosiloxane compound.
  • Examples of the ion implantation method include a method of irradiating ions accelerated by an electric field (ion beam), a method of implanting ions in plasma, and the like.
  • the latter method of plasma ion implantation is preferred because a laminate having gas barrier properties can be obtained easily.
  • plasma is generated in an atmosphere containing a plasma generation gas such as a rare gas, and a negative high voltage pulse is applied to a layer containing a polyorganosiloxane compound, whereby ions in the plasma ( (Cation) can be injected into the surface portion of the layer containing the polyorganosiloxane compound.
  • a plasma generation gas such as a rare gas
  • a negative high voltage pulse is applied to a layer containing a polyorganosiloxane compound, whereby ions in the plasma ( (Cation) can be injected into the surface portion of the layer containing the polyorganosiloxane compound.
  • the ion implantation can be confirmed by performing elemental analysis measurement of the surface portion of the gas barrier layer using X-ray photoelectron spectroscopy (XPS) analysis.
  • XPS X-ray photoelectron spectroscopy
  • the laminate of the present invention further has a conductor layer (hereinafter also referred to as “B layer”).
  • B layer a conductor layer
  • the material constituting the B layer include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof.
  • ATO tin oxide
  • FTO tin oxide
  • FTO tin oxide
  • conductive such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO) Metal such as gold, silver, chromium and nickel; mixtures of these metals and conductive metal oxides; inorganic conductive materials such as copper iodide and copper sulfide; organic conductive materials such as polyaniline, polythiophene and polypyrrole Material, etc.
  • the layer B may be a laminate in which a plurality of layers made of these materials are laminated.
  • the layer B may be transparent or non-transparent, but when the layer B is transparent, a laminate having excellent transparency can be obtained. From the viewpoint of transparency, a conductive metal oxide is preferable as a material for forming the B layer, and ITO is particularly preferable.
  • Examples of the method for forming the B layer include vapor deposition, sputtering, ion plating, thermal CVD, and plasma CVD. Among these, in the present invention, since the B layer can be easily formed, the sputtering method is preferable.
  • a discharge gas such as argon
  • a high frequency voltage or a direct current voltage is applied between the target and a base plate (A layer in the present invention) to turn the discharge gas into plasma
  • a target a target made of the material forming the B layer is used.
  • the thickness of a conductor layer suitably according to the use. Usually, it is 10 nm to 50 ⁇ m, preferably 20 nm to 20 ⁇ m.
  • the surface resistivity of the obtained conductor layer is usually 1000 ⁇ / ⁇ or less.
  • the formed conductor layer may be patterned as necessary.
  • the patterning method include chemical etching by photolithography and the like, physical etching using a laser and the like, vacuum deposition method using a mask, sputtering method, lift-off method, printing method, and the like.
  • the laminated body of the present invention may be composed of only the A layer and the B layer or may include other layers.
  • the other layer may be a single layer or two or more layers of the same type or different types.
  • the laminate of the present invention preferably includes a base material layer from the viewpoint of ease of production, ease of handling, and the like.
  • Examples of the material constituting the base material layer include the same materials as exemplified as the base material used when forming the layer containing the polymer compound.
  • the laminate of the present invention may further have an inorganic compound layer.
  • the inorganic compound layer is a layer composed of one or more inorganic compounds and has a gas barrier property.
  • the inorganic compound constituting the inorganic compound layer those which can be generally formed in vacuum and have gas barrier properties, such as silicon oxide, aluminum oxide, magnesium oxide, indium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide
  • Inorganic oxides such as silicon nitride, aluminum nitride, boron nitride, and magnesium nitride
  • inorganic carbides such as silicon carbide; inorganic sulfides; composites thereof; and the like. Examples of these composites include inorganic oxynitrides, inorganic oxide carbides, inorganic nitride carbides, inorganic oxynitride carbides, and the like.
  • inorganic oxides inorganic nitrides, inorganic oxynitrides, inorganic nitride carbides, and inorganic oxynitride carbides are preferable, and inorganic nitrides are more preferable.
  • inorganic nitrides examples include metal nitrides represented by the general formula: MNy.
  • M represents a metal element
  • y is a value in the range of 0.1 to 1.3.
  • a nitride in which M is silicon (Si), aluminum (Al), titanium (Ti), tin (Sn) is preferable because of excellent transparency, and a nitride in which M is silicon is more preferable.
  • the formation method of the inorganic compound layer is not particularly limited, and examples thereof include a vapor deposition method, a sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method, and the like.
  • a sputtering method is preferable, and a magnetron sputtering method is more preferable.
  • the thickness of the inorganic compound layer is usually in the range of 10 nm to 1000 nm, preferably 20 to 500 nm, more preferably 20 to 100 nm.
  • the laminate of the present invention is preferably a laminate in which the A layer and the B layer are directly laminated.
  • directly laminated means that the surface side of the A layer and the B layer are directly laminated without interposing other layers.
  • the laminate in which the A layer and the B layer are directly laminated is excellent in gas barrier properties and interlayer adhesion.
  • the laminated body of this invention has an inorganic compound layer
  • the arrangement position of an inorganic compound layer is not specifically limited, From a viewpoint of obtaining the laminated body which has the outstanding adhesiveness and gas barrier property, A layer and B layer It is preferable to provide it in between.
  • FIG. 1 An example of a preferred layer structure of the laminate of the present invention is shown in FIG.
  • the laminate of the present invention is not limited to these.
  • FIG. 1 S represents a base material layer
  • A1 and A2 each represent an A layer
  • B1 and B2 each represent a B layer
  • C represents an inorganic compound layer.
  • FIG. 1 (a) shows a two-layer laminate consisting of layer A and layer B
  • FIG. 1 (b) shows a three-layer laminate consisting of substrate layer-A layer-B layer
  • FIG. 1 (d) shows a five-layer laminate consisting of A layer-base layer-A layer-B layer
  • FIG. 1 (d) shows a five-layer laminate consisting of B layer-A layer-base layer-A layer-B layer
  • FIG. 1 (e) shows a four-layer laminate comprising a base layer-A layer-inorganic compound layer-B layer
  • the total thickness of the laminate of the present invention is not particularly limited, and can be appropriately determined depending on the intended use of the electronic device.
  • the manufacturing method of the laminated body of this invention is not specifically limited. For example, the method etc. which form A layer on a base material and form B layer on it are mentioned. According to this method, it is possible and preferable to produce a long film-like laminate.
  • a laminate in which the A layer is a gas barrier layer obtained from a layer containing a polyorganosiloxane compound can be produced as follows.
  • a layer containing a polyorganosiloxane compound is formed on one surface side of a long base film that becomes a base layer.
  • a layer forming solution containing at least one polyorganosiloxane compound, optionally other components, a solvent, etc. on one surface of the base film while conveying a long base film in a certain direction can be formed by coating the obtained coating film with a coating apparatus, drying the obtained coating film, and heating it as necessary.
  • the coating apparatus known apparatuses such as a knife coater and a gravure coater can be used.
  • plasma ion implantation is performed on the polymer layer using the plasma ion implantation apparatus ( ⁇ ).
  • FIG. 2 is a diagram showing an outline of a continuous plasma ion implantation apparatus including the plasma ion implantation apparatus.
  • 11a is a chamber
  • 20a is a turbo molecular pump
  • 3a is an unwinding roll for sending out the film 1a before being ion-implanted
  • 5a is a winding for winding the ion-implanted laminated film 1b into a roll shape.
  • a roll, 2a is a high voltage application rotary can
  • 10a is a gas inlet
  • 7 is a high voltage pulse power source
  • 4 is an electrode for plasma discharge (external electric field).
  • FIG. 2B is a perspective view of the high-voltage applying rotation can 2a
  • 15 is a high-voltage introduction terminal (feedthrough).
  • the film 1a is transported in the chamber 11a from the unwinding roll 3a in the direction of the arrow X in FIG. It is wound up on a roll 5a.
  • the film 1a is transported by rotating the high voltage application rotating can 2a at a constant speed. ing.
  • the rotation of the high voltage application rotation can 2a is performed by rotating the central shaft 13 of the high voltage introduction terminal 15 by a motor.
  • the high voltage introduction terminal 15 and the plurality of delivery rolls 6a with which the film 1a comes into contact are made of an insulator, for example, formed by coating the surface of alumina with a resin such as polytetrafluoroethylene.
  • the high-voltage applying rotation can 2a is made of a conductor and can be formed of, for example, stainless steel.
  • the conveyance speed of the film 1a can be set as appropriate.
  • the winding speed (line speed) of the film 1b is usually 0.1 to 2 m / min, preferably 0.2 to 0.7 m / min, although it depends on the applied voltage, the apparatus scale, and the like.
  • the chamber 11a is evacuated by a turbo molecular pump 20a connected to a rotary pump to reduce the pressure.
  • the degree of reduced pressure is usually 1 ⁇ 10 ⁇ 4 Pa to 1 Pa, preferably 1 ⁇ 10 ⁇ 3 Pa to 1 ⁇ 10 ⁇ 2 Pa.
  • a gas for ion implantation (hereinafter sometimes referred to as “ion implantation gas”) is introduced into the chamber 11a from the gas inlet 10a, and the inside of the chamber 11a is set to a reduced pressure ion implantation gas atmosphere.
  • the ion implantation gas is also a plasma generation gas.
  • plasma is generated by the plasma discharge electrode 4 (external electric field).
  • a method for generating plasma a known method using a high-frequency power source such as a microwave or RF may be used.
  • a negative high voltage pulse 9 is applied by the high voltage pulse power source 7 connected to the high voltage application rotation can 2a via the high voltage introduction terminal 15.
  • ions in the plasma are induced and injected into the surface of the film 1a around the high voltage application rotation can 2a (in FIG. 2A) , Arrow Y).
  • Arrow Y the laminated film 1b in which the A layer is formed on the base material layer is obtained.
  • a B layer is formed by sputtering on the A layer (the surface on which the ion-implanted layer is formed) of the obtained laminated film 1b.
  • the B layer can be formed using, for example, a continuous sputtering apparatus shown in FIG.
  • 11b is a chamber
  • 20b is a turbo molecular pump
  • 3b is an unwinding roll for feeding the laminated film 1b
  • 5b is a winding roll for winding the film 1c on which the B layer is formed in a roll shape.
  • 6b is a delivery roll
  • 10b is a gas inlet.
  • 2b is a rotating can and 8 is a sputtering target.
  • the laminated film 1b is conveyed in the direction of arrow X in FIG. 3 from the unwinding roll 3b by rotating the rotary can 2b, and is wound on the winding roll 5b.
  • a film 1b is installed in the chamber 11b so that the B layer is formed on the A layer, and the chamber 11b is connected to a rotary pump.
  • the molecular pump 20b exhausts and depressurizes.
  • argon and oxygen gas are introduced into the chamber 11b from the gas inlet 10b, and high frequency power is applied to the target to cause plasma discharge. Then, argon and oxygen gas are ionized and collide with the target. Due to the impact, ITO or the like constituting the target jumps out as sputtered particles and deposits on the surface of the A layer of the laminated film 1b.
  • the laminated film 1c (the laminate of the present invention) in which the B layer is formed on the A layer of the laminated film 1b can be obtained.
  • the laminated body which has an inorganic compound layer on A layer, and also has B layer on it is on the A layer (surface in which the ion implantation layer was formed) of the laminated film 1b obtained by carrying out similarly to the above.
  • the laminated film 1b obtained by carrying out similarly to the above.
  • it after forming an inorganic compound layer using a magnetron sputtering apparatus, it can obtain by forming B layer on the formed inorganic compound layer like the above.
  • an inorganic compound layer is continuously formed using a magnetron sputtering apparatus while conveying the laminated film 1b in a certain direction. While transporting the laminated film with a layer in a certain direction, the B layer can be continuously formed on the surface of the inorganic compound layer in the same manner as described above. According to the method for producing a laminate of the present invention, the laminates (1) to (7) can be easily produced.
  • the laminate of the present invention obtained as described above has excellent gas barrier properties and adhesion. It can be confirmed that the laminate of the present invention has an excellent gas barrier property because the permeability of gas such as water vapor of the laminate of the present invention is small.
  • the water vapor transmission rate of the laminate of the present invention is preferably 1.0 g / (m 2 ⁇ day) or less, more preferably 0.6 g / (m 2 ⁇ day) or less, and 0.1 g / (m 2 ⁇ day). The following is more preferable.
  • the transmittance of the laminate such as water vapor can be measured using a known gas permeability measuring device.
  • the laminate of the present invention is excellent in interlayer adhesion can be confirmed, for example, by conducting a test of attaching and peeling an adhesive tape according to JIS-H8504 and evaluating it well.
  • the conductor layer of the laminate of the present invention is excellent in surface smoothness.
  • the surface roughness (Ra) of the conductor layer of the laminate of the present invention is usually 2.0 nm or less, preferably 1.5 nm or less, more preferably 0.5 nm or less.
  • the surface roughness of the conductor layer can be measured using an atomic force microscope (AFM).
  • the electronic device member of the present invention comprises the laminate of the present invention. Therefore, the electronic device member of the present invention has conductivity, has excellent gas barrier properties and interlayer adhesion, is flexible, and can be a transparent member and can be reduced in weight. It is suitable as a display, a display such as an EL display, or a member such as a solar cell, for example, an electrode substrate.
  • the electronic device of the present invention includes the electronic device member of the present invention. Specific examples include a liquid crystal display, an organic EL display, an inorganic EL display, electronic paper, and a solar battery. Since the electronic device of the present invention includes the electronic device member comprising the laminate of the present invention, it has excellent gas barrier properties.
  • Plasma ion implantation apparatus used is an apparatus for ion implantation using an external electric field.
  • RF power supply Model number “RF56000”, JEOL high voltage pulse power supply: “PV-3-HSHV-0835”, Kurita Seisakusho
  • sputtering was performed using argon gas from the surface into which plasma ions were implanted (Examples 1 to 15) and the surface of the layer containing polydimethylsiloxane (Comparative Example 1) in the depth direction.
  • the applied voltage of sputtering with argon gas was ⁇ 4 kV
  • the sputtering time for one time was 12 seconds
  • the sputtering rates were 100 nm / min for Examples 1 to 6, Examples 11 to 15 and Comparative Example 1.
  • the surface roughness of the conductor layer was measured using an atomic force microscope (AFM) (“SPA300HV” manufactured by SII Nanotechnology Inc.).
  • Adhesion test A cross-cut test was performed in which an adhesive tape according to JIS H8504 was attached and peeled off. The test was performed by cutting the B layer in advance so that a square with a side of 2 mm was formed, and the shape of the B layer was visually observed and evaluated in 6 stages. The evaluation was in accordance with the classification of JIS K5600-5-6 (Table 1 Classification of test results).
  • the water vapor transmission rate was measured using a transmission rate measuring device (“L80-5000” manufactured by LYSSY) under the measurement conditions of 90% relative humidity and 40 ° C.
  • the surface resistivity of the conductor layer was measured using a surface resistivity measuring device (“Loresta-GP” manufactured by Mitsubishi Chemical Corporation).
