WO2010092871A1 - 燃料電池システムおよび該システムにおける始動時制御方法 - Google Patents

燃料電池システムおよび該システムにおける始動時制御方法 Download PDF

Info

Publication number
WO2010092871A1
WO2010092871A1 PCT/JP2010/051055 JP2010051055W WO2010092871A1 WO 2010092871 A1 WO2010092871 A1 WO 2010092871A1 JP 2010051055 W JP2010051055 W JP 2010051055W WO 2010092871 A1 WO2010092871 A1 WO 2010092871A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
temperature
starting
amount
water
Prior art date
Application number
PCT/JP2010/051055
Other languages
English (en)
French (fr)
Inventor
浩己 田中
良明 長沼
修 弓田
卓睦 手塚
伸和 水野
公志 藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112010000819.1T priority Critical patent/DE112010000819B4/de
Priority to CN201080007265.4A priority patent/CN102318116B/zh
Priority to US13/148,560 priority patent/US8524406B2/en
Publication of WO2010092871A1 publication Critical patent/WO2010092871A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/31Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04253Means for solving freezing problems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system and a startup control method in the system. More specifically, the present invention relates to an improvement in startability at a low temperature of a fuel cell system.
  • the control map for normal starting is changed to the control map for starting below freezing point, and starting below the freezing point
  • the fuel cell system is started along the control map.
  • the sub-freezing start control map is changed to the normal start control map, and the fuel cell stack is changed along the normal start control map. Is started.
  • the starting method may be changed based on the remaining water amount of the generated water of the fuel cell (see, for example, Patent Document 1).
  • the cooling water pressure at the inlet of the fuel cell stack is controlled to be lower than the pressure used when the fuel cell system is operated in a steady state.
  • the coolant pressure at the inlet of the fuel cell stack is controlled to a pressure used when operating in a steady state.
  • a temperature sensor detects the internal temperature of the fuel cell.
  • the cooling water pump is controlled to stop, and when the internal temperature exceeds 0 ° C., the driving amount increases as the internal temperature increases (patent) Reference 2).
  • the present invention provides a fuel cell system and a start-up control method for the system that suppresses deterioration of durability due to heat concentration while performing rapid warm-up operation as necessary when starting below freezing point. For the purpose.
  • the present inventor has made various studies to solve such problems.
  • In order to suppress the deterioration of the durability of the fuel cell it is desirable to reduce the number of times of rapid warm-up operation below freezing point.
  • On the other hand if it takes time to start under freezing conditions, it will not be possible to follow the actual situation of use.
  • a method of switching a map below the freezing point when the temperature of the fuel cell stack is equal to or lower than the freezing temperature of water is disclosed, but the inventor considering the durability of the stack, Focusing on switching the method of warm-up operation even at temperatures below freezing, as a result of various studies, we have gained new knowledge that leads to the solution of problems.
  • the present invention is based on such knowledge, and is a fuel cell system that includes a fuel cell, and performs a rapid warm-up operation that quickly warms up by stopping the circulation of cooling water when starting below freezing.
  • the memory for storing the operation end condition of the previous operation of the system, the temperature at the time of starting, or the remaining amount of generated water in the fuel cell calculated at the previous scavenging, and the memory read out from the memory at the starting of the system Based on the data, calculate the remaining amount of generated water, determine the necessity of rapid warm-up of the system based on the residual water amount and the starting temperature, and start the cooling water without circulation when rapid warm-up is required Based on the result of the determination by the determination means and the determination means, the reaction gas supplied to the fuel cell is less than that during normal power generation with or without circulation of the cooling water.
  • the data is, for example, the impedance at the end of the previous operation of the fuel cell, the temperature of the fuel cell, and the amount of scavenging air.
  • the scavenging air amount as used in this specification is the amount of air that is flowed to discharge water in the fuel cell stack when the ignition switch is turned off (for example, by a vehicle driver) after the previous operation is completed. .
  • the determination means in the fuel cell system has an impedance measurement function for measuring the impedance of the fuel cell and a related temperature measurement function for measuring the related temperature of the fuel cell, and the data including the impedance measurement result and the related temperature measurement result is obtained. It is preferable to calculate the amount of residual water based on the generated water.
  • the present invention is preferably a fuel cell system mounted on a fuel cell vehicle, and at the time of starting below freezing point, it is preferable to determine whether or not the fuel cell vehicle can run by a judging means.
  • the graph of the starting temperature of the fuel cell-the remaining amount of generated water (Vw) is divided into a plurality of zones, and the starting temperature and the remaining amount of water at the starting of the fuel cell belong to which of the plurality of zones Accordingly, it is preferable to determine whether to start the cooling water without circulation.
  • the graph of the fuel cell starting temperature vs. the remaining amount of generated water (Vw) is divided into a plurality of zones, and the cooling water is not circulated according to the relationship between the starting temperature and the remaining water amount when starting the fuel cell. It is also preferable to determine whether or not to start the vehicle and whether or not the fuel cell vehicle can travel without warm-up operation.
  • a graph divided into a plurality of zones by a space closed by a curve as a graph of the starting temperature of the fuel cell-the remaining amount of generated water (Vw).
  • Vw fuel cell starting temperature-residual water amount
  • control method is a control method at start-up in a fuel cell system that performs a rapid warm-up operation that stops the circulation of cooling water and quickly warms up at the time of start-up under freezing as necessary.
  • the data of the operation end condition of the previous operation of the system, the temperature at the time of start-up, or the remaining amount of generated water in the fuel cell calculated at the time of the previous scavenging is stored in a memory, and read out from the memory at the time of starting the system
  • the remaining amount of generated water is calculated based on the obtained data, and the system determines whether or not the system needs to be warmed up quickly based on the amount of remaining water and the starting temperature, and starts cooling water without circulation when rapid warming is required.
  • the reaction gas supplied to the fuel cell is less than that during normal power generation with or without circulating the cooling water. It is that executes the low-efficiency power generation large power loss as compared with the normal power generation.
  • the present invention when the fuel cell system is started below the freezing point, it is possible to perform a rapid warm-up operation as necessary while suppressing deterioration in durability due to heat concentration.
  • FIG. 1 is a configuration diagram of a fuel cell system according to an embodiment of the present invention. It is a figure which shows the relationship between the output current (FC current) and output voltage (FC voltage) of a fuel cell. It is a flowchart which shows the control method at the time of system starting in the 1st Embodiment of this invention.
  • the vertical axis is a graph showing the internal temperature (FC temperature) of the fuel cell at the time of starting, and the horizontal axis is the residual water amount Vw, and shows a case where three zones I, II, and III are set as an example.
  • FIG. 5 is a graph of FC temperature at start-up and residual water amount Vw, and shows an example in which four zones I to IV are set as an example.
  • FIG. 10 is a graph of start-up FC temperature-residual water amount Vw in the third embodiment of the present invention, in which three zones I to III are set.
  • FIG. 10 is a graph of start-up FC temperature-residual water amount Vw in the fourth embodiment of the present invention, in which four zones I to IV are set.
  • FIG. 1 is a configuration diagram of a fuel cell system 1 in the present embodiment.
  • the fuel cell system 1 can be mounted on a vehicle 100 such as a fuel cell vehicle (FCHV), an electric vehicle, or a hybrid vehicle.
  • FCHV fuel cell vehicle
  • the fuel cell system 1 can be applied to various mobile bodies other than the vehicle 100 (for example, ships, airplanes, robots, etc.), stationary power sources, and portable fuel cell systems.
  • the fuel cell system 1 includes a fuel cell 2, an oxidizing gas piping system 3 that supplies air as an oxidizing gas to the fuel cell 2, a fuel gas piping system 4 that supplies hydrogen gas as a fuel gas to the fuel cell 2, A refrigerant piping system 5 that supplies refrigerant to the fuel cell 2, a power system 6 that charges and discharges the power of the system 1, and a control device 7 that performs overall control of the operation of the system 1 are provided.
  • Oxidizing gas and fuel gas can be collectively referred to as reaction gas.
  • the fuel cell 2 is composed of a solid polymer electrolyte fuel cell, for example, and has a stack structure in which a large number of single cells are stacked.
  • the unit cell includes a solid polymer membrane having proton conductivity in an electrolyte layer, has an air electrode (cathode) on one surface of the electrolyte, a fuel electrode (anode) on the other surface, and A pair of separators are provided so as to sandwich the air electrode and the fuel electrode from both sides.
