WO2010087184A1 - 差動伝送回路及びそれを備えた電子機器 - Google Patents
差動伝送回路及びそれを備えた電子機器 Download PDFInfo
- Publication number
- WO2010087184A1 WO2010087184A1 PCT/JP2010/000514 JP2010000514W WO2010087184A1 WO 2010087184 A1 WO2010087184 A1 WO 2010087184A1 JP 2010000514 W JP2010000514 W JP 2010000514W WO 2010087184 A1 WO2010087184 A1 WO 2010087184A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission line
- esd protection
- transmission
- circuit
- ground
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 159
- 230000015556 catabolic process Effects 0.000 abstract description 6
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 9
- 230000001681 protective effect Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000005611 electricity Effects 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000005236 sound signal Effects 0.000 description 3
- GJWAPAVRQYYSTK-UHFFFAOYSA-N [(dimethyl-$l^{3}-silanyl)amino]-dimethylsilicon Chemical compound C[Si](C)N[Si](C)C GJWAPAVRQYYSTK-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/0107—Non-linear filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/42—Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
- H03H7/425—Balance-balance networks
- H03H7/427—Common-mode filters
Definitions
- the present invention relates to a differential transmission circuit used for the purpose of protecting an electronic device having a high-speed signal transmission circuit such as High-Definition Multimedia Interface (HDMI) from static electricity and an electronic device including the same.
- HDMI High-Definition Multimedia Interface
- a protective diode is provided immediately after an input / output terminal of an LSI, and the internal circuit is protected from an external electrostatic pulse or the like by this function.
- the protection diode is instantly turned on when a voltage of a certain value or more is applied, and bypasses the current to the ground. By connecting these in multiple stages, the amount of current that can be passed through the LSI is increased, thereby ensuring a predetermined electrostatic breakdown voltage.
- these protective diodes have a capacitance component due to their configuration, when they are connected in multiple stages, they have a large capacitance value, which adversely affects signals in the high frequency band. Therefore, in an LSI used for a high-speed transmission line or the like, protective elements that can be incorporated are limited, and as a result, resistance to electrostatic breakdown is weakened.
- a conventional electrostatic breakdown protection circuit 100 used for these applications includes a first transmission line 103 connected to a first input / output terminal 101, and a second input / output terminal. 102, a second transmission line 104 connected to 102, a first ESD (ElectroStatic Discharge) protection element 105 connected between the first transmission line 103 and the ground, and between the second transmission line 104 and the ground. And a second ESD protection element 106 connected to the.
- ESD ElectroStatic Discharge
- a conventional differential transmission circuit includes a first inductor element 107 connected in series between a first transmission line 103 and a third transmission line 110 connected to a third input / output terminal 118, and a second There is further provided a common mode filter 109 in which the second inductor element 108 connected in series between the transmission line 104 and the fourth transmission line 111 connected to the fourth input / output terminal 119 is magnetically coupled to each other. .
- an ESD suppressor or the like is used for the first and second ESD protection elements 105 and 106.
- An ESD suppressor has a capacitance value as low as about 0.1 to 0.3 pF compared to, for example, a varistor or a Zener diode, so that even if it is used for a high-speed transmission line, the specified characteristic impedance is not disturbed. The adverse effect on the can be minimized. (For example, see Patent Document 1)
- the conventional differential transmission circuit uses only a low-capacity protective element such as an ESD suppressor as the protective element, the size of the electrostatic pulse that can be suppressed is limited.
- the capacitance component added to the transmission line can be minimized, but on the other hand, since the value of the clip voltage immediately after the start of discharge is large, the protection element incorporated in the LSI is used.
- the flowing current increases.
- Electrostatic tests for general AV (Audio Visual) devices are stipulated in IEC61000-4-2, but in-vehicle devices etc. require tests under more severe conditions according to individual standards (ISO-TR-10164). Has been.
- the present invention is intended to solve the above-described problems, and an object thereof is to provide a differential transmission circuit capable of realizing a high electrostatic withstand voltage without degrading a transmission signal and an electronic device including the differential transmission circuit.
- a differential transmission circuit includes a first ESD protection element connected between a first transmission line and the ground, and a connection between the second transmission line and the ground. Between the second ESD protection element, the first inductor element connected in series between the first transmission line and the third transmission line, and the second transmission line and the fourth transmission line.
- the values of the first and second resistors are 10 to 15 ohms, respectively, and the capacitance values of the first and second ESD protection elements are smaller than 0.3 pF, respectively.
- the clip voltage of the protective diode is set to a value smaller than 10V.
- an electronic device includes the differential transmission circuit.
- a part of the current of the electrostatic pulse applied to the first and second transmission lines is the first and second ESD protection. Bypassed to ground by element.
