WO2010082640A1 - 耐熱性dnaポリメラーゼを含む酵素調製物およびその製造方法、並びに検出対象生物の検出方法 - Google Patents

耐熱性dnaポリメラーゼを含む酵素調製物およびその製造方法、並びに検出対象生物の検出方法 Download PDF

Info

Publication number
WO2010082640A1
WO2010082640A1 PCT/JP2010/050443 JP2010050443W WO2010082640A1 WO 2010082640 A1 WO2010082640 A1 WO 2010082640A1 JP 2010050443 W JP2010050443 W JP 2010050443W WO 2010082640 A1 WO2010082640 A1 WO 2010082640A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna polymerase
amplification
primer
thermostable dna
gene
Prior art date
Application number
PCT/JP2010/050443
Other languages
English (en)
French (fr)
Inventor
多葉田 誉
洋 南
英樹 仁井見
北島 勲
智浩 上野
林 史朗
正之 森
Original Assignee
北海道三井化学株式会社
国立大学法人富山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP10731309.0A priority Critical patent/EP2388322B1/en
Application filed by 北海道三井化学株式会社, 国立大学法人富山大学 filed Critical 北海道三井化学株式会社
Priority to US13/144,175 priority patent/US9243272B2/en
Priority to MYPI2011003280A priority patent/MY188333A/en
Priority to CA2749693A priority patent/CA2749693C/en
Priority to JP2010546663A priority patent/JP5583602B2/ja
Priority to AU2010205133A priority patent/AU2010205133B2/en
Priority to MX2011007548A priority patent/MX340406B/es
Priority to KR1020147002648A priority patent/KR101718594B1/ko
Priority to BRPI1007382-5A priority patent/BRPI1007382A2/pt
Priority to CN201080004647.1A priority patent/CN102282257B/zh
Publication of WO2010082640A1 publication Critical patent/WO2010082640A1/ja
Priority to US14/969,252 priority patent/US20160257999A1/en
Priority to US15/688,473 priority patent/US10501813B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1252DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/10Nucleotidyl transfering
    • C12Q2521/101DNA polymerase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2549/00Reactions characterised by the features used to influence the efficiency or specificity
    • C12Q2549/10Reactions characterised by the features used to influence the efficiency or specificity the purpose being that of reducing false positive or false negative signals
    • C12Q2549/101Hot start
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07007DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase

Definitions

  • the present invention relates to an enzyme preparation containing a heat-resistant DNA polymerase, a method for producing the same, and a method for detecting a detection target organism.
  • PCR polymerase chain reaction
  • Detecting, identifying, and quantifying trace amounts of non-specific organisms from a place that should originally be an aseptic environment for example, analyzing blood, cerebrospinal fluid, amniotic fluid, urine, etc. as specimens, and detecting and identifying human and livestock infections at an early stage. It can be expected to have very significant advantages such as being linked to effective antibiotic administration at an early stage, and monitoring the recovery status by quantitative values of infecting bacteria.
  • unspecified undesired bacteria in water, food, and cosmetics that can be inhaled (drinked by water) in daily life such as tap water, water supply tanks, air-conditioning circulating water, humidifiers, hot spring water, and pool water
  • quality control fields such as domestic water, foods, and cosmetics because it is possible to quickly detect and identify contamination of organisms such as fungi and viruses, and to monitor the contamination level with high sensitivity.
  • a method for quantitatively or identifying a detection target microorganism in a specimen can be established with high sensitivity, simplicity, and speed, the spread field of technology is assumed to be very wide and strongly demanded.
  • MRSA methicillin-resistant Staphylococcus aureus
  • Intrauterine infection which is the biggest cause of premature birth, is a serious infectious disease that causes the death of the fetus.
  • the causative microorganism in the amniotic fluid is detected and identified as quickly as possible, and the optimal antibiotic is developed as soon as possible.
  • Administration is important for fetal lifesaving.
  • bovine mastitis is a very serious illness for dairy cows.
  • Real-time PCR is the only method that can display amplification curves over time, and it is an experimental method that is indispensable for quantitative gene testing today.
  • detection methods using an intercalator such as SYBR Green are inexpensive and easy to use, and are widely used all over the world.
  • real-time PCR using an intercalator has a problem that not only the target but also non-specific amplification products are detected in the same manner, and the detection sensitivity may be lowered.
  • a particularly non-specific amplification product is the formation of primer dimers.
  • primer dimer formation suppression methods devise primer design, use of hot start method, amplification method using modified primer (JP 2002-291490 A), improved PCR reagents Hot start PCR (Japanese Patent Laid-Open No.
  • thermostable DNA polymerase preparations commonly used in PCR reactions are also commercially available as high-purity purified preparations.
  • PCR reactions using these high-purity purified preparations also carry out gene amplification reactions. In cases such as when it is necessary to carry out the usual 30 cycles or more, a non-specific amplification product of unknown cause is detected, and its use is limited.
  • An object of the present invention is to provide a thermostable DNA polymerase preparation that is optimal for amplification of a very small amount of sample microbial DNA using PCR, and to newly test a very small amount of the sample microorganism using the DNA polymerase preparation It is to provide a suitable analysis method.
  • thermostable DNA polymerase an enzyme preparation comprising a thermostable DNA polymerase, (1) One unit of heat-resistant DNA polymerase contains 10 fg or less of bacterial nucleic acid excluding a gene encoding the heat-resistant DNA polymerase, (2) Performing a gene amplification reaction of 32 cycles or more under the condition that no template is added, using a primer capable of amplifying only a nucleic acid derived from bacteria other than a gene encoding a thermostable DNA polymerase to the enzyme preparation.
  • a thermostable DNA polymerase preparation characterized in that it does not detect amplification products of bacterial nucleic acids.
  • thermostable DNA polymerase The following steps: (1) Transforming a gene encoding a thermostable DNA polymerase into a eukaryotic cell to obtain a transformant cell expressing the thermostable DNA polymerase gene; (2) culturing the transformant cell, (3) A step of obtaining an extract containing a heat-resistant DNA polymerase from cultured transformant cells and heat-treating the extract, or heat-treating the cultured transformant cells and then heat-treating the transformant Obtaining an extract containing a thermostable DNA polymerase from cells, A method for producing a thermostable DNA polymerase preparation characterized by comprising:
  • thermostable DNA polymerase preparation is (A) a thermostable DNA polymerase preparation produced using eukaryotic cells as a host, and (B) a thermostable DNA polymerase preparation, (B-1) 1 unit of thermostable DNA polymerase contains 10 fg or less of bacterial nucleic acid excluding the gene encoding the thermostable DNA polymerase, (B-2) Using the primer capable of amplifying only the nucleic acid derived from bacteria other than the gene encoding the thermostable DNA polymerase, the above-menti
  • (IV) In a method for quantitatively identifying an organism to be detected in a specimen, The following steps: (1) Nucleic acid amplification reaction using a nucleic acid prepared from the specimen, primers (B) and (M) for amplifying a target gene specific to the organism to be detected, and a heat-resistant DNA polymerase preparation A first amplification step, (2) A combination of melting temperatures (Tm values) of plural (3 to 10) amplification products in the first amplification step is based on a combination of melting temperatures (Tm values) specific to the amplification products of the target gene.
  • Tm values melting temperatures
  • a first quantitative identification step for analyzing and performing quantitative identification of the detection target organism in the specimen (3) Nucleic acid using a nucleic acid prepared from the specimen, a primer (F) for amplifying a target gene specific to the organism to be detected, and a thermostable DNA polymerase preparation produced using bacteria as a host
  • a second amplification step for performing an amplification reaction (4) A combination of melting temperatures (Tm values) of plural (3 to 10) amplification products in the second amplification step is based on a combination of melting temperatures (Tm values) specific to the amplification products of the target gene.
  • the primers (B), (F) and (M) are (B) a primer set that can amplify a plurality of regions of 16S rRNA gene of all bacteria, and a primer comprising all or 1/3 or more of each primer base sequence, (F) a primer set capable of amplifying a plurality of regions of 18S rRNA genes of all fungi, and a primer comprising all or 1/3 or more of each primer base sequence, (M) a primer set that specifically amplifies an antibiotic resistance gene that reflects the epidemic, such as a mecA gene exhibiting resistance to methylycin, And
  • the thermostable DNA polymerase preparation in the first amplification step is (A) a thermostable DNA polymerase preparation produced using eukaryotic cells as a host, and (B
  • a first nucleic acid amplification reaction is performed using a nucleic acid prepared from the specimen, a primer (B) for amplifying a target gene specific to the organism to be detected, and a heat-resistant DNA polymerase preparation Amplification process of (2)
  • a combination of melting temperatures (Tm values) of plural (3 to 10) amplification products in the first amplification step is based on a combination of melting temperatures (Tm values) specific to the amplification products of the target gene.
  • a first quantitative identification step for analyzing and performing quantitative identification of the detection target organism in the specimen (3) Nucleic acid using a nucleic acid prepared from the specimen, a primer (F) for amplifying a target gene specific to the organism to be detected, and a thermostable DNA polymerase preparation produced using bacteria as a host
  • a second amplification step for performing an amplification reaction (4) A combination of melting temperatures (Tm values) of plural (3 to 10) amplification products in the second amplification step is based on a combination of melting temperatures (Tm values) specific to the amplification products of the target gene.
  • a nucleic acid amplification reaction is performed using a nucleic acid prepared from the sample, a primer (M) for amplifying a target gene specific to the organism to be detected, and a heat-resistant DNA polymerase preparation.
  • Amplification process of (6) The melting temperature (Tm value) of the amplification product in the third amplification step is analyzed based on the melting temperature (Tm value) specific to the amplification product of the target gene, and the detection target organism in the sample is analyzed.
  • a third quantitative identification step for performing quantitative identification Have The primers (B), (F) and (M) are (B) a primer set that can amplify a plurality of regions of 16S rRNA gene of all bacteria, and a primer comprising all or 1/3 or more of each primer base sequence, (F) a primer set capable of amplifying a plurality of regions of 18S rRNA genes of all fungi, and a primer comprising all or 1/3 or more of each primer base sequence, (M) a primer set that specifically amplifies an antibiotic resistance gene according to the current epidemic, such as a mecA gene showing methylicin resistance, And A thermostable DNA polymerase preparation in the first and third amplification steps, (A) a thermostable DNA polymerase preparation produced using eukaryotic cells as a host, and (B) a thermostable DNA polymerase preparation, (B-1) 1 unit of thermostable DNA polymerase contains 10 fg or less of bacterial nucleic acid excluding the gene encoding the thermo
  • thermostable DNA polymerase preparation for amplifying a nucleic acid prepared from a specimen, a primer for amplifying a target gene specific to the organism to be detected, and Have
  • the thermostable DNA polymerase preparation is (A) a thermostable DNA polymerase preparation produced using eukaryotic cells as a host, and (B) a thermostable DNA polymerase preparation, (B-1) 1 unit of thermostable DNA polymerase contains 10 fg or less of bacterial nucleic acid excluding the gene encoding the thermostable DNA polymerase, (B-2) Using the primer capable of amplifying only bacterial-derived nucleic acids other than the gene encoding the thermostable DNA polymerase, the preparation is subjected to a gene amplification reaction of 32 cycles or more under the condition that no template is added.
  • a set for quantification or identification which is a thermostable DNA polymerase preparation that does not
  • thermostable DNA polymerase preparation For amplifying nucleic acids prepared from specimens, (A) a thermostable DNA polymerase preparation produced using eukaryotic cells as a host, and (B) a thermostable DNA polymerase preparation, (B-1) 1 unit of thermostable DNA polymerase contains 10 fg or less of bacterial nucleic acid excluding the gene encoding the thermostable DNA polymerase, (B-2) Using the primer capable of amplifying only bacterial-derived nucleic acids other than the gene encoding the thermostable DNA polymerase, the preparation is subjected to a gene amplification reaction of 32 cycles or more under the condition that no template is added.
  • thermostable DNA polymerase preparation of any of the thermostable DNA polymerase preparations that do not detect amplification products of nucleic acids derived from bacteria A thermostable DNA polymerase preparation produced using bacterial cells as hosts for amplifying nucleic acid prepared from a specimen; Primers for amplifying a target gene specific to the organism to be detected; A set for quantification and / or identification, characterized in that
  • an amplification device for performing a nucleic acid amplification reaction using a nucleic acid prepared from the specimen, a primer for amplifying a target gene specific to the organism to be detected, and a heat-resistant DNA polymerase; (2) a quantification device for quantifying the amplification product in the amplification step; (3) a calculation device that calculates the amount of the detection target organism in the sample based on the quantitative result of the amplification product; (4) a database for calculating the amount of the detection target organism in the sample from the quantification result of the amplification product of the target gene; Have A quantitative and / or identification system for performing the above-described detection method or quantitative identification method.
  • thermostable DNA polymerase preparation capable of reducing the production cost can be provided.
  • primer dimer formation is no longer an inhibitor of real-time PCR using an intercalator, and quantitative testing can be performed without lowering sensitivity. There is also no risk of false positives due to primer dimers. That is, accurate quantification up to the detection sensitivity limit (high-sensitivity quantification method) becomes possible. Moreover, this method is simpler and more economical than conventional methods such as a hot start method using an anti-Taq antibody.
  • thermostable DNA polymerase preparation of the present invention By using a combination of the masked Primer Dimer method and the One Step nested PCR method in addition to the thermostable DNA polymerase preparation of the present invention, PCR with high sensitivity and high specificity can be performed quickly and easily.
  • the present invention it is possible to quickly provide a highly sensitive and simple quantification or identification method of a detection target organism by genetic testing.
  • this method it is possible to quantitate the target organism to be detected quickly, simply and with high sensitivity for any specimen that should be in an aseptic environment or for which a very small amount of target organism contamination is a problem.
  • this quantitative or quantitative identification method it is possible to monitor the bacterial count control status and bacterial count fluctuation status in the patient's body, such as maintaining sterility and maintaining a constant bacterial count, and confirming the effect of treatment by changing the amount of infected bacteria. Become.
  • a rapid drug sensitivity test can be performed by combining the culture of the specimen and the high sensitivity quantitative method of the present invention.
  • (B) is a diagram showing an amplification curve analysis of real-time PCR using a thermostable DNA polymerase preparation produced using S. cerevisiae as a host.
  • (A) is a view showing a melting curve analysis of real-time PCR using AmpliTaq Gold LD.
  • (B) shows a melting curve analysis of real-time PCR using a thermostable DNA polymerase preparation produced using S. cerevisiae as a host. It is a figure which shows the verification result of nonspecific nucleic acid contamination using the thermostable DNA polymerase preparation produced by using A.oryzae as a host. It is a figure which shows the amplification curve analysis of real-time PCR using masked
  • thermostable DNA polymerase preparation derived from T. aquaticus produced using S. cerevisiae as a host
  • B is a thermostable DNA polymerase preparation derived from mutant P. furiosus produced using S. cerevisiae as a host
  • C Is a heat-resistant DNA polymerase preparation derived from mutant T. gorgonarius produced using S. cerevisiae as a host
  • D is a heat-resistant DNA polymerase preparation derived from T. aquaticus produced using P. pastoris as a host
  • E is Tobacco BY A T.aquaticus-derived thermostable DNA polymerase preparation produced using -2 as a host was used.
  • thermostable DNA polymerase preparation derived from T. aquaticus produced using S. cerevisiae as a host (B) is a thermostable DNA polymerase preparation derived from mutant P. furiosus produced using S. cerevisiae as a host, (C) Is a heat-resistant DNA polymerase preparation derived from mutant T. gorgonarius produced using S. cerevisiae as a host, (D) is a heat-resistant DNA polymerase preparation derived from T. aquaticus produced using P.
  • (E) is Tobacco BY A T.aquaticus-derived thermostable DNA polymerase preparation produced using -2 as a host was used.
  • (A) is a figure which shows normal PCR condition setting and its fluorescence detection point.
  • (B) is a figure which shows the fluorescence detection point of maskedPrimer
  • (A) shows the arrangement of primers and amplification products in the One Step semi-nested PCR method.
  • (B) shows the arrangement of primers and amplification products in the One-Step-nested PCR method.
  • (C) shows a plurality of Tm values (Bac1 to Bac5) obtained from bacteria and their relative values (d1 to d5) from the average (average).
  • FIG. 1 is a block diagram showing an example of a system for quantifying and / or identifying a detection target organism according to the present invention.
  • Table 1 Amplification curve analyzed according to program conditions.
  • A is an amplification curve with E.coli
  • B is an amplification curve with distilled water (DW).
  • It is the melting curve figure which analyzed according to Table 1 program conditions.
  • A is the melting curve of E. coli
  • B is the melting curve of the primer dimer.
  • (A) is an amplification curve diagram of real-time PCR results under the program conditions in Table 2.
  • A is an amplification curve with E.coli
  • B is an amplification curve with distilled water (DW).
  • (B) is a figure which shows the result of having carried out the fungal infection test
  • A is an amplification curve in C. albicans which is a positive control
  • B is distilled water (DW), tap water, spring water, spring water, hot spring water.
  • C is a figure which shows the result of having performed the infectious-bacteria test
  • a to D are A.
  • E.coli cycle number 14.47 which is a positive control
  • B Hot spring water (cycle number 30.54)
  • C Air-conditioning water (cycle number) 28.96)
  • D Amplification curves for distilled water (DW), tap water, and spring water.
  • A is a growth curve in fresh cream puff.
  • A is a growth curve with C. albicans (cycle number 23.78) which is a positive control
  • B is a growth curve with distilled water (DW) and cream puff (cream) (cycle number 45.71).
  • B is a growth curve in an old cream puff.
  • A is a growth curve with C. albicans (cycle number 23.78) which is a positive control
  • B is a growth curve with distilled water (DW) and cream puff (cream) (cycle number 44.37).
  • A is a growth curve in fresh cream puff.
  • A is a growth curve with E. coli (cycle number 26.55) as a positive control
  • B is a growth curve with distilled water (DW) and cream puff (cream).
  • B) is a growth curve in an old cream puff.
  • A is a growth curve with E.
  • A is a growth curve in a fungal universal primer.
  • A is a growth curve with C. albicans (cycle number 27.51) which is a positive control
  • B is a growth curve with a blood sample (patient A: cycle number 33.70)
  • C is distilled water (D. W.) growth curve.
  • B is a growth curve in a bacterial universal primer.
  • A is a growth curve in E.
  • A is a growth curve in a fungal universal primer.
  • A is a growth curve in C. albicans which is a positive control
  • B is a growth curve in a blood sample (patient B) and distilled water (DW).
  • B is a growth curve in a bacterial universal primer for a blood sample.
  • A is a growth curve in E.
  • A is a growth curve in a blood culture sample (patient B: cycle number 14.47)
  • B is a growth curve in E. coli (cycle number 25.64) which is a positive control
  • C is distilled water (D .. W.) growth curve.
  • A is a growth curve in a blood culture sample (patient B: cycle number 14.47)
  • B is a growth curve in E. coli (cycle number 25.64) which is a positive control
  • C is distilled water (D .. W.) growth curve.
  • It is a figure which shows the result of real-time PCR using MRSA DNA as a template and using MRSA-specific primers.
  • A is the growth curve with Spa primer
  • B is the growth curve with mecA primer
  • C is the growth curve with bacterial universal primer
  • D is the growth curve with fungal universal primer.
  • A is the figure which test
  • B is a diagram in which the sensitivity of each of cefazolin (CZ), ampicillin (AP), and erythromycin (EM) to the detected Bacillus cereus was examined from the rate of increase over time.
  • A is a figure which shows the infectious-bacteria test result of the amniotic fluid sample 1 of an intrauterine infection
  • B is a figure which shows the infectious-bacteria test result of the amniotic fluid sample 2 of imminent premature delivery.
  • a to C are the results of detection using a bacterial universal primer, A: distilled water, B: E. coli, which is a positive control, and C: amniotic fluid specimen.
  • D to F are the results of detection using a fungal universal primer, D: distilled water, E: C. albicans which is a positive control, F: amniotic fluid specimen.
  • G to H are results of detection attempts using Mycoplasma genus-specific primers
  • I amniotic fluid specimen
  • J to L are the results of detection using urea plasma genus-specific primers, and are J: distilled water
  • K urea plasma positive control
  • L amniotic fluid specimen.
  • Three primers including the semi-nested primer were mixed, and it was confirmed by the Tm value of the amplified product whether the nested PCR was performed successfully.
  • (A) shows that only the amplification product I (Tm value 87 ° C.) on the outside is amplified by performing only amplification 1 in Tables 3 and 4.
  • (B) It is shown that only the amplification product II (Tm value 83 ° C.) on the inner side (the primer dimer is others) is amplified by performing only amplification 2 in Table 3 and Table 4. Using a real sample to confirm that high-sensitivity and high-specificity PCR is being performed successfully by combining the high-sensitivity detection method using e-DNAP and the non-display method with the One-Step-nested PCR method. did.
  • (A) is a growth curve when the program of Table 3 or Table 4 is carried out with an E. coli specific primer. In the figure, A is a growth curve in E. Coli, and B is a growth curve in distilled water (DW), S. aureus, and Human DNA.
  • (B) is a melting curve when the program of Table 3 or Table 4 is carried out with an E. coli specific primer.
  • A is a melting curve in E. Coli
  • B is a melting curve in distilled water (DW), S. aureus, and Human DNA.
  • the amplification product in the figure is only the nested inner amplification product II (Tm value 83 ° C.), and other amplification products of distilled water (DW), S. aureus, and Human DNA are not recognized.
  • Three primers including semi-nested primer were mixed, and it was confirmed by the size of the amplified product whether the nested PCR was successful.
  • By performing only Amplification1 only the outer amplification product I (548 bp) is amplified.
  • Amplification IV2 only the inner nested amplification product II (110 bp) is amplified. In the implementation of Amplification 1 + 2, only the inner nested amplification product II (110 bp) is amplified.
  • thermostable DNA polymerase preparation The inventors produced and produced thermostable DNA polymerase using genetic recombination using bacteria as a host, similar to commercially available thermostable DNA polymerase preparations.
  • the applicability of the thermostable DNA polymerase preparation to PCR for detection of the detection target microorganism contained in the specimen was examined.
  • the PCR cycle number is increased to detect the detection target microorganisms. It was not possible to provide a thermostable DNA polymerase preparation that enables selective amplification of DNA and that can reduce production costs.
  • thermostable DNA polymerase the phylogenetic tree (Carl R. Woese, “Bacterial Evolution,” Micro. Biol. Reviews, 51: 221-271 (1987) and FIG. 1), with reference to eukaryotic cells that can be used as hosts by verifying the distant relationship of each organism did.
  • thermostable DNA polymerase using eukaryotic cells as a host, most of the thermostable DNA polymerase was produced insoluble in the resulting culture extract precipitate, and the precipitate and supernatant were heat treated.
  • thermostable DNA polymerase preparation has at least the characteristic that no DNA amplification occurs for those without addition of template in the bacterial 16S rRNA inheritance width.
  • thermostable DNA polymerase preparation used in the present invention is a preparation containing a thermostable DNA polymerase, and has at least one of the following requirements (A) and (B).
  • thermostable DNA polymerase preparation that satisfies the following conditions (1) and (2).
  • One unit of thermostable DNA polymerase contains 10 fg or less of bacterial nucleic acid excluding a gene encoding the thermostable DNA polymerase.
  • a gene amplification reaction of 32 cycles or more can be carried out under the condition that no template is added using a primer capable of amplifying only a nucleic acid derived from bacteria other than a gene encoding a thermostable DNA polymerase. Does not detect amplification products of nucleic acids derived from bacteria.
  • thermostable DNA polymerase preparation produced using eukaryotic cells as a host.
  • Bacteria-derived nucleic acid contamination is “10 fg or less” when the detection method in “(6-3) PCR detection limit” in Example 2-1 described later is determined to be “10 fg or less”.
  • the “extract” in the present invention is not limited as long as a component containing a heat-resistant DNA polymerase is extracted from cells or cells, and the solvent and extraction method used for obtaining the extract are particularly limited. It is not something.
  • the method for obtaining the extract include the following methods. (1) A method of treating eukaryotic cells produced with thermostable DNA polymerase with an enzyme that dissolves cell walls such as zymolyase, cellulase, chitinase, chitobiase, chitosanase, ⁇ -1,3-glucanase, lysozyme.
  • thermoresistant DNA polymerase preparation in the present invention is a preparation containing a thermostable DNA polymerase, and as the above extract itself, further purification, dilution, other substances or compounds using the above extract It can be obtained through various treatments such as mixing with. For example, the following can also be mentioned as preparations.
  • A As a component in which the heat-resistant DNA polymerase derived from the extract has a buffering action, phosphoric acid, boric acid, carbonic acid, citric acid, acetic acid, tris, tricine, bis-tricine, Bernard, hepes, pipes, caps, taps, test, Dissolved in a buffer containing mops, scalpel, etc.
  • B Those present in the solution together with MgCl 2 and dNTPs.
  • C A dried product obtained by drying the solutions (A) and (B) by a method such as freeze-drying.
  • thermoostable DNA polymerase preparation examples include purification, dilution, mixing with other substances or compounds, and the like.
  • Examples of the purification method include the following methods.
  • Two or more of these methods can be used in combination. By these methods, it is possible to concentrate heat-resistant DNA polymerase contained in the extract and to reduce or remove host-derived contaminating proteins and nucleic acids.
  • Examples of the dilution method include a method of adding a solvent mixed with an extract such as water or the above buffer to the extract.
  • the substance or compound to be mixed is not particularly limited, but for example, potassium chloride, potassium acetate, potassium sulfate, ammonium sulfate, ammonium chloride, ammonium acetate, magnesium chloride, Magnesium acetate, magnesium sulfate, manganese chloride, manganese acetate, manganese sulfate, sodium chloride, sodium acetate, lithium chloride, lithium acetate, calcium chloride, ⁇ -mercaptoethanol, dithiothreitol, DMSO, glycerol, formamide, tetramethylammonium chloride, PEG, Tween 20, Tween 80, Triton-X100, NP40, DNA, RNA, protein (enzymes, antibodies, BSA, etc.), dATP, dGTP, dCTP, dTTP, dUTP, dNTPs, Cyber Green, One type or two or more types selected from Ever
  • Thermophilic bacteria refers to eubacteria or archaea (primordial bacteria) that grow at an optimum growth temperature of 45 ° C. or higher, or 55 ° C. or higher.
  • the thermophilic bacterium applicable to the present invention is not particularly limited as long as it falls within the definition of the previous term.
  • Super thermophilic bacteria refers to eubacteria or archaea (primordial bacteria) that grow at an optimal growth temperature of 80 ° C. or higher, or 90 ° C. or higher.
  • the hyperthermophilic bacterium applicable to the present invention is not particularly limited as long as it meets the above definition.
  • thermophilic bacteria and hyperthermophilic bacteria include Thermus, Bacillus, Thermococcus, Pyrococcus, Aeropyrum, and Aquifex.
  • thermophilic bacteria belonging to the genus Sulfolobus, Pyrolobus, and Methanopyrus are examples of such thermophilic and hyperthermophilic bacteria.
  • Thermus aquatics Thermus thermophilus, Bacillus stearothermophilus, Aquifex pyrophilus, Geothermobacterium ferrireducens, Thermotoga maritime, Thermotoga neopolitana, Thermotoga petrophila, Thermotoga naphthophila, Acidianus infernus, Aeropyrum pernix, Archaeoglobus fulgidus, Archaeoglobus profundus, Caldivirga maquilingensis, Desulfurococcus amylolyticus, Desulfurococcus mobilis, Desulfurococcus mucosus, Ferroglobus placidus, Geoglobus ahangari, Hyperthermus butylicus, Ignicoccus islandicus, Ignicoccus pacificus, Methanococcus jannaschii, Methanococcus fervens, Methanococcus igneus, Methanococcus infernus
  • the method for producing a thermostable DNA polymerase preparation according to the present invention is to produce a thermostable DNA polymerase using host cells, and eukaryotic cells are used as the host cells.
  • eukaryotic cells examples include fungi, animal cells, plant cells, and insect cells. Host cells are not particularly limited as long as they are cells derived from eukaryotes. Examples of fungi include ascomycetes such as yeast and fungi, filamentous fungi, basidiomycetes, zygomycetes, etc. Among them, yeast or filamentous fungi are preferable.
  • Rhodospodium examples include the genus Rhodosporidi, the genus Aspergillus, the genus Fusarium and the genus Trichoderma.
  • Saccharomyces Saccharomyces (Saccharomyces) cerevisiae), Schizosaccharomyces pombe, Candida utilis, Candida boidini, Pichia metanolica, Pichia anaptas, Pichia angustaori ), Pichia anomala, Hansenula polymorpha, Kluyveromyces lactis), Zygosaccharomyces rouxii, Yarrowia lipolytica, Trichosporon pullulans), Rhodosporidium toruloides, Aspergillus niger, Aspergillus nidulans, Aspergillus awamori, Aspergillus awamori, Aspergillus oryzae (Aspergillus oryz) Trichoderma reesei).
  • animal cells include cultured cells derived from humans, cultured cells derived from mice, and specific examples include CHO cells and Hela cells.
  • the plant cell may be any cell derived from a plant, and preferably a cultured cell line, such as a Nicotiana cell, an Arabidopsis cell, an Ipomoea cell, a carrot (Daucus) ) Cells, rice (Oryza) cells, etc., specifically Nicotiana tabacum Examples include BY-2 cultured cells, Arabidopsis thaliana cultured cells, Ipomoea batatas cultured cells, Daucus carota cultured cells, Oryza sativa cultured cells, and the like.
  • the insect cell may be any cell derived from an insect, and preferably a cultured cell, such as Spodoptera frugiperda ovarian cell-derived cultured cells sf9 strain, sf21 strain, and silkworm (Bombix mori) cultured cell. Examples include Bm-N strains.
  • the host cells are preferably microorganisms or eukaryotes such as yeast that grow rapidly, such as yeasts including the genus Saccharomyces such as Saccharomyces cerevisiae, and cultured cells of the genus tobacco (Nicotiana) such as Nicotiana tabacum. And filamentous fungi including the genus Aspergillus such as Aspergillus oryzae.
  • thermostable DNA polymerase In order to produce a thermostable DNA polymerase using eukaryotic cells, for example, a gene containing at least one gene encoding a thermostable DNA polymerase is introduced and expressed in the eukaryotic cell to produce the thermostable DNA polymerase. Methods and the like.
  • thermostable DNA polymerase in this specification may be any gene such as cDNA, genomic DNA, synthetic DNA encoding the thermostable DNA polymerase, or a single strand or two having its complementary strand. It may be a chain and may contain natural or artificial nucleotide derivatives. Further, when the thermostable DNA polymerase is derived from an organism, the origin of the thermostable DNA polymerase is not particularly limited.
  • DNA polymerases have various congeners depending on the type of organism.
  • the heat-resistant DNA polymerase includes a heat-resistant DNA polymerase artificially synthesized by genetic engineering.
  • thermostable DNA polymerase preferably a thermostable organism, and more preferably from a prokaryotic organism such as a methane bacterium, a thermophilic bacterium, a thermophilic bacterium, or a hyperthermophilic bacterium.
  • the heat-resistant DNA polymerase gene of the present invention preferably has a base sequence using a codon usage method frequently used in a host organism to be transformed.
  • thermostable DNA polymerase gene For example, the codon usage for introducing a thermostable DNA polymerase gene into Saccharomyces cerevisiae is as follows.
  • the codon usage is applied to 70% or more of the base sequence of the naturally derived thermostable DNA polymerase gene. More preferably, it is 80% or more, more preferably 90% or more, and most preferably, this codon usage is applied to all codons.
  • thermostable DNA polymerase gene of the present invention a thermostable DNA polymerase gene in which the base sequence of the thermostable DNA polymerase gene derived from Thermus aquaticus is designed by applying the codon usage of Saccharomyces cerevisiae can be mentioned.
  • a heat-resistant DNA polymerase gene having the sequence of SEQ ID NO: 11 or consisting of these base sequences is a preferred embodiment.
  • thermostable DNA polymerase gene it is preferable not to include a sequence that destabilizes mRNA in the thermostable DNA polymerase gene, and as a sequence that destabilizes mRNA, a gene having a high repetitive sequence or a high GC content of the thermostable DNA polymerase gene.
  • a sequence that destabilizes mRNA a gene having a high repetitive sequence or a high GC content of the thermostable DNA polymerase gene.
  • examples include sequences.
  • the frequency of appearance of a gene sequence of about 10 bp should be suppressed to 2% or less of the gene encoding thermostable DNA polymerase, For example, designing the GC content to be about 20% or more and about 45% or less.
  • thermostable DNA polymerase gene of the present invention is characterized by at least one of a suitable GC content that does not include a sequence that contributes to application of codon usage and mRNA destabilization in the host organism to be introduced. It is preferable to have. More preferably, it has two or more types, most preferably three types of features. Moreover, it is preferable that the codon usage in the host organism is applied to the thermostable DNA polymerase gene. In particular, when transforming a Saccharomyces genus, particularly Saccharomyces cerevisiae, as a host, it is preferable that the codon usage in Saccharomyces cerevisiae is applied.
  • thermostable DNA polymerase gene is designed not to have an inappropriate restriction enzyme site particularly in the coding region in the gene cloning step. Specifically, it is preferable not to include sites such as EcoRI, HindIII, NotI, and SnaBI.
  • a restriction enzyme site useful for operation is provided outside the coding region. For example, it can have restriction enzyme sites such as EcoRI, HindIII, NotI, SnaBI upstream or downstream of the coding region.
  • Examples of the heat-resistant DNA polymerase gene homologue include DNA polymerase gene homologues that hybridize with these DNAs under stringent conditions. That is, it is a DNA polymerase gene homolog that hybridizes under stringent conditions with all or part of any of these DNA polymerase genes or their complementary strands. Such homologues encode proteins that simultaneously have DNA polymerase activity.
  • thermostable DNA polymerase gene homologue that hybridizes under stringent conditions is, for example, one or more continuous sequences of at least 20, preferably 25, more preferably at least 30 of the original base sequence.
  • Hybridization techniques well known to those skilled in the art using a plurality of selected DNAs as probe DNAs (Current Protocols I Molecular Science Biology edit. Ausubel et al., (1987) Publisher. John John Wily & Sons Sectoin 6.3-6.4) Or the like, and the hybridizing DNA is included.
  • the stringent condition is that the hybridization temperature is 37 ° C. in the presence of 50% formamide, and the more severe condition is about 42 ° C. More severe conditions can be about 65 ° C. in the presence of 50% formamide.
  • the number of mutations in the amino acid sequence is not limited as long as the function of the original protein can be maintained, but is preferably within 70% of all amino acids, more preferably within 30%, and even more preferably 20 %.
  • thermostable DNA polymerase gene homolog contains a base sequence having a homology of at least 80%, preferably 90% or more with respect to the coding region of the base sequence of the original DNA, or the base sequence It is preferable that it consists of DNA.
  • the homology of the DNA base sequence can be determined by a gene analysis program BLAST or the like.
  • thermostable DNA polymerase gene can be synthesized chemically, or the method of Fujimoto et al., which is known as a method for synthesizing long-chain DNA (Hideya Fujimoto, synthetic gene production method, plant cell engineering series 7). Plant PCR experiment protocol, 1997, Shujunsha, p95-100) can also be employed.
  • the modification in the amino acid sequence is performed by adding a site-specific displacement introduction method (Current-Protocols-I-Molecular-Biology-edit.-Ausubel-et-al., (1987) -Publish-.John-Wily- & Sons-Sectoin-8.1-8). .5) etc. can be used to introduce substitution, deletion, insertion, and / or addition mutation as appropriate.
  • modifications are not limited to artificially introduced or synthesized mutations but also include those caused by amino acid mutations in the natural world based on or not limited to artificial mutation treatments.
  • Examples of the heat-resistant DNA polymerase gene that can be suitably used in the present invention include genes consisting of the nucleotide sequences represented by SEQ ID NOs: 1, 81 and 82 (corresponding amino acid sequences are shown below).
  • SEQ ID NO: 1 aagcttacgt atacaacatg agaggtatgc ttccattgtt cgaacctaaa ggtagagtat 60 tgttggttga tggtcatcat ctagcttaca gaactttcca cgctctaaaa ggtttaacaa 120 catcaagagg tgaacctgtt caagctgtat acggttttgc taagtcttta ctaaagcat 180 tgaaggaaga cggtgacgcc gttattgtg ttcgatgc ta
  • a DNA construct that enables expression of the DNA segment comprising the above-mentioned heat-resistant DNA polymerase gene in the host cell is used.
  • the DNA construct for transformation include, but are not limited to, plasmid (DNA), bacteriophage (DNA), retrotransposon (DNA), artificial chromosome (YAC, PAC, BAC, MAC, etc.) It can be selected and employed according to the form of introduction (extrachromosomal or intrachromosomal) and the type of host cell. Therefore, the present DNA construct can be provided with the constituent segments of the vector of any one of these aspects in addition to the above-mentioned heat-resistant DNA polymerase gene.
  • prokaryotic vectors eukaryotic cells, animal cells, and plant cells are well known in the art.
  • Examples of plasmid DNA include YCp type E. coli-yeast shuttle vectors such as pRS413, pRS415, pRS416, YCp50, pAUR112, and pAUR123, YEp type E. coli-yeast shuttle vectors such as pYES32 and YEp13, pRS403, pRS404, pRS405, pRS406. And YIp type E. coli-yeast shuttle vectors such as pAUR101 or pAUR135.
  • Examples of the phage DNA include ⁇ phage (Charon 4A, Charon 21A, EMBL3, EMBL4, ⁇ gt100, gt11, zap), ⁇ X174, M13mp18, and M13mp19.
  • retrotransposons include Ty factors.
  • YAC examples of retrotransposons
  • YAC examples of YACC2.
  • the above-mentioned fragment containing the heat-resistant DNA polymerase gene is cleaved with an appropriate restriction enzyme and inserted into a restriction enzyme site or a multicloning site of the vector DNA to be used.
  • the first aspect of the present DNA construct comprises a promoter segment that is linked so that the DNA segment consisting of the above-mentioned heat-resistant DNA polymerase gene can be expressed. That is, it is controlled by a promoter, and the heat-resistant DNA polymerase gene segment described above is linked to the downstream side of the promoter.
  • thermostable DNA polymerase gene for example, gal1 promoter, gal10 promoter, pyruvate decarboxylase gene promoter, heat shock protein promoter, MF ⁇ 1 promoter, PH05 promoter PGK promoter, GAP promoter, ADH promoter, AOX1 promoter and the like are preferably used.
  • the second DNA construct which is another embodiment of the present DNA construct, comprises a DNA segment for homologous recombination in the host chromosome in addition to the present DNA.
  • the DNA segment for homologous recombination is a DNA sequence that is homologous to the DNA sequence in the vicinity of the target site to which the above thermostable DNA polymerase gene is to be introduced in the host chromosome.
  • At least one, preferably two, DNA segments for homologous recombination are provided.
  • two DNA segments for homologous recombination are DNA sequences that are homologous to the DNA upstream and downstream of the target site on the chromosome, and the above-mentioned thermostable DNA polymerase gene is linked between these DNA segments. It is preferable.
  • the present DNA can be introduced in a controllable manner by a promoter on the host chromosome.
  • the introduction of the target gene can simultaneously destroy the endogenous gene that should be controlled by the promoter and express the above-described heat-resistant DNA polymerase gene in place of the endogenous gene. It is particularly useful when the promoter is a high expression promoter in the host cell.
  • the components of the DNA construct are present on the chromosome or on extrachromosomal factors (including artificial chromosomes).
  • thermostable DNA polymerase gene has been introduced under a desired promoter can be confirmed by PCR or Southern hybridization. For example, it can be confirmed by preparing DNA from the transformant, performing PCR with an introduction site-specific primer, and detecting the expected band in electrophoresis for the PCR product. Alternatively, it can be confirmed by performing PCR with a primer labeled with a fluorescent dye or the like. These methods are well known to those skilled in the art.
  • yeast When yeast is the host cell, a strain in which the yeast gene is disrupted can be used.
  • the yeast into which the plasmid has been introduced can be selected using a uracil-requiring strain.
  • protease-deficient strains can be used to suppress degradation of overexpressed proteins in yeast cells.
  • thermostable DNA polymerase preparation using the above-described transformant.
  • a thermostable DNA polymerase which is an expression product of a foreign gene, is produced in the culture.
  • a thermostable DNA polymerase preparation can be obtained.
  • the culture includes a cultured cell or a microbial cell, or a crushed product of the cell or the microbial cell.
  • culture conditions can be selected according to the type of transformant. Such culture conditions are well known to those skilled in the art.
  • a medium for culturing a transformant obtained using yeast as a host a medium containing a carbon source, a nitrogen source, inorganic salts, and the like that can be assimilated by microorganisms, and capable of efficiently culturing the transformant If it is, it will not specifically limit, either a natural culture medium or a synthetic culture medium can be used, but a synthetic culture medium is used in order to produce a thermostable DNA polymerase preparation applicable when a sample microorganism is a very small amount. It is preferable to do.
  • the carbon source carbohydrates such as glucose, fructose, sucrose, and starch, organic acids such as acetic acid and propionic acid, and alcohols such as ethanol and propanol can be used.
  • ammonium salt of inorganic acid or organic acid such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate or other nitrogen-containing compounds, peptone, meat extract, corn steep liquor, etc. may be used. it can.
  • the inorganic substance it is possible to use monopotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like.
  • the culture is usually performed at 30 ° C. for 24-72 hours under aerobic conditions such as shaking culture or aeration-agitation culture.
  • the pH is preferably maintained at 5.0 to 7.0.
  • the pH can be adjusted using an inorganic or organic acid, an alkaline solution, or the like.
  • the medium for culturing the transformant obtained using plant cells as a host is not particularly limited as long as it is a medium in which plant cells containing a carbon source, a nitrogen source, inorganic salts, organic substances, etc. can be cultured.
  • a carbon source examples thereof include MS medium, LS medium, Gamborg B5 medium, WP medium, and white medium.
  • the carbon source include carbohydrates such as glucose, fructose, sucrose, and starch, organic acids such as acetic acid and propionic acid, and alcohols such as ethanol and propanol, among which sucrose and glucose are preferable.
  • Nitrogen sources include nitrates such as potassium nitrate, sodium nitrate and calcium nitrate, ammonium salts such as ammonium phosphate, ammonium nitrate and ammonium sulfate, or ammonium salts of organic acids or other nitrogen-containing compounds, peptone, meat extract, corn steep liquor , Glycine, alanine, histidine, glutamine, glutamic acid, leucine, isoleucine, valine, proline, phenylalanine, tyrosine, tryptophan, lysine, asparagine, aspartic acid, threonine, cysteine, cystine, methionine, serine, ornithine, etc. .
  • nitrates such as potassium nitrate, sodium nitrate and calcium nitrate
  • ammonium salts such as ammonium phosphate, ammonium nitrate and ammonium sulfate, or ammonium salts
  • inorganic salts include monopotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, and calcium carbonate.
  • organic substances include thiamine hydrochloride, nicotinic acid, pyridoxine hydrochloride, biotin, folic acid, paraaminobenzoic acid and the like as vitamins, and inositol, coconut milk, casein hydrolyzate, and the like.
  • plant hormones examples include auxins such as indole acetic acid, indole butyric acid, naphthalene acetic acid and 2,4-dichlorophenoxyacetic acid, cytokinins such as zeatin, 6-benzyladenine and kinetin, abscisic acid and gibberellic acid. If plant cells can be cultured, these plant hormones may or may not be included. The culture is usually carried out at 25 ° C. for 5 days to 6 weeks under aerobic conditions such as shaking culture or aeration and agitation culture.
  • a medium for culturing a transformant obtained using animal cells as a host a generally used RPMI 1640 medium, DMEM medium, or a medium obtained by adding fetal calf serum or the like to these mediums can be used. Culturing is usually performed at 37 ° C. for 1 to 30 days in the presence of 5% CO 2. During the culture, antibiotics such as kanamycin and penicillin may be added to the medium as necessary.
  • a heat-resistant DNA polymerase can be obtained in a desired form from a culture such as a culture solution or cultured cells.
  • a culture such as a culture solution or cultured cells.
  • the methods listed above can be used to obtain a preparation containing a thermostable DNA polymerase.
  • the heat-resistant DNA polymerase may be separated and purified from the extract (for example, crude extract fraction) obtained by the above-described extract preparation method to obtain a purified product.
  • the purified enzyme preparation can be obtained by subjecting these extracts to various types of chromatography, electrophoresis and the like. For example, gel filtration using Sephadex, ultragel or biogel, ion exchanger chromatography, electrophoresis using polyacrylamide gel, fractionation method using affinity chromatography, reverse phase chromatography, etc. are appropriately selected, Alternatively, by combining these, a purified target gene product can be obtained.
  • the amino acid sequence which the refined gene product has can be performed by a well-known amino acid analysis method.
  • the culture method and the purification method described above are merely examples and are not intended to limit the present invention.
  • heat-resistant DNA polymerase is produced in the culture product so as to become insoluble, and heating this can have activity and improve solubility and purity. It is possible to solubilize and activate the heat-resistant DNA polymerase produced by the host fungus by performing heat treatment at an appropriate stage until a desired form of the heat-resistant DNA polymerase (for example, a preparation or a purified product) is obtained. it can. For example, by centrifuging after culturing cultured cells, dividing into supernatant and precipitate, heat-treating the precipitated fraction, or the cells that produce and accumulate heat-resistant DNA polymerase in the cells. Both solubilization and activation of the thermostable DNA polymerase can be achieved.
  • a desired form of the heat-resistant DNA polymerase for example, a preparation or a purified product
  • This heat treatment is preferably performed at 50 ° C. to 100 ° C., more preferably at 70 ° C. to 80 ° C., and further at 73 ° C. to 75 ° C. for about 1 hour.
  • the supernatant fraction of the culture product can be heated to insolubilize the host-derived protein and improve the purity.
  • the supernatant fraction of the culture product is preferably heated at 50 ° C. to 100 ° C., more preferably 70 ° C. to 80 ° C., more preferably 73 ° C. to 75 ° C. for about 1 hour.
  • thermostable DNA polymerase preparation In the production of a thermostable DNA polymerase preparation according to the present invention, by introducing and expressing a gene encoding a thermostable DNA polymerase using a eukaryotic cell as a host, there is no contamination with nucleic acid derived from bacterial DNA, Alternatively, an extremely reduced thermostable DNA polymerase preparation can be obtained. Therefore, even when a purified product is obtained, the purification accuracy and process relating to the mixing of such nucleic acids and the like required for the purification process can be reduced, and the production cost can be reduced.
  • PCR method As the PCR method using the thermostable DNA polymerase preparation according to the present invention, various PCR methods can be used as long as they are PCR methods for amplification of a target gene for detecting a detection target organism.
  • Preferred PCR methods include the following methods.
  • a normal PCR method or a modified method of PCR wherein the modified method is a PCR method using the following a, b and c alone or in combination with A and B or A and C.
  • a. A real-time PCR method using an intercalator, which includes the following procedure.
  • the primer is designed so that the Tm value of the target PCR amplification product is higher than that of the primer dimer itself.
  • A2) The temperature at the time of fluorescence detection of real-time PCR is set between them. b.
  • a method for semi-nested amplification of a sequence in a target nucleic acid in a sample comprising the following steps: (B1) The sample is mixed in an amplification reaction mixture containing an outer PCR primer pair and a semi-nested primer. (B2) In order to provide the outer amplification sequence, the amplification reaction mixture of step b1 is annealed and extended on the template DNA and the outer PCR primer pair at a temperature at which the semi-nested primer does not work. Process in amplification reaction.
  • step (B3) In order to provide a semi-nested amplification product, the mixture of step b2 is subjected to an amplification reaction at a temperature at which only one of the outer PCR primers and only the semi-nested primer anneal, or at an extension time for extension.
  • c. A method for nested amplification of a sequence in a target nucleic acid in a sample, comprising the following steps: (C1) The sample is mixed in an amplification reaction mixture containing an outer PCR primer pair and a nested primer pair. (C2) In order to provide an outer amplification sequence, the amplification reaction mixture of step (c1) is annealed and extended on the template DNA, and the nested primer pair does not work. In the amplification reaction. (C3) In order to provide a nested amplification product, the mixture of step (c2) is treated in an amplification reaction at a temperature at which only the nested primer pair anneals or at an extension time to extend.
  • a real-time PCR method using an intercalator as a modified PCR method for the quantitative method which includes the following procedure.
  • the primer is designed so that the Tm value of the target PCR amplification product is higher than that of the primer dimer itself.
  • A2 The temperature at the time of fluorescence detection of real-time PCR is set between them.
  • a modified PCR method according to the detection method and quantification method of the present invention is a method for semi-nested amplification of a sequence in a target nucleic acid in a sample, and is a PCR method comprising the following steps: .
  • step b1 The sample is mixed in an amplification reaction mixture containing an outer PCR primer pair and a semi-nested primer
  • step b2 In order to provide the outer amplification sequence, the amplification reaction mixture of step b1 is annealed and extended on the template DNA and the outer PCR primer pair at a temperature at which the semi-nested primer does not work. Process in amplification reaction.
  • step b3 In order to provide a semi-nested amplification product, the mixture of step b2 is subjected to an amplification reaction at a temperature at which only one of the outer PCR primers and only the semi-nested primer anneal, or at an extension time for extension. To process.
  • (C) A method for nested amplification of a sequence in a target nucleic acid in a sample as a modified PCR method as a detection method and a quantification method, comprising the following steps: (C1) The sample is mixed in an amplification reaction mixture containing an outer PCR primer pair and a nested primer pair. (C2) In order to provide the outer amplification sequence, the amplification reaction mixture of step c1 is annealed and extended on the DNA serving as a template, and the primer pair that has been nested by inhibiting the interference primer pair. In the amplification reaction at a temperature where does not work. (C3) In order to provide a nested amplification product, the mixture of step c2 is treated in an amplification reaction at a temperature at which only the nested primer pair anneals or at an extension time to extend.
  • One useful PCR modification when combined with the thermostable DNA polymerase preparation according to the present invention is the masked Primer Dimer method (Method A).
  • masked Primer Unlike the conventional primer dimer formation suppression method, the Dimer method is a method of hiding only the primer dimer. Considering that the primer dimer tends to have a low Tm value because the primer dimer is small as an amplification product, (A1) Primers are designed so that the Tm value of the target PCR amplification product is higher than the Tm value of the primer dimer. (A2) The temperature at the time of fluorescence detection of real-time PCR is set to an intermediate value thereof. In this procedure, real-time PCR using an intercalator is performed.
  • the primer dimer dissociates from double strands to single strands, so the intercalator cannot bind.
  • the primer dimer does not emit fluorescence, only the primer dimer is not displayed on the monitor, and the target amplification product normally draws an amplification curve.
  • the design of the primer used in the method A is not particularly limited as long as the Tm value of the target PCR amplification product is higher than the value of the primer dimer itself, but specifically, the Tm of the target PCR amplification product is not limited.
  • the primer may be designed so that the value is 5 ° C. or higher, preferably 10 ° C. or higher, of the Tm value of the primer dimer itself.
  • the temperature at the time of fluorescence detection of real-time PCR may be set to an intermediate value between the Tm value of the target PCR amplification product and the Tm value of the primer dimer, but the intermediate value is the Tm of the amplification product and the primer dimer. Depending on the degree of the value difference, it can have a width of about 1 to 4 ° C. before and after the intermediate value, for example, before and after.
  • the fluorescence detection temperature is preferably as low as possible within the above range.
  • an intercalator For real-time PCR using an intercalator, it is sufficient to use a commonly known device such as an apparatus and method.
  • a commonly known device such as an apparatus and method.
  • Cyber Green SYBR Green I
  • real-time PCR using a fluorescent dye such as
  • a nested amplification method or a device for PCR extension time Another useful PCR modification when combined with the thermostable DNA polymerase preparation of the present invention is the application of a nested amplification method or a device for PCR extension time.
  • nested PCR can be performed with only one PCR without dividing PCR twice as in the normal nested PCR method (One Step nested PCR).
  • This One Step nested PCR method can be performed immediately by adding a “nested primer” with a simple design, so anyone can easily perform it.
  • the One Step nested PCR method is a modified PCR method of the following method B or C.
  • Method B A method for semi-nested amplification of sequences within a target nucleic acid in a sample, a modified PCR method comprising the following steps: (b1) Mix the sample in the amplification reaction mixture containing the outer PCR primer pair and the semi-nested primer, (b2) In order to provide the outer amplification sequence, the amplification reaction mixture of step b1 is annealed and extended on the template DNA, and the outer PCR primer pair is annealed and extended at a temperature at which the semi-nested primer does not anneal. Process in amplification reaction.
  • both the outer PCR primer and the semi-nested primer anneal the mixture of step b2, but only the nested inner PCR amplification product is denaturated.
  • the amplification reaction at the temperature to be.
  • it is processed in an amplification reaction with an extension time in which only the nested inner PCR amplification product can be extended.
  • the amplification reaction mixture consists of three kinds of primers. That is, the first primer is an outer PCR primer pair, the second primer is a semi-nested primer, the third primer is the other outer PCR primer pair, and a semi-nested primer. Both are paired.
  • step b2 a temperature is required in which only the outer PCR primer pair is annealed and extended, and the semi-nested primer is not annealed. Also, in step b3, it is necessary to provide a temperature at which the outer PCR amplification product does not denaturate and only the inner nested PCR amplification product denaturates and extends. Alternatively, in step b3, it is necessary to provide an extension time in which the outer PCR amplification product cannot be extended and only the inner nested PCR amplification product can be extended. In the method B, the temperature for annealing the semi-nested primer pair is preferably 5 ° C. to 20 ° C. lower than the appropriate temperature for annealing the outer PCR primer pair. In step a1 of method B, the primer is preferably present in the amplification reaction mixture at a constant temperature.
  • the Tm values of the first primer and the third primer are the same.
  • the second primer is set inside so as to be semi-nested with any of the first and third primers, and the Tm value of the second primer is higher than the Tm values of the first and third primers. It is preferably 5 to 20 ° C lower.
  • the outer amplification product is preferably sufficiently larger (about 300 bp or more) than the nested inner amplification product.
  • Method C A method for nested amplification of sequences within a target nucleic acid in a sample, a modified PCR method comprising the following steps: (C1) Mix the sample in the amplification reaction mixture containing the outer PCR primer pair and the nested primer pair. (C2) In order to provide the outer amplification sequence, the amplification reaction mixture in step c1 is annealed and extended on the template DNA, and the primer pair for PCR is annealed and extended, and the nested primer pair is not annealed. Process in the reaction.
  • step c2 In order to provide a nested amplification product, the mixture of step c2 is processed in an amplification reaction at a temperature where only the nested inner PCR amplification product is denaturated. Alternatively, it is processed in an amplification reaction with an extension time in which only the nested inner PCR amplification product can be extended.
  • the amplification reaction mixture consists of 4 types of primers. That is, the fourth and fifth primers are outer PCR primer pairs, and the sixth and seventh primers are nested primer pairs.
  • step c2 only the outer PCR primer pair is annealed and extended, and a temperature at which the nested primer pair does not work is required.
  • step c3 it is necessary to provide a temperature at which the outer PCR amplification product does not denaturate and only the inner nested PCR product denaturates and extends.
  • step c3 it is necessary to provide an extension time in which the outer PCR amplification product cannot be extended and only the inner nested PCR product can be extended.
  • the temperature for annealing the nested primer pair is preferably 5 ° C. to 20 ° C. lower than the appropriate temperature for annealing the outer PCR primer pair.
  • the fourth to seventh primers are present in the amplification reaction mixture at a constant temperature in step c1.
  • the Tm values of the sixth and seventh primers are preferably 5 ° C. to 20 ° C. lower than those of the fourth and fifth primers.
  • the Tm values of the fourth and fifth primers are preferably the same.
  • the Tm values of the sixth and seventh primers are the same.
  • the outer amplification product is preferably sufficiently larger (about 300 bp or more) than the nested inner amplification product.
  • ⁇ Masked Primer Dimer method> In the normal PCR condition setting shown below, the fluorescence detection point is set to 72 ° C. after the extension reaction (extension). ⁇ Target Temperature: 94 °C, 55 °C, 72 °C ⁇ Incubation Time: 10 seconds ⁇ Temperature Transition Rate: 20.00 [°C / s] ⁇ Cycle Number: 60 Then, primer dimer (pd) will be detected by distilled water (DW) like the amplification curve shown in FIG. At this time, for example, when looking at the melting curve at the time of detection of E. coli, the Tm value of the primer dimer is around 76 ° C., and the Tm value of the PCR amplification product of the target (E. coli) is around 91 ° C. ( FIG. 14).
  • the primer is intentionally designed so that the Tm value of the target PCR product is about 10 ° C. higher than the Tm value of the primer dimer, and the fluorescence detection point (FDP) is around the intermediate value (for example, under the following conditions) 86 [deg.] C.) (FIG. 10: anywhere after elongation is not necessary) ⁇ Target Temperature: 94 °C, 55 °C, 72 °C, 86 °C Incubation Time: 10 seconds (94 ° C, 55 ° C, 72 ° C); 1 second (86 ° C) ⁇ Temperature Transition Rate: 20.00 [°C / s] ⁇ Cycle Number: 60 Then, no primer dimer is detected.
  • FDP fluorescence detection point
  • Bacteria can be measured up to the detection limit by the combination of the “non-display method + the thermostable DNA polymerase preparation of the present invention + bacterial universal primer” (FIG. 14), and the calibration curve is linear to the detection limit. From this, it was shown that accurate quantification up to the detection limit was possible. That is, by adding the masked-Primer-Dimer method to the method of the present invention, highly sensitive and accurate quantitative measurement of bacteria can be performed for the first time by a real-time PCR method using an intercalator.
  • the following primers are designed (see FIG. 11 (A)).
  • the semi-nested primer is designed to have a Tm value 5 to 20 ° C. lower than the Tm value of the primer of the outer PCR product.
  • a primer is designed so that the amplification product I is about 400 bp or more so that the Tm value of the outer PCR product (amplification product I) is 89 ° C. or more.
  • the following new primers are designed (see FIG. 11B).
  • a primer is designed so that the amplification product II is about 100 bp so that the Tm value of the amplification product II is 86 ° C to 87 ° C.
  • a primer is designed so that each of the amplification products III and IV is about 300 bp or more so that each Tm value of the amplification products III and IV is 89 ° C. or more.
  • a method for detecting a detection target organism in a specimen according to the present invention includes: The following steps: (1) Amplification in which a nucleic acid amplification reaction is performed using a nucleic acid prepared from the specimen, a primer for amplifying a target gene specific to the organism to be detected, and a heat-resistant DNA polymerase preparation according to the present invention Process, (2) a detection step of detecting an amplification product of the target gene in the amplification product in the amplification step; It is characterized by having.
  • the amplification step is preferably performed under the suppression of amplification of non-target genes other than the target gene.
  • a hot start method using an anti-DNA polymerase antibody can be preferably used to suppress the amplification of the gene other than the object. In that case, it is preferable to use an excessive amount of anti-DNA polymerase antibody with respect to 1 U of heat-resistant DNA polymerase.
  • amplification products of the target gene can be detected, and amplification products of other non-target genes can be detected as non-detected.
  • the condition that the amplification product of the target gene can be detected and the amplification product of the other non-target gene is not detected (1) designing the primer so that the melting temperature (Tm A ) of the target gene amplification product is higher than the melting temperature (Tm B ) of the amplification product of the non-target gene; (2) A method in which amplification product detection is set at a temperature between Tm A and Tm B and only the amplification product of the target gene is detected is preferred.
