WO2010090258A1 - (メタ)アクリル酸エステルの製造方法 - Google Patents

(メタ)アクリル酸エステルの製造方法 Download PDF

Info

Publication number
WO2010090258A1
WO2010090258A1 PCT/JP2010/051611 JP2010051611W WO2010090258A1 WO 2010090258 A1 WO2010090258 A1 WO 2010090258A1 JP 2010051611 W JP2010051611 W JP 2010051611W WO 2010090258 A1 WO2010090258 A1 WO 2010090258A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylic
acrylic acid
anhydride
reaction
Prior art date
Application number
PCT/JP2010/051611
Other languages
English (en)
French (fr)
Inventor
安齋 竜一
野上 弘之
小倉 邦義
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to EP10738589.0A priority Critical patent/EP2399898B1/en
Priority to JP2010506757A priority patent/JP5582032B2/ja
Priority to CN201080006884.1A priority patent/CN102307843B/zh
Priority to US13/148,206 priority patent/US8859804B2/en
Publication of WO2010090258A1 publication Critical patent/WO2010090258A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/02Preparation of carboxylic acid esters by interreacting ester groups, i.e. transesterification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters

Definitions

  • the present invention relates to a method for producing and purifying a (meth) acrylic ester in which (meth) acrylic anhydride obtained by reacting (meth) acrylic acid with a fatty acid anhydride is reacted with alcohol.
  • Patent Document 1 As a method for producing (meth) acrylic acid ester, a method of reacting (meth) acrylic anhydride with alcohol is known.
  • Patent Document 1 (meth) acrylic anhydride and a secondary or tertiary alcohol are reacted in the presence of a basic compound having an acidity (pKa) of 11 or less in water at 25 ° C. A method is described.
  • purified (meth) acrylic anhydride is used for the production of (meth) acrylic acid esters using (meth) acrylic anhydride.
  • Patent Document 1 describes a method of neutralizing and washing a reaction solution containing (meth) acrylic anhydride with an alkaline aqueous solution of pH 7.5 to 13.5. A method of fractionally distilling the product is described in Patent Document 2.
  • Patent Document 3 describes a method for producing phenyl (meth) acrylate, characterized by reacting unpurified (meth) acrylic anhydride with phenols.
  • unpurified (meth) acrylic anhydride contains Michael or (meth) acrylic acid on one or both double bonds of (meth) acrylic anhydride. It has been found that the added compound contains several percent.
  • Michael-added compounds are reacted with alcohol, a compound having a structure in which (meth) acrylic acid is Michael-added to a (meth) acrylic acid ester represented by the following general formula (II) is generated.
  • R 3 and R 4 represent hydrogen or a methyl group, and R 5 represents an arbitrary alcohol residue.
  • the compound represented by the general formula (II) decomposes into (meth) acrylic acid and (meth) acrylic acid ester at high temperature.
  • (meth) acrylic acid ester containing the compound represented by the general formula (II) is distilled, (meth) acrylic acid is generated and distilled out in the latter stage of distillation when the temperature of the distillate becomes high. It is mixed with an acid ester to lower the purity.
  • Patent Document 4 describes a method in which a highly reactive alcohol such as methanol is supplied and reacted with the remaining (meth) acrylic anhydride.
  • a (meth) acrylic acid ester obtained from an alcohol having a phenolic hydroxyl group easily undergoes a transesterification reaction with methanol, and an alcohol having a methyl ester and a phenolic hydroxyl group is produced. Therefore, the yield of (meth) acrylic acid ester is greatly reduced.
  • JP 2002-161068 A Japanese Patent Laid-Open No. 2002-275124 JP 2000-191590 A Japanese Patent Laid-Open No. 2002-080818
  • the present invention relates to a method for producing a (meth) acrylic acid ester by reacting (meth) acrylic acid anhydride obtained by reacting (meth) acrylic acid with a fatty acid anhydride with an alcohol.
  • the object is to obtain a high-purity (meth) acrylic acid ester in a high yield with little loss of anhydride. Furthermore, it aims at collect
  • Another object is to facilitate the purification of (meth) acrylic acid ester by efficiently hydrolyzing (meth) acrylic anhydride remaining after the reaction.
  • a first invention capable of solving the above-mentioned problems is that in the method for producing a (meth) acrylic acid ester comprising the following steps (1) to (3), the reaction in the step (2) is performed at a temperature of 90 ° C. or higher.
  • (Meth) acrylic acid ester production method characterized by
  • R 1 represents a linear or branched alkyl group or alkenyl group having 1 to 3 carbon atoms
  • R 2 represents a linear or branched alkyl group having 1 to 3 carbon atoms.
  • a second invention is a method for producing a (meth) acrylic acid ester comprising the steps (1) to (3), wherein the distillation in the step (3) is performed at a temperature of 90 ° C. or higher. is there.
  • the reaction solution obtained in the step (2) is further heated at a temperature of 90 ° C. or higher. It is a method including a step (2 ′).
  • the reaction solution obtained in the step (2) is further distilled at a temperature of 90 ° C. or higher.
  • 5th invention is a manufacturing method of the (meth) acrylic acid ester containing the following process (i) and process (ii).
  • (I) a step of producing a (meth) acrylic acid ester by reacting an alcohol with a (meth) acrylic anhydride
  • (Ii) The reaction solution containing the (meth) acrylic acid ester produced in the step (i) is selected from the group consisting of alkali metal or alkaline earth metal hydroxides, carbonates, bicarbonates and oxides.
  • the (meth) acrylic acid ester production method of the present invention uses the produced (meth) acrylic acid anhydride without purification, loss of (meth) acrylic acid anhydride can be suppressed. Moreover, mixing of the (meth) acrylic acid produced
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • (Meth) acrylic anhydride means acrylic anhydride, methacrylic anhydride, or a mixed acid anhydride of acrylic acid and methacrylic acid.
  • the (meth) acrylic acid ester means an acrylic acid ester and / or a methacrylic acid ester.
  • the first, second, third, and fourth inventions include step (1), step (2), and step (3) as basic steps.
  • 1st and 2nd invention each performs a process (2) or a process (3) on specific temperature conditions, It is characterized by the above-mentioned.
  • the third and fourth inventions are characterized in that a specific step (2 ') or a step (2' ') is further performed after the step (2), respectively.
  • the fifth invention includes step (i) and step (ii) as basic steps.
  • each process is demonstrated one by one.
  • Step (1) A step of producing a (meth) acrylic anhydride while reacting a fatty acid anhydride represented by the following general formula (I) with (meth) acrylic acid to extract a by-product fatty acid]
  • R 1 represents a linear or branched alkyl group or alkenyl group having 1 to 3 carbon atoms
  • R 2 represents a linear or branched alkyl group having 1 to 3 carbon atoms.
  • step (1) (meth) acrylic anhydride is produced from fatty acid anhydride and (meth) acrylic acid.
  • the fatty acid anhydride used as a raw material is a compound represented by the above general formula (I).
  • R 1 examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a vinyl group, an allyl group, and an isopropenyl group.
  • R 2 examples include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • R 1 is preferably a methyl group, an ethyl group, or a vinyl group, from the viewpoint of separability in the distillation column of the (meth) acrylic anhydride produced by reaction with (meth) acrylic acid, and a methyl group. Is more preferable.
  • R 2 is preferably a methyl group or an ethyl group, and more preferably a methyl group. For the above reasons, acetic anhydride (an acid anhydride between acetic acids) is most preferable.
  • (meth) acrylic anhydride is produced and fatty acid is by-produced.
  • This fatty acid is the same as the fatty acid produced by hydrolysis of the fatty acid anhydride.
  • the fatty acid anhydride is acetic anhydride
  • the by-product fatty acid is acetic acid.
  • the mixed acid anhydride (henceforth "mixed acid anhydride") of the fatty acid derived from a fatty acid anhydride and (meth) acrylic acid is used as an intermediate. May be generated.
  • a mixed acid anhydride is formed in cases other than the vinyl group derived from acrylic acid to be reacted with R 1 or the isopropenyl group derived from methacrylic acid.
  • R 1 is a vinyl group and R 2 is a methyl group
  • these mixed acid anhydrides can further react with (meth) acrylic acid.
  • the end of the reaction is preferably the time when the molar ratio of the raw material fatty acid anhydride to the product (meth) acrylic anhydride is 0.01 or less.
  • the reaction has a molar ratio of the amount of mixed acid anhydride to (meth) acrylic anhydride of 0.02. It is more preferable that the process is terminated in the following state. For example, if a mixed acid anhydride of acetic acid and (meth) acrylic acid is present in (meth) acrylic anhydride, when reacted with alcohol, it becomes acetic ester and (meth) acrylic acid, and the target (meth ) Yield and selectivity of acrylic acid ester are lowered.
  • the molar ratio of mixed acid anhydride to (meth) acrylic anhydride is 0.01. It is more preferable to end the reaction in a state below, and it is particularly preferable to end the reaction in a state below 0.005.
  • the reaction is preferably terminated when the molar ratio of the mixed acid anhydride to the (meth) acrylic anhydride is 0.0001 or more, and 0.001 or more. It is more preferable to end the reaction with.
  • the raw material (meth) acrylic acid is preferably used in a molar ratio of 1 to 8 times that of the fatty acid anhydride.
  • this molar ratio is preferably 2 times or more, and more preferably 2.2 times or more.
  • this molar ratio is preferably 6 times or less, more preferably 4 times or less.
  • the remaining raw materials can be supplied by either a divided or continuous method after the start of the reaction.
  • ⁇ Catalyst> In the method for producing (meth) acrylic anhydride in the present invention, it is preferable to use a catalyst. Undesirable side reactions such as decomposition reaction of (meth) acrylic anhydride, dimerization, trimerization, Michael addition of methacrylic acid proceed even without catalyst. When the catalyst is non-catalyzed, the reaction time becomes long and the side reaction products increase. Examples of the catalyst include metal compounds, acid catalysts, base catalysts, and heterogeneous catalysts.
  • metal compound examples include metal oxides, hydroxides, carbonates, hydrogencarbonates, sulfates, chlorides, nitrates, phosphates, borates, and other inorganic acids; acetates and (meta ) Organic acid salts such as acrylates and sulfonates; complex salts such as acetylacetonate and cyclopentadienyl complexes.
  • the acid catalyst examples include inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, boric acid, hydrochloric acid, and heteropolyacid; organic acids such as metasulfonic acid, paratoluenesulfonic acid, and camphorsulfonic acid.
  • the base catalyst examples include organic bases such as pyridine, 4- (dimethylamino) pyridine and triethylamine. Among these, inorganic acids and organic acids are preferable, and sulfuric acid and sulfonic acid are more preferable because of high activity and few side reaction products.
  • an ion exchange resin such as a basic ion exchange resin or an acidic ion exchange resin, or a catalyst in which an active component is fixed to a carrier such as silica, alumina, or titania can be used.
  • the catalyst is preferably one in which all the necessary amount is dissolved in the reaction system from the viewpoint of operability.
  • a catalyst may be used independently and may use 2 or more types together.
  • Examples of the method for charging the catalyst into the reactor include a method in which the entire amount is initially charged in the reactor, a method in which a part is initially charged, and the remainder is supplied later.
  • the amount of the catalyst used is preferably 0.000001 to 0.5 times in molar ratio to the charged amount of the fatty acid anhydride represented by the general formula (I) used throughout the reaction. From the viewpoint of allowing the reaction to proceed smoothly, the molar ratio is preferably 0.000005 times or more, and more preferably 0.00001 times or more. On the other hand, from the viewpoint of catalyst removal and side reaction suppression, the molar ratio is preferably 0.1 times or less, and more preferably 0.05 times or less.
  • the reaction is preferably performed in the absence of a solvent from the viewpoint of productivity and load of solvent recovery, but a solvent inert to the reaction can be used as necessary.
  • the inert solvent include aliphatic hydrocarbons such as hexane, heptane, pentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ethers such as diethyl ether and diisopropyl ether; diethyl ketone and diisopropyl ketone. Ketones such as can be used. Solvents that readily azeotrope with by-product fatty acids are preferred.
  • the amount of the solvent used is preferably 1 to 30 parts by mass with respect to 1 part by mass of (meth) acrylic acid.
  • the reaction temperature for producing (meth) acrylic anhydride is preferably in the range of 30 to 120 ° C. In view of allowing the reaction to proceed smoothly, the reaction temperature is more preferably 50 ° C. or higher, and even more preferably 60 ° C. or higher. On the other hand, from the viewpoint of suppressing polymerization and side reactions, the reaction temperature is more preferably 100 ° C. or less, and further preferably 90 ° C. or less.
  • reaction system for example, a batch type in which all raw materials are charged in a single reactor to complete the reaction, a continuous type in which raw materials are continuously supplied into the reactor and continuously reacted, and a reactor
  • a circulation type equipped with a blending tank and reacting in the reactor while circulating the raw material between the reactor and the blending tank.
  • a batch system is preferred.
  • the reaction is performed while removing by-product fatty acids out of the system.
  • the method for separating the by-produced fatty acid and other compounds include a method of distillation using a multi-stage distillation column (rectification column).
  • Distillation towers include, for example, packed towers using porous packings such as Raschig rings, Lessing rings, Dixon packings, pole rings, saddles, and sulzer packings made of stainless steel, glass, ceramics, perforated plate towers and bubble bells
  • a tower such as a tower can be used.
  • connection between the distillation column and the reactor can be any of the form in which the distillation column is connected to the upper part of the reactor, the form in which the distillation column is connected to the upper part of another vessel connected to the reactor, and the upper to lower stages of the distillation column. Any of the forms in which the reactor is connected to these positions may be used. In any connection form, there may be one or a plurality of paths between the reactor and the distillation column, and a device such as a heat exchanger may be interposed in the middle.
  • the number of theoretical plates of the distillation column is preferably 3 or more, more preferably 5 or more from the viewpoint of separability between the by-product fatty acid and other compounds.
  • 30 or less is preferable, and 20 or less is more preferable.
  • an internal reflux system that does not use a refluxer or a system that controls the reflux ratio using a refluxer can be used.
  • the reflux ratio can be appropriately determined in consideration of the scale of the apparatus, productivity, separability, etc., but is preferably in the range of 0.2 to 10.
  • the reflux ratio is more preferably 0.5 or more from the viewpoint of separability, and more preferably 1 or more. On the other hand, 6 or less is more preferable from the viewpoint of productivity, and 4 or less is more preferable.
  • the reflux ratio is preferably adjusted appropriately during the reaction in accordance with the composition of the reaction solution. When removing by-product fatty acids out of the system, it is not necessary to completely separate the fatty acids from other compounds.
  • the pressure can be appropriately determined in consideration of the reaction temperature and the number of distillation column stages. Since the composition of the reaction solution changes with the progress of the reaction and the overall vapor pressure decreases, it is preferable to reduce the pressure so that rectification can be performed in order to remove the by-produced fatty acid.
  • the reaction is carried out while adjusting the pressure in the distillation column. However, the pressure at the top of the column may be adjusted in consideration of the reaction temperature and the number of stages of the distillation column. As such a method, for example, a method of adjusting the reaction temperature to 80 ° C. under atmospheric pressure to start the reaction and then gradually reducing the pressure can be mentioned.
  • the reaction time in the reaction can be appropriately determined based on the remaining amount of the fatty acid anhydride or mixed acid anhydride represented by the general formula (I) in the reactor.
  • the reaction time is preferably 15 hours or longer, more preferably 18 hours or longer.
  • the reaction time is preferably 72 hours or less, more preferably 60 hours or less, and even more preferably 48 hours or less. Further, the side reaction is suppressed as the reaction time is shorter.
  • the reaction time is defined as the time from the start of the removal of fatty acid in a batch or semi-batch type reaction apparatus to the end of the reaction. Termination of the reaction is carried out by stopping the removal of fatty acids or remaining (meth) acrylic acid.
  • the reaction is preferably carried out under the condition that the molar ratio of (meth) acrylic acid to (meth) acrylic anhydride in the reaction solution is in the range of 0.3 to 2 at the end of the reaction.
  • the stability of (meth) acrylic acid is improved, and as the molar ratio is increased, the stability of (meth) acrylic anhydride is further improved. preferable.
  • the more (meth) acrylic acid relative to (meth) acrylic anhydride the larger the reactor when producing the (meth) acrylic acid ester using the obtained reaction solution, and also described later.
  • the molar ratio is increased due to the necessity of a container having a large capacity during storage and an increase in the load for separating the obtained (meth) acrylic acid ester and (meth) acrylic acid. Is preferably 2 or less.
  • the molar ratio is more preferably 1 or less, and particularly preferably 0.8 or less.
  • the molar ratio of (meth) acrylic acid to (meth) acrylic anhydride is preferably maintained at 0.3 or more throughout the reaction.
  • a polymerization inhibitor can be used in the production of (meth) acrylic anhydride.
  • the polymerization inhibitor is introduced into the reactor, but it is preferable to introduce the polymerization inhibitor also at the top of the distillation column or in the middle of the column.
  • a polymerization inhibitor which is inert to acid anhydrides and (meth) acrylic acid is preferable.
  • quinone polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, benzoquinone, 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol, 2-tert-butyl-4,6-dimethylphenol, Alkylphenol polymerization inhibitors such as 2,6-di-tert-butyl-4-methylphenol and 2,4,6-tri-tert-butylphenol, alkylated diphenylamine, N, N′-diphenyl-p-phenylenediamine, Amine-based polymerization inhibitors such as phenothiazine, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl, 4-Acetamino-2,
  • the addition amount of the polymerization inhibitor is influenced by the type and conditions, but is preferably in the range of 0.01 to 10000 ppm with respect to the mass of the reaction solution.
  • the bubbling of oxygen-containing gas in the reaction solution may improve the polymerization prevention effect.