  • An oxidizing gas is supplied to the oxidizing gas channel 2a of one separator, and a fuel gas is supplied to the fuel gas channel 2b of the other separator.
  • the fuel cell 2 generates electric power by the electrochemical reaction of the supplied fuel gas and oxidizing gas.
  • the oxidizing gas piping system 3 includes a supply path 11 through which the oxidizing gas supplied to the fuel cell 2 flows and a discharge path 12 through which the oxidizing off gas discharged from the fuel cell 2 flows.
  • the supply path 11 communicates with the discharge path 12 via the oxidizing gas flow path 2a.
  • the oxidizing off gas is in a highly moist state because it contains moisture generated by the cell reaction of the fuel cell 2.
  • the supply path 11 is provided with a compressor 14 that takes in outside air via an air cleaner 13, and a humidifier 15 that humidifies the oxidizing gas fed to the fuel cell 2 by the compressor 14.
  • the humidifier 15 exchanges moisture between the low-humidity oxidizing gas flowing in the supply passage 11 and the high-humidity oxidizing off-gas flowing in the discharge passage 12, and appropriately supplies the oxidizing gas supplied to the fuel cell 2. Humidify.
  • the back pressure on the air electrode side of the fuel cell 2 is adjusted by a back pressure adjusting valve 16 disposed in the discharge path 12 near the cathode outlet.
  • a pressure sensor P1 for detecting the pressure in the discharge passage 12 is provided in the vicinity of the back pressure adjustment valve 16.
  • the oxidizing off gas passes through the back pressure regulating valve 16 and the humidifier 15 and is finally exhausted into the atmosphere outside the system as exhaust gas.
  • the fuel gas piping system 4 includes a hydrogen supply source 21, a supply path 22 through which hydrogen gas supplied from the hydrogen supply source 21 to the fuel cell 2 flows, and a supply path for supplying hydrogen offgas (fuel offgas) discharged from the fuel cell 2. 22, a circulation path 23 for returning to the junction point A of 22, a pump 24 that pumps the hydrogen off-gas in the circulation path 23 to the supply path 22, and a purge path 25 that is branched and connected to the circulation path 23.
  • the hydrogen gas flowing out from the hydrogen supply source 21 to the supply path 22 by opening the main valve 26 is supplied to the fuel cell 2 through the pressure regulating valve 27 and other pressure reducing valves and the shutoff valve 28.
  • the purge passage 25 is provided with a purge valve 33 for discharging the hydrogen off gas to a hydrogen diluter (not shown).
  • the refrigerant piping system (cooling mechanism) 5 is configured to supply a refrigerant channel 41 communicating with the cooling channel 2 c in the fuel cell 2, a cooling pump 42 provided in the refrigerant channel 41, and a refrigerant discharged from the fuel cell 2. It has a radiator 43 for cooling, a bypass passage 44 for bypassing the radiator 43, and a switching valve 45 for setting the flow of cooling water to the radiator 43 and the bypass passage 44.
  • the refrigerant flow path 41 has a temperature sensor 46 provided in the vicinity of the refrigerant inlet of the fuel cell 2 and a temperature sensor 47 provided in the vicinity of the refrigerant outlet of the fuel cell 2.
  • the refrigerant temperature (related temperature of the fuel cell) detected by the temperature sensor 47 reflects the internal temperature of the fuel cell 2 (hereinafter referred to as FC temperature).
  • FC temperature the internal temperature of the fuel cell 2
  • the temperature sensor 47 detects the temperature of parts around the fuel cell (related temperature of the fuel cell) and the outside air temperature around the fuel cell (related temperature of the fuel cell) instead of (or in addition to) the refrigerant temperature. May be.
  • the fuel cell cooling pump 42 circulates and supplies the refrigerant in the refrigerant channel 41 to the fuel cell 2 by driving the motor.
  • the power system 6 includes a high-voltage DC / DC converter 61, a battery 62, a traction inverter 63, a traction motor 64, and various auxiliary inverters 65, 66, and 67.
  • the high-voltage DC / DC converter 61 is a direct-current voltage converter that adjusts the direct-current voltage input from the battery 62 and outputs it to the traction inverter 63 side, and the direct-current input from the fuel cell 2 or the traction motor 64. And a function of adjusting the voltage and outputting it to the battery 62.
  • the charge / discharge of the battery 62 is realized by these functions of the high-voltage DC / DC converter 61. Further, the output voltage of the fuel cell 2 is controlled by the high voltage DC / DC converter 61.
  • the battery (capacitor) 62 is a chargeable / dischargeable secondary battery, and is composed of, for example, a nickel metal hydride battery. In addition, various types of secondary batteries can be applied. Instead of the battery 62, a chargeable / dischargeable battery other than the secondary battery, for example, a capacitor may be used.
  • the traction inverter 63 converts a direct current into a three-phase alternating current and supplies it to the traction motor 64.
  • the traction motor 64 is, for example, a three-phase AC motor.
  • the traction motor 64 constitutes, for example, a main power source of the vehicle 100 on which the fuel cell system 1 is mounted, and is connected to the wheels 101L and 101R of the vehicle 100.
  • the auxiliary machine inverters 65, 66, and 67 control the driving of the motors of the compressor 14, the pump 24, and the cooling pump 42, respectively.
  • the control device 7 is configured as a microcomputer having a CPU, a ROM, and a RAM inside.
  • the CPU executes a desired calculation according to the control program, and performs various processes and controls such as control of normal operation and control of warm-up operation described later.
  • the ROM stores control programs and control data processed by the CPU.
  • the RAM is mainly used as various work areas for control processing.
  • the timer 70, the voltage sensor 72, and the current sensor 73 are connected to the control device 7.
  • the timer 70 measures various times necessary for controlling the operation of the fuel cell system 1.
  • the voltage sensor 72 detects the output voltage (FC voltage) of the fuel cell 2.
  • the voltage sensor 72 detects a voltage (hereinafter referred to as “cell voltage”) generated by each of a large number of single cells of the fuel cell 2. Thereby, the state of each single cell of the fuel cell 2 is grasped.
  • the current sensor 73 detects the output current (FC current) of the fuel cell 2.
  • the control device 7 inputs detection signals from various sensors such as various pressure sensors P1, temperature sensors 46 and 47, and an accelerator opening sensor that detects the accelerator opening of the vehicle 100, and each component (compressor 14, A control signal is output to the back pressure regulating valve 16 or the like.
  • the control device 7 diagnoses the moisture state of the fuel cell 2 at a predetermined timing, and performs moisture control of the fuel cell 2 based on the diagnosis result.
  • FIG. 2 is a diagram showing the relationship between the output current (FC current) and the output voltage (FC voltage) of the fuel cell, where the normal power generation is shown by a solid line and the low efficiency power generation is a dotted line It is shown in The horizontal axis represents the FC current, and the vertical axis represents the FC voltage.
  • the low-efficiency power generation refers to power generation in which the reaction gas (in this embodiment, the oxidizing gas) supplied to the fuel cell 2 is less than that during normal power generation and has a large power loss compared to normal power generation.
  • the fuel cell 2 is operated in a state where the air stoichiometric ratio is reduced to around 1.0 (theoretical value) (see the dotted line portion in FIG. 2).
  • the power loss to be large, the fuel cell 2 can be quickly warmed up.
  • the fuel cell 2 is operated in a state where, for example, the air stoichiometric ratio is set to 2.0 or more (theoretical value) so as to obtain high power generation efficiency while suppressing power loss (FIG. 2). (See the solid line part).
  • the control device 7 functions as a power generation control unit that executes low-efficiency power generation, where necessary, the amount of reaction gas supplied to the fuel cell 2 is small compared to that during normal power generation and the power loss is large compared to normal power generation. .
  • the control device 7 determines whether or not the timing for diagnosing the moisture state of the fuel cell 2 (hereinafter, diagnosis timing) has arrived.
  • the diagnosis timing is, for example, when the operation of the fuel cell system 1 is completed or when the fuel cell system 1 is started.
  • the control device 7 according to the present embodiment detects that the operation end command of the fuel cell system 1 has been input, for example, by turning off the ignition switch by the driver of the vehicle 100, and determines that the diagnosis timing has arrived.
  • the control device (impedance measuring means) 7 measures the impedance of the fuel cell 2 and diagnoses the moisture state of the fuel cell 2 based on the measurement result.
  • the control device (impedance measuring means) 7 of the present embodiment samples the FC voltage detected by the voltage sensor 72 and the FC current detected by the current sensor 73 at a predetermined sampling rate, and performs a Fourier transform process (FFT calculation process or DFT operation processing). Then, the control device (impedance measuring means) 7 measures the impedance of the fuel cell 2 by dividing the FC voltage signal after the Fourier transform process by the FC current signal after the Fourier transform process.
  • control device 7 reads the reference impedance IPth stored in the reference impedance memory 92, and compares the read reference impedance IPth with the measured impedance (hereinafter, measured impedance).
  • the reference impedance IPth is a reference value for determining whether or not the fuel cell 2 is in a dry state, and is obtained in advance by an experiment or the like. Specifically, an impedance for determining whether or not the fuel cell 2 is in a dry state is obtained through an experiment or the like, and this is mapped and stored in the reference impedance memory 92.
  • control device 7 compares the FC temperature detected by the temperature sensor 47 (hereinafter referred to as a detected FC temperature) with the reference FC temperature stored in the reference FC temperature memory 91.