  • the visible light transmittance (total light transmittance) was measured using a visible light transmittance measuring device (“Haze Meter NDH2000” manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the light incident surface on the molded body was an injection surface in the molded bodies of Examples 1 to 15 and a surface having a layer containing polydimethylsiloxane in the molded body of Comparative Example 1.
  • Example 1 A polyethylene terephthalate film (“PET38T-300” manufactured by Toray Industries, Inc., 38 ⁇ m thick) (hereinafter referred to as “PET film”) as a base material, and a silicone containing polydimethylsiloxane as a main component as a polyorganosiloxane compound Resin (A) (silicone release agent “KS835”, manufactured by Shin-Etsu Chemical Co., Ltd.) is applied using a Meyer bar and heated at 120 ° C. for 2 minutes to form a layer containing silicone release agent A having a thickness of 100 nm. To obtain a molded product. Next, using the plasma ion implantation apparatus shown in FIG. 2, nitrogen was plasma-implanted into the surface of the layer containing polydimethylsiloxane to produce a compact 1.
  • PET film polyethylene terephthalate film
  • KS835 silicon release agent
  • Plasma generated gas N 2 ⁇ Duty ratio: 0.5% ⁇ Repetition frequency: 1000Hz ⁇ Applied voltage: -10kV -RF power supply: frequency 13.56 MHz, applied power 1000 W -Chamber internal pressure: 0.2 Pa ⁇ Pulse width: 5 ⁇ sec ⁇ Processing time (ion implantation time): 5 minutes ⁇ Conveying speed: 0.4 m / min
  • an ITO film having a thickness of 50 nm is formed as a conductor layer on the ion-implanted polyorganosiloxane compound layer of the molded body 1 by a magnetron sputtering method, and a base material layer (PET film) -A layer ( A laminate 1 having a layer structure of a polyorganosiloxane compound layer into which nitrogen was ion-implanted) -B layer (ITO film) was produced.
  • sputtering conditions are shown below.
  • -Plasma generation gas argon
  • oxygen-Gas flow rate argon 100 sccm
  • Power value 1500W -Chamber internal pressure: 0.2 Pa ⁇
  • Sputtering target ITO
  • Example 2 A molded body 2 was produced in the same manner as in Example 1 except that argon (Ar) was used as the plasma generating gas. Next, in the same manner as in Example 1, an ITO film having a thickness of 50 nm was formed as a conductor layer on the polyorganosiloxane-based compound layer into which the molded body 2 had been ion-implanted by a magnetron sputtering method. A laminate 2 having a layer structure of PET film) -A layer (polyorganosiloxane compound layer into which argon was ion-implanted) -B layer (ITO film) was produced.
  • Example 3 A molded body 3 was produced in the same manner as in Example 1 except that helium (He) was used as the plasma generating gas. Next, in the same manner as in Example 1, an ITO film having a thickness of 50 nm was formed as a conductor layer on the polyorganosiloxane-based compound layer into which the molded body 3 was ion-implanted by a magnetron sputtering method. A laminate 3 having a layer structure of PET film) -A layer (polyorganosiloxane compound layer into which helium was ion-implanted) -B layer (ITO film) was produced.
  • helium He
  • Example 4 A molded body 4 was produced in the same manner as in Example 1 except that oxygen (O 2 ) was used as the plasma generating gas. Next, in the same manner as in Example 1, an ITO film having a thickness of 50 nm was formed as a conductor layer on the polyorganosiloxane compound layer into which the molded body 4 had been ion-implanted by a magnetron sputtering method. A laminate 4 having a layer structure of PET film) -A layer (polyorganosiloxane compound layer into which oxygen was ion-implanted) -B layer (ITO film) was produced.
  • X62-9201B manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 2 plasma ion implantation of nitrogen was performed on the surface of the layer containing the silicone resin (B) in the same manner as in Example 1 to obtain a molded body 5.
  • an ITO film having a thickness of 50 nm was formed as a conductor layer on the polyorganosiloxane-based compound layer into which the molded body 5 was ion-implanted by a magnetron sputtering method.
  • a laminate 5 having a layer structure of PET film) -A layer (polyorganosiloxane compound layer into which nitrogen was ion-implanted) -B layer (ITO film) was produced.
  • Example 6 A molded body 6 was produced in the same manner as in Example 5 except that argon (Ar) was used as the plasma generating gas. Next, in the same manner as in Example 1, an ITO film having a thickness of 50 nm was formed as a conductor layer by magnetron sputtering on the ion-implanted polyorganosiloxane compound layer of the molded body 6, and a base material layer ( A laminate 6 having a layer structure of PET film) -A layer (polyorganosiloxane compound layer into which argon was ion-implanted) -B layer (ITO film) was produced.
  • Example 7 n-propyltrimethoxysilane (Tokyo Kasei Kogyo) 3.29 g (20 mmol), 3-glycidoxypropyltrimethoxysilane (Tokyo Kasei Kogyo) 4.73 g (20 mmol), toluene 20 ml, distilled water 10 ml and 0.10 g (1 mmol) of phosphoric acid (manufactured by Kanto Chemical Co., Inc.) was mixed and reacted at room temperature for 24 hours. After completion of the reaction, a saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and 100 ml of ethyl acetate was added thereto for liquid separation, and the organic layer was separated.
  • phosphoric acid manufactured by Kanto Chemical Co., Inc.
  • the obtained polysilsesquioxane was dissolved in toluene, and the obtained solution (solid content concentration 2% by mass) was applied to the same PET film used in Example 1 using a Meyer bar. And cured by heating at 125 ° C. for 6 hours to obtain a molded article having a polysilsesquioxane layer having a thickness of 100 nm.
  • a compact 7 was produced by plasma-implanting nitrogen into the surface of the cured silsesquioxane layer in the same manner as in Example 1 using a plasma ion implantation apparatus.
  • the weight average molecular weight is a value in terms of polystyrene measured by a gel permeation chromatography (GPC) method.
  • the molded product before plasma ion implantation had a water vapor transmission rate of 12.1 (g / (m 2 ⁇ day)) and a total light transmittance of 89.10%.
  • an ITO film having a thickness of 50 nm was formed as a conductor layer on the polyorganosiloxane-based compound layer into which the molded body 7 was ion-implanted by a magnetron sputtering method.
  • a laminate 7 having a layer structure of PET film) -A layer (polyorganosiloxane compound layer into which nitrogen was ion-implanted) -B layer (ITO film) was produced.
  • Example 8 A molded body 8 was produced in the same manner as in Example 7 except that argon (Ar) was used as the plasma generating gas. Next, in the same manner as in Example 1, an ITO film having a thickness of 50 nm was formed as a conductor layer on the polyorganosiloxane-based compound layer into which the molded body 8 was ion-implanted by a magnetron sputtering method. A laminate 8 having a layer configuration of (PET film) -A layer (polyorganosiloxane compound layer into which argon was ion-implanted) -B layer (ITO film) was produced.
  • Example 9 7.94 g (40 mmol) of phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), 20 ml of toluene, 10 ml of distilled water and 0.10 g (1 mmol) of phosphoric acid (manufactured by Kanto Chemical Co., Ltd.) were mixed and reacted at room temperature for 24 hours. . After completion of the reaction, a saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and 100 ml of ethyl acetate was added thereto for liquid separation, and the organic layer was separated.
  • Example 2 a solution in which the obtained polysilsesquioxane was dissolved in toluene (solid content concentration: 2% by mass) was applied to the same PET film used in Example 1 using a Meyer bar at 125 ° C. It was cured by heating for 6 hours to obtain a molded product having a polysilsesquioxane layer having a thickness of 100 nm.
  • a molded body 9 was produced by plasma ion implantation of nitrogen into the surface of the cured polysilsesquioxane layer in the same manner as in Example 1 using a plasma ion implantation apparatus.
  • the molded product before plasma ion implantation had a water vapor transmission rate of 11.7 (g / (m 2 ⁇ day)) and a total light transmittance of 86.05%.
  • an ITO film having a thickness of 50 nm is formed as a conductor layer on the polyorganosiloxane compound layer into which the molded body 9 is ion-implanted by magnetron sputtering in the same manner as in Example 1.
  • a laminate 9 having a layer structure of (PET film) -A layer (polyorganosiloxane compound layer into which nitrogen was ion-implanted) -B layer (ITO film) was produced.
  • Example 10 A molded body 10 was produced in the same manner as in Example 9 except that argon (Ar) was used as the plasma generating gas. Next, in the same manner as in Example 1, an ITO film having a thickness of 50 nm was formed as a conductor layer on the polyorganosiloxane-based compound layer into which the molded body 10 was ion-implanted by a magnetron sputtering method. A laminate 10 having a layer configuration of PET film) -A layer (polyorganosiloxane compound layer into which argon was ion-implanted) -B layer (ITO film) was produced.
  • Example 11 A polyethylene terephthalate film (Made by Mitsubishi Plastics, “PET38T-300”, thickness 38 ⁇ m) (hereinafter referred to as “PET film”) is added to a polyorganosiloxane compound (Shin-Etsu Chemical Co., Ltd., polydimethylsiloxane as a main component). (KS835)), and the resulting coating film is heated at 120 ° C. for 2 minutes to contain a polydimethylsiloxane having a thickness of 100 nm (hereinafter referred to as “polyorganosiloxane compound layer”). ) was formed on a PET film. Next, argon was ion-implanted on the surface of the polyorganosiloxane compound layer using a plasma ion implantation apparatus.
  • -Plasma generation gas Argon-Duty ratio: 1% ⁇ Repetition frequency: 1000Hz ⁇ Applied voltage: -10kV -RF power supply: frequency 13.56 MHz, applied power 1000 W -Chamber internal pressure: 0.2 Pa ⁇ Pulse width: 5 ⁇ sec ⁇ Processing time: 5 minutes ⁇ Speed: 0.2 m / min
  • an ITO film having a thickness of 50 nm is formed as a conductor layer on the ion-implanted polyorganosiloxane compound layer by magnetron sputtering in the same manner as in Example 1, and the base layer (PET film)- A laminate 11 having a layer configuration of A layer (polyorganosiloxane compound layer into which argon was ion-implanted) -B layer (ITO film) was produced.
  • sputtering conditions are shown below.
  • -Plasma generation gas argon
  • oxygen-Gas flow rate argon 100 sccm
  • Power value 1500W -Chamber internal pressure: 0.2 Pa ⁇
  • Sputtering target ITO
  • Example 12 In Example 11, the substrate layer (PET film) -A layer (polyorganosiloxane in which nitrogen was ion-implanted) was used in the same manner as in Example 11 except that the plasma generating gas used for ion implantation was changed from argon to nitrogen. A laminate 12 having a layer structure of (system compound layer) -B layer (ITO film) was produced.
  • Example 13 A polyorganosiloxane compound layer was formed in the same manner as in Example 11 on the side of the laminate 11 produced in Example 11 on which the polyorganosiloxane compound layer was not formed. Ion implantation is carried out on the system compound layer, and layer A (polyorganosiloxane compound layer in which argon is ion-implanted) -base layer (PET film) -layer A (polyorganosiloxane compound layer in which argon is ion-implanted) A laminate 13 having a layer configuration of -B layer (ITO film) was produced.
  • Example 14 In Example 11, the same operation as in Example 11 was performed except that the sputtering target was aluminum and the plasma generation gas in sputtering was argon (100 sccm), and an aluminum film having a thickness of 50 nm was formed instead of the ITO film.
  • PET film base material layer
  • a layer polyorganosiloxane compound layer into which argon was plasma-implanted
  • B layer aluminum film
  • Example 15 In the same manner as in Example 11, a polyorganosiloxane compound layer was formed on a PET film, and argon was ion-implanted. A silicon nitride film having a thickness of 50 nm was formed as an inorganic compound layer on the polyorganosiloxane compound layer into which ions were implanted by magnetron sputtering. The sputtering conditions are shown below.
  • -Plasma generation gas argon, nitrogen-Gas flow rate: argon 100 sccm, nitrogen 60 sccm ⁇ Power value: 2500W -Chamber internal pressure: 0.2 Pa ⁇ Line speed: 0.2m / min ⁇ Sputtering target: Si
  • an ITO layer having a thickness of 50 nm was formed on the formed silicon nitride film surface by magnetron sputtering in the same manner as in Example 11, and a base layer (PET film) -A layer (argon was ion-implanted).
  • a laminate 15 having a layer structure of (polyorganosiloxane layer) -inorganic compound layer-B layer (ITO film) was produced.
  • Example 1 A molded body was produced in the same manner as in Example 1 except that ion implantation was not performed. That is, a layer containing polydimethylsiloxane was formed on the PET film to obtain a molded body 16.
  • An ITO film having a thickness of 50 nm is formed as a conductor layer by magnetron sputtering, and a laminate 16 having a layer structure of base material layer (PET film) -layer containing polydimethylsiloxane-B layer (ITO film) is produced. did.
  • Example 2 A laminate having a layer structure of a base material layer (PET film) -B layer (ITO film) in which an ITO film having a thickness of 50 nm is formed as a conductor layer on the PET film used in Example 11 by magnetron sputtering. 17 was produced.
  • the sputtering conditions were the same as in Example 11.
  • Example 11 (Comparative Example 3) In Example 11, instead of forming the polyorganosiloxane-based compound layer on the PET film, the same operation as in Example 11 was performed except that a silicon nitride film having a thickness of 50 nm was formed by magnetron sputtering. A laminate 18 having a layer configuration of (PET film) -inorganic compound layer (silicon nitride film) -B layer (ITO film) was produced. The sputtering conditions for forming the silicon nitride film are shown below.
  • -Plasma generation gas argon, nitrogen-Gas flow rate: argon 100 sccm, nitrogen 60 sccm ⁇ Power value: 2500W -Chamber internal pressure: 0.2 Pa ⁇ Line speed: 0.2m / min ⁇ Sputtering target: Si
  • FIGS. 4 to 14 show the analysis results of the presence ratios of oxygen atoms, carbon atoms and silicon atoms obtained by elemental analysis measurement by XPS of the molded bodies 1 to 10 and 16 of Examples 1 to 10 and Comparative Example 1.
  • the vertical axis represents the abundance ratio (%) of atoms when the total amount of oxygen atoms, carbon atoms, and silicon atoms is 100, and the horizontal axis represents the total sputtering time (Sputter Time, Minutes). Since the sputtering rate is constant, the sputtering accumulated time corresponds to the depth. 4 to 14, a is an abundance ratio of carbon atoms, b is an abundance ratio of oxygen atoms, and c is an abundance ratio of silicon atoms.
  • Oxygen in the surface layer portion of the gas barrier layer region in which the presence of oxygen atoms gradually decreases and the proportion of carbon atoms increases gradually from the surface toward the depth direction
  • Table 1 shows the results of measuring the abundance ratio of atoms, carbon atoms and silicon atoms, and the peak positions of the binding energy of the 2p electron orbit of silicon atoms.
  • the gas barrier layers in the molded bodies of Examples 1 to 10 have the surfaces into which the plasma ions have been implanted, and the measured values obtained by the above method on the surfaces into which the plasma ions have been implanted are oxygen atoms, carbon
  • the abundance ratio of atoms and silicon atoms, and the peak position of the binding energy of the 2p electron orbit of silicon atoms are a value calculated from the peak area of each atom, with the total value of peak areas of oxygen atoms, carbon atoms, and silicon atoms obtained by measurement being 100%.
  • the peak position of the binding energy of the 2p electron orbit of the silicon atoms on the gas barrier layer surfaces of the compacts 1 to 10 was 102.9 eV to 103.3 eV.
  • FIG. 15 shows the result of measuring the binding energy of the 2p electron orbit of the silicon atom by XPS analysis for the molded body 2 produced in Example 2.
  • the vertical axis represents peak intensity
  • the horizontal axis represents binding energy (eV).
  • the peak position of the binding energy (B) of the 2p electron orbit of the silicon atom of the compact 2 was 103.3 eV.
  • the peak position of the binding energy of the 2p electron orbit of the silicon atom of the compact 2 was 101.5 ev before ion implantation (A, corresponding to Comparative Example 1), but after ion implantation, 103. It was confirmed that it shifted to 3 eV and higher energy side.
  • the laminates of Examples 1 to 15 were excellent in gas barrier properties (small value of water vapor permeability) and excellent in transparency (excluding laminate 14).
  • the conductor layers of the laminates of Examples 1 to 15 had a smooth surface and excellent conductivity.
  • SYMBOLS 1 Film-like laminated body, 2a, 2b ... Rotation can, 3a, 3b ... Unwinding roll, 4 ... Electrode for plasma discharge, 5a, 5b ... Winding roll, 6a, 6b ... Feeding roll, 7 ... Pulse power supply , 8 ... Target, 9 ... High voltage pulse, 10a, 10b ... Gas inlet, 11a, 11b ... Chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明は、少なくとも、酸素原子、炭素原子及びケイ素原子を含む材料から構成されてなるガスバリア層と、導電体層を有する積層体であって、前記ガスバリア層の表面から深さ方向に向かって、該ガスバリア層中における酸素原子の存在割合が漸次減少し、炭素原子の存在割合が漸次増加していることを特徴とする積層体、その製造方法、この積層体からなる電子デバイス用部材、並びに、前記電子デバイス用部材を備える電子デバイスである。本発明によれば、優れたガスバリア性及び層間密着性を有し、表面平滑性が高い導電体層を有する積層体が提供される。本発明の積層体は、フレキシブル化及び軽量化が可能なので、有機EL等のディスプレイ、太陽電池等の電子デバイス用部材として好適に用いることができる。さらに、ロールトゥロールでの大量製造が可能なため、低コスト化を実現できる。