- the current of the electrostatic pulse that cannot be dropped by the first and second ESD protection elements is bypassed to the ground by the first and second ESD protection diodes provided at the subsequent stage, and further the first current provided at the subsequent stage.
- the first and second resistors can suppress a current flowing into a load (for example, an LSI) connected to the first and second resistors.
- the schematic diagram which shows the structure of the differential transmission circuit 80 of one Embodiment of this invention Schematic diagram showing the usage environment of the differential transmission circuit 80 shown in FIG. Schematic diagram showing the equivalent circuit of the discharge device used in the ESD test The figure which illustrates the value of each element in the equivalent circuit shown in FIG. The figure which shows the discharge waveform in the equivalent circuit shown in FIG.
- the schematic diagram which shows the detailed structure of the 1st ESD protection element 5 shown in FIG. The figure which shows the suppression waveform by the ESD protection elements 5 and 6 and the ESD protection diodes 12 and 13 of FIG.
- the figure which shows the waveform of the TDR measurement in case the 1st resistance 14 is inserted The internal block diagram of the vehicle-mounted display monitor provided with the differential transmission circuit of this invention.
- the figure which shows the simple equivalent circuit when ESD countermeasure components are attached to the differential transmission circuit of this invention The figure which shows the TDR simulation waveform at the time of changing a capacitance value in the equivalent circuit shown in FIG.
- FIG. 1 is a schematic diagram showing a configuration of a differential transmission circuit 80 according to an embodiment of the present invention.
- the differential transmission circuit 80 is accommodated in a first transmission / reception device 22 such as a digital TV, and includes a first transmission line 3 connected to the first input / output terminal 1.
- the second transmission line 4 connected to the second input / output terminal 2, the first ESD protection element 5 connected between the first transmission line 3 and the ground, the second transmission line 4, And a second ESD protection element 6 connected between the grounds.
- the capacitance values of the first and second ESD protection elements 5 and 6 are selected to be approximately 0.3 pF or less.
- the differential transmission circuit 80 further includes a first inductor element 7 connected in series between the first transmission line 3 and the third transmission line 10, and the second transmission line 4 and the fourth transmission line 11.
- a common mode filter 9 is provided which is magnetically coupled to a second inductor element 8 connected in series therebetween.
- the third transmission line 10 and the cathode are connected to the differential transmission circuit 80, the first ESD protection diode 12 whose anode is connected to the ground, the fourth transmission line 11 and the cathode are connected, and the anode And a second ESD protection diode 13 connected to the ground.
- the differential transmission circuit 80 further includes a first resistor 14 having one terminal connected to the third transmission line 10, and a second resistor 15 having one terminal connected to the fourth transmission line 11.
- a fifth transmission line 16 connected to the other terminal of the first resistor 14 and connected to the third input / output terminal 18, and a fourth input / output terminal connected to the other terminal of the second resistor 15. 19 and a sixth transmission line 17 connected to 19.
- the values of the first resistor 14 and the second resistor 15 are selected in the range of about 10 to 15 ohms.
- the third input / output terminal 18 and the fourth input / output terminal 19 are connected to an LSI 20 as an example of a load, and the first input / output terminal 1 and the second input / output terminal 2 are connected to the external connector 21. It is connected to the.
- FIG. 2 is a schematic diagram showing a use environment of the differential transmission circuit 80 shown in FIG.
- one external connector 21 connected to the first transmission / reception device 22 is connected to the second transmission / reception device 25 via the other external connector 24 connected to the transmission cable 23.
- the first transmission / reception device 22 and the second transmission / reception device 25 are, for example, a digital TV and a DVD player
- the transmission cable 23 is, for example, an HDMI cable.
- the differential transmission circuit 80 of the present embodiment is provided as a part of the input / output circuit of the first transmission / reception device 22 and prevents destruction of the device due to the electrostatic pulse added along the transmission cable. It is. Similarly, the second transmission / reception device 25 can be provided with a similar circuit.
- FIG. 10 is an internal configuration diagram of an in-vehicle display monitor provided with the HDMI connector 48.
- 10 includes a display device 65, an audio output device 66, and a receiving device 64.
- the receiving device 64 includes an HDMI connector 48, a differential transmission circuit 49, an HDMI receiving circuit 50, a digital video signal processing circuit 51, an LVDS transmission circuit 52, a video input terminal 56, An audio input terminal 58, a video AD conversion circuit 57, and an audio DA conversion circuit 59 are provided.
- the audio output device 66 includes an analog audio processing circuit 60, an audio amplification circuit 61, a speaker 62, and a headphone terminal 63.
- the display device 65 includes an LVDS receiving circuit 53, a display control circuit 54, and a liquid crystal panel 55.
- the differential transmission circuit 49 corresponds to the differential transmission circuit 80 of the present embodiment.
- a video signal and an audio signal are input to the HDMI connector 48 from an external connection device such as a DVD player or a Blu-ray disc player.