  • the reference FC temperature Tth is a reference value for determining whether or not the fuel cell 2 permits low-efficiency power generation, and is obtained in advance through experiments or the like. Specifically, an FC temperature for determining whether or not low-efficiency power generation is permitted is obtained by experiment or the like, and this is mapped and stored in the reference FC temperature memory 91.
  • a memory reference FC temperature memory 91, reference impedance memory 92, reference scavenging air amount memory 93
  • the remaining water amount Vw data stored in the memory calculated at the previous scavenging may be used.
  • Z0 in Formula 1 room temperature impedance
  • [Formula 2] Room temperature impedance Z0 A * (Te ⁇ B) * (Ze ⁇ C) + C Can be obtained.
  • A, B, C, D, E, F, and G are constants that vary depending on the system.
  • the remaining water amount Vw can also be calculated from the following mathematical formula 3 using the scavenging air amount Fe.
  • Pe is the saturated water vapor pressure at the temperature Te, and J and H are constants that vary depending on the system.
  • Residual water amount V2 determined from the amount of scavenging air JH * ⁇ (Fe * Pe)
  • Step SP2 it is determined whether or not the vehicle 100 can travel, whether or not rapid warm-up is necessary, and whether or not the cooling water (FCC) is non-circulated during rapid warm-up.
  • I, II, and III zones are set in a graph in which the vertical axis indicates the FC temperature at start-up and the horizontal axis indicates the remaining water amount Vw, and the remaining water amount Vw and the FC temperature at start-up Whether or not the vehicle 100 is allowed to travel is determined depending on which zone the combination of is located (see FIG. 4).
  • the control device 7 is able to travel the vehicle 100. Further, it is determined that rapid warm-up while circulating the cooling water (FCC) is possible (step SP3). In addition, in the case of the zone III where the FC temperature at start-up is low and the remaining water amount Vw is large (wet), the control device 7 circulates the cooling water while the vehicle 100 is stopped (cannot travel). It is determined that the rapid warm-up is performed without making it (step SP5).
  • control device 7 indicates that the vehicle 100 is in a stopped state (cannot travel). Therefore, it is determined that rapid warm-up is performed while circulating the cooling water (step SP4).
  • the warm-up process when the zone corresponds to the II zone is performed, and then the processing corresponding to the I zone is performed. . That is, in the case of the present embodiment targeting the fuel cell system 1 mounted on the vehicle 100, since the system is started in a stopped state, it is determined that the vehicle can travel in the I zone. Even in this case, first, warm-up processing in a stopped state is performed as in the case of the II zone, and thereafter, the processing shifts to processing corresponding to the I zone (see FIG. 3).
  • the convenience and durability of the fuel cell system 1 are simultaneously improved by zoning the relationship between the FC temperature and the remaining water amount Vw when the fuel cell system 1 is started. I am going to do that. That is, when rapid warm-up is performed in the system 1, rapid warm-up is performed only in a case where it corresponds to the above-described zone III, and the coolant is not circulated (that is, no circulation is performed). ) Since the frequency of rapid warm-up under the circumstances is suppressed, it is possible to suppress deterioration of durability due to heat concentration.
  • the kind of rapid warm-up mode corresponding to the number of zones is set in advance and it is sufficient to determine which rapid warm-up is to be performed according to the relationship between the FC temperature and the remaining water amount Vw, particularly at the time of system startup Convenience is high. More specifically, first, in the case of the I zone with the highest frequency, the vehicle is ready to run immediately, and it is not necessary to wait for the user such as a driver, so that the usability does not deteriorate. Conversely, the zone III is infrequent, but if applicable, the cooling water circulation is stopped and warmed up rapidly to minimize the time that the user waits under severe cold. In addition, stopping the circulation of the cooling water as necessary and quickly warming up also eases the driver's anxiety. Further, in the case of the II zone, there is an effect that the time for the user to wait by the rapid warm-up is shortened, and the durability deterioration of the fuel cell 2 is suppressed by performing the rapid warm-up while circulating the cooling water.
  • ⁇ Second Embodiment> In the first embodiment described above, three zones (regions) are set in the graph of the FC temperature and the residual water amount Vw, but other zones may be used.
  • four zones (regions) I to IV are set in a graph in which the vertical axis indicates the FC temperature at start-up and the horizontal axis indicates the remaining water amount Vw, and the remaining water amount Vw and the FC temperature at start-up Whether the vehicle 100 is allowed to travel or the like is determined depending on which zone the combination of is located (see FIGS. 5 and 6).
  • the temperature (FC temperature) Te, impedance Ze, and scavenging air amount Fe of the fuel cell 2 at the end of the previous operation of the fuel cell system 1 are stored in memory (reference FC temperature memory 91, reference impedance memory 92, reference scavenging air amount memory). 93).
  • memory reference FC temperature memory 91, reference impedance memory 92, reference scavenging air amount memory. 93).
  • each data stored in the memories 91 to 93 is read, and the remaining water amount Vw of the fuel cell 2 is calculated based on these data (step SP11).
  • the remaining water amount Vw is calculated by calculating the remaining water amount V1 obtained from the impedance and the remaining water amount V2 obtained from the scavenging air amount based on the mathematical expressions 1 to 3, and selecting the larger value. Obtainable.
  • Step SP12 it is determined from the remaining water amount Vw and the FC temperature at the time of starting whether the vehicle 100 can travel, whether or not rapid warm-up is necessary, and whether or not the cooling water (FCC) is non-circulated during rapid warm-up.
  • zones I, II, III, and IV zones I, II, III, and IV (zones) are set in a graph in which the vertical axis indicates the FC temperature at the start and the horizontal axis indicates the remaining water amount Vw. Whether or not the vehicle 100 is allowed to travel is determined depending on which zone the combination with the FC temperature is located in.
  • the control device 7 is capable of running the vehicle 100 and needs rapid warm-up. It is determined that there is not (step SP13).
  • the control device 7 circulates the cooling water while the vehicle 100 is stopped (cannot travel). It is determined that the rapid warm-up is performed without making it (step SP16).
  • the control device 7 can drive the vehicle 100 but needs to be quickly warmed up. (Step SP14). In this case, the rapid warm-up is performed while circulating the cooling water. Further, when the FC temperature and the remaining water amount Vw at the start correspond to the III zone between the II zone and the IV zone, the control device 7 needs to rapidly warm up when the vehicle 100 is stopped (cannot run). Is determined (step SP15). The rapid warm-up in this case is also performed while circulating the cooling water.
  • the zone when it is determined that the zone corresponds to the I zone or the II zone, first, warm-up processing is performed when the zone corresponds to the III zone, and then the processing corresponding to the II zone, and further according to the situation.
  • the system is started while the vehicle is stopped. Even if it is determined that the vehicle can be driven, the warm-up process in the stopped state is first performed as in the case of the III zone, and then the II zone and, in some cases, the I zone are handled. The process proceeds (see FIG. 3). Note that the I zone, the II zone, and the III zone may be distinguished in this way from the beginning.
  • a substantially elliptical zone is set in the graph of the FC temperature and the remaining water amount Vw (see FIGS. 4 and 6), but the zone may have other shapes. it can.
  • the two zones for example, a curve of an inversely proportional graph or a curve approximated to a hyperbola
  • the zone is divided into three zones, a zone III with a low residual water amount Vw (wet) and zone II between the two zones (see FIG. 7).
  • the calculation of the remaining water amount Vw, whether or not the vehicle 100 can travel, whether or not rapid warm-up is necessary, and whether or not the cooling water (FCC) is not circulated during rapid warm-up are the same as in the first embodiment. The same can be done.
  • the three zones (for example, a curve of an inversely proportional graph or a curve approximated to a hyperbola) have a high start-up FC temperature and a small residual water amount Vw (dry) I zone, and a low start-up FC temperature.
  • the zone is divided into four zones, that is, the IV zone having a large amount of residual water Vw (wet), the II zone located between the two zones, and the III zone (see FIG. 8).
  • the calculation of the remaining water amount Vw, whether or not the vehicle 100 can travel, whether or not rapid warm-up is necessary, and whether or not the cooling water (FCC) is not circulated during rapid warm-up are the same as in the second embodiment. It can be carried out.
  • the present invention when the fuel cell system is started below the freezing point, it is possible to suppress deterioration in durability due to heat concentration while performing rapid warm-up operation as necessary. Therefore, the present invention can be widely used in fuel cell systems having such requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 燃料電池システムを氷点下で始動させる際、必要に応じて急速暖機運転を行いつつ、熱集中による耐久性の劣化を抑える。これを実現するため、当該システムの前回運転の運転終了条件、始動時温度等のデータ、あるいは前回掃気時における生成水の残水量をメモリに記憶しておき、当該システムの始動時に該メモリから読み出したデータに基づき生成水の残水量を算出し、該残水量と始動時温度より、当該システムの急速暖機の要否の判断、および急速暖機が必要な場合に冷却水を無循環で始動させるかどうかの判断を行い、該判断手段による判断結果に基づき、冷却水を循環させながら又は循環させずに、燃料電池に供給される反応ガスが通常発電時に比して少なく尚かつ通常発電に比して電力損失が大きい低効率発電を実行する。データは、例えば、当該燃料電池の前回運転終了時のインピーダンスZe、該燃料電池の温度Te、掃気エア量Feである。