  • the amplification step and the detection step are performed by real-time PCR using a display device that displays the amount of amplification product, and the amplification product of the non-target gene is hidden on the display device.
  • an intercalator having a detection label can be used.
  • the detection step can be performed by developing the amplification product on a gel.
  • Amplification products can be developed and visualized by gel electrophoresis.
  • Examples of the detection target organism include one or more selected from bacteria, fungi, and viruses.
  • the detection method of the present invention it is possible to achieve highly sensitive detection of infectious disease-causing bacteria in a specimen.
  • the detection method of the present invention includes blood, cerebrospinal fluid, amniotic fluid, urine, food (including contamination testing of food processing environment), beverages, cosmetics, water quality testing, and specimens used for contamination testing of biological laboratory environments.
  • the present invention can be suitably applied to a specimen that should be in a selected aseptic environment. Examples of the sample used for the water quality test include tap water, water stored in water or a water tank, air-conditioning circulating water, humidifier water, hot spring water, or pool water.
  • the detection step by quantifying the amplification product of the target gene and using the quantification result, it is possible to perform quantification of the detection target organism in the sample, measurement of the number of individuals, grasp of the abundance, quantitative identification, and the like.
  • a method for quantifying a detection target organism in a specimen will be described.
  • the method for quantifying a detection target organism in a sample according to the present invention includes the following steps: (1) An amplification step of performing a nucleic acid amplification reaction using DNA prepared from a sample, a primer for amplifying a target gene specific to a detection target organism, and the heat-resistant DNA polymerase preparation according to the present invention, , (2) Quantifying the amplification product in the amplification step, and quantifying the detection target organism in the sample from the obtained quantification result;
  • any organism having a nucleic acid for information transmission may be used, and examples thereof include bacteria (eubacteria, archaea), fungi, and viruses.
  • the quantification method of the present invention using the thermostable DNA polymerase preparation according to the present invention is particularly suitable for quantification of bacteria. Quantification can be performed by comparing the detection result of the amplification product with the result using a standard organism. According to the quantification method of the present invention, it is possible to quantify the number of individuals to be detected in a specimen and the mass as a whole. Furthermore, by selecting a gene for identification of the detection target organism as the target gene, the detection target organism contained in the specimen can be quantified and identified from the quantification result of the amplification product of the target gene.
  • DNA obtained from the sample and further cDNA prepared based on RNA obtained from the sample can be used.
  • RNA may be directly targeted for amplification depending on the purpose.
  • Specimens include specimens that should be in a sterile environment. Samples that should be in this aseptic environment include samples sampled from human or livestock organisms, such as blood, spinal fluid, amniotic fluid, or urine. Furthermore, a specimen used for a water quality test can be used as a specimen. Examples of the sample used for this water quality test include tap water, storage water or water supply tank-derived water, air-conditioning circulating water, humidifier water, hot spring water, or pool water. Furthermore, foods, beverages or cosmetics, and organic substances such as cell culture solutions in a biological laboratory environment, which can lead to deterioration of quality due to contamination and growth of bacteria and fungi can also be used as specimens.
  • Preparation of DNA from a specimen can be performed by a conventional method, and when it is subjected to an amplification step, components other than DNA can be removed and the DNA concentration can be adjusted as necessary.
  • PCR particularly real-time PCR
  • Various known methods can be used to detect the amplification product. Examples thereof include a method using an intercalator having a labeling function and a method using a probe in which a fluorescent substance is bound to a nucleotide that specifically hybridizes to a DNA sequence to be amplified.
  • intercalators include ethididium bromide and Cyber Green I (SYBR Green I).
  • a preferred intercalator is Cyber Green I.
  • Cyber Green I to be used should be high-purity Cyber Green I with minimal contamination of bacterial DNA derived from the recombinant host. preferable.
  • the amplification step in this method is preferably performed under conditions that suppress the amplification of non-target genes other than the target gene.
  • a hot start method a method using a modified primer, a method of adding a substance that binds to a primer dimer to a sample, a chemical substance in a gene amplification solution containing a heat-resistant DNA polymerase
  • the hot start method is preferable among them.
  • the hot start method include a method using an anti-DNA polymerase antibody and a wax method in which the enzyme and the primer are separated to the melting temperature of the wax.
  • the amplification product can be quantified by a non-display method, thereby enabling simple and highly sensitive quantification.
  • This non-display method is a method in which amplification products are detected under conditions in which amplification products of target genes are in a detectable state and amplification products of other non-target genes are in a non-detection state.
  • the conditions for non-detection of the amplification product of the other non-target gene are as follows: (1) designing the primer so that the melting temperature (Tm A ) of the amplification product of the target gene is higher than the melting temperature (Tm B ) of the amplification product of the non-target gene; (2) The amplification product is set by quantifying the amplification product at a temperature between Tm A and Tm B.
  • This non-display method can be suitably applied to the real-time PCR method using a display device for displaying the amount of the amplified product, and amplification of the target gene and quantification of the amplified product.
  • a display device for displaying the amount of the amplified product, and amplification of the target gene and quantification of the amplified product.
  • primer dimers Primarily a problem with non-target genes is primer dimers.
  • the primer is present in excess in the initial stage of amplification relative to the DNA prepared from the sample, and primer dimer is formed.
  • an amplified product of DNA to be detected cannot be monitored or quantified.
  • Primer dimer (primer It is very difficult to completely inhibit the formation of dimer), and primer dimers may be detected as the number of PCR cycles increases even if various primer dimer formation suppression methods are used. As a result, it becomes a factor of sensitivity reduction of quantitative measurement by real-time PCR. In addition, in the qualitative inspection, it may be necessary to check the Tm value (melting temperature) for each measurement and take a method of excluding “false positives” due to the primer dimer.
  • the non-display method is a method in which only the primer dimer is not displayed (masked Primer Dimer method). “Because the primer dimer is small as an amplification product, its Tm value is It was made in consideration of the tendency to be low.
  • the primer dimer is dissociated from a double strand to a single strand during amplification product detection.
  • amplification product double-stranded DNA
  • single-stranded DNA is not detected, but only a primer dimer is detected from the double-stranded by using a label that detects only double-stranded DNA, for example, an intercalator.
  • the intercalator cannot bind because it is dissociated into the main chain.
  • a detection signal based on the primer dimer is not generated, only the primer dimer is not displayed on the display device (monitor), and the target amplification product normally draws an amplification curve.
  • the primer design in the case of using this non-display method is not particularly limited as long as the Tm value of the target PCR amplification product is higher than the value of the primer dimer itself, but the Tm value of the target PCR amplification product is not limited.
  • the primer may be designed so that the Tm value of the primer dimer itself is 5 ° C. or higher, preferably 10 ° C. or higher.
  • the Tm value of the amplification product is set according to the measurement system. In particular, (1) A primer that does not easily generate a primer dimer is designed by an existing design method. (2) The Tm value of the primer itself is designed to be 60 ° C or lower. (3) The Tm value of the target PCR amplification product is designed to be about 87 ° C or higher by calculating by the nearest base method.
  • the size of the amplification product amplified using these primers is not particularly limited as long as it is designed to be higher than the Tm value of the primer dimer itself, but 50 bp to 1000 bp suitable for amplification in real-time PCR, It is preferable to design the primer so that it is preferably about 50 bp to 500 bp.
  • the temperature at the time of fluorescence detection in real-time PCR may be set to an intermediate value between the Tm value of the target PCR amplification product and the Tm value of the primer dimer, but the intermediate value is the degree of difference in Tm value between the amplification product and the primer dimer.
  • the intermediate value is the degree of difference in Tm value between the amplification product and the primer dimer.
  • real-time PCR using an intercalator it is sufficient to use a commonly known device such as an apparatus and a method.
  • a commonly known device such as an apparatus and a method.
  • real-time PCR using Cyber Green SYBR Green I
  • SYBR Green I can be used as an intercalator.
  • primer dimer formation is no longer an obstacle to real-time PCR using an intercalator, quantitative testing can be performed without lowering sensitivity, and there is no risk of false positives due to primer dimer in qualitative testing .
  • the method of the present invention is simpler and more economical than conventional methods such as a hot start method using an anti-DNA polymerase antibody.
  • This non-display method enables measurement up to the detection limit, and furthermore, since the calibration curve shows linearity up to the detection limit, the real-time PCR method enables highly sensitive and accurate quantitative measurement.
  • a calibration curve obtained from the known detection target organism amount under the conditions (protocol) at the time of amplification.
  • the detection limit (sensitivity) drawn with a specific protocol is 35 cycles with a detection limit (sensitivity) of 0.1 CFU / ml, 35 cycles of PCR reaction are performed, and the detection target is based on the criteria indicated by the calibration curve.
  • the amount of organisms can be calculated.
  • the detection limit can be further increased by adding a sample concentration step or ethanol precipitation treatment in the protocol (for example, up to about 60 cycles). Then, the sensitivity can be set very high, for example, 0.000001 CFU / ml.
  • the detection sensitivity that can be set can be calculated in advance. For example, in the quantification of domestic water using the “Highly Sensitive Quantification Method for Detection Targets”, the PCR detection sensitivity of bacterial universal primers is 10 fg / ⁇ l, and the detection sensitivity of fungal universal primers is 10 pg / ⁇ l.
  • the amplification product (including the case where the hot start method is used) is developed with an agarose gel or the like, and the amount of the detection target organism can be easily quantified by the fluorescence intensity in fluorescence detection.
  • thermostable DNA polymerase according to the present invention can be suitably used in the following method.
  • (I) In a method for determining the presence or absence of bacteria in a specimen, The following steps: (1) A first nucleic acid proliferation reaction is performed using a primer (B) for amplifying a target gene specific to the bacterium and a preparation containing a thermostable DNA polymerase produced using eukaryotic cells as a host.
  • the primer (B) is (B) A primer set capable of amplifying a plurality of regions of 16S rRNA gene of all bacteria, and a primer containing all or 1/3 or more of each primer base sequence, and determining the presence or absence of bacteria in the specimen Method.
  • gel electrophoresis As a method for visualizing the amplification product, gel electrophoresis can be used.
  • a first nucleic acid proliferation reaction is performed using a primer (B) for amplifying a target gene specific to the bacterium and a preparation containing a thermostable DNA polymerase produced using eukaryotic cells as a host.
  • the primer (B) is (B) A primer set capable of amplifying a plurality of regions of 16S rRNA gene of all bacteria, and a primer containing all or 1/3 or more of each primer base sequence, and grasping the abundance of bacteria in the specimen Method.
  • an absorbance measurement method or a densitometry method can be used as a method for quantifying the amplification product.
  • the above-described method for quantifying a detection target organism in a specimen can be suitably applied to the following method for quantifying and identifying a detection target organism.
  • A The following steps: (1) Using DNA prepared from the sample, primers (B) and (M) for amplifying a target gene specific to the organism to be detected, and the thermostable DNA polymerase preparation according to the present invention
  • a first amplification step for performing a nucleic acid amplification reaction (2)
  • a combination of melting temperatures (Tm values) of plural (3 to 10) amplification products in the first amplification step is based on a combination of melting temperatures (Tm values) specific to the amplification products of the target gene.
  • a first quantitative identification step for analyzing and performing quantitative identification of the detection target organism in the specimen (3) Nucleic acid using DNA prepared from the specimen, a primer (F) for amplifying a target gene specific to the organism to be detected, and a thermostable DNA polymerase preparation produced using bacteria as a host
  • a second amplification step for performing an amplification reaction (4) A combination of melting temperatures (Tm values) of plural (3 to 10) amplification products in the second amplification step is based on a combination of melting temperatures (Tm values) specific to the amplification products of the target gene.
  • a first quantitative identification step of analyzing and quantitatively identifying the detection target organism; a second quantitative determination of the amplification product in the second amplification step; and a quantitative identification of the detection target organism in the sample from the obtained quantitative result A quantitative identification process of Have
  • the primers (B), (F) and (M) are (B) a primer set capable of amplifying a plurality of regions of all bacterial 16S rRNA genes, and a primer comprising all or 1/3 or more of each primer base sequence, (F) a primer set capable of amplifying a plurality of regions of 18S rRNA genes of all fungi, and a primer comprising all or 1/3 or more of each primer base sequence, (M) a primer set that specifically amplifies an antibiotic resistance gene according to the current epidemic, such as a mecA gene showing methylicin resistance, A method for quantitatively identifying a detection target organism in a specimen,
  • a combination of melting temperatures (Tm values) of plural (3 to 10) amplification products in the first amplification step is based on a combination of melting temperatures (Tm values) specific to the amplification products of the target gene.
  • a first quantitative identification step for analyzing and performing quantitative identification of the detection target organism in the specimen (3) Nucleic acid using DNA prepared from the specimen, a primer (F) for amplifying a target gene specific to the organism to be detected, and a thermostable DNA polymerase preparation produced using bacteria as a host
  • a second amplification step for performing an amplification reaction (4) A combination of melting temperatures (Tm values) of plural (3 to 10) amplification products in the second amplification step is based on a combination of melting temperatures (Tm values) specific to the amplification products of the target gene.
  • a third quantitative identification step for performing quantitative identification Have The primers (B), (F) and (M) are (B) a primer set capable of amplifying a plurality of regions of 16S rRNA gene of all bacteria, each primer can be selected from primers containing all or one third or more of the base sequence, (F) a primer set capable of amplifying a plurality of regions of 18S rRNA genes of all fungi, each primer can be selected from primers containing all of the base sequence or 1/3 or more thereof, (M) a primer set that specifically amplifies an antibiotic resistance gene according to the current epidemic, such as a mecA gene showing methylicin resistance, A method for quantitatively identifying a detection target organism in a specimen,
  • the function as a universal primer (the function of recognizing a specific common region) is not impaired, for example, it is designed as a universal primer. Examples thereof include those obtained by deleting or adding 1 to 3 bases to the base sequence.
  • amplification regions it is preferable to set 3 to 10 amplification regions as the bacterial 16S rRNA gene amplification region. Further, it is preferable to set 3 to 10 as the amplification region of the fungal 18S rRNA gene.
  • the standard Tm value is measured every time using any one of “a primer set capable of amplifying a plurality of regions of 16S rRNA genes of all bacteria and a primer set including all or 1/3 or more of each primer base sequence”.
  • the above algorithm can be used as database type identification software on a computer.
  • thermostable DNA polymerase preparation of the present invention The “melting temperature (Tm value)” of the closest base method is It is completed for the first time by applying the result (WO2007 / 097323) of earnest research on the application of the difference in Tm value for each bacterial species to the identification of the organism to be detected, based on the theoretical basis of “determined by the base sequence”. Has been reached.
  • Bacterial 16S rRNA is known to have 7 to 10 base sequence regions (20 to 40 bases) common to almost all bacteria.
  • 3 to 10 gene amplification regions are prepared by setting forward and reverse primers respectively in all or a part thereof.
  • the gene amplification region has about 150 to 200 bases, and has a base sequence unique to each bacterium, except for the common conserved region in which primers are set.
  • the Tm value also shows a unique value reflecting the difference in the base sequence, and it is estimated that each bacterium has 1 to 10 kinds of characteristic Tm values. Therefore, Tm values of 1 to 10 according to the type of bacteria are examined and databased. This database can be used to identify unknown bacteria.
  • antibiotic resistance gene primers according to the current epidemic, such as mecA gene showing methicillin resistance, bacterial infection against unknown causative bacteria And its type (including the presence or absence of antibiotic resistance genes), or fungal infection and its type.
  • the amplified product after gene amplification can be run on an agarose gel and the size of the band can be confirmed to double check the result.
  • test accuracy can be improved by adopting a double check system using the conventional detection method based on gene amplification.
  • the amplification cycle is stopped by real-time PCR, and when the plateau is reached, the amplification cycle is stopped and the analysis of the Tm value is continued. Only microorganisms (which are considered to be the main infectious microorganisms) can be identified.
  • the primers are as follows. ⁇ Combination group 1> (1-1) Select 5 sites from the sequence sites common to all bacterial 16S rRNA genes, and set forward and reverse primers (4 amplification products).
  • a primer set (bacteria primer 1: Bac. 1) for amplifying 97-base DNA corresponding to positions 809 to 905 of the 16S rRNA gene of E. coli. SEQ ID NO: 80. GATTAGATACCCTGGTAGTCCCAG (24mer) Forward SEQ ID NO: 2. CCCGTCAATTCCCTTTGAGTT (21mer) Reverse (B2) A primer set (bacteria primer 2: Bac. 2) for amplifying 166-base DNA corresponding to the 927th to 1092th of the 16S rRNA gene of E. coli. -SEQ ID NO: 3.
  • AAACTCAAAGGAATTGACGGG (21mer) forward SEQ ID NO: 4.
  • CGCTCGTTGCGGGAC (15mer) Reverse (B3)
  • Primer set (bacteria primer 3: Bac.3) for amplifying 111 base DNA corresponding to the 1108th to 1218th of the 16S rRNA gene of E. coli. -SEQ ID NO: 5.
  • GTCCCGCAACGAGCG (15mer) forward SEQ ID NO: 6.
  • ATTGTAGCACGTGTGTAGCCCC (21mer) Reverse (B4)
  • a primer set (bacteria primer 4: Bac. 4) for amplifying a 130-base DNA corresponding to the 1240th to 1369th of the 16S rRNA gene of E. coli.
  • GGGCTACACACGTGCTCATAAT (21mer) Forward SEQ ID NO: 8.
  • a primer containing the whole base sequence of the following primer or 1/3 or more.
  • F1 Primer set of fungal 18S rRNA gene (fungi primer: Fungi) -SEQ ID NO: 9. GAATGAGTACAATGTAAATACCTTAACG (28mer) Forward SEQ ID NO: 10. TAACTGCAACAACTTTTAATATACGC (25mer) Reverse.
  • (M1) Primer set of mecA gene showing methicillin resistance (mecA primer: mecA) SEQ ID NO: 13. ATTAAAAGCAATCGCTCAAGAACTAAGTA (30mer) Forward SEQ ID NO: 14. CCAATAACTACTCATCATCTTTATAGCC (26mer) Reverse.
  • ⁇ Combination group 2> (2-1) Select 10 sites from the sequence sites common to all bacterial 16S rRNA genes, and set forward and reverse primers.
  • a primer set (bacteria primer 5: Bac. 5) for amplifying a 338-base DNA corresponding to the 8th to 345th positions of the 16S rRNA gene of E. coli. SEQ ID NO: 15. AGAGTTTGATCATGCTCAG (20mer) Forward SEQ ID NO: 16. CGTAGGAGCTCGGACCGT (18mer) Reverse (B6) A primer set (bacteria primer 6: Bac.6) that amplifies 199 base DNA corresponding to the 336th to 534th of the 16S rRNA gene of E. coli. -SEQ ID NO: 17. GACTCCTACGGGAGGCA (17mer) forward SEQ ID NO: 18.
  • a primer set (bacteria primer 7: Bac. 7) for amplifying 287-base DNA corresponding to positions 519 to 805 of the 16S rRNA gene of E. coli. -SEQ ID NO: 19.
  • AGCAGCCGCGGTAATA (16mer) Forward SEQ ID NO: 20.
  • GGACTACCAGGGTATCTAATCCT (23mer) Reverse
  • B8 Primer set for amplifying 181 base DNA corresponding to the 780th to 960th of the 16S rRNA gene of E. coli (bacteria primer 8: Bac. 8).
  • AACAGGATAGTAGACCCTGGTAG (23mer) Forward SEQ ID NO: 22.
  • AATTAACCACCATGCTCCCACC (21mer) Reverse (B9) Primer set (bacteria primer 9: Bac.9) that amplifies 120-base DNA corresponding to the 951st to 1070th of the 16S rRNA gene of E. coli. -SEQ ID NO: 23. TGGTTTAATTCGATGCAACGC (21mer) forward SEQ ID NO: 24. GAGCTGACGACAGCCAT (17mer) Reverse (B10) Primer set for amplifying 109-base DNA corresponding to the 1084th to 1192th of the 16S rRNA gene of E. coli (bacteria primer 10: Bac.10). SEQ ID NO: 25. TTGGGTTAAGTCCCGC (16mer) forward SEQ ID NO: 26.
  • CGTCATCCCCACCCTTC (16mer) Reverse (B11) Primer set for amplifying 166-base DNA corresponding to positions 1220 to 1385 of the 16S rRNA gene of E. coli (bacteria primer 11: Bac. 11). SEQ ID NO: 27. GGCTACACACGTGCTACAAAT (20mer) Forward SEQ ID NO: 28. CCGGGAACGTATTCACC (17mer) Reverse.
  • it is a primer containing all or one third or more of the following primer base sequences.
  • (F2) Primer set (fungi primer 2: Fungi 2) for amplifying 259-base DNA corresponding to positions 149 to 407 of C. albicans 18S rRNA gene (SEQ ID NO: 16) SEQ ID NO: 29. GTGGTAATTCTAGAGCTAATACATGC (26mer) Forward SEQ ID NO: 30. GGTAGCCGTTTTCCAGG (17mer) Reverse (F3) Primer set (fungi primer 3: Fungi 3) for amplifying 162-base DNA corresponding to positions 390 to 551 of C. albicans 18S rRNA gene -SEQ ID NO: 31. GCCTGAGAAACGGCTACCA (19mer) Forward SEQ ID NO: 32.
  • CCTCCAATTGTTCCTCGGTTAAG (22mer) Reverse (F4) Primer set for amplifying 232 base DNA corresponding to positions 531 to 762 of C. albicans 18S rRNA gene (fungi primer 4: Fungi 4) SEQ ID NO: 33. TTAACGAGGAACAATTGGAGGG (22mer) Forward SEQ ID NO: 34. GCCTGCTTTTGAACACTCTAATTT (23mer) Primer set (fungi primer 5: Fungi 5) for amplifying 146-base DNA corresponding to positions 989 to 1134 of 18S rRNA gene of reverse (F5) Candida albicans (C. albicans) -SEQ ID NO: 35.
  • ATACCGTCGTAGTCTTAACCA (21mer) Forward SEQ ID NO: 36.
  • GTCAATTTCCTTTAAGTTTCAGCCT (24mer) Primer set (fungi primer 6: Fungi 6) for amplifying 169-base DNA corresponding to positions 1260 to 1428 of the reverse (F6) 18S rRNA gene of C. albicans -SEQ ID NO: 37.
  • Forward SEQ ID NO: 38 GGGCATCACAGCACCTGTT (18mer)
  • Reverse (F7) Primer set for amplifying a 217-base DNA corresponding to positions 1414 to 1630 of C. albicans 18S rRNA gene (fungi primer 7: Fungi 7) SEQ ID NO: 39.
  • the Tm value is the temperature at which 50% of the PCR product dissociates from its complementary strand.
  • Tm value is the temperature at which 50% of the PCR product dissociates from its complementary strand.
  • Tm value is determined by the base sequence” in the Tm value calculation formula by the closest base method, the difference in the base sequence for each bacterial species is applied to the identification of the causative bacteria as a difference in the combination of Tm values. can do. Therefore, “excluding the influence of the measurement error from the Tm value” is most important for accurate identification. For this reason, the influence of the measurement error is eliminated by the following method.
  • the measurement error due to the composition of the reaction solution is reduced by using Cyber Green I with a fixed magnesium chloride concentration as the reaction buffer solution. Prevent it from occurring.
  • a standard Tm value as a control is set, and a difference pattern between each Tm value in the same trial is used for determination.
  • an identification algorithm is used that states that an approximation of a combination of “relative value with average value” is a detection target organism.
  • the reference Tm value can be used for the purpose of correcting the error between trials of the measuring device. Specifically, Tm value was measured each time using one primer set that amplifies a region of 16S rRNA gene of bacteria using a certain concentration of E. coli standard strain DNA as a template. Correct the deviation. That is, if the same template is combined with the same primer, the same Tm value is theoretically obtained every time.
  • Tm values of the bacteria focus on one of the Tm values of the bacteria (in some cases, first correct with the standard Tm value), narrow the range to bacterial species that are close to the Tm value, and sequentially
  • the difference between the Tm values, including the standard Tm value, is directly taken and the combination of the differences is identified as a fingerprint.
  • an identification algorithm is used that states that an approximation of a combination of “relative value with average value” is a detection target organism.
  • thermostable DNA polymerase preparation As a mold, [1] One primer that is common to all fungi of the fungal 18S rRNA gene and that is fungus-specific, a thermostable DNA polymerase preparation produced using bacteria as a host, [2] Manufactured by using a heat-resistant DNA polymerase preparation or a bacterium according to the present invention as a host and one primer for specifically detecting an antibiotic resistance gene according to the current epidemic, such as a mecA gene showing methicillin resistance A thermostable DNA polymerase preparation, [3] One primer that is common to all bacteria of the bacterial 16S rRNA gene and that is specific to the bacteria, a thermostable DNA polymerase preparation according to the present invention, There is a method in which a band of a desired size is confirmed by performing PCR using a gel and performing electrophor
  • thermostable DNA polymerase preparation produced using bacteria as a host and a thermostable DNA polymerase preparation according to the present invention, the risk of false positives such as non-specific amplification can be almost completely eliminated. .
  • Tm values it is preferable to obtain a combination of Tm values by a combination of universal primers of Topoisomerase II, mitochondria DNA or 26S ribosomal RNA, and perform identification based on the combination.
  • (Set for quantification or identification) A set, A detection target contained in a sample using at least a thermostable DNA polymerase preparation according to the present invention for amplifying DNA prepared from the sample and a primer for amplifying a target gene specific to the detection target organism
  • a set for performing quantification and / or identification of organisms can be provided.
  • thermostable DNA polymerase preparation for amplifying DNA prepared from a specimen;
  • a thermostable DNA polymerase preparation produced using bacterial cells for amplifying DNA prepared from a specimen as a host; Primers for amplifying a target gene specific to the organism to be detected; Can be used at least.
  • the primers (B), (F), and (M) listed above can be used as these sets of primers.
  • a system for quantifying or identifying a detection target organism contained in a specimen by the above-described method can be configured using the following devices.
  • a quantification device for quantifying amplification products in the amplification step (2)
  • a calculation device that calculates the amount of the detection target organism in the sample based on the quantitative result of the amplification product.
  • a database for calculating the amount of the detection target organism in the sample from the quantification result of the amplification product of the target gene.
  • a PCR device particularly a real-time PCR device can be suitably used.
  • the calculation device a computer system that operates based on a preset program for performing quantification and / or identification of a detection target organism using the database can be used.
  • This system can have the following elements (units). (1) PCR reaction device (2) Computer system for outputting data processing and results after data processing (3) Data processing software in which a program required for data processing is written (4) Database required for data processing ( 5) Control mechanism having a program for controlling the PCR reaction device (6) Display device for displaying data processing results An example of the relationship between these devices is shown in FIG.
  • This system includes a PCR reaction device 1, a computer system 2, a data processing unit 3, a data processing program (software) 6, a database 4 necessary for data processing, control mechanisms 5a and 5b for controlling the PCR reaction device, and a display device 7. have. Note that two or more of these can be integrated. In addition, information exchange between the units is performed by signals S1 to S7.
  • the quantitative device can be configured by at least the computer system 2.
  • control items in the control mechanism 5 include the following items.
  • the condition setting and its execution can be performed by a preset program. This program can be recorded on a medium in the control mechanism 5a or 5b.
  • this program is stored in a separately prepared movable (portable) medium, or stored in a medium so that it can be distributed via the Internet, and connected to the control mechanism 5a or 5b at the time of use. It may be made available.
  • the data processing unit 3 performs data processing from the data processing unit 3. Based on the result, a signal for controlling the PCR reaction apparatus is transmitted from the control mechanism 5b to the control mechanism 5a in the PCR reaction apparatus to execute the control.
  • the control only on the PCR reaction device side is sufficient according to the purpose of the PCR reaction, the PCR reaction is controlled using only the control mechanism 5a.
  • the computer system 2 is programmed so that signals from each unit can be processed according to the purpose.
  • the data processing unit 2 for example, the following processing is performed.
  • Processing of PCR amplification reaction results for example, signals related to fluorescence intensity
  • Arithmetic processing for quantifying and / or identifying the organism to be detected using the PCR amplification reaction results iii) PCR reaction Signal output processing for controlling PCR reaction conditions in the apparatus iv) Commanding display on the display apparatus of results of PCR amplification reaction (including monitoring over time) and results of quantification and / or identification of organisms to be detected Processing
  • These processing is executed according to the data processing program 6 set according to the target data processing.
  • Tm values obtained from known organisms are stored in a database. Can be kept.
  • the data processing program 6 and the database 4 can be stored in a medium in the computer system 2. Alternatively, at least one of these is stored in a separately prepared movable (portable) medium, or stored in a medium so that it can be distributed via the Internet, and stored in the data processing unit 3 at the time of use. It may be made available by connecting.
  • Example 1-1 (1) Synthesis of DNA T.aquatics-derived heat-resistant DNA polymerase synthesized the entire DNA sequence by GenScript.
  • the codon sequence was optimized for the yeast host, S. cerevisiae.
  • the synthesized DNA was incorporated into plasmid pUC57 and provided by GenScript to obtain vector pUC-TA01.
  • the gene encoding thermostable DNA polymerase was designed so that HindIII was inserted into the 5 ′ terminal sequence and EcoRI restriction enzyme site was inserted into the 3 ′ terminal sequence.
  • thermostable DNA polymerase The synthesized gene encoding T.aquatics-derived heat-resistant DNA polymerase was inserted into plasmid pYES2 (Invitrogen) to construct vector pYES-TA01.
  • the gene encoding the thermostable DNA polymerase is pUC-TA01, which is a restriction enzyme HindIII, EcoRI (TaKaRa Bio), electrophoresis was performed with 1% agarose gel (Wako), and the gene encoding thermostable DNA polymerase was recovered with QIAquick gel extraction kit (Qiagen).
  • the plasmid pYES2 was digested with EcoRI and NotI (TaKaRa Bio), and the gene encoding the thermostable DNA polymerase and pYES2 were ligated with DNA Ligation Kit Ver. 2.1 (TaKaRa Bio).
  • Transformation of S. cerevisiae The obtained vector pYES-TA01 was introduced into yeast (Saccharomyces cerevisiae X2180 strain). If the host is a uracil-requiring strain, other yeasts can be used. For transformation, FastTrack TM -Yeast Transformation Kit (Geno Technology) was used. (4) Production of T. aquatics-derived thermostable DNA polymerase by S.
  • the obtained transformant was obtained at 28 ° C., 72 ° C. in 100 ml of SD medium (0.67% Bacto yeast nitrogen base, 2% Galactose). Time shaking culture was performed. These were centrifuged at 5000 rpm for 10 minutes to collect bacteria and disruption buffer (50 mM Tris-HCl pH 7.5, 50 mM). The suspension was suspended in KCl), and the bacterial cells were crushed using 0.5 mm glass beads, followed by centrifugation at 12000 rpm for 30 minutes to obtain a yeast lysate supernatant and a precipitate as a cell extract.
  • SD medium 0.67% Bacto yeast nitrogen base, 2% Galactose
  • Time shaking culture was performed. These were centrifuged at 5000 rpm for 10 minutes to collect bacteria and disruption buffer (50 mM Tris-HCl pH 7.5, 50 mM). The suspension was suspended in KCl), and the bacterial cells were crushed using 0.5 mm glass beads, followed by centrifugation at 12000
  • FIG. 2 shows 45 ° C., 50 ° C., 55 ° C., 60 ° C., 65 ° C., 70 ° C., 75 ° C., 80 ° C., 85 ° C. with respect to a suspension of yeast crush precipitate in an equal amount of crushing buffer.
  • FIG. 6 is a diagram showing SDS-PAGE of the supernatant after heat treatment at 90 ° C., 95 ° C., and 100 ° C., followed by centrifugation at 12,000 rpm for 30 minutes at 4 ° C.
  • the heat-resistant DNA polymerase band which is the target protein, was detected in the heat treatment at 50 ° C. or higher, and the amount of contaminating protein derived from the host decreased in the heat treatment at 65 ° C. to 70 ° C.
  • the heat-resistant DNA polymerase was solubilized by heat treatment at 50 ° C. or higher, and had heat-resistant DNA polymerase activity.
  • DNA polymerase activity (6-1) Amplification of lambda DNA internal region Activity was detected using lambda DNA (NIPPON GENE) as a template.
  • the composition of the reaction solution was adjusted to 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl2, 50 mM KCl, and 200 ⁇ M dNTPs, and primers were added so that SEQ ID NOs: 83 and 84 were 0.4 ⁇ M, respectively. .
  • the PCR program was carried out with the following program. : 94 ° C. for 1 minute, 50 ° C. for 30 seconds, 72 ° C. for 1 minute was repeated 30 times.
  • thermostable DNA polymerase activity The obtained thermostable DNA polymerase unit is defined as Procedures in It was determined according to the method of nucleic acid research (Richardson, C. C. (1966) DNA polymerase from Escherichia coli, pp. 263-276 In G. L. Cantoni and DR Davies (ed.)).
  • a reaction solution for activity measurement 25 mM TAPS (pH 9.3), 50 mM KCl, 2 mM MgCl 2 , 1 mM ⁇ -mercaptoethanol, 200 ⁇ M each of dATP, dGTP, dTTP, 100 ⁇ M [ ⁇ - 32 P] ⁇ dCTP (0.05-0.1 Ci / mmol), 0.25 mg / ml total amount of activated salmon sperm DNA containing 50 ⁇ l) at 74 ° C., 10 nmol total nucleotides for 30 minutes
  • the activity of taking up the acid into the acid-insoluble precipitate was 1 U.
  • FIG. 3 is a diagram showing the PCR detection limit using E. coli DNA as a template. PCR amplification bands were detected from 100 ng to 10 fg, and no amplification bands were detected between 10 fg and 1 fg. E. coli DNA was extracted and purified from E. coli JM109 (ToYoBo) using a DNA extraction kit FastPure DNA Kit (TaKaRa). The composition of the reaction solution was adjusted to 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl2, 50 mM KCl, 200 ⁇ M dNTPs, and primers were added so that SEQ ID NOs: 85 and 86 were 0.4 ⁇ M, respectively.
  • Sequence number 85 agcagccgcg gtaat Sequence number 86 ggactaccag ggtatctaat cct
  • the template was prepared by adding E. coli DNA dilution series in which 10 ⁇ 1 from 100 ng to 1 fg were prepared. 1 U of a thermostable DNA polymerase preparation was added, and these were prepared with ultrapure water to a total volume of 20 ⁇ l.
  • the PCR program was carried out with the following program. : 94 ° C. for 1 minute, 50 ° C. for 30 seconds, and 72 ° C. for 30 minutes were repeated 60 times. Each PCR reaction solution was electrophoresed on a 1% agarose gel to visualize the amplification product.
  • T.aquatics-derived heat-resistant DNA polymerase expression vector A gene encoding a thermostable DNA polymerase derived from T.aquatics was inserted into a plasmid pPIC ZA (Invitrogen) to construct a vector pPIC-TA01. Using pYES-TA01 as a template, a gene encoding a thermostable DNA polymerase was amplified by PCR using KOD Plus (ToYoBo). Primers (SEQ ID NOs: 87 and 88) used for PCR were designed so that EcoRI was inserted into the 5 ′ end sequence and NotI restriction enzyme site was inserted into the 3 ′ end sequence.
  • Transformation of P. pastoris The vector pYES-TA01 was transformed into yeast (Pichia pastoris GS115 strain). Transformation is FastTrack TM -Yeast Transformation Kit (Geno Technology) was used. Since yeast transformants have Zeocin as a selection marker, they were cultured in YPD medium (Difco) for 3 hours and recovered, and then seeded on YPDS (Difco) agar plates containing 100 ⁇ g / ml Zeocin.
  • the agar plate was statically cultured at 28 ° C. for 3 days. (10) Selection of transformants YPDS (Difco) in which colonies were inoculated from transformed agar plates and the concentration of Zeocin was increased in order from 500 ⁇ g / ml to 2000 ⁇ g / ml in order to obtain a heat-resistant DNA polymerase high-producing strain After culturing on an agar plate, a multicopy transformant of the inserted gene was selected. The agar plate was cultured in three stages with a Zeocin concentration of 500 ⁇ g / ml, 1000 ⁇ g / ml, and 2000 ⁇ g / ml, and each was statically cultured at 28 ° C. for 3 days. A transformant grown on a YPDS (Difco) agar plate with a Zeocin concentration of 2000 ⁇ g / ml was used in the following thermostable DNA polymerase production experiment.
  • Primers (SEQ ID NOs: 89 and 90) used for PCR were designed so that KpnI was inserted into the 5 ′ end sequence and NotI restriction enzyme site was inserted into the 3 ′ end sequence, and PCR was performed using KOD Plus.
  • SEQ ID NO: 90 cccgcggccg ctaggattt ttttaatg
  • the PCR program was carried out with the following program. : 94 ° C After heating for 2 minutes, 94 ° C 15 seconds, 56 ° C. for 30 seconds, and 68 ° C. for 2 minutes and 30 seconds were repeated 30 times.
  • PCR product was then electrophoresed on a 1% agarose gel and the PCR fragment was recovered using a QIAquick gel extraction kit. Both the PCR amplification product and pYES2 were digested with KpnI and NotI, and the PCR amplified fragment and pYES2 were ligated with DNA Ligation Kit Ver. 2.1.
  • the ligated vector was introduced into E. coli competent cell JM109 (ToYoBo).
  • the Escherichia coli transformant was inoculated on an LB agar medium containing 50 ⁇ l / ml ampicillin and statically cultured at 37 ° C. for 16 hours.
  • E. coli colonies were inoculated from an agar plate, direct colony PCR was performed, and the nucleotide sequence was decoded to confirm that the heat-stable DNA polymerase gene was correctly incorporated.
  • vector pYES-PF01 was obtained.
  • thermostable DNA polymerase was inserted into the plasmid pYES2 to construct the vector pYES-TG01.
  • the gene encoding the thermostable DNA polymerase was synthesized by PCR using T. gorgonarius genomic DNA (ATCC 700654D) as a template.
  • Primers SEQ ID NOs: 91 and 92 used for PCR were designed such that KpnI was inserted into the 5 ′ end sequence and NotI restriction enzyme site was inserted into the 3 ′ end sequence, and PCR was performed using KOD Plus.
  • Both the PCR amplified product and the pYES2 plasmid were digested with KpnI and NotI, and the PCR amplified fragment and the plasmid pYES2 were ligated with DNA Ligation Kit Ver. 2.1.
  • the ligated vector was transformed into E. coli competent cell JM109.
  • E. coli transformants were seeded on LB agar medium containing 50 ⁇ l / ml ampicillin. And the agar plate was statically cultured at 37 ° C. for 16 hours. E. coli colonies were inoculated from an agar plate, direct colony PCR was performed, and the nucleotide sequence was decoded to confirm that the heat-stable DNA polymerase gene was correctly incorporated. Thus, vector pYES-TG01 was obtained.
  • the suspension was suspended in KCl), and the bacterial cells were crushed using 0.5 mm glass beads, followed by centrifugation to obtain a yeast lysate precipitate.
  • a crushing buffer twice the wet weight of precipitation was added, suspended, heat-treated at 70 ° C. for 60 minutes, and centrifuged at 12,000 rpm for 30 minutes to obtain a supernatant containing a heat-resistant DNA polymerase. .
  • FIG. 4 shows the non-specific nucleic acid contamination using each of the above-mentioned heat-resistant DNA polymerase preparations and TaKaRa Taq (TaKaRa), AmpliTaq Gold LD (ABI). It is the photograph of 1% agarose electrophoresis which shows the example which investigated whether it was formed. Lanes 1, 4, 7, 10, 13, and 16 are obtained by PCR without adding a template in 40 cycles, and lanes 2, 5, 8, 11, 14, and 17 are obtained by adding 60 minutes. Lanes 3, 6, 9, 12, 15, and 18 are PCR trials in 30 cycles using 1 ⁇ g of E. coli as a template.
  • SEQ ID NOs: 85 and 86 capable of amplifying a 259 bp E. coli 16S rRNA gene were used, and the temperature conditions and the PCR solution composition were the same as in (6-3). From this, TaKaRa, even though no template was added The amplified product of bacterial 16S rRNA-derived gene was detected in Taq for 40 cycles and AmpliTaq Gold LD in 60 cycles.
  • thermostable DNA polymerase produced by the manufacturing method of this patent, amplification products are not detected even after 40 or 60 cycles of PCR, and no non-specific nucleic acid contamination is observed without complicated purification steps. It was feasible.
  • FIGS. 6 (A) and 6 (B) are diagrams illustrating the analysis of the melting curve.
  • 5A and 6A show AmpliTaq. Gold LD
  • FIG. 5 (B) and FIG. 6 (B) are the figures which analyzed using the thermostable DNA polymerase preparation which produced S.cerevisiae for the host. Solid lines are those with E.
  • coli added as a template
  • dotted lines are those with no template added.
  • 10 ⁇ l of ultrapure water was added to a 1 b tube of LightCycler FastStart DNA Master SYBR GreenI (Roche) to make x10 Buffer.
  • the tube contains dNTPs and SYBR GreenI in addition to buffer reagents optimized for Taq DNA polymerase.
  • 1.5 mM MgCl2, 0.4 ⁇ M primers (SEQ ID NOs: 85 and 86), 1 ⁇ g of Escherichia coli as a template, and 1 unit of a heat-resistant DNA polymerase preparation were added, and the total volume was adjusted to 20 ⁇ l with ultrapure water.
  • thermostable DNA polymerase preparations produced using eukaryotic cells as hosts amplification products derived from non-specific nucleic acid contamination are not observed, bacteria are used as hosts, and bacterial DNA contamination is minimized.
  • thermostable DNA polymerase preparation purified as described above, amplification products derived from non-specific nucleic acid contamination were observed, and various non-specific factors such as contamination of bacteria present in the atmosphere and water environment were observed. The main reason for this was thought to be the contamination of host-derived DNA into the thermostable DNA polymerase preparation during the production of thermostable DNA polymerase.
  • introduction of mutation in vector pYES-PF01 Mutation was introduced into the gene encoding 3′-5 ′ exonuclease of P. furiosus-derived heat-resistant DNA polymerase. That is, the activity was adjusted by modifying 3′-5 ′ exonuclease of DNA polymerase (Kong et al. (1993), journal).
  • PCR was performed using primers (SEQ ID NOs: 61 and 62) used for mutagenesis and vectors pYES2-PF01 and KOD Plus as templates.
  • SEQ ID NO: 61 GATTCTTGCCTTCGCGATCGCAACCCTCTATCACGAAGG
  • SEQ ID NO: 62 CCTTCGTGATAGAGGGTTGCGATCGCGAAGGCAAGAATC
  • the PCR program was carried out with the following program. : 94 ° C After heating for 2 minutes, 94 ° C 15 seconds, 56 ° C. for 30 seconds, and 68 ° C. for 7 minutes were repeated 15 times.
  • the template in the PCR solution was digested with the restriction enzyme DpnI and introduced into E. coli competent cell JM109.
  • the Escherichia coli transformant was inoculated on an LB agar medium containing 50 ⁇ l / ml ampicillin and statically cultured at 37 ° C. for 16 hours. E. coli colonies were inoculated from the agar plate, the nucleotide sequence was decoded and it was confirmed that the mutation was introduced at the target position, and the vector pYES-PF-M01 was obtained.
  • transformation and production were performed in the same manner as in Examples (14) and (15) to obtain a P. furiosus-derived mutant heat-resistant DNA polymerase preparation.
  • thermostable DNA polymerase derived from T. aquaticus using host Tobacco-BY2 (20-1) Construction of DNA fragment introduction vector for expression of transcription factor Host cell (tobacco BY2 cell) As a vector for introduction into DNA (hereinafter referred to as a transcription factor expression DNA fragment introduction vector), Ti plasmid pER8 (-Stu) (Dohi, K., Nishikiori, M., Tamai, A., Ishikawa, M., Meshi, T., Mori, T. (2006) Inducible virus-mediated expression of a foreign protein in suspension-cultured cells. Archives of Virology 151, 1075-1084).
  • pER8 (-Stu) is linked to a gene encoding a fusion transcription factor LexA-VP16-hER containing an estrogen receptor downstream of the constitutive promoter PG10-90, terminator TE9, and further a hygromycin resistance gene (Hygr) as a drug resistance marker.
  • Hygr hygromycin resistance gene
  • a Ti plasmid having an estrogen-inducible promoter O LexA -46 is used as a transformation vector, and the cDNA of the ToMV mutant is ligated downstream of O LexA -46, and a satellite tobacco ring spot virus is further added to the 3 ′ end thereof.
  • a vector pBICER8-ToMV / Taq-SRz was constructed to introduce a DNA fragment for protein expression into which the ribozyme sequences S-Rz and 35S terminator (35ST) were introduced into host cells (tobacco BY2 cells).
  • First transformation step Introduction of transcription factor expression DNA fragment into host cell
  • the transcription factor expression DNA fragment introduction vector pER8 (-Stu) was introduced into tobacco BY2 cells by the Agrobacterium method.
  • pER8 (-Stu) was introduced into Agrobacterium tumefacince LBA4404 by electroporation. This was pre-cultured in AB sucrose medium containing spectinomycin (50 mg / l). Next, it was mixed with tobacco BY2 cells, transferred to a petri dish, and allowed to stand for 42 to 48 hours in a dark place at 26 ° C. to transform tobacco BY2 cells.
  • Second transformation step Introduction of DNA fragment for protein expression
  • a viral vector (pBICER8-ToMV / Taq-SRz) is transferred to the tobacco BY2 cell line expressing the transcription factor obtained above by the Agrobacterium method.
  • the transformed cells were obtained by introduction.
  • T. aquaticus-derived thermostable DNA polymerase was synthesized by GenScript. (SEQ ID NO: 41) At this time, the codon sequence was optimized to A.oryzae. The gene encoding the thermostable DNA polymerase was designed such that PmeI was inserted into the 5 ′ end sequence and XmaI restriction enzyme site was inserted into the 3 ′ end sequence.
  • SEQ ID NO: 41 (21-2) Construction of T.aquatics-derived thermostable DNA polymerase expression vector The TEF promoter (SEQ ID NO: 66) and the SD terminator (SEQ ID NO: SEQ ID NO.
  • SEQ ID NOs: 68, 69, 70, 71 It was designed so that PmeI and XmaI restriction enzyme sites were inserted between the TEF promoter and the SD terminator.
  • SEQ ID NO: 71 TATGGTACCGGGAGGCTGAATCGGAT
  • a primer designed so that the vector pPTR-TEF-Taq is used as a template and PmeI is inserted into the 5 ′ end sequence and XmaI restriction enzyme site is inserted into the 3 ′ end sequence. Amplification and insertion into the PmeI and XmaI restriction enzyme sites of pPTR-TEF-SDt gave the vector pPTR-TEF-FLTaq.
  • CD solid medium (per liter: NaNO3 6.0g, KCl 0.52g, KH2PO4 1.52g, 1M MgSO4 ⁇ 7H2O 2ml, Glucose 10.0g, FeSO4 ⁇ 7H2O 1.0mg, ZnSO4 ⁇ 7H2O 8.8mg, CuSO4 ⁇ 5H2O 0.4mg, Na2B4O7 ⁇ 10H2O 0.1mg, (NH4) 6Mo7O24 ⁇ 4H2O 0.05mg, Agar 20.0g, pH 6.5 with 1N KOH The A.oryzae was cultured at 30 ° C., suspended in 10 ml of 0.1% Tween 80 and 0.8% NaCl, and filtered through a glass filter (3G2), and the filtrate was collected.
  • 3G2 glass filter
  • the conidia was precipitated by centrifugation at 3,000 rpm for 5 minutes, and the supernatant was removed. The conidia were washed twice with 10 ml of 0.1% Tween 80, and then suspended in an appropriate amount of sterile water to obtain a spore suspension.
  • a spore suspension of A.oryzae was inoculated into 100 ml of CD liquid medium, and cultured with shaking at 30 ° C. for 20 hours.
  • the mycelium was collected by filtration through a glass filter (3G1), washed with sterilized water, and then pressed with a spatula or the like to sufficiently remove moisture from the mycelium.
  • Protoplasts are suspended in Solution 1 (0.8 M NaCl, 10 mM CaCl2, 10 mM Tris-HCl (pH 8.0)) to 2 ⁇ 10 8 / ml, and 0.2 volume of Solution 2 (40% (w / v) PEG4000 , 50 mM CaCl 2, 50 mM Tris-HCl (pH 8.0)) was added and suspended gently. 20 ⁇ g of pPTR-TEF-FLTaq was added to 0.2 ml of the protoplast suspension and allowed to stand in ice for 30 minutes. 1 ml Solution 2 was added, gently suspended, and allowed to stand at room temperature for 15 minutes. 8.5 ml of Solution 1 was added and gently suspended.
  • Solution 1 0.8 M NaCl, 10 mM CaCl2, 10 mM Tris-HCl (pH 8.0)
  • Solution 2 40% (w / v) PEG4000 , 50 mM CaCl 2, 50 mM Tris-HCl (p
  • Lane 7 is a photograph of agarose electrophoresis showing an example of investigating whether non-specific nucleic acid contamination is observed using the obtained heat-resistant DNA polymerase. is there.
  • Lane 1 was subjected to PCR using a marker
  • Lane 2 was not added with a template
  • Lane 3 was subjected to PCR using E. coli DNA as a template.
  • the primers were SEQ ID NOS: 85 and 86
  • PCR temperature conditions and PCR solution composition were the same as in (6-3), and PCR was performed in 45 cycles. From this, the amplification product of the bacterial 16S rRNA-derived gene was detected when E. coli was used as the template, and the bacterial 16S rRNA-derived gene amplification product was not detected when the template was not added.
  • thermostable DNA polymerase preparation derived from T. aquaticus produced using S. cerevisiae as a host FIG. 8, A, FIG. 9, A
  • thermostable DNA polymerase preparation derived from mutant P. furiosus FIG. 8, B, FIG. 9, B
  • heat-resistant DNA polymerase preparation derived from mutant T. gorgonarius FIG. 8, C, FIG. 9, C
  • FIGS. 8, E, 9, E aquaticus-derived thermostable DNA polymerase preparation (FIGS. 8, E, 9, E) produced using Tobacco BY-2 as a host was used.
  • 8 A, B, C, D and E are amplification curves
  • FIGS. 9, A, B, C, D and E are melting curves.
  • the solid line indicates that the template is added, and the dotted line indicates that the template is not added.
  • the real-time PCR reagent is the same as (17).
  • Real-time PCR program is 94 ° C for 1 minute, 50 ° C 30 seconds, 72 ° C. for 1 minute, 84 ° C. for 2 seconds, and the fluorescence value was detected 60 times. From the real-time PCR results, it was possible to analyze without detecting non-specific amplification products and bacterial DNA amplification curve signals that would impair the quantitativeness of real-time PCR by using the non-display method.
  • T. aquaticus-derived thermostable DNA polymerase produced by the host S. cerevisiae is referred to as e-DNAP.
  • Real-time PCR instruments are LightCycler 1.5 (Roche Diagnostics) and RotorGene6000 (Qiagen), and real-time PCR reagents are configured as shown below, using the following universal primers for bacterial detection. went. Forward Primer: CTCCTACGGGAGGCAG (SEQ ID NO: 43) Reverse Primer: ACTACCAGGGTATCTAATCCTG (SEQ ID NO: 44) e-DNAP (5 units / ⁇ L) 1 ⁇ L, E.
  • FIG. 13 and 14 are an amplification curve and a melting curve diagram analyzed according to the program conditions shown in Table 1. From FIG. 13, an amplification curve appeared even without the template, and from FIG. 14, a primer dimer melting curve was observed at about 76 ° C.
  • FIG. 15 (A) is an amplification curve diagram of real-time PCR results under the program conditions shown in Table 2.
  • E. as a template is displayed without displaying a primer dimer.
  • a normal amplification curve of the target amplification product was observed.
  • Example 3 Quantitative identification B by non-display method
  • a sample 3 Quantitative identification B by non-display method
  • the reagent for real-time PCR for detecting bacteria and the primer configuration are the same as in (Example 2).
  • the real-time PCR reagents and primer configurations for fungal detection were implemented using rTaq DNA polymerase (ToYoBo) as a thermostable DNA polymerase produced using bacteria as the host, and using the universal primers for fungal detection described below. Same as Example 2).
  • CFU / ml is generally used as the concentration unit of the infecting bacteria, calculation was attempted via the McFarland turbidimetric method in order to match the unit with the PCR quantification method calculated by the DNA concentration. Specifically, after suspending each of E. Coli and C. Albaicans in physiological saline, 0.5. Make bacterial suspensions that match the median value of McFarland, develop each into a medium and calculate CFU / ml.
  • Spa Forward Primer GCGATTGATGGTGATACGGTT (SEQ ID NO: 46)
  • Spa Reverse Primer AGCCAAGCCTTGACGAACTAAAGC (SEQ ID NO: 47)
  • mecA Forward Primer AAAATCGATGGTAAAGGTTGGC (SEQ ID NO: 48)
  • mecA Reverse Primer AGTTCTGCACTACCGGATTTGC (SEQ ID NO: 49)
  • Example 4 Drug sensitivity test applying high-sensitivity quantification method of detection target
  • a rapid liquid phase drug susceptibility test was attempted by applying the highly sensitive quantitative method using e-DNAP and non-display method according to the present invention. In the current drug sensitivity test, it generally takes several days to obtain the result. However, when the highly sensitive quantitative method according to the present invention is applied, the result can be obtained in only 4 to 6 hours.
  • the liquid phase drug sensitivity test has already been described in the prior patent (WO2002 / 052034), but it is not a high sensitivity detection method. It takes about one day at the earliest to get.
  • the quantification result before culturing is 0, the quantification results after 2 hours and 4 hours of culturing in the absence of antibiotics are 100 (the increase rate when no antibiotics are added is 100%) )
  • the “degree” of sensitivity since it depends on the speed of bacterial growth, a unified time setting is required, but evaluations such as strong sensitivity to antibiotics, or no sensitivity at all, It was possible to determine even at an early stage such as after 2 hours of culture.
  • Example 5 Amniotic fluid test for intrauterine infection using a highly sensitive detection method for detection
  • e-DNAP highly sensitive detection method using e-DNAP
  • non-display method Using the highly sensitive detection method using e-DNAP and the non-display method according to the present invention, a quick and simple amniotic fluid test for intrauterine infection was performed.
  • the biggest cause of premature birth is in utero infection, and there is a risk that the fetus will die. Therefore, there is a need for a test method for quickly determining the presence or absence of infection.
  • Infectious microorganisms for in utero infection have a very high infection rate of mycoplasma and ureaplasma in addition to bacteria and fungi. Since the base sequences of Mycoplasma and Ureaplasma are very different from bacteria and cannot be detected by bacterial universal primers, it is necessary to use each primer separately.
  • Primer set and PCR reagents The PCR reagents and primer configurations for detecting bacteria and fungi are the same as in (Example 3).
  • the primer configuration for detecting Mycoplasma and Ureaplasma is shown below. Nested PCR was used to detect Mycoplasma and Ureaplasma. For detection of Mycoplasma and Ureaplasma, e-DNAP was used, and the same PCR reagents as in Example 2 were used.
  • the PCR program is the same as (Example 2).
  • Mycoplasma Forward Primer GATGATCATTAGTCGGTGG (SEQ ID NO: 50) Mycoplasma Reverse Primer: CTACCTTAGGCGGTCGTC (SEQ ID NO: 51) Mycoplasma Forward nested Primer: GACATCCTTCGCAAAGCTAT (SEQ ID NO: 52) Mycoplasma Reverse nested Primer: CAGTTACCCAGGCAGTATCTC (SEQ ID NO: 53) Ureaplasma Forward Primer: GAACGAAGCCTTTTAGGC (SEQ ID NO: 54) Ureaplasma Reverse Primer: GATACAGCTAGACGTTAAGCATCTA (SEQ ID NO: 55) Ureaplasma Forward nested Primer: TAACATCAATATCGCATGAGAAG (SEQ ID NO: 56) Ureaplasma Reverse nested Primer: CAGTACAGCTACGCGTCATT (SEQ ID NO: 57) (2) PCR detection method With the above primer set, it is possible to quickly and easily determine whether any of bacteria, fungi, My
  • a real-time PCR method may be used, or the PCR product may be confirmed by electrophoresis on an agarose gel. Bacteria and fungi can be detected with high sensitivity by the method of Example 3 using e-DNAP. PCR can detect Mycoplasma and Ureaplasma with high specificity.
  • the detected Ureaplasma genus As for the detected Ureaplasma genus, it was confirmed that it was Ureaplasma parvum as a result of further analyzing the base sequence of the amplified product.
  • the detected PCR amplification products of bacteria, fungi, Mycoplasma and Ureaplasma can be identified to the species level by sequencing. Or, analyze the combination of Tm values of multiple amplification products (WO2007 / 097323), or use a nested species-specific nested primer (multiple PCR with multiple primers is also possible) inside the amplification product by universal primer It is also possible to identify species.
  • Example 6 Detection method combining high-sensitivity detection method to be detected and One Step nested PCR method
  • high-sensitivity detection method using the e-DNAP and the non-display method according to the present invention if nested PCR is performed in one trial by applying the “nested amplification method” or devising the extension time, high sensitivity and rapidity are achieved. Higher specificity can be detected while maintaining the above.
  • primer set and PCR reagent Most commercially available thermostable DNA polymerases produced using bacteria as a host have E. Coli as their host. Therefore, the risk of false positives is naturally increased if PCR is carried out in an attempt to detect E. coli and bacterial species close to its genus with high sensitivity.
  • E-DNAP In order to solve such problems and detect E. coli with high sensitivity and high specificity, it is possible to use E-DNAP together with high-sensitivity detection methods by applying the “nested amplification method” or by devising the extension time.
  • One Step semi-nested PCR was performed with Coli-specific primers.
  • the PCR reagents are the same as in (Example 3).
  • the semi-nested primer set specific to E. Coli is shown below.
  • Coli specific semi-nested Primer GCAATATTCCCCACTG (SEQ ID NO: 60)
  • the Tm values of the primers of SEQ ID NOs: 58 and 59 were designed to be 65 ° C., respectively, and the Tm value of the semi-nested primer of SEQ ID NO: 60 was 55 ° C.
  • the length of amplification product I by the primers of SEQ ID NOs: 58 and 59 is 548 bp
  • the length of semi-nested PCR amplification product II is 110 bp. is there.
  • the position of the primer was designed so that the difference in Tm value of each amplification product was increased with a clear difference in the length of the amplification product.
  • the Tm value of the amplification product I was 87 ° C.
  • the Tm value of the amplification product II was 83 ° C.
  • the GC% of the amplification product since the GC% of the amplification product also affects the Tm value, the GC% of the amplification product must be fully examined in primer design.
  • the salt concentration should always be fixed.
  • the real-time PCR program was performed under the conditions shown in Table 3. Under this condition setting, nested PCR can be performed in one trial by applying the “nested amplification method” in addition to the high-sensitivity detection method using e-DNAP and the non-display method. In addition, the setting of shifting for the nested primer to bind is added in the program.
  • the point in the device for the extension time in Table 4 is the extension time of 2 seconds.
  • all primers including the semi-nested primer bind, but when the extension time is 2 seconds, the inner amplification product II (110 bp) is extended, but the outer amplification product I (548 bp) is Unable to stretch.
  • the inner amplification product II is amplified.
  • the amplification product of 83 ° C. and 110 bp which is the Tm value of the amplification product II (others are primer dimers) is amplified (FIG. 23 (A), FIG. 25).
  • a method of combining a universal primer of bacteria inside and outside, or a bacterial universal primer on the outside and a species-specific primer on the inside Combinations are possible.
  • the One Step nested PCR method can be performed more reliably by incorporating both the nested amplification method and the extension time device into the PCR program.
  • Example 7 Highly sensitive quantitative identification method of detection target microorganisms using e-DNAP
  • PCR is performed on unknown infectious microorganisms with a plurality of universal primers, and the infectious microorganisms are identified quickly and conveniently by analyzing combinations of Tm values of a plurality of amplification products (WO2007 / 097323).
  • the infecting microorganism is a bacterium
  • this identification method uses a bacterium universal primer, so if e-DNAP is not used, there is a risk of false positives, and highly sensitive detection is not possible. That is, it is desirable to use e-DNAP for the identification of bacteria according to this example.
  • RotorGene6000 (Qiagen) as the measuring instrument.
  • Primer set and PCR reagent SEQ ID NOS: 15 to 28 are used as universal primers for bacteria. This produces 7 PCR amplification products.
  • PCR reagents and PCR conditions are the same as in (Example 2).
  • (2) Analysis method After extracting DNA from a blood sample of a septic patient, the real-time PCR is tried to obtain Tm values of each of the seven PCR amplification products. The combination of the seven Tm values is collated with the following database. At this time, a quantitative result by trial of real-time PCR is also obtained.
  • Bacteria whose Dist. Is closest to 0 is derived from the database and identified as a causative bacterium in the specimen.
  • the above method is incorporated as an algorithm in the identification software of a computer, and an identification result can be obtained instantaneously only by inputting seven Tm values obtained from a patient specimen.
  • the measurement error of the Tm value for each trial is completely corrected. That is, no matter how many degrees C error occurs for each measurement, the identification is not affected. Errors that cannot be corrected in this way are measurement errors that occur between samples during the same trial.
  • Klebsiella pneumoniae was detected from this patient specimen by a normal bacterial test, and it was confirmed that the identification result was the same as the usual method.
  • the seven Tm values on the Klebsiella pneumoniae database are 85.02, 84.48, 84.45, 84.29, 81.20, 81.84, 81.14.
  • the identification method of this embodiment is not limited to bacteria, but can also be used to identify fungi and other species. It is also clinically useful to examine the presence or absence of antibiotic resistance genes such as mecA.
  • the method for quantifying and / or identifying the organism to be detected according to the present invention can be practically used for a domestic water test, a food test, a sepsis test, a drug sensitivity test, and the like.
  • a sample that should be sterile as long as it is associated with an infectious disease can be applied to other samples.
  • cerebrospinal fluid tests and amniotic fluid tests have high social contributions, and the rapidity of this system (results revealed within 2 hours) may be useful.