- This signal is an encrypted differential signal called TMDS, and is input to the HDMI receiving circuit 50 via the differential transmission circuit 49.
- the HDMI receiving circuit 50 decrypts the encryption of the input TMDS signal, then separates the digital video signal and the digital audio signal, and outputs them to the digital video signal processing circuit 51 and the audio DA conversion circuit 59 at the next stage, respectively.
- the digital video signal is subjected to image processing by the digital video signal processing circuit 51, converted to an LVDS signal by the LVDS transmission circuit 52, and sent to the display device 65.
- the LVDS signal is received by the LVDS receiving circuit 53 and displayed on the liquid crystal panel 55 by the display control circuit 54.
- the digital audio signal output from the HDMI receiving circuit 50 is converted to analog audio by the audio DA conversion circuit 59 and input to the audio output device 66.
- the audio processing is performed by the analog audio processing circuit 60 and output to the audio amplifying circuit 61 for output from the headphone terminal 63 or the speaker 62.
- the receiving device 64 further includes a video input terminal 56 and an audio input terminal 58 as external input terminals.
- An analog video signal is input to the video input terminal 56 from the outside, is digitally converted by the video AD conversion circuit 57, and is input to the digital video signal processing circuit 51 described above.
- This signal is digitally processed together with the video from the HDMI connector 48 described above and output to the subsequent stage.
- an analog audio input is input from the outside to the audio input terminal 58 and input to the analog audio processing circuit 60.
- test standard is defined on the assumption that the human body touches the device, and the test method specified in the international standard IEC61000-4-2 is generally used. There are also individual standards established based on this.
- FIG. 3 shows an equivalent circuit of a discharge device used for the ESD test.
- the DC voltage generated by the high voltage source 31 is stored in the energy storage capacitor 32 via the switch 33 and the charging resistor 34.
- the switch 36 since the switch 36 is open, no current flows to the discharge resistor 35.
- the switch 33 is opened and the switch 36 is turned on, the electric charge stored in the energy storage capacitor 32 flows to the discharge terminal 37 via the discharge resistor 35 and the switch 36. Since the discharge terminal 37 is in contact with an external non-measurement object or close to it via air, the discharged electric charge flows into the non-measurement object.
- FIG. 4 is a diagram illustrating values of each element used in the ESD test.
- the value of each element differs in the value of the energy storage capacity
- the horizontal axis of the graph represents the time from the start of discharge, and the vertical axis represents the current value of the discharge current.
- Current starts to flow at the start of discharge, and rise time 38 from the point of 10% to the point of 90% with respect to the peak value 39 of the discharge current, and 30 nS after the point of 10% with respect to the peak value 39 of the discharge current.
- the value of the current value 42 of the discharge current 60 nS after the point of 10% with respect to the current value 41 of the discharge current and the peak value 39 of the discharge current is standardized.
- the electrostatic pulse having such a discharge waveform 40 is applied to the first input / output terminal 1 via the transmission cable 23 and one external connector 21 (see FIG. 2).
- the first ESD protection element 5 has a configuration as shown in FIG. 6, and is a region where one electrode 26 a and the other electrode 26 b are covered with the voltage-dependent resistance material 28 on the insulator 27. It has an opposing structure.
- the inputted electrostatic pulse is applied to one electrode 26 a of the first ESD protection element 5 through the first transmission line 3.
- one electrode 26a and the other electrode 26b are opposed to each other at a very narrow interval of about 10 ⁇ m, discharge starts between the electrodes 26a and 26b when a voltage of a certain value or more is applied. As a result, a current due to the electrostatic pulse flows toward the ground, and a voltage sufficiently lower than the input voltage is generated in the subsequent circuits.
- the first ESD protection element 5 has a very low capacitance (about 0.1 pF) in structure, it has little influence on the impedance of the transmission line, and signal degradation can be minimized.
- the suppressed electrostatic pulse at this time is shown as a waveform 44 in FIG.
- FIG. 11 shows a simple equivalent circuit when an ESD countermeasure component is attached to the differential transmission circuit 67.
- capacitors 68a and 68b indicate capacitive impedances of ESD countermeasure components, and function as capacitance components when no ESD pulse is applied.
- 69a and 69b are 50 ohm termination resistors.
- FIG. 12 shows a TDR simulation waveform when the values of the capacitors 68a and 68b are varied in this equivalent circuit.
- the vertical axis in FIG. 12 indicates the value of differential impedance [ ⁇ ]
- the horizontal axis in FIG. 12 indicates time [nS].
- a straight line 70a indicates the upper limit value [ ⁇ ] of the HDMI impedance standard value
- a straight line 70b indicates the lower limit value [ ⁇ ] of the HDMI impedance standard value.