Description

燃料電池システムおよび該システムにおける始動時制御方法
 本発明は、燃料電池システムおよび該システムにおける始動時制御方法に関する。さらに詳述すると、本発明は、燃料電池システムの低温時における始動性の改良に関する。
 燃料電池システムを始動させる際、燃料電池スタックの温度が水の凍結温度以下(氷点下)であることが検出された場合、通常始動用の制御マップを氷点下始動用制御マップに変更し、該氷点下始動用制御マップに沿って燃料電池システムを始動させることが行われている。その後、燃料電池スタックの温度が凍結温度を超過していることが検出されれば、氷点下始動用制御マップを通常始動用制御マップに変更し、上記通常始動用制御マップに沿って上記燃料電池スタックの始動が行われる。この際、燃料電池の生成水の残水量に基づいて始動方法が変更される場合もある(例えば特許文献1参照)。
 また、このように燃料電池システムを氷点下で始動させる際、発電部位を急速に昇温させ氷点下温度を突破させる急速暖機運転を実施して始動性を向上させるという技術がある。その手法としては、例えば、燃料電池スタック暖機完了前は、燃料電池スタック入口の冷却水圧力を、燃料電池システムを定常状態で運転する際に用いる圧力よりも低く制御し、燃料電池スタック暖機完了後は、燃料電池スタック入口の冷却水圧力を定常状態で運転する際に用いる圧力に制御するというものがある。
 また、寒冷地で燃料電池を起動する際に燃料電池内部で生成水が凍結するのを防止する技術として、温度センサが燃料電池の内部温度を検出するものがある。この場合、燃料電池の内部温度が0℃以下のときには、冷却水ポンプは停止状態となるよう制御され、0℃を超えるときには、内部温度が上昇するのに応じてその駆動量が増加する(特許文献2参照)。
特開2008-147139号公報 特開2003-36874号公報
 しかしながら、上述のように冷却水を循環させずに始動させる手法の場合、熱集中による耐久性の劣化ないし悪化が懸念されることから、なるべく頻度を減らすことが望ましい。
 そこで、本発明は、氷点下で始動させる際、必要に応じて急速暖機運転を行いつつ、熱集中による耐久性の劣化を抑えるようにした燃料電池システムおよび該システムにおける始動時制御方法を提供することを目的とする。
 かかる課題を解決するべく本発明者は種々の検討を行った。燃料電池の耐久性劣化を抑えるためには、氷点下における急速暖機運転の実施回数を減らすことが望ましい。反面、氷点下の状況で始動までに時間を要するのでは使用の実情に沿うことができない。この点、上述した従来手法では、燃料電池スタックの温度が水の凍結温度以下である場合に氷点下始動のマップを切り換える手法が開示されているが、スタックの耐久性を考慮した本発明者は、氷点下でも暖機運転の方法を切り換えることに着目し、種々の検討を重ねた結果、課題の解決に結び付く新たな知見を得るに至った。
 本発明はかかる知見に基づくものであり、燃料電池を含み、氷点下での始動時、冷却水の循環を止めて急速に暖機する急速暖機運転を必要に応じて実施する燃料電池システムであって、当該システムの前回運転の運転終了条件、始動時温度等のデータ、あるいは前回掃気時に算出した当該燃料電池における生成水の残水量を記憶するメモリと、当該システムの始動時に該メモリから読み出したデータに基づき生成水の残水量を算出し、該残水量と始動時温度より、当該システムの急速暖機の要否の判断、および急速暖機が必要な場合に冷却水を無循環で始動させるかどうかの判断を行う判断手段と、該判断手段による判断結果に基づき、冷却水を循環させながら又は循環させずに、燃料電池に供給される反応ガスが通常発電時に比して少なく尚かつ通常発電に比して電力損失が大きい低効率発電を実行する発電制御手段と、を有している。データは、例えば、当該燃料電池の前回運転終了時のインピーダンス、該燃料電池の温度、掃気エア量である。なお、本明細書でいう掃気エア量とは、前回運転終了後、(例えば車両のドライバーによる)イグニッションスイッチのOFF操作時に燃料電池スタックの中の水を排出するために流すエア量のことである。
 この燃料電池システムにおいては、前回の運転終了条件、始動時温度等より、冷却水を循環させるかどうかの判断を行う。この判断を経ることにより、常に冷却水を循環させないばかりでなく、状況に応じて冷却水を循環させつつ急速暖機運転を行うことができるようになる。したがって、冷却水無循環での始動回数を抑制することが可能となる。
 燃料電池システムにおける判断手段は、燃料電池のインピーダンスを測定するインピーダンス測定機能と、燃料電池の関連温度を測定する関連温度測定機能とを備え、インピーダンスの測定結果および関連温度の測定結果を含むデータに基づき生成水の残水量を算出するものであることが好ましい。
 また、本発明は、燃料電池車に搭載された燃料電池システムであって、氷点下での始動時、当該燃料電池車が走行可能かどうかの判断を判断手段によって行うものであることも好ましい。
 また、当該燃料電池の始動時温度‐生成水の残水量(Vw)のグラフを複数のゾーンに分け、当該燃料電池の始動時における始動時温度と残水量とが複数のゾーンのいずれに属するかに応じて冷却水を無循環で始動させるかどうかを判断することが好ましい。
 さらに、当該燃料電池の始動時温度‐生成水の残水量(Vw)のグラフを複数のゾーンに分け、当該燃料電池の始動時における始動時温度と残水量の関係に応じて冷却水を無循環で始動させるかどうか、および当該燃料電池車が暖機運転なしで走行可能かどうかを判断することも好ましい。
 また、燃料電池の始動時温度‐生成水の残水量(Vw)のグラフとして、曲線によって閉じられた空間により複数のゾーンに分けられたものが用いられることも好ましい。
 あるいは、燃料電池の始動時温度‐生成水の残水量(Vw)のグラフとして、反比例グラフの曲線ないしは双曲線に近似した2ないしは3の曲線により複数のゾーンに分けられたものが用いられることも好ましい。
 また、本発明にかかる制御方法は、氷点下での始動時、冷却水の循環を止めて急速に暖機する急速暖機運転を必要に応じて実施する燃料電池システムにおける始動時制御方法であって、当該システムの前回運転の運転終了条件、始動時温度等のデータ、あるいは前回掃気時に算出した当該燃料電池における生成水の残水量をメモリに記憶しておき、当該システムの始動時に該メモリから読み出したデータに基づき生成水の残水量を算出し、該残水量と始動時温度より、当該システムの急速暖機の要否の判断、および急速暖機が必要な場合に冷却水を無循環で始動させるかどうかの判断を行い、該判断手段による判断結果に基づき、冷却水を循環させながら又は循環させずに、燃料電池に供給される反応ガスが通常発電時に比して少なく尚かつ通常発電に比して電力損失が大きい低効率発電を実行するというものである。
 本発明によれば、燃料電池システムを氷点下で始動させる際、熱集中による耐久性の劣化を抑えつつ必要に応じて急速暖機運転することが可能である。
本発明の一実施形態に係る燃料電池システムの構成図である。 燃料電池の出力電流(FC電流)と出力電圧(FC電圧)との関係を示す図である。 本発明の第1の実施形態におけるシステム始動時の制御方法を示すフローチャートである。 縦軸が始動時の燃料電池の内部温度(FC温度)、横軸が残水量Vwを表すグラフであって、一例としてI,II,IIIの3つのゾーンが設定されたものを示す図である。 本発明の第2の実施形態におけるシステム始動時の制御方法を示すフローチャートである。 始動時FC温度‐残水量Vwのグラフであって、一例としてI~IVの4つのゾーンが設定されたものを示す図である。 本発明の第3の実施形態における始動時FC温度‐残水量VwのグラフであってI~IIIの3つのゾーンが設定されたものを示す図である。 本発明の第4の実施形態における始動時FC温度‐残水量VwのグラフであってI~IVの4つのゾーンが設定されたものを示す図である。
 以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。
 図1は、本実施形態における燃料電池システム1の構成図である。燃料電池システム1は、燃料電池自動車(FCHV)、電気自動車、ハイブリッド自動車などの車両100に搭載できる。ただし、燃料電池システム1は、車両100以外の各種移動体(例えば、船舶や飛行機、ロボット等)や定置型電源、さらには携帯型燃料電池システムにも適用可能である。
 燃料電池システム1は、燃料電池2と、酸化ガスとしての空気を燃料電池2に供給する酸化ガス配管系3と、燃料ガスとしての水素ガスを燃料電池2に供給する燃料ガス配管系4と、燃料電池2に冷媒を供給する冷媒配管系5と、システム1の電力を充放電する電力系6と、システム1の運転を統括制御する制御装置7と、を備える。酸化ガス及び燃料ガスは、反応ガスと総称できる。
 燃料電池2は、例えば固体高分子電解質型燃料電池で構成され、多数の単セルを積層したスタック構造となっている。単セルは、プロトン導電性を有する固体高分子膜を電解質層に備えており、電解質の一方の面に空気極(カソード)を有し、他方の面に燃料極(アノード)を有し、さらに空気極及び燃料極を両側から挟みこむように一対のセパレータを有する。一方のセパレータの酸化ガス流路2aに酸化ガスが供給され、他方のセパレータの燃料ガス流路2bに燃料ガスが供給される。供給された燃料ガス及び酸化ガスの電気化学反応により、燃料電池2は電力を発生する。
 酸化ガス配管系3は、燃料電池2に供給される酸化ガスが流れる供給路11と、燃料電池2から排出された酸化オフガスが流れる排出路12と、を有する。供給路11は、酸化ガス流路2aを介して排出路12に連通する。酸化オフガスは、燃料電池2の電池反応により生成された水分を含むため高湿潤状態となっている。