Description

積層体、その製造方法、電子デバイス用部材及び電子デバイス
 本発明は、優れたガスバリア性を有し、かつ、層間密着性に優れる、ガスバリア層及び導電体層を有する積層体及びその製造方法、この積層体からなる電子デバイス用部材、並びにこの電子デバイス用部材を備える電子デバイスに関する。
 近年、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等のディスプレイには、薄型化、軽量化、フレキシブル化等を実現するために、電極を有する基板として、ガラス板に代えて透明プラスチックフィルムを用いることが検討されている。
 しかし、プラスチックフィルムは、ガラス板に比べて水蒸気や酸素等を透過しやすいため、ディスプレイ内部の素子の劣化を起こしやすく、また、表面平滑性が低いという問題があった。
 この問題を解決すべく、特許文献1,2等において、プラスチック基材上に、表面平滑層と無機バリア層とが積層され、最外層に導電性電極層が形成された導電性電極基材が提案されている。
 しかしながら、これらの文献に記載された導電性電極基材のガスバリア性能は十分に満足できるものとはいえず、さらなる改良が求められている。また、表面平滑層と無機バリア層、これらの層と電極(導電性電極層)との密着性に欠けるため、各層の間に密着性を向上させるための機能性薄膜を設けなくてはならない場合があり、製造工程が煩雑となる上に、薄膜化、軽量化、フレキシブル化に反するという問題があった。
 本発明に関連して、特許文献3には、プラスチックフィルムの一面に、プラズマソースとして希ガス、水素、窒素、アンモニアガスのうち少なくとも一種類のガスを用いたプラズマイオン注入法によって形成されたイオン注入層上に、ガスバリア層及び透明電極層を形成してなる透明導電性ガスバリアフィルムが記載されている。
特開2003-154596号公報 特開2006-264118号公報 特開2008-270115号公報
 本発明は、上記した従来技術に鑑みてなされたものであり、その目的は、優れたガスバリア性を有し、かつ、層間密着性に優れる、ガスバリア層及び導電体層を有する積層体、その製造方法、前記積層体からなる電子デバイス用部材、及びこの電子デバイス用部材を備える電子デバイスを提供することである。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、少なくとも、酸素原子、炭素原子、及びケイ素原子を含む材料からなり、表面から深さ方向に向かって、酸素原子の存在割合が漸次減少し、炭素原子の存在割合が漸次増加する層(ガスバリア層)と、導電体層を有する積層体は、優れた、ガスバリア性及び層間密着性を有することを見出した。
 また、本発明者らは、ポリオルガノシロキサン系化合物を含む層を表面部に有する成形物の、前記ポリオルガノシロキサン系化合物を含む層の表面部にイオンを注入することにより、前記ガスバリア層を簡便かつ効率よく形成できることを見出し、これらの知見に基づいて、本発明を完成するに至った。
 かくして本発明の第1によれば、下記(1)~(7)の積層体が提供される。
(1)少なくとも、酸素原子、炭素原子及びケイ素原子を含む材料から構成されてなるガスバリア層と、導電体層を有する積層体であって、前記ガスバリア層の表面から深さ方向に向かって、該ガスバリア層中における酸素原子の存在割合が漸次減少し、炭素原子の存在割合が漸次増加していることを特徴とする積層体。
(2)前記ガスバリア層の表層部における、酸素原子、炭素原子及びケイ素原子の存在量全体に対する、酸素原子の存在割合が10~70%、炭素原子の存在割合が10~70%、ケイ素原子の存在割合が5~35%であることを特徴とする(1)に記載の積層体。
(3)前記ガスバリア層が、該ガスバリア層の表層部におけるX線光電子分光(XPS)測定において、ケイ素原子の2p電子軌道の結合エネルギーのピーク位置が102~104eVであることを特徴とする(1)に記載の積層体。
(4)さらに、無機化合物層を有する(1)に記載の積層体。
(5)前記ガスバリア層が、ポリオルガノシロキサン系化合物を含む層に、イオンが注入されて得られた層であることを特徴とする(1)に記載の積層体。
(6)前記イオンが、窒素、酸素、アルゴン、ヘリウムからなる群から選ばれる少なくとも一種のガスがイオン化されたものであることを特徴とする(5)に記載の積層体。
(7)前記ポリオルガノシロキサン系化合物が、下記に示す(a)又は(b)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(式中、Rx、Ryは、それぞれ独立して、水素原子、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基等の非加水分解性基を表す。なお、式(a)の複数のRx、式(b)の複数のRyは、それぞれ同一でも相異なっていてもよい。ただし、前記式(a)のRxが2つとも水素原子であることはない。)
で表される繰り返し単位を有するポリオルガノシロキサンであることを特徴とする(5)に記載の積層体。
 本発明の第2によれば、(8)~(11)に記載の積層体の製造方法が提供される。
(8)ガスバリア層と導電体層を有する積層体の製造方法であって、前記ガスバリア層を、ポリオルガノシロキサン系化合物を含む層を表面部に有する成形物の、前記ポリオルガノシロキサン系化合物を含む層にイオンを注入することにより形成する工程(I)を有する積層体の製造方法。
(9)前記工程(I)が、窒素、酸素、アルゴン及びヘリウムからなる群から選ばれる少なくとも一種のガスをイオン化して注入する工程であることを特徴とする(8)に記載の積層体の製造方法。
(10)前記工程(I)が、プラズマイオン注入であることを特徴とする(8)に記載の製造方法。
(11)前記工程(I)が、ポリオルガノシロキサン系化合物を含む層を表面部に有する長尺状の成形物を一定方向に搬送しながら、前記ポリオルガノシロキサン系化合物を含む層にイオンを注入する工程であることを特徴とする(8)に記載の製造方法。
 本発明の第3によれば、下記(12)に記載の電子デバイス用部材が提供される。
(12)前記(1)~(7)のいずれかに記載の積層体からなる電子デバイス用部材。
 本発明の第4によれば、下記(13)に記載の電子デバイスが提供される。
(13)前記(12)に記載の電子デバイス用部材を備える電子デバイス。
 本発明の積層体は、優れたガスバリア性及び層間密着性(ガスバリア層と導電体層の間の密着性)を有する。
 また、本発明の積層体の導電体層は、高い表面平滑性を有する。
 本発明の製造方法によれば、本発明の積層体を効率よく製造することができる。
 本発明の積層体は、フレキシブル化及び軽量化が可能なので、有機EL等のディスプレイ、太陽電池等の電子デバイス用部材として好適に用いることができる。さらに、ロールトゥロールでの大量製造が可能なため、低コスト化を実現できる。
 本発明の電子デバイス用部材は、本発明の積層体からなるため、優れたガスバリア性、層間密着性等を有するので、ディスプレイ、太陽電池等の電子デバイスに好適に用いることができる。
本発明の積層体の積層構造を示す図である。 本発明に使用するプラズマイオン注入装置の概略構成を示す図である。 本発明に使用するスパッタ装置の概略構成を示す図である。 実施例1の成形体1のガスバリア層における、酸素原子、炭素原子及びケイ素原子の存在割合(%)を表す図である。 実施例2の成形体2のガスバリア層における、酸素原子、炭素原子及びケイ素原子の存在割合(%)を表す図である。 実施例3の成形体3のガスバリア層における、酸素原子、炭素原子及びケイ素原子の存在割合(%)を表す図である。 実施例4の成形体4のガスバリア層における、酸素原子、炭素原子及びケイ素原子の存在割合(%)を表す図である。 実施例5の成形体5のガスバリア層における、酸素原子、炭素原子及びケイ素原子の存在割合(%)を表す図である。 実施例6の成形体6のガスバリア層における、酸素原子、炭素原子及びケイ素原子の存在割合(%)を表す図である。 実施例7の成形体7のガスバリア層における、酸素原子、炭素原子及びケイ素原子の存在割合(%)を表す図である。 実施例8の成形体8のガスバリア層における、酸素原子、炭素原子及びケイ素原子の存在割合(%)を表す図である。 実施例9の成形体9のガスバリア層における、酸素原子、炭素原子及びケイ素原子の存在割合(%)を表す図である。 実施例10の成形体10のガスバリア層における、酸素原子、炭素原子及びケイ素原子の存在割合(%)を表す図である。 比較例1の成形体19のガスバリア層における、酸素原子、炭素原子及びケイ素原子の存在割合(%)を表す図である。 実施例2の成形体2のガスバリア層のXPS分析における、ケイ素原子の2p電子軌道の結合エネルギー分布を表す図である。
 以下、本発明を、1)積層体及びその製造方法、2)電子デバイス用部材、並びに、3)電子デバイスに項分けして詳細に説明する。
1)積層体及びその製造方法
 本発明の積層体は、少なくとも、酸素原子、炭素原子及びケイ素原子を含む材料から構成されてなるガスバリア層と、導電体層を有する積層体であって、前記ガスバリア層の表面から深さ方向に向かって、該ガスバリア層中における酸素原子の存在割合が漸次減少し、炭素原子の存在割合が漸次増加していることを特徴とする。なお、「ガスバリア層の表面」には、ガスバリア層において、導電体層等の他の層との界面も含むものとする。
(ガスバリア層)
 本発明の積層体のガスバリア層(以下、「A層」ということがある。)は、少なくとも、酸素原子、炭素原子及びケイ素原子を含む材料から構成されてなり、かつ、層の表面から深さ方向に向かって、層中における酸素原子の存在割合が漸次減少し、炭素原子の存在割合が漸次増加していることを特徴とする。
 前記少なくとも、酸素原子、炭素原子及びケイ素原子を含む材料は、少なくとも、酸素原子、炭素原子及びケイ素原子を含む高分子であれば、特に制約はないが、より優れたガスバリア性を発揮する観点から、前記ガスバリア層の表層部における酸素原子、炭素原子及びケイ素原子の存在量全体に対する(すなわち、酸素原子、炭素原子及びケイ素原子の存在量の合計を100%とした場合の)酸素原子の存在割合が10~70%、炭素原子の存在割合が10~70%、ケイ素原子の存在割合が5~35%であるものが好ましく、酸素原子の存在割合が15~65%、炭素原子の存在割合が15~65%、ケイ素原子の存在割合が10~30%であるものがより好ましい。酸素原子、炭素原子及びケイ素原子の存在割合の測定は、実施例において説明する方法で行う。
 表面から深さ方向に向かって、酸素原子の存在割合が漸次減少し、炭素原子の存在割合が漸次増加する領域は、ガスバリア層に相当する領域であり、厚さは、通常、5~100nm、好ましくは10~50nmである。このようなガスバリア層としては、例えば、後述するように、ポリオルガノシロキサン系化合物を含む層にイオンが注入されて得られる層(以下、「注入層」ということがある。)や、ポリオルガノシロキサン系化合物を含む層にプラズマ処理が施されて得られる層が挙げられる。
 また、前記ガスバリア層は、ガスバリア層の表層部におけるX線光電子分光(XPS)測定において、ケイ素原子の2p電子軌道の結合エネルギーのピーク位置が102~104eVであるものが好ましい。
 例えば、ポリジメチルシロキサンの層は、X線光電子分光(XPS)測定において、ケイ素原子の2p電子軌道の結合エネルギーのピーク位置が約101.5eVであるのに対し、このポリジメチルシロキサンの層にアルゴンをイオン注入して得られたイオン注入層(ガスバリア層)は、表層部におけるX線光電子分光(XPS)測定において、ケイ素原子の2p電子軌道の結合エネルギーのピーク位置が約103eVとなる。この値は、ガラスや二酸化ケイ素膜などのような、従来公知のガスバリア性を有するケイ素含有高分子に含まれるケイ素原子の2p電子軌道の結合エネルギーのピーク位置とほぼ同程度である(X線光電子分光(XPS)測定におけるケイ素原子の2p電子軌道の結合エネルギーのピーク位置は、ガラスの場合約102.5eVであり、二酸化ケイ素膜の場合約103eVである。)。このことから、ガスバリア層の表層部におけるケイ素原子の2p電子軌道の結合エネルギーのピーク位置が102~104eVである本発明の積層体は、ガラスや二酸化ケイ素膜と同一又は類似の構造を有しているので、ガスバリア性能に優れていると推測される。なお、ケイ素原子の2p電子軌道の結合エネルギーのピーク位置の測定は、実施例において説明する方法で行う。
 本発明の積層体のガスバリア層は、厚みが30nmから200μmであるポリオルガノシロキサン系化合物を含む層の表面部に形成され、該ガスバリア層の深さが5nmから100nmであることが好ましく、30nmから50nmであることがより好ましい。
 また、本発明の積層体は、ガスバリア層と導電体層を有する積層体であって、前記ガスバリア層が、ポリオルガノシロキサン系化合物を含む層を表面部に有する成形物の、前記ポリオルガノシロキサン系化合物を含む層にイオンを注入することにより形成する工程(I)により得られる層であってもよい。
 ポリオルガノシロキサン系化合物を含む層にイオンを注入することによって、少なくとも、酸素原子、炭素原子及びケイ素原子を含む材料から構成されてなり、層表面から深さ方向に向かって、層中における酸素原子の存在割合が漸次減少し、炭素原子の存在割合が漸次増加している構造を有するガスバリア層を容易に形成することができる。
 本発明の積層体において用いるポリオルガノシロキサン系化合物の主鎖構造に制限はなく、直鎖状、ラダー状、籠状のいずれであってもよい。
 例えば、前記直鎖状の主鎖構造としては下記式(a)で表される構造が、ラダー状の主鎖構造としては下記式(b)で表される構造がそれぞれ挙げられ、籠状の主鎖構造としては下記式(c)で表される構造が例示される。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 式中、Rx、Ry、Rzは、それぞれ独立して、水素原子、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基等の非加水分解性基を表す。なお、式(a)の複数のRx、式(b)の複数のRy、及び式(c)の複数のRzは、それぞれ同一でも相異なっていてもよい。ただし、前記式(a)のRxが2つとも水素原子であることはない。
 無置換若しくは置換基を有するアルキル基のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、n-ヘプチル基、n-オクチル基等の炭素数1~10のアルキル基が挙げられる。
 アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等の炭素数2~10のアルケニル基が挙げられる。
 前記アルキル基及びアルケニル基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
 無置換又は置換基を有するアリール基のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~10のアリール基が挙げられる。
 前記アリール基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基;ニトロ基;シアノ基;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
 これらの中でも、Rx、Ry、Rzとしては、それぞれ独立して、無置換もしくは置換基を有する、炭素数1~6のアルキル基、又はフェニル基が好ましく、メチル基、エチル基、プロピル基、3-グリシドキシプロピル基、又はフェニル基が特に好ましい。
 本発明において、ポリオルガノシロキサン系化合物としては、前記式(a)で表される直鎖状の化合物、又は前記式(b)で表されるラダー状の化合物が好ましく、入手容易性、及び優れたガスバリア性を有する注入層を形成できる観点から、前記式(a)において2つのRxが、メチル基又はフェニル基である直鎖状の化合物、前記式(b)において2つのRyが、メチル基、プロピル基、3-グリシドキシプロピル基又はフェニル基であるラダー状の化合物が特に好ましい。
 ポリオルガノシロキサン系化合物は、加水分解性官能基を有するシラン化合物を重縮合する、公知の製造方法により得ることができる。
 用いるシラン化合物は、目的とするポリオルガノシロキサン系化合物の構造に応じて適宜選択すればよい。好ましい具体例としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン等の2官能シラン化合物;メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-ブチルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルジエトキシメトキシシラン等の3官能シラン化合物;テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン、テトラs-ブトキシシラン、メトキシトリエトキシシラン、ジメトキシジエトキシシラン、トリメトキシエトキシシラン等の4官能シラン化合物等が挙げられる。
 また、ポリオルガノシロキサン系化合物は、剥離剤、接着剤、シーラント、塗料等として市販されている市販品をそのまま使用することもできる。
 ポリオルガノシロキサン系化合物を含む層は、ポリオルガノシロキサン系化合物の他に、本発明の目的を阻害しない範囲で他の成分を含んでいてもよい。他の成分としては、硬化剤、他の高分子、老化防止剤、光安定剤、難燃剤等が挙げられる。
 なお、ポリオルガノシロキサン系化合物を含む層中の、ポリオルガノシロキサン系化合物の含有量は、優れたガスバリア性を有する注入層を形成できる観点から、50重量%以上であるのが好ましく、70重量%以上であるのがより好ましく、90重量%以上であるのが特に好ましい。
 ポリオルガノシロキサン系化合物を含む層を形成する方法としては、特に制約はなく、例えば、ポリオルガノシロキサン系化合物の少なくとも一種、所望により他の成分、及び溶剤等を含有する層形成用溶液を、適当な基材の上に塗布し、得られた塗膜を乾燥し、必要に応じて加熱等して形成する方法が挙げられる。
 形成されるポリオルガノシロキサン系化合物を含む層の厚みは、特に制限されないが、通常30nmから200μm、好ましくは50nmから100μmである。
 前記注入層は、ポリオルガノシロキサン系化合物を含む層にイオンが注入されてなるものである。
 イオンの注入量は、形成する積層体の使用目的(必要なガスバリア性、透明性等)等に合わせて適宜決定すればよい。
 注入されるイオンとしては、アルゴン、ヘリウム、ネオン、クリプトン、キセノンなどの希ガス;、フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;金、銀、銅、白金、ニッケル、パラジウム、クロム、チタン、モリブデン、ニオブ、タンタル、タングステン、アルミニウム等の導電性の金属のイオン;等が挙げられる。
 なかでも、より簡便に注入することができ、特に優れたガスバリア性と透明性を有する注入層が得られることから、水素、酸素、窒素、希ガス及びフルオロカーボンからなる群から選ばれる少なくとも一種のイオンが好ましく、窒素、酸素、アルゴン又はヘリウムのイオンが特に好ましい。
 イオンを注入する方法は特に限定されず、例えば、ポリオルガノシロキサン系化合物を含む層を形成した後、該ポリオルガノシロキサン系化合物を含む層にイオンを注入する方法等が挙げられる。
 イオン注入法としては、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法等が挙げられる。なかでも、本発明においては、簡便にガスバリア性を有する積層体が得られることから、後者のプラズマイオン注入する方法が好ましい。
 プラズマイオン注入は、例えば、希ガス等のプラズマ生成ガスを含む雰囲気下でプラズマを発生させ、ポリオルガノシロキサン系化合物を含む層に負の高電圧パルスを印加することにより、該プラズマ中のイオン(陽イオン)をポリオルガノシロキサン系化合物を含む層の表面部に注入して行うことができる。
 イオンが注入されたことは、X線光電子分光(XPS)分析を用いて、ガスバリア層表層部の元素分析測定を行うことによって確認することができる。
(導電体層)
 本発明の積層体は、さらに導電体層(以下「B層」ということがある。)を有する。
 B層を構成する材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物等が挙げられる。具体的には、アンチモンをドープした酸化スズ(ATO);フッ素をドープした酸化スズ(FTO);酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、クロム、ニッケル等の金属;これら金属と導電性金属酸化物との混合物;ヨウ化銅、硫化銅等の無機導電性物質;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料;等が挙げられる。B層は、これらの材料からなる層が複数積層されてなる積層体であってもよい。
 また、B層は透明であっても透明でなくてもよいが、B層が透明である場合には、透明性に優れた積層体を得ることができる。透明性の点からは、B層を形成する材料として導電性金属酸化物が好ましく、ITOが特に好ましい。
 B層の形成方法としては、例えば、蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等が挙げられる。これらの中でも、本発明においては、簡便にB層が形成できることから、スパッタリング法が好ましい。
 スパッタリング法は、真空槽内に放電ガス(アルゴン等)を導入し、ターゲットと基材板(本発明においてはA層)との間に高周波電圧あるいは直流電圧を加えて放電ガスをプラズマ化し、該プラズマをターゲットに衝突させることでターゲット材料を飛ばし、基板に付着させて薄膜を得る方法である。ターゲットとしては、前記B層を形成する材料からなるものが使用される。
 導電体層の厚さはその用途等に応じて適宜選択すればよい。通常10nm~50μm、好ましくは20nm~20μmである。
 得られる導電体層の表面抵抗率は、通常1000Ω/□以下である。
 形成された導電体層には、必要に応じてパターニングを行ってもよい。パターニングする方法としては、フォトリソグラフィー等による化学的エッチング、レーザ等を用いた物理的エッチング等、マスクを用いた真空蒸着法やスパッタリング法、リフトオフ法、印刷法等が挙げられる。
(積層体)
 本発明の積層体は、前記A層とB層を有するものであれば、A層、B層のみからなるものであっても、他の層を含むものであってもよい。他の層は、単層でも、同種又は異種の2層以上であってもよい。
 他の層としては、基材層や無機化合物層等が挙げられる。
 本発明の積層体は、製造容易性、取り扱い容易性等から、基材層を含むのが好ましい。
 基材層を構成する材料としては、前記高分子化合物を含有する層を形成する場合に用いる基材の材料として例示したのと同様のものが挙げられる。本発明の積層体が基材層を含む場合、基材上にA層を設けることにより、基材層表面よりも表面平滑性に優れるA層を介してB層を形成することができるので、B層表面の平滑性も向上する。
 本発明の積層体は、さらに無機化合物層を有していてもよい。
 無機化合物層は、無機化合物の一種又は二種以上からなる層で、ガスバリア性を有するものである。
 無機化合物層を構成する無機化合物としては、一般的に真空成膜可能で、ガスバリア性を有するもの、例えば酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化インジウム、酸化カルシウム、酸化ジルコニウム、酸化チタン、酸化ホウ素、酸化ハフニウム、酸化バリウム等の無機酸化物;窒化ケイ素、窒化アルミニウム、窒化ホウ素、窒化マグネシウム等の無機窒化物;炭化珪素等の無機炭化物;無機硫化物;これらの複合体;等が挙げられる。これらの複合体としては、無機酸化窒化物、無機酸化炭化物、無機窒化炭化物、無機酸化窒化炭化物等が挙げられる。
 本発明においては、これらの中でも、無機酸化物、無機窒化物、無機酸化窒化物、無機窒化炭化物、無機酸化窒化炭化物が好ましく、無機窒化物がより好ましい。
 無機窒化物としては、一般式:MNyで表される金属窒化物が挙げられる。式中、Mは金属元素を表し、yは0.1~1.3の範囲の値である。
 これらの中でも、透明性等に優れることから、Mがケイ素(Si)、アルミニウム(Al)、チタン(Ti)、スズ(Sn)である窒化物が好ましく、Mがケイ素である窒化物がより好ましい。なお、yの値としては、Mがケイ素(Si)であればy=0.1~1.3、アルミニウム(Al)であればy=0.1~1.1、チタン(Ti)であればy=0.1~1.3、スズ(Sn)であればy=0.1~1.3の範囲のものが好ましい。
 無機化合物層の形成方法としては特に制限はなく、例えば、蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等が挙げられ、スパッタリング法が好ましく、マグネトロンスパッタリング法がより好ましい。
 無機化合物層の厚みは、通常10nm~1000nm、好ましくは20~500nm、より好ましくは20~100nmの範囲である。
 本発明の積層体は、前記A層とB層が、直接積層されてなる積層体であるのが好ましい。ここで「直接積層され」とは、A層の表面側とB層が他の層を介さずに直接積層されることを意味する。前記A層とB層が直接積層されてなる積層体は、ガスバリア性及び層間密着性に優れる。
 また、本発明の積層体が無機化合物層を有する場合、無機化合物層の配置位置は特に限定されないが、優れた密着性とガスバリア性を有する積層体が得られる観点から、A層とB層の間に設けるのが好ましい。
 本発明の積層体の好ましい層構成の例を図1に示す。ただし、本発明の積層体はこれらに限定されるものではない。
 図1中、Sは基材層を表し、A1、A2はそれぞれA層を表し、B1、B2はそれぞれB層を表し、Cは無機化合物層を表す。
 図1(a)はA層-B層からなる2層の積層体を、図1(b)は基材層-A層-B層からなる3層の積層体を、図1(c)はA層-基材層-A層-B層からなる4層の積層体を、図1(d)はB層-A層-基材層-A層-B層からなる5層の積層体を、図1(e)は基材層-A層-無機化合物層-B層からなる4層の積層体を、図1(f)はA層-基材層-A層-無機化合物層-B層からなる5層の積層体を示す。
 本発明の積層体の全体の厚みは、特に制限されず、目的とする電子デバイスの用途によって適宜決定することができる。
〈積層体の製造〉
 本発明の積層体の製造方法は特に限定されない。例えば、基材にA層を形成し、その上にB層を形成する方法等が挙げられる。この方法によれば、長尺のフィルム状の積層体を連続的に製造することが可能であり好ましい。
 例えば、A層がポリオルガノシロキサン系化合物を含有する層から得られるガスバリア層である積層体は、以下のようにして製造することができる。
 先ず、基材層となる、長尺状の基材フィルムの一方の面側にポリオルガノシロキサン系化合物を含有する層を形成する。例えば、長尺状の基材フィルムを一定方向に搬送しながら、該基材フィルムの一面に、ポリオルガノシロキサン系化合物の少なくとも一種、所望により他の成分、及び溶剤等を含有する層形成用溶液を塗工装置により塗布し、得られた塗膜を乾燥し、必要に応じて加熱等することにより形成することができる。塗工装置としては、ナイフコーター、グラビアコーター等の公知の装置を使用することができる。
 次に、該高分子層に、前記(γ)のプラズマイオン注入装置を用いてプラズマイオン注入する。
 図2は、前記プラズマイオン注入装置を備える連続的プラズマイオン注入装置の概要を示す図である。
 図2(a)において、11aはチャンバー、20aはターボ分子ポンプ、3aはイオン注入される前のフィルム1aを送り出す巻き出しロール、5aはイオン注入された積層フィルム1bをロール状に巻き取る巻取りロール、2aは高電圧印加回転キャン、10aはガス導入口、7は高電圧パルス電源、4はプラズマ放電用電極(外部電界)である。図2(b)は、前記高電圧印加回転キャン2aの斜視図であり、15は高電圧導入端子(フィードスルー)である。