- FIG. 12 shows a TDR waveform simulation value when the total value of the capacitor 68a and the capacitor 68b is changed to 0.1 pF, 0.3 pF, 0.5 pF, and 0.75 pF.
- the TDR waveform represents the characteristic impedance of each part on the transmission line on the time axis, and is a waveform seen from the external connector 21 in FIG. 1 toward the load 20.
- the impedance of the transmission line actually configured on the printed circuit board varies greatly depending on the manufacturing conditions of the printed circuit board, and an allowable value of about 5 to 6% of the design value is expected unless special management is performed. There is a need. Therefore, the allowable capacitance value that satisfies the HDMI standard in actual use is about 0.3 pF.
- the ESD protection diode 12 has a cathode connected to the third transmission line 10 and an anode connected to the ground.
- the impedance of the first ESD protection diode 12 rapidly decreases. As a result, a current due to the electrostatic pulse flows toward the ground, and a voltage sufficiently lower than the input voltage is generated in the subsequent circuits.
- the voltage threshold (clip voltage) at this time is generally defined as a Zener voltage at a point where a current of 1 mA flows when a reverse bias is applied to the diode, as indicated by 43 in FIG. Needs to be lower than the maximum voltage that can be input to the load (LSI) 20 (see FIG. 1) and higher than the bias voltage applied to the transmission line.
- the transmission line has a fixed bias of 3.3 V, and the maximum voltage of the internal circuit of the load (LSI) 20 is generally about 10 V. Therefore, the Zener voltage of the first ESD protection diode 12 is Needs to be in the range of 3.3V to 10V.
- the waveform of the electrostatic pulse suppressed here is shown as a waveform 45 in FIG.
- the first ESD protection diode 12 shown in FIG. 1 has a capacitance of several pF (about 1 to 3 pF) between the third transmission line 10 and the ground.
- the characteristic impedance is lowered. Therefore, by inserting the first resistor 14 immediately after that, it is possible to prevent the characteristic impedance from being lowered.
- the first resistor 14 prevents the input electrostatic pulse energy from flowing into the load (LSI) 20 and at the same time, the operation start timing of an ESD protection circuit (not shown) built in the load 20. In this state, the internal protection element functions in a state where the electrostatic pulse is sufficiently suppressed by the external protection element, but the impedance of the transmission line is increased by the resistance value.
- FIG. 9 shows this as a waveform of TDR (Time Domain Reflectometry) measurement.
- the TDR waveform represents the characteristic impedance of each part on the transmission line on the time axis, and is a waveform seen from the external connector 21 of FIG.
- the characteristic impedance of the TDR waveform 29 when the resistor is inserted is close to 100 ohms due to the effect of the resistance compared to the TDR waveform 30 before the resistor is inserted. It can be seen that the deterioration due to the capacitance component of the protection element is compensated.
- FIG. 13 is a schematic diagram illustrating a differential transmission method between the HDMI transmitting device and the receiving device.
- FIG. 14 is a diagram illustrating an eye pattern of a differential signal at the output end of the HDMI transmission device.
- FIG. 15 is a diagram illustrating a voltage waveform of a single end output at the output end of the HDMI transmission device.
- FIG. 16 is a diagram illustrating an eye pattern of the minimum voltage input to the HDMI receiving device.
- FIG. 17 is a diagram showing an equivalent circuit of the transmission cable in the present embodiment.
- the transmitting device 72 alternately draws a signal current through the terminal resistors 71a and 71b, the terminal voltages of the terminal resistors 71a and 71b change and a signal is input to the receiver circuit 74.
- the waveform of the differential signal output from the transmission device 72 is defined as a minimum of ⁇ 200 mV or more and a maximum of ⁇ 780 mV or less as shown in the eye pattern of FIG.
- the transmission cable 75 can be represented by an equivalent circuit as shown in FIG. 17, but the series resistance components 77a and 77b in the equivalent circuit are the terminal resistances 71a and 71b of the receiving device 76 when viewed from the transmitting device 72.
- the transmitting device 72 draws current through a larger value load.
- the minimum reception level of the receiving device is defined as ⁇ 150 mV or more as shown in the eye pattern of FIG. 16, but in the case of a receiving device assuming an in-vehicle device, the receiving device considers the applicable temperature range and the like. It is designed so that it can be received correctly even with a signal amplitude of ⁇ 100 mV or less.
- the upper limit value of the series resistance value is set to 15 ⁇ .
- the operation of the differential transmission circuit when the ESD suppressor, the ESD protection diodes 12 and 13 and the resistors 14 and 15 as the ESD protection elements 5 and 6 are used at the same time will be described.
- the difference between the time difference 46 between the peak points of each waveform in FIG. 7 and the clip voltage 47 after the peak is the difference between the time difference 46 between the peak points of each waveform in FIG. 7 and the clip voltage 47 after the peak. That is, the ESD suppressor responds fast but the clip voltage is high, and the ESD protection diode responds slowly but the clip voltage is low.