 供給路11には、エアクリーナ13を介して外気を取り込むコンプレッサ14と、コンプレッサ14により燃料電池2に圧送される酸化ガスを加湿する加湿器15と、が設けられる。加湿器15は、供給路11を流れる低湿潤状態の酸化ガスと、排出路12を流れる高湿潤状態の酸化オフガスとの間で水分交換を行い、燃料電池2に供給される酸化ガスを適度に加湿する。
 燃料電池2の空気極側の背圧は、カソード出口付近の排出路12に配設された背圧調整弁16によって調整される。背圧調整弁16の近傍には、排出路12内の圧力を検出する圧力センサP1が設けられる。酸化オフガスは、背圧調整弁16及び加湿器15を経て最終的に排ガスとしてシステム外の大気中に排気される。
 燃料ガス配管系4は、水素供給源21と、水素供給源21から燃料電池2に供給される水素ガスが流れる供給路22と、燃料電池2から排出された水素オフガス(燃料オフガス)を供給路22の合流点Aに戻すための循環路23と、循環路23内の水素オフガスを供給路22に圧送するポンプ24と、循環路23に分岐接続されたパージ路25と、を有する。元弁26を開くことで水素供給源21から供給路22に流出した水素ガスは、調圧弁27その他の減圧弁、及び遮断弁28を経て、燃料電池2に供給される。パージ路25には、水素オフガスを水素希釈器(図示省略)に排出するためのパージ弁33が設けられる。
 冷媒配管系(冷却機構)5は、燃料電池2内の冷却流路2cに連通する冷媒流路41と、冷媒流路41に設けられた冷却ポンプ42と、燃料電池2から排出される冷媒を冷却するラジエータ43と、ラジエータ43をバイパスするバイパス流路44と、ラジエータ43及びバイパス流路44への冷却水の通流を設定する切替え弁45と、を有する。冷媒流路41は、燃料電池2の冷媒入口の近傍に設けられた温度センサ46と、燃料電池2の冷媒出口の近傍に設けられた温度センサ47と、を有する。温度センサ47が検出する冷媒温度(燃料電池の関連温度)は、燃料電池2の内部温度(以下、FC温度という。)を反映する。なお、温度センサ47は、冷媒温度の代わりに(あるいは加えて)、燃料電池周辺の部品温度(燃料電池の関連温度)や燃料電池周辺の外気温度(燃料電池の関連温度)を検出するようにしても良い。また、燃料電池の冷却ポンプ42は、モータ駆動により、冷媒流路41内の冷媒を燃料電池2に循環供給する。
 電力系6は、高圧DC/DCコンバータ61、バッテリ62、トラクションインバータ63、トラクションモータ64、及び各種の補機インバータ65,66,67を備えている。高圧DC/DCコンバータ61は、直流の電圧変換器であり、バッテリ62から入力された直流電圧を調整してトラクションインバータ63側に出力する機能と、燃料電池2又はトラクションモータ64から入力された直流電圧を調整してバッテリ62に出力する機能と、を有する。高圧DC/DCコンバータ61のこれらの機能により、バッテリ62の充放電が実現される。また、高圧DC/DCコンバータ61により、燃料電池2の出力電圧が制御される。
 バッテリ(蓄電器)62は、充放電可能な二次電池であり、例えばニッケル水素バッテリなどにより構成されている。その他、種々のタイプの二次電池を適用することができる。また、バッテリ62に代えて、二次電池以外の充放電可能な蓄電器、例えばキャパシタを用いても良い。
 トラクションインバータ63は、直流電流を三相交流に変換し、トラクションモータ64に供給する。トラクションモータ64は、例えば三相交流モータである。トラクションモータ64は、燃料電池システム1が搭載される例えば車両100の主動力源を構成し、車両100の車輪101L,101Rに連結される。補機インバータ65、66、67は、それぞれ、コンプレッサ14、ポンプ24、冷却ポンプ42のモータの駆動を制御する。
 制御装置7は、内部にCPU,ROM,RAMを備えたマイクロコンピュータとして構成される。CPUは、制御プラグラムに従って所望の演算を実行して、通常運転の制御及び後述する暖機運転の制御など、種々の処理や制御を行う。ROMは、CPUで処理する制御プログラムや制御データを記憶する。RAMは、主として制御処理のための各種作業領域として使用される。
 タイマー70、電圧センサ72及び電流センサ73は、制御装置7に接続される。タイマー70は、燃料電池システム1の運転を制御するために必要な各種の時間を計測する。電圧センサ72は、燃料電池2の出力電圧(FC電圧)を検出する。具体的には、電圧センサ72は、燃料電池2の多数の単セルの個々が発電する電圧(以下、「セル電圧」という。)を検出する。これにより、燃料電池2の各単セルの状態が把握される。電流センサ73は、燃料電池2の出力電流(FC電流)を検出する。
 制御装置7は、各種の圧力センサP1や温度センサ46、47、並びに車両100のアクセル開度を検出するアクセル開度センサなど、各種センサからの検出信号を入力し、各構成要素(コンプレッサ14、背圧調整弁16など)に制御信号を出力する。また、制御装置7は、所定のタイミングで燃料電池2の水分状態の診断等を行い、診断結果に基づき燃料電池2の水分制御を行う。
 本実施形態では、燃料電池システム1の始動時、必要に応じて低効率発電を実施し、燃料電池2に供給される反応ガスが通常発電時に比して少なく尚かつ通常発電に比して電力損失が大きくなるようにし、これによって急速暖機を行うようにしている。ここで、低効率発電と通常発電の相違について説明すると以下のとおりである(図2参照)。
 図2は、燃料電池の出力電流(FC電流)と出力電圧(FC電圧)との関係を示す図であり、通常発電を行った場合が実線で示され、低効率発電を行った場合が点線で示されている。なお、横軸はFC電流、縦軸はFC電圧をあらわしている。
 ここで、低効率発電とは、燃料電池2に供給される反応ガス(本実施形態では、酸化ガス)が通常発電時に比して少なく、かつ通常発電に比して電力損失が大きい発電をいい、例えばエアストイキ比を1.0付近(理論値)に絞った状態で燃料電池2を運転する(図2の点線部分参照)。このように、電力損失を大きく設定することで、燃料電池2を急速暖機することが可能となる。一方、通常発電の際には、電力損失を抑えて高い発電効率が得られるように、例えばエアストイキ比を2.0以上(理論値)に設定した状態で燃料電池2を運転する(図2の実線部分参照)。制御装置7は、必要に応じ、燃料電池2に供給される反応ガスが通常発電時に比して少なく尚かつ通常発電に比して電力損失が大きい低効率発電を実行する発電制御手段として機能する。
 次に、インピーダンス測定等について説明しておく。
 まず、制御装置7は、燃料電池2の水分状態を診断すべきタイミング(以下、診断タイミング)が到来したか否かを判断する。診断タイミングは、例えば燃料電池システム1の運転終了時や始動時である。本実施形態の制御装置7は、例えば車両100のドライバーによるイグニッションスイッチのOFF操作等によって、燃料電池システム1の運転終了指令が入力されたことを検知し、診断タイミングが到来したと判断する。
 制御装置(インピーダンス測定手段)7は、燃料電池2のインピーダンス測定を行い、測定結果に基づき燃料電池2の水分状態を診断する。本実施形態の制御装置(インピーダンス測定手段)7は、電圧センサ72によって検出されるFC電圧及び電流センサ73によって検出されるFC電流を所定のサンプリングレートでサンプリングし、フーリエ変換処理(FFT演算処理やDFT演算処理)などを施す。そして、制御装置(インピーダンス測定手段)7は、フーリエ変換処理後のFC電圧信号をフーリエ変換処理後のFC電流信号で除するなどして燃料電池2のインピーダンスを測定する。
 そして、制御装置7は、基準インピーダンスメモリ92に格納されている基準インピーダンスIPthを読み出し、読み出した基準インピーダンスIPthと測定したインピーダンス(以下、測定インピーダンス)とを比較する。
 ここで、基準インピーダンスIPthは、燃料電池2が乾燥状態にあるか否かを判断するための基準値であり、予め実験などによって求められる。具体的には、実験などによって燃料電池2が乾燥状態にあるか否かを判断するためのインピーダンスを求め、これをマップ化して基準インピーダンスメモリ92に格納しておく。
 また、制御装置7は、温度センサ47によって検知されるFC温度(以下、検知FC温度という)と、基準FC温度メモリ91に格納されている基準FC温度とを比較する。ここで、基準FC温度Tthは、燃料電池2が低効率発電を許可するか否かを判断するための基準値であり、予め実験などによって求められる。具体的には、実験などによって低効率発電を許可するか否かを判断するためのFC温度を求め、これをマップ化して基準FC温度メモリ91に格納しておく。
 次に、本実施形態の燃料電池システム1における始動時制御の具体例を示す(図3~図8参照)。
<第1の実施形態>
 まず、この燃料電池システム1においては、当該システムの前回運転終了時の燃料電池2の温度(FC温度)Te、インピーダンスZe、掃気エア量(前回運転終了後、例えば車両のドライバーによるイグニッションスイッチのOFF操作時に燃料電池スタックの中の水を排出するために流すエア量)Feをメモリ(基準FC温度メモリ91、基準インピーダンスメモリ92、基準掃気エア量メモリ93)に記憶しておき、いつでも読み出せるようにしている。燃料電池システム1の始動時には、これらメモリ91~93に記憶されている各データを読み出し、これらデータに基づいて燃料電池2の残水量Vwを算出する(ステップSP1)。残水量Vwは、前回の掃気時に算出してメモリしておいたデータを用いてもよい。あるいは、当該残水量Vwを例えば以下の式によって算出することができる。
[数式1]
   インピーダンスから求められる残水量V1=E/(Z0-F)+G
 ここで、数式1中のZ0は常温インピーダンスであり、
[数式2]
   常温インピーダンスZ0=A*(Te-B)*(Ze-C)+C