Abstract

 本発明によれば、遺伝子増幅反応を利用した検体微生物の検出において偽陽性のリスクが限りなく低減するため、検体微生物の量が少なく、それから採取されるDNAも微量である場合でも検体微生物の検出のためのDNAの選択的増幅を可能とし、かつ製造コストの低減が可能な耐熱性DNAポリメラーゼ調製物の提供ができる。更に、本発明の調製物を用いて迅速・簡便で高感度な検出対象生物の定量または定量同定方法を提供できる。

Description

耐熱性DNAポリメラーゼを含む酵素調製物およびその製造方法、並びに検出対象生物の検出方法
 本発明は、耐熱性DNAポリメラーゼを含む酵素調製物およびその製造方法、並びに検出対象生物の検出方法に関する。
 近年、特定の菌やバクテリア、ウイルス等の検出を目的としたポリメラーゼ連鎖反応(PCR)は2時間程度の短時間で分析結果が分るため医療分野や獣医分野、食品分野などにおいて普及が進んできている。しかしながら、不特定の菌やバクテリア、ウイルス等を短時間に検出する技術は未だ確立されていない。
 本来無菌環境であるべき場所から極微量の非特定生物を検出同定し定量することは、例えば血液、髄液、羊水、尿等を検体として分析し、ヒトや家畜の感染を初期に検知同定し、早い段階での有効な抗生剤投与に結び付けられること、更には回復の状況を感染菌の定量値によってモニターできることなど非常に大きなメリットが期待できる。また、上水道水、給水タンク、空調循環水、加湿器、温泉水、プール水等、人が生活において吸入(飲水)する可能性のある生活用水や食品、化粧品への所望としない不特定のバクテリア、真菌、ウイルス等の生物の混入をいち早く検出同定できることや、混入レベルを高感度でモニターできるなど生活用水や食品、化粧品などの品質管理分野においても大きなメリットが期待できる。このように検体中での検出対象微生物の定量または同定を高感度、簡便かつ迅速に行う方法が確立できれば技術の波及分野は非常に広いものと想定され、強く求められている。
 重篤な全身感染症で、確定診断には血液中の起因微生物の検出・同定が必須である敗血症の患者数は、近年、癌治療や臓器移植など医療の高度化に伴って増加している。院内感染の観点からメチシリン耐性黄色ブドウ球菌(MRSA)をはじめとする多剤耐性菌が敗血症の起因菌となることも多く、適切な抗生剤を選択し患者を救命するためには、血液中の起因微生物を可能な限り迅速に検出・同定することが臨床上重要である。
 また、早産の最大の原因である子宮内感染症は胎児が死に至る重篤な感染症であり、羊水中の起因微生物を可能な限り迅速に検出・同定し、最適な抗生剤を発症早期に投与することが胎児の救命にとって重要となる。同様に獣医分野においても、例えばウシの乳房炎は乳牛にとってかなり深刻な病気であり、治療が遅れると淘汰しか手立てが無い場合も多く、産業的にも問題となっている。
 しかし、現行の感染微生物検査法では一般に培養ボトルでの培養及び選択培地を用いた培養を含む培養法が用いられるため、結果が出るまでに少なくとも数日はかかり、結果が判明するまでの間は経験に基づく治療(empiric therapy)を施行せざるを得なく、盲目的に抗生剤の選択を余儀なくされていることが臨床的現状であり、迅速性が求められる検査では大きな欠点となる。また、微生物の中には抗生剤耐性遺伝子を有する場合もあるため、併行して薬剤感受性試験が行われることも多いが、同定検査法と同様、結果が出るまでに数日を要する。その結果、広域スペクトルの抗生剤使用による多剤耐性菌の出現や、不適切な抗生剤選択により敗血症患者や子宮内感染症の胎児を救命できない事態、或いは乳腺炎の乳牛を淘汰せざるを得ない事態などが生じている。更に、従属栄養細菌を検出する場合は特殊な培養条件が必要なため、偽陰性が生じるリスクも高い。
 このような背景からPCRを用いた未同定の菌の検出について検討がなされており、敗血症起因微生物DNAの痕跡をPCRにより増幅し、増幅された起因微生物DNAを、経験的に想定した微生物に標的を定めた菌種固有のヌクレオチドプローブとハイブリッド形成させ、起因微生物を検出・同定する試みがなされている(特開平6-90799号公報)。さらに、検出・同定の迅速性を求めて、ハイブリダイゼーションプローブを用いたリアルタイムPCRを基本原理とした敗血症検査技術開発が検討されている(生物試料分析,Vol.28,No5.(2005),400-40)。また、微生物DNAを鋳型として特定のプライマーセットを用いたPCRなどでの遺伝子増幅を行い、次いで微生物に特異的な融解温度(Tm値)の組合せ、あるいは各Tm値間の差を解析することによる起因菌の迅速な検出同定方法が検討されている(WO2007/097323)。しかしながら、PCRを用いて短時間で得られる結果においても精度が担保されていなければならず、従ってPCRにおいては感度と特異度の高さを両立させることが重要とも言える。これら先行技術はPCRによる遺伝子増幅技術を応用してはいるものの想定した標的微生物に限定された方法であり、想定外の微生物であった場合には検出できなかったり、また未同定の微生物を対象とした検出同定方法であってもその定量技術は確立されておらず不可能であった。
 リアルタイムPCRは、増幅曲線を経時的に表示できる唯一の方法であるため、今日では遺伝子の定量検査に欠かすことの出来ない実験手法となっている。特にサイバーグリーン(SYBR Green)などのインターカレーターを用いた検出法は安価で手軽なため、世界中で広く繁用されている。しかしながら、インターカレーターを用いたリアルタイムPCRには、ターゲットのみならず非特異的増幅産物をも同様に検出してしまい、検出感度が低下する場合があるという問題がある。特に問題となる非特異的増幅産物は、プライマーダイマー(primer dimer)の形成である。プライマーダイマーの形成抑制方法として、プライマー設計の工夫や、ホットスタート(Hot Start)法の利用、修飾プライマーを使用する増幅法(特開2002-291490号公報)、改良されたPCR用の試薬を用いるホットスタートPCR(特開2003-259882号公報)、プライマーダイマーに結合する物質をサンプルに添加する方法(特開2006-254784号公報)などが提案されている。しかしながらプライマーダイマーをはじめとするこれら非特異的増幅産物の形成を完全に阻害することは非常に難しく、各種プライマーダイマー形成抑制方法を用いてもPCRサイクル数の増加に応じて非特異的増幅産物が検出されてしまい、このことがリアルタイムPCRを用いた定量測定における感度低下の主要な要因となっている。また、定性検査においても測定毎にTm値(融解温度:melting temperature)をチェックしてプライマーダイマーによる「偽陽性」を除外しなければならないなど、リアルタイムPCRの測定系にとって大きな問題となっている。
 PCRに用いるDNAポリメラーゼを提供するために、遺伝子組み換え技術によるDNAポリメラーゼ調製物の製造方法が検討されている(特開2006-180886号公報)。PCR反応において一般的に使用される市販の耐熱性DNAポリメラーゼ調製物の中には高純度精製調製物も市販されているが、これら高純度精製調製物を用いたPCR反応でも、遺伝子増幅反応を通常の30サイクル程度以上行う必要がある場合などにおいては原因不明の非特異的増幅産物が検出されてしまい、その使用には限界があった。
 PCR法における特異度の高さを確保するために、様々な手法が開発されている。最も簡便な方法はnested PCR法だが、PCRを2回行うという手間と時間が必要となる。そこで、1回のPCRでnested PCRを行う“入れ子増幅方法”(特開平05-292968号公報)が提案されている。この方法は1回の熱サイクルプロフィールのみでnested
PCRを行える優れた方法だが、その出願時には、プライマーや増幅産物のTm値を簡単に実測する技術が無かったためか、未だ実用化されていない。この方法はリアルタイムPCR技術のある現在では実用化可能である。その他、ハイブリプローブを用いる方法やTaqMan PCR法などが一般に用いられているが、誰でも簡単にプローブを作成できる訳ではなく、費用も高価となる等、迅速性・簡便性・経済性の全てを満たす方法は未だ存在しないのが現状である。
 以上のように、簡便に極微量の検体微生物からのDNAを増幅し、短時間の内に分析、特に定量または同定分析することができれば、これまで解析不可能であった極微量レベルでの遺伝子についてまで解析可能になるばかりでなく、医療分野や獣医分野、生活用水や食品などの各種検体の分析分野においては迅速且つ正確な判断に繋がるものと考えられるが、その一方で極微量の検体微生物DNAを増幅する場合のPCRにおいて、感度と特異度を共に高く制御することは未だ達成できておらず、未同定の微生物を対象とした場合における迅速な定量、または定量同定についても未だ達成できていなかった。
 本発明の目的は、PCR法を用いた極微量の検体微生物DNAの増幅に最適な耐熱性DNAポリメラーゼ調製物を提供すること、および該DNAポリメラーゼ調製物を用いた極微量の検体微生物の新規検査に好適な分析方法を提供することである。
 本明細書には以下の各発明が含まれる。
(I)耐熱性DNAポリメラーゼを含む酵素調製物であって、
(1)耐熱性DNAポリメラーゼ1ユニット中に該耐熱性DNAポリメラーゼをコードする遺伝子を除くバクテリア由来核酸の混入が10fg以下であり、
(2)前記酵素調製物に対して耐熱性DNAポリメラーゼをコードする遺伝子以外のバクテリア由来の核酸のみを増幅させうるプライマーを用いて、鋳型を加えない条件下32サイクル以上の遺伝子増幅反応を行ってもバクテリア由来の核酸の増幅産物を検出しない
ことを特徴とする耐熱性DNAポリメラーゼ調製物。
 (II)以下の工程:
(1)耐熱性DNAポリメラーゼをコードする遺伝子を真核細胞に形質転換し、耐熱性DNAポリメラーゼ遺伝子発現形質転換体細胞を得る工程、
(2)前記形質転換体細胞を培養する工程、
(3)培養された形質転換体細胞より耐熱性DNAポリメラーゼを含む抽出物を取得し、該抽出物を熱処理する工程、または培養された形質転換体細胞を熱処理した後、熱処理された形質転換体細胞より耐熱性DNAポリメラーゼを含む抽出物を取得する工程、
を有することを特徴とする耐熱性DNAポリメラーゼ調製物の製造方法。
 (III)検体中の検出対象生物を検出する方法において、
 以下の工程:
(1)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマーと、耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う増幅工程と、
(2)前記増幅工程における増幅産物中の前記目的遺伝子の増幅産物を検出する検出工程と、
を有し、
 前記耐熱性DNAポリメラーゼ調製物が、
(A)真核細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物、及び
(B)熱性DNAポリメラーゼ調製物であって、
(B-1)耐熱性DNAポリメラーゼ1ユニット中に該耐熱性DNAポリメラーゼをコードする遺伝子を除くバクテリア由来核酸の混入が10fg以下であり、
(B-2)前記調製物に対して耐熱性DNAポリメラーゼをコードする遺伝子以外のバクテリア由来の核酸のみを増幅させうるプライマーを用いて、鋳型を加えない条件下32サイクル以上の遺伝子増幅反応を行ってもバクテリア由来の核酸の増幅産物を検出しない耐熱性DNAポリメラーゼ調製物
のいずれかであることを特徴とする検体中の検出対象生物の検出方法。
 (IV)検体中の検出対象生物を定量同定する方法において、
 以下の工程:
(1)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(B)及び(M)と、耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第一の増幅工程と、
(2)前記第一の増幅工程における複数(3~10)の増幅産物の融解温度(Tm値)の組合せを前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)の組合せに基づいて解析し、前記検体中の検出対象生物の定量同定を行う第一の定量同定工程と、
(3)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(F)と、細菌を宿主として製造した耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第二の増幅工程と、
(4)前記第二の増幅工程における複数(3~10)の増幅産物の融解温度(Tm値)の組合せを前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)の組合せに基づいて解析し、前記検出対象生物を定量同定する第一の定量同定工程と前記第二の増幅工程における増幅産物を定量し、得られた定量結果から前記検体中の検出対象生物の定量同定を行う第二の定量同定工程と、
を有し、
 前記プライマー(B)、(F)及び(M)が、
(B)全ての細菌の16SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマー、
(F)全ての真菌の18SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマー、
(M)メチリシン耐性を示すmecA遺伝子など、その時々の流行を反映した抗生剤耐性遺伝子を特異的に増幅するプライマーセット、
であり、
 第一の増幅工程における耐熱性DNAポリメラーゼ調製物が、
(A)真核細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物、及び
(B)熱性DNAポリメラーゼ調製物であって、
(B-1)耐熱性DNAポリメラーゼ1ユニット中に該耐熱性DNAポリメラーゼをコードする遺伝子を除くバクテリア由来核酸の混入が10fg以下であり、
(B-2)前記調製物に対して耐熱性DNAポリメラーゼをコードする遺伝子以外のバクテリア由来の核酸のみを増幅させうるプライマーを用いて、鋳型を加えない条件下32サイクル以上の遺伝子増幅反応を行ってもバクテリア由来の核酸の増幅産物を検出しない耐熱性DNAポリメラーゼ調製物
のいずれかである
ことを特徴とする検体中の検出対象生物の定量同定方法。
 (V)検体中の検出対象生物を定量同定する方法において、
 以下の工程:
(1)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(B)と、耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第一の増幅工程と、
(2)前記第一の増幅工程における複数(3~10)の増幅産物の融解温度(Tm値)の組合せを前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)の組合せに基づいて解析し、前記検体中の検出対象生物の定量同定を行う第一の定量同定工程と、
(3)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(F)と、細菌を宿主として製造した耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第二の増幅工程と、
(4)前記第二の増幅工程における複数(3~10)の増幅産物の融解温度(Tm値)の組合せを前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)の組合せに基づいて解析し、前記検出対象生物を定量同定する第一の定量同定工程と前記第二の増幅工程における増幅産物を定量し、得られた定量結果から前記検体中の検出対象生物の定量同定を行う第二の定量同定工程と、
(5)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(M)と、耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第三の増幅工程と、
(6)前記第三の増幅工程における増幅産物の融解温度(Tm値)を前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)に基づいて解析し、前記検体中の検出対象生物の定量同定を行う第三の定量同定工程と、
を有し、
 前記プライマー(B)、(F)及び(M)が、
(B)全ての細菌の16SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマー、
(F)全ての真菌の18SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマー、
(M)メチリシン耐性を示すmecA遺伝子など、その時々の流行に応じた抗生剤耐性遺伝子を特異的に増幅するプライマーセット、
であり、
 第一及び第三の増幅工程における耐熱性DNAポリメラーゼ調製物が、
(A)真核細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物、及び
(B)熱性DNAポリメラーゼ調製物であって、
(B-1)耐熱性DNAポリメラーゼ1ユニット中に該耐熱性DNAポリメラーゼをコードする遺伝子を除くバクテリア由来核酸の混入が10fg以下であり、
(B-2)前記調製物に対して耐熱性DNAポリメラーゼをコードする遺伝子以外のバクテリア由来の核酸のみを増幅させうるプライマーを用いて、鋳型を加えない条件下32サイクル以上の遺伝子増幅反応を行ってもバクテリア由来の核酸の増幅産物を検出しない耐熱性DNAポリメラーゼ調製物である
ことを特徴とする検体中の検出対象生物の定量同定方法。
 (VI)検体中に含まれる検出対象生物の定量及び/または同定を行うためのセットであって、
 検体から調製した核酸を増幅するための耐熱性DNAポリメラーゼ調製物と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマーと、
を有し、
 前記耐熱性DNAポリメラーゼ調製物が、
(A)真核細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物、及び
(B)熱性DNAポリメラーゼ調製物であって、
(B-1)耐熱性DNAポリメラーゼ1ユニット中に該耐熱性DNAポリメラーゼをコードする遺伝子を除くバクテリア由来核酸の混入が10fg以下であり、
(B-2)前記調製物に対して耐熱性DNAポリメラーゼをコードする遺伝子以外のバクテリア由来の核酸のみを増幅させうるプライマーを用いて、鋳型を加えない条件下32サイクル以上の遺伝子増幅反応を行ってもバクテリア由来の核酸の増幅産物を検出しない耐熱性DNAポリメラーゼ調製物
であることを特徴とする定量または同定用のセット。
 (VII)検体中に含まれる検出対象生物の定量及び/または同定を行うためのセットであって、
 検体から調製した核酸を増幅するための、
 (A)真核細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物、及び
 (B)熱性DNAポリメラーゼ調製物であって、
(B-1)耐熱性DNAポリメラーゼ1ユニット中に該耐熱性DNAポリメラーゼをコードする遺伝子を除くバクテリア由来核酸の混入が10fg以下であり、
(B-2)前記調製物に対して耐熱性DNAポリメラーゼをコードする遺伝子以外のバクテリア由来の核酸のみを増幅させうるプライマーを用いて、鋳型を加えない条件下32サイクル以上の遺伝子増幅反応を行ってもバクテリア由来の核酸の増幅産物を検出しない耐熱性DNAポリメラーゼ調製物
のいずれかの耐熱性DNAポリメラーゼ調製物と、
 検体から調製した核酸を増幅するための細菌細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物と、
 前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマーと、
を有することを特徴とする定量及び/または同定用のセット。
 (VIII)
 検体中に含まれる検出対象生物の定量及び/または同定を行うためのシステムにおいて、
(1)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマーと、耐熱性DNAポリメラーゼと、を用いて核酸増幅反応を行うための増幅装置と、
(2)前記増幅工程における増幅産物の定量を行うための定量装置と、
(3)前記前記増幅産物の定量結果により前記検体中の検出対象生物の量を算出する算出装置と、
(4)前記目的遺伝子の増幅産物の定量結果から前記検体中の検出対象生物の量を算出するためのデータベースと、
を有し、
 上記の検出方法または定量同定方法を行うためのものであることを特徴とする定量及び/または同定システム。
 本発明によれば、遺伝子増幅反応を利用した検体微生物の検出において、検体微生物の量が少なく、それから採取されるDNAも微量である場合でも検体微生物の検出のためのDNAの選択的増幅を可能とし、かつ製造コストの低減が可能な耐熱性DNAポリメラーゼ調製物の提供を行うことができる。
 上記の耐熱性DNAポリメラーゼ調製物に加えてmasked Primer Dimer法を用いれば、プライマーダイマー形成は、インターカレーターを用いたリアルタイムPCR法の阻害要因でなくなり、感度を下げることなく定量検査が出来、定性検査でのプライマーダイマーによる偽陽性のリスクも無くなる。すなわち、検出感度限界までの正確な定量(高感度定量法)が可能になる。しかも、本方法は、抗Taq抗体を用いるホットスタート法など従来法に比して簡便かつ経済的である。
 更に“入れ子増幅法”(特開平05-292968号公報)を応用するか、或いはPCRの伸長時間を工夫することにより、通常2回のPCRを必要とする特異性の高いnested PCRを、1回のPCR(One Step)のみで迅速に施行することが出来る。また、ハイブリプローブ法、TaqMan法などに比して、プライマー設計が簡便かつ経済的である。
 本発明の耐熱性DNAポリメラーゼ調製物に加えてmasked Primer Dimer法およびOne Step nested PCR法を組み合わせて用いることにより、迅速・簡便に高感度・高特異度なPCRを行うことができる。
 本発明によれば、遺伝子検査による検出対象生物の高感度かつ簡易な定量または同定法を迅速に提供することができる。この方法により、本来、無菌環境であるべき或いは極微量の検出対象生物混入が問題となる如何なる検体についても、迅速・簡便で高感度な検出対象生物の定量が可能となる。更には、本定量または定量同定法により無菌状態や一定菌数の維持、感染菌量の変化による治療の効果確認など、患者体内の菌数制御状態や菌数変動状態をモニタリングすることが可能となる。また、検体の培養と本発明の高感度定量法とを組み合わせることにより、迅速な薬剤感受性試験を行うことが可能となる。
バクテリア16s rRNA、真核細胞18s rRNA遺伝子配列をもとに行った系統樹解析に関する図である。 熱処理後のSDS-PAGE写真を示す図である。 大腸菌DNAをテンプレートとし耐熱性DNAポリメラーゼ調製物を用いたPCRの検出限界を示す図である。 耐熱性DNAポリメラーゼ調製物を用いた非特異的核酸混入の検証結果を示す図である。 (A)はAmpliTaq Gold LDを用いたリアルタイムPCRの増幅曲線解析を示す図である。(B)はS.cerevisiaeを宿主として生産した耐熱性DNAポリメラーゼ調製物を用いたリアルタイムPCRの増幅曲線解析を示す図である。 (A)はAmpliTaq Gold LDを用いたリアルタイムPCRの融解曲線解析を示す図である。(B)はS.cerevisiaeを宿主として生産した耐熱性DNAポリメラーゼ調製物を用いたリアルタイムPCRの融解曲線解析を示す図である。 A.oryzaeを宿主として生産した耐熱性DNAポリメラーゼ調製物を用いた非特異的核酸混入の検証結果を示す図である。 masked Primer Dimer法を用いたリアルタイムPCRの増幅曲線解析を示す図である。(A)はS.cerevisiaeを宿主として生産したT.aquaticus由来耐熱性DNAポリメラーゼ調製物、(B)はS.cerevisiaeを宿主として生産した変異P.furiosus由来耐熱性DNAポリメラーゼ調製物、(C)はS.cerevisiaeを宿主として生産した変異T.gorgonarius由来耐熱性DNAポリメラーゼ調製物、(D)はP.pastorisを宿主として生産したT.aquaticus由来耐熱性DNAポリメラーゼ調製物、(E)はTobacco BY-2を宿主として生産したT.aquaticus由来耐熱性DNAポリメラーゼ調製物を用いた。 リアルタイムPCRの融解曲線解析を示す図である。 (A)はS.cerevisiaeを宿主として生産したT.aquaticus由来耐熱性DNAポリメラーゼ調製物、(B)はS.cerevisiaeを宿主として生産した変異P.furiosus由来耐熱性DNAポリメラーゼ調製物、(C)はS.cerevisiaeを宿主として生産した変異T.gorgonarius由来耐熱性DNAポリメラーゼ調製物、(D)はP.pastorisを宿主として生産したT.aquaticus由来耐熱性DNAポリメラーゼ調製物、(E)はTobacco BY-2を宿主として生産したT.aquaticus由来耐熱性DNAポリメラーゼ調製物を用いた。 (A)は通常のPCR条件設定とその蛍光検出ポイントを示す図である。(B)はmaskedPrimer Dimer法の蛍光検出ポイントを示す図である。 (A)はOne Step semi-nested PCR法でのプライマーおよび増幅産物の配置を示す。(B)はOne Step nested PCR法でのプライマーおよび増幅産物の配置を示す。(C)はバクテリアから得られた複数のTm値(Bac1~Bac5)と、それらの平均(average)からの相対値(d1~d5)を示す。 本発明にかかる検出対象生物の定量及び/または同定を行うためのシステムの一例を示すブロック図である。 表1プログラム条件により解析を実施した増幅曲線である。図中AはE. coliでの増幅曲線であり、Bは蒸留水(D.W.)での増幅曲線である。 表1プログラム条件により解析を実施した融解曲線図である。図中AはE.coliの融解曲線であり、Bはプライマーダイマーの融解曲線である。 (A)は表2プログラム条件によるリアルタイムPCR結果の増幅曲線図である。図中AはE. coliでの増幅曲線であり、Bは蒸留水(D.W.)での増幅曲線である。(B)は各試料のDNA抽出液をテンプレートとして真菌の感染菌検査を行った結果を示す図である。図中Aは陽性コントロールであるC.albicansでの増幅曲線であり、Bは、蒸留水(D.W.)、水道水(Tap water)、湧水(Spring water)、温泉水(Hot spring water)、空調循環水(Air-conditioningwater)での増幅曲線である。(C)は各試料のDNA抽出液をテンプレートとして細菌の感染菌検査を行った結果を示す図である。図中、A~DはそれぞれA:陽性コントロールであるE.coli(サイクル数14.47)、B:温泉水(Hot spring water:サイクル数30.54)、C:空調循環水(Air-conditioning water:サイクル数28.96)及びD:蒸留水(D.W.)、水道水(Tap water)、湧水(Springwater)での増幅曲線である。 シュークリームを検体とした場合の真菌の感染菌検査を行った結果を示す図である。(A)は新鮮なシュークリームにおける増殖曲線である。図中、Aは陽性コントロールであるC.albicans(サイクル数23.78)での増殖曲線であり、Bは蒸留水(D.W.)及びシュークリーム(クリーム)(サイクル数45.71)での増殖曲線である。(B)は、古いシュークリームにおける増殖曲線である。図中、Aは陽性コントロールであるC.albicans(サイクル数23.78)での増殖曲線であり、Bは蒸留水(D.W.)及びシュークリーム(クリーム)(サイクル数44.37)での増殖曲線である。 シュークリームを検体とした場合の細菌の感染菌検査を行った結果を示す図である。(A)は新鮮なシュークリームにおける増殖曲線である。図中、Aは陽性コントロールであるE.coli(サイクル数26.55)での増殖曲線であり、Bは蒸留水(D.W.)及びシュークリーム(クリーム)での増殖曲線である。(B)は、古いシュークリームにおける増殖曲線である。図中、Aは陽性コントロールであるE.coli(サイクル数23.78)での増殖曲線であり、Bはシュークリーム(クリーム)(サイクル数24.48)での増殖曲線であり、Cは蒸留水(D.W.)での増殖曲線である。 C.albicansによる敗血症患者Aの血液検体を用いた検査結果を示す図である。(A)は真菌ユニバーサルプライマーにおける増殖曲線である。図中、Aは陽性コントロールであるC.albicans(サイクル数27.51)での増殖曲線であり、Bは血液検体(患者A:サイクル数33.70)での増殖曲線であり、Cは蒸留水(D.W.)での増殖曲線である。(B)は細菌ユニバーサルプライマーにおける増殖曲線である。図中、Aは陽性コントロールであるE.coli(サイクル数33.70)での増殖曲線であり、Bは血液試料(患者A)及び蒸留水(D.W.)での増殖曲線である。 Bacillus speciesによる敗血症患者Bの血液検体を用いた検査結果を示す図である。(A)は真菌ユニバーサルプライマーにおける増殖曲線である。図中、Aは陽性コントロールであるC.albicansでの増殖曲線であり、Bは血液検体(患者B)及び蒸留水(D.W.)での増殖曲線である。(B)は血液検体に対する細菌ユニバーサルプライマーにおける増殖曲線である。図中、Aは陽性コントロールであるE.coli(サイクル数22.53)での増殖曲線であり、Bは血液検体(患者B:サイクル数34.07)での増殖曲線であり、Cは蒸留水(D.W.)での増殖曲線である。(C)は血液培養試料に対する細菌ユニバーサルプライマーにおける増殖曲線である。図中、Aは血液培養試料(患者B:サイクル数14.47)での増殖曲線であり、Bは陽性コントロールであるE.coli(サイクル数25.64)での増殖曲線であり、Cは蒸留水(D.W.)での増殖曲線である。 MRSAのDNAを鋳型とし、MRSA特異的なプライマーを用いたリアルタイムPCRの結果を示す図である。AはSpaプライマーでの増殖曲線であり、BはmecAプライマーでの増殖曲線であり、Cは細菌ユニバーサルプライマーでの増殖曲線であり、Dは真菌ユニバーサルプライマーでの増殖曲線である。 (A)は検出されたStaphylococcus epidermidisに対し、ゲンタマイシン(GM)とエリスロマイシン(EM)の薬剤感受性を経時的増菌量から検査した図である。(B)は検出されたBacillus cereusに対し、セファゾリン(CZ)、アンピシリン(AP)、エリスロマイシン(EM)それぞれの薬剤感受性を経時的増菌率から検査した図である。 (A)は子宮内感染症の羊水検体1の感染菌検査結果を示す図であり、(B)は切迫早産の羊水検体2の感染菌検査結果を示す図である。尚、A~Cは細菌ユニバーサルプライマーを用いて検出を試みた結果であり、A:蒸留水、B:陽性コントロールであるE.coli、C:羊水検体、である。D~Fは真菌ユニバーサルプライマーを用いて検出を試みた結果であり、D:蒸留水、E:陽性コントロールであるC.albicans、F:羊水検体、である。G~Hはマイコプラズマ属特異的プライマーを用いて検出を試みた結果であり、G:蒸留水、H:マイコプラズマ陽性コントロール、I:羊水検体、である。J~Lはウレアプラズマ属特異的プライマーを用いて検出を試みた結果であり、J:蒸留水、K:ウレアプラズマ陽性コントロール、L:羊水検体、である。 semi-nestedプライマーを含む3つのプライマーを混合し、nested PCRが上手く行われているかどうか、増幅産物のTm値により確認した。(A)は表3および表4のAmplification 1のみの実施にて、外側の増幅産物I(Tm値87℃)のみが増幅されていることを示す。(B)表3および表4のAmplification 2のみの実施にて、内側のnestedされた増幅産物II(Tm値83℃)のみ(他はプライマーダイマー)が増幅されていることを示す。 e-DNAPおよび非表示法を用いた高感度検出方法とOne Step nested PCR法とを併せることで、高感度かつ高特異度のPCRが上手く行われていることを、実際の検体を用いて確認した。(A)はE.Coli特異的プライマーにおいて、表3あるいは表4のプログラムを実施した場合の増殖曲線である。図中、AはE.Coliでの増殖曲線であり、Bは蒸留水(D.W.)、S. aureus、Human DNAでの増殖曲線である。(B)はE.Coli特異的プライマーにおいて、表3あるいは表4のプログラムを実施した場合の融解曲線である。AはE.Coliでの融解曲線であり、Bは蒸留水(D.W.)、S. aureus、Human DNAでの融解曲線である。図中の増幅産物は、nestedされた内側の増幅産物II(Tm値83℃)のみであり、その他、蒸留水(D.W.)、S. aureus、Human DNAの増幅産物は認められない。 semi-nestedプライマーを含む3つのプライマーを混合し、nested PCRが上手く行われているかどうか、増幅産物の大きさにより確認した。Amplification1のみの実施にて、外側の増幅産物I(548bp)のみが増幅される。Amplification 2のみの実施にて、内側のnestedされた増幅産物II(110bp)のみが増幅される。Amplification1+2の実施にて、内側のnestedされた増幅産物II(110bp)のみが増幅される。
(1)耐熱性DNAポリメラーゼ調製物
 本発明者らは、市販の耐熱性DNAポリメラーゼ調製物と同様に、バクテリアを宿主として用いた遺伝子組み換えを利用して耐熱性DNAポリメラーゼを生産し、生産された耐熱性DNAポリメラーゼ調製物の、検体に含まれる検出対象微生物の検出のためのPCRへの適用性について検討した。ところが、PCRを利用した検出対象微生物の検出において、検体中に含まれる微生物の量が少なく、それから採取されるDNAも微量である場合でも、PCRのサイクル数を増加させ検出対象微生物の検出のためのDNAの選択的増幅を可能とし、かつ製造コストの低減が可能な耐熱性DNAポリメラーゼ調製物の提供を行うことができなかった。
 そこで、宿主の適性や生産された耐熱性ポリメラーゼの精製効率などを考慮し、系統樹(Carl
R. Woese, "Bacterial Evolution, "Micro. Biol. Reviews, 51:221-271(1987)および図1参照)を参考に、各生物の遠縁関係を検証し、宿主として利用できる真核細胞に着目した。真核細胞を宿主として用いて耐熱性DNAポリメラーゼの生産を検討した結果、得られた培養抽出沈殿物中に耐熱性DNAポリメラーゼの大部分が不溶性として生産され、沈殿物および上清に対し加熱処理する事により不可逆的に可溶化し、またこの工程により活性を有し、且つ、高純度に精製された耐熱性DNAポリメラーゼを容易に回収できることを見出した。種々の検討を行う中で、この耐熱性DNAポリメラーゼ調製物は、バクテリア16S rRNA遺伝幅において鋳型を添加しないものに対してはDNA増幅が起こらないという特徴を少なくとも有することが見出された。
 以下に本発明について詳細に説明する。
 本発明において用いられる耐熱性DNAポリメラーゼ調製物は、耐熱性DNAポリメラーゼを含む調製物であり、以下の(A)及び(B)の要件の少なくとも一方の特徴を有する。
 (A)以下の(1)及び(2)の条件を満たす耐熱性DNAポリメラーゼ調製物。
(1)耐熱性DNAポリメラーゼ1ユニット中に該耐熱性DNAポリメラーゼをコードする遺伝子を除くバクテリア由来核酸の混入が10fg以下である。
(2)前記調製物に対して耐熱性DNAポリメラーゼをコードする遺伝子以外のバクテリア由来の核酸のみを増幅させうるプライマーを用いて、鋳型を加えない条件下32サイクル以上の遺伝子増幅反応を行ってもバクテリア由来の核酸の増幅産物を検出しない。
 (B)真核細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物。
 バクテリア由来核酸の混入が「10fg以下」とは、後述する実施例2-1の「(6-3)PCRの検出限界」における検出方法において「10fg以下」と判定された場合をいう。
 一方、本発明における「抽出物」とは、細胞または菌体から耐熱性DNAポリメラーゼを含む成分を取り出したものであればよく、抽出物を得るために用いる溶媒や抽出方法等については特に限定されるものではない。抽出物を得る方法としては、例えば、以下の方法を挙げることができる。
(1)耐熱性DNAポリメラーゼを生産させた真核細胞をザイモリアーゼ、セルラーゼ、キチナーゼ、キトビアーゼ、キトサナーゼ、β-1、3-グルカナーゼ、リゾチームなどの細胞壁を溶解する酵素により処理する方法。
(2)超音波、フレンチプレス、ガラスビーズなどの物理的な方法、熱を加えることにより細胞壁、細胞膜を破壊する方法等を用いて、細胞または菌体に含まれる成分を水や緩衝液等の溶媒を用いて抽出し抽出物を取得する方法。
(3)分泌シグナルペプチド等を耐熱性DNAポリメラーゼ遺伝子上流に付加することにより該耐熱性DNAポリメラーゼを細胞外に分泌生産させる方法等を用いて生産された耐熱性DNAポリメラーゼを菌体外に抽出して抽出物を得る方法。
 本発明における「耐熱性DNAポリメラーゼ調製物」とは、耐熱性DNAポリメラーゼを含む調製物であり、上記の抽出物そのものとして、更には、上記の抽出物用いて精製、希釈、他の物質または化合物との混合などの各種処理を経て得ることができるものである。例えば、以下のものも調製物として挙げることができる。
(A)前記抽出物由来の耐熱性DNAポリメラーゼが緩衝作用を有する成分としてリン酸、ホウ酸、炭酸、クエン酸、酢酸、トリス、トリシン、ビスートリシン、ベルナール、ヘペス、ピペス、キャプス、タプス、テス、モプス、メスなどを含む緩衝液に溶解している状態のもの。
(B)MgClやdNTPsなどと共に溶液中に存在している状態のもの。
(C)これらの(A)及び(B)の溶液を凍結乾燥等の方法により乾燥させた乾燥状態のもの。
 「抽出物」より「耐熱性DNAポリメラーゼ調製物」を得る方法としては、精製、希釈、他の物質あるいは化合物との混合等が挙げられる。
 精製方法としては、以下の方法を挙げることができる。
(I)耐熱性DNAポリメラーゼを含む培地等の抽出物を、イオン交換クロマトグラフィーやハイドロキシアパタイトクロマトグラフィーなどの荷電を利用する方法。
(II)アフィニティークロマトグラフィーなどの特異的親和性を利用する方法、逆相クロマトグラフィーなどの疎水性の差を利用する方法。
(III)ゲルろ過など分子量の差を利用する方法等を用いるカラムクロマトグラフィー法。(IV)硫安沈殿、アセトン沈殿、PEG沈殿、pH沈殿等を用いて分画する方法。
(V)ポリエチレンイミン等を用いた核酸除去法。
 これらの方法の2以上を組み合わせて用いることができる。これらの方法により抽出物に含まれる耐熱性DNAポリメラーゼの濃縮や宿主由来の浹雑タンパク質や核酸等の低減または除去が可能となる。
 希釈方法としては、水や前記緩衝液等の抽出物と混合する溶媒を抽出物に添加する方法が挙げられる。
 また、他の物質または化合物との混合方法において、混合する物質または化合物としては特に限定されるものではないが、例えば塩化カリウム、酢酸カリウム、硫酸カリウム、硫酸アンモニウム、塩化アンモニウム、酢酸アンモニウム、塩化マグネシウム、酢酸マグネシウム、硫酸マグネシウム、塩化マンガン、酢酸マンガン、硫酸マンガン、塩化ナトリウム、酢酸ナトリウム、塩化リチウム、酢酸リチウム、塩化カルシウム、β-メルカプトエタノール、ジチオスレイトール、DMSO、グリセロール、ホルムアミド、塩化テトラメチルアンモニウム、PEG、ツイーン20、ツイーン80、トライトン-X 100、NP40、DNA、RNA、タンパク質(酵素類、抗体、BSA等)、dATP、dGTP、dCTP、dTTP、dUTP、dNTPs、サイバーグリーン、エバグリーン、SYTO9、ワックス等から選ばれる1種または2種以上が挙げられる。
 「好熱菌」とは、至適生育温度が45℃以上、もしくは55℃以上で生育する真正細菌又は古細菌(始原菌)をいう。本発明に適用可能な好熱菌は前期定義に該当する限り特に限定されない。
 「超好熱菌」とは、至適生育温度が80℃以上、もしくは90℃以上で生育する真正細菌または古細菌(始原菌)をいう。本発明に適用可能な超好熱菌は前記定義に該当する限り特に限定されない。現在100種類以上の好熱菌、超好熱菌が分離・同定されており、これらはいずれも本発明に適用することができる。かかる好熱菌、超好熱菌としては、サーマス属(Thermus)、バチルス属(Bacillus)サーモコッカス属(Thermococcus)、パイロコッカス属(Pyrococcus)、エアロパイラム属(Aeropyrum)、アクイフェックス属(Aquifex)、 スルフォロバス属(Sulfolobus)、パイロロバス属(Pyrolobus)、メタノパイラス属(Methanopyrus)に属する好熱菌または超好熱菌を挙げることができる。
 更に具体的には、例えば、Thermus aquatics、Thermus thermophilus、Bacillus stearothermophilus、
Aquifex pyrophilus、Geothermobacterium ferrireducens、Thermotoga maritime、Thermotoga neopolitana、Thermotoga petrophila、Thermotoga naphthophila、Acidianus infernus、Aeropyrum pernix、Archaeoglobus fulgidus、Archaeoglobus
profundus、Caldivirga maquilingensis、Desulfurococcus amylolyticus、Desulfurococcus
mobilis、Desulfurococcus mucosus、Ferroglobus placidus、Geoglobus ahangari、Hyperthermus butylicus、Ignicoccus islandicus、 Ignicoccus pacificus、Methanococcus
jannaschii、Methanococcus fervens、Methanococcus igneus、Methanococcus infernus、Methanopyrus kandleri、 Methanothermus
fervidus、Methanothermus sociabilis、Palaeococcus ferrophilus、Pyrobaculum
aerophilum、Pyrobaculum calidifontis、Pyrobaculum islandicum、Pyrobaculum oguniense、Pyrococcus furiosus、Pyrococcus abyssi Pyrococcus horikoshii、Pyrococcus woesei、Pyrodictium abyssi、Pyrodictium brockii、Pyrodictium occultum、Pyrolobus fumarii、Staphylothermus marinus、Stetteria
hydrogenophila、Sulfolobus solfataricus、Sulfolobus shibatae、Sulfolobus tokodaii、Sulfophobococcus zilligii、Sulfurisphaera
ohwakuensis、Thermococcus kodakaraensis、Thermococcus celer、Thermococcus litoralis、Thermodiscus maritimus、Thermofilum pendens、Thermoproteus tenax、Thermoproteus
neutrophilus、Thermosphaera aggregans、Vulcanisaeta distributa、Vulcanisaeta
sounianaなどが挙げられる。
 本発明に関わる耐熱性DNAポリメラーゼ調製物の製造方法は、宿主細胞を用いて耐熱性DNAポリメラーゼを生産するものであり、宿主細胞としては真核細胞を用いる。
 真核細胞としては菌類、動物細胞、植物細胞、昆虫細胞などが挙げられ、宿主細胞としては真核生物由来の細胞であれば良く、特に限定はされない。
菌類としては酵母やカビなどの子嚢菌、糸状菌、担子菌、接合菌などが挙げられ、中でも酵母または糸状菌が好ましく、具体例として、サッカロマイセス属(Saccharomyces)、シゾサッカロマイセス属(Schizosaccharomyces)、カンジダ属(Candida)、ピキア属(Pichia)、ハンゼヌラ属(Hansenula)、クライベロマイセス(Kluyveromyces)属、チゴサッカロマイセス(Zygosaccharomyces)属、ヤロウイア(Yarrowia)属、トリコスポロン(Trichosporon)属、ロドスポリジウム(Rhodosporidi)属、アスペルギルス(Aspergillus)属、フザリウム(Fusarium) 属、トリコデルマ(Trichoderma)属などが挙げられる。
 更なる詳細な具体例としては、サッカロミセス・セレビシエ(Saccharomyces
cerevisiae)、シゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)、カンジダ・ウチリス(Candida utilis)、カンジダ・ボイディニ(Candida boidini)、ピキア・メタノリカ(Pichia metanolica)、ピキア・アングスタ(Pichia angusta)、ピキア・パストリス(Pichiapastoris)、ピキア・アノマラ(Pichia anomala)、ハンゼヌラ・ポリモルファ(Hansenula polymorpha)、クライベロマイセス・ラクティス(Kluyveromyces
lactis)、チゴサッカロマイセス・ロウキシ(Zygosaccharomyces rouxii)、ヤロウイア・リポリティカ (Yarrowia lipolytica )、トリコスポロン・プルランス(Trichosporon
pullulans)、ロドスポリジウム・トルロイデス(Rhodosporidium toruloides)、アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・ニジュランス(Aspergillus nidulans)、アスペルギルス・アワモリ(Aspergillus awamori)、アスペルギルス・オリゼー(Aspergillus oryzae)、及びトリコデルマ・リーセイ(Trichoderma
reesei)などを挙げることができる。
 動物細胞としてはヒト由来培養細胞、マウス由来培養細胞などが挙げられ、具体例としてはCHO細胞、Hela細胞などが挙げられる。植物細胞としては、植物より誘導した細胞であればよく、望ましくは株化された培養細胞であり、タバコ(Nicotiana)属細胞、シロイヌナズナ(Arabidopsis)属細胞、サツマイモ(Ipomoea)属細胞、ニンジン(Daucus)属細胞、イネ(Oryza)属細胞などが挙げられ、具体的にはNicotiana tabacum
BY-2培養細胞、Arabidopsis thaliana培養細胞、Ipomoea batatas培養細胞、Daucus carota培養細胞、Oryza sativa培養細胞などが挙げられる。昆虫細胞としては、昆虫より誘導した細胞であればよく、望ましくは株化された培養細胞であり、ハスモンヨトウ近似種Spodoptera frugiperdaの 卵巣細胞由来培養細胞sf9株、sf21株、カイコ(Bombix mori)培養細胞Bm-N株などが挙げられる。宿主細胞として好ましくは、酵母などの増殖が早い微生物あるいは真核生物であり、例えば、サッカロマイセス・セレビシエなどのサッカロマイセス属を始めとする酵母、Nicotiana tabacumなどのタバコ(Nicotiana)属植物の培養細胞をはじめとする植物細胞、アスペルギルス・オリザなどのアスペルギルス(Aspergillus)属を始めとする糸状菌が挙げられる。
 真核細胞を用いて耐熱性DNAポリメラーゼを生産させるには、例えば真核細胞内に耐熱性DNAポリメラーゼをコードする遺伝子を少なくとも1遺伝子以上含む遺伝子を導入発現させ、該耐熱性DNAポリメラーゼを生産させる方法等が挙げられる。
 また本明細書における耐熱性DNAポリメラーゼをコードする遺伝子は耐熱性DNAポリメラーゼをコードするcDNA、ゲノムDNA、合成DNAなどいかなる遺伝子であってもよく、また1本鎖でも、その相補鎖を有する2本鎖であってもよく、天然、あるいは人工のヌクレオチド誘導体を含んでいてもよい。更に耐熱性DNAポリメラーゼが生物由来である場合には、該耐熱性DNAポリメラーゼの由来についても特に限定されない。
 DNAポリメラーゼは生物の種類に応じて各種同属体が存在する。
 本発明で用いられる耐熱性DNAポリメラーゼの具体例としては、サーマス・アクアティカス(Thermus aquatics)、サーマス・サーモフィラス(Thermus
thermophilus)、バチルス・ステアロサーモフィラス(Bacillus stearothermophilus)、サーモコッカス・ゴルゴナリウス(Thermococcus gorgonarius)、サーモコッカス・コダカラエンシス
KOD1(Thermococcus kodakaraensis KOD1)、パイロコッカス・ウォエセイ(Pyrococcus woesei)パイロコッカス・フリオシス(Pyrococcus
furiosus)、エアロパイラム・ペルニクス(Aeropyrum pernix)、アクイフェックス・アエオリカス(Aquifex aeolicus)、スルホロブス・トコダイイ(Sulfolobus
tokodaii)パイロロバス・フマリ(Pyrolobus fumarii)、またはメタノパイラス・カンドレリ(Methanopyrus kandleri)由来の耐熱性DNAポリメラーゼを挙げることができる。
 耐熱性DNAポリメラーゼは遺伝子工学的に人工的に合成された耐熱性DNAポリメラーゼを包括する。
 また、耐熱性DNAポリメラーゼ、好ましくは耐熱性を有する生物由来であり、より好ましくはメタン菌、好熱好酸菌、好熱菌、超好熱菌などの原核生物由来である。
 本発明の耐熱性DNAポリメラーゼ遺伝子は、形質転換される宿主生物において多用されるコドン用法を用いた塩基配列を有する事が好ましい。
 例えば、サッカロマイセス・セレビシエに耐熱性DNAポリメラーゼ遺伝子を導入する際におけるコドン用法を次に示す。
 本来の耐熱性DNAポリメラーゼ遺伝子に対して、サッカロマイセス属など異種生物のコドン用法に基づいて改変する場合、天然由来耐熱性DNAポリメラーゼ遺伝子の塩基配列に対して70%以上にこのコドン用法が適用されていることが好ましく、より好ましくは、80%以上であり、さらに好ましくは、90%以上であり、全てのコドンに対してこのコドン用法が適用されることが最も好ましい。
 本発明の耐熱性DNAポリメラーゼ遺伝子の好ましい形態として、サーマス・アクアティカス由来耐熱性DNAポリメラーゼ遺伝子の塩基配列をサッカロマイセス・セレビシエのコドン用法を適用して設計した耐熱性DNAポリメラーゼ遺伝子が挙げられる。なかでも、配列番号11の配列を有する、あるいはこれらの塩基配列からなる耐熱性DNAポリメラーゼ遺伝子が好ましい態様である。
 また、耐熱性DNAポリメラーゼ遺伝子において、mRNAを不安定化する配列を含まないようにする事が好ましく、mRNAを不安定化する配列としては著しい繰り返し配列や耐熱性DNAポリメラーゼ遺伝子のGC含量が高い遺伝子配列などが挙げられる。mRNAを不安定化する配列除去の目安として、具体的には10bp程度の遺伝子配列の出現頻度が耐熱性DNAポリメラーゼをコードする遺伝子の2%以下にまで抑えることや、耐熱性DNAポリメラーゼ遺伝子全体のGC含量を約20%以上、約45%以下、に設計することなどが挙げられる。
 本発明の耐熱性DNAポリメラーゼ遺伝子としては、導入しようとする宿主生物におけるコドン用法の適用、mRNA不安定化に寄与する配列を含まないようにする、好適なGC含量のうち、少なくとも1種類の特徴を有することが好ましい。より好ましくは、2種類以上、最も好ましくは3種類の特徴を有する。また、本耐熱性DNAポリメラーゼ遺伝子においては、宿主生物におけるコドン用法が適用されていることが好ましい。特に、サッカロマイセス属、特にサッカロマイセス・セレビシエを宿主として形質転換する場合には、サッカロマイセス・セレビシエにおけるコドン用法が適用されていることが好ましい。
 さらに、耐熱性DNAポリメラーゼ遺伝子において、特にコード領域において遺伝子クローニング工程上、不適当な制限酵素サイトを有さないように設計されていることが好ましい。具体的には、EcoRI、HindIII、NotI、SnaBIなどのサイトを含まないことが好ましい。また一方、遺伝子クローニング操作を考慮すれば、コード領域の外側には操作上、有用な制限酵素部位を備えていることが好ましい。例えば、EcoRI、HindIII、NotI、SnaBIなどの制限酵素サイトをコード領域の上流、または下流に有することができる。
 耐熱性DNAポリメラーゼ遺伝子ホモログとしては、例えば、これらのDNAとストリンジェントな条件でハイブリダイズするDNAポリメラーゼ遺伝子ホモログを挙げることができる。すなわち、これらのいずれかのDNAポリメラーゼ遺伝子の全体もしくは一部あるいはその相補鎖とストリンジェントな条件でハイブリダイズするDNAポリメラーゼ遺伝子ホモログである。かかるホモログは、同時にDNAポリメラーゼ活性を備えるタンパク質をコードしている。
 ストリンジェントな条件でハイブリダイズする耐熱性DNAポリメラーゼ遺伝子ホモログとは、例えば、もとの塩基配列の任意の少なくとも20個、好ましくは25個、より好ましくは少なくとも30個の連続した配列を一つあるいは複数個選択したDNAをプローブDNAとして、当業者の周知のハイブリダイセーション技術(Current Protocols I Molecular Biology edit. Ausubel et al., (1987) Publish. John Wily & Sons Sectoin 6.3-6.4)などを用いて、ハイブリダイズするDNAを含む。
 ここでストリンジェントな条件としては、50%ホルムアミド存在下でハイブリダイゼーション温度が37℃であり、より厳しい条件としては、約42℃である。さらに厳しい条件としては50%ホルムアミド存在下で約65℃とすることができる。
 なお、アミノ酸配列における変異の数は、もとのタンパク質の機能が維持できる限り制限されないが、全アミノ酸の70%以内であることが好ましく、より好ましくは、30%以内であり、さらに好ましくは20%以内である。
 また、このような耐熱性DNAポリメラーゼ遺伝子ホモログは、もとのDNAの塩基配列のコード領域に対して、少なくとも80%、好ましくは、90%以上のホモロジーを有する塩基配列を含む、あるいは当該塩基配列からなるDNAであることが好ましい。なお、DNAの塩基配列のホモロジーは、遺伝子解析プログラムBLASTなどによって決定することができる。
 なお、耐熱性DNAポリメラーゼ遺伝子は、化学的に合成することもできるし、長鎖DNAの合成方法として知られている藤本らの手法(藤本英也、合成遺伝子の作製法、植物細胞工学シリーズ7
植物のPCR実験プロトコール、1997、秀潤社、p95-100)を採用することもできる。
 また、アミノ酸配列における改変は、改変しようとするアミノ酸配列に、部位特異的変位導入法(Current Protocols I Molecular Biology edit. Ausubel et al., (1987) Publish . John Wily & Sons Sectoin 8.1-8.5)等を用いて、適宜、置換、欠失、挿入、および/または付加変異を導入することにより行うことができる。また、このような改変は、人工的に変異を導入しあるいは合成したものに限られず、人工的な変異処理に基づいて、あるいはこれに限られず自然界におけるアミノ酸の変異によっても生じたものも包括される。
 本発明で好適に利用可能である耐熱性DNAポリメラーゼ遺伝子としては、配列番号1、81及び82で示される塩基配列からなる遺伝子(対応するアミノ酸配列を以下に示す)を挙げることができる。
配列番号1
aagcttacgt atacaacatg agaggtatgc ttccattgtt
cgaacctaaa ggtagagtat      60
tgttggttga tggtcatcat ctagcttaca gaactttcca
cgctctaaaa ggtttaacaa     120
catcaagagg tgaacctgtt caagctgtat acggttttgc
taagtcttta ctaaaagcat     180
tgaaggaaga cggtgacgcc gttattgttg ttttcgatgc
taaggcacca agttttagac     240
atgaagcata cggtggttat aaggctggaa gagcaccaac
tcctgaagac ttccctagac     300
aattggcact aatcaaggaa ctagtcgact tactaggtct
tgcaagatta gaagtcccag     360
gttatgaggc agatgatgta ctagcctctt tagcaaagaa
ggcagaaaag gagggttatg     420
aagttagaat tttaaccgct gataaggact tatatcaatt
gctatctgat aggattcatg     480
tgttacaccc tgaaggttat ttgataactc cagcttggtt
atgggagaag tacggtttga     540
ggccagacca atgggccgat tatagagctt taaccggcga
cgagtcagac aatcttccag     600
gtgttaaagg aattggcgaa aagactgcta ggaagttgtt
ggaagagtgg ggctccttgg     660
aggccttact taaaaatttg gacaggctaa aaccagcaat
cagggaaaag atactagctc     720
acatggatga tcttaaattg tcttgggact tagccaaggt
cagaactgat ttgcctttag     780
aggtcgactt cgctaagaga agggaacctg atagggaaag
gttaagagcc ttcttggaaa     840
gacttgagtt tggatcatta ttgcatgaat ttggtttatt
agaatcccct aaggccttgg     900
aagaagcacc atggccacct ccagaaggtg cctttgtagg
cttcgtctta agcaggaaag     960
aaccaatgtg ggcagactta ttggctctag ctgctgccag
aggaggaaga gtgcatagag    1020
ccccagaacc atataaagcc ttgagagact tgaaggaagc
aagaggtttg ttagctaaag    1080
atttgagcgt attagccttg agggaaggtt taggactacc
accaggtgac gacccaatgt    1140
tgcttgctta tttgcttgat ccatcaaaca caacacctga
aggagtagct agaaggtatg    1200
gtggagaatg gactgaagag gctggagaga gagccgctct
atctgagaga ttgtttgcta    1260
atttgtgggg tagacttgaa ggtgaggaaa gattgttgtg
gctatacagg gaagtagaaa    1320
ggccattatc tgcagtattg gctcatatgg aggccacagg
cgttagatta gatgttgctt    1380
acttaagagc tttgtcattg gaagtcgccg aagaaattgc
aagacttgaa gctgaggtgt    1440
tcagacttgc cggtcatcca ttcaatctta atagtagaga
ccagctagaa agagtgttat    1500
tcgacgagct tggattacca gcaatcggaa agacagaaaa
gactggtaaa aggtctacaa    1560
gtgccgccgt tttggaagca ttgagggagg cccatccaat
tgttgaaaag atattgcagt    1620
atagagaatt gacaaaatta aaatcaactt atatcgatcc
acttccagac ttaatccatc    1680
caaggacagg cagattacac accaggttta accagaccgc
aactgctaca ggcagattat    1740
catcttcaga tcctaactta caaaacattc ctgtaaggac
tccactaggt cagagaatta    1800
gaagagcttt tatcgctgag gaaggctggt tgcttgtggc
tttagattat agtcaaattg    1860
agttaagggt cttggctcac ttgtctggtg acgaaaatct
tatcagagtt tttcaggaag    1920
gtagggatat acatacagag accgcctcat ggatgtttgg
tgttccaagg gaggccgtcg    1980
atccactaat gaggagagca gccaaaacta ttaactttgg
agtattgtat ggtatgagtg    2040
ctcacagatt atcccaagag ttggccatcc cttacgagga
agcacaggct tttatagaaa    2100
ggtatttcca gtcttttcct aaggttagag catggattga
aaagacacta gaggaaggta    2160
ggaggagggg ttacgtggag accttattcg gaagaaggag
atacgttcca gacttagagg    2220
ctagagtgaa atcagttaga gaagccgcag agagaatggc
attcaatatg ccagtacaag    2280
gcactgccgc agatttgatg aaactagcca tggttaagct
atttccaaga ttggaagaaa    2340
tgggagctag aatgctatta caagttcatg atgaacttgt
tttagaggct cctaaagaaa    2400
gggctgaagc agtggccagg ttagctaaag aagtaatgga
gggcgtttac ccattggcag    2460
ttcctttaga ggtcgaagtg ggtataggtg aagactggct
atctgcaaag gaataagaat    2520
tc                                                                  
2522
 
配列番号81
atgattttag atgtggatta cataactgaa gaaggaaaac
ctgttattag gctattcaaa      60
aaagagaacg gaaaatttaa gatagagcat gatagaactt
ttagaccata catttacgct     120
cttctcaggg atgattcaaa gattgaagaa gttaagaaaa
taacggggga aaggcatgga     180
aagattgtga gaattgttga tgtagagaag gttgagaaaa
agtttctcgg caagcctatt     240
accgtgtgga aactttattt ggaacatccc caagatgttc
ccactattag agaaaaagtt     300
agagaacatc cagcagttgt ggacatcttc gaatacgata
ttccatttgc aaagagatac     360
ctcatcgaca aaggcctaat accaatggag ggggaagaag
agctaaagat tcttgccttc     420
gatatagaaa ccctctatca cgaaggagaa gagtttggaa
aaggcccaat tataatgatt     480
agttatgcag atgaaaatga agcaaaggtg attacttgga
aaaacataga tcttccatac     540
gttgaggttg tatcaagcga gagagagatg ataaagagat
ttctcaggat tatcagggag     600
aaggatcctg acattatagt tacttataat ggagactcat
tcgacttccc atatttagcg     660
aaaagggcag aaaaacttgg gattaaatta accattggaa
gagatggaag cgagcccaag     720
atgcagagaa taggcgatat gacggctgta gaagtcaagg
gaagaataca tttcgacttg     780
tatcatgtaa taacaaggac aataaatctc ccaacataca
cactagaggc tgtatatgaa     840
gcaatttttg gaaagccaaa ggagaaggta tacgccgacg
agatagcaaa agcctgggaa     900
agtggagaga accttgagag agttgccaaa tactcgatgg
aagatgcaaa ggcaacttat     960
gaactcggga aagaattcct tccaatggaa attcagcttt
caagattagt tggacaacct    1020
ttatgggatg tttcaaggtc aagcacaggg aaccttgtag
agtggttctt acttaggaaa    1080
gcctacgaaa gaaacgaagt agctccaaac aagccaagtg
aagaggagta tcaaagaagg    1140
ctcagggaga gctacacagg tggattcgtt aaagagccag
aaaaggggtt gtgggaaaac    1200
atagtatacc tagattttag agccctatat ccctcgatta
taattaccca caatgtttct    1260
cccgatactc taaatcttga gggatgcaag aactatgata
tcgctcctca agtaggccac    1320
aagttctgca aggacatccc tggttttata ccaagtctct
tgggacattt gttagaggaa    1380
agacaaaaga ttaagacaaa aatgaaggaa actcaagatc
ctatagaaaa aatactcctt    1440
gactatagac aaaaagcgat aaaactctta gcaaattctt
tctacggata ttatggctat    1500
gcaaaagcaa gatggtactg taaggagtgt gctgagagcg
ttactgcctg gggaagaaag    1560
tacatcgagt tagtatggaa ggagctcgaa gaaaagtttg
gatttaaagt cctctacatt    1620
gacactgatg gtctctatgc aactatccca ggaggagaaa
gtgaggaaat aaagaaaaag    1680
gctctagaat ttgtaaaata cataaattca aagctccctg
gactgctaga gcttgaatat    1740
gaagggtttt ataagagggg attcttcgtt acgaagaaga
ggtatgcagt aatagatgaa    1800
gaaggaaaag tcattactcg tggtttagag atagttagga
gagattggag tgaaattgca    1860
aaagaaactc aagctagagt tttggagaca atactaaaac
acggagatgt tgaagaagct    1920
gtgagaatag taaaagaagt aatacaaaag cttgccaatt
atgaaattcc accagagaag    1980
ctcgcaatat atgagcagat aacaagacca ttacatgagt
ataaggcgat aggtcctcac    2040
gtagctgttg caaagaaact agctgctaaa ggagttaaaa
taaagccagg aatggtaatt    2100
ggatacatag tacttagagg cgatggtcca attagcaata
gggcaattct agctgaggaa    2160
tacgatccca aaaagcacaa gtatgacgca gaatattaca
ttgagaacca ggttcttcca    2220
gcggtactta ggatattgga gggatttgga tacagaaagg
aagacctcag ataccaaaag    2280
acaagacaag tcggcctaac ttcctggctt aacattaaaa
aatcctag                
2328
 
配列番号82
atgatcctcg atacagacta cataactgag gatggaaagc
ccgtcatcag gatcttcaag      60
aaggagaacg gcgagttcaa aatagactac gacagaaact
ttgagccata catctacgcg     120
ctcttgaagg acgactctgc gattgaggac gtcaagaaga
taactgccga gaggcacggc     180
actaccgtta gggttgtcag ggccgagaaa gtgaagaaga
agttcctagg caggccgata     240
gaggtctgga agctctactt cactcacccc caggacnnnc
ccgcaatcag ggacaagata     300
aaggagcatc ctgccgttgt ggacatctac gagtacgaca
tccccttcgc gaagcgctac     360
ctcatagaca aaggcttaat cccgatggag ggcgacgagg
aacttaagat gctcgccttc     420
gacatcgaga cgctctatca cgagggcgag gagttcgccg
aagggcctat cctgatgata     480
agctacgccg acgaggaagg ggcgcgcgtt attacctgga
agaatatcga ccttccctat     540
gtcgacgtcg tttccaccga gaaggagatg ataaagcgct
tcctcaaggt cgtcaaggaa     600
aaggatcccg acgtcctcat aacctacaac ggcgacaact
tcgacttcgc ctacctcaag     660
aagcgctccg agaagctcgg agtcaagttc atcctcggaa
gggaagggag cgagccgaaa     720
atccagcgca tgggcgatcg ctttgcggtg gaggtcaagg
gaaggattca cttcgacctc     780
taccccgtca ttaggagaac gattaacctc cccacttaca
cccttgaggc agtatatgaa     840
gccatctttg gacagccgaa ggagaaggtc tacgctgagg
agatagcgca ggcctgggaa     900
acgggcgagg gattagaaag ggtggcccgc tactcgatgg
aggacgcaaa ggtaacctat     960
gaactcggaa aagagttctt ccctatggaa gcccagctct
cgcgcctcgt aggccagagc    1020
ctctgggatg tatctcgctc gagtaccgga aacctcgtcg
agtggttttt gctgaggaag    1080
gcctacgaga ggaatgaact tgcaccaaac aagccggacg
agagggagct ggcaagaaga    1140
agggagagct acgcgggtgg atacgtcaag gagcccgaaa
ggggactgtg ggagaacatc    1200
gtgtatctgg acttccgctc cctgtatcct tcgataataa
tcacccataa cgtctcccct    1260
gatacactca acagggaggg ttgtgaggag tacgacgtgg
ctcctcaggt aggccataag    1320
ttctgcaagg acttccccgg cttcatccca agcctcctcg
gagacctctt ggaggagaga    1380
cagaaggtaa agaagaagat gaaggccact atagacccaa
tcgagaagaa actcctcgat    1440
tacaggcaac gagcaatcaa aatccttgct aatagcttct
acggttacta cggctatgca    1500
aaggcccgct ggtactgcaa ggagtgcgcc gagagcgtta
ccgcttgggg caggcagtac    1560
atcgagacca cgataaggga aatagaggag aaatttggct
ttaaagtcct ctacgcggac    1620
acagatggat ttttcgcaac aatacctgga gcggacgccg
aaaccgtcaa aaagaaggca    1680
aaggagttcc tggactacat caacgccaaa ctgcccggcc
tgctcgaact cgaatacgag    1740
ggcttctaca agcgcggctt cttcgtgacg aagaagaagt
acgcggttat agacgaggag    1800
gacaagataa cgacgcgcgg gcttgaaata gttaggcgtg
actggagcga gatagcgaag    1860
gagacgcagg cgagggttct tgaggcgata ctaaagcacg
gtgacgttga agaagcggta    1920
aggattgtca aagaggttac ggagaagctg agcaagtacg
aggttccacc ggagaagctg    1980
gtcatctacg agcagataac ccgcgacctg aaggactaca
aggccaccgg gccgcatgtg    2040
gctgttgcaa aacgcctcgc cgcaaggggg ataaaaatcc
ggcccggaac ggtcataagc    2100
tacatcgtgc tcaaaggctc gggaaggatt ggggacaggg
ctataccctt tgacgaattt    2160
gacccggcaa agcacaagta cgatgcagaa tactacatcg
agaaccaggt tcttccagct    2220
gtggagagga ttctgagggc ctttggttac cgtaaagaag
atttaaggta tcagaaaacg    2280
cggcaggttg gcttgggggc gtggctaaaa cctaagacat
ga                      
2322
 