  • Step (2) Step of obtaining (meth) acrylic acid ester by reacting alcohol with unpurified (meth) acrylic anhydride obtained by the reaction of step (1)]
  • the (meth) acrylic acid ester is produced by reacting the unpurified (meth) acrylic anhydride obtained by the above method with an alcohol.
  • the raw material alcohols are methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, n-amyl alcohol, isoamyl alcohol, n-hexyl.
  • Linear or branched aliphatic alcohols such as alcohol, n-heptyl alcohol, n-octyl alcohol, n-nonyl alcohol, n-decyl alcohol, lauryl alcohol, cetyl alcohol, stearyl alcohol, allyl alcohol, butynediol, etc.
  • Unsaturated alcohols such as cyclopentanol, cyclohexanol, 1-adamantanol, 2-adamantanol, 1-adamantane methanol and other cyclic alcohols, phenol, Aromatic alcohols such as alcohols, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol, polypropylene Polyhydric alcohols such as glycol, polytetramethylene glycol, and glycerin, and alcohols in which at least one position of these alcohols is substituted with a substituent such as an amino group, a carboxyl group, a carbonyl group, or an amide group, in the structure Examples include alcohols having an ether bond, an ester bond, and the like.
  • alcohols having 5 or more carbon atoms are preferable from the viewpoint of separability when the produced (meth) acrylic acid ester and (meth) acrylic acid are purified by distillation.
  • the alcohol which does not have a substituent which reacts with (meth) acrylic anhydrides, such as an amino group, from a point of selectivity is preferable.
  • an alcohol having a phenolic hydroxyl group is preferable because of easy decomposition of the Michael adduct.
  • the (meth) acrylic anhydride is preferably used in a molar ratio of 0.5 to 5 times that of the alcohol.
  • the molar ratio is more preferably 0.8 times or more, and further preferably 0.9 times or more.
  • the molar ratio is more preferably 1.2 times or less, and further preferably 1.1 times or less.
  • the ratio of alcohol to (meth) acrylic anhydride is appropriately determined from the viewpoints of ease of purification after the production of (meth) acrylic acid ester, alcohol price, alcohol reactivity, and the like.
  • a method of initially charging raw materials into the reactor 1) a method of charging all of the (meth) acrylic anhydride and alcohol, 2) a method of charging all of the raw materials into the reactor, and 3) one of the raw materials
  • the method of charging all of the above and a part of the other raw material or 4) the method of charging each part of both raw materials may be used.
  • the remaining raw materials may be supplied by either divided or continuous method after the reaction starts.
  • ⁇ Catalyst> In the production of (meth) acrylic acid esters, it is preferable to use a catalyst. When it is non-catalyzed, the reaction time becomes long, and polymerization and side reactions may proceed.
  • the catalyst the same metal compound, acid catalyst, base catalyst, heterogeneous catalyst and the like as those used in the step (1) are used.
  • Catalysts may be used alone or in combination of two or more.
  • Examples of the method for charging the catalyst include a method in which the entire amount is initially charged in the reactor, a method in which a part is initially charged, and the remainder is supplied later.
  • the catalyst may be the same as the method for producing (meth) acrylic anhydride or a different kind. What was used in the manufacturing method of (meth) acrylic anhydride may be used as it is, and may be newly added.
  • the amount of the catalyst used is preferably 0.0001 to 0.3 times in molar ratio to the alcohol. From the viewpoint of allowing the reaction to proceed smoothly, the molar ratio is more preferably 0.001 mol or more, and further preferably 0.01 mol or more. On the other hand, from the viewpoint of catalyst removal and side reaction suppression, the molar ratio is preferably 0.2 or less, and more preferably 0.1 or less.
  • the reaction is preferably performed in the absence of a solvent from the viewpoint of productivity and load of solvent recovery, but a solvent inert to the reaction can be used as necessary.
  • a solvent inert to the reaction include the same solvents as those used in step (1).
  • the solvent is preferably one that easily azeotropes with (meth) acrylic acid.
  • the amount of the solvent used is preferably 1 to 30 times the mass of (meth) acrylic anhydride.
  • the reaction temperature is preferably in the range of 30 to 150 ° C. From the viewpoint of suppressing polymerization and side reactions, the reaction temperature is more preferably 120 ° C. or lower. On the other hand, the reaction temperature is more preferably 50 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of allowing the reaction to proceed smoothly.
  • the reaction using a compound that is easily polymerized is preferably performed at a temperature as low as possible to prevent polymerization.
  • the reaction temperature to 90 ° C. or higher, the compound in which (meth) acrylic acid is Michael-added to (meth) acrylic acid ester can be decomposed into (meth) acrylic acid ester and (meth) acrylic acid. It is preferable to react at a temperature as high as possible within the range where troubles such as polymerization do not occur.
  • reaction method a batch method, a continuous method, a circulation method, or the like similar to the case of manufacturing the (meth) acrylic anhydride can be adopted.
  • the reaction may be performed while recovering by-product (meth) acrylic acid.
  • the pressure may be in a reduced pressure state, an atmospheric pressure, or a pressurized state.
  • the reaction time for producing the (meth) acrylic acid ester can be appropriately determined based on the remaining amount of (meth) acrylic anhydride or alcohol in the reactor. Usually, the reaction is terminated when the molar ratio of alcohol and / or (meth) acrylic anhydride to (meth) acrylic acid ester is 0.05 or less. In terms of reducing the (meth) acrylic anhydride and / or alcohol content in the recovered (meth) acrylic acid, the molar ratio is preferably 0.03 or less, and more preferably 0.01 or less.
  • the reaction time may be appropriately determined from the charging ratio and the reaction temperature, but is usually 0.5 to 48 hours. From the viewpoint of yield, the reaction time is preferably 1 hour or longer, and more preferably 2 hours or longer. From the viewpoint of polymerization and side reaction suppression, the reaction time is preferably 36 hours or less, more preferably 24 hours or less, and even more preferably 12 hours or less.
  • a polymerization inhibitor In the method for producing the (meth) acrylic acid ester, a polymerization inhibitor can be used.
  • the polymerization inhibitor is introduced into the reactor, but it is preferable to introduce the polymerization inhibitor also at the top of the distillation column or in the middle of the column.
  • the polymerization inhibitor is preferably a polymerization inhibitor that is inert to alcohol, (meth) acrylic anhydride, and (meth) acrylic acid.
  • examples of the polymerization inhibitor include the same polymerization inhibitors as those used in the step (1). These polymerization inhibitors may be used individually by 1 type, and may use 2 or more types together.
  • the addition amount of the polymerization inhibitor is unclear because it is affected by the type and conditions, but it is preferably in the range of 0.01 to 10,000 ppm with respect to the mass of the reaction solution.
  • the polymerization preventing effect may be improved by bubbling oxygen-containing gas in the reaction solution.
  • the method for treating (meth) acrylic anhydride is not particularly limited, but the reaction solution obtained is selected from the group consisting of hydroxides, carbonates, bicarbonates and oxides of alkali metals or alkaline earth metals. It is preferable to hydrolyze only the remaining (meth) acrylic anhydride by adding at least one basic compound.
  • Alkali metals and alkaline earth metals have low solubility of (meth) acrylate and may precipitate when alkaline earth metals are used.
  • Alkali metal hydroxides, carbonates, hydrogen carbonates Salts are preferred.
  • Lithium hydroxide, lithium carbonate, sodium carbonate, and potassium carbonate are preferred from the standpoint of treatment efficiency and the low possibility of hydrolysis of the (meth) acrylic acid ester.
  • the above compounds may contain water of crystallization or water as an impurity. This treatment may be performed simultaneously with the heating in the step (2 ') described later.
  • the basic compound can be used in an amount of 0.1 to 20 mol per 1 mol of (meth) acrylic anhydride remaining in the reaction solution.
  • the amount used is preferably 0.5 mol or more, more preferably 1 mol or more from the viewpoint of the processing efficiency of (meth) acrylic anhydride. From the viewpoint of reducing the residual amount of the basic compound, it is preferably 15 mol or less, more preferably 10 mol or less.
  • the treatment efficiency of (meth) acrylic anhydride is further improved by adding 0.1 to 10 moles of water to the reaction solution per 1 mole of (meth) acrylic anhydride remaining during this treatment. To do.
  • the amount of water used is preferably 0.3 mol or more, more preferably 0.5 mol or more from the viewpoint of treatment efficiency. From the viewpoint of ease of purification, the amount of water used is preferably 5 mol or less, more preferably 3 mol or less.
  • a method for charging the basic compound into the reactor 1) a method in which the powder or particles are charged as it is, 2) a method in which the basic compound is introduced as a slurry with water, (meth) acrylic acid, an organic solvent, or the like, and 3) the powder or particles Either a method of supplying water after being supplied or 4) a method of supplying water or powder and particles after supplying water, or any method such as division or continuous supply may be used.
  • the treatment is preferably performed in the absence of a solvent from the viewpoint of productivity and load of solvent recovery, but a solvent inert to the reaction can be used if necessary.
  • a solvent inert to the reaction can be used if necessary.
  • the inert solvent the same solvent as that used in the step (1) can be used.
  • the amount used is preferably 1 to 30 times the amount of (meth) acrylic acid ester.
  • the solvent those which are easily azeotroped with the by-product fatty acid are preferable.
  • the treatment temperature is preferably in the range of 30 to 150 ° C. From the viewpoint that the reaction can proceed smoothly, the treatment temperature is more preferably 50 ° C. or higher, and further preferably 60 ° C. or higher. On the other hand, from the viewpoint of suppressing polymerization and side reactions, the reaction temperature is more preferably 140 ° C. or lower, and further preferably 130 ° C. or lower.
  • the processing method examples include a batch method, a continuous method, and a circulation method.
  • the treatment time can be appropriately determined from the amount of (meth) acrylic anhydride, the amount charged, and the reaction temperature, but is usually 0.5 to 48 hours. From the viewpoint of reducing the remaining amount of (meth) acrylic anhydride, the reaction time is preferably 1 hour or longer, and more preferably 2 hours or longer. From the viewpoint of polymerization and side reaction suppression, the reaction time is preferably 36 hours or less, more preferably 24 hours or less, and even more preferably 12 hours or less.
  • a polymerization inhibitor can be used. As the polymerization inhibitor and its method of use, the same ones as in step (1) can be adopted.
  • Step (3) Step of recovering (meth) acrylic acid by distillation
  • (meth) acrylic acid ester is produced by reacting (meth) acrylic anhydride and alcohol in the above step, (meth) acrylic acid ester and almost equimolar (meth) acrylic acid are produced.
  • Examples of the method for recovering (meth) acrylic acid include simple distillation, distillation using a multi-stage distillation tower (rectification tower), and the like.
  • Distillation towers include, for example, packed towers using porous packings such as Raschig rings, Lessing rings, Dixon packings, pole rings, saddles, and sulzer packings made of stainless steel, glass, ceramics, perforated plate towers and bubble bells
  • a tower such as a tower can be used.
  • the connection between the distillation column and the reactor can be any of the form in which the distillation column is connected to the upper part of the reactor, the form in which the distillation column is connected to the upper part of another vessel connected to the reactor, and the upper to lower stages of the distillation column. Any of the forms in which the reactor is connected to these positions may be used. In any connection form, there may be one or a plurality of paths between the reactor and the distillation column, and a device such as a heat exchanger may be interposed in the middle.
  • the number of theoretical plates of the distillation column is preferably 3 or more, more preferably 5 or more from the viewpoint of the purity of the (meth) acrylic acid to be recovered.
  • 30 or less is preferable, and 20 or less is more preferable.
  • an internal reflux system that does not use a refluxer or a system that controls the reflux ratio using a refluxer can be used.
  • the reflux ratio can be appropriately determined in consideration of the scale of the apparatus, productivity, separability, etc., but is preferably in the range of 0.2 to 10. From the viewpoint of the purity of (meth) acrylic acid, the reflux ratio is more preferably 0.5 or more, and even more preferably 1 or more. On the other hand, 6 or less is more preferable from the viewpoint of productivity, and 4 or less is more preferable.
  • the reflux ratio is preferably adjusted appropriately during the reaction in accordance with the composition of the reaction solution.
  • the temperature of the reaction solution in the distillation kettle (hereinafter referred to as “distillation temperature”) is about 10 to 150 ° C.
  • the distillation temperature is preferably 140 ° C. or lower and more preferably 130 ° C. or lower from the viewpoint of suppressing polymerization and side reactions.
  • the distillation temperature is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, from the viewpoint of maintaining a sufficient amount of steam.
  • the distillation temperature is preferably set to 90 ° C. or higher from the beginning or midway.
  • the pressure can be appropriately determined in consideration of the temperature and the number of stages of the distillation column. It is preferable to distill under reduced pressure because the distillation temperature can be lowered.
  • a polymerization inhibitor In the recovery of (meth) acrylic acid, a polymerization inhibitor can be used.
  • the polymerization inhibitor is preferably introduced not only into the reactor but also into the top of the distillation column or in the middle of the column.
  • the polymerization inhibitor used in the reactor is preferably a polymerization inhibitor that is inert to (meth) acrylic acid.
  • Examples of the polymerization inhibitor include the same polymerization inhibitors as those used in the step (1). These polymerization inhibitors may be used individually by 1 type, and may use 2 or more types together.
  • the amount of (meth) acrylic acid recovered is 96% by mass or less of (meth) acrylic acid contained in the reaction liquid to be treated from the viewpoint of reducing the content of contaminants contained in the collected (meth) acrylic acid. Is preferable, it is more preferable to set it to 94 mass% or less, and it is further more preferable to set it to 92 mass% or less.
  • the recovered (meth) acrylic acid can be used again in the step (1) or in another reaction.
  • High-purity (meth) acrylic acid and (meth) acrylic acid with a small amount of contaminants other than (meth) acrylic anhydride can be newly used in the step (1) as they are.
  • (Meth) acrylic acid mixed with (meth) acrylic anhydride, (meth) acrylic acid ester or alcohol can be used in step (2).
  • (Meth) acrylic acid containing contaminants may be distilled again. Distillation may be carried out only with the fraction obtained by this operation, or may be mixed with a reaction solution or a fraction containing a newly produced (meth) acrylic acid ester.
  • new (meth) acrylic acid may be additionally used separately.
  • the ratio of the recovered (meth) acrylic acid to the new (meth) acrylic acid is a new ( 1 to 99 parts by mass of meth) acrylic acid can be mixed.
  • the above steps and the use of recovered (meth) acrylic acid may be repeated once or multiple times.
  • the third and fourth inventions characterized in that the specific step (2 ') or the step (2 ") is performed after the step (2), respectively.
  • the reaction solution containing the (meth) acrylic acid ester obtained by the above-mentioned method is heated at a temperature of 90 ° C. or higher to give a (meth) acrylic acid ester ( )
  • a compound in which acrylic acid is added by Michael can be decomposed into (meth) acrylic acid ester and (meth) acrylic acid.
  • the heat treatment temperature is preferably in the range of 90 to 150 ° C. From the viewpoint of heat treatment time, the heating temperature is more preferably 100 ° C. or higher, and further preferably 120 ° C. or higher. On the other hand, from the viewpoint of suppressing polymerization and side reactions, the reaction temperature is more preferably 140 ° C. or lower, and more preferably 130 ° C. or lower.
  • the heat treatment may be performed with the catalyst in the previous step remaining, or may be performed after removing the catalyst by treatment with an adsorbent or the like.
  • an acid catalyst or a base catalyst it may be neutralized with a basic compound or an acidic compound. From the viewpoint of polymerization and (meth) acrylic acid ester decomposition suppression, when an acid catalyst is present, it is preferable to neutralize with a basic compound.
  • Basic compounds include alkali metal or alkaline earth metal oxides, hydroxides, carbonates, bicarbonates, carboxylates such as acetates and (meth) acrylates, pyridines, 4- (dimethylamino). ) Organic bases such as pyridine and triethylamine.
  • Organic bases such as pyridine and triethylamine.
  • the acidic compound include inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, boric acid, hydrochloric acid, and heteropoly acid, and organic acids such as metasulfonic acid, paratoluenesulfonic acid, and camphorsulfonic acid.
  • the heat treatment is preferably performed in the absence of a solvent from the viewpoint of productivity and load of solvent recovery, but a solvent inert to the reaction can be used if necessary.
  • the inert solvent include the same solvents as those used in the step (1).
  • the amount of the solvent used is preferably 1 to 30 times the mass of (meth) acrylic acid.
  • the solvent is preferably a solvent that easily azeotropes with by-product (meth) acrylic acid.
  • the pressure may be in a reduced pressure state, an atmospheric pressure, or a pressurized state.
  • the heat treatment time may be appropriately determined from the amount of the compound to which (meth) acrylic acid is added by Michael and the heat treatment temperature, but is usually 0.5 to 48 hours. From the viewpoint of the decomposition amount of the compound to which (meth) acrylic acid is added by Michael, the reaction time is preferably 1 hour or longer, and more preferably 2 hours or longer. From the viewpoint of polymerization and side reaction suppression, the reaction time is preferably 36 hours or less, more preferably 24 hours or less, and even more preferably 12 hours or less.
  • a polymerization inhibitor In the heat treatment, a polymerization inhibitor can be used.
  • the polymerization inhibitor is preferably inert to (meth) acrylic acid esters and (meth) acrylic acid.
  • a polymerization inhibitor the same thing as the polymerization inhibitor of a process (1) is mentioned.
  • These polymerization inhibitors may be used individually by 1 type, and may use 2 or more types together.