によって求めることができる。ただし、A,B,C,D,E,F,Gのそれぞれは、システムによって変化する定数である。
 また、残水量Vwは、掃気エア量Feを用い、下記数式3から算出することもできる。ただし、Peは温度Teでの飽和水蒸気圧、J,Hはシステムによって変化する定数である。
[数式3]
   掃気エア量から求められる残水量V2=J-H*Σ(Fe*Pe)
 以上のように数式1および数式3のそれぞれに基づいて2種類の残水量V1,V2を求めたら、Vw=MAX(V1,V2)により残水量Vwを求めることができる。すなわち、上述した2種類の残水量V1,V2のうち大きい方の値を残水量Vwとして扱う。
 続いて、残水量Vwと、始動時のFC温度とから、車両100の走行可否、急速暖機の要否、および急速暖機時に冷却水(FCC)を無循環とするか否かの判断をする(ステップSP2)。本実施形態では、縦軸が始動時のFC温度、横軸が残水量Vwを表すグラフ中にI,II,IIIの各ゾーン(領域)を設定し、残水量Vwと始動時のFC温度との組合せがどのゾーンに位置するかによって車両100の走行可否等を決定している(図4参照)。
 具体的に説明すると、所定範囲内において始動時FC温度が高く、残水量Vwが少ない(ドライである)領域であるIゾーンに該当した場合、制御装置7は、車両100が走行可能であり尚かつ冷却水(FCC)を循環させながらの急速暖機が可能であると判断する(ステップSP3)。また、始動時FC温度が低く、残水量Vwが多い(ウェットである)領域であるIIIゾーンに該当した場合、制御装置7は、車両100は停車状態で(走行不可で)、冷却水を循環させずに急速暖機を行うと判断する(ステップSP5)。さらに、始動時FC温度および残水量VwがこれらIゾーンとIIIゾーンのいずれにも該当せず、これらの間のIIゾーンに該当した場合、制御装置7は、車両100は停車状態で(走行不可で)、冷却水を循環させながらの急速暖機を行うと判断する(ステップSP4)。
 本実施形態の場合、上述のIゾーンでは、車両走行しながらの急速暖機を行う(出力電流(FC電流)と出力電圧(FC電圧)との関係を示す図2(I-V曲線)中において、I-Vポイントが出力側に動きくため暖機が遅れる)。また、IIゾーン、IIIゾーンでは停車状態で急速暖機を行う(暖機で氷点を突破させることが可能である)。
 なお、本実施形態では、Iゾーンに該当するとの判断がなされた場合にも、まずはIIゾーンに該当した場合の暖機処理を行い、その後、Iゾーンに対応する処理に移行するようにしている。すなわち、車両100に搭載された燃料電池システム1を対象としている本実施形態の場合、停車状態でシステム始動が行われることになるため、Iゾーンに該当して走行可能だとの判断がなされた場合にも、まずはIIゾーンに該当した場合のように停車状態での暖機処理を行い、その後、Iゾーンに対応する処理に移行する(図3参照)。
 このように、本実施形態では、燃料電池システム1の始動時におけるFC温度と残水量Vwとの関係をゾーン分けしておくことにより、当該燃料電池システム1の利便性と耐久性を同時に向上させることとしている。すなわち、当該システム1において急速暖機を行う際、上述のIIIゾーンに該当したような場合のみ冷却水無循環の状態下で急速暖機を行うようにし、冷却水を循環させない(つまり無循環の)状況下での急速暖機の実施頻度を抑えているので、熱集中により耐久性が劣化するのを抑えることができる。
 また、ゾーンの数に応じた種類の急速暖機態様をあらかじめ設定しておき、FC温度と残水量Vwとの関係に応じていずれの急速暖機を行うか決定すればよいため特にシステム始動時における利便性が高い。より具体的に説明すると、まずはもっとも頻度が高いIゾーンの場合、すぐに走行可能状態となり、ドライバー等のユーザーを待たせずに済むためユーザビリティが悪化するようなことがない。逆に、IIIゾーンは頻度が低いものであるが、該当した場合には冷却水の循環を止めて急速に暖機することとし、厳寒下でユーザーが待つ時間を極力少なくする。また、このように必要に応じて冷却水の循環を止めて急速暖機することは当該ドライバー等の不安面を和らげることにもなる。さらに、IIゾーンの場合、急速暖機によりユーザーが待つ時間を短縮するとともに、冷却水を循環させながら急速暖機を行うことにより燃料電池2の耐久性劣化を抑えるという効果がある。
<第2の実施形態>
 上述した第1の実施形態ではFC温度と残水量Vwとのグラフ中に3つのゾーン(領域)を設定したが、これ以外の数のゾーンとしてもよい。例えば本実施形態では、縦軸が始動時のFC温度、横軸が残水量Vwを表すグラフ中にI~IVの4つのゾーン(領域)を設定し、残水量Vwと始動時のFC温度との組合せがどのゾーンに位置するかによって車両100の走行可否等を決定する(図5、図6参照)。
 まず、当該燃料電池システム1の前回運転終了時の燃料電池2の温度(FC温度)Te、インピーダンスZe、掃気エア量Feをメモリ(基準FC温度メモリ91、基準インピーダンスメモリ92、基準掃気エア量メモリ93)に記憶しておく。燃料電池システム1の始動時には、これらメモリ91~93に記憶されている各データを読み出し、これらデータに基づいて燃料電池2の残水量Vwを算出する(ステップSP11)。残水量Vwは、上述した実施形態と同様、数式1~3に基づいてインピーダンスから求められる残水量V1と掃気エア量から求められる残水量V2とを算出し、大きい方の値を選択することによって得ることができる。
 その後、残水量Vwと、始動時のFC温度とから、車両100の走行可否、急速暖機の要否、および急速暖機時に冷却水(FCC)を無循環とするか否かの判断をする(ステップSP12)。本実施形態では、縦軸が始動時のFC温度、横軸が残水量Vwを表すグラフ中にI,II,III,IVの各ゾーン(領域)を設定してあり、残水量Vwと始動時のFC温度との組合せがどのゾーンに位置するかによって車両100の走行可否等を決定している。
 具体的に説明すると、始動時FC温度が高く、残水量Vwが少ない(ドライである)領域であるIゾーンに該当した場合、制御装置7は、車両100が走行可能であり急速暖機の必要はないと判断する(ステップSP13)。一方、始動時FC温度が低く、残水量Vwが多い(ウェットである)領域であるIVゾーンに該当した場合、制御装置7は、車両100は停車状態で(走行不可で)、冷却水を循環させずに急速暖機を行うと判断する(ステップSP16)。また、始動時FC温度と残水量Vwが、IゾーンとIVゾーンの間でIゾーン寄りであるIIゾーンに該当した場合、制御装置7は、車両100が走行可能であるが急速暖機の必要があると判断する(ステップSP14)。この場合の急速暖機は冷却水を循環させながら行うものである。さらに、始動時FC温度と残水量Vwが該IIゾーンとIVゾーンの間のIIIゾーンに該当した場合、制御装置7は、車両100は停車状態で(走行不可で)急速暖機の必要があると判断する(ステップSP15)。この場合の急速暖機も冷却水を循環させながら行うものである。
 なお、本実施形態においては、IゾーンまたはIIゾーンに該当するとの判断がなされた場合、まずはIIIゾーンに該当した場合の暖機処理を行い、その後、IIゾーンに対応する処理、さらに状況に応じてIゾーンに対応する処理に移行する。これは、上述した第1の実施形態と同様、車両100に搭載された燃料電池システム1を対象としている本実施形態では、停車状態でシステム始動が行われることになるため、IゾーンまたはIIゾーンに該当して走行可能だとの判断がなされた場合にも、まずはIIIゾーンに該当した場合のように停車状態での暖機処理を行い、その後、IIゾーン、場合によってはIゾーンに対応する処理に移行する(図3参照)。なお、Iゾーン、IIゾーン、IIIゾーンは最初からこのように区別しておいてよい。
<第3の実施形態>
 上述した第1、第2の実施形態ではFC温度と残水量Vwとのグラフ中に略楕円形状のゾーンを設定したが(図4、図6参照)、ゾーンの形状をこれ以外とすることもできる。例えば本実施形態では、2本の曲線(例えば、反比例グラフの曲線ないしは双曲線に近似した曲線)によって、始動時FC温度が高く残水量Vwが少ない(ドライである)Iゾーン、始動時FC温度が低く残水量Vwが多い(ウェットである)IIIゾーン、両ゾーンの中間であるIIゾーンの3つのゾーンに区切っている(図7参照)。なお、残水量Vwの算出や、車両100の走行可否、急速暖機の要否、および急速暖機時に冷却水(FCC)を無循環とするか否かの判断は、第1の実施形態と同様に行うことができる。
<第4の実施形態>
 本実施形態では、3本の曲線(例えば、反比例グラフの曲線ないしは双曲線に近似した曲線)によって、始動時FC温度が高く残水量Vwが少ない(ドライである)Iゾーン、始動時FC温度が低く残水量Vwが多い(ウェットである)IVゾーン、両ゾーンの間に位置するIIゾーンおよびIIIゾーンの4つのゾーンに区切っている(図8参照)。残水量Vwの算出や、車両100の走行可否、急速暖機の要否、および急速暖機時に冷却水(FCC)を無循環とするか否かの判断は、第2の実施形態と同様に行うことができる。
 なお、上述した実施形態は本発明の好適な実施例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。
 本発明によれば、氷点下で燃料電池システムを始動させる際、必要に応じて急速暖機運転を行いつつ、熱集中による耐久性の劣化を抑えることができる。よって、本発明は、そのような要求のある燃料電池システムにおいて広く利用することができる。
1…燃料電池システム、2…燃料電池、7…制御装置(判断手段、発電制御手段)、91…基準FC温度メモリ(メモリ)、92…基準インピーダンスメモリ(メモリ)、93…基準掃気エア量メモリ(メモリ)、100…車両、Fe…掃気エア量、Te…前回終了時の燃料電池の温度、Vw…残水量