- the difference in reaction time is about 1 nS.
- the clip voltage the ESD suppressor has a value of about 10V or less, while the ESD suppressor has a value of about 70V.
- the ESD suppression effect is higher in the ESD protection diode, and the ESD suppressor has the effect of suppressing the rise of the peak.
- a higher level differential transmission circuit is formed by combining these elements and further combining the above-described effect of suppressing the current flowing into the LSI by the resistor.
- This element has a structure in which the first inductor element 7 and the second inductor element 8 are magnetically coupled, and has a function of reducing common mode noise superimposed on the differential signal. Further, the inductance component of the first inductor element 7 and the capacitance component of the ESD protection element connected to both ends function as a ⁇ -type low-pass filter, thereby suppressing the harmonic component of the input electrostatic pulse. is there.
- the differential transmission circuit according to the present invention has an effect of ensuring a high electrostatic withstand voltage while minimizing the deterioration of a transmission signal in a high-speed transmission circuit, and is suitable for a severe use environment such as an in-vehicle device. It is useful as a differential transmission circuit.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Semiconductor Integrated Circuits (AREA)
- Dc Digital Transmission (AREA)
- Filters And Equalizers (AREA)
Abstract
Description
ここで第1の送受信機器22及び第2の送受信機器25は、例えばデジタルTV及びDVDプレーヤーなどであり、伝送ケーブル23は、例えばHDMIケーブルである。
音声入力端子58と、映像用AD変換回路57と、音声用DA変換回路59とを備える。
一方、音声入力端子58には外部からアナログ音声入力が入力され、アナログ音声処理回路60に入力される。
3,4,10,11,16,17 伝送線路
5,6 ESD保護素子
9 コモンモードフィルタ
12,13 ESD保護ダイオード
14,15 抵抗
80 差動伝送回路
Claims (2)
- 第1の伝送線路とグランドの間に接続された第1のESD保護素子と、
第2の伝送線路とグランドの間に接続された第2のESD保護素子と、
前記第1の伝送線路と第3の伝送線路との間に直列接続された第1のインダクタ素子と、前記第2の伝送線路と第4の伝送線路の間に直列接続された第2のインダクタ素子とが互いに磁気結合されたコモンモードフィルタと、
前記第3の伝送線路にカソードが接続され、アノードがグランドに接続された第1のESD保護ダイオードと、
前記第4の伝送線路にカソードが接続されアノードがグランドに接続された第2のESD保護ダイオードと、
前記第3の伝送線路に一方の端子が接続され、第5の伝送線路に他方の端子が接続された第1の抵抗と、
前記第4の伝送線路に一方の端子が接続され、第6の伝送線路に他方の端子が接続された第2の抵抗とを備え、
前記第1及び前記第2の抵抗の値はそれぞれ10~15オームとし、前記第1及び前記第2のESD保護素子の静電容量の値はそれぞれ0.3pFより小さく、前記第1及び第2のESD保護ダイオードのクリップ電圧は10Vより小さい値とした、差動伝送回路。 - 第1の伝送線路とグランドの間に接続された第1のESD保護素子と、
第2の伝送線路とグランドの間に接続された第2のESD保護素子と、
前記第1の伝送線路と第3の伝送線路との間に直列接続された第1のインダクタ素子と、前記第2の伝送線路と第4の伝送線路の間に直列接続された第2のインダクタ素子とが互いに磁気結合されたコモンモードフィルタと、
前記第3の伝送線路にカソードが接続され、アノードがグランドに接続された第1のESD保護ダイオードと、
前記第4の伝送線路にカソードが接続されアノードがグランドに接続された第2のESD保護ダイオードと、
前記第3の伝送線路に一方の端子が接続され、第5の伝送線路に他方の端子が接続された第1の抵抗と、
前記第4の伝送線路に一方の端子が接続され、第6の伝送線路に他方の端子が接続された第2の抵抗とを備え、
前記第1及び前記第2の抵抗の値はそれぞれ10~15オームとし、前記第1及び前記第2のESD保護素子の静電容量の値はそれぞれ0.3pFより小さく、前記第1及び第2のESD保護ダイオードのクリップ電圧は10Vより小さい値とした、差動伝送回路を備えた電子機器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080005977.2A CN102301831B (zh) | 2009-01-29 | 2010-01-28 | 差分传输电路和配备有差分传输电路的电子设备 |
JP2010548432A JP5356418B2 (ja) | 2009-01-29 | 2010-01-28 | 差動伝送回路及びそれを備えた電子機器 |
US13/146,423 US8693151B2 (en) | 2009-01-29 | 2010-01-28 | Differential transmission circuit and electronic device provided with the same |
EP10735656.0A EP2384095B1 (en) | 2009-01-29 | 2010-01-28 | Differential transmission circuit and electronic device provided with the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-017563 | 2009-01-29 | ||
JP2009017563 | 2009-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010087184A1 true WO2010087184A1 (ja) | 2010-08-05 |