  • the addition amount of the polymerization inhibitor is unclear because it is affected by the type and conditions, but is preferably in the range of 0.01 to 10000 ppm relative to the mass of the reaction solution.
  • the polymerization preventing effect may be improved by bubbling oxygen-containing gas in the reaction solution.
  • both components can be collect
  • the distillation temperature can be in the range of 10 to 200 ° C.
  • the distillation temperature is preferably 140 ° C. or lower and more preferably 130 ° C. or lower from the viewpoint of suppressing polymerization and side reactions.
  • the distillation temperature is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, from the viewpoint of maintaining a sufficient amount of steam.
  • the recovered (meth) acrylic acid ester and (meth) acrylic acid can be recovered by separating the (meth) acrylic acid and the (meth) acrylic acid ester by distillation again. Distillation may be carried out only with the fraction obtained by this operation, or may be mixed with a reaction solution or a fraction containing a newly produced (meth) acrylic acid ester. Moreover, (meth) acrylic acid ester and (meth) acrylic acid may be separated by operations such as extraction, washing, and crystallization to recover (meth) acrylic acid ester and (meth) acrylic acid.
  • an alkali metal or alkaline earth metal hydroxide is added to the distillate containing (meth) acrylic acid and (meth) acrylic acid ester obtained in the step (2 ′′). It is preferable to hydrolyze only the remaining (meth) acrylic anhydride by adding at least one basic compound selected from the group consisting of carbonate, hydrogen carbonate and oxide.
  • the method for treating (meth) acrylic anhydride is as described in the step (2).
  • a highly purified (meth) acrylic acid ester can be obtained by purifying the (meth) acrylic acid recovered in the step (3) as necessary.
  • cleaning, crystallization, etc. are mentioned.
  • Examples of the method for distilling the (meth) acrylic acid ester include methods such as simple distillation, a multi-stage distillation column (rectification column), and thin film distillation.
  • Examples of the method for washing the (meth) acrylic acid ester include a method of washing with water, an aqueous solution of a salt such as sodium chloride or sodium sulfate, or an aqueous solution of a basic substance.
  • Examples of the basic substance include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide; alkalis such as sodium carbonate and potassium carbonate Metal carbonates; alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; alkaline earth metals such as calcium hydrogen carbonate and magnesium hydrogen carbonate
  • Examples of hydrogen carbonates include organic bases such as pyridine, 4- (dimethylamino) pyridine, and triethylamine. It is also possible to use a combination of two or more of these basic substances. Cleaning may be performed once or multiple times.
  • washing with water is preferably performed to remove the basic substance remaining in the organic layer.
  • the water used for washing is preferably pure water deionized with distilled water, ion exchange resin or the like.
  • the concentration of the salt or basic substance in the cleaning aqueous solution is preferably 1 to 30% by mass, and more preferably 2 to 15% by mass.
  • the concentration of the salt or basic substance in the cleaning aqueous solution is preferably 1 to 30% by mass, and more preferably 2 to 15% by mass.
  • the amount of washing water is less than 1% by mass, the effect of washing cannot be sufficiently achieved, and when it exceeds 30% by mass, precipitates may be generated.
  • an organic solvent may be added to the reaction solution containing the (meth) acrylic acid ester and mixed.
  • the solvent the same solvents as those mentioned in the step (2) can be used.
  • the mass of the solvent is preferably 0.1 to 10 times, more preferably 0.5 to 5 times that of the reaction solution. If this mass ratio is less than 0.1 times, the (meth) acrylic acid ester may move to the water or aqueous solution used for washing, and if it exceeds 10 times, it takes time to recover the solvent. Take it.
  • Examples of the method for adsorbing (meth) acrylic acid ester include column chromatography, a method of suspending the adsorbent and adsorbing impurities, and then separating the adsorbent.
  • Examples of the adsorbent include activated clay, hydrotalcite, porous polymer, ion exchange resin (cation exchange resin or anion exchange resin), activated carbon, adsorption resin, silica gel, silica alumina type adsorbent, alumina gel, Examples include activated alumina, silicon dioxide, and zeolite.
  • the amount of adsorbent used is 0.05 to 20% by mass with respect to (meth) acrylic acid ester. In particular, 0.5 to 10% by mass is preferable. When the amount is small, the effect of reducing impurities cannot be obtained sufficiently. When the amount is large, the total adsorption amount of (meth) acrylate to the adsorbent increases, and the loss and adsorbent due to adsorption of (meth) acrylate are filtered. The load in the case of separation increases due to the above.
  • the temperature at which the (meth) acrylic acid ester is brought into contact with the adsorbent is not particularly limited, but is usually 0 to 100 ° C.
  • the temperature at the time of contact is preferably 60 ° C. or less, particularly preferably 40 ° C. or less, from the viewpoint of suppressing side reactions during the treatment.
  • the time for contacting the reaction solution with the adsorbent varies depending on the kind of adsorbent and the amount of the adsorbent used, but is usually about 1 to 120 minutes, particularly about 3 to 60 minutes.
  • the (meth) acrylic acid ester and the adsorbent can be separated by a method such as filtration.
  • the filter include a membrane filter made of a fluororesin such as polytetrafluoroethylene.
  • the reaction liquid containing the (meth) acrylic acid ester When contacting the (meth) acrylic acid ester with the adsorbent, it is not necessary to use an organic solvent, but if necessary, an organic solvent may be added to the reaction liquid containing the (meth) acrylic acid ester and mixed. .
  • the solvent the same solvents as those mentioned in the step (1) can be used.
  • the mass of the solvent is preferably 0.1 to 10 times, more preferably 0.5 to 5 times that of the reaction solution. If this mass ratio is less than 0.1 times, the (meth) acrylic acid ester may move to the water or aqueous solution used for washing, and if it exceeds 10 times, it takes time to recover the solvent. Take it.
  • Examples of the method for crystallizing (meth) acrylic acid ester include a method for precipitating crystals by lowering the temperature of the reaction solution, and a method for precipitating crystals by concentrating by removing low boiling substances in the reaction solution. .
  • a solvent may be added.
  • the solvent is preferably a saturated hydrocarbon solvent.
  • Examples of the solvent include hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, nonane, octane, isooctane, decane, benzene, toluene, xylene, cumene, and ethylbenzene. Two or more of these may be mixed and used.
  • the purification is most preferably carried out by distillation from the viewpoint of the recovery rate of (meth) acrylic acid.
  • 5th invention is a manufacturing method of the (meth) acrylic acid ester containing the following process (i) and process (ii).
  • At least one basic compound selected from the group consisting of alkali metal or alkaline earth metal hydroxides, carbonates, hydrogen carbonates and oxides is added to hydrolyze the remaining (meth) acrylic anhydride.
  • the process of disassembling is a manufacturing method of the (meth) acrylic acid ester containing the following process (i) and process (ii).
  • Step (i) can be carried out in the same manner as the above step (2).
  • Step (ii)] ⁇ Basic compound>
  • a basic compound is used.
  • Alkali metals and alkaline earth metals have low solubility of (meth) acrylate and may precipitate when alkaline earth metals are used.
  • Alkali metal hydroxides, carbonates, hydrogen carbonates Salts are preferred.
  • Lithium hydroxide, lithium carbonate, sodium carbonate, and potassium carbonate are preferred from the standpoint of treatment efficiency and the low possibility of hydrolysis of the (meth) acrylic acid ester.
  • the above compounds may contain water of crystallization or water as an impurity.
  • the basic compound can be used in an amount of 0.1 to 20 mol per 1 mol of the remaining (meth) acrylic anhydride.
  • the amount used is preferably 0.5 mol or more, more preferably 1 mol or more in terms of the amount of (meth) acrylic anhydride treated. From the viewpoint of the residual amount of the basic compound, it is preferably 15 mol or less, more preferably 10 mol or less.
  • an acidic compound is used as a catalyst in the step (i) or the like, it is necessary to add an amount of a basic compound that neutralizes the acidic compound.
  • the treatment efficiency of (meth) acrylic anhydride is further improved by adding 0.1 to 10 moles of water to the reaction liquid per 1 mole of (meth) acrylic anhydride remaining during this treatment. To do.
  • the amount of water used is preferably 0.3 mol or more, more preferably 0.5 mol or more from the viewpoint of treatment efficiency. From the viewpoint of ease of purification, the amount of water used is preferably 5 mol or less, more preferably 3 mol or less.
  • a method for charging the basic compound into the reactor 1) a method in which the powder or particles are charged as it is, 2) a method in which the basic compound is introduced as a slurry with water, (meth) acrylic acid, an organic solvent, or the like, and 3) the powder or particles Either a method of supplying water after being supplied or 4) a method of supplying water or powder and particles after supplying water, or any method such as division or continuous supply may be used.
  • the treatment is preferably performed in the absence of a solvent from the viewpoint of productivity and load of solvent recovery, but a solvent inert to the reaction can be used if necessary.
  • a solvent inert to the reaction can be used if necessary.
  • the inert solvent the same solvent as that used in the step (1) can be used.
  • the amount used is preferably 1 to 30 times the amount of (meth) acrylic acid ester.
  • the solvent those which are easily azeotroped with the by-product fatty acid are preferable.
  • the treatment temperature is preferably in the range of 30 to 150 ° C. From the viewpoint that the reaction can proceed smoothly, the treatment temperature is more preferably 50 ° C. or higher, and further preferably 60 ° C. or higher. On the other hand, from the viewpoint of suppressing polymerization and side reactions, the reaction temperature is more preferably 140 ° C. or lower, and further preferably 130 ° C. or lower.
  • the processing method examples include a batch method, a continuous method, and a circulation method.
  • the treatment time can be appropriately determined from the amount of (meth) acrylic anhydride, the amount charged, and the reaction temperature, but is usually 0.5 to 48 hours. From the viewpoint of the remaining amount of (meth) acrylic anhydride, the reaction time is preferably 1 hour or longer, more preferably 2 hours or longer. From the viewpoint of polymerization and side reaction suppression, the reaction time is preferably 36 hours or less, more preferably 24 hours or less, and even more preferably 12 hours or less.
  • a polymerization inhibitor In the treatment, a polymerization inhibitor can be used.
  • the polymerization inhibitor and its method of use the same ones as in step (1) can be adopted.
  • the method of the present invention is effective for the purification of phenyl (meth) acrylate having a boiling point close to that of a raw material such as a (meth) acrylic acid ester having an easily hydrolyzed phenolic hydroxyl group, such as phenol or (meth) acrylic acid.
  • Step (1) Production of methacrylic anhydride: implementation of step (1) A 3 L five-necked flask equipped with a rectifying tower (inner diameter 35 mm, theoretical plate number 10), stirring blade, thermometer, air blowing tube Got ready. 918 g (9.0 mol) of acetic anhydride, 1705 g (19.8 mol) of methacrylic acid, 9.5 g (0.09 mol) of sodium carbonate as a catalyst and 2.6 g of phenothiazine as a polymerization inhibitor were charged into the flask. The flask was heated in an oil bath while air bubbling and stirring the internal liquid of the flask.
  • the weight of the reaction liquid at the end of the reaction was 1409 g, and the composition was 75.3% by mass of methacrylic anhydride, 0.1% by mass of mixed acid anhydride, 0% by mass of acetic anhydride, 0% by mass of acetic acid, 13.
  • the yield of methacrylic anhydride was 76.5%.
  • the rest were Michael adducts and high boiling impurities not detected by gas chromatography.
  • Example 1 Example of the first invention (1) Production of methacrylic acid ester 205 g of the reaction solution obtained in Production Example 1 (methacrylic anhydride content 1.0 mol) and 104 g (1.1 mol) of phenol. The mixture was placed in a 1 L five-necked flask equipped with a stirring blade, a thermometer, and an air blowing tube, heated in an oil bath at 120 ° C., and reacted for 5 hours. The composition of the main components of the reaction solution at the end of the reaction is shown in Table 1.
  • MA Michael adduct a peak that seems to be a compound in which acetic acid or methacrylic acid was Michael-added to a double bond of methacrylic acid
  • Example 2 Example of the third invention (1) Production of methacrylic acid ester
  • the temperature of the oil bath is 80 ° C., the heating time is 8 hours, and the other conditions are the same as in Example 1. Reaction was performed.
  • the composition of the main components of the reaction solution at the end of the reaction is shown in Table 1.
  • PM Michael adduct a compound in which acetic acid or methacrylic acid is Michael-added to the double bond of phenyl methacrylate
  • the total was 8.2% of the total area.
  • Example 3 Example of 3rd invention It carried out similarly to Example 2 except having changed the heat processing temperature of the reaction liquid from 100 degreeC to 120 degreeC, and the result of Table 1 and Table 2 was obtained.
  • Example 4 Example of the second invention (1) Production of methacrylic acid ester The reaction was carried out in the same manner as in Example 2, but the heat treatment of the reaction solution after completion of the reaction was not carried out. The composition of the main components of the reaction solution at the end of the reaction is shown in Table 1. As other components, a plurality of peaks considered to be PM Michael adducts and MA Michael adducts were detected, and the total of these areas was 8.3% of the total area.
  • Example 2 Example 1
  • Example 2 Example 1
  • Example 2 Example 1
  • Example 2 Example 1
  • Example 2 Example 2
  • Example 4 “In order to raise the temperature of the reaction solution to 115 ° C., the pressure in the flask was maintained at 2 to 3 kPa, and when 125 g of distillate was collected, recovery was performed. Finished.
  • Example 5 Example of the fourth invention (1) Production of methacrylic acid ester A methacrylic acid ester was produced in the same manner as in Example 2. The composition of the main components of the reaction solution at the end of the reaction is shown in Table 1. As other components, a plurality of peaks considered to be FM Michael adducts and MA Michael adducts were detected, and the sum of their areas was 8.2% of the total area.
  • the amount of (meth) acrylic acid ester increases when the reaction is carried out at a high temperature as in Examples 1 to 4 or when the treatment is carried out at a high temperature.
  • a high purity (meth) acrylic acid ester can be obtained.
  • (meth) acrylic acid can be recovered in a high yield by generating (meth) acrylic acid by decomposition of the Michael adduct.
  • Example 5 the amount of (meth) acrylic acid ester and (meth) acrylic acid increases by increasing the distillation temperature at the time of recovery of (meth) acrylic acid and (meth) acrylic acid ester. By distilling the recovered liquid, a highly pure (meth) acrylic acid ester can be obtained.
  • Example 6 Example of 1st invention and 5th invention (1) Manufacture of methacrylic acid ester and treatment of methacrylic anhydride An methacrylic acid was used in the same manner as in Production Example 1. A methacrylic acid ester was produced in the same manner as in Example 1 except that the amount of anhydride was 1.0 mol and the amount of phenol was 1.0 mol. Table 3 shows the composition of the main components of the reaction solution at the end of the reaction. After the reaction, phenol disappeared and 0.03 mol of methacrylic anhydride remained (a portion of phenol reacted with the Michael adduct of methacrylic anhydride, so methacrylic anhydride remained).
  • Example 7 Example of 3rd invention and 5th invention (1) Manufacture of methacrylic acid ester
  • the reaction liquid obtained by the same method as manufacture example 1 was used, methacrylic anhydride amount 1.0mol, phenol A methacrylate ester was produced in the same manner as in Example 2 except that the amount was 1.0 mol.
  • Table 3 shows the composition of the main components of the reaction solution at the end of the reaction. After the reaction, phenol disappeared and 0.03 mol of methacrylic anhydride remained.
  • the hexane phase was recovered, washed twice with 1 L of pure water, and then concentrated with an evaporator.
  • a Vigreux tube having a length of 20 cm, a stirring blade, a thermometer, and an air blowing tube were connected to a 1 L flask, and the concentrated liquid was added to perform simple distillation.
  • the pressure on the vacuum pump side was adjusted to 0.2 to 0.6 kPa, the temperature was raised to an internal temperature of 75 to 125 ° C., and distillation was performed.
  • Table 4 were obtained.
  • phenol in the reaction solution can be eliminated by using an excessive amount of methacrylic anhydride. It is possible to treat methacrylic anhydride without decomposing phenyl methacrylate. By this method, phenyl methacrylate having a low phenol content can be obtained.
  • Example 8 Example of Fifth Invention 0.21 g (5 mmol) of lithium hydroxide monohydrate was added to 10.9 g (containing 5 mmol of methacrylic anhydride) of the mixed solution obtained in Production Example 2. . Heating was performed with stirring at 80 ° C. for 2 hours.
  • Table 5 shows the decomposition ratio of methacrylic anhydride after heat treatment and the residual ratio of phenyl methacrylate (ratio of the content after heat treatment to the content before heat treatment).
  • Examples 9 to 17 Example of Fifth Invention The treatment was performed in the same manner as in Example 8 except that the compounds described in Table 5 were used and the amounts of water described in Table 5 were used.
  • Table 5 shows the decomposition rate of methacrylic anhydride and the residual rate of phenyl methacrylate after the heat treatment.
  • Example 18 Example of Fifth Invention The reaction solution obtained by the same method as in Production Example 1 was distilled to obtain methacrylic anhydride having a purity of 99.9% by mass. Add 16.3 g (0.105 mol) of methacrylic anhydride and 9.4 g (0.1 mol) of phenol to a 0.1 L 5-neck flask equipped with a stirring blade, thermometer, and air blowing tube, and add 1000 ppm of phenothiazine. 0.1 g of concentrated sulfuric acid was added dropwise. The reaction was carried out at 80 ° C. for 5 hours. After the reaction, phenol disappeared and 0.04 mol of methacrylic anhydride remained. To this reaction solution, 2.5 g (0.06 mol) of lithium hydroxide monohydrate was added, and heat treatment was performed with stirring at 80 ° C. for 2 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 (メタ)アクリル酸無水物の損失が少なく、高純度の(メタ)アクリル酸エステルを高収率で得る。(メタ)アクリル酸を高収率で回収する。また(メタ)アクリル酸エステルの精製を容易にする。(1)特定の脂肪酸無水物と(メタ)アクリル酸とを反応させて、副生する脂肪酸を抜き出しながら(メタ)アクリル酸無水物を製造する工程、(2)アルコールと前記工程(1)の反応で得られる未精製の(メタ)アクリル酸無水物とを好ましくは90℃以上で反応させて(メタ)アクリル酸エステルを得る工程、(3)(メタ)アクリル酸を好ましくは90℃以上で蒸留により回収する工程。または更に、工程(2)で得られた反応液を90℃以上の温度で加熱もしくは蒸留する。

Description

(メタ)アクリル酸エステルの製造方法
 本発明は、(メタ)アクリル酸と脂肪酸無水物とを反応させて得た(メタ)アクリル酸無水物をアルコールと反応させる(メタ)アクリル酸エステルの製造法および精製法に関する。
 (メタ)アクリル酸エステルを製造する方法として、(メタ)アクリル酸無水物をアルコールと反応させる方法などが知られている。特許文献1には、(メタ)アクリル酸無水物と、第2級または第3級アルコール類とを、25℃の水中における酸性度(pKa)が11以下の塩基性化合物の共存下に反応させる方法が記載されている。通常、(メタ)アクリル酸無水物を利用した(メタ)アクリル酸エステルの製造には、精製された(メタ)アクリル酸無水物が使用される。(メタ)アクリル酸無水物の精製法としては(メタ)アクリル酸無水物を含有する反応液をpH7.5~13.5のアルカリ水溶液で中和洗浄する方法が特許文献1に記載され、粗製生成物を分別蒸留する方法が特許文献2に記載されている。
 しかし、(メタ)アクリル酸無水物を含有する液を中和洗浄する方法では、(メタ)アクリル酸無水物の一部が加水分解される点が問題であり、また大量の洗浄廃水が発生するので、その処理が必要となる。(メタ)アクリル酸無水物を含有する液を分別蒸留する方法では、(メタ)アクリル酸無水物の一部が初溜や釜残となって回収できない点が問題であり、蒸留時に重合が発生する危険性もある。以上のように(メタ)アクリル酸無水物を精製する方法では、(メタ)アクリル酸無水物の損失は避けられない。
 特許文献3には、未精製の(メタ)アクリル酸無水物とフェノール類とを反応させることを特徴とするフェニル(メタ)アクリレートの製造方法が記載されている。しかし、本発明者らの検討によれば、未精製の(メタ)アクリル酸無水物には、(メタ)アクリル酸無水物の二重結合の一方または双方に酢酸または(メタ)アクリル酸がマイケル付加した化合物が数%含まれていることが判明している。これらのマイケル付加した化合物にアルコールを反応させると、下記一般式(II)で表される(メタ)アクリル酸エステルに(メタ)アクリル酸がマイケル付加した構造の化合物が生成する。このため、特許文献3の製法では、アルコール基準の(メタ)アクリル酸エステルの収率が低下する点が問題であり、また、目的物である(メタ)アクリル酸エステルを蒸留する時に一般式(II)で表されるエステルが混入する点が問題である。
Figure JPOXMLDOC01-appb-C000005
(一般式(II)において、R、Rは水素またはメチル基を示し、Rは任意のアルコール残基を示す。)
 本発明者らの検討によれば、一般式(II)で表される化合物は、高温で(メタ)アクリル酸と(メタ)アクリル酸エステルに分解する事が判った。一般式(II)で表される化合物を含んだ(メタ)アクリル酸エステルを蒸留した場合、蒸留液温が高温になる蒸留後期において(メタ)アクリル酸が発生し、溜出した(メタ)アクリル酸エステルに混入して純度が低下する。
 (メタ)アクリル酸無水物とアルコールを反応させる場合、精製のしやすさの観点から、どちらか一方を過剰量仕込み、他方を消失させる方法が行われる事がある。また、反応が完全に進行しない場合、(メタ)アクリル酸無水物とアルコールが両方とも残存する事がある。特に原料と目的生成物の沸点が近い場合、即ち、フェニルメタクリレートのように、その沸点が原料アルコールや(メタ)アクリル酸無水物の沸点に近い場合には、どちらの原料も極力少なくする方が好ましい。
 特許文献1の製法では、(メタ)アクリル酸無水物を過剰量使用し、残存した(メタ)アクリル酸無水物をアルカリ水溶液で処理することにより、(メタ)アクリル酸無水物を加水分解させてメタクリル酸にし、アルカリ水溶液に溶解させている。しかし、フェノール性水酸基を持つアルコールから得られる(メタ)アクリル酸エステルは、加水分解しやすいため、(メタ)アクリル酸無水物を加水分解する際に、一緒に加水分解する。そのため、(メタ)アクリル酸エステルの収率が大きく低下する。また、炭酸ナトリウム、炭酸カリウム水溶液などの弱アルカリ性水溶液による洗浄では、(メタ)アクリル酸無水物を効率よく加水分解する事は出来ない。さらに、これらの方法では多量の洗浄廃水が発生する。
 特許文献4には、メタノールなどの反応性の高いアルコールを供給し、残存する(メタ)アクリル酸無水物と反応させる方法が記載されている。しかし、フェノール性水酸基を持つアルコールから得られる(メタ)アクリル酸エステルは、メタノールとエステル交換反応を起こしやすく、メチルエステルとフェノール性水酸基を持つアルコールが生成する。そのため、(メタ)アクリル酸エステルの収率が大きく低下する。
特開2002-161068号公報 特開2002-275124号公報 特開2000-191590号公報 特開2002-088018号公報
 本発明は、(メタ)アクリル酸と脂肪酸無水物とを反応させて得た(メタ)アクリル酸無水物をアルコールと反応させて(メタ)アクリル酸エステルの製造する方法において、(メタ)アクリル酸無水物の損失が少なく、高純度の(メタ)アクリル酸エステルを高収率で得ることを目的とする。さらに、副反応生成物を処理することにより、(メタ)アクリル酸を高収率で回収することを目的とする。また、反応後に残存した(メタ)アクリル酸無水物を効率的に加水分解することにより、(メタ)アクリル酸エステルの精製を容易にする事を目的とする。
 前記課題を解決可能な第一の発明は、下記の工程(1)~(3)を含む(メタ)アクリル酸エステルの製造方法において、工程(2)の反応を90℃以上の温度で行うことを特徴とする(メタ)アクリル酸エステルの製造方法である。
(1)下記一般式(I)で表される脂肪酸無水物と(メタ)アクリル酸とを反応させて、副生する脂肪酸を抜き出しながら(メタ)アクリル酸無水物を製造する工程、
Figure JPOXMLDOC01-appb-C000006
 (一般式(I)において、Rは直鎖又は分岐状の炭素数1~3のアルキル基又はアルケニル基、Rは直鎖又は分岐状の炭素数1~3のアルキル基を示す。)
(2)アルコールと前記工程(1)の反応で得られる未精製の(メタ)アクリル酸無水物とを反応させて(メタ)アクリル酸エステルを得る工程、
(3)(メタ)アクリル酸を蒸留により回収する工程。
 第二の発明は、前記の工程(1)~(3)を含む(メタ)アクリル酸エステルの製造方法において、工程(3)の蒸留を90℃以上の温度で行うことを特徴とする方法である。
 第三の発明は、前記の工程(1)~(3)を含む(メタ)アクリル酸エステルの製造方法において、更に前記工程(2)で得られた反応液を90℃以上の温度で加熱する工程(2’)を含む方法である。
 第四の発明は、前記の工程(1)~(3)を含む(メタ)アクリル酸エステルの製造方法において、更に前記工程(2)で得られた反応液を90℃以上の温度で蒸留する工程(2’’)を含む方法である。
 第五の発明は、下記の工程(i)及び工程(ii)を含む(メタ)アクリル酸エステルの製造方法である。
(i)アルコールと(メタ)アクリル酸無水物とを反応させて(メタ)アクリル酸エステルを製造する工程、
(ii)前記工程(i)で製造した(メタ)アクリル酸エステルを含む反応液に、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、酸化物からなる群から選ばれる少なくとも1種の塩基性化合物を添加して、残存する(メタ)アクリル酸無水物を加水分解する工程。
 本発明の(メタ)アクリル酸エステルの製造方法は、生成した(メタ)アクリル酸無水物を精製せずに使用するので(メタ)アクリル酸無水物の損失を抑えることができる。また、マイケル付加物の分解によって生成した(メタ)アクリル酸の混入を抑制し、高純度、高収率で(メタ)アクリル酸エステルを得ることができる。そして、(メタ)アクリル酸を高収率で回収することができる。さらに、反応後に残存した(メタ)アクリル酸無水物を効率的に加水分解することにより、(メタ)アクリル酸エステルの精製を容易にする事が出来る。
 本明細書において、(メタ)アクリル酸とは、アクリル酸および/またはメタクリル酸を意味する。(メタ)アクリル酸無水物とは、アクリル酸無水物、メタクリル酸無水物、またはアクリル酸とメタクリル酸との混合酸無水物を意味する。また、(メタ)アクリル酸エステルとはアクリル酸エステルおよび/またはメタクリル酸エステルを意味する。
 第一、第二、第三、及び第四の発明は、工程(1)、工程(2)及び工程(3)を基本工程として含む。そして、第一及び第二の発明は、それぞれ工程(2)または工程(3)を特定の温度条件下で行うことを特徴とする。また、第三及び第四の発明は、工程(2)の後に、それぞれ特定の工程(2’)または工程(2’’)を更に行うことを特徴とする。更に、第五の発明は、工程(i)及び工程(ii)を基本工程として含む。以下、各工程を順次説明する。
[工程(1):下記一般式(I)で表される脂肪酸無水物と(メタ)アクリル酸とを反応させて、副生する脂肪酸を抜き出しながら(メタ)アクリル酸無水物を製造する工程]
Figure JPOXMLDOC01-appb-C000007
 (一般式(I)において、Rは直鎖又は分岐状の炭素数1~3のアルキル基又はアルケニル基、Rは直鎖又は分岐状の炭素数1~3のアルキル基を示す。)
工程(1)においては、脂肪酸無水物と(メタ)アクリル酸とから(メタ)アクリル酸無水物が製造される。
<脂肪酸無水物>
 原料として使用される脂肪酸無水物は、上記一般式(I)で表される化合物である。一般式(I)において、Rとしては、メチル基、エチル基、プロピル基、イソプロピル基、ビニル基、アリル基、イソプロペニル基などが挙げられる。Rとしては、メチル基、エチル基、プロピル基、イソプロピル基などが挙げられる。(メタ)アクリル酸と反応して副生する脂肪酸と生成した(メタ)アクリル酸無水物との蒸留塔における分離性の点から、Rはメチル基、エチル基、ビニル基が好ましく、メチル基がより好ましい。同様にRはメチル基、エチル基が好ましく、メチル基がより好ましい。前記理由から、無水酢酸(酢酸同士の酸無水物)が最も好ましい。
 脂肪酸無水物と(メタ)アクリル酸を反応させると、(メタ)アクリル酸無水物が製造されるとともに、脂肪酸が副生する。この脂肪酸は、当該脂肪酸無水物が加水分解されて生成する脂肪酸と同じものである。例えば、脂肪酸無水物が無水酢酸の場合、副生する脂肪酸は酢酸である。
 また、(メタ)アクリル酸無水物を製造する際に中間体として、脂肪酸無水物に由来する脂肪酸と(メタ)アクリル酸との混合酸無水物(以下、「混合酸無水物」という。)が生成する場合がある。前記一般式(I)において、Rが反応させるアクリル酸から派生するビニル基又はメタクリル酸から派生するイソプロペニル基以外の場合に混合酸無水物が生成する。例えば、無水酢酸とアクリル酸の反応では、一般式(I)において、Rがビニル基、Rがメチル基の混合酸無水物が生成する。したがって、これら混合酸無水物は、更に(メタ)アクリル酸と反応し得るものである。
 本発明においては、生成物である(メタ)アクリル酸無水物に対する原料である脂肪酸無水物のモル比が0.01以下になった時点を反応終了時とすることが好ましい。
 しかし、脂肪酸無水物が検出限界以下の量となっても、混合酸無水物が残留しているため、反応は(メタ)アクリル酸無水物に対する混合酸無水物の量のモル比が0.02以下となった状態で終了することがより好ましい。例えば、酢酸と(メタ)アクリル酸との混合酸無水物が(メタ)アクリル酸無水物中に存在すると、アルコールと反応させたとき、酢酸エステルと(メタ)アクリル酸となり、目的とする(メタ)アクリル酸エステルの収率、選択性が低下する。(メタ)アクリル酸無水物の収率、(メタ)アクリル酸エステルを製造する際の収率、選択性の点から、(メタ)アクリル酸無水物に対する混合酸無水物のモル比が0.01以下になった状態で反応を終了することがさらに好ましく、0.005以下になった状態で反応を終了することが特に好ましい。また、反応時間の長大化は副生成物の増加につながるため、(メタ)アクリル酸無水物に対する混合酸無水物のモル比が0.0001以上で反応を終了することが好ましく、0.001以上で反応を終了することがより好ましい。
<(メタ)アクリル酸>
 (メタ)アクリル酸無水物の製造に際して、原料の(メタ)アクリル酸は、脂肪酸無水物に対しモル比1~8倍で使用することが好ましい。脂肪酸無水物基準の(メタ)アクリル酸無水物収率の点から、このモル比は2倍以上であることが好ましく、2.2倍以上であることがより好ましい。また、反応終了時に反応液中の(メタ)アクリル酸量の回収負荷軽減の点から、このモル比は6倍以下であることが好ましく、4倍以下であることがより好ましい。
 最初に反応器に原料を仕込む方法としては、1)脂肪酸無水物及び(メタ)アクリル酸の両方を全て仕込む方法、2)いずれか一方の原料を全て反応器に仕込む方法、3)一方の原料の全てを仕込み他方の原料の一部を仕込む方法、又は、4)両方の原料の各一部を仕込む方法のいずれでもよい。2)~4)の場合、残りの原料は反応開始後に分割又は連続のいずれの方法でも供給することができる。
<触媒>
 本発明における(メタ)アクリル酸無水物の製造方法においては、触媒を用いた方が好ましい。(メタ)アクリル酸無水物の分解反応、二量化、三量化、メタクリル酸のマイケル付加などの好ましくない副反応は無触媒でも進行する。無触媒であると反応時間が長くなり、前記の副反応生成物が多くなる。触媒としては金属化合物、酸触媒、塩基触媒、不均一系触媒などが挙げられる。
 前記金属化合物としては、金属の酸化物、水酸化物、炭酸塩、炭酸水素塩、硫酸塩、塩化物、硝酸塩、リン酸塩、ホウ酸塩などの無機酸との塩;酢酸塩や(メタ)アクリル酸塩、スルホン酸塩などの有機酸塩;アセチルアセトナート、シクロペンタジエニル錯体などの錯塩などが挙げられる。
 前記酸触媒としては、硫酸、硝酸、リン酸、ホウ酸、塩酸及びヘテロポリ酸などの無機酸;メタスルホン酸、パラトルエンスルホン酸、カンファースルホン酸などの有機酸などが挙げられる。また、塩基触媒としては、ピリジン、4-(ジメチルアミノ)ピリジン、トリエチルアミンなどの有機塩基などが挙げられる。これらの中では、活性が高く、副反応生成物が少ないことから、無機酸や有機酸が好ましく、硫酸、スルホン酸がより好ましい。
 前記不均一系触媒としては、塩基性イオン交換樹脂及び酸性イオン交換樹脂などのイオン交換樹脂、活性成分をシリカやアルミナ、チタニアなどの担体に固定した触媒が使用可能である。
 また、前記触媒は、操作性の点から必要量の全てが反応系に溶解するものが好ましい。触媒は単独で用いてもよいし2種以上を併用してもよい。触媒を反応器に仕込む方法としては、例えば、全量を最初に反応器に仕込む方法、最初に一部を仕込み、残りを後で供給する方法などが挙げられる。前記触媒の使用量は、反応全体を通して使用した前記一般式(I)で表される脂肪酸無水物の仕込み量に対し、モル比で0.000001~0.5倍が好ましい。反応を円滑に進行させる点から、このモル比は0.000005倍以上が好ましく、0.00001倍以上がより好ましい。一方、触媒の除去や副反応の抑制の点から、このモル比は0.1倍以下が好ましく、0.05倍以下がより好ましい。
<反応条件>
 反応は、生産性及び溶媒回収の負荷などの点から、無溶媒で行うことが好ましいが、必要に応じて反応に不活性な溶媒を用いることもできる。不活性な溶媒としては、例えば、ヘキサン、ヘプタン、ペンタン、シクロヘキサン等の脂肪族系炭化水素;トルエン、キシレン等の芳香族系炭化水素;ジエチルエーテル、ジイソプロピルエーテルなどのエーテル類;ジエチルケトン、ジイソプロピルケトンなどのケトン類などが使用できる。副生する脂肪酸と共沸しやすい溶媒が好ましい。溶媒の使用量は、(メタ)アクリル酸1質量部に対して1~30質量部が好ましい。
 (メタ)アクリル酸無水物を製造する際の反応温度は、30~120℃の範囲が好ましい。反応を円滑に進行することができる点から、反応温度は50℃以上がより好ましく、60℃以上がさらに好ましい。一方、重合や副反応を抑制する点から、反応温度は100℃以下がより好ましく、90℃以下がさらに好ましい。
 反応方式としては、例えば、単一の反応器内に全ての原料を仕込んで反応を完結させる回分式、反応器内に原料を連続的に供給して連続的に反応させる連続式、反応器と配合タンクとを備え、反応器と配合タンクとの間で原料を循環させながら反応器で反応させる循環式などが挙げられる。副生する脂肪酸など(メタ)アクリル酸無水物よりも沸点の低い化合物をできるだけ除去するためには、回分式が好ましい。
<脂肪酸の除去>
 反応は副生する脂肪酸を系外に除去しながら行う。副生する脂肪酸と他の化合物とを分離する方法としては、例えば、複数段の蒸留塔(精留塔)を用いて蒸留する方法が挙げられる。蒸留塔には、例えば、ステンレス鋼、ガラス、陶磁器製などのラシヒリング、レッシングリング、ディクソンパッキン、ポールリング、サドル、スルザーパッキンなどの形状を有する充填物を使用した充填塔、多孔板塔や泡鐘塔などの棚段塔などが使用できる。蒸留塔と反応器との接続は、反応器の上部に蒸留塔が連接された形態、反応器と接続された別容器の上部に蒸留塔が連接された形態、蒸留塔の上段から下段のいずれかの位置に反応器が接続された形態のいずれでも良い。いずれの接続形態においても、反応器と蒸留塔の間の経路は一つでも複数でも良く、途中に熱交換器などの装置が介在していてもよい。
 蒸留塔の理論段数は、副生する脂肪酸と他の化合物との分離性の点から、3段以上が好ましく、5段以上がより好ましい。一方、差圧及び装置規模の点から30段以下が好ましく、20段以下がより好ましい。
 蒸留では、還流器を使用しない内部還流方式や還流器を使用して還流比を制御する方式が使用できる。還流比は、装置の規模、生産性、分離性などを考慮し適宜決めることができるが、0.2~10の範囲が好ましい。還流比は、分離性の点から0.5以上がより好ましく、1以上がさらに好ましい。一方、生産性の点から6以下がより好ましく、4以下がさらに好ましい。還流比は反応液の組成にあわせて、反応中に適宜調整することが好ましい。副生する脂肪酸を系外に除去するに際しては、当該脂肪酸と他の化合物とを完全に分離する必要はない。また、当該脂肪酸と共に脂肪酸無水物や混合酸無水物、(メタ)アクリル酸無水物が蒸留塔から溜出する場合は、この溜出液の一部又は全部を別の(メタ)アクリル酸無水物の製造に使用してもよい。
 圧力は、反応温度や蒸留塔の段数などを考慮して適宜決めることができる。反応の進行とともに反応液の組成が変わり、全体の蒸気圧が低下するので、副生した脂肪酸を除去するためには精留が実施できる状態になるように圧力を下げていくことが好ましい。反応は蒸留塔内の圧力を調節しながら実施するが、反応温度や蒸留塔の段数などを考慮して塔頂の圧力を調整してもよい。このような方法としては、例えば、大気圧で反応温度80℃に調節して反応を開始した後、徐々に減圧にする方法が挙げられる。
<反応時間>
 前記反応における反応時間は、反応器内の一般式(I)で表される脂肪酸無水物又は混合酸無水物の残量をもとに適宜決定できる。しかし、反応を12時間未満で終了させると、無水(メタ)アクリル酸の製造量に対して、精留塔などの設備が大きくなりすぎるという問題があるため、12時間以上とすることが好ましい。(メタ)アクリル酸無水物の収率及び精留塔設備の大きさの点から、反応時間は15時間以上が好ましく、18時間以上がより好ましい。一方、生産性の点から反応時間は72時間以下が好ましく、60時間以下がより好ましく、48時間以下がさらに好ましい。また、反応時間は短いほど副反応が抑制される。
 なお、反応時間は、回分式、半回分式の反応装置において脂肪酸の除去を開始したときを反応開始時点として、前記反応終了時までの時間とする。反応の終了は、脂肪酸又は残った(メタ)アクリル酸の除去を停止することによって実施される。
<反応の終了>
 本発明では、反応終了時に反応液中の(メタ)アクリル酸無水物に対する(メタ)アクリル酸のモル比が0.3~2の範囲になる条件で実施する事が好ましい。前記モル比を0.3以上することにより(メタ)アクリル酸の安定性が向上し、このモル比が大きいほど(メタ)アクリル酸無水物の安定性がより向上するため、0.5以上が好ましい。一方、(メタ)アクリル酸無水物に対する(メタ)アクリル酸が多いほど、得られた反応液を使用して(メタ)アクリル酸エステルを製造する際に反応器が大きくなること、また、後述するように、貯蔵時に容量の大きな容器が必要になること、得られた(メタ)アクリル酸エステルと(メタ)アクリル酸とを分離するための負荷が増大すること、などの理由により、前記モル比は2以下であることが好ましい。前記モル比は1以下がより好ましく、0.8以下が特に好ましい。なお、本発明では、反応全体を通して(メタ)アクリル酸無水物に対する(メタ)アクリル酸のモル比を0.3以上に維持することが好ましい。
<重合防止剤>
 本発明においては、(メタ)アクリル酸無水物の製造に際して重合防止剤を使用することができる。重合防止剤は反応器中に導入されるが、蒸留塔の塔頂や塔の途中にも導入することが好ましい。
 重合防止剤としては、酸無水物及び(メタ)アクリル酸に対して不活性な重合防止剤が好ましい。例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル、ベンゾキノン等のキノン系重合防止剤、2,6-ジ-tert-ブチルフェノール、2,4-ジ-tert-ブチルフェノール、2-tert-ブチル-4,6-ジメチルフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール、2,4,6-トリ-tert-ブチルフェノール等のアルキルフェノール系重合防止剤、アルキル化ジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、フェノチアジン等のアミン系重合防止剤、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシルや4-アセトアミノ-2,2,6,6-テトラメチルピペリジン-N-オキシルなどのヒンダートアミン系重合防止剤、金属銅、硫酸銅、ジメチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅等のジチオカルバミン酸銅系重合防止剤などが挙げられる。これらの重合防止剤は1種を単独で使用してもよいし、2種以上を併用してもよい。
 重合防止剤の添加量は、その種類や条件により影響されるが、反応液の質量に対して0.01~10000ppmの範囲が好ましい。また、反応液に酸素を含む気体をバブリングさせることにより、重合防止効果が向上する場合がある。
[工程(2):アルコールと前記工程(1)の反応で得られる未精製の(メタ)アクリル酸無水物とを反応させて(メタ)アクリル酸エステルを得る工程]
 工程(2)においては、前記の方法で得られた未精製の(メタ)アクリル酸無水物とアルコールとを反応させて(メタ)アクリル酸エステルが製造される。
<アルコール>
 原料のアルコールとしては、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-アミルアルコール、イソアミルアルコール、n-へキシルアルコール、n-へプチルアルコール、n-オクチルアルコール、n-ノニルアルコール、n-デシルアルコール、ラウリルアルコール、セチルアルコール、ステアリルアルコール等の直鎖または分枝鎖の脂肪族アルコール、アリルアルコール、ブチンジオール等の不飽和アルコール、シクロペンタノール、シクロヘキサノール、1-アダマンタノール、2-アダマンタノール、1-アダマンタンメタノール等の環式アルコール、フェノール、ベンジルアルコール等の芳香族アルコール、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、グリセリン等の多価アルコール、さらには、これらのアルコールの少なくとも一つの位置がアミノ基、カルボキシル基、カルボニル基、アミド基等の置換基に置換されたアルコール、構造中にエーテル結合、エステル結合等を有したアルコールなどが挙げられる。これらのアルコールの中でも、生成した(メタ)アクリル酸エステルと(メタ)アクリル酸を蒸留精製する場合の分離性の点から、炭素数5以上のアルコールが好ましい。また、選択性の点から、アミノ基などの(メタ)アクリル酸無水物と反応する置換基を持たないアルコールが好ましい。
さらに、マイケル付加物の分解のしやすさから、フェノール性水酸基を有するアルコールが好ましい。
<(メタ)アクリル酸無水物>
 (メタ)アクリル酸エステルを製造するに際して、(メタ)アクリル酸無水物は、アルコールに対しモル比0.5~5倍で使用することが好ましい。アルコール基準の(メタ)アクリル酸エステル収率の点から、このモル比は0.8倍以上がより好ましく、0.9倍以上がさらに好ましい。また、反応後の(メタ)アクリル酸無水物の処理または回収負荷低減の点から、このモル比は1.2倍以下がより好ましく、1.1倍以下がさらに好ましい。アルコールと(メタ)アクリル酸無水物の比は、(メタ)アクリル酸エステル生成後の精製のしやすさ、アルコールの価格、アルコールの反応性などの観点から適宜決められる。
 最初に反応器に原料を仕込む方法としては、1)(メタ)アクリル酸無水物およびアルコールの両方を全て仕込む方法、2)どちらか一方の原料を全て反応器に仕込む方法、3)一方の原料の全てを仕込み他方の原料の一部を仕込む方法、または、4)両方の原料の各一部を仕込む方法のいずれでもよい。分割して仕込む場合、残りの原料は反応開始後に分割または連続のいずれの方法で供給してもよい。
<触媒>
 (メタ)アクリル酸エステルの製造においては触媒を用いることが好ましい。無触媒であると反応時間が長くなり、重合や副反応が進行する場合がある。触媒としては工程(1)で使用されるものと同様の金属化合物、酸触媒、塩基触媒、不均一触媒などが使用される。
 触媒は単独で用いてもよいし2種以上を併用してもよい。触媒を仕込む方法としては、例えば、全量を最初に反応器に仕込む方法、最初に一部を仕込み、残りを後で供給する方法などが挙げられる。触媒は、(メタ)アクリル酸無水物の製造方法と同じ物でも、異なった種類のものでも良い。(メタ)アクリル酸無水物の製造方法の際に使用したものをそのまま使用しても良く、新たに添加しても良い。触媒の使用量は、アルコールに対しモル比で0.0001~0.3倍が好ましい。反応を円滑に進行させる点から、このモル比は0.001モル以上がより好ましく、0.01モル以上がさらに好ましい。一方、触媒の除去や副反応の抑制の点から、このモル比は0.2以下が好ましく、0.1以下がより好ましい。
<反応条件>
 反応は、生産性および溶媒回収の負荷などの点から、無溶媒で行うことが好ましいが、必要に応じて反応に不活性な溶媒を用いることもできる。このような溶媒としては、工程(1)で使用されるものと同様の溶媒が挙げられる。溶媒は(メタ)アクリル酸と共沸しやすいものが好ましい。溶媒の使用量は(メタ)アクリル酸無水物の質量に対して1~30倍が好ましい。
 反応温度は、30~150℃の範囲が好ましい。重合や副反応を抑制する点から、反応温度は120℃以下がより好ましい。一方、反応を円滑に進行させる点から、反応温度は50℃以上がより好ましく、60℃以上がさらに好ましい。一般に、重合しやすい化合物を使用する反応は、重合防止のために出来るだけ低温で反応を行う事が好ましいとされている。しかし、反応温度を90℃以上とすることによって、(メタ)アクリル酸エステルに(メタ)アクリル酸がマイケル付加した化合物を(メタ)アクリル酸エステルと(メタ)アクリル酸に分解することができることから、重合などのトラブルが起きない範囲内で出来るだけ高い温度で反応をする事が好ましい。
 反応方式としては、前記(メタ)アクリル酸無水物の製造の場合と同様の回分式、連続式、循環式などが採用できる。反応は副生する(メタ)アクリル酸を回収しながら行っても良い。圧力は、減圧した状態、大気圧、加圧した状態のいずれでも良い。
 (メタ)アクリル酸エステルを製造する反応時間は反応器内の(メタ)アクリル酸無水物またはアルコールの残量を基に適宜決定できる。通常は、(メタ)アクリル酸エステルに対するアルコール及び/または(メタ)アクリル酸無水物のモル比が0.05以下になった時点で反応を終了する。回収した(メタ)アクリル酸中の(メタ)アクリル酸無水物及び/またはアルコール含有量を減らす面から、このモル比は0.03以下が好ましく、0.01以下がより好ましい。反応時間は、仕込み比、反応温度から適宜決めればよいが通常0.5~48時間である。収率の点から反応時間は1時間以上が好ましく、2時間以上がさらに好ましい。重合及び副反応抑制の点から反応時間は36時間以下が好ましく、24時間以下がより好ましく、12時間以下がさらに好ましい。
<重合防止剤>
 (メタ)アクリル酸エステルを製造する方法においては、重合防止剤を使用することができる。重合防止剤は反応器中に導入されるが、蒸留塔の塔頂や塔の途中にも導入することが好ましい。重合防止剤は、アルコール、(メタ)アクリル酸無水物および(メタ)アクリル酸に対して不活性な重合防止剤が好ましい。重合防止剤としては、工程(1)で使用されるものと同様の重合防止剤が挙げられる。これらの重合防止剤は1種を単独で使用してもよいし、2種以上を併用してもよい。重合防止剤の添加量は、その種類や条件により影響されるので一概には言えないが、反応液の質量に対して0.01~10000ppmの範囲が好ましい。また、反応液に酸素を含む気体をバブリングさせることにより、重合防止効果が向上することがある。
[(メタ)アクリル酸エステルの精製]
 本発明においては、必要に応じて、前記工程(2)において、(メタ)アクリル酸無水物を過剰に仕込み、反応液中から原料アルコールを消失させ、(メタ)アクリル酸無水物を処理した後に精製することにより、高純度の(メタ)アクリル酸エステルを得る事が出来る。あるいは、原料アルコールと(メタ)アクリル酸無水物が残った状態で、(メタ)アクリル酸無水物を処理した後、反応液中の原料アルコールと(メタ)アクリル酸エステルを蒸留などの方法で分離することにより、高純度の(メタ)アクリル酸エステルを得る事が出来る。
<塩基性化合物>
 (メタ)アクリル酸無水物の処理方法は、特に制限されないが、得られた反応液に、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、酸化物からなる群から選ばれる少なくとも1種の塩基性化合物を添加することにより、残存する(メタ)アクリル酸無水物のみを加水分解処理することが好ましい。
 アルカリ金属とアルカリ土類金属では、アルカリ土類金属を用いた場合にその(メタ)アクリル酸塩の溶解性が低く、析出する事があるため、アルカリ金属の水酸化物、炭酸塩、炭酸水素塩が好ましい。処理効率や(メタ)アクリル酸エステルが加水分解する可能性が低い点から、水酸化リチウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウムが好ましい。以上の化合物は結晶水や不純物としての水を含有していても良い。この処理は後記の工程(2’)の加熱と同時に実施しても良い。
 塩基性化合物の使用量は反応液中に残存する(メタ)アクリル酸無水物1モルに対し、0.1~20モルが使用できる。(メタ)アクリル酸無水物の処理効率の点から使用量は0.5モル以上が好ましく、1モル以上がより好ましい。塩基性化合物の残存量を減少させる点から、15モル以下が好ましく、10モル以下がより好ましい。前記工程(1)および(2)で触媒として酸性化合物を使用した場合、酸性化合物を中和する量の塩基性化合物を追加する必要がある。
<水>
 この処理の際に残存する(メタ)アクリル酸無水物1モルに対し、0.1~10モルの水を前記反応液に添加することにより、(メタ)アクリル酸無水物の処理効率がより向上する。処理効率の点から水の使用量は0.3モル以上が好ましく、0.5モル以上がより好ましい。精製のしやすさの点から、水の使用量は5モル以下が好ましく、3モル以下がより好ましい。
 塩基性化合物を反応器に仕込む方法としては、1)粉末または粒子のまま投入する方法、2)水、(メタ)アクリル酸または有機溶媒などとのスラリーとして導入する方法、3)粉末または粒子のまま投入した後、水を供給する方法、又は4)水を供給した後、粉末または粒子のまま投入する方法のいずれでもよく、分割又は連続供給などいずれの方法で実施してもよい。
<処理条件>
 処理は、生産性及び溶媒回収の負荷などの点から、無溶媒で行うことが好ましいが、必要により反応に不活性な溶媒を用いることもできる。不活性な溶媒としては、前記工程(1)で使用されるものと同様な溶媒が使用できる。不活性な溶媒を使用する場合、その使用量としては、(メタ)アクリル酸エステルの質量に対して1~30倍量が好ましい。溶媒としては、副生する脂肪酸と共沸しやすいものが好ましい。
 処理温度は、30~150℃の範囲が好ましい。反応を円滑に進行することができる点から、処理温度は50℃以上がより好ましく、60℃以上がさらに好ましい。一方、重合や副反応を抑制する点から、反応温度は140℃以下がより好ましく、130℃以下がさらに好ましい。
 処理方式としては、例えば、回分式、連続式、循環式などが挙げられる。
処理時間は、(メタ)アクリル酸無水物量、仕込み量、反応温度から適宜決定することができるが、通常0.5~48時間である。(メタ)アクリル酸無水物残量を減少させる観点から反応時間は1時間以上が好ましく、2時間以上がより好ましい。重合及び副反応抑制の観点から反応時間は36時間以下が好ましく、24時間以下がより好ましく、12時間以下がさらに好ましい。
処理において、重合防止剤を使用することができる。重合防止剤およびその使用方法は、工程(1)と同様のものが採用できる。
[工程(3):(メタ)アクリル酸を蒸留により回収する工程]
 前記工程において(メタ)アクリル酸無水物とアルコールを反応させて(メタ)アクリル酸エステルを製造すると、(メタ)アクリル酸エステルとほほ等モルの(メタ)アクリル酸が生成する。
<蒸留>
 (メタ)アクリル酸を回収する方法としては、例えば、単蒸留、複数段の蒸留塔(精留塔)を用いて蒸留する方法などが挙げられる。蒸留塔には、例えば、ステンレス鋼、ガラス、陶磁器製などのラシヒリング、レッシングリング、ディクソンパッキン、ポールリング、サドル、スルザーパッキンなどの形状を有する充填物を使用した充填塔、多孔板塔や泡鐘塔などの棚段塔などが使用できる。蒸留塔と反応器との接続は、反応器の上部に蒸留塔が連接された形態、反応器と接続された別容器の上部に蒸留塔が連接された形態、蒸留塔の上段から下段のいずれかの位置に反応器が接続された形態のいずれでも良い。いずれの接続形態においても、反応器と蒸留塔の間の経路は一つでも複数でも良く、途中に熱交換器などの装置が介在していてもよい。
 蒸留塔の理論段数は、回収される(メタ)アクリル酸の純度の点から、3段以上が好ましく、5段以上がより好ましい。一方、差圧及び装置規模の点から30段以下が好ましく、20段以下がより好ましい。蒸留では、還流器を使用しない内部還流方式や還流器を使用して還流比を制御する方式が使用できる。還流比は、装置の規模、生産性、分離性などを考慮し適宜決めることができるが、0.2~10の範囲が好ましい。還流比は、(メタ)アクリル酸の純度の点から、0.5以上がより好ましく、1以上がさらに好ましい。一方、生産性の点から6以下がより好ましく、4以下がさらに好ましい。還流比は反応液の組成にあわせて、反応中に適宜調整することが好ましい。
 蒸留釜内の反応液の温度(以下「蒸留温度」という。)は10~150℃程度が採用される。重合や副反応を抑制する点から蒸留温度は140℃以下が好ましく、130℃以下がより好ましい。一方、蒸気量を十分に維持する点から蒸留温度は30℃以上が好ましく、50℃以上がより好ましい。この前の工程でアルコールと未精製の(メタ)アクリル酸無水物とを90℃未満で反応させた場合は、蒸留温度を初期又は途中から90℃以上にすることが好ましい。蒸留温度を90℃以上にすることによって、(メタ)アクリル酸エステルに(メタ)アクリル酸がマイケル付加した化合物を(メタ)アクリル酸エステルと(メタ)アクリル酸に分解することができる。
 圧力は、温度や蒸留塔の段数などを考慮して適宜決めることができる。蒸留温度を低く出来る点から減圧下で蒸留することが好ましい。
<重合防止剤>
 (メタ)アクリル酸の回収においては、重合防止剤を使用することができる。重合防止剤は反応器中だけでなく蒸留塔の塔頂や塔の途中にも導入することが好ましい。反応器に使用する重合防止剤は、(メタ)アクリル酸に対して不活性な重合防止剤が好ましい。重合防止剤としては、工程(1)で使用されるものと同様の重合防止剤が挙げられる。これらの重合防止剤は1種を単独で使用してもよいし、2種以上を併用してもよい。
 (メタ)アクリル酸の回収量は、回収した(メタ)アクリル酸に含まれる混入物含有量の低減の観点から、処理する反応液に含まれる(メタ)アクリル酸の96質量%以下にすることが好ましく、94質量%以下にすることがより好ましく、92質量%以下にすることがさらに好ましい。
 回収した(メタ)アクリル酸は再度前記工程(1)あるいは別の反応で用いることが可能である。純度の高い(メタ)アクリル酸や(メタ)アクリル酸無水物以外の混入物の少ない(メタ)アクリル酸は、そのまま新たに工程(1)に使用する事が可能である。(メタ)アクリル酸無水物、(メタ)アクリル酸エステルやアルコールなどが混入している(メタ)アクリル酸は、工程(2)に使用する事が可能である。混入物のある(メタ)アクリル酸は、再度蒸留しても良い。蒸留は本操作で得られた溜分のみで実施してもよく、新たに製造した(メタ)アクリル酸エステルを含む反応液や溜分に混合しても良い。
 回収した(メタ)アクリル酸を使用する際に、別途新たな(メタ)アクリル酸を追加使用してもよい。別途新たな(メタ)アクリル酸を追加使用する場合、回収した(メタ)アクリル酸と新たな(メタ)アクリル酸との比率は、回収した(メタ)アクリル酸100質量部に対し、新たな(メタ)アクリル酸を1~99質量部混合させることが出来る。なお、以上の工程および回収(メタ)アクリル酸の使用は、1回でも複数回繰り返してもよい。
 以上において、本発明群の基本工程である工程(1)、工程(2)及び工程(3)、並びに第一及び第二の発明が特徴とする工程(2)、工程(3)を特定の温度条件等について説明した。
 続いて、工程(2)の後にそれぞれ特定の工程(2’)または工程(2’’)を行うことを特徴とする第三及び第四の発明について説明する。
[工程(2’):前記工程(2)で得られた反応液を90℃以上の温度で加熱する工程]
<加熱処理>
 工程(2)の後に必要に応じて、前記の方法で得られた(メタ)アクリル酸エステルを含む反応液を90℃以上の温度で加熱処理することにより、(メタ)アクリル酸エステルに(メタ)アクリル酸がマイケル付加した化合物を(メタ)アクリル酸エステルと(メタ)アクリル酸に分解することができる。加熱処理温度は、90~150℃の範囲が好ましい。加熱処理時間の点から、加熱温度は100℃以上がより好ましく、120℃以上がさらに好ましい。一方、重合や副反応を抑制する点から、反応温度は140℃以下がより好ましく、130℃以下がより好ましい。
 加熱処理は、前の工程の触媒が残留した状態で実施してもよく、触媒を吸着剤などで処理して除いた後に実施しても良い。酸触媒又は塩基触媒が存在する場合、塩基性化合物または酸性化合物で中和処理しても良い。重合や(メタ)アクリル酸エステル分解抑制の点から、酸触媒が存在する場合、塩基性化合物で中和処理することが好ましい。
 塩基性化合物としては、アルカリ金属またはアルカリ土類金属の酸化物、水酸化物、炭酸塩、炭酸水素塩、酢酸塩や(メタ)アクリル酸塩などのカルボン酸塩、ピリジン、4-(ジメチルアミノ)ピリジン、トリエチルアミンなどの有機塩基などが挙げられる。酸性化合物としては、硫酸、硝酸、リン酸、ホウ酸、塩酸およびヘテロポリ酸などの無機酸、メタスルホン酸、パラトルエンスルホン酸、カンファースルホン酸などの有機酸などが挙げられる。
 加熱処理は、生産性および溶媒回収の負荷などの点から、無溶媒で行うことが好ましいが、必要により反応に不活性な溶媒を用いることもできる。不活性な溶媒としては、工程(1)で使用する溶媒と同様のものが挙げられる。溶媒の使用量は(メタ)アクリル酸の質量に対して1~30倍量が好ましい。溶媒は副生する(メタ)アクリル酸と共沸しやすいものが好ましい。圧力は、減圧した状態、大気圧、加圧した状態のいずれでも良い。
 加熱処理時間は、(メタ)アクリル酸がマイケル付加した化合物の量、加熱処理温度から適宜決めればよいが通常0.5~48時間である。(メタ)アクリル酸がマイケル付加した化合物の分解量の点から反応時間は1時間以上が好ましく、2時間以上がさらに好ましい。重合及び副反応抑制の点から反応時間は36時間以下が好ましく、24時間以下がより好ましく、12時間以下がさらに好ましい。
 加熱処理においては、重合防止剤を使用することができる。重合防止剤は、(メタ)アクリル酸エステルや(メタ)アクリル酸に対して不活性なものが好ましい。重合防止剤の例としては、工程(1)の重合防止剤と同じものが挙げられる。これらの重合防止剤は1種を単独で使用してもよいし、2種以上を併用してもよい。重合防止剤の添加量は、その種類や条件により影響されるので一概には言えないが、反応液質量に対して0.01~10000ppmの範囲が好ましい。また、反応液に酸素を含む気体をバブリングさせることにより、重合防止効果が向上することがある。
[工程(2”):前記工程(2)で得られた反応液を90℃以上の温度で蒸留して(メタ)アクリル酸および(メタ)アクリル酸エステルを含む反応液を得る工程]
 第四の発明は、工程(2)と工程(3)の間に工程(2”)を行う(メタ)アクリル酸エステルの製造方法である。
<蒸留>
 本発明においては(メタ)アクリル酸エステルと(メタ)アクリル酸を含む反応液を蒸留することにより、両成分を一緒に回収することができる。蒸留塔、蒸留塔と反応器との接続形態、蒸留塔の理論段数、還流器の有無、還流比、蒸留塔の圧力制御基準、重合防止剤の選択基準と添加箇所等は、工程(3)の場合と同様の条件を採用することができる。
 蒸留温度は10~200℃の範囲で実施できる。重合や副反応を抑制する点から蒸留温度は140℃以下が好ましく、130℃以下がより好ましい。蒸気量を十分に維持する点から蒸留温度は30℃以上が好ましく、50℃以上がより好ましい。蒸留温度を初期又は途中から90℃以上にすることによって、(メタ)アクリル酸エステルに(メタ)アクリル酸がマイケル付加した化合物を(メタ)アクリル酸エステルと(メタ)アクリル酸に分解することができる。
 回収した(メタ)アクリル酸エステルと(メタ)アクリル酸は、再度蒸留することにより、(メタ)アクリル酸と(メタ)アクリル酸エステルを分離して回収することが出来る。蒸留は本操作で得られた溜分のみで実施してもよく、新たに製造した(メタ)アクリル酸エステルを含む反応液や溜分に混合しても良い。また、抽出や洗浄、晶析などの操作により、(メタ)アクリル酸エステルと(メタ)アクリル酸を分離して、(メタ)アクリル酸エステルおよび(メタ)アクリル酸を回収しても良い。
 (メタ)アクリル酸エステルの製造工程において得られた(メタ)アクリル酸エステルと(メタ)アクリル酸等を含む反応液から、蒸留等によって(メタ)アクリル酸を回収・除去することによって、(メタ)アクリル酸エステルを主成分とする液が得られる。
 本発明においては、必要に応じて、前記工程(2”)で得られた(メタ)アクリル酸および(メタ)アクリル酸エステルを含む溜出液に、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、酸化物からなる群から選ばれる少なくとも1種の塩基性化合物を添加することにより、残存する(メタ)アクリル酸無水物のみを加水分解処理することが好ましい。この場合の(メタ)アクリル酸無水物の処理方法は、工程(2)において前述したとおりである。
[(メタ)アクリル酸エステルの精製]
 本発明においては、工程(3)の後に、必要に応じて、工程(3)で回収した(メタ)アクリル酸を精製することにより、高純度の(メタ)アクリル酸エステルを得ることができる。精製方法としては、特に制限されないが、蒸留、吸着処理、洗浄、晶析等が挙げられる。
 (メタ)アクリル酸エステルを蒸留する方法としては、例えば、単蒸留、複数段の蒸留塔(精留塔)、薄膜蒸留などの方法が挙げられる。蒸留塔、蒸留塔と反応器との接続形態、蒸留塔の理論段数、還流器の有無、還流比、蒸留塔の圧力制御基準、重合防止剤の選択基準と添加箇所等は、工程(2”)と同様の条件を採用することができる。
<洗浄>
 (メタ)アクリル酸エステルを洗浄する方法としては、水、食塩や硫酸ナトリウムなどの塩の水溶液、塩基性物質の水溶液によって洗浄する方法が挙げられる。塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;水酸化カルシウム、水酸化マグネシウム等のアルカリ土類金属の水酸化物;炭酸ナトリウム、炭酸カリウム等のアルカリ金属の炭酸塩;炭酸カルシウム、炭酸マグネシウム等のアルカリ土類金属の炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属の炭酸水素塩;炭酸水素カルシウム、炭酸水素マグネシウム等のアルカリ土類金属の炭酸水素塩;ピリジン、4-(ジメチルアミノ)ピリジン、トリエチルアミンなどの有機塩基等が挙げられる。また、これらの塩基性物質を2種類以上組み合わせて使用することも可能である。洗浄は1回でも複数回でも良い。更に、異なる塩基性物質の水溶液により複数回の洗浄を行うこともできる。塩基性物質で洗浄後は、有機層に残存する塩基性物質を除くために水による洗浄を行うことが好ましい。洗浄に使用する水は、蒸留水やイオン交換樹脂等で脱イオンされた純水を使用することが好ましい。
 洗浄用水溶液中の塩や塩基性物質の濃度は1~30質量%が好ましく、2~15質量%がより好ましい。洗浄水の量が1質量%未満であると、十分に洗浄の効果が果たせず、また30質量%を超えると析出物が生じる場合がある。(メタ)アクリル酸エステルを洗浄する際は有機溶媒を使用しなくても良いが、必要に応じて(メタ)アクリル酸エステル含む反応液に有機溶媒を加えて混和させてもよい。溶媒としては工程(2)で挙げたものと同じものが使用できる。溶媒の質量は、反応液に対し0.1~10倍が好ましく、0.5~5倍がより好ましい。この質量比が0.1倍未満であると、洗浄に使用する水や水溶液への(メタ)アクリル酸エステルの移動が起こる場合があり、また10倍を超えると溶媒を回収する際に時間がかかる。
<吸着処理>
 (メタ)アクリル酸エステルを吸着処理する方法としては、カラムクロマトグラフィー、吸着剤を懸濁して不純物を吸着させた後吸着剤を分離する方法などが挙げられる。
吸着剤としては、活性白土、ハイドロタルサイト類、多孔質の重合体、イオン交換樹脂(陽イオン交換樹脂又は陰イオン交換樹脂)、活性炭、吸着樹脂、シリカゲル、シリカアルミナ系吸着剤、アルミナゲル、活性アルミナ、二酸化ケイ素、ゼオライト等が挙げられる。
 吸着剤の使用量は(メタ)アクリル酸エステルに対し0.05~20質量%である。特に0.5~10質量%が好ましい。少ない場合は不純物の低減効果が充分に得られず、多い場合は吸着剤に対する(メタ)アクリル酸エステルの合計吸着量が多くなって、(メタ)アクリル酸エステルの吸着によるロスや吸着剤をろ過などにより分離する場合の負荷が大きくなる。
 (メタ)アクリル酸エステルと吸着剤とを接触させる際の温度は、特に限定されないが、通常、0~100℃である。処理時の副反応抑制の点から接触させる際の温度は、60℃以下、特に40℃以下が好ましい。反応液と吸着剤とを接触させる際の時間は、吸着剤の種類やその使用量などによって異なるが、通常、1~120分間程度、特に3~60分間程度が好ましい。
 吸着剤によって吸着処理した後には、例えば、ろ過などの方法により、(メタ)アクリル酸エステルと吸着剤とを分離することができる。フィルターとしては、例えば、ポリテトラフルオロエチレンなどのフッ素樹脂製メンブランフィルターなどが挙げられる。
 (メタ)アクリル酸エステルと吸着剤とを接触させる際は有機溶媒を使用しなくても良いが、必要に応じて(メタ)アクリル酸エステル含む反応液に有機溶媒を加えて混和させてもよい。溶媒としては工程(1)で挙げたものと同じものが使用できる。溶媒の質量は、反応液に対し0.1~10倍が好ましく、0.5~5倍がより好ましい。この質量比が0.1倍未満であると、洗浄に使用する水や水溶液への(メタ)アクリル酸エステルの移動が起こる場合があり、また10倍を超えると溶媒を回収する際に時間がかかる。
<晶析>
 (メタ)アクリル酸エステルを晶析する方法としては、反応液の温度を下げて結晶を析出させる方法、反応液中の低沸物質を除くことによって濃縮して結晶を析出させる方法などが挙げられる。晶析を行う場合、溶媒を添加しても良い。溶媒は飽和炭化水素溶媒が好ましい。溶媒としては、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、ノナン、オクタン、イソオクタン、デカン、ベンゼン、トルエン、キシレン、クメン、エチルベンゼンなどが挙げられる。またこれらの2種以上を混合して使用しても良い。(メタ)アクリル酸の回収率の点から精製は蒸留で実施することが最も好ましい。
 第五の発明は、下記の工程(i)及び工程(ii)を含む(メタ)アクリル酸エステルの製造方法である。
(i)アルコールと(メタ)アクリル酸無水物とを反応させて(メタ)アクリル酸エステルを製造する工程
(ii)前記工程(i)で製造した(メタ)アクリル酸エステルを含む反応液に、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、酸化物からなる群から選ばれる少なくとも1種の塩基性化合物を添加して、残存する(メタ)アクリル酸無水物を加水分解する工程。
[工程(i)]
 工程(i)は前記の工程(2)と同様に実施することができる。
[工程(ii)]
<塩基性化合物>
 工程(ii)においては塩基性化合物が使用される。アルカリ金属とアルカリ土類金属では、アルカリ土類金属を用いた場合にその(メタ)アクリル酸塩の溶解性が低く、析出する事があるため、アルカリ金属の水酸化物、炭酸塩、炭酸水素塩が好ましい。処理効率や(メタ)アクリル酸エステルが加水分解する可能性が低い点から、水酸化リチウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウムが好ましい。以上の化合物は結晶水や不純物としての水を含有していても良い。
 塩基性化合物の使用量は残存(メタ)アクリル酸無水物1モルに対し、0.1~20モルが使用できる。(メタ)アクリル酸無水物の処理量の点から使用量は0.5モル以上が好ましく、1モル以上がより好ましい。塩基性化合物の残存量の点から、15モル以下が好ましく、10モル以下がより好ましい。前記工程(i)等において触媒として酸性化合物を使用した場合、酸性化合物を中和する量の塩基性化合物を追加する必要がある。
<水>
 この処理の際に残存する(メタ)アクリル酸無水物1モルに対し、0.1~10モルの水を前記反応液に添加することにより、より(メタ)アクリル酸無水物の処理効率が向上する。処理効率の点から水の使用量は0.3モル以上が好ましく、0.5モル以上がより好ましい。精製のしやすさの点から、水の使用量は5モル以下が好ましく、3モル以下がより好ましい。
 塩基性化合物を反応器に仕込む方法としては、1)粉末または粒子のまま投入する方法、2)水、(メタ)アクリル酸または有機溶媒などとのスラリーとして導入する方法、3)粉末または粒子のまま投入した後、水を供給する方法、又は4)水を供給した後、粉末または粒子のまま投入する方法のいずれでもよく、分割又は連続供給などいずれの方法で実施してもよい。
<溶媒>
 処理は、生産性及び溶媒回収の負荷などの点から、無溶媒で行うことが好ましいが、必要により反応に不活性な溶媒を用いることもできる。不活性な溶媒としては、前記工程(1)で使用されるものと同様な溶媒が使用できる。不活性な溶媒を使用する場合、その使用量としては、(メタ)アクリル酸エステルの質量に対して1~30倍量が好ましい。溶媒としては、副生する脂肪酸と共沸しやすいものが好ましい。
<反応条件>
 処理温度は、30~150℃の範囲が好ましい。反応を円滑に進行することができる点から、処理温度は50℃以上がより好ましく、60℃以上がさらに好ましい。一方、重合や副反応を抑制する点から、反応温度は140℃以下がより好ましく、130℃以下がさらに好ましい。
 処理方式としては、例えば、回分式、連続式、循環式などが挙げられる。
処理時間は、(メタ)アクリル酸無水物量、仕込み量、反応温度から適宜決定することができるが、通常0.5~48時間である。(メタ)アクリル酸無水物残量の観点から反応時間は1時間以上が好ましく、2時間以上がより好ましい。重合及び副反応抑制の観点から反応時間は36時間以下が好ましく、24時間以下がより好ましく、12時間以下がさらに好ましい。
 処理において、重合防止剤を使用することができる。重合防止剤およびその使用方法は、工程(1)と同様のものが採用できる。
 本発明の方法は加水分解しやすいフェノール性水酸基を有するアルコールの(メタ)アクリル酸エステル、特にフェノールや(メタ)アクリル酸などの原料と沸点が近いフェニル(メタ)アクリレートの精製に有効である。
 以下、本発明を実施例によって詳しく説明する。実施例において、分析および定量はガスクロマトグラフィー(カラム:J&B Scientific社製 DB-5 長さ30m×内径0.53mm 膜厚3μm、インジェクション温度:200℃、ディテクター温度:250℃、カラム温度及び時間:60℃で1分間保持、10℃/分で昇温、250℃で保持)により行なった。
(製造例1)メタクリル酸無水物の製造:工程(1)の実施
 精留塔(内径35mm、理論段数10段)、攪拌羽根、温度計、エアー吹き込み管を付した3Lの5つ口フラスコを準備した。無水酢酸918g(9.0mol)、メタクリル酸1705g(19.8mol)、触媒として炭酸ナトリウム9.5g(0.09mol)および重合防止剤としてフェノチアジン2.6gをこのフラスコ内に仕込んだ。フラスコの内液をエアーバブリングおよび攪拌しながら、フラスコをオイルバスで加熱した。内温が80℃に達した後、1時間保持して反応原液の組成が平衡に達するようにした。さらに30分後、エアーバブリングした状態で真空ポンプを起動させて減圧を開始した。反応原液の温度70℃、フラスコ内の圧力6.4kPaで全還流状態とした。その後、還流比1.5で塔頂から溜出液を抜き出し、この時点を反応開始とした。8時間後に還流比を2.0に変えて、24時間かけて反応を行った。この間、塔の重合防止のためフェノチアジン192mgを溶解させたメタクリル酸96gを精留塔の上部に供給した。反応液の温度を徐々に83℃まで上げ、フラスコ内の圧力を徐々に2.1kPaに下げて行き、酢酸が主成分の溜出液を精留塔の塔頂から抜き出した。溜出液は15℃に冷却した冷却管および液体窒素につけたトラップで回収した。反応終了後、反応液を冷却した。
 反応終了時の反応液の重量は1409gであり、組成はメタクリル酸無水物75.3質量%、混合酸無水物0.1質量%、無水酢酸0質量%、酢酸0質量%、メタクリル酸13.1質量%であり、メタクリル酸無水物の収率は76.5%であった。残りはマイケル付加物やガスクロマトグラフで検出されない高沸不純物などであった。
 尚、メタクリル酸無水物の収率X(%)は、反応終了時の無水メタクリル酸のモル数Bと仕込んだ無水酢酸のモル数Aに基づいて、下記の式にて算出される値である。
X = B ÷ A × 100
 メタアクリル酸無水物の二重結合に酢酸またはメタアクリル酸が一つ又は二つマイケル付加した化合物と思われるピークが複数検出されており、それらの面積の合計は、総面積の9.2%であった。
(実施例1):第一の発明の実施例
(1)メタクリル酸エステルの製造
 製造例1で得た反応液205g(メタクリル酸無水物含有量1.0mol)およびフェノール104g(1.1mol)を攪拌羽根、温度計、エアー吹き込み管を付した1Lの5つ口フラスコに入れ、120℃のオイルバスで加熱して5時間反応させた。反応終了時の反応液の主要成分の組成を表1に示した。その他成分として、メタクリル酸の二重結合に酢酸またはメタクリル酸がマイケル付加した化合物(以下「MAマイケル付加物」という)と思われるピークが検出されており、それらの面積の合計は総面積の0.8%であった。
(2)メタクリル酸の回収
 1Lのフラスコに精留塔(内径35mm、理論段数10段)、攪拌羽根、温度計、エアー吹き込み管を接続した。エアーバブリングした状態で真空ポンプを起動させて減圧を開始した。反応液の温度85℃、フラスコ内の圧力2.4kPaで全還流状態とした。その後、還流比1.5で塔頂から溜出液を抜き出した。溜出液は15℃に冷却した冷却管および液体窒素につけたトラップで回収した。反応液の温度を83~88℃に維持するために、フラスコ内の圧力を0.7kPaまで下げて、溜出液が125g出たところで回収を終了した。この間、精留塔内での重合防止のためフェノチアジン48mgを溶解させたメタクリル酸24gを精留塔の上部に供給した。このときの溜出液(回収MAA)の組成とメタクリル酸の回収率を表1に示した。
 尚、メタクリル酸の回収率Y(%)は、溜出液(回収MAA)中のメタクリル酸のモル数Dと反応液中のメタクリル酸のモル数Cに基づいて、下記の式にて算出される値である。
Y = D ÷ C × 100
(3)メタクリル酸エステルの精製
 精留塔を長さ20cmのビグリュー管に付け替え、単蒸留を行った。真空ポンプ側の圧力を0.2~0.6kPaに調整し、内温75~125℃まで昇温して蒸留を実施した。その結果、表2に示す組成と量の初溜出液、溜出液2及び溜出液3を回収した。
(実施例2):第三の発明の実施例
(1)メタクリル酸エステルの製造
 オイルバスの温度を80℃とし、また加熱時間を8時間とし、その他の条件は実施例1と同様にして、反応を行った。反応終了時の反応液の主要成分の組成を表1に示した。その他成分として、フェニルメタクリレートの二重結合に酢酸またはメタクリル酸がマイケル付加した化合物(以下「PMマイケル付加物」という)およびMAマイケル付加物と思われるピークが複数検出されており、それらの面積の合計は総面積の8.2%であった。
(2)反応生成物の加熱処理
 マイケル付加物の量が多かったので、反応液の温度を100℃に昇温し、4時間加熱処理した。加熱処理後の反応液の組成はフェニルメタクリレート54.1質量%、メタクリル酸38.4質量%、フェノール0.9質量%、メタクリル酸無水物0質量%であった。その他成分としてのMAマイケル付加物と思われるピーク面積の合計は総面積の0.9%であった。
(3)メタクリル酸の回収
 次いで、実施例1と同様にして、溜出液125gを回収し、表1の結果を得た。
(4)メタクリル酸エステルの精製
 更に、実施例1と同様にして、単蒸留を行い、表2の結果を得た。
(実施例3):第三の発明の実施例
 反応液の加熱処理温度を100℃から120℃に変更した以外は、実施例2と同様に行い、表1および表2の結果を得た。
(実施例4):第二の発明の実施例
(1)メタクリル酸エステルの製造
 実施例2と同様にして反応を行ったが、反応終了後の反応液の加熱処理は実施しなかった。反応終了時の反応液の主要成分の組成を表1に示した。その他成分として、PMマイケル付加物及びMAマイケル付加物と思われるピークが複数検出されており、それらの面積の合計は総面積の8.3%であった。
(2)メタクリル酸の回収
 次いで、溜出液を回収する際のフラスコ内の圧力と反応液の温度を下記条件に変更した以外は実施例2と同様にして、精留塔を用いて蒸留した。即ち、実施例2(実施例1)では、「反応液の温度を83~88℃に維持するために、フラスコ内の圧力を0.7kPaまで下げて、溜出液が125g出たところで回収を終了した。」のに対して、実施例4では「反応液の温度を115℃まで昇温するために、フラスコ内の圧力を2~3kPaに維持し、溜出液が125g出たところで回収を終了した。」に変更した。溜出液(回収MAA)の組成とメタクリル酸の回収率を表1に示した。
(3)メタクリル酸エステルの精製
 更に、実施例2と同様にして、単蒸留を行い、表2の結果を得た。
(実施例5):第四の発明の実施例
(1)メタクリル酸エステルの製造
 実施例2と同様にしてメタクリル酸エステルを製造した。反応終了時の反応液の主要成分の組成を表1に示した。その他成分として、FMマイケル付加物及びMAマイケル付加物と思われるピークが複数検出されており、それらの面積の合計は総面積の8.2%であった。
(2)メタクリル酸とメタクリル酸エステルの回収
 1Lのフラスコにクライゼン管、攪拌羽根、温度計、エアー吹き込み管を接続し、単蒸留を行った。真空ポンプ側の圧力を0.2~0.6kPaに調整し、内温75~125℃まで昇温して蒸留を実施した。メタクリル酸44.3質量%、フェノール0.8質量%、フェニルメタクリレート53.2質量%を含む初溜出液を274g得た。
(3)メタクリル酸の回収
 実施例4と同様の精留塔のついたフラスコに、前記メタクリル酸エステル回収液274gを供給した。溜出液が117g出たところで回収を終了する以外の条件は実施例4と全く同様にして、蒸留し、表1の結果を得た。
(4)メタクリル酸エステルの精製
 精留塔を長さ20cmのビグリュー管に付け替え、単蒸留を行った。真空ポンプ側の圧力を0.2~0.6kPaに調整し、内温75~125℃まで昇温して蒸留を実施した。溜出液について、表2の結果を得た。
(比較例1)
(1)メタクリル酸エステルの製造
 オイルバスの温度を80℃とし、また加熱時間を8時間とした。その他の条件は実施例1と同様にして、反応を行った。反応終了時の反応液の主要成分の組成を表1に示した。FMマイケル付加物及びMAマイケル付加物と思われるピークの面積の合計は総面積の8.3%であった。
(2)メタクリル酸エステルの精製
 反応液をフラスコから取り出し、ヘキサン1Lに溶解して、純水1Lで1回洗浄した。17質量%の炭酸ナトリウム水溶液1Lで1回洗浄した後、1質量%の水酸化ナトリウム水溶液1Lで1回洗浄し、純水1Lで2回洗浄した後、エバポレーターで濃縮した。1Lのフラスコに長さ20cmのビグリュー管、攪拌羽根、温度計、エアー吹き込み管を接続し、濃縮した液を入れて単蒸留を行った。真空ポンプ側の圧力を0.2~0.6kPaに調整し、内温75~125℃まで昇温して蒸留を実施し、表2の結果を得た。
 実施例1~4のように高温で反応を行った場合、あるいは高温での処理を行った場合、(メタ)アクリル酸エステルの量が増加することがわかる。この反応液を蒸留することによって高純度の(メタ)アクリル酸エステルを得る事が出来る。さらに、マイケル付加物の分解によって(メタ)アクリル酸を生成させることにより、(メタ)アクリル酸を高収率で回収出来る。
 低温で反応を行い、高温での処理や蒸留を行っていない比較例1では、蒸留温度が上がる後半の溜分中のメタクリル酸含有量が著しく増えて、純度が低下する。そのため、蒸留前の純度が高くても、99%以上の純度で得られる(メタ)アクリル酸エステル量は少なくなる。また、この方法では、メタクリル酸が回収できない。
 同様に実施例5では、(メタ)アクリル酸と(メタ)アクリル酸エステルの回収時の、蒸留温度を上げることにより、(メタ)アクリル酸エステルと(メタ)アクリル酸量が増加する。この回収液を蒸留することにより、高純度の(メタ)アクリル酸エステルを得る事が出来る。
(実施例6):第一の発明及び第五の発明の実施例
(1)メタクリル酸エステルの製造およびメタクリル酸無水物の処理
 製造例1と同じ方法で得た反応液を使用し、メタクリル酸無水物量1.0mol、フェノール量1.0molにした以外は実施例1と同様の方法でメタクリル酸エステルの製造を行った。反応終了時の反応液の主要成分の組成を表3に示した。反応後、フェノールは消失し、メタクリル酸無水物は0.03mol残っていた(フェノールの一部がメタクリル酸無水物のマイケル付加物と反応したため、メタクリル酸無水物が残っている)。
 この反応液に0.12molの炭酸ナトリウムと0.24molの水を添加し、80℃で2時間攪拌しながら加熱した。加熱処理後、メタクリル酸無水物は消失し、フェノールが0.001mol検出された。反応前後のフェニルメタクリレートの分解はほとんど無かった。炭酸ナトリウムと水の添加により、全量が増加したため、濃度が低下した様に見えるが、フェニルメタクリレートはほとんど分解していない。
(2)メタクリル酸の回収
 溜出液が100g出たところで回収を終了した以外は実施例1と同様の方法でメタクリル酸を回収した。溜出液の組成(回収MAA)とメタクリル酸の回収率を表3に示した。
(3)メタクリル酸エステルの精製
 実施例1と同様の方法で蒸留を実施した。その結果、表4に示す組成と量の初溜出液、溜出液2及び溜出液3を回収した。
(実施例7):第三の発明及び第五の発明の実施例
(1)メタクリル酸エステルの製造
製造例1と同じ方法で得た反応液を使用し、メタクリル酸無水物量1.0mol、フェノール量1.0molにした以外は実施例2と同様の方法でメタクリル酸エステルの製造を行った。反応終了時の反応液の主要成分の組成を表3に示した。反応後、フェノールは消失し、メタクリル酸無水物は0.03mol残っていた。
(2)反応生成物の加熱処理およびメタクリル酸無水物の処理
 0.26molの水酸化リチウム・一水和物を添加した以外は実施例2と同様の方法で加熱処理を行った。処理後の反応液の主要成分の組成を表3に示した。水酸化リチウム・一水和物の添加により、全量が増加したため、濃度は変化していないが、フェニルメタクリレートの量は加熱処理前より増加している。
(3)メタクリル酸の回収
 溜出液が100g出たところで回収を終了した以外は実施例2と同様の方法でメタクリル酸を回収した。溜出液(回収MAA)の組成とメタクリル酸の回収率を表3に示した。
(4)メタクリル酸エステルの精製
 実施例2と同様の方法で蒸留を実施した。その結果、表4に示す組成と量の初溜出液、溜出液2及び溜出液3を回収した。
(比較例2)
(1)メタクリル酸エステルの製造
 製造例1と同じ方法で得た反応液を使用し、オイルバスの温度を80℃とし、また加熱時間を8時間とした。そして、メタクリル酸無水物量1.1mol、フェノール量1.0molにした以外の条件は実施例2と同様にして、反応を行った。反応終了時の反応液の主要成分の組成を表3に示した。FMマイケル付加物及びMAマイケル付加物と思われるピークの面積の合計は総面積の8.3%であった。
(2)メタクリル酸エステルの精製
 反応液をフラスコから取り出し、ヘキサン1Lに溶解して、純水1Lで1回洗浄した。17質量%の炭酸ナトリウム水溶液1Lで1回洗浄した後、10質量%の水酸化ナトリウム水溶液0.5Lを加え室温で2時間懸濁させた。メタクリル酸無水物は消失したが、フェニルメタクリレートが12質量%分解していた。加水分解により生成したメタクリル酸とフェノールは水酸化ナトリウム水溶液に溶解したため、ヘキサン相からは検出されなかった。ヘキサン相を回収し、純水1Lで2回洗浄した後、エバポレーターで濃縮した。1Lのフラスコに長さ20cmのビグリュー管、攪拌羽根、温度計、エアー吹き込み管を接続し、濃縮した液を入れて単蒸留を行った。真空ポンプ側の圧力を0.2~0.6kPaに調整し、内温75~125℃まで昇温して蒸留を実施し、表4の結果を得た。
 実施例6、7に示すように、メタクリル酸無水物を過剰量使用することにより、反応液中のフェノールを無くす事が可能である。そして、フェニルメタクリレートを分解させること無く、メタクリル酸無水物を処理することが可能である。本法により、フェノール含有量の少ないフェニルメタクリレートが取得可能である。
 比較例2ではアルカリ洗浄することにより、フェノールを除去する事が可能であるが、フェニルメタクリレートが10質量%以上分解する。また、メタクリル酸を回収できず、廃液として処分することになる。
(製造例2)
(1)メタクリル酸エステルの製造
 製造例1と同じ方法で得た反応液を使用し、メタクリル酸無水物量1.1mol、フェノール量1.0molにした以外は実施例5と同様にしてメタクリル酸エステルを製造した。
(2)メタクリル酸無水物を含有したメタクリル酸とメタクリル酸エステル混合液の取得
実施例5と同様にして蒸留を実施し、メタクリル酸とメタクリル酸エステルを回収した。メタクリル酸42.1質量%、メタクリル酸無水物7.1質量%、フェニルメタクリレート50.7質量%を含む初溜出液を250g得た。
(実施例8):第五の発明の実施例
 製造例2で取得した混合液10.9g(メタクリル酸無水物5mmol含有)に水酸化リチウム・一水和物を0.21g(5mmol)添加した。80℃で2時間攪拌しながら加熱処理を行った。
 加熱処理後により、メタクリル酸無水物は92質量%が分解していた。加熱処理後のメタクリル酸無水物の分解率とフェニルメタクリレートの残存率(加熱処理前の含有量に対する加熱処理後の含有量の比)を表5に示す。
(実施例9~17):第五の発明の実施例
 表5に記載した化合物を使用し、表5に記載した量の水を使用した以外は、実施例8と同様に処理を行った。加熱処理後のメタクリル酸無水物の分解率とフェニルメタクリレートの残存率を表5に示す。
(比較例3~4)
 無添加または10mmolの水を使用した以外は、実施例8と同様に処理を行った。加熱処理後のメタクリル酸無水物の分解率とフェニルメタクリレートの残存率を表5に示す。
(比較例5)
 炭酸ナトリウム0.53g(5mmol)とメタノール0.48g(15mmol)を添加した以外は、実施例8と同様に処理を行った。
 加熱処理後により、メタクリル酸無水物は99質量%が分解していたが、フェニルメタクリレートは94.4質量%しか残存していなかった。
(比較例6)
 製造例2で取得した混合液10.9g(メタクリル酸無水物5mmol含有)をヘキサン10gに溶解させた。5質量%水酸化ナトリウム水溶液8g(10mmol)を加えて、40℃で1時間懸濁させた。ヘキサン相を分析した結果、メタクリル酸無水物は98質量%が分解していたが、フェニルメタクリレートは93.5質量%しか残存していなかった。
(比較例7)
 製造例2で取得した混合液10.9g(メタクリル酸無水物5mmol含有)をヘキサン10gに溶解させた。10質量%炭酸ナトリウム水溶液21.2g(20mmol)を加えて、80℃で2時間懸濁させた。ヘキサン相を分析した結果、メタクリル酸無水物は2質量%が分解していた。フェニルメタクリレートはほとんど分解していなかった。
(実施例18):第五の発明の実施例
 製造例1と同じ方法で得た反応液を蒸留し、純度99.9質量%のメタクリル酸無水物を得た。攪拌羽根、温度計、エアー吹き込み管を付した0.1Lの5つ口フラスコにメタクリル酸無水物16.3g(0.105mol)、フェノール9.4g(0.1mol)を入れ、フェノチアジン1000ppmを添加し、0.1gの濃硫酸を滴下した。80℃で5時間反応を実施した。反応後、フェノールは消失し、メタクリル酸無水物は0.04mol残っていた。この反応液に水酸化リチウム・一水和物を2.5g(0.06mol)添加し、80℃で2時間攪拌しながら加熱処理を行った。
 加熱処理後により、メタクリル酸無水物は全て分解していた。フェニルメタクリレートは0.6質量%分解していた。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012

Claims (14)

  1.  下記の工程(1)、(2)及び(3)を含む(メタ)アクリル酸エステルの製造方法において、工程(2)の反応を90℃以上の温度で行うことを特徴とする(メタ)アクリル酸エステルの製造方法。
    (1)下記一般式(I)で表される脂肪酸無水物と(メタ)アクリル酸とを反応させて、副生する脂肪酸を抜き出しながら(メタ)アクリル酸無水物を製造する工程、
    Figure JPOXMLDOC01-appb-C000001
     (一般式(I)において、Rは直鎖又は分岐状の炭素数1~3のアルキル基又はアルケニル基、Rは直鎖又は分岐状の炭素数1~3のアルキル基を示す。)
    (2)アルコールと前記工程(1)の反応で得られる未精製の(メタ)アクリル酸無水物とを反応させて(メタ)アクリル酸エステルを得る工程、
    (3)(メタ)アクリル酸を蒸留により回収する工程。
  2.  下記の工程(1)、(2)及び(3)を含む(メタ)アクリル酸エステルの製造方法において、工程(3)の蒸留を90℃以上の温度で行うことを特徴とする(メタ)アクリル酸エステルの製造方法。
    (1)下記一般式(I)で表される脂肪酸無水物と(メタ)アクリル酸とを反応させて、副生する脂肪酸を抜き出しながら(メタ)アクリル酸無水物を製造する工程、
    Figure JPOXMLDOC01-appb-C000002
     (一般式(I)において、Rは直鎖又は分岐状の炭素数1~3のアルキル基又はアルケニル基、Rは直鎖又は分岐状の炭素数1~3のアルキル基を示す。)
    (2)アルコールと前記工程(1)の反応で得られる未精製の(メタ)アクリル酸無水物とを反応させて(メタ)アクリル酸エステルを得る工程、
    (3)(メタ)アクリル酸を蒸留により回収する工程。
  3.  下記の工程(1)、(2)、(2’)及び(3)を含む(メタ)アクリル酸エステルの製造方法。
    (1)下記一般式(I)で表される脂肪酸無水物と(メタ)アクリル酸とを反応させて、副生する脂肪酸を抜き出しながら(メタ)アクリル酸無水物を製造する工程、
    Figure JPOXMLDOC01-appb-C000003
     (一般式(I)において、Rは直鎖又は分岐状の炭素数1~3のアルキル基又はアルケニル基、Rは直鎖又は分岐状の炭素数1~3のアルキル基を示す。)
    (2)アルコールと前記工程(1)の反応で得られる未精製の(メタ)アクリル酸無水物とを反応させて(メタ)アクリル酸エステルを得る工程、
    (2’)前記工程(2)で得られた反応液を90℃以上の温度で加熱する工程
    (3)(メタ)アクリル酸を蒸留により回収する工程。
  4.  下記の工程(1)、(2)、(2’’)及び(3)を含む(メタ)アクリル酸エステルの製造方法。
    (1)下記一般式(I)で表される脂肪酸無水物と(メタ)アクリル酸とを反応させて、副生する脂肪酸を抜き出しながら(メタ)アクリル酸無水物を製造する工程、
    Figure JPOXMLDOC01-appb-C000004
     (一般式(I)において、Rは直鎖又は分岐状の炭素数1~3のアルキル基又はアルケニル基、Rは直鎖又は分岐状の炭素数1~3のアルキル基を示す。)
    (2)アルコールと前記工程(1)の反応で得られる未精製の(メタ)アクリル酸無水物とを反応させて(メタ)アクリル酸エステルを得る工程、
    (2’’)前記工程(2)で得られた反応液を90℃以上の温度で蒸留して(メタ)アクリル酸および(メタ)アクリル酸エステルを含む反応液を得る工程、
    (3)(メタ)アクリル酸を蒸留により回収する工程。
  5.  前記工程(2)で得られた反応液に、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、酸化物からなる群から選ばれる少なくとも1種の塩基性化合物を添加して、該反応液中に残存する(メタ)アクリル酸無水物を加水分解することを特徴とする請求項1に記載の(メタ)アクリル酸エステルの製造方法。
  6.  前記工程(2)で得られた反応液に、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、酸化物からなる群から選ばれる少なくとも1種の塩基性化合物を添加して、該反応液中に残存する(メタ)アクリル酸無水物を加水分解することを特徴とする請求項2に記載の(メタ)アクリル酸エステルの製造方法。
  7.  前記工程(2)で得られた反応液に、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、酸化物からなる群から選ばれる少なくとも1種の塩基性化合物を添加して、該反応液中に残存する(メタ)アクリル酸無水物を加水分解することを特徴とする請求項3に記載の(メタ)アクリル酸エステルの製造方法。
  8.  前記工程(2)で得られた反応液に、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、酸化物からなる群から選ばれる少なくとも1種の塩基性化合物を添加して、該反応液中に残存する(メタ)アクリル酸無水物を加水分解することを特徴とする請求項4に記載の(メタ)アクリル酸エステルの製造方法。
  9.  前記反応液中に残存する(メタ)アクリル酸無水物1モルに対し、0.1~10モルの水を該反応液に添加して、該(メタ)アクリル酸無水物を加水分解することを特徴とする請求項5に記載の(メタ)アクリル酸エステルの製造方法。
  10.  前記反応液中に残存する(メタ)アクリル酸無水物1モルに対し、0.1~10モルの水を該反応液に添加して、該(メタ)アクリル酸無水物を加水分解することを特徴とする請求項6に記載の(メタ)アクリル酸エステルの製造方法。
  11.  前記反応液中に残存する(メタ)アクリル酸無水物1モルに対し、0.1~10モルの水を該反応液に添加して、該(メタ)アクリル酸無水物を加水分解することを特徴とする請求項7に記載の(メタ)アクリル酸エステルの製造方法。
  12.  前記反応液中に残存する(メタ)アクリル酸無水物1モルに対し、0.1~10モルの水を該反応液に添加して、該(メタ)アクリル酸無水物を加水分解することを特徴とする請求項8に記載の(メタ)アクリル酸エステルの製造方法。
  13.  下記の工程(i)及び工程(ii)を含む(メタ)アクリル酸エステルの製造方法。
    (i)アルコールと(メタ)アクリル酸無水物とを反応させて(メタ)アクリル酸エステルを製造する工程
    (ii)前記工程(i)で製造した(メタ)アクリル酸エステルを含む反応液に、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、酸化物からなる群から選ばれる少なくとも1種の塩基性化合物を添加して、残存する(メタ)アクリル酸無水物を加水分解する工程。
  14.  反応液中に残存する(メタ)アクリル酸無水物1モルに対し、0.1~10モルの水を該反応液に添加して、該(メタ)アクリル酸無水物を加水分解することを特徴とする請求項13に記載の(メタ)アクリル酸エステルの製造方法。
     
PCT/JP2010/051611 2009-02-05 2010-02-04 (メタ)アクリル酸エステルの製造方法 WO2010090258A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10738589.0A EP2399898B1 (en) 2009-02-05 2010-02-04 Method for producing (meth)acrylate ester
JP2010506757A JP5582032B2 (ja) 2009-02-05 2010-02-04 (メタ)アクリル酸エステルの製造方法
CN201080006884.1A CN102307843B (zh) 2009-02-05 2010-02-04 (甲基)丙烯酸酯的制造方法
US13/148,206 US8859804B2 (en) 2009-02-05 2010-02-04 Method for producing a (meth)acrylate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009024835 2009-02-05
JP2009-024835 2009-02-05

Publications (1)

Publication Number Publication Date
WO2010090258A1 true WO2010090258A1 (ja) 2010-08-12

Family

ID=42542150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051611 WO2010090258A1 (ja) 2009-02-05 2010-02-04 (メタ)アクリル酸エステルの製造方法

Country Status (6)

Country Link
US (1) US8859804B2 (ja)
EP (1) EP2399898B1 (ja)
JP (1) JP5582032B2 (ja)
KR (1) KR101652555B1 (ja)
CN (2) CN102307843B (ja)
WO (1) WO2010090258A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160067929A (ko) * 2013-10-04 2016-06-14 에보니크 룀 게엠베하 메타크릴레이트화된 벤조페논 제조 방법
JP2017222598A (ja) * 2016-06-15 2017-12-21 三菱ケミカル株式会社 カルボン酸エステルの製造方法
JP2017222637A (ja) * 2016-06-10 2017-12-21 三菱ケミカル株式会社 光学活性カルボン酸エステルの製造方法
JP2018154619A (ja) * 2017-03-16 2018-10-04 三菱ケミカル株式会社 (メタ)アクリル酸エステルの製造方法
JP2021526518A (ja) * 2019-05-09 2021-10-07 エルジー・ケム・リミテッド (メタ)アクリル酸エステル系化合物製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541766B2 (ja) * 2009-05-19 2014-07-09 株式会社ダイセル フォトレジスト用高分子化合物の製造方法
CN102659587A (zh) * 2012-04-23 2012-09-12 上海博康精细化工有限公司 金刚烷甲基丙烯酸酯的精制方法
CN106458828B (zh) * 2014-06-04 2019-12-03 三菱化学株式会社 羧酸酐的制造方法和羧酸酯的制造方法
KR102478883B1 (ko) * 2014-12-18 2022-12-19 미쯔비시 케미컬 주식회사 카르복실산 에스테르의 제조 방법
US20190345092A1 (en) * 2016-11-23 2019-11-14 Rohm And Haas Company Preparation of phenolic (meth)acrylates
KR102285438B1 (ko) * 2018-11-27 2021-08-02 주식회사 엘지화학 아크릴산 에스테르 화합물 제조 방법
WO2020226271A1 (ko) * 2019-05-09 2020-11-12 주식회사 엘지화학 (메트)아크릴산 에스테르계 화합물 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191590A (ja) 1998-12-24 2000-07-11 Nof Corp (メタ)アクリル酸フェニルエステルの製造方法
JP2002088018A (ja) 2000-09-08 2002-03-27 Mitsubishi Rayon Co Ltd (メタ)アクリル酸エステルの製造方法
JP2002161068A (ja) 2000-09-14 2002-06-04 Mitsubishi Rayon Co Ltd (メタ)アクリル酸無水物の製造方法および(メタ)アクリル酸エステルの製造方法
JP2002275124A (ja) 2001-02-09 2002-09-25 Roehm Gmbh メタクリル酸無水物の製造方法
JP2003252825A (ja) * 2001-12-25 2003-09-10 Mitsubishi Chemicals Corp (メタ)アクリル酸類製造時の副生物の分解方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3620050A1 (de) * 1986-06-14 1987-12-17 Hoechst Ag Substituierte (alpha)-fluoracrylsaeurephenylester
US5679834A (en) * 1995-03-16 1997-10-21 Fuji Photo Film Co., Ltd. Production process of (meth) acrylic acid ester having benzoic acid group
EP0985845A1 (en) 1998-09-11 2000-03-15 Brembo S.p.A. Brake disk with visual wear control means
AU2002355041A1 (en) * 2001-11-28 2003-06-10 Mitsubishi Chemical Corporation Process for producing (meth)acrylic acid compound
CN103553898B (zh) 2008-08-05 2015-02-04 三菱丽阳株式会社 (甲基)丙烯酸酐的制造方法和保存方法、以及(甲基)丙烯酸酯的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191590A (ja) 1998-12-24 2000-07-11 Nof Corp (メタ)アクリル酸フェニルエステルの製造方法
JP2002088018A (ja) 2000-09-08 2002-03-27 Mitsubishi Rayon Co Ltd (メタ)アクリル酸エステルの製造方法
JP2002161068A (ja) 2000-09-14 2002-06-04 Mitsubishi Rayon Co Ltd (メタ)アクリル酸無水物の製造方法および(メタ)アクリル酸エステルの製造方法
JP2002275124A (ja) 2001-02-09 2002-09-25 Roehm Gmbh メタクリル酸無水物の製造方法
JP2003252825A (ja) * 2001-12-25 2003-09-10 Mitsubishi Chemicals Corp (メタ)アクリル酸類製造時の副生物の分解方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2399898A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160067929A (ko) * 2013-10-04 2016-06-14 에보니크 룀 게엠베하 메타크릴레이트화된 벤조페논 제조 방법
JP2016539913A (ja) * 2013-10-04 2016-12-22 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH メタクリル化ベンゾフェノンの製造方法
KR102254784B1 (ko) 2013-10-04 2021-05-21 에보닉 오퍼레이션스 게엠베하 메타크릴레이트화된 벤조페논 제조 방법
JP2017222637A (ja) * 2016-06-10 2017-12-21 三菱ケミカル株式会社 光学活性カルボン酸エステルの製造方法
JP2017222598A (ja) * 2016-06-15 2017-12-21 三菱ケミカル株式会社 カルボン酸エステルの製造方法
JP2018154619A (ja) * 2017-03-16 2018-10-04 三菱ケミカル株式会社 (メタ)アクリル酸エステルの製造方法
JP7098973B2 (ja) 2017-03-16 2022-07-12 三菱ケミカル株式会社 (メタ)アクリル酸エステルの製造方法
JP2021526518A (ja) * 2019-05-09 2021-10-07 エルジー・ケム・リミテッド (メタ)アクリル酸エステル系化合物製造方法
JP7130303B2 (ja) 2019-05-09 2022-09-05 エルジー・ケム・リミテッド (メタ)アクリル酸エステル系化合物製造方法

Also Published As

Publication number Publication date
EP2399898A1 (en) 2011-12-28
KR20110112870A (ko) 2011-10-13
CN103755558B (zh) 2016-06-22
KR101652555B1 (ko) 2016-08-30
EP2399898A4 (en) 2012-12-26
EP2399898B1 (en) 2014-06-04
CN102307843B (zh) 2014-08-06
US20110301379A1 (en) 2011-12-08
CN103755558A (zh) 2014-04-30
CN102307843A (zh) 2012-01-04
US8859804B2 (en) 2014-10-14
JP5582032B2 (ja) 2014-09-03
JPWO2010090258A1 (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
JP5582032B2 (ja) (メタ)アクリル酸エステルの製造方法
JP5448830B2 (ja) (メタ)アクリル酸無水物の製造方法及び保存方法、並びに(メタ)アクリル酸エステルの製造方法
JP6363599B2 (ja) (メタ)アクリル酸エステルの製造システム
JP2012515751A (ja) N,n−ジメチルアミノエチルアクリレート合成中に生じる共沸留分の精製方法
JP5516090B2 (ja) ヒドロキシアルキル(メタ)アクリル酸エステルの製造方法
JP6008600B2 (ja) 4−ヒドロキシブチルアクリレートの製造方法
JP5548618B2 (ja) ヒドロキシアルキル(メタ)アクリル酸エステルの製造方法
JP6018402B2 (ja) 4−ヒドロキシブチルアクリレートの製造方法
JP2022147036A (ja) (メタ)アクリル酸エステルの製造方法
JP3805178B2 (ja) メタクリル酸の回収方法
JP2022147037A (ja) (メタ)アクリル酸エステルの製造方法
JP2023128008A (ja) (メタ)アクリル酸エステルの製造方法
JPH0813779B2 (ja) メタクリル酸のメタクリル酸メチルとしての回収方法
JP6132570B2 (ja) (メタ)アクリル酸エステルの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006884.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010506757

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13148206

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010738589

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117020500

Country of ref document: KR

Kind code of ref document: A