 
・配列番号1の塩基配列からなる遺伝子に対応するアミノ酸配列
MRGMLPLFEP KGRVLLVDGH HLAYRTFHAL KGLTTSRGEP
VQAVYGFAKS LLKALKEDGD      60
AVIVVFDAKA PSFRHEAYGG YKAGRAPTPE DFPRQLALIK
ELVDLLGLAR LEVPGYEADD     120
VLASLAKKAE KEGYEVRILT ADKDLYQLLS DRIHVLHPEG
YLITPAWLWE KYGLRPDQWA     180
DYRALTGDES DNLPGVKGIG EKTARKLLEE WGSLEALLKN
LDRLKPAIRE KILAHMDDLK     240
LSWDLAKVRT DLPLEVDFAK RREPDRERLR AFLERLEFGS
LLHEFGLLES PKALEEAPWP     300
PPEGAFVGFV LSRKEPMWAD LLALAAARGG RVHRAPEPYK
ALRDLKEARG LLAKDLSVLA     360
LREGLGLPPG DDPMLLAYLL DPSNTTPEGV ARRYGGEWTE
EAGERAALSE RLFANLWGRL     420
EGEERLLWLY REVERPLSAV LAHMEATGVR LDVAYLRALS
LEVAEEIARL EAEVFRLAGH     480
PFNLNSRDQL ERVLFDELGL PAIGKTEKTG KRSTSAAVLE
ALREAHPIVE KILQYRELTK     540
LKSTYIDPLP DLIHPRTGRL HTRFNQTATA TGRLSSSDPN
LQNIPVRTPL GQRIRRAFIA     600
EEGWLLVALD YSQIELRVLA HLSGDENLIR VFQEGRDIHT
ETASWMFGVP REAVDPLMRR     660
AAKTINFGVL YGMSAHRLSQ ELAIPYEEAQ AFIERYFQSF
PKVRAWIEKT LEEGRRRGYV     720
ETLFGRRRYV PDLEARVKSV REAAERMAFN MPVQGTAADL
MKLAMVKLFP RLEEMGARML     780
LQVHDELVLE APKERAEAVA RLAKEVMEGV YPLAVPLEVE
VGIGEDWLSA
KE             832
・配列番号81の塩基配列からなる遺伝子に対応するアミノ酸配列
MILDVDYITE EGKPVIRLFK KENGKFKIEH DRTFRPYIYA
LLRDDSKIEE VKKITGERHG      60
KIVRIVDVEK VEKKFLGKPI TVWKLYLEHP QDVPTIREKV
REHPAVVDIF EYDIPFAKRY     120
LIDKGLIPME GEEELKILAF DIETLYHEGE EFGKGPIIMI
SYADENEAKV ITWKNIDLPY     180
VEVVSSEREM IKRFLRIIRE KDPDIIVTYN GDSFDFPYLA
KRAEKLGIKL TIGRDGSEPK     240
MQRIGDMTAV EVKGRIHFDL YHVITRTINL PTYTLEAVYE
AIFGKPKEKV YADEIAKAWE     300
SGENLERVAK YSMEDAKATY ELGKEFLPME IQLSRLVGQP
LWDVSRSSTG NLVEWFLLRK     360
AYERNEVAPN KPSEEEYQRR LRESYTGGFV KEPEKGLWEN
IVYLDFRALY PSIIITHNVS     420
PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE
RQKIKTKMKE TQDPIEKILL     480
DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK
YIELVWKELE EKFGFKVLYI     540
DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY
EGFYKRGFFV TKKRYAVIDE     600
EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA
VRIVKEVIQK LANYEIPPEK     660
LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI
GYIVLRGDGP ISNRAILAEE     720
YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK
TRQVGLTSWL NIKKS          775
・配列番号82の塩基配列からなる遺伝子に対応するアミノ酸配列
MILDTDYITE DGKPVIRIFK KENGEFKIDY DRNFEPYIYA
LLKDDSAIED VKKITAERHG      60
TTVRVVRAEK VKKKFLGRPI EVWKLYFTHP QDVPAIRDKI
KEHPAVVDIY EYDIPFAKRY     120
LIDKGLIPME GDEELKMLAF DIETLYHEGE EFAEGPILMI
SYADEEGARV ITWKNIDLPY     180
VDVVSTEKEM IKRFLKVVKE KDPDVLITYN GDNFDFAYLK
KRSEKLGVKF ILGREGSEPK     240
IQRMGDRFAV EVKGRIHFDL YPVIRRTINL PTYTLEAVYE
AIFGQPKEKV YAEEIAQAWE     300
TGEGLERVAR YSMEDAKVTY ELGKEFFPME AQLSRLVGQS
LWDVSRSSTG NLVEWFLLRK     360
AYERNELAPN KPDERELARR RESYAGGYVK EPERGLWENI
VYLDFRSLYP SIIITHNVSP     420
DTLNREGCEE YDVAPQVGHK FCKDFPGFIP SLLGDLLEER
QKVKKKMKAT IDPIEKKLLD     480
YRQRAIKILA NSFYGYYGYA KARWYCKECA ESVTAWGRQY
IETTIREIEE KFGFKVLYAD     540
TDGFFATIPG ADAETVKKKA KEFLDYINAK LPGLLELEYE
GFYKRGFFVT KKKYAVIDEE     600
DKITTRGLEI VRRDWSEIAK ETQARVLEAI LKHGDVEEAV
RIVKEVTEKL SKYEVPPEKL     660
VIYEQITRDL KDYKATGPHV AVAKRLAARG IKIRPGTVIS
YIVLKGSGRI GDRAIPFDEF     720
DPAKHKYDAE YYIENQVLPA VERILRAFGY RKEDLRYQKT
RQVGLGAWLK
PKT            773
 宿主に対して上述した耐熱性DNAポリメラーゼ遺伝子を導入するためのDNA構築物について説明する。本発明の耐熱性DNAポリメラーゼ遺伝子を用いて宿主細胞に形質転換して、このDNAによってコードされるタンパク質を発現させることにより、そのDNAポリメラーゼ活性により宿主細胞においてDNAポリメラーゼを産生させることができる。
 形質転換にあたっては、上述した耐熱性DNAポリメラーゼ遺伝子からなるDNAセグメントを、宿主細胞内で発現可能とするDNA構築物を用いる。形質転換のためのDNA構築物の態様としては、特に限定しないでプラスミド(DNA)、バクテリオファージ(DNA)、レトロトランスポゾン(DNA)、人工染色体(YAC、PAC、BAC、MAC等)を、外来遺伝子の導入形態(染色体外あるいは染色体内)や宿主細胞の種類に応じて選択して採用することができる。したがって、本DNA構築物は、上述した耐熱性DNAポリメラーゼ遺伝子の他、これらのいずれかの態様のベクターの構成セグメントを備えることができる。
 好ましい原核細胞性ベクター、真核細胞性ベクター、動物細胞性ベクター、植物細胞性ベクターは当該分野において周知である。
 なお、プラスミドDNAとしては、例えば、pRS413、pRS415、pRS416、YCp50、pAUR112またはpAUR123などのYCp型大腸菌-酵母シャトルベクター、pYES32またはYEp13などのYEp型大腸菌-酵母シャトルベクター、pRS403、pRS404、pRS405、pRS406、pAUR101またはpAUR135などのYIp型大腸菌-酵母シャトルベクターなどを挙げることができる。ファージDNAとしては、λファージ(Charon4A、Charon21A、EMBL3、EMBL4、λgt100、gt11、zap)、φX174、M13mp18又はM13mp19などを挙げることができる。
 レトロトランスポゾンとしては、Ty因子などを挙げることができる。YACとしては、pYACC2などを挙げることができる。
 本DNA構築物を作製するには、上述した耐熱性DNAポリメラーゼ遺伝子を含むフラグメントなどを適当な制限酵素で切断し、使用するベクターDNAの制限酵素部位あるいはマルチクローニングサイトに挿入などすることによる。
 本DNA構築物の第1の態様は、上述した耐熱性DNAポリメラーゼ遺伝子からなるDNAセグメントを発現可能に連結されるプロモーターセグメントを備えている。すなわち、プロモーターにより制御され、そのプロモーターの下流側に上述した耐熱性DNAポリメラーゼ遺伝子セグメントが連結されている。
 上述した耐熱性DNAポリメラーゼ遺伝子の発現において、酵母中で発現するプロモーターを使用するのであれば、例えば、gal1プロモーター、gal10プロモーター、ピルビン酸脱炭酸酵素遺伝子プロモーター、ヒートショックタンパク質プロモーター、MFα1プロモーター、PH05プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、AOX1プロモーターなどを使用することが好ましい。
 また、本DNA構築物の他の態様である第2のDNA構築物は、本DNAの他、宿主染色体に相同組換えのためのDNAセグメントを備える。相同組換え用DNAセグメントは、宿主染色体において上述した耐熱性DNAポリメラーゼ遺伝子を導入しようとするターゲット部位近傍のDNA配列と相同なDNA配列である。相同組換え用DNAセグメントは、少なくとも1個備えられ、好ましくは、2個備えられている。例えば、2個の相同組換え用DNAセグメントを、染色体上のターゲット部位の上流側と下流側のDNAに相同なDNA配列とし、これらのDNAセグメントの間に上述した耐熱性DNAポリメラーゼ遺伝子を連結することが好ましい。
 相同組換えにより宿主染色体に上述した耐熱性DNAポリメラーゼ遺伝子を導入する場合、宿主染色体上のプロモーターにより制御可能に本DNAを導入することができる。この場合、目的遺伝子の導入によって、同時に、本来当該プロモーターによって制御されるべき内在性遺伝子を破壊し、この内在性遺伝子に替えて外来の上述した耐熱性DNAポリメラーゼ遺伝子を発現させることができる。特に、当該プロモーターが、宿主細胞において高発現プロモーターである場合に有用である。
 以下、上述したDNA構築物による宿主の形質転換について説明する。一旦、DNA構築物が構築されたら、適当な宿主細胞に、トランスフォーメーション法や、トランスフェクション法、接合法、プロトプラスト融合、エレクトロポレーション法、リポフェクション法、酢酸リチウム法、パーティクルガン法、リン酸カルシウム沈殿法、アグロバクテリウム法、PEG法、直接マイクロインジェクション法等の各種の適切な手段のいずれかにより、これを導入することができる。DNA構築物の導入後、その受容細胞は、選択培地で培養される。
 DNA構築物によって形質転換された形質転換体においては、DNA構築物の構成成分が染色体上あるいは染色体外因子(人工染色体を含む)上に存在することになる。
所望のプロモーター下に上述した耐熱性DNAポリメラーゼ遺伝子が導入されたか否かの確認は、PCR法やサザンハイブリダイゼーション法により行うことができる。例えば、形質転換体からDNAを調製し、導入部位特異的プライマーによりPCRを行い、PCR産物について、電気泳動において予期されるバンドを検出することによって確認できる。あるいは蛍光色素などで標識したプライマーでPCRを行うことでも確認できる。これらの方法は、当業者において周知である。
 酵母が宿主細胞の場合、酵母遺伝子を破壊した株を用いることが出来る。例えば、遺伝子導入の際、ウラシル合成酵素遺伝子がプラスミドに有れば、ウラシル要求性株を用いて、プラスミドが導入された酵母を選抜することができる。また、プロテアーゼ欠損株を用いて、酵母細胞内での過剰発現されたタンパク質の分解を抑制することができる。これらの方法は、当業者において周知である。
 以下、上述した形質転換体を用いて耐熱性DNAポリメラーゼ調製物の製造について説明する。DNA構築物が導入されて得られる形質転換体を培養することにより、培養物中に外来遺伝子の発現産物である耐熱性DNAポリメラーゼが生成する。培養物から耐熱性DNAポリメラーゼを分離する工程を実施することにより、耐熱性DNAポリメラーゼ調製物を獲得することができる。なお、本発明において培養物とは、培養細胞あるいは菌体、細胞若しくは菌体の破砕物を包括している。
 本発明の形質転換体の培養にあたっては、形質転換体の種類に応じて培養条件を選択することができる。このような培養条件は、当業者においては周知である。
 酵母を宿主として得られた形質転換体を培養する培地としては、微生物が資化可能な炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行うことができる培地であれば特に限定されず天然培地、合成培地のいずれも使用することができるが、検体微生物が微量である場合に適用可能な耐熱性DNAポリメラーゼ調製物を生産するためには、合成培地を使用することが好ましい。炭素源としては、グルコース、フルクトース、スクロース、デンプン等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノール等のアルコールを用いることができる。窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム等の無機酸もしくは有機酸のアンモニウム塩またはその他の含窒素化合物の他、ペプトン、肉エキス、コーンスティープリカー等を用いることができる。
 無機物としては、リン酸第一カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウムなどを用いることができる。培養は、通常、振とう培養または通気攪拌培養等の好気条件下、30℃で24~72時間行う。培養期間中、pHは5.0~7.0に保持することが好ましい。また、pHの調整は、無機あるいは有機酸、アルカリ溶液等を用いて行うことができる。
 植物細胞を宿主として得られた形質転換体を培養する培地としては、炭素源、窒素源、無機塩類、有機物等を含有する植物細胞が培養可能な培地であれば特に限定はなく、例として一般に使用されるMS培地、LS培地、Gamborg B5培地、WP培地、ホワイト培地などが挙げられる。炭素源としてはグルコース、フルクトース、スクロース、デンプン等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノール等のアルコールが挙げられ、中でもスクロース、グルコースが好ましい。窒素源としては、硝酸カリウム、硝酸ナトリウム、硝酸カルシウム等の硝酸塩、リン酸アンモニウム、硝酸アンモニウム、硫酸アンモニウム等のアンモニウム塩もしくは有機酸のアンモニウム塩またはその他の含窒素化合物の他、ペプトン、肉エキス、コーンスティープリカー、グリシン、アラニン、ヒスチジン、グルタミン、グルタミン酸、ロイシン、イソロイシン、バリン、プロリン、フェニルアラニン、チロシン、トリプトファン、リジン、アスパラギン、アスパラギン酸、スレオニン、システイン、シスチン、メチオニン、セリン、オルニチン等のアミノ酸などが挙げられる。無機塩類としては、リン酸第一カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウムなどが挙げられる。有機物としては、ビタミン類としては塩酸チアミン、ニコチン酸、塩酸ピリドキシン、ビオチン、葉酸、パラアミノ安息香酸などが挙げられる他、イノシトール、ココナツミルク、カゼイン加水分解物などが挙げられる。また、植物ホルモンとしてはインドール酢酸、インドール酪酸、ナフタレン酢酸、2,4-ジクロロフェノキシ酢酸等のオーキシン類、ゼアチン、6-ベンジルアデニン、カイネチン等のサイトカイニン類、アブシジン酸、ジベレリン酸などが挙げられるが、植物細胞が培養可能であればこれら植物ホルモンは含んでいても含まなくても良い。培養は通常、振とう培養または通気攪拌培養等の好気条件下、25℃で5日~6週間行う。
 動物細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されているRPMI1640培地、DMEM培地またはこれらの培地にウシ胎児血清などを添加した培地を用いることができる。培養は、通常、5%CO2存在下、37℃で1~30日行う。培養中は必要に応じてカナマイシン、ペニシリンなどの抗生物質を培地に添加してもよい。
 培養終了後、培養液や培養菌体などの培養物から耐熱性DNAポリメラーゼを所望の形態として得ることができる。例えば耐熱性DNAポリメラーゼを含む調製物を得るには先に挙げた方法が利用できる。更に、先に挙げた抽出物の調製法により得られた抽出物(例えば粗抽出画分)から耐熱性DNAポリメラーゼを分離精製して精製品としてもよい。
 これらの抽出物に対して、各種クロマトグラフィー、電気泳動などにかけて精製酵素標品を得ることができる。たとえば、セファデックス、ウルトラゲルもしくはバイオゲルなどを用いるゲルろ過、イオン交換体クロマトグラフィー、ポリアクリルアミドゲルなどを用いる電気泳動法、アフィニティクロマトグラフィー、逆相クロマトグラフィー等を用いる分画法を適宜選択し、又はこれらを組み合わせることにより、精製された目的の遺伝子産物を取得することができる。なお、精製された遺伝子産物が有するアミノ酸配列は、公知のアミノ酸分析法により行うことができる。上述した培養法、精製法は、一例であってこれに限定する趣旨ではない。
 特に本発明においては、培養産物中に耐熱性DNAポリメラーゼの大部分が不溶性となり生成され、これを加熱することにより活性を有し溶解度、純度を向上することができる。耐熱性DNAポリメラーゼの所望の形態(例えば調製物や精製品)を得るまでの適当な段階で加熱処理を行うことで、宿主菌により生産された耐熱性DNAポリメラーゼを可溶化及び活性化することができる。例えば、培養菌体破砕後に遠心分離を行い、上清、沈殿に分け、沈殿分画に対し、あるいは、耐熱性DNAポリメラーゼを菌体内に生産蓄積している菌体に対して加熱処理することで、耐熱性DNAポリメラーゼの可溶化と活性化の両方を達成することができる。この加熱処理は、好ましくは、50℃~100℃、より好ましくは、70℃~80℃、さらには73℃~75℃で1時間程度行うのが好ましい。また、培養産物の上清分画に対しても、加熱を行うことにより、宿主由来のタンパク質を不溶化し、純度を向上することができる。培養産物の上清分画に対し、加熱は、好ましくは、50℃~100℃、より好ましくは、70℃~80℃、さらには73℃~75℃で1時間程度行うのが好ましい。
 本発明にかかる耐熱性DNAポリメラーゼ調製物の製造では、真核細胞を宿主として耐熱性DNAポリメラーゼをコードする遺伝子を導入、発現させることにより、バクテリアDNAを由来とする核酸等の混入が全くない、あるいは極度に低減させた耐熱性DNAポリメラーゼ調製物の取得が可能となる。従って精製品を得る場合においても、精製工程に対して要求される、かかる核酸等の混入に関する精製精度や工程が軽減され、製造コストの低減を図ることができる。
(2)PCR法
 本発明にかかる耐熱性DNAポリメラーゼ調製物を用いるPCR法としては、検出対象生物を検出するための目的遺伝子の増幅のためのPCR法であれば種々のPCR法を利用できる。
 好ましいPCR法としては、以下の方法を挙げることができる。
 (A)通常のPCR法、またはPCRの変法であって、変法とは以下のa、b、cを単独またはAとBまたはAとC組み合わせて用いるPCR法。
a.インターカレーターを用いたリアルタイムPCR法であって、以下の手順を含むPCR法。
(a1)ターゲットとなるPCR増幅産物のTm値がプライマーダイマー自体の値より高くなるようにプライマーを設計する。
(a2)リアルタイムPCRの蛍光検出時の温度をそれらの中間に設定する。
b.試料中の標的核酸内における配列のsemi-nested増幅のための方法であって、以下の段階を含んで成るPCR法。
(b1)外側のPCR用プライマーペア、およびsemi-nestedプライマーを含む増幅反応混合物中に前記の試料を混合する。
(b2)外側の増幅配列を提供するため、段階b1の増幅反応混合物を、テンプレートとなるDNA上において、外側のPCR用プライマーペアをアニールおよび伸長させ、かつsemi-nestedプライマーが働かない温度での増幅反応において処理する。
(b3)semi-nestedされた増幅産物を提供するため、段階b2の混合物を、外側のPCR用プライマーの片方とsemi-nestedプライマーのみがアニールする温度か、或いは伸長させる伸長時間での増幅反応において処理する。
c.試料中の標的核酸内における配列のnested増幅のための方法であって、以下の段階を含んで成るPCR法。
(c1)外側のPCR用プライマーペア、およびnestedプライマーペアを含む増幅反応混合物中に前記の試料を混合。
(c2)外側の増幅配列を提供するため、段階(c1)の増幅反応混合物を、テンプレートとなるDNA上において、外側のPCR用プライマーペアをアニールおよび伸長させ、かつnestedプライマーペアが働かない温度での増幅反応において処理する。
(c3)nestedされた増幅産物を提供するため、段階(c2)の混合物を、nestedプライマーペアのみがアニールする温度か、或いは伸長させる伸長時間での増幅反応において処理する。
 (B)定量法にかかるPCR変法としての、インターカレーターを用いたリアルタイムPCR法であって、以下の手順を含むPCR法。
(a1)ターゲットとなるPCR増幅産物のTm値がプライマーダイマー自体の値より高くなるようにプライマーを設計する。
(a2)リアルタイムPCRの蛍光検出時の温度をそれらの中間に設定する。
(2-3)本発明の検出法および定量法にかかるPCR変法は、試料中の標的核酸内における配列のsemi-nested増幅のための方法で、以下の段階を含んで成るPCR法である。
(b1)外側のPCR用プライマーペア、およびsemi-nestedプライマーを含む増幅反応混合物中に前記の試料を混合し、
(b2)外側の増幅配列を提供するため、段階b1の増幅反応混合物を、テンプレートとなるDNA上において、外側のPCR用プライマーペアをアニールおよび伸長させ、かつsemi-nestedプライマーが働かない温度での増幅反応において処理する。
(b3)semi-nestedされた増幅産物を提供するため、段階b2の混合物を、外側のPCR用プライマーの片方とsemi-nestedプライマーのみがアニールする温度か、或いは伸長させる伸長時間での増幅反応において処理する。
(C)検出法および定量法としてのPCR変法としての、試料中の標的核酸内における配列のnested増幅のための方法で、以下の段階を含んで成るPCR法。
(c1)外側のPCR用プライマーペア、およびnestedプライマーペアを含む増幅反応混合物中に前記の試料を混合する。
(c2)外側の増幅配列を提供するため、段階c1の増幅反応混合物を、テンプレートとなるDNA上において、外側のPCR用プライマーペアをアニールおよび伸長させ、かつ干渉プライマーペアの阻害作用でnestedプライマーペアが働かない温度での増幅反応において処理する。
(c3)nestedされた増幅産物を提供するため、段階c2の混合物を、nestedプライマーペアのみがアニールする温度か、或いは伸長させる伸長時間での増幅反応において処理する。
 本発明にかかる耐熱性DNAポリメラーゼ調製物に組み合わせると有用なPCR変法の一つは、masked Primer Dimer法(A法)である。masked Primer
Dimer法は、従来のプライマーダイマーの形成抑制方法とは異なり、プライマーダイマーのみを非表示とする手法である。その手法とは、「プライマーダイマーは増幅産物として小さいが故に、そのTm値が低い傾向にある」ことを考慮し、
(a1)ターゲットとなるPCR増幅産物のTm値が、プライマーダイマーのTm値より高値になるようにプライマーを設計する。
(a2)リアルタイムPCRの蛍光検出時の温度をそれらの中間値に設定する。
との手順でインターカレーターを用いたリアルタイムPCRを行う方法である。
 以上の手順を踏むことにより、プライマーダイマーのみが二本鎖から一本鎖に解離するため、インターカレーターが結合できない。その結果、プライマーダイマーが蛍光発光せず、モニター上はプライマーダイマーのみ非表示となり、目的の増幅産物は正常に増幅曲線を描くことになる。
 A法に用いるプライマーの設計は、ターゲットとなるPCR増幅産物のTm値がプライマーダイマー自体の値より高くなるようにすれば、特に限定されないが、具体的には、ターゲットとなるPCR増幅産物のTm値をプライマーダイマー自体のTm値の5℃以上、好適には10℃以上にプライマーの設計を行えばよい。A法において、リアルタイムPCRの蛍光検出時の温度は、ターゲットとなるPCR増幅産物のTm値とプライマーダイマーのTm値の中間値に設定すればよいが、中間値は、増幅産物とプライマーダイマーのTm値差の程度に応じて、中間値の前後、例えば、前後1~4℃程度の幅を持たせることができる。但し、蛍光検出温度は上記の範囲で出来るだけ低い温度の方が好ましい。
 インターカレーターを用いたリアルタイムPCRは、装置、手法など通常知られたものを使用すればよく、例えば、インターカレーターとして、サイバーグリーン(SYBR Green I 
)などの蛍光色素を利用したリアルタイムPCRが挙げられる。
 本発明の耐熱性DNAポリメラーゼ調製物に組み合わせると有用なPCR変法の別の一つは、入れ子増幅法の応用、或いはPCR伸長時間の工夫である。入れ子増幅法を応用するか或いはPCR伸長時間を工夫することにより、通常のnested PCR法の様に2回のPCRを分けて行うこと無く、1回のみのPCRでnested PCRが行える(One
Step nested PCR)。このOne Step nested PCR法では、簡単な設計による“nestedプライマー”を加えれば直ぐに施行できるため、誰でも簡単に実施できる。
 One Step nested PCR法は、以下のB法またはC法のPCR変法である。
 