Family
ID=42395448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/000514 WO2010087184A1 (ja) | 2009-01-29 | 2010-01-28 | 差動伝送回路及びそれを備えた電子機器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8693151B2 (ja) |
EP (1) | EP2384095B1 (ja) |
JP (1) | JP5356418B2 (ja) |
CN (1) | CN102301831B (ja) |
WO (1) | WO2010087184A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015087794A1 (ja) * | 2013-12-09 | 2015-06-18 | 株式会社村田製作所 | コモンモードフィルタおよびesd保護回路付きコモンモードフィルタ |
CN106788559A (zh) * | 2016-11-23 | 2017-05-31 | 中国科学院微电子研究所 | 一种差分吸收滤波器及收发信机 |
JP2019205119A (ja) * | 2018-05-25 | 2019-11-28 | パナソニックIpマネジメント株式会社 | 通信装置 |
WO2021261371A1 (ja) * | 2020-06-26 | 2021-12-30 | 株式会社オートネットワーク技術研究所 | 受信装置 |
WO2022168922A1 (ja) * | 2021-02-04 | 2022-08-11 | パナソニックIpマネジメント株式会社 | 電子制御装置 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8854778B2 (en) | 2011-12-27 | 2014-10-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | ESD protection circuit |
JP6010406B2 (ja) * | 2012-01-27 | 2016-10-19 | 東京エレクトロン株式会社 | マイクロ波放射機構、マイクロ波プラズマ源および表面波プラズマ処理装置 |
US9269653B2 (en) * | 2012-06-27 | 2016-02-23 | Mediatek Inc. | SGS or GSGSG pattern for signal transmitting channel, and PCB assembly, chip package using such SGS or GSGSG pattern |
US10426035B2 (en) | 2012-06-27 | 2019-09-24 | Mediatek Inc. | SGS or GSGSG pattern for signal transmitting channel, and PCB assembly, chip package using such SGS or GSGSG pattern |
US9042064B2 (en) | 2012-10-04 | 2015-05-26 | Qualcomm Incorporated | Electrostatic discharge protection for class D power amplifiers |
CN104079245B (zh) * | 2013-03-28 | 2017-03-15 | 深圳清华大学研究院 | 差分传输装置及包括所述差分传输装置的放大器 |
KR101495736B1 (ko) * | 2013-05-15 | 2015-02-25 | 전북대학교산학협력단 | Esd-emi 공통모드 반도체 필터 소자 및 그 제조방법 |
DE102014102714A1 (de) * | 2014-02-28 | 2015-09-03 | Infineon Technologies Ag | Integrierte Schaltung mit ESD-Schutzstruktur und Photonenquelle |
US10348418B1 (en) * | 2014-07-22 | 2019-07-09 | Esker Technologies, LLC | Transient and spurious signal filter |
WO2016150483A1 (en) * | 2015-03-23 | 2016-09-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Phase shifter |
JP6314927B2 (ja) * | 2015-07-22 | 2018-04-25 | 株式会社村田製作所 | ノイズフィルタ実装構造 |
US10417143B2 (en) | 2015-10-08 | 2019-09-17 | Esker Technologies, LLC | Apparatus and method for sending power over synchronous serial communication wiring |
JP6222410B1 (ja) * | 2016-03-15 | 2017-11-01 | 株式会社村田製作所 | Esd保護回路、差動伝送線路、コモンモードフィルタ回路、esd保護デバイスおよび複合デバイス |
US10560154B2 (en) | 2016-07-11 | 2020-02-11 | Esker Technologies, LLC | Power line signal coupler |
US10128906B2 (en) | 2016-07-11 | 2018-11-13 | Esker Technologies, LLC | Power line signal coupler |
US20180069396A1 (en) * | 2016-09-08 | 2018-03-08 | Nexperia B.V. | Inductive coupling for electrostatic discharge |
CN107147863A (zh) * | 2017-06-08 | 2017-09-08 | 晶晨半导体(上海)股份有限公司 | 一种降低高清接口对无线信号干扰的方法 |
FR3073283B1 (fr) * | 2017-11-03 | 2019-11-15 | Safran Electronics & Defense | Dispositif de protection contre la foudre ameliore pour une entree differentielle |
US10742026B2 (en) * | 2018-02-07 | 2020-08-11 | International Business Machines Corporation | Electrostatic protection device |
CN113761818B (zh) * | 2021-11-09 | 2022-02-11 | 微龛(广州)半导体有限公司 | Esd仿真方法及仿真电路 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005318539A (ja) * | 2004-03-30 | 2005-11-10 | Matsushita Electric Ind Co Ltd | 差動伝送回路及びコモンモードチョークコイル |
JP2005333427A (ja) * | 2004-05-20 | 2005-12-02 | Murata Mfg Co Ltd | 伝送線路型コモンモードノイズフィルタ |