Claims (9)

  1.  燃料電池を含み、氷点下での始動時、冷却水の循環を止めて急速に暖機する急速暖機運転を必要に応じて実施する燃料電池システムであって、
     当該システムの前回運転の運転終了条件、始動時温度等のデータ、あるいは前回掃気時に算出した当該燃料電池における生成水の残水量を記憶するメモリと、
     当該システムの始動時に該メモリから読み出したデータに基づき前記生成水の残水量を算出し、該残水量と始動時温度より、当該システムの急速暖機の要否の判断、および急速暖機が必要な場合に前記冷却水を無循環で始動させるかどうかの判断を行う判断手段と、
     該判断手段による判断結果に基づき、前記冷却水を循環させながら又は循環させずに、前記燃料電池に供給される反応ガスが通常発電時に比して少なく尚かつ前記通常発電に比して電力損失が大きい低効率発電を実行する発電制御手段と、
    を有することを特徴とする燃料電池システム。
  2.  前記判断手段は、前記燃料電池のインピーダンスを測定するインピーダンス測定機能と、前記燃料電池の関連温度を測定する関連温度測定機能とを備え、前記インピーダンスの測定結果および前記関連温度の測定結果を含むデータに基づき前記生成水の残水量を算出する、請求項1に記載の燃料電池システム。
  3.  前記データは、当該燃料電池の前回運転終了時のインピーダンス、該燃料電池の温度、掃気エア量である、請求項2に記載の燃料電池システム。
  4.  燃料電池車に搭載された燃料電池システムであって、氷点下での始動時、当該燃料電池車が走行可能かどうかの判断を前記判断手段によって行う、請求項1から3のいずれか一項に記載の燃料電池システム。
  5.  当該燃料電池の始動時温度‐前記生成水の残水量(Vw)のグラフを複数のゾーンに分け、当該燃料電池の始動時における前記始動時温度と前記残水量とが前記複数のゾーンのいずれに属するかに応じて前記冷却水を無循環で始動させるかどうかを判断する、請求項4に記載の燃料電池システム。
  6.  当該燃料電池の始動時温度‐前記生成水の残水量(Vw)のグラフを複数のゾーンに分け、当該燃料電池の始動時における前記始動時温度と前記残水量の関係に応じて前記冷却水を無循環で始動させるかどうか、および当該燃料電池車が暖機運転なしで走行可能かどうかを判断する、請求項4に記載の燃料電池システム。
  7.  前記燃料電池の始動時温度‐前記生成水の残水量(Vw)のグラフとして、曲線によって閉じられた空間により複数のゾーンに分けられたものが用いられる、請求項5または6に記載の燃料電池システム。
  8.  前記燃料電池の始動時温度‐前記生成水の残水量(Vw)のグラフとして、反比例グラフの曲線ないしは双曲線に近似した2ないしは3の曲線により複数のゾーンに分けられたものが用いられる、請求項5または6に記載の燃料電池システム。
  9.  氷点下での始動時、冷却水の循環を止めて急速に暖機する急速暖機運転を必要に応じて実施する燃料電池システムにおける始動時制御方法であって、
     当該システムの前回運転の運転終了条件、始動時温度等のデータ、あるいは前回掃気時に算出した当該燃料電池における生成水の残水量をメモリに記憶しておき、
     当該システムの始動時に該メモリから読み出したデータに基づき前記生成水の残水量を算出し、該残水量と始動時温度より、当該システムの急速暖機の要否の判断、および急速暖機が必要な場合に前記冷却水を無循環で始動させるかどうかの判断を行い、
     該判断手段による判断結果に基づき、前記冷却水を循環させながら又は循環させずに、前記燃料電池に供給される反応ガスが通常発電時に比して少なく尚かつ前記通常発電に比して電力損失が大きい低効率発電を実行する、燃料電池システムにおける始動時制御方法。
PCT/JP2010/051055 2009-02-10 2010-01-27 燃料電池システムおよび該システムにおける始動時制御方法 WO2010092871A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112010000819.1T DE112010000819B4 (de) 2009-02-10 2010-01-27 Startsteuerverfahren für ein Brennstoffzellensystem
CN201080007265.4A CN102318116B (zh) 2009-02-10 2010-01-27 燃料电池系统和该系统中的起动时控制方法
US13/148,560 US8524406B2 (en) 2009-02-10 2010-01-27 Fuel cell system and start-up control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-028728 2009-02-10
JP2009028728A JP4962919B2 (ja) 2009-02-10 2009-02-10 燃料電池システムおよび該システムにおける始動時制御方法

Publications (1)

Publication Number Publication Date
WO2010092871A1 true WO2010092871A1 (ja) 2010-08-19

Family

ID=42561716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051055 WO2010092871A1 (ja) 2009-02-10 2010-01-27 燃料電池システムおよび該システムにおける始動時制御方法

Country Status (5)

Country Link
US (1) US8524406B2 (ja)
JP (1) JP4962919B2 (ja)
CN (1) CN102318116B (ja)
DE (1) DE112010000819B4 (ja)
WO (1) WO2010092871A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520368A (zh) * 2011-12-28 2012-06-27 新源动力股份有限公司 燃料电池电堆零度以下环境快速启动的实验方法
US20140220470A1 (en) * 2011-08-22 2014-08-07 Nissan Motor Co., Ltd. Fuel cell system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5928603B2 (ja) * 2012-10-01 2016-06-01 日産自動車株式会社 燃料電池システム及び制御方法
CA2897291C (en) 2013-01-09 2017-02-28 Nissan Motor Co., Ltd. Fuel cell system with warm-up control and control method therefor
DE102013003512B4 (de) * 2013-03-04 2020-12-10 Wabco Gmbh Spannungsversorgung in einem Bordnetz für einen Verdichter einer Luftversorgungsanlage
JP5790705B2 (ja) 2013-05-17 2015-10-07 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
DE102013017543A1 (de) 2013-10-22 2015-04-23 Daimler Ag Verfahren zur Startvorbereitung eines Brennstoffzellensystems
JP6137122B2 (ja) 2014-11-10 2017-05-31 トヨタ自動車株式会社 燃料電池システムにおける冷却媒体の流量制御方法、および燃料電池システム
JP6222047B2 (ja) 2014-11-10 2017-11-01 トヨタ自動車株式会社 燃料電池の運転制御方法
JP6160983B2 (ja) 2014-11-12 2017-07-12 トヨタ自動車株式会社 燃料電池システム
KR101655611B1 (ko) * 2014-12-12 2016-09-07 현대자동차주식회사 연료전지 시스템의 스택 상태 감지 방법
FR3030894B1 (fr) * 2014-12-19 2016-12-09 Michelin & Cie Procede de pilotage de pile a combustible
FR3030895B1 (fr) 2014-12-19 2017-01-13 Michelin & Cie Systeme a pile a combustible
JP6179560B2 (ja) * 2015-06-26 2017-08-16 トヨタ自動車株式会社 燃料電池システム
JP6361593B2 (ja) 2015-06-26 2018-07-25 トヨタ自動車株式会社 車両および燃料電池システム
JP2020014353A (ja) * 2018-07-20 2020-01-23 トヨタ自動車株式会社 燃料電池車両
JP2020014352A (ja) * 2018-07-20 2020-01-23 トヨタ自動車株式会社 燃料電池車両
DE102019206119A1 (de) * 2019-04-29 2020-10-29 Audi Ag Verfahren zum Starten einer Brennstoffzellenvorrichtung unter Froststartbedingungen sowie Brennstoffzellenvorrichtung und Kraftfahrzeug
JP7363674B2 (ja) * 2020-05-29 2023-10-18 トヨタ自動車株式会社 燃料電池システム
CN114256486A (zh) * 2020-09-25 2022-03-29 北京亿华通科技股份有限公司 燃料电池系统冷启动的控制方法及燃料电池系统、车辆
CN114335617B (zh) * 2020-09-30 2023-10-24 北京亿华通科技股份有限公司 一种燃料电池系统停机吹扫的自适应控制方法
JP2023169741A (ja) 2022-05-17 2023-11-30 トヨタ自動車株式会社 燃料電池システム
CN115332582B (zh) * 2022-10-17 2023-01-31 北京亿华通科技股份有限公司 一种燃料电池低温启动控制系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313388A (ja) * 2001-04-10 2002-10-25 Honda Motor Co Ltd 燃料電池の制御方法と燃料電池電気車両
JP2003036874A (ja) * 2001-07-19 2003-02-07 Toyota Motor Corp 燃料電池システム
JP2004030979A (ja) * 2002-06-21 2004-01-29 Equos Research Co Ltd 燃料電池システム
JP2006073501A (ja) * 2004-08-05 2006-03-16 Denso Corp 燃料電池システム
JP2007012565A (ja) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd 燃料電池システム
JP2007042477A (ja) * 2005-08-04 2007-02-15 Nissan Motor Co Ltd 燃料電池システム
JP2008147093A (ja) * 2006-12-12 2008-06-26 Toyota Motor Corp 燃料電池システム
WO2008133318A1 (ja) * 2007-04-19 2008-11-06 Toyota Jidosha Kabushiki Kaisha 燃料電池システムおよび電源制御方法
JP2008300218A (ja) * 2007-05-31 2008-12-11 Nissan Motor Co Ltd 燃料電池システム
JP2009026738A (ja) * 2007-06-20 2009-02-05 Nissan Motor Co Ltd 燃料電池システム及びその運転方法
WO2009017140A1 (ja) * 2007-07-30 2009-02-05 Toyota Jidosha Kabushiki Kaisha 燃料電池システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3840956B2 (ja) 2001-11-08 2006-11-01 日産自動車株式会社 燃料電池システム
JP4996814B2 (ja) 2003-07-09 2012-08-08 本田技研工業株式会社 燃料電池の低温起動方法
US7858251B2 (en) * 2005-10-21 2010-12-28 Honda Motor Co., Ltd. Fuel cell system and scavenging method for use in a fuel cell system
JP2007280827A (ja) * 2006-04-10 2007-10-25 Toyota Motor Corp 燃料電池用の温度制御システム
JP2008147139A (ja) 2006-12-13 2008-06-26 Toyota Motor Corp 燃料電池システム
JP5309602B2 (ja) * 2007-06-20 2013-10-09 日産自動車株式会社 燃料電池システム及びその運転方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313388A (ja) * 2001-04-10 2002-10-25 Honda Motor Co Ltd 燃料電池の制御方法と燃料電池電気車両
JP2003036874A (ja) * 2001-07-19 2003-02-07 Toyota Motor Corp 燃料電池システム
JP2004030979A (ja) * 2002-06-21 2004-01-29 Equos Research Co Ltd 燃料電池システム
JP2006073501A (ja) * 2004-08-05 2006-03-16 Denso Corp 燃料電池システム
JP2007012565A (ja) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd 燃料電池システム
JP2007042477A (ja) * 2005-08-04 2007-02-15 Nissan Motor Co Ltd 燃料電池システム
JP2008147093A (ja) * 2006-12-12 2008-06-26 Toyota Motor Corp 燃料電池システム
WO2008133318A1 (ja) * 2007-04-19 2008-11-06 Toyota Jidosha Kabushiki Kaisha 燃料電池システムおよび電源制御方法
JP2008300218A (ja) * 2007-05-31 2008-12-11 Nissan Motor Co Ltd 燃料電池システム
JP2009026738A (ja) * 2007-06-20 2009-02-05 Nissan Motor Co Ltd 燃料電池システム及びその運転方法
WO2009017140A1 (ja) * 2007-07-30 2009-02-05 Toyota Jidosha Kabushiki Kaisha 燃料電池システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140220470A1 (en) * 2011-08-22 2014-08-07 Nissan Motor Co., Ltd. Fuel cell system
US10177391B2 (en) * 2011-08-22 2019-01-08 Nissan Motor Co., Ltd. Fuel cell system for calculating fuel cell temperature based on water content and internal impedance thereof, and method for controlling the same
CN102520368A (zh) * 2011-12-28 2012-06-27 新源动力股份有限公司 燃料电池电堆零度以下环境快速启动的实验方法

Also Published As

Publication number Publication date
DE112010000819B4 (de) 2017-01-26
JP2010186599A (ja) 2010-08-26
US20120003557A1 (en) 2012-01-05
US8524406B2 (en) 2013-09-03
CN102318116B (zh) 2014-09-10
JP4962919B2 (ja) 2012-06-27
DE112010000819T5 (de) 2012-05-31
CN102318116A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4962919B2 (ja) 燃料電池システムおよび該システムにおける始動時制御方法
US9337502B2 (en) Fuel cell system and control method at starting in the fuel cell system
JP4543337B2 (ja) 燃料電池システム
JP4947299B2 (ja) 燃料電池システムおよびその温度制御方法
JP5056239B2 (ja) 燃料電池システム
JP4788322B2 (ja) 燃料電池システム
US8236460B2 (en) Fuel cell system
WO2008050881A1 (en) Fuel cell system
JP4872333B2 (ja) 燃料電池システム
US20100047644A1 (en) Fuel cell system
JP2007250374A (ja) 燃料電池システム
JP5083603B2 (ja) 燃料電池システム
JP2008123980A (ja) 燃料電池システム及び燃料電池の起動方法
JP2008108538A (ja) 燃料電池システム
JP5354069B2 (ja) 燃料電池システム
JP2007317471A (ja) 燃料電池システム
JP2009004165A (ja) 燃料電池システム
US20230307674A1 (en) Fuel cell system
JP2008146937A (ja) 燃料電池システム
JP2020170650A (ja) 燃料電池システム
JP2008072824A (ja) 燃料電池車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007265.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741151

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13148560

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100008191

Country of ref document: DE

Ref document number: 112010000819

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741151

Country of ref document: EP

Kind code of ref document: A1