B法:試料中の標的核酸内における配列のsemi-nested増幅のための方法で、以下の段階を含んで成るPCR変法。
(b1)外側のPCR用プライマーペア、およびsemi-nestedプライマーを含む増幅反応混合物中に試料を混合し、
(b2)外側の増幅配列を提供するため、段階b1の増幅反応混合物を、テンプレートとなるDNA上において、外側のPCR用プライマーペアをアニールおよび伸長させ、かつsemi-nestedプライマーがアニールしない温度での増幅反応において処理する。
(b3)semi-nestedされた増幅産物を提供するため、段階b2の混合物を、外側のPCR用プライマーの両方とsemi-nestedプライマーとがアニールするが、nestedされた内側のPCR増幅産物のみがdenatureする温度での増幅反応において処理する。或いはnestedされた内側のPCR増幅産物のみが伸長できる伸長時間の増幅反応において処理する。
B法において、増幅反応混合物は、3種類のプライマーから成る。すなわち、第1のプライマーは外側のPCR用プライマーペアの一方で、第2のプライマーはsemi-nestedプライマーであり、第3のプライマーは外側のPCR用プライマーペアのもう一方で、かつsemi-nestedプライマーともペアとなるものである。
 B法において、段階b2にて、外側のPCR用プライマーペアのみをアニールおよび伸長させ、かつsemi-nestedプライマーがアニールしない温度が必要である。また、段階b3にて、外側のPCR増幅産物がdenatureせず、内側のnested PCR増幅産物のみがdenatureして伸長するための温度を提供することが必要である。或いは、段階b3にて、外側のPCR増幅産物が伸長できず、内側のnested PCR増幅産物のみが伸長できる伸長時間を提供することが必要である。B法において、semi-nestedプライマーペアをアニールさせるため温度は、外側のPCR用プライマーペアをアニールさせるための適切な温度よりも5℃~20℃低いことが好ましい。 
 B法の段階a1において、プライマーが一定の温度で増幅反応混合物中に存在していることが好ましい。
 B法において、第1のプライマーと第3のプライマーのTm値は同じであることが好ましい。B法において、第2のプライマーは、第1、3いずれかのプライマーとsemi-nestedとなるように内側に設定され、第2のプライマーのTm値は第1、3のプライマーのTm値よりも5~20℃低いことが好ましい。B法において、外側の増幅産物はnestedされた内側の増幅産物よりも十分(300bp程度以上)大きいことが好ましい。
 C法:試料中の標的核酸内における配列のnested増幅のための方法で、以下の段階を含んで成るPCR変法。
(c1)外側のPCR用プライマーペア、およびnestedプライマーペアを含む増幅反応混合物中に試料を混合する。
(c2)外側の増幅配列を提供するため、段階c1の増幅反応混合物を、テンプレートとなるDNA上において、外側のPCR用プライマーペアをアニールおよび伸長させ、かつnestedプライマーペアがアニールしない温度での増幅反応において処理する。
(c3)nestedされた増幅産物を提供するため、段階c2の混合物を、nested された内側のPCR増幅産物のみがdenatureする温度での増幅反応において処理する。或いはnestedされた内側のPCR増幅産物のみが伸長できる伸長時間での増幅反応において処理する。
 C法において、増幅反応混合物が4種類のプライマーから成る。すなわち、第4、第5のプライマーは外側のPCR用プライマーペアであり、第6、第7のプライマーはnestedプライマーペアである。C法において、段階c2にて、外側のPCR用プライマーペアのみアニールおよび伸長させ、nestedプライマーペアが働かない温度が必要である。また、段階c3にて、外側のPCR増幅産物がdenatureせず、内側のnested PCR産物のみがdenatureして伸長するための温度を提供することが必要である。或いは、段階c3にて、外側のPCR増幅産物が伸長できず、内側のnested PCR産物のみが伸長できる伸長時間を提供することが必要である。
 C法において、nestedプライマーペアをアニールさせるための温度が、外側のPCR用プライマーペアをアニールさせるための適切な温度よりも5℃~20℃低いことが好ましい。
 C法において、段階c1にて、第4~7のプライマーが一定の温度で増幅反応混合物中に存在していることが好ましい。C法において、第4、第5のプライマーより第6、第7のプライマーのTm値が5℃~20℃低いことが好ましい。C法において、第4、第5のそれぞれのプライマーのTm値は同じであることが好ましい。C法において、第6、第7のそれぞれのプライマーのTm値は同じであることが好ましい。C法において、外側の増幅産物はnestedされた内側の増幅産物よりも十分(300bp程度以上)大きいことが好ましい。
 <masked Primer Dimer法> 
 以下に示す通常のPCR条件設定では、蛍光検出ポイントは伸長反応(extension)後の72℃に設定されている。
・Target Temperature:94℃、55℃、72℃
・Incubation Time: 10秒
・Temperature Transition Rate: 20.00 [℃/s]
・Cycle Number: 60
 すると、図13に示す増幅曲線のように、蒸留水(distilled water:D.W.)でプライマーダイマー(pd)が検出されてしまう。この時、例えばE.Coli検出時の融解曲線(melting curve)を見ると、プライマーダイマーのTm値は76℃前後、目的(E. coli)のPCR増幅産物のTm値は91℃前後である(図14)。
 そこで、目的のPCR産物のTm値をプライマーダイマーのTm値より10℃程高くなるようにプライマーを意図的に設計し、蛍光検出ポイント(FDP)をその中間値前後(例えば以下の条件のように86℃)に設定する(図10:伸長後でなくとも何処でも良い)。
・Target Temperature:94℃、55℃、72℃、86℃
・Incubation Time:10秒(94℃、55℃、72℃);1秒(86℃)
・Temperature Transition Rate: 20.00 [℃/s]
・Cycle Number: 60
 すると、プライマーダイマーが全く検出されない。つまり、プライマーダイマーは非表示となるため、本発明の耐熱性DNAポリメラーゼ調製物と組み合わせると、図15(A)のように蒸留水(D.W.)で全く増幅しない増幅曲線を得ることが出来る。
 この「非表示法+本発明の耐熱性DNAポリメラーゼ調製物+バクテリアのユニバーサルプライマー」の組合せにより、バクテリアを検出限界まで測定することが可能となり(図14)、更に検量線が検出限界まで直線性を示すことから、検出限界まで正確に定量出来ることが示された。つまり、本発明法にmasked Primer Dimer法を加えることにより、インターカレーターを用いたリアルタイムPCR法にて、高感度で正確な細菌の定量測定が初めて可能となる。
 <One Step nested PCR法>
 以下の様なプライマーを設計する(図11(A)参照)。
(a)外側のPCR産物(増幅産物I)の、ForwardおよびReverseプライマーのそれぞれのTm値は同じ、或いは近いものとする。
(b)外側のPCR産物のどちらか片方のプライマーとsemi-nestedとなるようなプライマー(プライマーII)を内側に設定する。
(c)semi-nestedプライマーは、外側のPCR産物のプライマーのTm値より5~20℃低いTm値となるように設計する。
(d)外側のPCR産物(増幅産物I)のTm値が89℃以上となるように、増幅産物Iが400bp程度以上となるプライマーを設計する。
(e)semi-nested PCR産物(増幅産物II)のTm値が86℃~87℃となるように、増幅産物IIが100bp程度となるプライマーを設計する。
 より特異度の高いnested PCRを行う場合、以下の様な新たなプライマーを設計する(図11(B)参照)。
(a)外側のPCR産物(増幅産物I)の、ForwardおよびReverseプライマーのそれぞれのTm 値は同じ、或いは近いものとする。
(b)増幅産物IのプライマーのTm値と比較し、nestedとなる2つのプライマー(プライマーII)のTm値は十分(5~20℃)低く設定する。
(c)増幅産物IのTm値が89℃以上となるように、増幅産物Iが500bp程度以上となるプライマーを設計する。
(d)増幅産物IIのTm値が86℃~87℃となるように、増幅産物IIが100bp程度となるプライマーを設計する。
(e)増幅産物III、IVそれぞれのTm値が89℃以上となるように、増幅産物III、IVそれぞれが300bp程度以上となるプライマーを設計する。
 (3)検出対象生物の検出方法
 (検出方法)
 本発明にかかる検体中の検出対象生物を検出する方法は、
 以下の工程:
(1)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマーと、本発明にかかる耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う増幅工程と、
(2)前記増幅工程における増幅産物中の前記目的遺伝子の増幅産物を検出する検出工程と、
を有することを特徴とする。
 この検出方法では、増幅工程を、目的遺伝子以外の目的外遺伝子の増幅抑制下で行うことが好ましい。この目的外遺伝子の増幅抑制には抗DNAポリメラーゼ抗体を用いるホットスタート法が好適に利用できる。その際、耐熱性DNAポリメラーゼ1Uに対して、過剰量の抗DNAポリメラーゼ抗体を用いることが好ましい。
 検出工程は、前記目的遺伝子の増幅産物を検出可能とし、それ以外の目的外遺伝子の増幅産物は非検出として行うことができる。そのための方法としては、目的遺伝子の増幅産物を検出可能とし、それ以外の目的外遺伝子の増幅産物を非検出とする条件を、
(1)目的遺伝子増幅産物の融解温度(Tm)が、目的外遺伝子の増幅産物の融解温度(Tm)よりも高くなるように前記プライマーを設計し、
(2)増幅産物の検出を、TmとTmとの間の温度で行う
ことにより設定し、目的遺伝子の増幅産物のみを検出する方法が好ましい。
 更に、増幅工程と検出工程を、増幅産物の量を表示する表示装置を用いるリアルタイムPCRにより行い、目的外遺伝子の増幅産物が前記表示装置において非表示となる方法を用いることができる。
 増幅産物の検出には、検出用の標識を有するインターカレーターを用いることができる。
 検出工程は、増幅産物をゲル上で展開することにより行うことができる。増幅産物はゲル電気泳動により展開し可視化することができる。
 検出対象生物としては、細菌、真菌、ウイルスから選ばれる1種または2種以上を挙げることができる。
 本発明の検出方法によれば、検体中の感染症原因菌の高感度検出を達成することが可能となる。更に、本発明の検出方法は、血液、髄液、羊水、尿、食品(食品加工環境の汚染検査も含む)、飲料、化粧品、水質検査、生物実験環境のコンタミネーション検査に供される検体から選択される無菌環境であるべき検体である場合に好適に適用可能である。水質検査に供される検体としては、上水道水、貯水または給水タンク由来水、空調循環水、加湿器水、温泉水又はプール水を挙げることができる。
 検出工程において、目的遺伝子の増幅産物を定量し、その定量結果を利用することにより、検体中の検出対象生物の定量、個体数の測定、存在量の把握、定量同定などを行うことができる。以下、検体中の検出対象生物の定量方法について説明する。
 (定量方法)
 本発明にかかる検体中の検出対象生物を定量する方法は以下の工程:
(1)検体から調製したDNAと、検出対象生物に特異的な目的遺伝子を増幅するためのプライマーと、本発明にかかる耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う増幅工程と、
(2)前記増幅工程における増幅産物を定量し、得られた定量結果から前記検体中の検出対象生物を定量する定量工程と、
を有する。
 検出対象生物としては、情報伝達のための核酸を有するものであれば良く、例えば細菌(真正細菌、古細菌)、真菌、ウイルスなどを挙げることができる。本発明にかかる耐熱性DNAポリメラーゼ調製物を用いた本発明の定量方法は、特に細菌の定量に好適である。定量は、増幅産物の検出結果を、標準の生物を用いた結果とを対比することで行うことができる。本発明の定量方法によれは、検体中の検出対象生物の個体数や全体として質量を定量することが可能である。更に、目的遺伝子として検出対象生物の同定用遺伝子を選択することにより、目的遺伝子の増幅産物の定量結果から検体中に含まれる検出対象生物を定量かつ同定することができる。
 検体からの核酸としては、検体から得られたDNA、更には検体から得られたRNAに基づいて調製されたcDNAが利用できる。また、目的に応じてRNAを直接増幅対象としてもよい。
 検体としては無菌環境であるべき検体が挙げられる。この無菌環境であるべき検体としては、血液、髄液、羊水または尿などの、ヒトや家畜の生体からサンプリングした試料を挙げることができる。更に、検体として水質検査に供される検体が利用できる。この水質検査に供される検体としては、上水道水、貯水または給水タンク由来水、空調循環水、加湿器水、温泉水又はプール水を挙げることができる。更に、食品、飲料または化粧品、生物系実験環境での細胞培養液など有機物を含み、細菌や真菌の混入や増殖が品質の劣化に繋がるものも検体として利用できる。
 検体からのDNAの調製は、定法により行うことができ、増幅工程に供する際には、必要に応じてDNA以外の成分の除去や、DNA濃度の調整を行うことができる。
 増幅工程には、PCR、なかでもリアルタイムPCRが好適に適用できる。増幅産物の検出には、種々の公知の方法が利用できる。例えば、標識機能を有するインターカレーターを用いる方法や、増幅するDNA配列に対し特異的にハイブリダイズするヌクレオチドに蛍光物質を結合したプローブを用いる方法などが挙げられる。インターカレーターとしては、エジチジウムブロマイド、サイバー・グリーンI(SYBR Green I)などが挙げられる。好ましいインターカレーターは、サイバー・グリーンIである。尚、全てのバクテリアDNAに反応するユニバーサルプライマーを用いる場合は、使用すべきサイバー・グリーンIは、組換え宿主由来のバクテリアDNA混入を最小限に抑えた高純度のサイバーグリーンIを使用することが好ましい。
 この方法における増幅工程は、目的遺伝子以外の目的外遺伝子の増幅を抑制した条件下で行われることが好ましい。この目的外遺伝子の増幅抑制には、例えば、ホットスタート法、修飾プライマーを使用する方法、プライマーダイマーに結合する物質をサンプルに添加する方法、化学物質を耐熱性DNAポリメラーゼが含まれる遺伝子増幅溶液中に添加する方法などが挙げられ、中でもホットスタート法が好ましい。ホットスタート法としては、抗DNAポリメラーゼ抗体を用いる方法、waxの融解温度まで酵素とプライマーを分離しておくwax法などが挙げられる。抗DNAポリメラーゼ抗体を用いる方法を行う場合には、抗DNAポリメラーゼ抗体を、耐熱性DNAポリメラーゼの酵素活性が100%阻害される量以上の過剰量を用いることが好ましい。
 (非表示法)
 更に、増幅産物の定量を非表示法により行うことにより、簡便かつ高感度での定量が可能となる。この非表示法は、目的遺伝子の増幅産物を検出可能状態とし、それ以外の目的外遺伝子の増幅産物は非検出状態とする条件下で、増幅産物の検出を行う方法である。
 具体的には、目的遺伝子の増幅産物の検出が可能であり、それ以外の目的外遺伝子の増幅産物の非検出となる条件を、
(1)前記目的遺伝子増幅産物の融解温度(Tm)が、前記目的外遺伝子の増幅産物の融解温度(Tm)よりも高くなるように前記プライマーを設計し、
(2)前記増幅産物の定量を、TmとTmとの間の温度で行う
ことにより設定する。
 この非表示法は、目的遺伝子の増幅と増幅産物の定量を、増幅産物の量を表示する表示装置を用いるリアルタイムPCR法に好適に適用できる。この装置を用いる場合には、増幅産物の定量分析時において目的外遺伝子の増幅産物が表示装置において非表示となり、目的外遺伝子の増幅産物による感度への影響を排除することができる。
 目的外遺伝子として特に問題となるのは、プライマーダイマーである。検体から調製されたDNAの量が微量である場合においては、増幅の初期においてはプライマーが検体から調製されたDNAに対して過剰に存在し、プライマーダイマーが形成されていると、これをベースとした増幅産物が形成され、本来検出されるべきDNAの増幅産物をモニターできなくなったり、定量することが不可能となる。かかる、プライマーダイマーの発生に対しては、ホットスタート法及び/または非表示法の利用が好ましい。
 プライマーダイマー(primer
dimer)の形成を完全に阻害することは非常に難しく、各種プライマーダイマー形成抑制方法を用いてもPCRサイクル数の増加に応じてプライマーダイマーが検出されてしまう場合がある。その結果、リアルタイムPCRによる定量測定の感度低下の要因となっている。また、定性検査においても測定毎にTm値(融解温度:melting temperature)をチェックしてプライマーダイマーによる「偽陽性」を除外する手法をとることが必要となる場合がある。
 非表示法は、従来のプライマーダイマーの形成抑制方法とは異なり、プライマーダイマーのみを非表示とする手法(masked Primer Dimer法)であり、「プライマーダイマーは増幅産物として小さいが故に、そのTm値が低い傾向にある」ことを考慮してなされたものである。
 リアルタイムPCRによってmasked Primer Dimer法を行うには、以下の条件を設定する。
(1)ターゲットとなるPCR増幅産物のTm値が、プライマーダイマーのTm値より高値になるようにプライマーを設計する。
(2)リアルタイムPCRの増幅産物検出時の温度をそれらの中間値に設定する。
 以上の条件設定により、増幅産物検出時において、プライマーダイマーのみが二本鎖から一本鎖に解離する。増幅産物(二本鎖DNA)の検出時において、一本鎖DNAは検出せず、二本鎖DNAのみを検出する標識、例えば、インターカレーターを用いることにより、プライマーダイマーのみが二本鎖から一本鎖に解離しているので、インターカレーターは結合できない。その結果、プライマーダイマーに基づく検出信号は発生せず、表示装置(モニター)上はプライマーダイマーのみ非表示となり、目的の増幅産物は正常に増幅曲線を描くことになる。
 この非表示法を用いる場合におけるプライマーの設計は、ターゲットとなるPCR増幅産物のTm値がプライマーダイマー自体の値より高くなるようにすれば、特に限定されないが、ターゲットとなるPCR増幅産物のTm値をプライマーダイマー自体のTm値の5℃以上、好適には10℃以上にプライマーの設計を行えばよい。なお、増幅産物のTm値は、測定系に応じて設定する。
具体的には、
(1)既存の設計方法でプライマーダイマーが生じ難いプライマーを設計する。
(2)プライマー自体のTm値を60℃以下になるように設計する。
(3)最近接塩基法で計算することにより、ターゲットとなるPCR増幅産物のTm値が87℃程度かそれ以上になるように設計する。
 これらプライマーを用いて増幅される増幅産物の大きさは、プライマーダイマー自体のTm値より高くなるよう設計された大きさであれば特に限定されないが、リアルタイムPCRでの増幅に好適な50bp~1000bp、好ましくは50bp~500bp程度になるようプライマー設計することが好ましい。
 リアルタイムPCRの蛍光検出時の温度は、ターゲットとなるPCR増幅産物のTm値とプライマーダイマーのTm値の中間値に設定すればよいが、中間値は、増幅産物とプライマーダイマーのTm値差の程度に応じて、中間値の前後、例えば、前後1~4℃程度の幅を持たせることができる。但し、二本鎖DNAの安定性を考慮すると、蛍光検出時の温度はなるべく低めに設定する方が好ましい。
 インターカレーターを用いたリアルタイムPCRは、装置、手法など通常知られたものを使用すればよく、例えば、インターカレーターとして、サイバーグリーン(SYBR Green I)を利用したリアルタイムPCRが挙げられる。
 masked Primer Dimer法によれば、プライマーダイマー形成は、インターカレーターを用いたリアルタイムPCR法の阻害要因でなくなり、感度を下げることなく定量検査が出来、定性検査でのプライマーダイマーによる偽陽性のリスクも無くなる。しかも、本発明方法は、抗DNAポリメラーゼ抗体を用いるホットスタート法など従来法に比して簡便かつ経済的である。
 この非表示法により、検出限界までの測定が可能となり、更に検量線が検出限界まで直線性を示すことから、リアルタイムPCR法にて、高感度で正確な定量測定が可能となる。
 (増幅産物からの検出対象生物のPCR法における定量)
 増幅産物の量から検出対象生物の量(存在しない場合も含む)の判定には、増幅を行った際の条件(プロトコール)での既知の検出対象生物量から求めた検量線に基づいて行う方法が好適に利用できる。例えば、ある特定のプロトコールで描いた検量線で、検出限界(感度)が0.1 CFU/mlで35サイクルであれば、35サイクルのPCR反応を行って、検量線で示される基準に基づいて検出対象生物の量を算出することができる。なお、プロトコール中に検体の濃縮ステップを加えたり、エタノール沈殿処理を加えたりすれば、検出限界(感度)を更にあげることができる(例えば60サイクル位まで)。そうすると、感度も例えば0.000001CFU/mlと非常に高く設定可能となる。また、設定できる検出感度は予め算出しておくことが可能である。例えば、「検出対象の高感度定量方法」による生活用水の定量では、細菌のユニバーサルプライマーのPCR検出感度が10 fg/μl, 真菌のユニバーサルプライマーのPCR検出感度が10 pg/μlであるので、CFU/mlとの換算式を用い、更に最初に検体50mlをペレット化してDNA抽出することを加味すると、
細菌:3.0×10‐1  CFU/ml
真菌:2.8 CFU/ml
となる。なお、プロトコールを変えることで、検出感度を変えることも可能である。
 (増幅産物からの検出対象生物のゲル展開法における定量)
 増幅産物(ホットスタート法を用いる場合も含む)をアガロースゲルなどで展開して、その量を蛍光検出における蛍光強度などによって、検出対象生物の定量を簡便に行うことも可能である。
 (細菌の存在の有無を判定する方法)
 本発明にかかる耐熱性DNAポリメラーゼは、以下の方法にも好適に用いることができる。
(I)検体中の細菌の存在の有無を判定する方法において、
 以下の工程:
(1)前記細菌に特異的な目的遺伝子を増幅するためのプライマー(B)と、真核細胞を宿主として製造した耐熱性DNAポリメラーゼを含む調製物と、を用いて核酸増殖反応を行う第一の増幅工程と、
(2)前記第一の増幅工程における増幅産物を可視化する工程と、
を有し、
前記プライマー(B)が、
(B)全ての細菌の16SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマー
であることを特徴とする検体中の細菌の存在有無を判定する方法。
 前記増幅産物を可視化する方法としてはゲル電気泳動を用いることができる。
 (II)検体中の細菌の存在量を把握する方法において、
 以下の工程:
(1)前記細菌に特異的な目的遺伝子を増幅するためのプライマー(B)と、真核細胞を宿主として製造した耐熱性DNAポリメラーゼを含む調製物と、を用いて核酸増殖反応を行う第一の増幅工程と、
(2)前記第一の増幅工程における増幅産物を数値化する工程と、
を有し、
前記プライマー(B)が、
(B)全ての細菌の16SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマー
であることを特徴とする検体中の細菌の存在量を把握する方法。
 前記増幅産物を数値化する方法として吸光度測定法またはデンシドメトリー法を用いることができる。
 (定量同定方法)
 上記の検体中の検出対象生物の定量方法は、以下の検出対象生物の定量かつ同定を行う方法に好適に適用できる。
(A)以下の工程:
(1)前記検体から調製したDNAと、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(B)および(M)と、本発明にかかる耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第一の増幅工程と、
(2)前記第一の増幅工程における複数(3~10)の増幅産物の融解温度(Tm値)の組合せを前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)の組合せに基づいて解析し、前記検体中の検出対象生物の定量同定を行う第一の定量同定工程と、
(3)前記検体から調製したDNAと、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(F)と、細菌を宿主として製造した耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第二の増幅工程と、
(4)前記第二の増幅工程における複数(3~10)の増幅産物の融解温度(Tm値)の組合せを前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)の組合せに基づいて解析し、前記検出対象生物を定量同定する第一の定量同定工程前記第二の増幅工程における増幅産物を定量し、得られた定量結果から前記検体中の検出対象生物の定量同定を行う第二の定量同定工程と、
を有し、
 前記プライマー(B)、(F)及び(M)が、
(B)全ての細菌の16SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマー、
(F)全ての真菌の18SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマー、
(M)メチリシン耐性を示すmecA遺伝子など、その時々の流行に応じた抗生剤耐性遺伝子を特異的に増幅するプライマーセット、
であることを特徴とする検体中の検出対象生物の定量同定方法。
 (B)以下の工程:
(1)前記検体から調製したDNAと、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(B)と、本発明にかかる耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第一の増幅工程と、
(2)前記第一の増幅工程における複数(3~10)の増幅産物の融解温度(Tm値)の組合せを前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)の組合せに基づいて解析し、前記検体中の検出対象生物の定量同定を行う第一の定量同定工程と、
(3)前記検体から調製したDNAと、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(F)と、細菌を宿主として製造した耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第二の増幅工程と、
(4)前記第二の増幅工程における複数(3~10)の増幅産物の融解温度(Tm値)の組合せを前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)の組合せに基づいて解析し、前記検出対象生物を定量同定する第一の定量同定工程および前記第二の増幅工程における増幅産物を定量し、得られた定量結果から前記検体中の検出対象生物の定量同定を行う第二の定量同定工程と、
(5)前記検体から調製したDNAと、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(M)と、本発明にかかる耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第三の増幅工程と、
(6)前記第三の増幅工程における増幅産物の融解温度(Tm値)を前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)に基づいて解析し、前記検体中の検出対象生物の定量同定を行う第三の定量同定工程と、
を有し、
 前記プライマー(B)、(F)及び(M)が、
(B)全ての細菌の16SrRNA遺伝子の複数領域を増幅できるプライマーセット、各プライマーごとに、は塩基配列の全部またはその1/3以上を含むプライマーから選択でき、
(F)全ての真菌の18SrRNA遺伝子の複数領域を増幅できるプライマーセット、各プライマーごとに、塩基配列の全部またはその1/3以上を含むプライマーから選択でき、
(M)メチリシン耐性を示すmecA遺伝子など、その時々の流行に応じた抗生剤耐性遺伝子を特異的に増幅するプライマーセット、
であることを特徴とする検体中の検出対象生物の定量同定方法。
 なお、本願発明において、各プライマーセットを構成するプライマーの一部を含むものとしては、ユニバーサルプライマーとしての機能(特定共通領域を認識するという機能)が損なわれなければよく、例えばユニバーサルプライマーとして設計された塩基配列に対して1~3塩基を削除または追加して得られるものを挙げることができる。
 細菌の16SrRNA遺伝子の増幅領域としては3~10の増幅領域を設定することが好ましい。また、真菌の18SrRNA遺伝子の増幅領域としては3~10を設定することが好ましい。
 更に、“全ての細菌の16SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマーセット”のいずれか1つを用いて標準Tm値を毎回測定することにより、前記増幅産物のTm値の測定誤差を補正する工程を付加することにより、より精度の高い測定を行うことができる。
 また、検出対象生物を同定するためのアルゴリズムとしては、上述したTm値そのものの組合せだけでなく、各Tm値間の差の組合せを利用して同定することで、測定誤差の影響を最小限とする工程を付加することができる。
 また、上記の“標準Tm値を毎回測定する”必要がなく、機器の試行回毎の測定誤差を補正する方法として、“Tm値の組合せの平均値を算出し、その平均値からの各Tm値の相対値の組合せ”を利用することが出来る。つまり、Tm値の組合せの配置を“形”として同定する方法である。Tm値の組合せの配置を2次元で示した“形”は測定誤差に影響されない。例えば、検出対象生物に特異的なTm値の組合せ(n個)をT1db~Tndbとし(dbはdatabase)、その平均値からの相対値をそれぞれd1db~dndbとする(図11(C):nが1~5の例)。同様に検体から得られた未知の検出対象生物のTm値の組合せ(n個)をT1ref~Tnrefとし(refはreference)、その平均値からの相対値をそれぞれd1ref~dnrefとする(図11(C))。そうしてdatabaseと比較し、「相対値の組合せが近似したもの=Tm値の組合せの配置の“形”が近いもの」、を同定アルゴリズムとして利用する。
従って、以下の計算式:
Figure JPOXMLDOC01-appb-M000001
が0に最も近いものが、求める検出対象生物として同定できる。
以上のアルゴリズムは、コンピュータ上でデータベース型同定ソフトウェアとして利用できる。
 上記の方法(A)及び(B)は、本発明の耐熱性DNAポリメラーゼ調製物を利用して成し得た定量化技術に、最近接塩基法の「融解温度(melting temperature:Tm値)は塩基配列で決まる」という理論的根拠を元に、菌種毎のTm値の違いを検出対象生物の同定に応用することについて鋭意研究した結果(WO2007/097323)を応用することで初めて完成されるに至ったものである。
 以下、具体的にこれらの方法について説明する。
(1)細菌の16SrRNAは、ほぼ全ての細菌に共通の塩基配列領域(20~40塩基)を7~10ヶ所もつことが知られている。
 その全て或いは一部の箇所にフォワードとリバースのプライマーをそれぞれ設定することにより、3~10の遺伝子増幅領域を作製する。
(2)遺伝子増幅領域は、約150~200塩基であり、プライマーを設定した共通保存領域以外は、それぞれの細菌に固有の塩基配列を持つ。
 従って、Tm値も塩基配列の違いを反映して固有の値を示し、細菌毎に1~10種類の特徴的なTm値を持つことが推定される。それ故、細菌の種類に応じた1~10のTm値を調べ、データベース化する。このデータベースを利用して未知の細菌を同定することができる。
 (3)さらに、真菌に固有のプライマーを3~10、メチシリン耐性を示すmecA遺伝子など、その時の流行に応じた抗生剤耐性遺伝子のプライマーを併用することで、未知の起因菌に対し、細菌感染とその種類(抗生剤耐性遺伝子の有無を含む)、或いは真菌感染とその種類を同定出来る。
(4)非特異的な遺伝子産物が生じ、目的のTm値に近い値を示す場合、偽陽性のリスクが生じる。
 そのような場合、遺伝子増幅後の増幅産物をアガロース・ゲルに流してバンドの大きさを確認することで、結果を二重にチェックすることが出来る。
 すなわち、従来の遺伝子増幅による検出法で二重チェックするシステムを採用することで検査精度の向上が図れる。
 または、「masked Primer Dimer法などプライマーダイマーの解決法+本発明の耐熱性DNAポリメラーゼ調製物+バクテリアのユニバーサルプライマー」の組合せにより、非特異的増幅産物による偽陽性のリスクをほぼ完全に無くすことが出来る。
 (5)遺伝子増幅方法としてリアルタイムPCRを採用した場合、その定量性を利用して、菌量を治療前後で相対定量することで、治療効果のモニタリングの向上を図ることが出来る。
 (6)リアルタイムPCR機器には、ヒートブロックで温度制御するブロック型と、空気を介して温度制御するエアバス型の2種類あり、ヒートブロック型では試行回毎に±0.1~0.3℃(メーカーで異なる)のTm値測定誤差が生じる(同じ試行回ではサンプル間誤差は±0.2℃程)。この測定誤差で菌種同定が妨げられないように、同じ試行回の各Tm値間の差異パターンを判定に利用する方法を採用することが好ましい。一方、エアバス型のRotor gene6000(キアゲン社)ではチューブ間の温度均一性が±0.01℃であり、Tm値測定誤差が生じにくく、好ましい。
 (7)複数菌の感染の場合、リアルタイムPCRにて増幅曲線が立ち上がった後、plateauに達した時点で増幅サイクルをストップし、引き続きTm値の解析を行えば、“最も感染量の多い(恐らく主要な感染微生物と考えられる)微生物のみ、同定することが出来る。
 プライマーは以下のとおりである。
<組み合わせグループ1>
(1-1)全ての細菌の16SrRNA遺伝子に共通な配列部位から5カ所を選び、フォワードプライマーとリバースプライマーを設定する(増幅産物は4つ)。
 具体的には以下のプライマーの塩基配列の全部または1/3以上を含むプライマーである。
(B1)大腸菌(E. coli)の16SrRNA遺伝子の809番目から905番目に相当する97塩基のDNAを増幅するプライマーセット(bacteria primer 1:Bac.1)。
・配列番号80.GATTAGATACCCTGGTAGTCCACG (24mer)フォワード
・配列番号2.CCCGTCAATTCCTTTGAGTTT (21mer) リバース
(B2)大腸菌(E. coli)の16SrRNA遺伝子の927番目から1092番目に相当する166塩基のDNAを増幅するプライマーセット(bacteria primer 2:Bac.2)。
・配列番号3.AAACTCAAAGGAATTGACGGG (21mer)フォワード
・配列番号4.CGCTCGTTGCGGGAC (15mer) リバース
(B3)大腸菌(E. coli)の16SrRNA遺伝子の1108番目から1218番目に相当する111塩基のDNAを増幅するプライマーセット(bacteria primer 3:Bac.3)。
・配列番号5.GTCCCGCAACGAGCG (15mer)フォワード
・配列番号6.ATTGTAGCACGTGTGTAGCCC (21mer) リバース
(B4)大腸菌(E. coli)の16SrRNA遺伝子の1240番目から1369番目に相当する130塩基のDNAを増幅するプライマーセット(bacteria primer 4:Bac.4)。
・配列番号7.GGGCTACACACGTGCTACAAT (21mer)フォワード
・配列番号8.CCGGGAACGTATTCACC (17mer) リバース。
 (1-2)全ての真菌の18SrRNA遺伝子に共通な配列部位を選び1組の由来するフォワードプライマーとリバースプライマーを設定する。
 具体的には以下のプライマーの塩基配列の全部または1/3以上を含むプライマーである。
(F1)真菌の18SrRNA遺伝子のプライマーセット(fungi primer:Fungi)
・配列番号9.GAATGAGTACAATGTAAATACCTTAACG (28mer) フォワード
・配列番号10.TAACTGCAACAACTTTAATATACGC (25mer) リバース。
 (1-3)メチシリン耐性を示すmecA遺伝子のプライマーは、LightCycler Probe Design 2 ソフトウェアを用い、最もスコアが高いプライマーデザインを選定する。
 具体的には、以下のプライマーである。
(M1)メチシリン耐性を示すmecA遺伝子のプライマーセット(mecA primer:mecA)
・配列番号13.ATTATAAAGCAATCGCTAAAGAACTAAGTA (30mer) フォワード
・配列番号14.CCAATAACTGCATCATCTTTATAGCC (26mer) リバース。
 <組み合わせグループ2>
(2-1)全ての細菌の16SrRNA遺伝子に共通な配列部位から10カ所を選び、フォワードプライマーとリバースプライマーを設定する。
 具体的には以下のプライマーの塩基配列の全部または1/3以上を含むプライマーである。
(B5)大腸菌(E. coli)の16SrRNA遺伝子の8番目から345番目に相当する338塩基のDNAを増幅するプライマーセット(bacteria primer 5:Bac.5)。
・配列番号15.AGAGTTTGATCATGGCTCAG (20mer)フォワード
・配列番号16.CGTAGGAGTCTGGACCGT (18mer) リバース
(B6)大腸菌(E. coli)の16SrRNA遺伝子の336番目から534番目に相当する199塩基のDNAを増幅するプライマーセット(bacteria primer 6:Bac.6)。
・配列番号17.GACTCCTACGGGAGGCA (17mer)フォワード
・配列番号18.TATTACCGCGGCTGCTG (17mer) リバース
(B7)大腸菌(E. coli)の16SrRNA遺伝子の519番目から805番目に相当する287塩基のDNAを増幅するプライマーセット(bacteria primer 7:Bac.7)。
・配列番号19.AGCAGCCGCGGTAATA (16mer)フォワード
・配列番号20.GGACTACCAGGGTATCTAATCCT (23mer) リバース
(B8)大腸菌(E. coli)の16SrRNA遺伝子の780番目から960番目に相当する181塩基のDNAを増幅するプライマーセット(bacteria primer 8:Bac.8)。
・配列番号21.AACAGGATTAGATACCCTGGTAG (23mer)フォワード
・配列番号22.AATTAAACCACATGCTCCACC (21mer) リバース
(B9)大腸菌(E. coli)の16SrRNA遺伝子の951番目から1070番目に相当する120塩基のDNAを増幅するプライマーセット(bacteria primer 9:Bac.9)。
・配列番号23.TGGTTTAATTCGATGCAACGC (21mer)フォワード
・配列番号24.GAGCTGACGACAGCCAT (17mer) リバース
(B10)大腸菌(E. coli)の16SrRNA遺伝子の1084番目から1192番目に相当する109塩基のDNAを増幅するプライマーセット(bacteria primer 10:Bac.10)。
・配列番号25.TTGGGTTAAGTCCCGC (16mer)フォワード
・配列番号26.CGTCATCCCCACCTTC (16mer) リバース
(B11)大腸菌(E. coli)の16SrRNA遺伝子の1220番目から1385番目に相当する166塩基のDNAを増幅するプライマーセット(bacteria primer 11:Bac.11)。
・配列番号27.GGCTACACACGTGCTACAAT (20mer)フォワード
・配列番号28.CCGGGAACGTATTCACC (17mer) リバース。
 (2-2)真菌の18SrRNA遺伝子に共通な配列部位から7ヶ所を選び、フォワードプライマーとリバースプライマーを設定する。
 具体的には以下のプライマーの塩基配列の全部または1/3以上を含むプライマーである。
 (F2)カンジダ菌(C. Albicans)の18SrRNA遺伝子(配列番号16)の149番目から407番目に相当する259塩基のDNAを増幅するプライマーセット(fungi primer 2:Fungi 2)
・配列番号29.GTGGTAATTCTAGAGCTAATACATGC (26mer) フォワード
・配列番号30.GGTAGCCGTTTCTCAGG (17mer) リバース
 (F3)カンジダ菌(C. Albicans)の18SrRNA遺伝子の390番目から551番目に相当する162塩基のDNAを増幅するプライマーセット(fungi primer 3:Fungi 3)
・配列番号31.GCCTGAGAAACGGCTACCA (19mer) フォワード
・配列番号32.CCTCCAATTGTTCCTCGTTAAG (22mer) リバース
(F4)カンジダ菌(C. Albicans)の18SrRNA遺伝子の531番目から762番目に相当する232塩基のDNAを増幅するプライマーセット(fungi primer 4:Fungi 4)
・配列番号33.TTAACGAGGAACAATTGGAGGG (22mer) フォワード
・配列番号34.GCCTGCTTTGAACACTCTAATTT (23mer) リバース
(F5)カンジダ菌(C. Albicans)の18SrRNA遺伝子の989番目から1134番目に相当する146塩基のDNAを増幅するプライマーセット(fungi primer 5:Fungi 5)
・配列番号35.ATACCGTCGTAGTCTTAACCA (21mer) フォワード
・配列番号36.GTCAATTCCTTTAAGTTTCAGCCT (24mer) リバース
(F6)カンジダ菌(C. Albicans)の18SrRNA遺伝子の1260番目から1428番目に相当する169塩基のDNAを増幅するプライマーセット(fungi primer 6:Fungi 6)
・配列番号37.CATGGCCGTTCTTAGTTGG (19mer) フォワード
・配列番号38.GGGCATCACAGACCTGTT (18mer) リバース
(F7)カンジダ菌(C. Albicans)の18SrRNA遺伝子の1414番目から1630番目に相当する217塩基のDNAを増幅するプライマーセット(fungi primer 7:Fungi 7)
・配列番号39.AGGTCTGTGATGCCCTTAG (19mer) フォワード
・配列番号40.CGGGCGGTGTGTACAAA (17mer) リバース
(2-3) メチシリン耐性を示すmecA遺伝子のプライマーは、LightCycler Probe Design 2 ソフトウェアを用い、最もスコアが高いプライマーデザインを選定する。
 具体的には、以下のプライマーである。
(M2)メチシリン耐性を示すmecA遺伝子のプライマーセット(mecA primer 2:mecA2)
・配列番号43.CAAACTACGGTAACATTGATCGC (23mer) フォワード
・配列番号44.ATGTATGCTTTGGTCTTTCTGC (22mer) リバース
 本発明において、Tm値とは、PCR産物の50%がその相補鎖と解離する時の温度である。また、最近接塩基法によるTm値計算式の「Tm値は塩基配列で決まる」という理論的根拠を元に、菌種ごとの塩基配列の違いをTm値の組合せの違いとして起因菌同定に応用することができる。従って、「Tm値から測定誤差の影響を排除する」ことが正確に同定する上で最も重要となる。このため、以下の方法で測定誤差の影響を排除する。
 先ず、Tm値は緩衝液の組成などが異なる実験条件下では変化するため、塩化マグネシウム濃度の固定されたサイバー・グリーンIを反応用緩衝液として使用することで、反応液の組成による測定誤差を生じないようにする。次に、リアルタイムPCR機器自体が試行回毎に測定誤差を生じるため、コントロールとしての標準Tm値を設定すると共に、同じ試行回での各Tm値間の差異パターンを判定に利用する。或いは、「“平均値との相対値”の組合せの近似したものが検出対象生物である」とする同定アルゴリズムを利用する。
 本発明において、測定機器の試行間誤差を補正する目的で、基準Tm値を使用することができる。具体的には、テンプレートとして一定濃度の大腸菌標準株のDNAを用い、細菌の16SrRNA遺伝子の一領域を増幅する1つのプライマーセットを使用して毎回Tm値を測定し、試行回毎のTm値のズレを補正する。すなわち、同じテンプレートに同じプライマーの組み合わせであれば、理論的には毎回同じTm値となる。
 しかし、実際に得られたTm測定値がズレた場合、それは試行間誤差となるので、そのズレ分だけ補正を行えばよい。
 本発明の方法(A)及び(B)の具体的手順は以下のとおりである。
(i)検体からDNAを調製する。
(ii)得られたDNAに対し、先に挙げた細菌、抗生剤耐性遺伝子、および真菌のプライマーセットを用いて遺伝子増幅後、それぞれのTm値を一時に測定し、細菌、抗生剤耐性遺伝子、および真菌のTm値の組合せを得る。
(iii)真菌であるか否かを判定する。
[上記(ii)のTm値の組合せの中で、全ての真菌の18SrRNA遺伝子の一領域~複数領域を増幅できるプライマーセットを用いて得た真菌に特異的なTm値を先ず解析することで、真菌であるか否か、或いは真菌の種類を判定する。]
(iv)抗生剤耐性遺伝子の有無を判定する。
[上記(ii)のTm値の組合せの中で、メチシリン耐性を示すmecA遺伝子など、その時の流行に応じた抗生剤耐性遺伝子を特異的に増幅するプライマーセットを用いて得た抗生剤耐性菌に固有の遺伝子増幅を解析することで、抗生剤耐性遺伝子の有無を判定する。]
(v)どの細菌であるか絞り込む。
[上記(ii)のTm値の組合せの中で、全ての細菌の16SrRNA遺伝子の複数領域を増幅できるプライマーセットを用いて得た細菌に特異的なTm値の組合せを解析することで、細菌の種属を同定する。]
 細菌の絞り込みは、具体的には、細菌のTm値の一つに注目して(場合によっては、標準Tm値で先ず補正する)、そのTm値に値の近い菌種に範囲を狭め、順次Tm値の差を取って絞り込む、または、直接、標準Tm値を含む、各Tm値間の差をとって、その差の組み合わせをフィンガープリントとして同定する。或いは、「“平均値との相対値”の組合せの近似したものが検出対象生物である」とする同定アルゴリズムを利用する。
 また、検出対象生物が、細菌か、真菌か、あるいは抗生剤耐性であるかどうかを迅速、簡便に同定する方法としては、Tm値を利用しなくても未知の微生物DNAを抽出し、これを鋳型として、
[1]真菌の18SrRNA遺伝子の全ての真菌に共通、且つ真菌特異的に検出するプライマー1つと、細菌を宿主として製造した耐熱性DNAポリメラーゼ調製物と、
[2]メチシリン耐性を示すmecA遺伝子など、その時の流行に応じた抗生剤耐性遺伝子を特異的に検出するプライマー各々1つずつと、本発明にかかる耐熱性DNAポリメラーゼ調製物または細菌を宿主として製造した耐熱性DNAポリメラーゼ調製物と、
[3]細菌の16SrRNA遺伝子の全ての細菌に共通、且つ細菌特異的に検出するプライマー1つと、本発明にかかる耐熱性DNAポリメラーゼ調製物と、
を用いてPCRを行い、アガロース・ゲルに電気泳動して目的サイズのバンドを確認する方法がある。
 以上の方法によれば以下の効果を得ることができる。
(1)4~18個、好ましくは4~16個のプライマーセットを元にリアルタイムPCRなどの遺伝子増幅を実施し、得られるTm値をデータベースと照合することにより、抗菌薬選択に必要な起因菌の菌種同定、および抗生剤耐性遺伝子の有無が確認出来る。
(2)血液検体の場合、DNA抽出からTm値の解析、そして同定までに要する時間は約2時間であり、迅速診断が可能となる。
(3)DNAを抽出する血液検体の量を一定とした場合、菌量の相対量を定量でき、抗菌薬投与後の治療効果のモニタリングが可能となる。
(4)細菌を宿主として製造した耐熱性DNAポリメラーゼ調製物と、本発明にかかる耐熱性DNAポリメラーゼ調製物を使い分けることで、非特異的増幅などの偽陽性のリスクをほぼ完全に無くすことが出来る。
 一方、真菌の同定には、TopoisomeraseII、mitochondria DNA或いは26S ribosomal RNAのユニバーサルプライマーの組合せによりTm値の組合せを得て、それに基づいて同定を行うことが好ましい。
 (定量または同定用のセット)
 セットであって、
 検体から調製したDNAを増幅するための本発明にかかる耐熱性DNAポリメラーゼ調製物と、検出対象生物に特異的な目的遺伝子を増幅するためのプライマーと、を少なくとも用いて検体中に含まれる検出対象生物の定量及び/または同定を行うためのセットを提供することができる。
 更に、このセットは、
検体から調製したDNAを増幅するための本発明にかかる耐熱性DNAポリメラーゼ調製物と、
 検体から調製したDNAを増幅するための細菌細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物と、
 検出対象生物に特異的な目的遺伝子を増幅するためのプライマーと、
を少なくとも用いて構成することができる。
 これらのセットのプライマーとしては、先に挙げたプライマー(B)、(F)及び(M)が利用できる。
 (定量同定システム)
 以下の各装置を用いて、上述した方法による検体中に含まれる検出対象生物の定量または同定を行うためのシステムを構成することができる。
(1)検体から調製したDNAと、検出対象生物に特異的な目的遺伝子を増幅するためのプライマーと、耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行うための増幅装置。
(2)増幅工程における増幅産物の定量を行うための定量装置。
(3)増幅産物の定量結果により検体中の検出対象生物の量を算出する算出装置。
(4)目的遺伝子の増幅産物の定量結果から検体中の検出対象生物の量を算出するためのデータベース。
 増幅装置及び定量装置としてはPCR装置、中でもリアルタイムPCR装置が好適に利用できる。また、算出装置としては上記データベースを利用して、検出対象生物の定量及び/または同定を行う予め設定されたプログラムに基づいて動作をするコンピュータシステムなどを利用できる。
 本発明にかかる検出対象生物の定量及び/または同定を行うためのシステムの一例を以下に示す。このシステムは以下の各要素(ユニット)を有することができる。
(1)PCR反応装置
(2)データ処理及びデータ処理後の結果を出力するためのコンピュータシステム
(3)データ処理に必要なプログラムを書き込んだデータ処理用ソフト
(4)データ処理に必要なデータベース
(5)PCR反応装置を制御するプログラムを有する制御機構
(6)データ処理の結果を表示する表示装置
 これらの装置の関係の一例を図12に示す。このシステムは、PCR反応装置1、コンピュータシステム2、データ処理部3、データ処理用プログラム(ソフト)6、データ処理に必要なデータベース4、PCR反応装置を制御する制御機構5a及び5b及び表示装置7を有している。なお、これらはその2以上を一体化して設けることができる。また、各ユニット間の情報の受け渡しは、信号S1~S7によって行われる。定量装置は、少なくともコンピュータシステム2により構成することができる。
 PCR反応装置では上述した検出対象生物の定量及び/または同定のためのPCR反応が行われる。その制御は、制御機構5によって行うことができる。制御機構5における制御項目の一例として以下の項目を挙げることができる。
A)増幅反応スタート時の条件設定
B)増幅のためのサイクル数や温度制御のための条件設定
C)Tm値の測定のための条件設定
D)反応終了のための条件設定
E)目的外遺伝子の増幅を表示装置で非表示とするための条件設定
 これらの条件設定から目的に応じて制御項目を選択して設定することができる。条件設定とその実行は、予め設定されたプログラムによって行うことができる。このプログラムは、制御機構5aまたは5b中の媒体に記録しておくことができる。あるいは、このプログラムは、別途用意した移動(携帯)可能な媒体に記憶させておくか、あるいはインターネットにより配布可能となるように媒体に収容しておき、使用時に制御機構5aまたは5bに接続して利用できるようにしてもよい。コンピュータシステム2中に設けられた、あるいは別途用意されたデータ処理部3でのデータ処理結果を利用してPCR反応装置の制御を行う場合は、コンピュータシステム2にデータ処理部3からのデータ処理の結果を送り、その結果に基づいて制御機構5bからPCR反応装置の制御のための信号をPCR反応装置内の制御機構5aに送信して制御を実行する。PCR反応の目的に応じて、PCR反応装置側のみでの制御で十分である場合には、制御機構5aのみを利用してPCR反応の制御を行う。
 コンピュータシステム2は、各ユニットからの信号を目的に応じて処理可能にプログラムされている。データ処理部2では、例えば以下の処理が行われる。
i)PCR反応装置において得られたPCRの増幅反応結果(例えば蛍光強度に関する信号)の処理
ii)PCR増幅反応結果用いた検出対象生物の定量及び/または同定を行うための演算処理
iii)PCR反応装置におけるPCR反応の条件を制御するための信号の出力処理
iv)PCR増幅反応の結果(経時的モニタリングを含む)、検出対象生物の定量及び/または同定の結果の表示装置での表示を指令する処理
 これらの処理は、目的とするデータ処理に応じて設定されたデータ処理用のプログラム6に従って実行される。更に、データ処理にデータベースが必要である場合には、データベース4中に格納された情報を利用する。例えば、PCRでの増幅反応により得られる信号を処理して検出対象生物の定量及び/または同定を行う場合の基準となる既知の生物を用いて得られるデータや、先に説明したTm値を利用した測定対象生物の定量及び/または同定を行う場合は、既知の生物から得られたTm値(複数のTm値からの定量同定を行い場合のTm値の組合せを含む)などをデータベース化して格納しておくことができる。
 データ処理用プログラム6及びデータベース4は、コンピュータシステム2内の媒体中に格納しておくことができる。あるいは、これらの少なくも1つを、別途用意した移動(携帯)可能な媒体に記憶させておくか、あるいはインターネットにより配布可能となるように媒体に収容しておき、使用時にデータ処理部3に接続して利用できるようにしてもよい。
 以下、参考例、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
また、特別な記載がない限り、操作手順は製品キットに付属の説明書に基づいて行った。
 (実施例1-1)
(1)DNAの合成
 T.aquatics由来耐熱性DNAポリメラーゼはGenScript社にて全DNA配列を合成した。この際、コドン配列を酵母宿主、S.cerevisiaeに最適化した。合成したDNAは、プラスミドpUC57に組み込まれGenScript社より提供され、ベクターpUC-TA01を得た。耐熱性DNAポリメラーゼをコードする遺伝子は、5’末端配列にHindIII、3’末端配列にEcoRI制限酵素サイトが入るように設計した。
(2)T.aquatics由来耐熱性DNAポリメラーゼ発現用ベクターの構築
 合成したT.aquatics由来耐熱性DNAポリメラーゼをコードする遺伝子をプラスミドpYES2(invitrogen社)に挿入し、ベクターpYES-TA01を構築した。耐熱性DNAポリメラーゼをコードする遺伝子は、pUC-TA01を制限酵素HindIII、EcoRI(TaKaRa
Bio)にて消化し、1%アガロースゲル(Wako)にて電気泳動し、QIAquickゲル抽出キット(Qiagen)にて耐熱性DNAポリメラーゼをコードする遺伝子を回収した。プラスミドpYES2はEcoRI、NotI(TaKaRa Bio)にて消化し、DNA Ligation Kit Ver.2.1(TaKaRa Bio)にて耐熱性DNAポリメラーゼをコードする遺伝子とpYES2を連結した。
(3)S.cerevisiaeの形質転換
 この得られたベクターpYES-TA01を酵母(Saccharomyces cerevisiae X2180株)へ導入した。宿主はウラシル要求株であれば他の酵母を用いることも可能である。形質転換はFastTrackTM-Yeast Transformation Kit(Geno Technology社)を用いた。
(4)S.cerevisiaeによるT.aquatics由来耐熱性DNAポリメラーゼの生産
 得られた形質転換体は、SD培地(0.67% Bacto yeast nitrogen base、2% Galactose、)100mlにて、28℃、72時間振とう培養を行った。これらを5000rpm、10分間遠心分離し集菌、破砕用緩衝液(50mM Tris-HCl pH7.5、50mM
KCl)に懸濁し、0.5mmガラスビーズを用いて菌体を破砕した後12000rpm、30分間遠心分離を行い、酵母破砕液上清および沈殿物を得て細胞抽出物とした。
(5)熱処理による耐熱性DNAポリメラーゼ可溶化条件の検討
 細胞抽出物について、耐熱性DNAポリメラーゼ熱処理による可溶化条件の検討を行った。図2は酵母破砕沈殿物を等量の破砕用緩衝液に懸濁したものに対して、45℃、50℃、55℃、60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃、100℃にて熱処理を行い、12000rpm、30分間、4℃にて遠心分離した後上清に対しSDS-PAGEを行った図である。50℃以上での熱処理において目的タンパク質である耐熱性DNAポリメラーゼのバンドが検出され、65℃から70℃での熱処理では宿主由来の夾雑タンパク質混入量が減少した。50℃以上の熱処理を行うことにより耐熱性DNAポリメラーゼは可溶化され、かつ耐熱性DNAポリメラーゼ活性を有していた。
 (6)DNAポリメラーゼ活性
(6-1)ラムダDNA内領域の増幅
 ラムダDNA(NIPPON GENE)をテンプレートとして、活性検出を行った。反応液組成は、10mM Tris-HCl(pH8.3)、1.5mM MgCl2、50mM KCl、200μM dNTPsとなるように調製し、プライマーは、配列番号83、84をそれぞれ0.4μMになるよう添加した。
配列番号83 gatgagttcg tgtccgtaca act
配列番号84 ggttatcgaa atcagccaca gcgcc
ラムダDNAは0.2μg、耐熱性DNAポリメラーゼ調製物は上記遠心分離上清を1/4、1/8、1/16、1/32、1/64となるように希釈列を調製後1μl添加し、これらを超純水にて全量50μlになるように調製した。PCRプログラムを下記のプログラムで実施した。:94℃ 1分間、50℃ 30秒間、72℃ 1分間を30回繰返した。各PCR反応溶液は1%アガロースゲルにて電気泳動を行い、増幅産物を可視化した。
(6-2)耐熱性DNAポリメラーゼ活性の定義
 得られた耐熱性DNAポリメラーゼのユニットをProcedures in
nucleic acid research(Richardson, C. C. (1966) DNA polymerase from Escherichia coli, pp. 263-276 In G. L. Cantoni and D.R. Davies (ed.) )の方法に従い決定した。活性化サケ精子DNAをテンプレート/プライマーとして用い、活性測定用反応液(25mM TAPS(pH9.3)、50mM KCl、2mM MgCl、1mM β-メルカプトエタノール、各200μM のdATP, dGTP, dTTP、100μM [α-32P]・dCTP(0.05-0.1 Ci/mmol)、0.25mg/ml 活性化サケ精子DNAを含む全量50μl)中にて74℃において、30分間に10 nmolの全ヌクレオチドを酸不溶性沈殿物に取り込む活性を1Uとした。
(6-3)PCRの検出限界
 図3は大腸菌DNAをテンプレートとし、PCRでの検出の限界を求めた図である。100ngから10fgまではPCR増幅バンドが検出され、10fgから1fgの間で増幅バンドが未検出であった。大腸菌DNAは、大腸菌JM109(ToYoBo社製)よりDNA抽出キットFastPure DNA Kit(TaKaRa社製)にて抽出、精製した。反応液組成は、10mM Tris-HCl(pH8.3)、1.5mM MgCl2、50mM KCl、200μM dNTPsとなるように調製し、プライマーは、配列番号85、86をそれぞれ0.4μMになるよう添加した。
配列番号85 agcagccgcg gtaat
配列番号86 ggactaccag ggtatctaat cct
テンプレートは100ngから1fgまでを10-1ずつ作成した大腸菌DNA希釈列を作成し添加した。耐熱性DNAポリメラーゼ調製物を1U添加しこれらを超純水にて全量20μlになるように調製した。PCRプログラムを下記のプログラムで実施した。:94℃ 1分間、50℃ 30秒間、72℃ 30分間を60回繰返した。各PCR反応溶液は1%アガロースゲルにて電気泳動を行い、増幅産物を可視化した。
(7)T.aquatics由来耐熱性DNAポリメラーゼ発現用ベクターの構築、
 T.aquatics由来耐熱性DNAポリメラーゼをコードする遺伝子をプラスミドpPIC ZA(invitrogen社)に挿入し、ベクターpPIC -TA01を構築した。pYES-TA01をテンプレートとして用い、KOD Plus(ToYoBo)を用いてPCRにて耐熱性DNAポリメラーゼをコードする遺伝子の増幅を行った。PCRに用いるプライマー(配列番号87、88)は、5’末端配列にEcoRI、3’末端配列にNotI制限酵素サイトが入るように設計した。
配列番号87 cccgaattca tgagggggat gttgccattg
配列番号88 aaagcggccg ctcattcctt tgcggataac
 
PCRプログラムを下記のプログラムで実施した。:94℃ 2分間加熱した後、94℃
15秒間、56℃ 30秒間、68℃ 2分30秒間を30回繰返した。PCR生成物は次に1%アガロースゲルにて電気泳動し、QIAquickゲル抽出キット(Qiagen)にてPCR断片を回収した。PCR増幅物、pPICZ
Aは共にEcoRI、NotI(TaKaRa Bio)にて消化し、DNA Ligation Kit Ver.2.1(TaKaRa Bio)にてPCR増幅断片とプラスミドpPICZ Aを連結した。
(8)E.coliの形質転換、ベクター抽出
 連結したベクターをE.coliコンピテントセル DH5α(ToYoBo)へ導入した。大腸菌形質転換体はZeocinを選択マーカーに持つ為、SOC(ToYoBo)培地にて1時間回復させた後、25μl/mlのZeocin(Invitrogen)を含むLenox(Difco)寒天培地に播種し、37℃、16時間静置培養した。寒天プレートから大腸菌コロニーを接種し、ダイレクトコロニーPCR、そして塩基配列を解読し、正しく耐熱性DNAポリメラーゼ遺伝子が組み込まれていることを確認した後、ベクターpPIC -TA01を得た。
(9)P.pastorisの形質転換
 ベクターpYES-TA01を酵母(Pichia
pastoris GS115株)へ導入した。形質転換はFastTrackTM-Yeast
Transformation Kit(Geno Technology社)を用いた。酵母形質転換体はZeocinを選択マーカーに持つ為、YPD培地(Difco)で3時間培養し回復させた後、100μg/mlのZeocinを含むYPDS(Difco)寒天プレートに播種した。そして、寒天プレートは28℃、3日間静置培養した。
(10)形質転換体の選抜
 耐熱性DNAポリメラーゼ高生産株を取得する為、形質転換した寒天プレートよりコロニーを接種し、Zeocin含有濃度を500μg/ml~2000μg/mlと順に上げたYPDS(Difco)寒天プレートで培養し、挿入遺伝子の多コピー形質転換体を選抜した。寒天プレートはZeocin濃度500μg/ml、1000μg/ml 、2000μg/mlと3段階で培養し、各々28℃、3日間静置培養した。Zeocin濃度2000μg/mlのYPDS(Difco)寒天プレートで生育した形質転換体を下記の耐熱性DNAポリメラーゼ生産実験に用いた。
 (11)T.aquatics由来耐熱性DNAポリメラーゼの生産
 BMGY培地100mlに形質転換体を接種し、28℃にて1日振盪培養し菌体量を増やした。次にタンパク質の生産を誘導する為に0.5%メタノールを添加し28℃にて3日間培養した。これらを5000rpm、10分間遠心分離し集菌、破砕用緩衝液(50mM Tris-HCl pH7.5、50mM KCl)に懸濁し、0.5mmガラスビーズを用いて菌体を破砕した。次に70℃、60分間の熱処理を行い、12000rpm、30分間遠心分離しT.aquatics由来耐熱性DNAポリメラーゼを含む上清を得た。
(12)P.furiosus由来耐熱性DNAポリメラーゼ発現用ベクターの構築
 P.furiosus由来の耐熱性DNAポリメラーゼをコードする遺伝子をプラスミドpYES2に挿入し、ベクターpYES -PF01を構築した。耐熱性DNAポリメラーゼをコードする遺伝子はP.furiosusゲノムDNA(ATCC 43587D-5)をテンプレートとしてPCRにて合成した。PCRに用いるプライマー(配列番号89、90)は、5’末端配列にKpnI、3’末端配列にNotI制限酵素サイトが入るように設計し、KOD Plusを用いてPCRを行った。
配列番号89 gggggtacca tgattttaga tgtggattac
配列番号90 cccgcggccg cctaggattt tttaatg
 
PCRプログラムを下記のプログラムで実施した。:94℃ 2分間加熱した後、94℃
15秒間、56℃ 30秒間、68℃ 2分30秒間を30回繰返した。PCR生成物は次に1%アガロースゲルにて電気泳動し、QIAquickゲル抽出キットにてPCR断片を回収した。PCR増幅物、pYES2は共にKpnI、NotIにて消化し、DNA Ligation Kit Ver.2.1にてPCR増幅断片とpYES2を連結した。
 連結したベクターをE.coliコンピテントセル JM109(ToYoBo)へ導入した。大腸菌形質転換体は50μl/mlのアンピシリンを含むLB寒天培地に播種し、37℃、16時間静置培養した。寒天プレートから大腸菌コロニーを接種し、ダイレクトコロニーPCR、そして塩基配列を解読し正しく耐熱性DNAポリメラーゼ遺伝子が組み込まれていることを確認し、ベクターpYES-PF01を得た。
(13)T.gorgonarius由来耐熱性DNAポリメラーゼ発現用ベクターの構築
 T.gorgonarius由来の耐熱性DNAポリメラーゼをコードする遺伝子をプラスミドpYES2に挿入し、ベクターpYES -TG01を構築した。耐熱性DNAポリメラーゼをコードする遺伝子はT.gorgonariusのゲノムDNA(ATCC 700654D)をテンプレートとしてPCRにて合成した。PCRに用いるプライマー(配列番号91、92)は、5’末端配列にKpnI、3’末端配列にNotI制限酵素サイトが入るように設計し、KOD Plusを用いてPCRを行った。
配列番号91 gggggtacca tgatcctcga tacagac
配列番号92 cccgcggccg ctcatgtctt aggttttag
 
PCRプログラムを下記のプログラムで実施した。:94℃ 2分間加熱した後、94℃
15秒間、60℃ 30秒間、68℃ 2分30秒間を30回繰返した。PCR生成物は次に1%アガロースゲルにて電気泳動し、QIAquickゲル抽出キットにてPCR断片を回収した。PCR増幅物、pYES2プラスミドは共にKpnI、NotIにて消化し、DNA Ligation Kit Ver.2.1にてPCR増幅断片とプラスミドpYES2を連結した。
 連結したベクターをE.coliコンピテントセル JM109に形質転換した。大腸菌形質転換体は50μl/mlのアンピシリンを含むLB寒天培地に播種した。そして、寒天プレートは37℃、16時間静置培養した。寒天プレートから大腸菌コロニーを接種し、ダイレクトコロニーPCR、そして塩基配列を解読し正しく耐熱性DNAポリメラーゼ遺伝子が組み込まれていることを確認し、ベクターpYES-TG01を得た。
 (14)酵母の形質転換
 この得られたベクターpYES-PF01、pYES-TG01を酵母(Saccharomyces cerevisiae X2180株)へ導入した。形質転換はFastTrackTM-Yeast Transformation Kitを用いた。
(15)P.furiosus、T.gorgonarius由来耐熱性DNAポリメラーゼの生産
 得られた形質転換体は、SD培地(0.67% Bacto yeast nitrogen base、2% Galactose、)100mlにて、28℃、72時間振とう培養を行った。これらを5000rpm、10分間遠心分離し集菌、破砕用緩衝液(50mM Tris-HCl pH7.5、50mM
KCl)に懸濁し、0.5mmガラスビーズを用いて菌体を破砕した後遠心分離を行い、酵母破砕液沈殿を得た。この沈殿に対し、沈殿湿重量の2倍量の破砕用緩衝液を添加、懸濁し70℃、60分間の熱処理を行い、12000rpm、30分間遠心分離し耐熱性DNAポリメラーゼを含む上清を得た。
 (16)PCRによる非特異的核酸混入の検査
 図4は上記の得られた各耐熱性DNAポリメラーゼ調製物とTaKaRa Taq(TaKaRa)、AmpliTaq Gold LD(ABI)を用い、非特異的核酸混入が認められるかを調査した実例を示す1%アガロース電気泳動の写真である。レーン1、4、7、10、13、16は40サイクル、レーン2、5、8、11、14、17は60サイクルにてテンプレートを添加せずPCRを行ったものである。また、レーン3、6、9、12、15、18は大腸菌1μgをテンプレートとしてPCRを30サイクルにて試行したものである。プライマーは259bpの大腸菌16S rRNA遺伝子を増幅させ得る配列番号85、86を用いて、温度条件、PCR溶液組成は(6-3)と同様の操作にて行った。これより、テンプレートを添加していないにも関わらず、TaKaRa
Taqでは40サイクル、AmpliTaq Gold LDは60サイクルにてバクテリア16S rRNA由来遺伝子の増幅産物が検出された。また、本特許の製造方法により生産された耐熱性DNAポリメラーゼでは40、60サイクルのPCRでも増幅産物は検出されず、煩雑な精製工程を行わなくとも非特異的核酸混入は認められず、PCRが実施可能であった。
(17)リアルタイムPCRによる増幅曲線、融解曲線の解析(非特異的核酸混入の調査)
 上記の得られた耐熱性DNAポリメラーゼ調製物の非特異的核酸混入を調査する為、リアルタイムPCRを用いて増幅曲線、融解曲線の解析を行った。図5(A)及び図5(B)は増幅曲線、図6(A)及び図6(B)は融解曲線の解析を示す図である。また、図5(A)及び図6(A)はAmpliTaq
Gold LD、図5(B)及び図6(B)はS.cerevisiaeを宿主に生産した耐熱性DNAポリメラーゼ調製物を用い解析を実施した図である。実線はテンプレートとして大腸菌を添加したもの、点線はテンプレート未添加のものである。リアルタイムPCR試薬として、LightCycler FastStart DNA Master SYBR GreenI(Roche社)の1bチューブに対し、10μlの超純水を加えx10 Bufferとした。このチューブ内にはTaq DNAポリメラーゼに最適化された緩衝試薬の他、dNTPsとSYBR GreenIが含まれる。その他に1.5mM MgCl2、それぞれ0.4μMプライマー(配列番号85、86)、テンプレートとして大腸菌1μg、耐熱性DNAポリメラーゼ調製物を1ユニット添加し、超純水にて全量20μlになるよう調製して、ホットスタート法でリアルタイムPCR(60サイクル)を行った。AmpliTaq
Gold LDでは32サイクル程度で増幅曲線が立ち上がり始め、融解曲線ではテンプレート添加、未添加共に同程度の位置にピークがあり、非特異的核酸混入が認められた。これに対し、本特許の製造方法により製造した耐熱性DNAポリメラーゼは、テンプレート未添加では増幅曲線、融解曲線共に見られなかった。真核細胞を宿主として用いて生産した耐熱性DNAポリメラーゼ調製物では非特異的核酸混入に由来する増幅産物が認められず、細菌を宿主として用いて生産し、バクテリアDNAのコンタミネーションが最小に抑えられるように精製された耐熱性DNAポリメラーゼ調製物を用いた場合では非特異的核酸混入に由来する増幅産物が認められた結果から、大気や水環境中に存在するバクテリアの混入など様々な非特異的核酸混入の可能性がある中で、その主たる要因は耐熱性DNAポリメラーゼの生産過程における宿主由来DNAの耐熱性DNAポリメラーゼ調製物への混入にあるものと考えられた。
(18)ベクターpYES-PF01の変異の導入
 P.furiosus由来耐熱性DNAポリメラーゼの3’-5’エキソヌクレアーゼをコードする遺伝子に変異を導入した。すなわち、DNAポリメラーゼの3’-5’エキソヌクレアーゼ改変を行い活性を調整した(Kongら(1993)、journal
of biological chemistry、vol.268、1965-1975)。具体的には、変異導入に用いるプライマー(配列番号61、62)、テンプレートとしてベクターpYES2-PF01、KOD Plusを用いてPCRを行った。
配列番号61 GATTCTTGCCTTCGCGATCGCAACCCTCTATCACGAAGG
配列番号62 CCTTCGTGATAGAGGGTTGCGATCGCGAAGGCAAGAATC
 PCRプログラムを下記のプログラムで実施した。:94℃ 2分間加熱した後、94℃
15秒間、56℃ 30秒間、68℃ 7分秒間を15回繰返した。反応後、制限酵素DpnIにてPCR溶液中のテンプレートを消化し、E.coliコンピテントセル JM109へ導入した。大腸菌形質転換体は50μl/mlのアンピシリンを含むLB寒天培地に播種し、37℃、16時間静置培養した。寒天プレートから大腸菌コロニーを接種し、塩基配列を解読し目的位置に変異が導入されていることを確認し、ベクターpYES-PF-M01を得た。また、実施例(14)、(15)と同様に形質転換、生産を行い、P.furiosus由来変異耐熱性DNAポリメラーゼ調製物を得た。
(19)ベクターpYES-TG01の変異の導入
 T.gorgonarius由来耐熱性DNAポリメラーゼの3’-5’エキソヌクレアーゼをコードする遺伝子に変異を導入した。変異導入に用いるプライマー(配列番号63、64)、テンプレートとしてベクターpYES2-TG01を用い(18)と同様の方法で変異を導入した。
配列番号63 GATGCTCGCCTTCGCGATCGCAACGCTCTATCACGAGGGCG
配列番号64 CGCCCTCGTGATAGAGCGTTGCGATCGCGAAGGCGAGCATC
 塩基配列を解読し目的位置に変異が導入されていることを確認し、ベクターpYES-TG-M01を得た。また、実施例(14)、(15)と同様に形質転換、生産を行い、T.gorgonarius由来変異耐熱性DNAポリメラーゼ調製物を得た。
 (20)宿主Tobacco-BY2を用いたT.aquaticus由来耐熱性DNAポリメラーゼの生産
(20-1)転写因子発現用DNA断片導入用ベクターの構築
 転写因子発現用DNA断片を宿主細胞(タバコBY2細胞)に導入するためのベクター(以下転写因子発現用DNA断片導入用ベクターと称する)として、TiプラスミドpER8(-Stu)
(Dohi, K., Nishikiori, M., Tamai, A., Ishikawa, M., Meshi, T.,
Mori, T. (2006) Inducible virus-mediated expression of a foreign protein in
suspension-cultured cells. Archives of Virology 151, 1075-1084)を用いた。pER8(-Stu)は、恒常的プロモーターPG10-90の下流にエストロジェンレセプターを含む融合転写因子LexA-VP16-hERをコードする遺伝子、ターミネーターTE9を連結し、さらに薬剤耐性マーカーとしてハイグロマイシン耐性遺伝子(Hygr)を組み込んで構築した。
(20-2)タンパク質発現用DNA断片導入用ベクターの構築
 ToMVの外被タンパク質をコードする遺伝子を、T.aquaticus由来DNAポリメラーゼをコードする遺伝子(配列番号65)で置換したToMV変異体を用いた。
配列番号65
ATGAGGGGGATGTTGCCATTGTTTGAACCTAAAGGGAGGGTTTTACTCGTGGATGGCCATCACCTTGCTTATCGTACTTTCCACGCTCTCAAAGGTTTAACAACCTCTAGGGGAGAGCCAGTTCAAGCTGTGTACGGGTTTGCAAAGTCACTCCTTAAAGCCTTGAAGGAGGACGGTGATGCCGTTATCGTGGTATTCGATGCTAAAGCACCAAGTTTTAGACACGAGGCTTACGGAGGCTATAAGGCTGGACGTGCACCAACTCCCGAGGATTTCCCAAGACAACTCGCCCTGATAAAGGAGTTGGTTGACCTACTTGGATTGGCTAGGTTAGAAGTTCCCGGTTACGAAGCTGACGACGTTTTGGCCTCACTTGCTAAGAAAGCAGAAAAGGAGGGCTACGAAGTTCGTATACTCACAGCCGATAAAGACTTGTATCAACTGTTATCTGATAGGATTCATGTGCTTCACCCCGAAGGGTACCTTATCACCCCTGCCTGGCTGTGGGAAAAGTACGGGCTCAGACCTGACCAGTGGGCTGATTACCGTGCACTCACCGGTGACGAGAGTGACAATCTTCCTGGCGTGAAAGGAATAGGTGAAAAGACAGCTAGAAAATTGCTAGAAGAGTGGGGGTCCCTCGAGGCACTTTTGAAGAACCTTGATAGGTTAAAACCAGCTATTAGAGAAAAGATACTGGCCCATATGGATGACTTGAAACTATCATGGGACTTAGCTAAAGTCAGAACCGATTTACCTTTGGAAGTGGATTTTGCTAAGAGAAGGGAACCAGATAGAGAGAGGCTTAGAGCATTCTTGGAGCGTCTGGAATTTGGATCTTTACTCCACGAGTTCGGTTTGCTTGAGTCTCCCAAGGCACTGGAAGAGGCACCATGGCCTCCACCTGAAGGCGCTTTTGTTGGGTTCGTTCTCAGTAGGAAGGAACCTATGTGGGCAGACTTGCTCGCCCTAGCAGCTGCAAGAGGGGGAAGAGTGCATAGGGCTCCCGAACCTTATAAGGCACTCAGAGATCTTAAGGAGGCTAGGGGCCTCTTGGCAAAGGACCTATCCGTGCTTGCACTCAGGGAAGGATTGGGACTCCCACCCGGTGATGACCCTATGTTATTGGCTTACTTGCTTGACCCATCCAATACCACACCCGAGGGAGTTGCCCGTAGGTATGGGGGCGAGTGGACTGAGGAAGCTGGTGAGAGGGCCGCATTGAGTGAGAGGCTATTTGCCAACTTATGGGGGAGGTTGGAGGGGGAGGAACGTCTGCTATGGCTTTACAGAGAGGTGGAGCGTCCCTTGAGTGCTGTATTAGCTCACATGGAAGCTACAGGCGTCCGTCTAGATGTTGCTTACTTAAGGGCTCTAAGTTTGGAAGTTGCAGAAGAGATCGCCAGATTAGAAGCTGAAGTTTTCAGGTTAGCAGGACACCCTTTTAATCTCAATAGTAGGGACCAACTCGAACGTGTGTTATTTGATGAACTGGGCCTCCCCGCTATAGGGAAAACCGAGAAAACAGGGAAAAGGTCCACATCTGCAGCTGTATTGGAAGCCCTTAGAGAAGCACATCCTATTGTGGAGAAAATACTACAGTACAGGGAGCTAACCAAATTAAAGAGTACCTACATAGATCCATTGCCTGATCTTATTCACCCAAGGACCGGAAGGCTTCACACCCGTTTCAATCAAACCGCAACAGCTACTGGGAGGTTATCATCTTCCGACCCTAACTTGCAAAATATACCTGTTCGTACCCCACTCGGACAGAGAATACGTAGAGCTTTCATTGCCGAAGAGGGATGGCTCTTGGTTGCTTTGGATTATAGTCAGATTGAACTTAGAGTTCTAGCACACCTTAGTGGCGACGAAAACCTCATCAGGGTGTTTCAGGAGGGGAGAGATATACACACCGAAACTGCTTCATGGATGTTTGGGGTGCCCAGGGAAGCCGTAGACCCCCTCATGAGAAGGGCTGCTAAAACAATTAATTTCGGCGTGTTGTACGGAATGTCCGCTCACAGGCTATCACAAGAGTTGGCAATCCCCTATGAAGAGGCTCAAGCCTTCATTGAGAGGTATTTTCAGTCCTTTCCAAAGGTGCGTGCTTGGATAGAGAAAACTTTAGAGGAAGGTAGAAGGAGAGGGTATGTGGAAACTCTATTTGGCAGACGTAGGTACGTTCCTGACCTCGAAGCTAGAGTTAAGTCCGTCAGAGAGGCAGCTGAACGTATGGCATTCAATATGCCTGTTCAAGGAACAGCTGCAGACTTAATGAAATTAGCTATGGTGAAGTTGTTCCCAAGGTTAGAGGAAATGGGTGCAAGAATGCTCCTACAGGTCCATGATGAGCTAGTGTTGGAAGCACCTAAAGAGAGGGCAGAGGCAGTAGCCAGGTTGGCAAAGGAGGTTATGGAAGGGGTGTATCCACTTGCTGTCCCCTTGGAGGTGGAAGTCGGGATCGGTGAGGACTGGTTATCCGCAAAGGAATGAGCTCACTAGT
 T.aquatics由来耐熱性DNAポリメラーゼはGenScript社にて全遺伝子配列を合成した。この際、コドン配列をタバコBY2細胞に最適化した。形質転換用ベクターとしてエストロジェンで転写誘導可能なプロモーターOLexA-46を有するTiプラスミドを用い、OLexA-46の下流にToMV変異体のcDNAを連結し、さらにその3’末端にサテライトタバコリングスポットウイルスのリボザイム配列S-Rz、35Sターミネーター(35ST)を組み込んだタンパク質発現用DNA断片を宿主細胞(タバコBY2細胞)に導入するためのベクターpBICER8-ToMV/Taq-SRzを構築した。
(20-3)第一形質転工程: 転写因子発現用DNA断片の宿主細胞への導入
 転写因子発現用DNA断片導入用ベクターpER8(-Stu)を、タバコBY2細胞にアグロバクテリウム法により導入した。まずpER8(-Stu)をエレクトロポレーション法によってAgrobacterium tumefacince LBA4404系統に導入した。これをスペクチノマイシン(50mg/l)を含むAB sucrose培地で前培養した。次にタバコBY2細胞と混合してシャーレに移し、26℃、暗所で42~48時間静置してタバコBY2細胞を形質転換した。タバコBY2細胞用培地にて洗浄した後、カルベニシリン(100mg/l)およびハイグロマイシン(20mg/l)を含むタバコBY2細胞用固形培地に広げ、形質転換タバコBY2細胞を増殖させた。
(20-4)選抜工程: 転写因子高発現形質転換体の選抜
形質転換タバコBY2細胞のうち、ノーザンブロット法の結果、転写因子の発現量の高い細胞ラインを選抜した。ここで「細胞ライン」とは、形質転換細胞を増殖させることにより形成された個々のコロニーのことを意味する。
 (20-5)第二形質転換工程: タンパク質発現用DNA断片の導入
 上記で得られた転写因子高発現タバコBY2細胞ラインに、ウイルスベクター(pBICER8-ToMV/Taq-SRz)をアグロバクテリウム法により導入し形質転換細胞を得た。
 (20-6)タバコBY2細胞の培養、タンパク質発現、抽出
上記で得られた形質転換細胞を15mlの液体培養にて維持し、7日ごとに1/200量になるように継代した。また、1/50量になるよう継代し、継代培養後2日間前培養した細胞を、エストロジェンの終濃度が0.01mMとなるように添加し、さらに2日間培養した。これを5000rpm、10分間遠心分離し形質転換細胞を回収し、液体窒素で凍結した後、乳鉢を用いて細胞を破砕した。これに等量の緩衝液(50mM Tris-HCl pH7.5、50mM
KCl)を加え懸濁し、70℃、60分間の熱処理を行い、12000rpm、30分間遠心分離しT.aquatics由来耐熱性DNAポリメラーゼを含む上清を得た。
 (21)宿主A.oryzaeを用いたT.aqaticus由来耐熱性DNAポリメラーゼの発現
(21-1)DNAの合成
 T.aquatics由来耐熱性DNAポリメラーゼはGenScript社にて全DNA配列を合成した。(配列番号41)この際、コドン配列をA.oryzaeに最適化した。耐熱性DNAポリメラーゼをコードする遺伝子は、5’末端配列にPmeI、3’末端配列にXmaI制限酵素サイトが入るように設計した。
配列番号41
ATGAGAGGCATGCTGCCACTGTTCGAGCCAAAGGGAAGGGTGCTGCTGGTGGACGGACACCATCTGGCCTACAGAACTTTTCACGCTCTGAAGGGACTGACCACATCACGGGGGGAGCCAGTGCAGGCTGTGTATGGATTCGCTAAAAGCCTGCTGAAGGCCCTGAAAGAGGACGGAGATGCTGTGATCGTGGTGTTCGATGCTAAGGCCCCTAGCTTTAGACATGAGGCCTACGGCGGATATAAAGCCGGACGCGCTCCAACCCCCGAGGACTTTCCAAGGCAGCTGGCCCTGATTAAGGAACTGGTGGATCTGCTGGGACTGGCTAGGCTGGAGGTGCCCGGCTACGAAGCTGACGATGTGCTGGCCTCCCTGGCTAAGAAAGCCGAGAAGGAAGGCTACGAGGTGCGCATCCTGACAGCCGACAAAGATCTGTATCAGCTGCTGTCTGACAGGATCCACGTGCTGCATCCCGAGGGGTATCTGATTACTCCTGCCTGGCTGTGGGAAAAGTACGGCCTGAGACCAGACCAGTGGGCTGATTATCGGGCCCTGACTGGCGACGAGTCAGATAACCTGCCCGGAGTGAAAGGCATCGGAGAAAAAACCGCCAGGAAGCTGCTGGAGGAATGGGGCAGCCTGGAGGCTCTGCTGAAAAATCTGGATAGACTGAAGCCCGCCATCCGGGAGAAAATTCTGGCTCACATGGACGATCTGAAGCTGTCTTGGGACCTGGCCAAAGTGAGAACCGACCTGCCTCTGGAGGTGGATTTCGCCAAGAGGAGAGAGCCAGATCGGGAACGCCTGAGGGCTTTCCTGGAGCGGCTGGAATTTGGGTCACTGCTGCATGAGTTTGGCCTGCTGGAAAGCCCAAAGGCTCTGGAGGAAGCTCCATGGCCACCTCCAGAGGGAGCCTTCGTGGGATTTGTGCTGTCCAGGAAAGAACCAATGTGGGCTGACCTGCTGGCTCTGGCTGCTGCCAGAGGGGGACGGGTGCACCGCGCCCCTGAGCCATACAAGGCTCTGCGCGACCTGAAAGAAGCCAGGGGGCTGCTGGCTAAGGATCTGTCAGTGCTGGCTCTGAGGGAGGGACTGGGACTGCCCCCTGGCGACGATCCAATGCTGCTGGCCTACCTGCTGGATCCAAGCAACACTACCCCAGAGGGAGTGGCTAGGAGATATGGAGGGGAATGGACCGAGGAAGCTGGGGAGAGAGCTGCCCTGTCCGAACGGCTGTTCGCTAATCTGTGGGGAAGGCTGGAGGGAGAGGAAAGGCTGCTGTGGCTGTACCGGGAGGTGGAACGCCCTCTGTCCGCTGTGCTGGCTCACATGGAGGCTACAGGCGTGCGCCTGGACGTGGCTTATCTGAGGGCCCTGTCTCTGGAGGTGGCTGAGGAAATCGCCAGACTGGAGGCTGAAGTGTTCCGGCTGGCCGGACATCCCTTTAACCTGAATAGCAGGGACCAGCTGGAGAGAGTGCTGTTCGATGAACTGGGGCTGCCTGCCATTGGCAAGACCGAGAAAACAGGGAAGCGCTCAACAAGCGCTGCTGTGCTGGAGGCTCTGAGGGAAGCTCACCCCATCGTGGAGAAGATTCTGCAGTACAGAGAACTGACTAAGCTGAAATCCACCTATATCGACCCCCTGCCTGATCTGATTCACCCTAGGACAGGCAGACTGCATACTCGCTTCAACCAGACAGCTACTGCCACCGGAAGGCTGAGCTCCTCTGACCCAAACCTGCAGAATATCCCTGTGAGAACCCCACTGGGACAGCGGATCAGGAGAGCTTTTATTGCTGAGGAAGGATGGCTGCTGGTGGCTCTGGATTACTCCCAGATTGAGCTGAGGGTGCTGGCTCACCTGTCTGGGGACGAAAACCTGATCCGCGTGTTCCAGGAGGGCAGGGATATTCATACAGAAACTGCCAGCTGGATGTTTGGAGTGCCTCGCGAGGCTGTGGACCCACTGATGAGGAGGGCTGCCAAGACAATCAATTTCGGAGTGCTGTATGGGATGTCCGCCCACAGGCTGTCTCAGGAGCTGGCTATCCCCTACGAGGAAGCTCAGGCCTTCATCGAAAGATACTTCCAGTCTTTCCCTAAGGTGCGGGCCTGGATTGAGAAAACCCTGGAGGAAGGCAGGAGACGGGGATACGTGGAAACACTGTTCGGCCGCAGGAGATATGTGCCTGACCTGGAGGCCAGGGTGAAGTCAGTGCGCGAGGCTGCCGAAAGGATGGCTTTCAATATGCCTGTGCAGGGAACCGCTGCCGACCTGATGAAACTGGCCATGGTGAAGCTGTTTCCACGCCTGGAGGAAATGGGGGCTAGGATGCTGCTGCAGGTGCATGATGAGCTGGTGCTGGAAGCCCCAAAGGAGAGAGCTGAAGCCGTGGCTCGGCTGGCCAAAGAAGTGATGGAAGGCGTGTACCCCCTGGCTGTGCCTCTGGAGGTGGAAGTGGGAATCGGGGAGGACTGGCTGTCCGCCAAGGAATGA
(21-2)T.aquatics由来耐熱性DNAポリメラーゼ発現用ベクターの構築
 自立複製型シャトルベクター(pPTRII:TaKaRa Bio)のHindIII、KpnI制限酵素サイトにTEFプロモーター(配列番号66)とSDターミネーター(配列番号67)を挿入しベクターpPTR-TEF-SDtを得た。
配列番号66
GCGGCCGCGGGTGCAAACGGTGGTCAAAGGATGGTTCAGATACAAATTAGCAACAGGCCAGGCTAGACGCGC
GACTATCCACTGCGGCAAATGGTGAGCTGCAAGCAACGGTAAGATGTGACAGGACGAGCGGTGTGCCGGGAA
AAAAATTGGAGGAGCGCAAAGCGGCGGCTGTCCCTCAGTGGTGCCCAAACGTTATCGATAGTACACCAAGCA
TGGGCAGTGAGCGGCTATACAGAGGGAATAATAGGCATATCGGCACGACTAGATTCGGTAGAAAGCATCGAA
GAGCAATTCATTGAGCATATTATCACGTGGAATGCGATAGCTGTGGCCAGGTTGAGACACCGCAAGTGAAAG
ATACACACATAGATTCTCGATTCGAGCGGTTTGCCTCCGCCACCGCAGTGCATAGCAAGCAAAGAAACGACA
GTTGGCTCATCATCCGTTACATCATTTTTTCTACTGGCTCCGCTCGGTGGGCTCCCAACGAAGCAGCAAAAA
AGTGAGAGAAAAAAACTAGCTTGGCGGGGCAACAGAAGCTAGACCCTTTGGCTCGCTTAGTCAGTGCGCCCA
CTCACTCACACTCAAAAAGGCCACCCCTCCCGCACCCTCTTCTCATCACCGTCTTCATACCACGGTTCGTCA
AGCAATCGTATCTGGTAAGCTTTGACCTCCTCGAGCGGGCTCCACTTTGCTATTTCTTGGATCTGCTCTTTC
TTTTCTCTCTACCTCTTTTTCTAACCTCTCTTCAGAAAGTTCAACCGTACTTCACTCCATCTTCCTACGTCA
CTCTAGA
配列番号67
TAAAGCGGCGTGCTCTGCACATAACACGTGTCGTGTTTGGGTTCGGTATGGGTAATGGCGAATGGGGACATGCATTTATGGGATAGGGGGCTGGGTTGGTGTAATCAAATGTGCATACAGACCAGCTGATACGAATACTACAACTTACCCCGACACACGCATTCATGTGACGCCCAACACCTCGTCTAACTCATCGGGGCAACTCACCTCAATCCGATTCAGCCTCCCGG
 TEFプロモーターはAureobasidium
pulluans由来、SDターミネーターはColletotrichum
orbiculare由来であり、共に抽出したゲノムDNAをテンプレートとしPCRにて増幅を行った。(配列番号68、69、70、71)TEFプロモーターとSDターミネーターの間にはPmeI、XmaI制限酵素サイトが入るように設計した。
配列番号68 GCGGCCGCGGGTGCAAACGGTGGTCAAA
配列番号69 ATATCTAGAGTGACGTAGGAAGATGGAG
配列番号70 GTTTAAACAGATCTCCCGGGTAAAGCGGCGTGCTCTGCAC
配列番号71 TATGGTACCGGGAGGCTGAATCGGAT
 次にpPTR-TEF-SDtのPmeI、XmaI制限酵素サイトに T.aquatics由来耐熱性DNAポリメラーゼをコードする遺伝子を挿入しベクターpPTR-TEF-Taqを得た。また、FLAGタグを付加するため、ベクターpPTR-TEF-Taqをテンプレートにし、5’末端配列にPmeI、3’末端配列にXmaI制限酵素サイトが入るように設計したプライマー(配列番号72、73)を用いて増幅、pPTR-TEF-SDtのPmeI、XmaI制限酵素サイトに挿入しベクターpPTR-TEF-FLTaqを得た。
配列番号72
 ATAGTTTAAACATGGATTATAAGGATGACGATGACAAGATGAGAGGCATGCTGCCAC
配列番号73
ATGGTACCGGGAGGCTGAATCGGAT
(21-3)A.oryzaeの形質転換
 ベクターpPTR-TEF-FLTaqを糸状菌(Aspergillus oryzae)へ導入した。形質転換はプロトプラスト-PEG法を用いた。CD固形培地(1 L 当たり:NaNO3
6.0g、KCl 0.52g、KH2PO4 1.52 g、1M MgSO4・7H2O 2 ml、Glucose
10.0g、FeSO4・7H2O 1.0mg、ZnSO4・7H2O 8.8mg、CuSO4・5H2O 0.4mg、Na2B4O7・10H2O
0.1mg、(NH4)6Mo7O24・4H2O 0.05mg、Agar 20.0g、1N KOH でpH6.5
に調整)にてA.oryzaeを30℃培養し、これを10 mlの0.1% Tween 80、0.8% NaCl に懸濁し、ガラスろ過器(3G2)でろ過し、ろ液を集めた。3,000rpm、5分間遠心して分生子を沈澱させ、上清を除去した。10ml の0.1% Tween80 で分生子を2回洗浄した後、適量の滅菌水に懸濁し、胞子懸濁液とした。
100mlのCD液体培地にA.oryzaeの胞子懸濁液を植菌し、30℃で20 時間振盪培養した。
ガラスろ過器(3G1)でろ過して菌糸を集め滅菌水で洗浄後、スパーテル等で押さえて菌糸から水分を十分にいた。適当量の菌糸を、50ml ポリプロピレン製遠心管中のプロトプラスト化溶液に加えて懸濁し、30℃、2 時間穏やかに振盪、プロトプラスト化した。これをガラスろ過器(3G2)でろ過し、ろ液を2,000rpmで5分間遠心してプロトプラストを集め、0.8M NaClで2回洗浄した。プロトプラストを2×108/mlとなるようにSolution 1(0.8 M NaCl、10mM CaCl2、10mM Tris-HCl (pH8.0))に懸濁し、0.2容量のSolution 2(40% (w/v) PEG4000、50mM CaCl2、50mM Tris-HCl (pH8.0))を加えて穏やかに懸濁した。0.2 mlのプロトプラスト懸濁液に20μgのpPTR-TEF-FLTaqを加え氷中で30分間静置した。1 mlのSolution
2を加え、穏やかに懸濁し室温で15分間静置した。8.5mlのSolution 1を加え、穏やかに懸濁した。次に、遠心してプロトプラストを集め上清を除き、プロトプラストを0.2mlのSolution 1に懸濁した。プロトプラスト懸濁液を5mlのCD軟寒天選択培地(CD培地のagarを0.5%にし、0.8M
NaCl、0.1μg/ml Pyrithiamine(TaKaRa Bio)を添加し50℃で保温したもの)。に懸濁し、CD 選択培地にプロトプラストが均一に分散するように播種し30℃、7 日間培養した。
(21-4)A.oryzaeの培養、T.aquatics由来耐熱性DNAポリメラーゼの生産
 CD培地600mlに形質転換体を接種し、30℃にて4日間培養を行った。これらを5000rpm、10分間遠心分離し集菌し、破砕用緩衝液(50mM Tris-HCl pH7.5、50mM KCl)に懸濁し、0.5mmガラスビーズを用いて菌体を破砕した後70℃、60分間の熱処理を行い、12000rpm、30分間遠心分離し耐熱性DNAポリメラーゼを含む上清を得た。これにFLAG Tagged protein
Immunoprecipitation Kit (Sigma)を用いて精製を行い、T.aquatics由来耐熱性DNAポリメラーゼ調製物を得た。
(21-5)PCRによる非特異的核酸混入の検査
 図7は上記の得られた耐熱性DNAポリメラーゼを用い、非特異的核酸混入が認められるかを調査した実例を示すアガロース電気泳動の写真である。レーン1はマーカー、レーン2はテンプレートを添加せず、レーン3は大腸菌DNAをテンプレートとしてPCRを行った。プライマーは配列番号85、86を用いて、PCR温度条件、PCR溶液組成は(6-3)と同様に行い、45サイクルにてPCRを行った。これより、大腸菌をテンプレートとしたものはバクテリア16S rRNA由来遺伝子の増幅産物が検出され、テンプレートを加えなかったものはバクテリア16S rRNA由来遺伝子の増幅産物が検出されなかった。
(22)非表示法(masked Primer Dimer法)を用いた各種耐熱性DNAポリメラーゼによるリアルタイムPCR 
 上記の得られた耐熱性DNAポリメラーゼ調製物を用い、非表示法を用いてリアルタイムPCRを行った。リアルタイムPCRでは各々、S.cerevisiaeを宿主として生産したT.aquaticus由来耐熱性DNAポリメラーゼ調製物(図8、A、図9、A)、変異P.furiosus由来耐熱性DNAポリメラーゼ調製物(図8、B、図9、B)、変異T.gorgonarius由来耐熱性DNAポリメラーゼ調製物(図8、C、図9、C)、P.pastorisを宿主として生産したT.aquaticus由来耐熱性DNAポリメラーゼ調製物(図8、D、図9、D)、Tobacco BY-2を宿主として生産したT.aquaticus由来耐熱性DNAポリメラーゼ調製物(図8、E、図9、E)を使用した。また図8、A、B、C、D及びEは増幅曲線、図9、A、B、C、D及びEは融解曲線を示す図である。実線はテンプレートを添加したもの、点線はテンプレート未添加のものである。リアルタイムPCR試薬は(17)と同様である。リアルタイムPCRのプログラムは94℃ 1分間、50℃
30秒間、72℃ 1分間、84℃ 2秒後蛍光値を検出、を60回繰返した。リアルタイムPCR結果より、非表示法を用いた事でリアルタイムPCRでの定量性を害する非特異的増幅産物やバクテリアDNAの増幅曲線のシグナルを検出することなく解析可能であった。
 (実施例2:非表示法による定量同定A)
 以下、宿主S.cerevisiaeにより生産したT.aquaticus由来耐熱性DNAポリメラーゼをe-DNAPと記す。
 上記の得られたe-DNAPを用いて非表示法による検体の定量同定を試みた。リアルタイムPCR機器はLightCycler 1.5 (ロシュ・ダイアグノスティックス社)およびRotorGene6000 (キアゲン社)、リアルタイムPCR用試薬は下記構成にて、以下に記載のバクテリア検出用のユニバーサルプライマーを用い、全量20μLの系で行った。
Forward Primer:  CTCCTACGGGAGGCAG (配列番号43)
Reverse
Primer:  ACTACCAGGGTATCTAATCCTG (配列番号44) 
e-DNAP(5 units/μL ) 1μL, 
E.coli genomic DNA
templateまたは Water PCR grade 2μL, 
SYBR Green I (TAKARA) 300倍希釈液2μL,
 PCR primers(10μΜ)0.8μL each, 
10×Buffer (500mM KCl,
100mM Tris-HCl)2μL, 
25mM MgCl2 1μL,
2mM dNTP mix 2μL, 
Water PCR grade 8.4μL
 また、リアルタイムPCRのプログラムは表1記載の条件にて行った。
Figure JPOXMLDOC01-appb-T000002
図13及び図14は表1プログラム条件により解析を実施した増幅曲線及び融解曲線図である。
図13より、テンプレートを含まない状態でも増幅曲線が現れ、図14より、約76℃付近にプライマーダイマーの融解曲線が認められた。
Figure JPOXMLDOC01-appb-T000003
 図14の融解曲線結果を参考とし、蛍光検出時の温度をプライマーダイマーとE.coliの中間である84℃に設定した表2記載の条件にてリアルタイムPCRを行った。
 図15(A)は表2プログラム条件によるリアルタイムPCR結果の増幅曲線図である。この方法によりテンプレートに水を用いた場合にはプライマーダイマーを表示することなく、テンプレートとしてE.coliを加えたものでは目的増幅産物の正常な増幅曲線が認められた。
 (実施例3:非表示法による定量同定B)
 本発明にかかるe-DNAPおよび非表示法を用いて、各種検体中に存在する感染菌の定量同定を試みた。細菌検出用のリアルタイムPCR用試薬およびプライマー構成は(実施例2)と同じである。真菌検出用のリアルタイムPCR用試薬およびプライマー構成は、細菌を宿主として製造した耐熱性DNAポリメラーゼとしてrTaq DNA polymerase (ToYoBo)を用い、以下に記載の真菌検出用のユニバーサルプライマーを用いる以外は、(実施例2)と同じである。
Forward Primer:  GAATGAGTACAATGTAAATACCTTAACG (配列番号9)
Reverse Primer:  GCTTTCGCAGTAGTTAGTCTTCA (配列番号45)
 感染菌の濃度単位は一般的にCFU/mlが用いられるため、DNA濃度で計算されるPCR定量法との単位を合わせるために、McFarland比濁法を介して計算を試みた。具体的には、E. Coli, C.Albicansそれぞれを生理食塩水に懸濁した後、0.5
McFarlandの中央値に合わせた菌浮遊液を作り、それぞれを培地に展開してCFU/mlを計算すると同時に、DNAを抽出してDNA/mlを計算し、そのDNA溶液でリアルタイムPCRの検量線を描いた。
CFU/mlとDNA/mlの換算値を以下に示す。
・E.Coli :
0.5 McFarland = 1.3×108 CFU/ml = 8.6μg/ml (8.6 ng/μl)
・C.Albicans
: 0.5 McFarland = 2.5×106 CFU/ml = 18.0μg/ml (18.0 ng/μl)
また、検量線を描いた結果、以下の結果が得られた。
・E.Coli : 相関係数 -1.00で、計算式:cycle数=-
4.1×concentration + 14.6
・C.Albicans
: 相関係数 -1.00で、計算式:cycle数=- 4.4×concentration + 14.5 
 陽性 and 定量コントロールとして、以下の2つを測定毎に定量する。
・E.Coli :
1.3×105 CFU/μl = 8.6
ng/μl を、2μl    (20μlの測定系)
・C.Albicans
: 2.5×103 CFU/μl =
18.0 ng/μl を、2μl (20μlの測定系)
 以上より、本システムにて細菌、真菌が陽性に出た場合、以下の概算式で定量を行う。
・細菌(E. Coli 換算値):有効数字 2ケタ
 1.3×108×[10の{1-(cycle数-control cycle数+4.1)÷4.1}乗] CFU/ml
・真菌(Candida Albicans 換算値):有効数字 2ケタ
 2.5×106÷18×[10の{3-(cycle数-control cycle数+7.7)÷4.4}乗] CFU/ml 
 (1)検出対象の高感度定量方法を用いた生活用水の検査
次に、構築した「検出対象の高感度定量方法」の実用性を評価する目的で、以下の4種の生活用水について検査を行った。
(A)水道水:富山大学附属病院内の上水道水。
(B)湧水:昭和60年、環境庁から「全国名水100選」の1つに選ばれた富山の名水。
(C)温泉水:加温循環の温泉水。添加物は無し。
(D)空調循環水:富山大学附属病院内の空調循環水。
 水道水、湧水、温泉水はそれぞれ25ml、空調循環水は1mlを、8000 rpm, 20 min 遠心し、ペレットからInstaGene Matrix(Bio-Rad)を用いてDNAを抽出した。
 それらDNA抽出液をテンプレートとして感染菌検査を行った結果、4種の生活用水の何れからも真菌は検出されなかった(図15(B)のB)。しかし、細菌に関しては、水道水と湧水(名水)に細菌は存在しなかったが、温泉水と空調循環水は陽性と出た(図15(C)のB、C)。それらを定量計算した結果、以下の測定値を得た。
・温泉水:1.2 CFU/ml(E.Coli換算値)
・空調循環水:78 CFU/ml(E.Coli換算値)
 この結果、温泉水には量的には少ないが細菌が存在し、また、空調循環水には高濃度で細菌が存在することが判明した。
 (2)検出対象の高感度定量方法を用いた食品の検査
 食品の細菌汚染や真菌汚染は食中毒症の直接の原因となるため、社会的にも重要な検査である。今回、黄色ブドウ球菌による食中毒のリスクの高いシュークリームを検体として用いた。尚、「古いシュークリーム」とは室温にて数日放置したものを使用し、コントロール(新しいシュークリーム)として冷蔵(5℃以下)保存してある賞味期限内のシュークリームを使用した。DNA抽出に際しては、先ず各シュークリームのクリーム部分のみ27.4g採取し、減菌生理食塩水水20mlに添加し遠心分離して上清を除去し、この操作を3回繰り返すことで油成分を除去した。その後、遠心分離したペレットからInstaGene
Matrixを用いてDNAを抽出し、それらをテンプレートとして感染菌検査を行った。
 結果、古いシュークリーム、コントロール共に非常に微量の真菌がほぼ同程度検出された(図16)。シュークリームの皮はイーストで膨らませていることを考慮すれば、真菌による新たな汚染は無いものと考えられる。
 細菌汚染に関しては、新しいシュークリームでは細菌は全く検出されなかったが、古いシュークリームの場合、相当数の細菌の増殖を確認した(図17)。その増殖量を定量計算した結果、以下の測定値を得た。
 古いシュークリーム:1.5×107
CFU/(クリーム)g (E.Coli換算値)
 (3)検出対象の高感度定量方法を用いた敗血症の検査
 次に、検出対象の高感度定量方法を用いた敗血症の検査を試みた。今回、敗血症患者検体として、真菌血症の患者A(Candida Albicansによる敗血症)、細菌血症の患者B(Bacillus
speciesによる敗血症)それぞれの血液検体を使用した。DNA抽出に際しては、患者A,Bそれぞれの血液検体2μlと、更に患者Bの血液培養ボトルから2μlを採取し、それぞれInstaGene
Matrixを用いてDNAを抽出し、それらをテンプレートとして感染菌検査を行った。
 その結果、患者Aでは細菌感染はみられず、真菌感染のみ確認された(図18)。この真菌感染を定量計算した結果、以下の測定値を得た。
・患者A:9.7×104
CFU/(血液)ml (Candida Albicans 換算値)
 また、患者Bでは真菌感染はみられず、微量の細菌感染のみ認められた(図19)。また、血液培養ボトルでも確認したところ、多量の細菌増殖を確認した。この細菌感染を定量計算した結果、以下の測定値を得た。
・患者B:2.0×105
CFU/(血液)ml  (E.Coli 換算値)
 また、図20はMRSA DNAを鋳型としMRSAに特異的な以下のSpa, mecA primerを用いて行ったリアルタイムPCR結果である。
Spa Forward Primer: 
GCGATTGATGGTGATACGGTT (配列番号46)
Spa Reverse Primer: 
AGCCAAGCCTTGACGAACTAAAGC (配列番号47)
mecA Forward Primer: 
AAAATCGATGGTAAAGGTTGGC (配列番号48)
mecA Reverse Primer: 
AGTTCTGCACTACCGGATTTGC (配列番号49)
上記実施例に使用したユニバーサルプライマーに加えてMRSA特異的なプライマーを併用することにより、特定の感染菌に的を絞った検査の構築が可能であった。
 (実施例4:検出対象の高感度定量方法を応用した薬剤感受性試験)
 本発明にかかるe-DNAPおよび非表示法を用いた高感度定量方法を応用して、迅速な液相の薬剤感受性試験を試みた。現行の薬剤感受性試験では結果を得るまでに一般的に数日を要するが、本発明にかかる高感度定量方法を応用すると僅か4~6時間で結果を得ることが出来る。尚、液相の薬剤感受性試験については既に先行特許に記載されている(WO2002/052034)が、高感度検出法ではない為、一旦培養した後に改めて感受性試験をスタートしなければならず、結果を得るまでに早くても1日程度はかかることになる。
 (1)培養
 液体培地(BHI:Brain Heart Infusion)にそれぞれ等量ずつの検体(敗血症の血液など)を注入し、抗生剤添加あるいは無添加の条件の下、培養前、培養2時間後、培養4時間後に培地を回収し、菌体を遠沈・ペレット化して、それぞれDNAを抽出する。また、DNAの抽出は自動核酸抽出装置を使用するのが望ましい。
 (2)リアルタイムPCRによる菌の定量
 細菌検出用のリアルタイムPCR用試薬・条件及びプライマー構成は(実施例2)と同じである。
 (3)判定方法
培養前の定量結果を0とし、抗生剤無添加にて培養2時間後、4時間後のそれぞれの定量結果を100として(抗生剤無添加時の増菌率を100%として)計算した場合、抗生剤添加での培養2時間後、4時間後の定量結果より増菌率を求めた。
例えば、培養前の菌量をN0h、抗生剤無添加培養2時間後の菌量をN2h、抗生剤添加培養2時間後の菌量をK2hとすると、
抗生剤添加2時間後の増菌率=(K2h-N0h)/(N2h-N0h)×100 (%)
と計算できる。或いは、増菌率の比較ではなく、菌量そのものを直接比較しても良い。
 (4)結果1:菌量そのものの値を比較した場合
 検出されたStaphylococcus epidermidisに対し、ゲンタマイシン(GM)10 μg/mL、エリスロマイシン(EM)10 μg/mLそれぞれの薬剤感受性を培養2時間後、4時間後にてそれぞれ評価した。その結果、2時間後、4時間後共にEMには感受性があるが、GMには感受性の無いことが判明した(図21(A))。但しStaphylococcus epidermidisは2時間の培養では増菌が少ない為、より正確に評価するには4時間後の方がよい。
 (5)結果2:抗生剤無添加時の増菌率を100%として計算した場合
 検出されたBacillus cereusに対し、セファゾリン(CZ)10 μg/mL、アンピシリン(AP)10 μg/mL、エリスロマイシン(EM)10 μg/mLそれぞれの薬剤感受性を培養2、3、4時間後にてそれぞれ評価した。その結果、増菌の多い4時間後を評価すると、APには強い感受性があり(増菌率0%)、CZにもある程度の感受性が認められる(増菌率16%)が、EMには殆ど感受性が無い(増菌率76%)ことが分る(図21(B))。このように感受性の“程度”については菌の増殖の速さに左右されるため統一した時間設定が求められるが、抗生剤に対し強い感受性を示す、或いは全く感受性を示さないなどの評価は、培養2時間後などの早い段階でも判定可能であった。
 (実施例5:検出対象の高感度検出方法を用いた子宮内感染症の羊水検査)
 本発明にかかるe-DNAPおよび非表示法を用いた高感度検出法を用いて、迅速且つ簡便な子宮内感染症の羊水検査を行った。早産の最大の原因は子宮内感染症であり、胎児が死に至る危険を有するため、感染の有無を迅速に判定する検査法が求められている。子宮内感染症の感染微生物とは、細菌、真菌に加え、マイコプラズマやウレアプラズマの感染率が非常に高い。マイコプラズマ属・ウレアプラズマ属の塩基配列は細菌とは非常に異なり、細菌のユニバーサルプライマーでは検出できないため、それぞれのプライマーを別途用いる必要がある。
 (1)プライマーセットおよびPCR用試薬
 細菌および真菌検出用のPCR用試薬およびプライマー構成は、(実施例3)と同じである。
以下にマイコプラズマ属・ウレアプラズマ属の検出用のプライマー構成を示す。マイコプラズマ属・ウレアプラズマ属の検出にはnested PCR法を用いた。
マイコプラズマ属・ウレアプラズマ属検出にはe-DNAPを使用し、(実施例2)と同じPCR用試薬を用いた。PCRプログラムは(実施例2)と同じである。
Mycoplasma
Forward Primer: GATGATCATTAGTCGGTGG (配列番号50)
Mycoplasma Reverse
Primer: CTACCTTAGGCGGTCGTC (配列番号51)
Mycoplasma Forward
nested Primer: GACATCCTTCGCAAAGCTAT (配列番号52)
Mycoplasma Reverse
nested Primer: CAGTTACCCAGGCAGTATCTC (配列番号53)
Ureaplasma Forward
Primer: GAACGAAGCCTTTTAGGC (配列番号54)
Ureaplasma Reverse
Primer: GATACAGCTAGACGTTAAGCATCTA (配列番号55)
Ureaplasma Forward
nested Primer: TAACATCAATATCGCATGAGAAG (配列番号56)
Ureaplasma
Reverse nested Primer: CAGTACAGCTACGCGTCATT (配列番号57)
 (2)PCR検出法
 上記のプライマーセットにより、羊水中に細菌、真菌、マイコプラズマ属、ウレアプラズマ属のいずれかが存在するか否かを迅速且つ簡便に判定できる。検出法は、リアルタイムPCR法を用いても良いし、PCR産物をアガロースゲルに電気泳動して確認しても良い。e-DNAPを用いる(実施例3)の方法により、高感度に細菌および真菌を検出でき、また、nested
PCR法により高特異度にマイコプラズマ属およびウレアプラズマ属を検出できる。
 (3)結果
 子宮内感染症疑いの羊水検体1より、細菌の感染が確認された(図22(A))。また、切迫早産の羊水検体2からは、ウレアプラズマ属の感染が確認された(図22(B))。これらの検査は2時間程度で迅速且つ簡便に行うことが出来る。また、本実施例のプライマーセットは例えば培養細胞の培養液中のコンタミネーション(細菌・真菌・マイコプラズマ)など、生物実験環境におけるコンタミネーションの検査に用いることも可能である。
 検出されたウレアプラズマ属については、その後更に増幅産物の塩基配列を解析した結果、Ureaplasma parvumであることを確認した。この様に、検出された細菌、真菌、マイコプラズマ属およびウレアプラズマ属のPCR増幅産物をSequencingして種属レベルまで同定することも出来る。または、複数の増幅産物のTm値の組合せを解析したり(WO2007/097323)、或いはユニバーサルプライマーによる増幅産物の更に内側に菌種特異的なnestedプライマー(複数のプライマーによるmultiplex PCRも可能)を用いたりすることで、種属を同定することも可能である。
 (実施例6:検出対象の高感度検出方法とOne Step nested PCR法とを併せた検出法)
 本発明にかかるe-DNAPおよび非表示法を用いた高感度検出方法に加え、“入れ子増幅法”の応用または伸長時間の工夫により1回の試行でnested PCRを行えば、高感度と迅速性を保ちながら更に高特異度な検出が可能となる。
(1)プライマーセットおよびPCR用試薬
 細菌を宿主として製造した市販の耐熱性DNAポリメラーゼの多くは、E.Coliをその宿主とする。従って、E.Coliやその属に近い菌種を高感度に検出しようとしてPCRを行えば、自ずと偽陽性のリスクが高くなる。そのような問題を解決し、E.Coli を高感度・高特異度で検出するために、e-DNAPを用いた高感度検出方法と共に、“入れ子増幅法”の応用または伸長時間の工夫によりE.Coli特異的プライマーでOne Step semi-nested PCRを行った。尚、PCR用試薬は(実施例3)と同じである。以下にE.Coliに特異的なsemi-nestedプライマーセットを示す。
E. Coli specific
Forward Primer: TAACGGCTCACCTAGGCGA (配列番号58)
E. Coli specific Reverse
Primer: GTGGACTACCAGGGTATCTAATCCTG (配列番号59)
E. Coli specific
semi-nested Primer: GCAATATTCCCCACTG (配列番号60)
配列番号58、59のプライマーのTm値はそれぞれ65℃、配列番号60のsemi-nestedプライマーのTm値は55℃となるように設計した。
(2-1)“入れ子増幅法”の応用によるOne Step nested PCR法
 配列番号58、59のプライマーによる増幅産物Iの長さは548bpであり、semi-nested PCR増幅産物IIの長さは110bpである。この様に、増幅産物の長さに明らかな差をつけて、それぞれの増幅産物のTm値の差が大きくなるようにプライマーの位置を設計した。その結果、増幅産物IのTm値は87℃、増幅産物IIのTm値は83℃となった。但し、増幅産物のGC%もTm値に影響するため、プライマー設計においては増幅産物のGC%についても十分に検討しなければならない。また、Tm値はPCR Bufferの塩濃度に影響されるため、塩濃度は常に一定に固定すべきである。
 次にリアルタイムPCRのプログラムは表3記載の条件にて行った。この条件設定では、e-DNAPおよび非表示法を用いた高感度検出方法に加え、“入れ子増幅法”の応用により1回の試行でnested PCRを行うことが出来る。尚、プログラム中にはnestedプライマーが結合するためのshiftingの設定を加えてある。
Figure JPOXMLDOC01-appb-T000004
 (2-2)伸長時間の工夫によるOne Step nested PCR法
 配列番号58、59のプライマーによる増幅産物Iの長さは548bpであり、semi-nested PCR増幅産物IIの長さは110bpである。この様に、増幅産物の長さに明らかな差をつけるようにプライマーの位置を設計した。
 次にリアルタイムPCRのプログラムは表4記載の条件にて行った。この条件設定では、e-DNAPおよび非表示法を用いた高感度検出方法に加え、伸長時間の工夫により1回の試行でnested PCRを行うことが出来る。
Figure JPOXMLDOC01-appb-T000005
 (3)結果
 semi-nestedプライマーを含む3つのプライマーを混合し、“入れ子増幅法”の応用および伸長時間の工夫について、以下のプログラムにてリアルタイムPCRを行い、nested PCRにて上記増幅産物I、または増幅産物IIのみが増幅されるか増幅産物のTm値やその大きさにより確認した。
(3-1)外側の増幅産物Iのみが増幅されることの確認
 表3および表4のAmplification 1のプログラム部分のみをそれぞれ50 cycle試行する。ポイントはアニーリング温度の70℃である。外側のプライマーのTm値は65℃、内側のsemi-nestedプライマーのTm値は55℃なので、70℃のアニーリングでは外側のプライマーしか結合しない。その結果、外側の増幅産物Iのみが増幅される。実験結果では確かに増幅産物IのTm値である87℃かつ548bpの増幅産物のみが増幅されている(図23(B)、図25)。
(3-2)内側の増幅産物IIのみが増幅されることの確認
 表3および表4のAmplification 2のプログラム部分のみを50 cycle試行する。
表3の“入れ子増幅法”の応用におけるポイントはアニーリングの60℃と、Denaturationの85℃である。60℃のアニーリングではsemi-nestedプライマーを含めた全てのプライマーが結合するが、Denaturation温度が85℃だと内側の増幅産物II(Tm値83℃)はdenatureしても、外側の増幅産物I(Tm値87℃)はdenatureしない。その結果、内側の増幅産物IIのみが増幅される。実験結果では確かに増幅産物IIのTm値である83℃かつ110bpの増幅産物のみ(他はプライマーダイマー)が増幅される(図23(A)、図25)。
 表4の伸長時間の工夫におけるポイントは2秒の伸長時間である。60℃のアニーリングではsemi-nestedプライマーを含めた全てのプライマーが結合するが、伸長時間が2秒だと内側の増幅産物II(110bp)は伸長しても、外側の増幅産物I(548bp)は伸長できない。その結果、内側の増幅産物IIのみが増幅される。実験結果では確かに増幅産物IIのTm値である83℃かつ110bpの増幅産物のみ(他はプライマーダイマー)が増幅される(図23(A)、図25)。
(3-3)e-DNAPおよび非表示法を用いた高感度定量方法であることの確認
 表3および表4のプログラム設定でリアルタイムPCRを行った結果、E.Coliの存在下のみで増幅を認め、distilled water (D.W.)、Staphylococcus
aureus(S.aureus)、Human
DNAでは全く増殖を認めなかった(図24(A):表3および表4のAmplification 2の増幅のみ表示)。つまり、計60 cycle回してもE. Coli以外は全く増幅を認めず、e-DNAPおよび非表示法を用いて高感度定量が可能であることを確認した。
 (3-4)One Step nested PCRの確認
 E. ColiのDNAをテンプレートとし、表3および表4のプログラム全体を通して増幅された産物はただ1つであり、その増幅産物のTm値は83℃かつ110bp、すなわち内側の増幅産物IIのみであった(図24(B)、図25)。この結果、“入れ子増幅法”の応用および伸長時間の工夫により、一回の試行(One Step)でnested PCRが可能であることを確認した。
 (3-5)結果まとめ
 以上の結果、e-DNAPおよび非表示法を用いて高感度定量方法を行うと同時に、“入れ子増幅法”の応用および伸長時間の工夫によるOne Step nested PCR法を組み合わせれば、PCRプログラムの工夫のみで、高感度と迅速性を保ちながら更に高特異度な検出が可能となることを確認した。尚、本実施例のnested PCRではE.Coliの特異的プライマーを組み合わせたが、例えば内・外共にバクテリアのユニバーサルプライマーを組み合わせる方法や、外側をバクテリアのユニバーサルプライマーにし、内側を菌種特異的プライマー(複数の特異的プライマーを用いたmultiplex PCRも行える)にする組合せも可能である。また、入れ子増幅法と伸長時間の工夫の両方を一緒にPCRプログラムに組み込むことで、より確実にOne Step nested PCR法を行うことが出来る。
 (実施例7:e-DNAPを用いた検出対象微生物の高感度定量同定方法)
 未知の感染微生物に対し、複数のユニバーサルプライマーでPCRを行い、複数の増幅産物のTm値の組合せを解析することで感染微生物を迅速・簡便に同定する(WO2007/097323)。感染微生物がバクテリアの場合、本同定法ではバクテリアのユニバーサルプライマーを用いるため、e-DNAPを使用しなければ偽陽性のリスクが生じ、また高感度の検出が出来ない。すなわち、本実施例によるバクテリアの同定にはe-DNAPを使うことが望ましい。また、測定機器はRotorGene6000(キアゲン社)を使用することが望ましい。
(1)プライマーセットとPCR用試薬
 バクテリアのユニバーサルプライマーとして、配列番号15~28を使用する。これにより、7つのPCR増幅産物が出来る。PCR用試薬やPCR条件は(実施例2)に同じ。
(2)解析方法
 敗血症患者の血液検体からDNAを抽出した後、上記リアルタイムPCRを試行して、7つのPCR増幅産物のそれぞれのTm値を得る。その7つのTm値の組合せを、以下のデータベースと照合する。この時、リアルタイムPCRの試行による定量結果も得られる。
(3)データベース
 富山大学附属病院にて過去1年間に敗血症の陽性検体から抽出された45種のバクテリアそれぞれについて、7つのTm値の組合せが入力されている。尚、7つのTm値とは、配列番号15~28のプライマーを用い、(実施例2)と全く同じPCR用試薬・PCR条件にて取得したものである。
(4)同定方法
 患者検体から得られた7つのTm値の平均値を算出し、その平均値からの相対値(絶対値ではない為、±が生じる)を算出する。それら7つの相対値をD1ref~D7refと記載する。同様に、データベース中のそれぞれのバクテリアについても算出し、それら7つの相対値をD1db~D7dbと記載する。そして、データベース中の全てのバクテリアに対し、以下の計算を実施する。
Figure JPOXMLDOC01-appb-M000006
 このDist.が0に最も近いバクテリアをデータベースより導き出し、それを検体中の起因菌として同定する。以上の方法はコンピュータの同定ソフトウェア中にアルゴリズムとして組み込んでおり、患者検体から得られた7つのTm値を打ち込むだけで瞬時に同定結果を得ることが出来る。本実施例のアルゴリズムを用いると、試行回毎のTm値の測定誤差は完全に補正される。つまり、測定毎に何℃の誤差が生じても同定には影響しない。この方法で補正できない誤差は、同じ試行回中でサンプル間に生じる測定誤差である。しかし、例えばリアルタイムPCR機器の1つであるRotorGene6000(キアゲン社)を用いると、サンプル間の測定誤差が±0.01℃なので、誤差は殆ど影響を及ぼすこと無く、正確な同定が可能となる。
(5)結果
 患者検体から得られた未知のバクテリアにおける7つのTm値はそれぞれ、
84.98,  84.45,  84.84,  84.31, 
81.20,  81.83,  81.12
であり、同定ソフトウェアによる算出の結果、Dist.=0.05であるKlebsiella pneumoniaeをDist.=0に最も近い起因菌として瞬時に同定することが出来た(表5:同定ソフトウェアによる算出結果)。また、定量も可能であった。
Figure JPOXMLDOC01-appb-T000007
また、通常の細菌検査より、この患者検体からKlebsiella pneumoniaeが検出され、同定結果が通常法と同じであることを確認した。
尚、Klebsiella pneumoniaeのデータベース上の7つのTm値はそれぞれ、
85.02,  84.48,  84.45,  84.29, 
81.20,  81.84,  81.14,  であった。
 本実施例の同定方法はバクテリアに限らず、真菌やその他の生物種の同定にも利用できる。また、mecAなどの抗生剤耐性遺伝子の有無を併行して調べることは臨床上有用である。
産業上の利用分野
 本発明にかかる検出対象生物の定量/及びまたは同定方法は、生活用水検査、食品検査、敗血症検査、薬剤感受性試験などに実用可能である。基本的に、本来、無菌的であるべき検体で、感染症に関わるものであれば、他の検体にも応用可能である。例えば、髄液検査や、羊水検査(子宮内感染症)等は社会貢献度が高く、特に本システムの迅速性(2時間以内に結果判明)も役立つと考えられる。
 また、ヒトに関わる分野だけでなく、家畜の感染症などの獣医分野の検査、或いは細胞培養液のコンタミネーションなど生物実験環境の検査も含め、広い範囲での実用化が可能である。