 図2に示す連続的プラズマイオン注入装置においては、フィルム1aは、チャンバー11a内において、巻き出しロール3aから図2中矢印X方向に搬送され、高電圧印加回転キャン2aを通過して、巻取りロール5aに巻き取られる。フィルム1aの巻取りの方法や、フィルム1aを搬送する方法等は特に制約はないが、本実施形態においては、高電圧印加回転キャン2aを一定速度で回転させることにより、フィルム1aの搬送を行っている。また、高電圧印加回転キャン2aの回転は、高電圧導入端子15の中心軸13をモーターにより回転させることにより行われる。
 高電圧導入端子15、及びフィルム1aが接触する複数の送り出し用ロール6a等は絶縁体からなり、例えば、アルミナの表面をポリテトラフルオロエチレン等の樹脂で被覆して形成されている。また、高電圧印加回転キャン2aは導体からなり、例えば、ステンレス等で形成することができる。
 フィルム1aの搬送速度は適宜設定できる。フィルム1aが巻き出しロール3aから搬送され、巻取りロール5aに巻き取られるまでの間にフィルム1aの表面部にイオン注入され、所望のイオン注入層が形成されるだけの時間が確保される速度であれば、特に制約されない。フィルム1bの巻取り速度(ライン速度)は、印加電圧、装置規模等にもよるが、通常0.1~2m/min、好ましくは0.2~0.7m/minである。
 まず、チャンバー11a内をロータリーポンプに接続されたターボ分子ポンプ20aにより排気して減圧とする。減圧度は、通常1×10-4Pa~1Pa、好ましくは1×10-3Pa~1×10-2Paである。
 次に、ガス導入口10aよりチャンバー11a内に、イオン注入用のガス(以下、「イオン注入用ガス」ということがある。)を導入して、チャンバー11a内を減圧イオン注入用ガス雰囲気とする。なお、イオン注入用ガスはプラズマ生成ガスでもある。
 次いで、プラズマ放電用電極4(外部電界)によりプラズマを発生させる。プラズマを発生させる方法としては、マイクロ波やRF等の高周波電力源等による公知の方法が挙げられる。
 一方、高電圧導入端子15を介して高電圧印加回転キャン2aに接続されている高電圧パルス電源7により、負の高電圧パルス9が印加される。高電圧印加回転キャン2aに負の高電圧パルスが印加されると、プラズマ中のイオンが誘因され、高電圧印加回転キャン2aの周囲のフィルム1aの表面に注入される(図2(a)中、矢印Y)。その結果、基材層上にA層が形成された積層フィルム1bが得られる。
 次に、得られた積層フィルム1bのA層(イオン注入層が形成された面)上に、スパッタリング法によりB層を形成する。
 B層は、例えば、図3に示す連続的スパッタ装置を使用して形成することができる。
 図3に示す連続的スパッタ装置において、11bはチャンバー、20bはターボ分子ポンプ、3bは積層フィルム1bを送り出す巻き出しロール、5bはB層が形成されたフィルム1cをロール状に巻き取る巻取りロール、6bは送り出し用ロール、10bはガス導入口である。2bは回転キャンであり、8はスパッタリングターゲットである。
 積層フィルム1bは、回転キャン2bを回転させることによって巻き出しロール3bから図3中矢印X方向に搬送され、巻取りロール5bに巻き取られる。
 まず、図2に示すプラズマイオン注入装置と同様にして、チャンバー11b内に、A層上にB層が形成されるようにフィルム1bを設置し、チャンバー11b内をロータリーポンプに接続されているターボ分子ポンプ20bにより排気して減圧とする。
 そこへ、ガス導入口10bよりチャンバー11b内に、例えばアルゴン及び酸素ガスを導入しながらターゲットに高周波電力を印加してプラズマ放電させる。すると、アルゴン及び酸素ガスがイオン化してターゲットに衝突する。その衝撃でターゲットを構成しているITO等がスパッタ粒子として飛び出し、積層フィルム1bのA層の表面に堆積する。
 以上のようにして、積層フィルム1bのA層上にB層が形成された積層フィルム1c(本発明の積層体)を得ることができる。
 また、A層上に無機化合物層を有し、更にその上にB層を有する積層体は、上記と同様にして得られる積層フィルム1bのA層(イオン注入層が形成された面)上に、例えば、マグネトロンスパッタ装置を使用して無機化合物層を形成した後、形成した無機化合物層上に、前記と同様にしてB層を形成することにより、得ることができる。
 この場合においても、積層フィルム1bが長尺である場合には、該積層フィルム1bを一定方向に搬送しながら、マグネトロンスパッタ装置を使用して無機化合物層を連続的に形成し、さらに、無機化合物層付積層フィルムを一定方向に搬送しながら、該無機化合物層の表面に、前記と同様にしてB層を連続的に形成することができる。
 このような本発明の積層体の製造方法によれば、前記(1)~(7)の積層体を容易に製造することができる。
 以上のようにして得られる本発明の積層体は、優れたガスバリア性及び密着性を有する。本発明の積層体が優れたガスバリア性を有していることは、本発明の積層体の水蒸気等のガスの透過率が小さいことから確認することができる。本発明の積層体の水蒸気透過率は、1.0g/(m・day)以下が好ましく、0.6g/(m・day)以下がより好ましく、0.1g/(m・day)以下がさらに好ましい。積層体の水蒸気等の透過率は、公知のガス透過率測定装置を使用して測定することができる。
 本発明の積層体が層間密着性に優れることは、例えば、JIS-H8504に準じた粘着性テープを貼り付け引き剥がす試験を行い、その評価が良好であることから確認することができる。
 本発明の積層体の導電体層は表面平滑性に優れる。本発明の積層体の導電体層の表面粗さ(Ra)は、通常2.0nm以下、好ましくは1.5nm以下、より好ましくは0.5nm以下である。導電体層の表面粗さは、原子間力顕微鏡(AFM)を使用して測定することができる。
2)電子デバイス用部材及び電子デバイス
 本発明の電子デバイス用部材は、本発明の積層体からなることを特徴とする。従って、本発明の電子デバイス用部材は、導電性を有し、優れたガスバリア性及び層間密着性を有し、フレキシブルであり、さらに透明性を有する部材とすること及び軽量化が可能なので、液晶ディスプレイ、ELディスプレイ等のディスプレイや太陽電池等の部材、例えば電極基板として好適である。
 本発明の電子デバイスは、本発明の電子デバイス用部材を備える。具体例としては、液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー、太陽電池等が挙げられる。
 本発明の電子デバイスは、本発明の積層体からなる電子デバイス用部材を備えているので、優れたガスバリア性を有する。
 以下、実施例を挙げて本発明をさらに詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。
 用いたプラズマイオン注入装置、X線光電子分光測定装置(XPS)と測定条件、導電体層の表面粗さ(Ra)の測定方法、成型体の水蒸気透過率を測定するための水蒸気透過率測定装置と測定条件、導電体層の表面抵抗率の測定装置、可視光透過率測定装置及び密着性試験の方法は以下の通りである。なお、用いたプラズマイオン注入装置は外部電界を用いてイオン注入する装置である。
(プラズマイオン注入装置)
RF電源:型番号「RF56000」、日本電子社製
高電圧パルス電源:「PV-3-HSHV-0835」、栗田製作所社製
(X線光電子分光測定装置)
測定装置:「PHI Quantera SXM」アルバックファイ社製
X線ビーム径:100μm
電力値:25W
電圧:15kV
取り出し角度:45°
 この測定条件にて、下記の測定を行った。
 酸素原子、炭素原子及びケイ素原子の存在割合、並びにケイ素原子の2p電子軌道の結合エネルギーのピーク位置の測定
 実施例1~15で得られた成形体のプラズマイオン注入された面、及び比較例1の成形体のポリジメチルシロキサンを含む層の表面の、酸素原子、炭素原子及びケイ素原子の存在割合、並びにケイ素原子の2p電子軌道の結合エネルギーのピーク位置を測定した。その後、それぞれの成形体につき、プラズマイオン注入された面(実施例1~15)、ポリジメチルシロキサンを含む層の表面(比較例1)から深さ方向に向かって、アルゴンガスを用いてスパッタリングを行い、スパッタリングにより露出した表面における存在割合を測定する操作を繰り返すことにより深さ方向の原子の存在割合及びケイ素原子の2p電子軌道の結合エネルギーのピーク位置を測定した。
 上記測定において、アルゴンガスによるスパッタリングの印加電圧は-4kVとし、1回のスパッタリング時間は12秒とし、スパッタリングレートは、実施例1~6、実施例11~15及び比較例1については100nm/分、実施例7、8については70nm/分、実施例9、10においては30nm/分とした。
(導電体層の表面粗さの測定)
 導電体層の表面粗さは、原子間力顕微鏡(AFM)(エスアイアイ・ナノテクノロジー社製「SPA300HV」)を使用して測定した。
(密着性試験)
 JIS H8504に準じた粘着性テープを貼り付け引き剥がすクロスカット試験を行った。試験はあらかじめB層に1辺2mmの正方形ができるように切り込みを入れて行い、B層の形状を目視観察し6段階での評価を行った。評価は、JIS K5600-5-6の分類(表1 試験結果の分類)に従った。
(水蒸気透過率の測定)
 水蒸気透過率は、透過率測定器(LYSSY社製「L80-5000」)を使用し、相対湿度90%、40℃の測定条件にて測定した。
(導電体層の表面抵抗率の測定)
 導電体層の表面抵抗率は、表面抵抗率測定装置(三菱化学社製「ロレスタ-GP」)を用いて行った。
(可視光透過率の測定)
 可視光線透過率(全光線透過率)は、可視光透過率測定装置(日本電色工業社製「ヘイズメーターNDH2000」)を使用して測定した。なお、成形体への光線入射面は、実施例1~15の成形体においては注入面、比較例1の成形体においてはポリジメチルシロキサンを含む層を有する面とした。
(実施例1)
 基材としてのポリエチレンテレフタレートフィルム(「PET38T-300」、東レ社製、厚さ38μm)(以下、「PETフィルム」という。)に、ポリオルガノシロキサン系化合物として、ポリジメチルシロキサンを主成分とするシリコーン樹脂(A)(シリコーン剥離剤「KS835」、信越化学工業社製)をマイヤーバーを用いて塗布し、120℃で2分間加熱して、厚さ100nmのシリコーン剥離剤Aを含む層を形成して成形物を得た。次に、図2に示すプラズマイオン注入装置を用いてポリジメチルシロキサンを含む層の表面に、窒素をプラズマイオン注入して成形体1を作製した。
 プラズマイオン注入の条件を以下に示す。
 ・プラズマ生成ガス:N
 ・Duty比:0.5%
 ・繰り返し周波数:1000Hz
 ・印加電圧:-10kV
 ・RF電源:周波数 13.56MHz、印加電力 1000W
 ・チャンバー内圧:0.2Pa
 ・パルス幅:5μsec
 ・処理時間(イオン注入時間):5分間
 ・搬送速度:0.4m/min
 次に、成形体1のイオン注入されたポリオルガノシロキサン系化合物層上に、マグネトロンスパッタリング法により、導電体層として厚さ50nmのITO膜を形成し、基材層(PETフィルム)-A層(窒素がイオン注入されたポリオルガノシロキサン系化合物層)-B層(ITO膜)の層構成を有する積層体1を作製した。
 スパッタリングの条件を以下に示す。
・プラズマ生成ガス:アルゴン、酸素
・ガス流量:アルゴン100sccm、酸素5sccm
・電力値:1500W
・チャンバー内圧:0.2Pa
・ライン速度:0.2m/min
・スパッタリングターゲット:ITO
(実施例2)
 プラズマ生成ガスとしてアルゴン(Ar)を用いた以外は、実施例1と同様にして成形体2を作製した。
 次いで、実施例1と同様にして、成形体2のイオン注入されたポリオルガノシロキサン系化合物層上に、マグネトロンスパッタリング法により、導電体層として厚さ50nmのITO膜を形成し、基材層(PETフィルム)-A層(アルゴンがイオン注入されたポリオルガノシロキサン系化合物層)-B層(ITO膜)の層構成を有する積層体2を作製した。
(実施例3)
 プラズマ生成ガスとしてヘリウム(He)を用いた以外は、実施例1と同様にして成形体3を作製した。
 次いで、実施例1と同様にして、成形体3のイオン注入されたポリオルガノシロキサン系化合物層上に、マグネトロンスパッタリング法により、導電体層として厚さ50nmのITO膜を形成し、基材層(PETフィルム)-A層(ヘリウムがイオン注入されたポリオルガノシロキサン系化合物層)-B層(ITO膜)の層構成を有する積層体3を作製した。
(実施例4)
 プラズマ生成ガスとして酸素(O)を用いた以外は、実施例1と同様にして成形体4を作製した。
 次いで、実施例1と同様にして、成形体4のイオン注入されたポリオルガノシロキサン系化合物層上に、マグネトロンスパッタリング法により、導電体層として厚さ50nmのITO膜を形成し、基材層(PETフィルム)-A層(酸素がイオン注入されたポリオルガノシロキサン系化合物層)-B層(ITO膜)の層構成を有する積層体4を作製した。
(実施例5)
 実施例1で用いたのと同じPETフィルムに、ポリジメチルシロキサンのメチル基の一部がフェニル基に置換された構造を有するポリオルガノシロキサン系化合物を主成分とするシリコーン樹脂(B)(商品名「X62-9201B」、信越化学社製)をマイヤーバーを用いて塗布し、120℃で2分間加熱して、厚さ100nmの、フェニル基を有するポリオルガノシロキサンを含む層を形成して成形物を得た。次にシリコーン樹脂(B)を含む層の表面に、実施例1と同様にして、窒素をプラズマイオン注入して成形体5を得た。
 次いで、実施例1と同様にして、成形体5のイオン注入されたポリオルガノシロキサン系化合物層上に、マグネトロンスパッタリング法により、導電体層として厚さ50nmのITO膜を形成し、基材層(PETフィルム)-A層(窒素がイオン注入されたポリオルガノシロキサン系化合物層)-B層(ITO膜)の層構成を有する積層体5を作製した。
(実施例6)
 プラズマ生成ガスとしてアルゴン(Ar)を用いた以外は、実施例5と同様にして成形体6を作製した。
 次いで、実施例1と同様にして、成形体6のイオン注入されたポリオルガノシロキサン系化合物層上に、マグネトロンスパッタリング法により、導電体層として厚さ50nmのITO膜を形成し、基材層(PETフィルム)-A層(アルゴンがイオン注入されたポリオルガノシロキサン系化合物層)-B層(ITO膜)の層構成を有する積層体6を作製した。
(実施例7)
 n-プロピルトリメトキシシラン(東京化成工業社製)3.29g(20mmol)、3-グリシドキシプロピルトリメトキシシラン(東京化成工業社製)4.73g(20mmol)、トルエン20ml、蒸留水10ml及びリン酸(関東化学社製)0.10g(1mmol)を混合し、室温で24時間反応させた。反応終了後、反応混合物に飽和炭酸水素ナトリウム水溶液を加え、これに酢酸エチル100mlを加えて分液し有機層を分取した。有機層を蒸留水にて2回洗浄後、無水硫酸マグネシウムで乾燥し、硫酸マグネシウムをろ別した。得られたろ液を多量のn-ヘキサン中に滴下して沈殿させた。n-ヘキサンをデカンテーションにより分離した後、沈殿物をテトラヒドロフラン(THF)に溶解させて回収した。沈殿物のTHF溶液からエバポレーターを使用してTHFを減圧留去し、残留物を真空乾燥することにより、ラダー状の構造を有するポリシルセスキオキサン(ポリオルガノシロキサン系化合物)を得た。このものの重量平均分子量は2,000であった。
 次に、得られたポリシルセスキオキサンをトルエンに溶解させ、得られた溶液(固形分濃度2質量%)を、実施例1で用いたのと同じPETフィルムにマイヤーバーを用いて塗布し、125℃で6時間加熱して硬化させて、厚さ100nmのポリシルセスキオキサンの層を有する成形物を得た。硬化後のシルセスキオキサンの層の表面に、プラズマイオン注入装置を用いて実施例1と同様にして、窒素をプラズマイオン注入して成形体7を作製した。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定したポリスチレン換算の値である。なお、プラズマイオン注入する前の成形物の水蒸気透過率は、12.1(g/(m・day))、全光線透過率は89.10%であった。
 次いで、実施例1と同様にして、成形体7のイオン注入されたポリオルガノシロキサン系化合物層上に、マグネトロンスパッタリング法により、導電体層として厚さ50nmのITO膜を形成し、基材層(PETフィルム)-A層(窒素がイオン注入されたポリオルガノシロキサン系化合物層)-B層(ITO膜)の層構成を有する積層体7を作製した。
(実施例8)
 プラズマ生成ガスとしてアルゴン(Ar)を用いた以外は、実施例7と同様にして成形体8を作製した。
 次いで、実施例1と同様にして、成形体8のイオン注入されたポリオルガノシロキサン系化合物層上に、マグネトロンスパッタリング法により、導電体層として厚さ50nmのITO膜を形成し、基材層(PETフィルム)-A層(アルゴンがイオン注入されたポリオルガノシロキサン系化合物層)-B層(ITO膜)の層構成を有する積層体8を作製した。
(実施例9)
 フェニルトリメトキシシラン(東京化成工業社製)7.94g(40mmol)、トルエン20ml、蒸留水10ml及びリン酸(関東化学社製)0.10g(1mmol)を混合し、室温で24時間反応させた。反応終了後、反応混合物に飽和炭酸水素ナトリウム水溶液を加え、これに酢酸エチル100mlを加えて分液し有機層を分取した。有機層を蒸留水にて2回洗浄後、無水硫酸マグネシウムで乾燥し、硫酸マグネシウムをろ別した。得られたろ液を多量のn-ヘキサン中に滴下して沈殿させた。n-ヘキサンをデカンテーションにより分離した後、沈殿物をTHFに溶解させて回収した。エバポレーターでTHFを減圧留去し、真空乾燥することにより、ラダー状の構造を有するポリシルセスキオキサン(ポリオルガノシロキサン系化合物)を得た。このものの重量平均分子量は、1,600であった。次いで、得られたポリシルセスキオキサンをトルエンに溶解させた溶液(固形分濃度2質量%)を、実施例1で用いたのと同じPETフィルムにマイヤーバーを用いて塗布し、125℃で6時間加熱して硬化させて、厚さ100nmのポリシルセスキオキサンの層を有する成形物を得た。硬化後のポリシルセスキオキサンの層の表面に、プラズマイオン注入装置を用いて実施例1と同様にして、窒素をプラズマイオン注入して成形体9を作製した。なお、プラズマイオン注入する前の成形物の水蒸気透過率は、11.7(g/(m・day))、全光線透過率は86.05%であった。
 次に、実施例1と同様にして、成形体9のイオン注入されたポリオルガノシロキサン系化合物層上に、マグネトロンスパッタリング法により、導電体層として厚さ50nmのITO膜を形成し、基材層(PETフィルム)-A層(窒素がイオン注入されたポリオルガノシロキサン系化合物層)-B層(ITO膜)の層構成を有する積層体9を作製した。
(実施例10)
 プラズマ生成ガスとしてアルゴン(Ar)を用いた以外は、実施例9と同様にして成形体10を作製した。
 次いで、実施例1と同様にして、成形体10のイオン注入されたポリオルガノシロキサン系化合物層上に、マグネトロンスパッタリング法により、導電体層として厚さ50nmのITO膜を形成し、基材層(PETフィルム)-A層(アルゴンがイオン注入されたポリオルガノシロキサン系化合物層)-B層(ITO膜)の層構成を有する積層体10を作製した。
(実施例11)
 ポリエチレンテレフタレートフィルム(三菱樹脂社製、「PET38T-300」、厚さ38μm)(以下、「PETフィルム」という。)に、ポリオルガノシロキサン系化合物(信越化学工業社製、ポリジメチルシロキサンを主成分とするシリコーン樹脂、「KS835」)を塗布し、得られた塗膜を120℃で2分間加熱して、厚み100nmのポリジメチルシロキサンを含有する層(以下、「ポリオルガノシロキサン系化合物層」という。)をPETフィルム上に形成した。次に、プラズマイオン注入装置を用いてポリオルガノシロキサン系化合物層の表面に、アルゴンをイオン注入した。
 イオン注入の条件を以下に示す。
 ・プラズマ生成ガス:アルゴン
 ・Duty比:1%
 ・繰り返し周波数:1000Hz
 ・印加電圧:-10kV
 ・RF電源:周波数 13.56MHz、印加電力 1000W
 ・チャンバー内圧:0.2Pa
 ・パルス幅:5μsec
 ・処理時間:5分間
 ・速度:0.2m/分
 次いで、イオン注入されたポリオルガノシロキサン系化合物層上に、実施例1と同様にして、マグネトロンスパッタリング法により、導電体層として厚さ50nmのITO膜を形成し、基材層(PETフィルム)-A層(アルゴンがイオン注入されたポリオルガノシロキサン系化合物層)-B層(ITO膜)の層構成を有する積層体11を作製した。
 スパッタリングの条件を以下に示す。
・プラズマ生成ガス:アルゴン、酸素
・ガス流量:アルゴン100sccm、酸素5sccm
・電力値:1500W
・チャンバー内圧:0.2Pa
・ライン速度:0.2m/min
・スパッタリングターゲット:ITO
(実施例12)
 実施例11において、イオン注入に用いるプラズマ生成ガスをアルゴンから窒素に変更した他は、実施例11と同様にして、基材層(PETフィルム)-A層(窒素がイオン注入されたポリオルガノシロキサン系化合物層)-B層(ITO膜)の層構成を有する積層体12を作製した。
(実施例13)
 実施例11において作製した積層体11のPETフィルムの、ポリオルガノシロキサン系化合物層を形成していない面側に、実施例11と同様にしてポリオルガノシロキサン系化合物層を形成し、該ポリオルガノシロキサン系化合物層にイオン注入を行い、A層(アルゴンがイオン注入されたポリオルガノシロキサン系化合物層)-基材層(PETフィルム)-A層(アルゴンがイオン注入されたポリオルガノシロキサン系化合物層)-B層(ITO膜)の層構成を有する積層体13を作製した。
(実施例14)
 実施例11において、スパッタリングターゲットをアルミニウムとし、スパッタリングにおけるプラズマ生成ガスをアルゴン(100sccm)とした以外は実施例11と同様の操作を行い、ITO膜の代わりに厚さ50nmのアルミニウム膜を形成して、基材層(PETフィルム)-A層(アルゴンがプラズマイオン注入されたポリオルガノシロキサン系化合物層)-B層(アルミニウム膜)の層構成を有する積層体14を作製した。
(実施例15)
 実施例11と同様にして、PETフィルム上にポリオルガノシロキサン系化合物層を形成し、アルゴンをイオン注入した。イオンが注入されたポリオルガノシロキサン系化合物層に、マグネトロンスパッタリング法により、無機化合物層として厚さ50nmの窒化珪素膜を形成した。スパッタリングの条件を以下に示す。
・プラズマ生成ガス:アルゴン、窒素
・ガス流量:アルゴン100sccm、窒素60sccm
・電力値:2500W
・チャンバー内圧:0.2Pa
・ライン速度:0.2m/min
・スパッタリングターゲット:Si
 次に、形成した窒化珪膜表面に、実施例11と同様にして、マグネトロンスパッタリング法により厚さ50nmのITO層を形成し、基材層(PETフィルム)-A層(アルゴンがイオン注入されたポリオルガノシロキサン層)-無機化合物層-B層(ITO膜)の層構成を有する積層体15を作製した。
(比較例1)
 イオン注入を行わない以外は、実施例1と同様にして成形体を作製した。すなわち、PETフィルム上にポリジメチルシロキサンを含む層を形成し、成形体16とした。マグネトロンスパッタリング法により、導電体層として厚さ50nmのITO膜を形成し、基材層(PETフィルム)-ポリジメチルシロキサンを含む層-B層(ITO膜)の層構成を有する積層体16を作製した。
(比較例2)
 実施例11で用いたPETフィルムに、マグネトロンスパッタリング法により、導電体層として厚さ50nmのITO膜を形成し、基材層(PETフィルム)-B層(ITO膜)の層構成を有する積層体17を作製した。スパッタリングの条件は実施例11と同様とした。
(比較例3)
 実施例11において、PETフィルム上に、ポリオルガノシロキサン系化合物層を形成する代わりに、マグネトロンスパッタリング法により厚さ50nmの窒化珪素膜を形成した以外は実施例11と同様の操作を行い、基材(PETフィルム)-無機化合物層(窒化珪素膜)-B層(ITO膜)の層構成を有する積層体18を作製した。窒化珪素膜形成におけるスパッタリングの条件を以下に示す。
・プラズマ生成ガス:アルゴン、窒素
・ガス流量:アルゴン100sccm、窒素60sccm
・電力値:2500W
・チャンバー内圧:0.2Pa
・ライン速度:0.2m/min
・スパッタリングターゲット:Si
 実施例1~10及び比較例1の成形体1~10、16の、XPSによる元素分析測定により得られた、酸素原子、炭素原子及びケイ素原子の存在割合の分析結果を図4~14に示す。
 図4~14において、縦軸は、酸素原子、炭素原子及びケイ素原子の存在量の合計を100とした場合の原子の存在割合(%)を表し、横軸はスパッタリングの積算時間(Sputter Time、分)を表す。スパッタリングの速度は一定であるので、スパッタリングの積算時間(Sputter Time)は、深さに対応している。図4~14において、aは炭素原子の存在割合、bは酸素原子の存在割合、cはケイ素原子の存在割合である。
 図4~13に示すように、成形体1~10においては、表面から深さ方向に向かって、酸素原子の存在割合が漸次的に減少し、炭素原子の存在割合が漸次的に増加する領域(ガスバリア層)を有することが確認された。一方、図14に示すように、比較例1の成形体16においては、上記のような領域は存在しなかった。
 また、図に示していないが、成形体11~15においても、成形体1~10と同様、表面から深さ方向に向かって、酸素原子の存在割合が漸次的に減少し、炭素原子の存在割合が漸次的に増加する領域(ガスバリア層)が存在することが確認された。
 実施例1~10の成形体における、ガスバリア層(表面から深さ方向に向かって、層中における酸素原子の存在が漸次減少し、炭素原子の存在割合が漸次増加する領域)表層部における、酸素原子、炭素原子及びケイ素原子の存在割合、並びにケイ素原子の2p電子軌道の結合エネルギーのピーク位置を測定した結果を第1表に示す。
 なお、実施例1~10の成形体におけるガスバリア層は、プラズマイオン注入された面が表面であり、プラズマイオン注入された面における前記方法での測定値が、ガスバリア層表層部における酸素原子、炭素原子及びケイ素原子の存在割合、並びに、ケイ素原子の2p電子軌道の結合エネルギーのピーク位置である。
 また、原子の存在割合は、測定により得られた酸素原子、炭素原子及びケイ素原子のピーク面積の合計値を100%とし、各原子のピーク面積から算出した値である。
Figure JPOXMLDOC01-appb-T000008
 第1表から、成形体1~10のガスバリア層表面のケイ素原子の2p電子軌道の結合エネルギーのピーク位置は、102.9eV~103.3eVであった。
 また、実施例2で作製した成形体2につき、XPS分析により、ケイ素原子の2p電子軌道の結合エネルギーを測定した結果を図15に示す。図15において、縦軸はピーク強度を表す、横軸は結合エネルギー(eV)を表す。図15から、成形体2のケイ素原子の2p電子軌道の結合エネルギー(B)のピーク位置が103.3eVであった。この成形体2のケイ素原子の2p電子軌道の結合エネルギーのピーク位置は、イオン注入前(A、比較例1に相当する)には101.5evであったが、イオン注入後においては、103.3eVと高エネルギー側にシフトしていることが確認された。
 次に、実施例1~15及び比較例1~3で得られた積層体1~18につき、表面粗さRa(nm)、水蒸気透過率、表面抵抗率、可視光透過率を測定し、さらに密着性試験を行った。測定結果及び評価結果を下記第2表に示す。
Figure JPOXMLDOC01-appb-T000009
 (注)実施例13及び15の水蒸気透過率は測定限界〔0.01g/(m・day)〕未満であった。
 第1表から、実施例1~15の積層体は、ガスバリア性に優れ(水蒸気透過率の値が小さい)、かつ透明性(積層体14を除く)に優れていた。また、実施例1~15の積層体の導電体層は、その表面が平滑で、導電性も優れていた。
1…フィルム状の積層体、2a、2b…回転キャン、3a、3b…巻き出しロール、4…プラズマ放電用電極、5a、5b…巻き取りロール、6a、6b…送り出し用ロール、7…パルス電源、8…ターゲット、9…高電圧パルス、10a、10b…ガス導入口、11a、11b…チャンバー

Claims (13)

  1.  少なくとも、酸素原子、炭素原子及びケイ素原子を含む材料から構成されてなるガスバリア層と、導電体層を有する積層体であって、前記ガスバリア層の表面から深さ方向に向かって、該ガスバリア層中における酸素原子の存在割合が漸次減少し、炭素原子の存在割合が漸次増加していることを特徴とする積層体。
  2.  前記ガスバリア層の表層部における、酸素原子、炭素原子及びケイ素原子の存在量全体に対する、酸素原子の存在割合が10~70%、炭素原子の存在割合が10~70%、ケイ素原子の存在割合が5~35%であることを特徴とする請求項1に記載の積層体。
  3.  前記ガスバリア層が、該ガスバリア層の表層部におけるX線光電子分光(XPS)測定において、ケイ素原子の2p電子軌道の結合エネルギーのピーク位置が102~104eVであることを特徴とする請求項1に記載の積層体。
  4.  さらに、無機化合物層を有する請求項1に記載の積層体。
  5.  前記ガスバリア層が、ポリオルガノシロキサン系化合物を含む層に、イオンが注入されて得られた層であることを特徴とする請求項1に記載の積層体。
  6.  前記イオンが、窒素、酸素、アルゴン、ヘリウムからなる群から選ばれる少なくとも一種のガスがイオン化されたものであることを特徴とする請求項5に記載の積層体。
  7.  前記ポリオルガノシロキサン系化合物が、下記に示す(a)又は(b)
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rx、Ryは、それぞれ独立して、水素原子、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基等の非加水分解性基を表す。なお、式(a)の複数のRx、式(b)の複数のRyは、それぞれ同一でも相異なっていてもよい。ただし、前記式(a)のRxが2つとも水素原子であることはない。)
    で表される繰り返し単位を有するポリオルガノシロキサンであることを特徴とする請求項5に記載の積層体。
  8.  ガスバリア層と導電体層を有する積層体の製造方法であって、前記ガスバリア層を、ポリオルガノシロキサン系化合物を含む層を表面部に有する成形物の、前記ポリオルガノシロキサン系化合物を含む層にイオンを注入することにより形成する工程(I)を有する積層体の製造方法。
  9.  前記工程(I)が、窒素、酸素、アルゴン及びヘリウムからなる群から選ばれる少なくとも一種のガスをイオン化して注入する工程であることを特徴とする請求項8に記載の積層体の製造方法。
  10.  前記工程(I)が、プラズマイオン注入であることを特徴とする請求項8に記載の製造方法。
  11.  前記工程(I)が、ポリオルガノシロキサン系化合物を含む層を表面部に有する長尺状の成形物を一定方向に搬送しながら、前記ポリオルガノシロキサン系化合物を含む層にイオンを注入する工程であることを特徴とする請求項8に記載の製造方法。
  12.  請求項1~7のいずれかに記載の積層体からなる電子デバイス用部材。
  13.  請求項12に記載の電子デバイス用部材を備える電子デバイス。
PCT/JP2010/052058 2009-02-16 2010-02-12 積層体、その製造方法、電子デバイス用部材及び電子デバイス WO2010093010A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/144,856 US20120121917A1 (en) 2009-02-16 2010-02-12 Laminate, method for producing same, electronic device member, and electronic device
CN201080007613.8A CN102317070B (zh) 2009-02-16 2010-02-12 叠层体、其制造方法、电子设备用构件和电子设备
EP10741287.6A EP2397324A4 (en) 2009-02-16 2010-02-12 MULTILAYER BODY, METHOD FOR THE PRODUCTION THEREOF, ELECTRONIC DEVICE ELEMENT AND ELECTRONIC DEVICE
JP2010550556A JP5725541B2 (ja) 2009-02-16 2010-02-12 積層体、その製造方法、電子デバイス用部材及び電子デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009032790 2009-02-16
JP2009-032790 2009-02-16

Publications (1)

Publication Number Publication Date
WO2010093010A1 true WO2010093010A1 (ja) 2010-08-19

Family

ID=42561850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052058 WO2010093010A1 (ja) 2009-02-16 2010-02-12 積層体、その製造方法、電子デバイス用部材及び電子デバイス

Country Status (7)

Country Link
US (1) US20120121917A1 (ja)
EP (1) EP2397324A4 (ja)
JP (1) JP5725541B2 (ja)
KR (1) KR101563391B1 (ja)
CN (1) CN102317070B (ja)
TW (1) TWI491500B (ja)
WO (1) WO2010093010A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083491A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd 液晶表示素子
EP2615144A1 (en) * 2010-09-07 2013-07-17 Lintec Corporation Adhesive sheet and electronic device
EP2628819A1 (en) * 2010-10-15 2013-08-21 LINTEC Corporation Transparent conductive film, production method therefor, material for electronic device, and electronic device
CN103534084A (zh) * 2011-03-30 2014-01-22 琳得科株式会社 阻气层叠体、其制造方法、电子装置用部件及电子装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103642060B (zh) * 2009-03-17 2016-05-25 琳得科株式会社 成形体、其制造方法、电子设备用构件和电子设备
TWI522404B (zh) 2009-03-26 2016-02-21 Lintec Corp A molded body, a manufacturing method thereof, an electronic device element, and an electronic device
KR101489551B1 (ko) * 2009-05-22 2015-02-03 린텍 가부시키가이샤 성형체, 그 제조 방법, 전자 디바이스용 부재 및 전자 디바이스
US20120301710A1 (en) * 2010-02-19 2012-11-29 Lintec Corporation Transparent conductive film, process for producing same, and electronic device employing transparent conductive film
JP5343058B2 (ja) * 2010-10-15 2013-11-13 リンテック株式会社 透明導電性フィルム、その製造方法、電子デバイス用部材及び電子デバイス
CN102758182A (zh) * 2011-04-27 2012-10-31 鸿富锦精密工业(深圳)有限公司 铁基合金表面镀膜方法及由该方法其制得的镀膜件
KR20150119008A (ko) * 2013-02-08 2015-10-23 가부시키가이샤 구라레 전자 디바이스
CN105829099B (zh) * 2013-12-25 2018-02-16 日本瑞翁株式会社 叠层膜、及复合膜的制造方法
WO2016007484A2 (en) * 2014-07-08 2016-01-14 Xyleco, Inc. Marking plastic-based products
CN108349216A (zh) * 2015-11-06 2018-07-31 琳得科株式会社 透明导电层叠层用膜、其制造方法、以及透明导电膜
CN108075040A (zh) * 2016-11-07 2018-05-25 中国科学院苏州纳米技术与纳米仿生研究所 柔性oled基材及其制备方法
KR102053996B1 (ko) * 2018-09-27 2019-12-09 한양대학교 산학협력단 배리어, 배리어 제조방법, 배리어를 포함하는 디스플레이, 및 배리어를 포함하는 디스플레이의 제조방법

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664105A (ja) * 1992-08-12 1994-03-08 Mitsui Toatsu Chem Inc ガスバリヤー性透明導電性積層体
JPH08302043A (ja) * 1995-04-28 1996-11-19 Kishimoto Akira ガス遮断性透明包装材およびその製造方法
JPH10244613A (ja) * 1997-03-06 1998-09-14 Kishimoto Akira ガス遮断性プラスチック包材とその製造方法
JPH10249990A (ja) * 1997-03-14 1998-09-22 Kishimoto Akira ガス遮断性及びフレキシビリティーに優れた積層体
JP2003154596A (ja) 2001-11-22 2003-05-27 Nitto Denko Corp 透明ガスバリア性フィルム、及びそれを用いた透明導電性電極基材、表示素子、太陽電池又は面状発光体
JP2004527642A (ja) * 2001-06-06 2004-09-09 ダウ・コーニング・アイルランド・リミテッド 表面処理
JP2005104025A (ja) * 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd ガスバリア性積層フィルム、及びそれを用いた画像表示素子
JP2005231039A (ja) * 2004-02-17 2005-09-02 Dainippon Printing Co Ltd バリア性フィルムおよびそれを使用した積層材
JP2006123307A (ja) * 2004-10-28 2006-05-18 Dainippon Printing Co Ltd ガスバリア性積層体
JP2006123306A (ja) * 2004-10-28 2006-05-18 Dainippon Printing Co Ltd ガスバリア性積層体
JP2006264118A (ja) 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd プラスチックフィルム、ガスバリアフィルム、およびそれを用いた画像表示素子
JP2008270115A (ja) 2007-04-25 2008-11-06 Toppan Printing Co Ltd 透明導電性ガスバリアフィルム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143747A (en) * 1991-02-12 1992-09-01 Hughes Aircraft Company Die improved tooling for metal working
JP3562065B2 (ja) * 1995-10-30 2004-09-08 日新電機株式会社 高ガスバリア性高分子物品及びその製造方法
US6194328B1 (en) * 1998-12-09 2001-02-27 Advanced Micro Devices, Inc. H2 diffusion barrier formation by nitrogen incorporation in oxide layer
JP2000340166A (ja) * 1999-05-27 2000-12-08 Sony Corp 成膜方法及び成膜物
JP2004107541A (ja) * 2002-09-19 2004-04-08 Fuji Photo Film Co Ltd 有機変性層状珪酸塩を含有する重合体組成物、フィルム、ガスバリア性フィルム、並びにそれらを用いた基板及び画像表示素子
JP2005088431A (ja) * 2003-09-18 2005-04-07 Dainippon Printing Co Ltd バリア性フィルム
US20070268089A1 (en) * 2003-10-31 2007-11-22 Mckenzie David R Plasma Immersion Ion Implantation Using Conductive Mesh
EP1749860A4 (en) * 2004-05-14 2009-12-23 Dow Corning Toray Co Ltd FREE FILMS MANUFACTURED FROM ORGANOPOLYSILOXANE RESINS, THEIR PRODUCTION PROCESS AND LAMINATED FILMS
JP2006070238A (ja) * 2004-08-05 2006-03-16 Lintec Corp 高分子フィルムの連続的表面改質方法、連続的表面改質装置および表面部にイオン注入層が形成された高分子フィルム
WO2006063388A1 (en) * 2004-12-13 2006-06-22 University Of South Australia Craze resistant plastic article and method of production
US7341766B2 (en) * 2005-07-29 2008-03-11 Dai Nippon Printing Co., Ltd. Gas barrier clear film, and display substrate and display using the same
JP2008204683A (ja) * 2007-02-19 2008-09-04 Toppan Printing Co Ltd 透明導電性フィルム
JP4917943B2 (ja) * 2007-03-30 2012-04-18 リンテック株式会社 ガスバリアフィルムの製造方法
US8101288B2 (en) * 2007-06-11 2012-01-24 Fujifilm Corporation Gas barrier film and organic device using the same
CN102245379B (zh) * 2008-12-12 2015-06-24 琳得科株式会社 叠层体、其制造方法、电子设备构件和电子设备

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664105A (ja) * 1992-08-12 1994-03-08 Mitsui Toatsu Chem Inc ガスバリヤー性透明導電性積層体
JPH08302043A (ja) * 1995-04-28 1996-11-19 Kishimoto Akira ガス遮断性透明包装材およびその製造方法
JPH10244613A (ja) * 1997-03-06 1998-09-14 Kishimoto Akira ガス遮断性プラスチック包材とその製造方法
JPH10249990A (ja) * 1997-03-14 1998-09-22 Kishimoto Akira ガス遮断性及びフレキシビリティーに優れた積層体
JP2004527642A (ja) * 2001-06-06 2004-09-09 ダウ・コーニング・アイルランド・リミテッド 表面処理
JP2003154596A (ja) 2001-11-22 2003-05-27 Nitto Denko Corp 透明ガスバリア性フィルム、及びそれを用いた透明導電性電極基材、表示素子、太陽電池又は面状発光体
JP2005104025A (ja) * 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd ガスバリア性積層フィルム、及びそれを用いた画像表示素子
JP2005231039A (ja) * 2004-02-17 2005-09-02 Dainippon Printing Co Ltd バリア性フィルムおよびそれを使用した積層材
JP2006123307A (ja) * 2004-10-28 2006-05-18 Dainippon Printing Co Ltd ガスバリア性積層体
JP2006123306A (ja) * 2004-10-28 2006-05-18 Dainippon Printing Co Ltd ガスバリア性積層体
JP2006264118A (ja) 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd プラスチックフィルム、ガスバリアフィルム、およびそれを用いた画像表示素子
JP2008270115A (ja) 2007-04-25 2008-11-06 Toppan Printing Co Ltd 透明導電性ガスバリアフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2397324A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2615144A1 (en) * 2010-09-07 2013-07-17 Lintec Corporation Adhesive sheet and electronic device
EP2615144A4 (en) * 2010-09-07 2014-10-29 Lintec Corp ADHESIVE SHEET AND ELECTRONIC DEVICE
JP2012083491A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd 液晶表示素子
EP2628819A1 (en) * 2010-10-15 2013-08-21 LINTEC Corporation Transparent conductive film, production method therefor, material for electronic device, and electronic device
EP2628819A4 (en) * 2010-10-15 2014-04-02 Lintec Corp TRANSPARENT CONDUCTIVE FILM, METHOD FOR PRODUCING THE SAME, MATERIAL FOR ELECTRONIC DEVICE, AND ELECTRONIC DEVICE
CN103534084A (zh) * 2011-03-30 2014-01-22 琳得科株式会社 阻气层叠体、其制造方法、电子装置用部件及电子装置
US20140072798A1 (en) * 2011-03-30 2014-03-13 Lintec Corporation Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
CN103534084B (zh) * 2011-03-30 2016-08-17 琳得科株式会社 阻气层叠体、其制造方法、电子装置用部件及电子装置
US9763345B2 (en) * 2011-03-30 2017-09-12 Lintec Corporation Gas barrier laminated body, method for producing same, member for electronic device, and electronic device

Also Published As

Publication number Publication date
EP2397324A1 (en) 2011-12-21
EP2397324A4 (en) 2013-08-07
CN102317070B (zh) 2015-11-25
TWI491500B (zh) 2015-07-11
US20120121917A1 (en) 2012-05-17
JP5725541B2 (ja) 2015-05-27
CN102317070A (zh) 2012-01-11
KR101563391B1 (ko) 2015-10-26
KR20110118142A (ko) 2011-10-28
TW201034849A (en) 2010-10-01
JPWO2010093010A1 (ja) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5725541B2 (ja) 積層体、その製造方法、電子デバイス用部材及び電子デバイス
JP4944993B2 (ja) 成形体、その製造方法、電子デバイス部材および電子デバイス
JP5666311B2 (ja) 積層体、その製造方法、電子デバイス部材および電子デバイス
JP4956692B1 (ja) 成形体、その製造方法、電子デバイス用部材及び電子デバイス
JP2019107906A (ja) ガスバリア性積層体、電子デバイス用部材及び電子デバイス
JP5372240B2 (ja) 透明導電性フィルムおよびその製造方法並びに透明導電性フィルムを用いた電子デバイス
WO2011122497A1 (ja) 透明導電性フィルムおよびその製造方法並びに透明導電性フィルムを用いた電子デバイス
WO2010134609A1 (ja) 成形体、その製造方法、電子デバイス用部材および電子デバイス
WO2010134611A1 (ja) 成形体、その製造方法、電子デバイス用部材及び電子デバイス
JP5389255B2 (ja) 成形体、その製造方法、電子デバイス用部材及び電子デバイス
JP5750441B2 (ja) 成形体、その製造方法、電子デバイス用部材及び電子デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007613.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010550556

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010741287

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117018923

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13144856

Country of ref document: US