WO2008053555A1 (fr) * | 2006-11-02 | 2008-05-08 | Shimadzu Corporation | Circuit de protection d'entrée de signal analogique haut-débit et spectromètre de masse de temps de vol |
JP2009004466A (ja) * | 2007-06-20 | 2009-01-08 | Panasonic Corp | 積層バリスタの製造方法並びにその選別装置 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5870675A (ja) | 1981-10-23 | 1983-04-27 | Fujitsu Ltd | サ−ジ保護方式 |
GB8621839D0 (en) * | 1986-09-10 | 1986-10-15 | British Aerospace | Electrostatic discharge protection circuit |
FR2606946A1 (fr) * | 1986-11-17 | 1988-05-20 | Telephonie Ind Commerciale | Dispositif de protection d'un equipement terminal chez un abonne telephonique |
DE69211790T2 (de) * | 1991-08-27 | 1996-11-07 | At & T Corp | Gleichtaktüberspannungsschutzschaltung |
WO1998047190A1 (en) * | 1997-04-16 | 1998-10-22 | The Board Of Trustees Of The Leland Stanford Junior University | Distributed esd protection device for high speed integrated circuits |
US6288917B1 (en) * | 1998-01-20 | 2001-09-11 | Leveler | Three stage power conditioning circuit |
US6459343B1 (en) * | 1999-02-25 | 2002-10-01 | Formfactor, Inc. | Integrated circuit interconnect system forming a multi-pole filter |
US7151298B1 (en) * | 1999-12-20 | 2006-12-19 | Advanced Micro Devices, Inc. | Electrostatic discharge protection network having distributed components |
US6826208B1 (en) * | 2000-12-06 | 2004-11-30 | At&T Corp. | Nonlinear transmission line integrated circuit |
SE522909C2 (sv) * | 2001-09-06 | 2004-03-16 | Ericsson Telefon Ab L M | Anordning för skydd av integrerad högfrekvenskrets innefattande en halvledarvaristor |
US6822526B2 (en) * | 2002-12-30 | 2004-11-23 | Intel Corporation | Voltage plane with high impedance link |
US7385466B2 (en) | 2004-03-30 | 2008-06-10 | Matsushita Electric Industrial Co., Ltd. | Differential transmission circuit and common mode choke coil |
DE102006003379B4 (de) | 2006-01-24 | 2011-02-24 | Infineon Technologies Ag | Elektrisches Filter |
FR2901919A1 (fr) * | 2006-05-30 | 2007-12-07 | St Microelectronics Sa | Coupleur directif large bande |
JP2008028214A (ja) * | 2006-07-24 | 2008-02-07 | Matsushita Electric Ind Co Ltd | 静電気対策回路 |
US20120200963A1 (en) * | 2007-06-13 | 2012-08-09 | Daniel Vasquez | System and method for protecting a computing device using vsd material, and method for designing same |
US8120142B2 (en) * | 2008-04-18 | 2012-02-21 | Alpha & Omega Semiconductor, Ltd. | Applying trenched transient voltage suppressor (TVS) technology for distributed low pass filters |
US8422189B2 (en) * | 2010-06-02 | 2013-04-16 | Anmax Lightning Technology Corp. | Serially connected surge suppression optimization device |
US20120275074A1 (en) * | 2011-04-29 | 2012-11-01 | International Business Machines Corporation | Esd protection device |
CN102510210A (zh) * | 2011-12-23 | 2012-06-20 | 成都泰格微波技术股份有限公司 | 一种多功能抗emi滤波器 |
-
2010
- 2010-01-28 CN CN201080005977.2A patent/CN102301831B/zh active Active
- 2010-01-28 EP EP10735656.0A patent/EP2384095B1/en active Active
- 2010-01-28 US US13/146,423 patent/US8693151B2/en active Active
- 2010-01-28 JP JP2010548432A patent/JP5356418B2/ja active Active
- 2010-01-28 WO PCT/JP2010/000514 patent/WO2010087184A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005318539A (ja) * | 2004-03-30 | 2005-11-10 | Matsushita Electric Ind Co Ltd | 差動伝送回路及びコモンモードチョークコイル |
JP2005333427A (ja) * | 2004-05-20 | 2005-12-02 | Murata Mfg Co Ltd | 伝送線路型コモンモードノイズフィルタ |