Claims (38)

  1.  耐熱性DNAポリメラーゼ調製物であって、
    (1)耐熱性DNAポリメラーゼ1ユニット中に該耐熱性DNAポリメラーゼをコードする遺伝子を除くバクテリア由来核酸の混入が10fg以下であり、
    (2)前記調製物に対して耐熱性DNAポリメラーゼをコードする遺伝子以外のバクテリア由来の核酸のみを増幅させうるプライマーを用いて、鋳型を加えない条件下32サイクル以上の遺伝子増幅反応を行ってもバクテリア由来の核酸の増幅産物を検出しない
    ことを特徴とする耐熱性DNAポリメラーゼ調製物。
  2.  以下の工程:
    (1)耐熱性DNAポリメラーゼをコードする遺伝子を真核細胞に形質転換し、耐熱性DNAポリメラーゼ遺伝子発現形質転換体細胞を得る工程、
    (2)前記形質転換体細胞を培養する工程、
    (3)培養された形質転換体細胞より耐熱性DNAポリメラーゼを含む抽出物を取得し、該抽出物を熱処理する工程、または培養された形質転換体細胞を熱処理した後、熱処理された形質転換体細胞より耐熱性DNAポリメラーゼを含む抽出物を取得する工程、
    を有することを特徴とする耐熱性DNAポリメラーゼ調製物の製造方法。
  3.  前記熱処理の温度が50℃以上であることを特徴とする請求項2記載の製造方法。
  4.  形質転換に用いる耐熱性DNAポリメラーゼをコードする遺伝子が好熱菌または超好熱菌由来で有る事を特徴とする請求項2または3に記載の製造方法。
  5.  耐熱性DNAポリメラーゼをコードする遺伝子が、配列番号1の塩基配列からなるDNAである請求項2~4のいずれかに記載の製造方法。
  6.  真核細胞が、菌類、植物細胞、昆虫細胞、動物細胞のいずれかであることを特徴とする請求項2~5のいずれかに記載の製造方法。
  7.  前記調製物が、
    (1)耐熱性DNAポリメラーゼ1ユニット中に該耐熱性DNAポリメラーゼをコードする遺伝子を除くバクテリア由来核酸の混入が10fg以下であり、
    (2)前記調製物に対して耐熱性DNAポリメラーゼをコードする遺伝子以外のバクテリア由来の核酸のみを増幅させうるプライマーを用いて、鋳型を加えない条件下32サイクル以上の遺伝子増幅反応を行ってもバクテリア由来の核酸の増幅産物を検出しない
    ものである請求項2~6のいずれかに記載の製造方法。
  8.  請求項2~7のいずれかに記載の製造方法により得られた抽出物またはその精製調製物を含むことを特徴とする耐熱性DNAポリメラーゼ調製物。
  9.  検体中の検出対象生物を検出する方法において、
     以下の工程:
    (1)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマーと、耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う増幅工程と、
    (2)前記増幅工程における増幅産物中の前記目的遺伝子の増幅産物を検出する検出工程と、
    を有し、
     前記耐熱性DNAポリメラーゼ調製物が、
    (A)真核細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物、及び
    (B)耐熱性DNAポリメラーゼ調製物であって、
    (B-1)耐熱性DNAポリメラーゼ1ユニット中に該耐熱性DNAポリメラーゼをコードする遺伝子を除くバクテリア由来核酸の混入が10fg以下であり、
    (B-2)前記調製物に対して耐熱性DNAポリメラーゼをコードする遺伝子以外のバクテリア由来の核酸のみを増幅させうるプライマーを用いて、鋳型を加えない条件下32サイクル以上の遺伝子増幅反応を行ってもバクテリア由来の核酸の増幅産物を検出しない耐熱性DNAポリメラーゼ調製物
    のいずれかであることを特徴とする検体中の検出対象生物の検出方法。
  10.  前記増幅工程が、前記目的遺伝子以外の目的外遺伝子の増幅抑制下で行われる請求項9に記載の検出方法。
  11.  前記目的外遺伝子の増幅抑制をホットスタート法により行う請求項10に記載の検出方法。
  12.  前記耐熱性DNAポリメラーゼ1ユニットに対して、過剰量の抗DNAポリメラーゼ抗体を用いる請求項11記載の検出方法。
  13.  前記検出工程を、前記目的遺伝子の増幅産物を検出可能とし、それ以外の目的外遺伝子の増幅産物は非検出として行う請求項9~12のいずれかに記載の検出方法。
  14.  前記目的遺伝子の増幅産物を検出可能とし、それ以外の目的外遺伝子の増幅産物を非検出とする条件を、
    (1)前記目的遺伝子増幅産物の融解温度(Tm)が、前記目的外遺伝子の増幅産物の融解温度(Tm)よりも高くなるように前記プライマーを設計し、
    (2)前記増幅産物の検出を、TmとTmとの間の温度で行う
    ことにより設定し、前記目的遺伝子の増幅産物のみを検出する方法を用いて行う
    請求項13に記載の検出方法。
  15.  前記増幅工程と前記検出工程を、増幅産物の量を表示する表示装置を用いるリアルタイムPCRにより行い、前記目的外遺伝子の増幅産物が前記表示装置において非表示となる請求項14に記載の検出方法。
  16.  前記増幅産物の検出を、検出用の標識を有するインターカレーターにより行う請求項9~15のいずれかに記載の検出方法。
  17.  前記検出工程が、増幅産物をゲル上で展開することにより行われる請求項9~12のいずれかに記載の検出方法。
  18.  前記耐熱性DNAポリメラーゼ調製物が真核細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物であり、該真核細胞が、菌類、植物細胞、昆虫細胞及び動物細胞のいずれかである請求項9~17のいずれかに記載の検出方法。
  19.  前記検出対象生物が細菌、真菌、ウイルスから選ばれる1種または2種以上である請求項9~18に記載の検出方法。
  20.  前記検出対象生物が細菌であり、前記プライマーが、全ての細菌の16SrRNA遺伝子の複数領域を増幅できるプライマーセットである請求項19に記載の検出方法。
  21.  前記検出対象生物が、感染症原因菌である請求項9~20のいずれかに記載の検出方法。
  22.  前記検体が、無菌環境であるべき検体である請求項9~21のいずれかに記載の検出方法。
  23.  前記無菌環境であるべき検体が、血液、髄液、羊水、尿、食品、飲料、化粧品、水質検査に供される検体から選択される請求項22記載の検出方法。
  24.  前記検出工程において前記増幅工程における増幅産物を定量し、得られた定量結果から前記検体中の検出対象生物を定量する請求項9~23のいずれかに記載の検出方法。
  25.  前記検出工程において前記目的遺伝子の増幅産物を定量または数値化し、その結果から前記検体中に含まれる検出対象生物の個体数を求める請求項24に記載の検出方法。
  26.  前記増幅産物を数値化する方法として吸光度測定法またはデンシドメトリー法を用いる請求項25記載の検出方法。
  27.  前記目的遺伝子が前記検出対象生物の同定用遺伝子であり、前記目的遺伝子の増幅産物の分析結果から前記検体中に含まれる検出対象生物を定量同定する請求項24に記載の検出方法。
  28.  検体中の検出対象生物を定量同定する方法において、
     以下の工程:
    (1)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(B)及び(M)と、耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第一の増幅工程と、
    (2)前記第一の増幅工程における複数(3~10)の増幅産物の融解温度(Tm値)の組合せを前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)の組合せに基づいて解析し、前記検体中の検出対象生物の定量同定を行う第一の定量同定工程と、
    (3)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(F)と、細菌を宿主として製造した耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第二の増幅工程と、
    (4)前記第二の増幅工程における複数(3~10)の増幅産物の融解温度(Tm値)の組合せを前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)の組合せに基づいて解析し、前記検出対象生物を定量同定する第一の定量同定工程および前記第二の増幅工程における増幅産物を定量し、得られた定量結果から前記検体中の検出対象生物の定量同定を行う第二の定量同定工程と、
    を有し、
     前記プライマー(B)、(F)及び(M)が、
    (B)全ての細菌の16SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマー、
    (F)全ての真菌の18SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマー、
    (M)メチリシン耐性を示すmecA遺伝子など、その時々の流行に応じた抗生剤耐性遺伝子を特異的に増幅するプライマーセット、
    であり、
     第一の増幅工程における耐熱性DNAポリメラーゼ調製物が、
    (A)真核細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物、及び
    (B)耐熱性DNAポリメラーゼ調製物であって、
    (B-1)耐熱性DNAポリメラーゼ1ユニット中に該耐熱性DNAポリメラーゼをコードする遺伝子を除くバクテリア由来核酸の混入が10fg以下であり、
    (B-2)前記調製物に対して耐熱性DNAポリメラーゼをコードする遺伝子以外のバクテリア由来の核酸のみを増幅させうるプライマーを用いて、鋳型を加えない条件下32サイクル以上の遺伝子増幅反応を行ってもバクテリア由来の核酸の増幅産物を検出しない耐熱性DNAポリメラーゼ調製物
    のいずれかである
    ことを特徴とする検体中の検出対象生物の定量同定方法。
  29.  検体中の検出対象生物を定量同定する方法において、
     以下の工程:
    (1)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(B)と、耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第一の増幅工程と、
    (2)前記第一の増幅工程における複数(3~10)の増幅産物の融解温度(Tm値)の組合せを前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)の組合せに基づいて解析し、前記検体中の検出対象生物の定量同定を行う第一の定量同定工程と、
    (3)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(F)と、細菌を宿主として製造した耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第二の増幅工程と、
    (4)前記第二の増幅工程における複数(3~10)の増幅産物の融解温度(Tm値)の組合せを前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)の組合せに基づいて解析し、前記検出対象生物を定量同定する第一の定量同定工程および前記第二の増幅工程における増幅産物を定量し、得られた定量結果から前記検体中の検出対象生物の定量同定を行う第二の定量同定工程と、
    (5)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマー(M)と、耐熱性DNAポリメラーゼ調製物と、を用いて核酸増幅反応を行う第三の増幅工程と、
    (6)前記第三の増幅工程における増幅産物の融解温度(Tm値)を前記目的遺伝子の増幅産物に特異的な融解温度(Tm値)に基づいて解析し、前記検体中の検出対象生物の定量同定を行う第三の定量同定工程と、
    を有し、
     前記プライマー(B)、(F)及び(M)が、
    (B)全ての細菌の16SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマー、
    (F)全ての真菌の18SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマー、
    (M)メチリシン耐性を示すmecA遺伝子など、その時々の流行に応じた抗生剤耐性遺伝子を特異的に増幅するプライマーセット、
    であり、
     第一及び第三の増幅工程における耐熱性DNAポリメラーゼ調製物が、
    (A)真核細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物、及び
    (B)熱性DNAポリメラーゼ調製物であって、
    (B-1)耐熱性DNAポリメラーゼ1ユニット中に該耐熱性DNAポリメラーゼをコードする遺伝子を除くバクテリア由来核酸の混入が10fg以下であり、
    (B-2)前記調製物に対して耐熱性DNAポリメラーゼをコードする遺伝子以外のバクテリア由来の核酸のみを増幅させうるプライマーを用いて、鋳型を加えない条件下32サイクル以上の遺伝子増幅反応を行ってもバクテリア由来の核酸の増幅産物を検出しない耐熱性DNAポリメラーゼ調製物である
    ことを特徴とする検体中の検出対象生物の定量同定方法。
  30.  前記細菌の16SrRNA遺伝子の増幅領域が3~10箇所である請求項28または29記載の定量同定方法。
  31.  前記真菌の18SrRNA遺伝子の増幅領域が3~10箇所である請求項28~29のいずれかに記載の定量同定方法。
  32.  標準コントロールとして、一定濃度の大腸菌標準株DNAをテンプレートとし、
     全ての細菌の16SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または一部を含むプライマーセットのいずれか1つを用いて標準Tm値を毎回測定することにより、前記増幅産物のTm値の測定誤差を補正する工程が付加された請求項28~31のいずれかに記載の定量同定方法。
  33.  各増幅領域に基づく増幅産物の融解温度の組合せ(TmM1~TmMN:Nは3~10)を、前記検出対象生物に特異的な融解温度の組合せ(TmS1~Tmsn:nは3~10)に基づいて解析して、前記検出対象生物を定量同定する請求項28~32のいずれかに記載の定量同定方法。
  34.  前記検出対象生物を同定するためのアルゴリズムとしてTm値そのものの組合せだけでなく、各Tm値間の差の組合せを利用して同定することで、測定誤差の影響を最小限とする工程が付加された請求項33に記載の定量同定方法。
  35.  検体中に含まれる検出対象生物の定量及び/または同定を行うためのセットであって、
     検体から調製した核酸を増幅するための耐熱性DNAポリメラーゼ調製物と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマーと、
    を有し、
     前記耐熱性DNAポリメラーゼ調製物が、
    (A)真核細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物、及び
    (B)耐熱性DNAポリメラーゼ調製物であって、
    (B-1)耐熱性DNAポリメラーゼ1ユニット中に該耐熱性DNAポリメラーゼをコードする遺伝子を除くバクテリア由来核酸の混入が10fg以下であり、
    (B-2)前記調製物に対して耐熱性DNAポリメラーゼをコードする遺伝子以外のバクテリア由来の核酸のみを増幅させうるプライマーを用いて、鋳型を加えない条件下32サイクル以上の遺伝子増幅反応を行ってもバクテリア由来の核酸の増幅産物を検出しない耐熱性DNAポリメラーゼ調製物
    であることを特徴とする定量または同定用のセット。
  36.  検体中に含まれる検出対象生物の定量及び/または同定を行うためのセットであって、
     検体から調製した核酸を増幅するための、
     (A)真核細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物、及び
     (B)耐熱性DNAポリメラーゼ調製物であって、
    (B-1)耐熱性DNAポリメラーゼ1ユニット中に該耐熱性DNAポリメラーゼをコードする遺伝子を除くバクテリア由来核酸の混入が10fg以下であり、
    (B-2)前記調製物に対して耐熱性DNAポリメラーゼをコードする遺伝子以外のバクテリア由来の核酸のみを増幅させうるプライマーを用いて、鋳型を加えない条件下32サイクル以上の遺伝子増幅反応を行ってもバクテリア由来の核酸の増幅産物を検出しない耐熱性DNAポリメラーゼ調製物
    のいずれかの耐熱性DNAポリメラーゼ調製物と、
     検体から調製した核酸を増幅するための細菌細胞を宿主として製造した耐熱性DNAポリメラーゼ調製物と、
     前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマーと、
    を有することを特徴とする定量及び/または同定用のセット。
  37.  前記プライマーが、以下のプライマー(B)、(F)及び(M)、
    (B)全ての細菌の16SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマー、
    (F)全ての真菌の18SrRNA遺伝子の複数領域を増幅できるプライマーセット、および各プライマー塩基配列の全部または1/3以上を含むプライマー、
    (M)メチリシン耐性を示すmecA遺伝子など、その時々の流行に応じた抗生剤耐性遺伝子を特異的に増幅するプライマーセット、
    である請求項36に記載のセット。
  38.  検体中に含まれる検出対象生物の定量及び/または同定を行うためのシステムにおいて、
    (1)前記検体から調製した核酸と、前記検出対象生物に特異的な目的遺伝子を増幅するためのプライマーと、耐熱性DNAポリメラーゼと、を用いて核酸増幅反応を行うための増幅装置と、
    (2)前記増幅工程における増幅産物の定量を行うための定量装置と、
    (3)前記前記増幅産物の定量結果により前記検体中の検出対象生物の量を算出する算出装置と、
    (4)前記目的遺伝子の増幅産物の定量結果から前記検体中の検出対象生物の量を算出するためのデータベースと、
    を有し、
     請求項9~34のいずれかに記載の検出方法または定量同定方法を行うためのものであることを特徴とする定量及び/または同定システム。
PCT/JP2010/050443 2009-01-15 2010-01-15 耐熱性dnaポリメラーゼを含む酵素調製物およびその製造方法、並びに検出対象生物の検出方法 WO2010082640A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU2010205133A AU2010205133B2 (en) 2009-01-15 2010-01-15 Enzyme preparation containing thermostable dna polymerase, method for producing same, and method for detecting subject organism to be detected
US13/144,175 US9243272B2 (en) 2009-01-15 2010-01-15 Enzyme preparation containing thermostable DNA polymerase, method for producing same, and method for detecting subject organism to be detected
MYPI2011003280A MY188333A (en) 2009-01-15 2010-01-15 Enzymatic preparation containing thermostable dna polymerase, process for producing same, and method for detecting analyte organism
CA2749693A CA2749693C (en) 2009-01-15 2010-01-15 Enzyme preparation containing thermostable dna polymerase, method for producing same, and method for detecting subject organism to be detected
JP2010546663A JP5583602B2 (ja) 2009-01-15 2010-01-15 耐熱性dnaポリメラーゼを含む酵素調製物およびその製造方法、並びに検出対象生物の検出方法
EP10731309.0A EP2388322B1 (en) 2009-01-15 2010-01-15 Enzymatic preparation containing thermostable dna polymerase, process for producing same, and method for detecting analyte organism
MX2011007548A MX340406B (es) 2009-01-15 2010-01-15 Preparacion enzimatica que contiene polimerasa de adn termoestable, metodo para su produccion, y metodo para detectar un organismo objeto.
CN201080004647.1A CN102282257B (zh) 2009-01-15 2010-01-15 含有耐热性dna聚合酶的酶制品及其制造方法、以及检测对象生物的检测方法
BRPI1007382-5A BRPI1007382A2 (pt) 2009-01-15 2010-01-15 Preparado de dna polimerase termoestável, método para produção do mesmo, método de quantificação e/ou identificação de um organismo sujeito a ser detectado em uma amostra, e conjunto para quantificar e/ou identificar um organismo sujeito a ser detectado em uma amostra
KR1020147002648A KR101718594B1 (ko) 2009-01-15 2010-01-15 내열성 dna 폴리머라제를 포함하는 효소 조제물 및 그 제조 방법, 및 검출 대상생물의 검출 방법
US14/969,252 US20160257999A1 (en) 2009-01-15 2015-12-15 Enzyme Preparation Containing Thermostable DNA Polymerase, Method for Producing Same, and Method for Detecting Subject Organism to be Detected
US15/688,473 US10501813B2 (en) 2009-01-15 2017-08-28 Enzyme preparation containing thermostable DNA polymerase, method for producing same, and method for detecting subject organism to be detected

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-006556 2009-01-15
JP2009006556 2009-01-15
JP2009-023707 2009-02-04
JP2009023707 2009-02-04
JP2009-040052 2009-02-23
JP2009040052 2009-02-23
JP2009-181755 2009-08-04
JP2009181755 2009-08-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/144,175 A-371-Of-International US9243272B2 (en) 2009-01-15 2010-01-15 Enzyme preparation containing thermostable DNA polymerase, method for producing same, and method for detecting subject organism to be detected
US14/969,252 Division US20160257999A1 (en) 2009-01-15 2015-12-15 Enzyme Preparation Containing Thermostable DNA Polymerase, Method for Producing Same, and Method for Detecting Subject Organism to be Detected

Publications (1)

Publication Number Publication Date
WO2010082640A1 true WO2010082640A1 (ja) 2010-07-22

Family

ID=42339893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050443 WO2010082640A1 (ja) 2009-01-15 2010-01-15 耐熱性dnaポリメラーゼを含む酵素調製物およびその製造方法、並びに検出対象生物の検出方法

Country Status (12)

Country Link
US (3) US9243272B2 (ja)
EP (1) EP2388322B1 (ja)
JP (1) JP5583602B2 (ja)
KR (2) KR20110102467A (ja)
CN (1) CN102282257B (ja)
AU (1) AU2010205133B2 (ja)
BR (1) BRPI1007382A2 (ja)
CA (1) CA2749693C (ja)
MX (1) MX340406B (ja)
MY (1) MY188333A (ja)
SG (1) SG196823A1 (ja)
WO (1) WO2010082640A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234673A (ja) * 2010-05-11 2011-11-24 Konica Minolta Holdings Inc 体液遊離核酸検査における品質保証方法
WO2012146260A1 (de) * 2011-04-23 2012-11-01 Biolytix Ag Herstellung und verwendung von proteinen in der molekularbiologie
JP2014223026A (ja) * 2013-05-15 2014-12-04 東洋紡株式会社 核酸配列の欠失または導入を判定する方法
WO2015053293A1 (ja) 2013-10-07 2015-04-16 三井化学株式会社 細菌dna増幅用のpcr用プライマーセット、細菌種の検出及び/または同定用キット及び細菌種の検出及び/または同定方法
JP2017209063A (ja) * 2016-05-26 2017-11-30 学校法人福岡大学 絨毛膜羊膜炎関連微生物同定ならびに検出方法、絨毛膜羊膜炎関連微生物検出用プライマーセットならびにアッセイキット、および絨毛膜羊膜炎検出方法
WO2019074091A1 (ja) 2017-10-12 2019-04-18 三井化学株式会社 mecA遺伝子増幅用プライマーペア、mecA遺伝子検出キット及びmecA遺伝子検出方法
WO2019123692A1 (ja) 2017-12-22 2019-06-27 三井化学株式会社 検体中の細菌数の定量方法
WO2019189266A1 (ja) 2018-03-26 2019-10-03 三井化学株式会社 試料細菌のrnaを用いた細菌同定方法及びそのためのキット
CN110878124A (zh) * 2018-09-05 2020-03-13 深圳华大生命科学研究院 Dna聚合酶的抗体片段、抗体及其应用
KR20200115470A (ko) 2017-12-20 2020-10-07 국립대학법인 도야마 다이가쿠 개량 Tm 매핑법

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243272B2 (en) 2009-01-15 2016-01-26 Hokkaido Mitsui Chemicals Inc. Enzyme preparation containing thermostable DNA polymerase, method for producing same, and method for detecting subject organism to be detected
PL228161B1 (pl) * 2013-05-21 2018-02-28 Univ Jagielloński Sposób jednoczesnej detekcji bakterii i grzybów w preparacie biologicznym metoda PCR oraz zestaw do detekcji bakterii i grzybów w preparacie biologicznym metoda PCR
CN104250641B (zh) * 2013-06-28 2017-09-01 北京福安华生物科技有限公司 一种高保真dna聚合酶及其制备和应用
EP3201355B1 (en) 2014-09-30 2019-07-31 Illumina, Inc. Modified polymerases for improved incorporation of nucleotide analogues
MX2020013347A (es) 2018-10-31 2021-04-28 Illumina Inc Polimerasas, composiciones y metodos de uso.
WO2020117968A2 (en) 2018-12-05 2020-06-11 Illumina, Inc. Polymerases, compositions, and methods of use
US20220177965A1 (en) * 2019-03-08 2022-06-09 Ontera Inc. Relative quantification of genetic variants in a sample
KR20220130748A (ko) * 2020-01-22 2022-09-27 마이크로바이오 피티와이 엘티디 세균 정량화 방법
CN113957127A (zh) * 2020-07-20 2022-01-21 中国科学院微生物研究所 通过非培养法对植物组织内生细菌进行定量检测的方法
CN114686599A (zh) * 2020-12-30 2022-07-01 北京五加和基因科技有限公司 宿主昆虫细胞dna残留含量定量检测方法及试剂盒
CN114592036B (zh) * 2022-04-02 2023-03-31 予果生物科技(北京)有限公司 放线菌核酸提取检测试剂、试剂盒及其方法和应用
CN115844771B (zh) * 2022-12-21 2024-01-30 广州市巧美化妆品有限公司 一种温泉水发酵产物、修复抗衰组合物及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292968A (ja) 1991-06-20 1993-11-09 F Hoffmann La Roche Ag 核酸増幅のための改善された方法
JPH0690799A (ja) 1990-10-05 1994-04-05 F Hoffmann La Roche Ag 細菌を同定する方法および試薬
JPH08322597A (ja) * 1995-05-31 1996-12-10 Toyobo Co Ltd 核酸の増幅方法およびその試薬
WO2002052034A1 (fr) 2000-12-26 2002-07-04 Joji Oshima Methodes de bioscopie et d'amplification d'acides nucleiques
JP2002291490A (ja) 2000-10-25 2002-10-08 F Hoffmann La Roche Ag 修飾プライマーを使用する増幅
JP2003259882A (ja) 2001-12-19 2003-09-16 F Hoffmann La Roche Ag 改良されたpcr用の試薬
JP2006180886A (ja) 2006-02-24 2006-07-13 National Institute Of Advanced Industrial & Technology Dnaポリメラーゼの製造方法
JP2006254784A (ja) 2005-03-17 2006-09-28 Institute Of Physical & Chemical Research プライマーダイマーからの非特異的増幅を減少させる方法
WO2007097323A1 (ja) 2006-02-21 2007-08-30 National University Corporation University Of Toyama 感染症起因菌の迅速同定方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489523A (en) * 1990-12-03 1996-02-06 Stratagene Exonuclease-deficient thermostable Pyrococcus furiosus DNA polymerase I
EP1233061A3 (en) * 1991-06-03 2002-09-04 Takara Shuzo Co., Ltd. A method for cloning of a gene for pol I type DNA polymerase
US5436149A (en) * 1993-02-19 1995-07-25 Barnes; Wayne M. Thermostable DNA polymerase with enhanced thermostability and enhanced length and efficiency of primer extension
US5912155A (en) * 1994-09-30 1999-06-15 Life Technologies, Inc. Cloned DNA polymerases from Thermotoga neapolitana
US6107071A (en) * 1996-09-24 2000-08-22 Smithkline Beecham Corporation Histidinol dehydrogenase
FR2755145B1 (fr) * 1996-10-28 1999-01-15 Gervais Danone Co Procede de mise en evidence de contaminants microbiologiques vivants dans un echantillon de produit a usage alimentaire
GB9716664D0 (en) * 1997-08-06 1997-10-15 Norwegian Inst Of Fisheries & A method of removing nucleic acid contamination reactions
US6596492B2 (en) * 2000-07-11 2003-07-22 Colorado State University Research Foundation PCR materials and methods useful to detect canine and feline lymphoid malignancies
US7148049B2 (en) 2002-04-02 2006-12-12 Roche Molecular Systems, Inc. Thermostable or thermoactive DNA polymerase molecules with attenuated 3′-5′ exonuclease activity
US20090035767A1 (en) * 2006-11-28 2009-02-05 Canon Kabushiki Kaisha Primer for bacterium genome amplification reaction
US9243272B2 (en) 2009-01-15 2016-01-26 Hokkaido Mitsui Chemicals Inc. Enzyme preparation containing thermostable DNA polymerase, method for producing same, and method for detecting subject organism to be detected

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690799A (ja) 1990-10-05 1994-04-05 F Hoffmann La Roche Ag 細菌を同定する方法および試薬
JPH05292968A (ja) 1991-06-20 1993-11-09 F Hoffmann La Roche Ag 核酸増幅のための改善された方法
JPH08322597A (ja) * 1995-05-31 1996-12-10 Toyobo Co Ltd 核酸の増幅方法およびその試薬
JP2002291490A (ja) 2000-10-25 2002-10-08 F Hoffmann La Roche Ag 修飾プライマーを使用する増幅
WO2002052034A1 (fr) 2000-12-26 2002-07-04 Joji Oshima Methodes de bioscopie et d'amplification d'acides nucleiques
JP2003259882A (ja) 2001-12-19 2003-09-16 F Hoffmann La Roche Ag 改良されたpcr用の試薬
JP2006254784A (ja) 2005-03-17 2006-09-28 Institute Of Physical & Chemical Research プライマーダイマーからの非特異的増幅を減少させる方法
WO2007097323A1 (ja) 2006-02-21 2007-08-30 National University Corporation University Of Toyama 感染症起因菌の迅速同定方法
JP2006180886A (ja) 2006-02-24 2006-07-13 National Institute Of Advanced Industrial & Technology Dnaポリメラーゼの製造方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Current Protocols I Molecular Biology", 1987, PUBLISH. JOHN WILY & SONS
"the 100 best waters in Japan", 1985, ENVIRONMENT AGENCY
CARL R. WOESE: "Bacterial Evolution", MICRO. BIOL. REVIEWS, vol. 51, 1987, pages 221 - 271
DOHI, K., NISHIKIORI, M., TAMAI, A., ISHIKAWA, M., MESHI, T., MORI, T.: "Inducible virus-mediated expression of a foreign protein in suspension-cultured cells", ARCHIVES OF VIROLOGY, vol. 151, 2006, pages 1075 - 1084, XP019430522, DOI: doi:10.1007/s00705-005-0705-8
HIDEKI NIIMI ET AL.: "Real-time PCR-ho o Mochiita Jinsoku na Haiketsusho Kiinkin Dotei System no Kochiku ni Kansuru Kenkyu", JAPANESE JOURNAL OF CLINICAL LABORATORY AUTOMATION, vol. 32, no. 4, 2007, pages 745 *
HIDEYA FUJIMOTO: "Plant Cell Biology series 7; PCR experimental protocol for plant", 1997, SHUJUNSHA, article "Production method of synthetic gene", pages: 95 - 100
JOTHIKUMAR N. ET AL.: "Real-Time Multiplex SYBR Green I-Based PCR Assay for Simultaneous Detection of Salmonella Serovars and Listeria monocytogenes", J. FOOD PROT., vol. 66, no. 11, 2003, pages 2141 - 2145, XP009030946 *
JOURNAL OF ANALYTICAL BIO-SCIENCE, vol. 28, no. 5, 2005, pages 400 - 404
KONG ET AL., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 268, 1993, pages 1965 - 1975
RICHARDSON, C. C.: "DNA polymerase from Escherichia coli", 1966, pages: 263 - 276
See also references of EP2388322A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234673A (ja) * 2010-05-11 2011-11-24 Konica Minolta Holdings Inc 体液遊離核酸検査における品質保証方法
WO2012146260A1 (de) * 2011-04-23 2012-11-01 Biolytix Ag Herstellung und verwendung von proteinen in der molekularbiologie
JP2014223026A (ja) * 2013-05-15 2014-12-04 東洋紡株式会社 核酸配列の欠失または導入を判定する方法
EP3543362A3 (en) * 2013-10-07 2019-10-23 Mitsui Chemicals, Inc. Pcr primer set for bacterial dna amplification, kit for detecting and/or identifying bacterial species, and method for detecting and/or identifying bacterial species
WO2015053293A1 (ja) 2013-10-07 2015-04-16 三井化学株式会社 細菌dna増幅用のpcr用プライマーセット、細菌種の検出及び/または同定用キット及び細菌種の検出及び/または同定方法
AU2014332956B2 (en) * 2013-10-07 2018-01-25 Mitsui Chemicals, Inc. PCR primer set for bacterial DNA amplification, kit for detecting and/or identifying bacterial species, and method for detecting and/or identifying bacterial species
JPWO2015053293A1 (ja) * 2013-10-07 2017-03-09 三井化学株式会社 細菌dna増幅用のpcr用プライマーセット、細菌種の検出及び/または同定用キット及び細菌種の検出及び/または同定方法
CN111534623A (zh) * 2013-10-07 2020-08-14 三井化学株式会社 用于扩增细菌dna的pcr中使用的引物组及其试剂盒和方法
JP2019107019A (ja) * 2013-10-07 2019-07-04 三井化学株式会社 細菌dna増幅用のpcr用プライマーセット、細菌種の検出及び/または同定用キット及び細菌種の検出及び/または同定方法
EP3543362A2 (en) 2013-10-07 2019-09-25 Mitsui Chemicals, Inc. Pcr primer set for bacterial dna amplification, kit for detecting and/or identifying bacterial species, and method for detecting and/or identifying bacterial species
JP2017209063A (ja) * 2016-05-26 2017-11-30 学校法人福岡大学 絨毛膜羊膜炎関連微生物同定ならびに検出方法、絨毛膜羊膜炎関連微生物検出用プライマーセットならびにアッセイキット、および絨毛膜羊膜炎検出方法
WO2019074091A1 (ja) 2017-10-12 2019-04-18 三井化学株式会社 mecA遺伝子増幅用プライマーペア、mecA遺伝子検出キット及びmecA遺伝子検出方法
KR20200115470A (ko) 2017-12-20 2020-10-07 국립대학법인 도야마 다이가쿠 개량 Tm 매핑법
US11732311B2 (en) 2017-12-20 2023-08-22 National University Corporation University Of Toyama Tm mapping method
WO2019123692A1 (ja) 2017-12-22 2019-06-27 三井化学株式会社 検体中の細菌数の定量方法
WO2019189266A1 (ja) 2018-03-26 2019-10-03 三井化学株式会社 試料細菌のrnaを用いた細菌同定方法及びそのためのキット
CN110878124A (zh) * 2018-09-05 2020-03-13 深圳华大生命科学研究院 Dna聚合酶的抗体片段、抗体及其应用

Also Published As

Publication number Publication date
SG196823A1 (en) 2014-02-13
MX340406B (es) 2016-07-07
AU2010205133B2 (en) 2015-01-22
MY188333A (en) 2021-11-30
KR20110102467A (ko) 2011-09-16
MX2011007548A (es) 2011-10-28
JP5583602B2 (ja) 2014-09-03
KR20140022962A (ko) 2014-02-25
CN102282257B (zh) 2015-04-01
BRPI1007382A2 (pt) 2015-08-25
CA2749693A1 (en) 2010-07-22
AU2010205133A1 (en) 2011-09-08
JPWO2010082640A1 (ja) 2012-07-05
EP2388322A4 (en) 2012-12-26
EP2388322A1 (en) 2011-11-23
KR101718594B1 (ko) 2017-03-21
EP2388322B1 (en) 2017-10-25
US20180057860A1 (en) 2018-03-01
US20160257999A1 (en) 2016-09-08
CN102282257A (zh) 2011-12-14
US9243272B2 (en) 2016-01-26
US10501813B2 (en) 2019-12-10
CA2749693C (en) 2018-11-06
US20120094296A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5583602B2 (ja) 耐熱性dnaポリメラーゼを含む酵素調製物およびその製造方法、並びに検出対象生物の検出方法
JP2003510052A (ja) 改良されたポリヌクレオチド合成のための方法と組成物
CA2802000C (en) Dna polymerases with increased 3'-mismatch discrimination
EP2582802B1 (en) Dna polymerases with increased 3'-mismatch discrimination
US10544404B2 (en) DNA polymerases with increased 3′-mismatch discrimination
US20180135034A1 (en) Dna polymerases with increased 3'-mismatch discrimination
EP2582807B1 (en) Dna polymerases with increased 3'-mismatch discrimination
EP2582804B1 (en) Dna polymerases with increased 3'-mismatch discrimination
EP2582803B1 (en) Dna polymerases with increased 3'-mismatch discrimination
EP2582801B1 (en) Dna polymerases with increased 3'-mismatch discrimination
EP2582805B1 (en) Dna polymerases with increased 3'-mismatch discrimination
WO2021242740A2 (en) Polymerase enzyme
KR100774102B1 (ko) 썰포포보코커스 질리지 유래의 내열성 dna 연결효소

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004647.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010546663

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2803/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13144175

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2749693

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/007548

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20117016538

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010731309

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010731309

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010205133

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010205133

Country of ref document: AU

Date of ref document: 20100115

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1007382

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1007382

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110715