WO2008053555A1 (fr) * | 2006-11-02 | 2008-05-08 | Shimadzu Corporation | Circuit de protection d'entrée de signal analogique haut-débit et spectromètre de masse de temps de vol |
JP2009004466A (ja) * | 2007-06-20 | 2009-01-08 | Panasonic Corp | 積層バリスタの製造方法並びにその選別装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2384095A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015087794A1 (ja) * | 2013-12-09 | 2015-06-18 | 株式会社村田製作所 | コモンモードフィルタおよびesd保護回路付きコモンモードフィルタ |
JP5994950B2 (ja) * | 2013-12-09 | 2016-09-21 | 株式会社村田製作所 | コモンモードフィルタおよびesd保護回路付きコモンモードフィルタ |
JPWO2015087794A1 (ja) * | 2013-12-09 | 2017-03-16 | 株式会社村田製作所 | コモンモードフィルタおよびesd保護回路付きコモンモードフィルタ |
US9755606B2 (en) | 2013-12-09 | 2017-09-05 | Murato Manufacturing Co., Ltd. | Common mode filter and ESD-protection-circuit-equipped common mode filter |
CN106788559A (zh) * | 2016-11-23 | 2017-05-31 | 中国科学院微电子研究所 | 一种差分吸收滤波器及收发信机 |
CN106788559B (zh) * | 2016-11-23 | 2019-01-22 | 中国科学院微电子研究所 | 一种差分吸收滤波器及收发信机 |
JP2019205119A (ja) * | 2018-05-25 | 2019-11-28 | パナソニックIpマネジメント株式会社 | 通信装置 |
JP7012254B2 (ja) | 2018-05-25 | 2022-01-28 | パナソニックIpマネジメント株式会社 | 通信装置 |
WO2021261371A1 (ja) * | 2020-06-26 | 2021-12-30 | 株式会社オートネットワーク技術研究所 | 受信装置 |
JP2022007684A (ja) * | 2020-06-26 | 2022-01-13 | 株式会社オートネットワーク技術研究所 | 受信装置 |
JP7115517B2 (ja) | 2020-06-26 | 2022-08-09 | 株式会社オートネットワーク技術研究所 | 受信装置 |
JP2022132697A (ja) * | 2020-06-26 | 2022-09-09 | 株式会社オートネットワーク技術研究所 | 受信装置 |
WO2022168922A1 (ja) * | 2021-02-04 | 2022-08-11 | パナソニックIpマネジメント株式会社 | 電子制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JP5356418B2 (ja) | 2013-12-04 |
EP2384095A4 (en) | 2013-04-03 |
US8693151B2 (en) | 2014-04-08 |
JPWO2010087184A1 (ja) | 2012-08-02 |
EP2384095A1 (en) | 2011-11-02 |
EP2384095B1 (en) | 2014-10-15 |
US20110279935A1 (en) | 2011-11-17 |
CN102301831B (zh) | 2015-08-12 |
CN102301831A (zh) | 2011-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5356418B2 (ja) | 差動伝送回路及びそれを備えた電子機器 | |
US7248707B2 (en) | Detection circuit | |
JP5582134B2 (ja) | 受信回路及び信号受信方法 | |
JP2008028214A (ja) | 静電気対策回路 | |
US8582273B2 (en) | Surge absorbing circuit and electric device using the same | |
US7262944B2 (en) | Receptacle | |
US8773823B2 (en) | Overvoltage protection structure for a differential link | |
JP2022081070A (ja) | 静電気保護回路および半導体集積回路 | |
US20190287960A1 (en) | Semiconductor ESD Protection Device and Method | |
JP3962735B2 (ja) | 信号伝送回路、電子機器、ケーブル、及びコネクタ | |
CN105514963B (zh) | 一种静电保护电路及具有该静电保护电路的液晶显示模组 | |
JP5499716B2 (ja) | 半導体装置 | |
CN107820160B (zh) | 信号输入电路 | |
JP2022081067A (ja) | 静電気保護回路および半導体集積回路 | |
CN220324694U (zh) | 一种射频天线电路以及终端 | |
CN117075836B (zh) | 一种显示信号的抗干扰装置、显示器及电子设备 | |
US20240178662A1 (en) | Fully differential esd circuit for high-frequency applications | |
CN114552558A (zh) | 一种瞬态器件与rlc器件融合的vga信号线保护电路 | |
JP2004311878A (ja) | 静電気抑制回路 | |
JP2004347397A (ja) | 電圧検出器 | |
US8525571B2 (en) | Voltage amplitude limiting circuit of full differential circuit | |
KR100863789B1 (ko) | 광대역 전압제한회로 | |
CN117543502A (zh) | 过压保护电路及供电电源 | |
CN117856192A (zh) | 可承受过度电性应力的集成电路 | |
WO2013085531A1 (en) | An electrostatic discharge protection arrangement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080005977.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10735656 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010548432 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13146423 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010735656 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |