WO2010077037A4 - Cog 애플리케이션을 위한 인터페이스 시스템 - Google Patents

Cog 애플리케이션을 위한 인터페이스 시스템 Download PDF

Info

Publication number
WO2010077037A4
WO2010077037A4 PCT/KR2009/007828 KR2009007828W WO2010077037A4 WO 2010077037 A4 WO2010077037 A4 WO 2010077037A4 KR 2009007828 W KR2009007828 W KR 2009007828W WO 2010077037 A4 WO2010077037 A4 WO 2010077037A4
Authority
WO
WIPO (PCT)
Prior art keywords
current
terminal
data
line
receiving
Prior art date
Application number
PCT/KR2009/007828
Other languages
English (en)
French (fr)
Other versions
WO2010077037A2 (ko
WO2010077037A3 (ko
Inventor
홍주표
최정환
김준호
Original Assignee
(주)실리콘웍스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)실리콘웍스 filed Critical (주)실리콘웍스
Priority to CN200980153078.4A priority Critical patent/CN102265518B/zh
Priority to JP2011544368A priority patent/JP5632390B2/ja
Priority to US13/142,413 priority patent/US8400194B2/en
Publication of WO2010077037A2 publication Critical patent/WO2010077037A2/ko
Publication of WO2010077037A3 publication Critical patent/WO2010077037A3/ko
Publication of WO2010077037A4 publication Critical patent/WO2010077037A4/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018521Interface arrangements of complementary type, e.g. CMOS
    • H03K19/018528Interface arrangements of complementary type, e.g. CMOS with at least one differential stage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/028Arrangements specific to the transmitter end

Definitions

  • the present invention relates to a current-driven transmitter and receiver for transmitting data in the form of differential current between semiconductor chips through a pair of transmission lines in a COG (Chip on Glass) video display device, and an interface system for a COG application using the same More particularly, the present invention relates to a current-driven transmitter and receiver using an independent current signal capable of independently generating and transmitting a positive data current and a sub-data current for generating a differential current representing data to be transmitted, And more particularly to an interface system for a COG application that can reduce the distortion of a transmission signal using a receiver.
  • COG Chip on Glass
  • Data transmission between semiconductor chips through a conventional transmission line is performed by transmitting data through a pair of differential transmission lines in the form of a differential voltage at a transmitter, converting the data into data to be displayed after sensing voltage type data at a receiver lost.
  • the data transmission method using the voltage difference was susceptible to the transmission line length between the semiconductor chips. Particularly, according to recent technology trends in which the distance between semiconductor chips is getting larger, a transmission line has a large impedance, and a data transmission method using a voltage difference is not suitable.
  • mLVDS mini Low Voltage Differential Signaling
  • data and a clock signal are transmitted to a driver IC in a multi-drop form through a printed circuit board.
  • the termination resistor provided at the terminal end of the substrate receives the data and the clock signal in the form of voltage.
  • a point-to-point method is used between the timing controller and the driver IC. Since a transmission line is implemented directly on the glass of the panel, a very large impedance There is a problem that the distortion of the waveform becomes severe due to the existence of the component. Recently, a low current differential signaling (LCDS) method, which is a data transmission method using a current, has been used.
  • LCDS low current differential signaling
  • the transmitter carries data of current type through the transmission line, and the receiver uses the current to restore the data.
  • bit data is generated using a current having a different magnitude in a transmitter, and the data is transmitted through two transmission lines.
  • data is restored using current differences of two transmission lines .
  • the transmission signal distortion for noise is small compared to the single current driving method, but interference occurs between transmission lines due to physical positions of two transmission lines and R, L, and C parasitic to transmission lines.
  • the transmission signal is distorted, the time constant of the transmission line is increased, and the transition time of the signal is increased to lower the transmission speed.
  • a first base current source for supplying a base current (Icc1) indicative of a base logic state to a true line (TX +) of a pair of transmission lines
  • a second base current source for supplying a base current Icc2 indicative of a base logic state to a line (TX-) of the pair of lines
  • a transition current Idc indicating a transition logic state to one of the pair of transmission lines
  • An equalizing switch for equalizing the potential of the pair of transmission lines, a transition switch for supplying the transition current to the true line or the bar line according to a logical value of data to be transmitted, It has been proposed to implement a transmitter including a transmission control section for controlling switching between the equalization switch and the transition switch.
  • one transient current source is connected to one of the first and second base current sources of the two base current sources according to the data signal to create the current level difference of the two transmission line pairs.
  • the first and second base current sources can generate different current values due to design and process causes, test environment, etc., so that the current applied to the transmission line pair by the data signal is Its size will vary.
  • the first base current Icc1 supplied by the first base current source is Iref + alpha
  • the second base current Icc2 supplied by the second base current source is Iref-alpha
  • the transition current supplied by the transition current source is I
  • the current flowing to the tru line (TX +) of the pair of transmission lines is I + Iref + alpha which is the sum of the transition current and the first base current, (TX-) becomes Iref-alpha.
  • a true line current mirror for mirroring the data signal current (Irx +) flowing in the true line (TX +) of the pair of transmission lines to generate the true line mirroring current (Irx +) and a data line current mirror
  • a true-line IV converter for generating a true line receive voltage having a level corresponding to the true-line mirroring current, a mirror current mirror for mirroring the mirror current (Irx-) to produce a barred mirroring current (Irx-)
  • a differential amplifier for amplifying a level difference between the true line reception voltage and a desired reception voltage.
  • the receiver includes: .
  • each of the IV converters is provided with respect to the True line and the Bull line, the error of the True line and the Bull line is converted into the respective voltages and input to the differential amplifying part, so that the distortion of the transmission signal is increased .
  • the two converters required in the receiver have a problem of increasing the size of the receiver and increasing the area in the layout.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a method and apparatus for generating and transmitting a differential current indicative of a logical state of data to be transmitted independently of a constant data current and a sub- A current-driven transmitter using an independent current signal that can maintain the magnitude of the current applied to the transmission line pair unaffected by the transmission line, A current-driven receiver using an independent current signal capable of reducing the error of the true line and the bar-line by converting the input signal, and an interface system for a COG application capable of reducing distortion of a transmission signal using the transmitter and the receiver .
  • an interface system for a COG application comprising: a first data current source for independently generating and supplying a constant data current that forms a differential current; a second data current source for independently generating and supplying a sub- A first selection switch for switching and supplying the positive data current between a true line and a line in accordance with a logic state of data to be transmitted; a second selection switch for switching the sub data current between the line and the true line;
  • a transmitter including an equalizing switch connected to and in common with the true line to switch the transmission line and to equalize the potential of the transmission line, and a switching controller for controlling the switching operation;
  • a transmission line pair consisting of a true line and a line which supply a positive data current and a sub data current while the first and second selection switches are switched;
  • a receiver for converting the level difference between the true line receiving current received in the true line and the desired receiving current received in the normal line to a voltage level to recover the data.
  • the receiver of the interface system for a COG application further includes: a true line current mirror for receiving a current flowing through the true line to generate a true line receive current; A barrel current mirror for receiving a current flowing through the barrel and generating a positive reception current; A first resistor connected at one end to a node to which the true line receiving current is supplied, a second resistor connected at one end to a node to which the positive receive current is supplied, a current source connected in common to the other end of the first resistor and the second resistor, And a single IV converter provided with a power supply voltage for generating a level of a receiving voltage by receiving and receiving a true receiving current and a receiving current from the current source; And a differential amplifier for receiving and amplifying a difference in level of the reception voltage.
  • the receiver of the interface system for a COG application includes a first resistor to which a true line receiving current is connected and a first end connected to a true line, A single IV converter having a second resistor, a terminal commonly connected to the other end of the first resistor and the second resistor, and a current source connected to the other terminal of the second resistor; A first terminal connected to the current source, a second terminal connected to one terminal of the first resistor and a common node connected to a non-inverting terminal of the differential amplifier, a third terminal connected to a terminal of the second resistor, A common voltage generator connected to an inverting terminal of the differential amplifier; And a differential amplifier for receiving a difference between the voltage levels converted by the single IV converter and receiving the difference between the non-inverting terminal and the inverting terminal.
  • the present invention independently generates and transmits a logic state of data to be transmitted by a difference between a positive data current and a sub data current generated by a reference current, thereby maintaining a constant difference in current applied to the pair of transmission lines,
  • the difference in current level received through the pair is converted from a single IV converter to a voltage level at the same time, which reduces the error of differential currents transmitted in true line and line.
  • the present invention can reduce the layout area of the transmitter and the receiver, and generate common voltages at the input terminals of the differential amplifiers of the receiver to generate various voltage levels, thereby improving the efficiency of the conventional low-voltage differential signaling system or multi- There is an advantage that design information can be easily applied.
  • FIG. 1 is an exemplary diagram of differential current levels applied to a pair of transmission lines in a conventional differential current drive scheme
  • FIG. 2 is a circuit diagram of a current driven transmitter using an independent current signal according to the present invention.
  • FIG. 3 is an exemplary view of a differential current level applied to a pair of transmission lines in a current driving scheme using an independent current signal according to the present invention
  • FIG. 4 is a circuit diagram showing a first embodiment of a current driven receiver using an independent current signal having a single IV converter according to the present invention.
  • FIG. 5 is a circuit diagram showing a second embodiment of a current driven receiver using an independent current signal having a single IV converter according to the present invention.
  • FIG. 6 is a configuration diagram of a current driven interface system using a first embodiment of a receiver according to the present invention.
  • FIG. 7 is a block diagram of a current driven interface system using a second embodiment of a receiver according to the present invention.
  • a current-driven transmitter using an independent current signal includes a first data current source 100 for generating a positive data current, a second data current source 100 for generating a second data current, A selection switch for selecting a transmission line to which a positive data current and a sub data current are supplied according to whether or not data to be transmitted is transited; And a switching controller for controlling the switching operation of the selection switch and the equalizing switch by data to be transmitted.
  • the first data current source 100 and the second data current source 200 are connected to a current mirror for independently generating a differential current to be transmitted to a receiver through a transmission line pair including a true line TX +
  • the first data current source 100 generates a positive data current indicating one logic state
  • the second data current source 100 generates a second data current
  • the data current source 200 is configured to generate a sub-data current representing the other logic state.
  • the first data current source 100 includes a second MOS transistor MM connected to a first MOS transistor MR for supplying a reference current Iref and forming a current mirror, One terminal is connected to the power source voltage VDD, the other terminal is connected to the first selection switch 310, and the gate is connected to the gate of the first MOS transistor MR.
  • the first data current source 100 configured as described above applies a positive data current I1 mirrored through the first MOS transistor MR to the true line I1 through the switching action of the first selection switch 310 TX +) or bar-line (TX-).
  • the second data current source 200 includes a third MOS transistor MN connected to a first MOS transistor MR for supplying a reference current Iref and forming a current mirror, One terminal is connected to the power supply voltage VDD, the other terminal is connected to the second selection switch 320, and a gate is connected to the gate of the first MOS transistor MR.
  • the second data current source 200 configured as described above is turned on by the switching action of the second selection switch 320 to turn on the sub data current I2 mirrored through the first MOS transistor MR TX-) and the true line (TX +).
  • the positive data current I1 supplied from the first data current source (MM) 100 and the sub data current I2 supplied from the second data current source MN 200 are supplied to the same first MOS transistor
  • the reference current Iref is supplied to the first selection switch 310 and the second selection switch 320 in a magnitude proportional to the reference current Iref. That is, the first data current source MM and the second data current source MN supply a constant differential current to supply a logic state of data, for example, 1: a or 1: b, b is a natural number).
  • the selection switch includes a first selection switch 310 for switching and supplying a current supplied from the first data current source (MM) 100 between a true line (TX +) and a negative line (TX-) And a second selection switch 320 for switching and supplying the current supplied from the current source MN 200 between the line TX- and the line T +.
  • One terminal of the first selection switch 310 is commonly connected to the first data current source MM and a positive data signal D + and a sub data signal D- are applied to the gate thereof. And selects a transmission line which is connected to the bar line TX- and the tru line TX + and which is switched by the positive data signal D + and the sub data signal D- and to which the positive data current I1 is supplied, 1 and second transmission gates 311 and 312.
  • One terminal of the first transmission gate 311 is connected to the other terminal of the first data current source MM and the other terminal of the first transmission gate 311 is connected to the drain terminal TX-
  • the positive data signal D + is applied and the sub-data signal D- is applied to the gate of the PMOS transistor.
  • the second transmission gate 312 has one terminal connected to the other terminal of the first data current source MM and the other terminal connected to the tru line TX +
  • the data signal D + is applied, and the sub-data signal D- is applied to the gate of the NMOS transistor.
  • the first transmission gate 311 is turned on and the second transmission gate 312 is turned off so that the first transmission gate 311 is turned on and the second transmission gate 312 is turned on when the positive data signal D +
  • the first transmission gate 311 is turned off, 2 transmission gate 312 is turned on so that the positive data current I1 supplied from the first data current source MM is supplied to the true line TX +.
  • One terminal of the second selection switch 320 is commonly connected to the second data current source MN and the positive and negative data signals D + and D- are applied to the gate thereof.
  • third and fourth transmission lines which are respectively connected to the line TX + and the line TX- to select the transmission line to be switched by the positive and negative data signals D + and D- And the transmission gates 321 and 322.
  • the third transmission gate 321 has one terminal connected to the other terminal of the second data current source MN and the other terminal connected to the tru line TX +
  • the data signal D + is applied and the sub-data signal D- is applied to the gate of the PMOS transistor.
  • the fourth transmission gate 322 has one terminal connected to the other terminal of the second data current source MN and the other terminal connected to the drain terminal TX-
  • the positive data signal D + is applied and the sub-data signal D- is applied to the gate of the NMOS transistor.
  • the third transmission gate 321 is turned on and the fourth transmission gate 322 is turned off so that the second transmission gate 322 is turned on when the data to be transmitted transitions and the positive data signal D +
  • the third transmission gate 321 is turned off when the positive data signal D + is in the logic low state and the fourth data current I2 supplied from the data current source MN is supplied to the true line TX +
  • the transmission gate 322 is turned on and the sub data current I2 supplied from the second data current source MN is supplied to the drain TX-.
  • the sub data current I2 flows through the true line TX + And supplies the differential current to the transmitter.
  • the positive data current I1 is supplied to the true line TX +
  • the sub data current I2 is supplied to the negative TX- to supply the differential current to the transmitter.
  • the equalization switch 400 is turned on for a predetermined time when a new transition occurs after data transmission to equalize the levels of the true line TX + and the data line TX-, and is then turned off, And a fifth transmission gate to which both terminals are connected between the true line TX + and the line TX- to supply the data current I2 and the equalization control signal is applied to the gate.
  • the switching controller generates the positive data signal D + and the sub data signal D- according to the logical state of the data to be transmitted and the transition of the data to be transmitted from the transmitter, 321 and 322 to select the transmission line to which the positive data current I1 and the sub data current I2 are supplied and generate the equalization control signal according to whether the data to be transmitted is transited, So as to equalize the potential of the true line TX + and the line TX- to stabilize the current value to be transmitted.
  • the first data current source MM is independently supplied to the tru line TX + and the line TX- by the switching operation of the first selection switch 310 by the transmitter configured as described above
  • the second data current source MN is independently supplied to the line-in (TX-) and the line-to-line (TX +), respectively, by the switching action of the selection switch 320.
  • the differential current transmitted to the receiver through the transmission line pair that is, the tru line (TX +) and the line (TX-)
  • I2 additional current applied from the outside
  • the differential current generated by the difference between the first data current source (MM) and the second data current source (MN) The first data current source MM indicates one independent logic state by the level of the positive data current I1 and the second data current source MN is at a level of the sub data current I2
  • the data to be transmitted by the transmitter can be represented by a logic state due to the difference between the values of the independent positive data current I1 and the sub data current I2 .
  • a current-driven receiver using the independent current signal includes a true line current mirror 500 receiving a current flowing in a true line TX + of a pair of transmission lines, A current mirror 600 receiving the current flowing through the barrel TX- and a receiving voltage corresponding to the current received in the current mirror 600 connected to the true line current mirror 500 And a differential amplifier 900 for amplifying the level of the received voltage.
  • the true line current mirror 500 receives the positive data current I1 and the sub data current I2 transmitted from the transmitter through a true line TX + to generate a true line receive current Irx +
  • a first input transistor MI1 having a terminal and a gate connected to the true line TX + and the other terminal connected to a ground power supply, a gate connected to the gate of the first input transistor, And a first output transistor (MO1) for outputting a mirrored true line receiving current (Irx +) through another working terminal.
  • the bar-shaped current mirror 600 receives the sub data current I2 and the positive data current I1 transmitted from the transmitter through the line TX- to generate a positive reception current Irx- ,
  • a second input transistor (MI2) having a terminal and a gate connected to the negative line (TX-) and the other terminal connected to a ground power supply, and a gate connected to the gate of the second input transistor
  • a second output transistor (MO2) connected to the ground power source and outputting a positive receive current (Irx-) mirrored through another terminal.
  • the channel widths of the first and second output transistors overlap with the true line. (For example, 1: n) of the widths of the first and second input transistor channels so as to increase the currents transmitted from the first and second input transistor channels by a predetermined ratio, desirable.
  • the single IV converter 700 includes a first resistor R1 whose one end is connected to a node to which the true line receiving current Irx + is supplied and a second resistor R1 whose one end is connected to the node to which the positive receiving current Irx-
  • a current source Is commonly connected to the other end of the first resistor and the second resistor and a receiving current Irx- that is aligned with the true line receiving current Irx +
  • a power supply voltage (VDD) that generates a level of a true reception voltage and a true reception voltage corresponding to a current received while flowing in and out.
  • the single IV converter 700 converts the difference in the current levels generated in the current mirror mirror 600 and the true current mirror 500 into a voltage level at the same time, It is possible to reduce the error between the true line and the bar line by converting the current level to the voltage level.
  • the common voltage generator 800 includes a first terminal connected to the current source and a second terminal connected to the connection node between the trueline current mirror 500 and the first resistor Rl, 900 and the third terminal is connected to the connection node between the barrel current mirror 600 and the second resistor R2 and connected to the inverting terminal of the differential amplifier 900.
  • the common voltage generator 800 can generate a common voltage having various values, the conventional low voltage differential signal (LVDS) or mini low voltage differential Signal (m-LVDS: mini Low Voltage Differential Signal) scheme can be used as it is.
  • LVDS low voltage differential signal
  • m-LVDS mini Low Voltage Differential Signal
  • the differential amplifier 900 receives the true line receive voltage and the received receive voltage generated by the single IV converter at the non-inverting terminal and the inverting terminal, amplifies the difference between the positive voltages to a predetermined level, .
  • the current-driven receiver using the independent current signal has a current flowing in the true line TX + and a current flowing in the line TX-
  • a single IV converter 710 that receives the current and converts the level difference of both currents to a voltage level at the same time, and a common IV converter 710 that makes the voltage level converted by the single IV converter constant at a voltage level at which the differential amplifier unit can stably operate.
  • a differential amplifier 910 for receiving a voltage level generated from the single IV converter and generating a stable operating voltage from the non-inverting terminal and the inverting terminal, for amplifying a difference between positive and negative voltages to recover data, .
  • the true line receiving current (Irx +) and the received current (Irx-) received from the transmission line pair without a separate current mirror are converted from a single IV converter 710 to a direct voltage level And supplies it to the input terminal of the differential amplifier 910.
  • the single IV converter 710 includes a third resistor R3 connected at one end to the tru line TX + of the transmission line pair, a fourth resistor R4 connected at one end to the line TX-, And a current source Is, one terminal of which is commonly connected to the other end of the third resistor and the fourth resistor, and the other terminal of which is connected to the ground power source.
  • the current corresponding to the current source flows in and out from the current source by the reception current (Irx-) and the true line receiving current (Irx +) simultaneously flowing into one terminal of the third resistor and the fourth resistor, The voltage level of the corresponding true line receive voltage and the desired receive voltage are generated.
  • the common voltage generator 810 makes the level of the reception voltage converted by the fine reception current received directly in the pair of transmission lines constant to a level at which the receiver can stably operate, Inverting terminal of the differential amplifier 910 and the third terminal is connected to one terminal of the fourth resistor and the other terminal of the second resistor is connected to the non- And is connected to the inverting terminal of the differential amplifier 910.
  • the second embodiment does not use a separate current mirror for mirroring the receiving current at a constant rate for stable operation, the amount of current consumption can be significantly reduced, and stable operation in the receiver can be achieved after converting the receiving current And the level of the reception voltage is kept constant in the common voltage generator.
  • the interface system using the current-driven transmitter and receiver using the independent current signal switches between the positive data current and the sub data current while the alternating current (TX +) and negative
  • the transmitter may include a first data current source supplying a constant data current (I1) representing one logic state in order to generate a logic state of data to be transmitted by a differential current having a constant difference, (TX +) and a transmission line (TX +) to which a positive data current and a sub-data current are supplied according to a value of data to be transmitted, and a second data current source for supplying a sub- And a switching controller for controlling the switching operation according to the value of the data to be transmitted.
  • the switching controller controls the switching operation according to the value of the data to be transmitted.
  • the receiver calculates the current level difference between the true line receiving current (Irx +) received through the true line (TX +) and the desired receiving current (Irx-) received through the line (TX-) And a differential amplifier for directly converting the voltage level difference by the converter and receiving the difference of the converted voltage level to amplify the difference.
  • the receiver includes a tru line current mirror for receiving a current flowing through the tru line and generating a tru line receiving current (Irx +), a tru line current mirror for receiving a current flowing in the line, (Irx-), a single IV converter for directly converting the current level difference between the true line receiving current and the desired receiving current into a voltage level difference, and a differential amplifier for maintaining a stable operating point
  • a common voltage generating unit for making the level of the true line receiving voltage and the balanced receiving voltage converted by the converter constant, and a differential amplifying unit for receiving and amplifying the voltage level of the converted receiving voltage to recover the data .
  • the receiver receives a current flowing through the true line TX + and a current flowing through the line TX-, and converts the level difference of the positive current into a voltage level at the same time,
  • a common voltage generator for making the voltage level converted by the single IV converter constant at a voltage level at which the differential amplifier can operate stably and a voltage level converted and stable in the operation of a single IV converter
  • a differential amplifier for amplifying and restoring the data.
  • the detailed description of the transmitter and the receiver will be omitted because they are the same as those described in the first and second embodiments of the current driven transmitter and receiver using the independent current signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Dc Digital Transmission (AREA)
  • Logic Circuits (AREA)

Abstract

본 발명은 전송라인을 통하여 반도체 칩 간에 전류의 형태로 데이터를 전송하는 전류 구동방식의 송신기와 수신기 및 이를 적용한 COG 애플리케이션을 위한 인터페이스 시스템에 관한 것으로서, 보다 상세하게는 전송하고자 하는 데이터의 논리상태를 나타내는 차동전류를 외부 전류 없이 정데이터전류와 부데이터전류의 차이에 의해 독립적으로 생성하여 전송함으로써 전류원의 설계 및 공정상 원인에 영향 받지 않고 전송라인쌍에 인가되는 전류의 크기를 일정하게 유지할 수 있는 독립 전류신호를 이용한 전류 구동방식의 송신기와, 전송라인을 통해 수신한 전류의 레벨차이를 단일 IV 컨버터에서 동시에 전압레벨로 변환하여 트루라인과 바라인의 오차를 감소시킬 수 있는 독립 전류신호를 이용한 전류 구동방식의 수신기, 및 이러한 송신기와 수신기를 이용하여 전송신호의 왜곡을 줄일 수 있게 한 COG 애플리케이션을 위한 인터페이스 시스템에 관한 것이다.

Description

COG 애플리케이션을 위한 인터페이스 시스템
본 발명은 COG(Chip on Glass) 방식의 영상표시장치에서 전송라인 쌍을 통하여 반도체 칩 간에 차동전류의 형태로 데이터를 전송하는 전류 구동방식의 송신기와 수신기 및 이를 적용한 COG 애플리케이션을 위한 인터페이스 시스템에 관한 것으로서, 보다 상세하게는 전송하고자 하는 데이터를 나타내는 차동전류를 생성하기 위한 정데이터전류와 부데이터전류를 독립적으로 생성하여 전송할 수 있는 독립 전류신호를 이용한 전류 구동방식의 송신기와 수신기, 및 이러한 송신기와 수신기를 이용하여 전송신호의 왜곡을 줄일 수 있게 한 COG 애플리케이션을 위한 인터페이스 시스템에 관한 것이다.
종래의 전송라인을 통한 반도체 칩 간의 데이터 전송은 송신기에서 차동전압의 형태로 차동 전송라인쌍을 통해 데이터를 보내면, 수신기에서 전압형태의 데이터를 감지한 후 디스플레이하고자 하는 데이터로 변환하여 이용하는 형태로 이루어졌다.
그러나, 전압차를 이용하는 데이터 전송방법은 반도체 칩 간의 전송라인 길이에 영향을 받기 쉬웠다. 특히 반도체 칩 간의 거리가 멀어지는 근래의 기술추세에 의할 때 전송라인이 큰 임피던스를 갖게 되어 전압차를 이용하는 데이터 전송방법은 적합하지 않으므로 근래에는 전류를 이용한 데이터 전송방법이 제안되었다.
즉, 차동전압을 이용하는 종래의 mLVDS(mini Low Voltage Differential Signaling) 방식은 데이터와 클럭신호가 인쇄회로기판을 통해 멀티 드롭(multi-drop)의 형태로 드라이버 IC에 전달되는 방식으로써, 이 경우 인쇄회로기판의 종단부에 설치되는 종단저항이 전압의 형태로 데이터와 클럭신호를 받아들이게 된다. 그러나 근래의 슬림화에 따른 COG 애플리케이션의 경우 타이밍 컨트롤러와 드라이버 IC 사이는 포인트 투 포인트(Point to Point) 방식으로 구성되며 패널의 유리 위에 직접 전송라인이 구현되기 때문에 타이밍 컨트롤러와 드라이버 IC 사이에는 매우 큰 임피던스 성분이 존재하게 되어 파형의 왜곡이 심하게 되는 문제점이 있으므로 근래에는 전류를 이용한 데이터 전송방법인 LCDS(Low Current Differential Signaling) 방법이 이용되고 있다.
이와 같이 전류를 이용하여 데이터를 전송하는 전류 구동방식은 송신기에서 전송라인을 통하여 전류 형태의 데이터를 전달하고, 수신기에서 이 전류에 의해 데이터를 복원하여 사용하는 형태로 이루어지며, 하나의 전송라인에 하나의 데이터 비트가 전송되는 단일 전류 구동방식과, 두 개의 전송라인에 서로 다른 크기를 갖는 전류를 전송하고 그 차이를 통해 데이터를 전송하는 차동 전류 구동방식으로 구분된다.
즉, 상기 차동 전류 구동방식은 송신기에서 서로 다른 크기를 갖는 전류를 이용하여 비트 데이터를 만들고, 이를 두 개의 전송라인을 통해 전송하게 되며, 수신기에서는 두 개의 전송라인의 전류차를 이용하여 데이터를 복원하게 된다. 이는 단일 전류 구동방식에 비해 잡음에 대한 전송신호의 왜곡은 작지만, 두 전송라인의 물리적 위치와 전송라인에 기생하는 R, L, C에 의해 전송라인간의 간섭이 발생하게 된다. 그로 인해 전송신호는 왜곡되고, 전송라인의 시정수가 커지게 되어 신호의 천이 시간이 증가하여 전송속도가 저하되는 문제점이 있었다.
그에 따라, 근래에는 등록특허 제10-0588752호에 개시된 바와 같이, 전송라인쌍중 트루라인(TX+)에 기저 논리상태를 표시하는 기저전류(Icc1)를 공급하기 위한 제1기저전류원과, 상기 전송라인쌍중 바라인(TX-)에 기저 논리상태를 표시하는 기저전류(Icc2)를 공급하기 위한 제2기저전류원, 상기 전송라인쌍 중 하나에 천이 논리상태를 표시하는 천이전류(Idc)를 생성하기 위한 천이전류원, 상기 전송라인쌍의 전위를 균등화시키기 위한 균등화 스위치, 전송하려는 데이터의 논리값에 따라 상기 천이전류를 상기 트루라인 또는 바라인에 공급하기 위한 천이 스위치, 및 전송하려는 데이터에 대응하여 상기 균등화 스위치와 천이 스위치의 절환을 제어하는 송신제어부를 포함하여 송신기를 구현하는 것이 제안되었다.
이러한 송신기는 하나의 천이전류원이 데이터 신호에 따라 2개의 기저 전류원인 제1기저전류원과 제2기저전류원 중 하나에 연결되어 두 전송라인쌍의 전류레벨 차이를 만들게 된다. 그러나, 이 경우 제1 및 제2기저전류원이 설계 및 공정상의 원인이나, 테스트 환경 등의 원인으로 서로 다른 전류의 값을 만들 수 있게 되는데, 그에 따라 데이터 신호에 의해 전송라인쌍에 인가되는 전류는 그 크기가 달라지게 된다.
즉, 도 1에 도시된 바와 같이, 제1기저전류원에 의해 공급되는 제1기저전류(Icc1)는 Iref+α이고, 제2기저전류원에 의해 공급되는 제2기저전류(Icc2)는 Iref-α이며, 천이전류원에 의해 공급되는 천이전류는 I라고 할 때, 전송라인쌍 중 트루라인(TX+)으로 흐르는 전류는 천이전류와 제1기저전류의 합인 I+Iref+α 이고, 그와 동시에 바라인(TX-)으로 흐르는 전류는 Iref-α 이 된다. 그러나, 데이터가 천이되면 전송라인쌍 중 트루라인(TX+)으로 흐르는 전류는 Iref+α 이고, 그와 동시에 바라인(TX-)으로 흐르는 전류는 천이전류와 제2기저전류의 합인 I+Iref-α이 되므로, 데이터 값에 따라 천이할 때마다 전류값이 불안정해지는 문제점이 있었다.
또한, 전송라인쌍 중 트루라인(TX+)에 흐르는 데이터 신호 전류(Irx+)를 미러링하여 트루라인 미러링 전류(Irx+)를 생성하기 위한 트루라인 전류미러와, 바라인(TX-)에 흐르는 데이터 신호전류(Irx-)를 미러링하여 바라인 미러링 전류(Irx-)를 생성하기 위한 바라인 전류미러와, 상기 트루라인 미러링 전류에 대응하는 레벨을 갖는 트루라인 수신전압을 생성하기 위한 트루라인 IV 컨버터와, 상기 바라인 미러링 전류에 대응하는 레벨을 갖는 바라인 수신전압을 생성하기 위한 바라인 IV 컨버터, 및 상기 트루라인 수신전압과 바라인 수신전압의 레벨차를 증폭하기 위한 차동증폭부를 포함하는 수신기가 제안되었다.
그러나, 이러한 수신기는 트루라인과 바라인에 대해 각각의 IV 컨버터가 구비되어 있으므로 트루라인과 바라인의 오차가 각각 전압으로 변환되어 차동증폭부에 입력되므로 전송신호의 왜곡이 증가하게 되는 문제점이 있었다. 또한, 수신기에서 요구되는 2개의 컨버터는 수신기의 크기를 증가시켜 레이아웃에서의 면적을 증가시키는 요인이 되는 문제점이 있었다.
본 발명이 해결하고자 하는 기술적 과제는, 전송하고자 하는 데이터의 논리상태를 나타내는 차동전류를 외부 전류 없이 정데이터전류와 부데이터전류의 차이에 의해 독립적으로 생성하여 전송함으로써, 전류원의 설계 및 공정상 원인에 영향 받지 않고 전송라인쌍에 인가되는 전류의 크기를 일정하게 유지할 수 있는 독립 전류신호를 이용한 전류 구동방식의 송신기와, 전송라인을 통해 수신한 전류의 레벨차이를 단일 IV 컨버터에서 동시에 전압레벨로 변환하여 트루라인과 바라인의 오차를 감소시킬 수 있는 독립 전류신호를 이용한 전류 구동방식의 수신기, 및 이러한 송신기와 수신기를 이용하여 전송신호의 왜곡을 줄일 수 있게 한 COG 애플리케이션을 위한 인터페이스 시스템을 제공함에 있다.
상기 기술적 과제를 이루기 위한 COG 애플리케이션을 위한 인터페이스 시스템은, 차동전류를 이루는 정데이터전류를 독립적으로 생성하여 공급하는 제1데이터전류원과, 부데이터전류를 독립적으로 생성하여 공급하는 제2데이터전류원과, 전송하려는 데이터의 논리상태에 따라 상기 정데이터전류를 트루라인과 바라인 간에 스위칭하며 공급하는 제1선택스위치와, 상기 부데이터전류를 상기 바라인과 트루라인 간에 스위칭하며 공급하는 제2선택스위치와, 상기 트루라인과 바라인 상호간에 연결되어 스위칭하며 전송라인의 전위를 균등하게 하는 균등화스위치와, 스위칭 작용을 제어하는 스위칭컨트롤러를 포함하는 송신기; 상기 제1 및 제2선택스위치가 스위칭하면서 정데이터전류와 부데이터전류를 공급하는 트루라인과 바라인으로 이루어진 전송라인쌍; 및 상기 트루라인으로 수신한 트루라인 수신전류와 상기 바라인으로 수신한 바라인 수신전류의 레벨차이를 동시에 전압레벨로 변환하여 데이터를 복원하는 수신기를 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 COG 애플리케이션을 위한 인터페이스 시스템의 수신기는, 트루라인에 흐르는 전류를 수신하여 트루라인 수신전류를 생성하는 트루라인 전류 미러; 상기 바라인에 흐르는 전류를 수신하여 바라인 수신전류를 생성하는 바라인 전류 미러; 상기 트루라인 수신전류가 공급되는 노드에 일단이 연결된 제1저항, 상기 바라인 수신전류가 공급되는 노드에 일단이 연결된 제2저항, 상기 제1저항과 제2저항의 타단에 공통으로 연결된 전류원, 및 상기 전류원에 의해 트루라인 수신전류와 바라인 수신전류가 유출입되면서 수신전압의 레벨을 생성하는 전원전압이 구비된 단일 IV 컨버터; 및 상기 수신전압의 레벨의 차이를 입력받아 증폭하는 차동증폭부를 포함하여 구성되는 것을 특징으로 한다.
또한, 본 발명에 따른 COG 애플리케이션을 위한 인터페이스 시스템의 수신기는, 트루라인에 일단이 연결되어 트루라인 수신전류가 입력되는 제1저항과, 상기 바라인에 일단이 연결되어 바라인 수신전류가 입력되는 제2저항과, 일 단자가 상기 제1저항과 제2저항의 타단에 공통으로 연결되고 다른 일 단자가 접지전원에 연결된 전류원이 구비된 단일 IV 컨버터; 제1단자가 상기 전류원에 연결되고, 제2단자가 상기 제1저항의 일 단자와 공통노드를 이루며 차동증폭부의 비반전단자에 연결되고, 제3단자가 상기 제2저항의 일 단자와 공통노드를 이루며 차동증폭부의 반전단자로 연결되는 공통전압 생성부; 및 상기 단일 IV 컨버터에서 변환된 전압레벨의 차이를 비반전단자와 반전단자로 입력받아 증폭하는 차동증폭부를 포함하여 구성되는 것을 특징으로 한다.
본 발명은 기준전류에 의해 생성되는 정데이터전류와 부데이터전류의 차이에 의해 전송하려는 데이터의 논리상태를 독립적으로 생성하여 전송함으로써 전송라인쌍에 인가되는 전류의 차이를 일정하게 유지하고, 전송라인쌍을 통해 수신한 전류레벨차이를 단일 IV 컨버터에서 동시에 전압레벨로 변환함으로써 트루라인과 바라인으로 전송되는 차동전류의 오차를 감소시킬 수 있는 장점이 있다.
또한, 본 발명은 송신기와 수신기의 레이아웃 면적을 줄일 수 있음과 아울러, 수신기의 차동증폭부 입력단에 공통전압을 생성하여 다양한 전압레벨을 생성함으로써 기존의 저전압 차동신호 방식이나 멀티 포인트 저전압 차동신호 방식의 설계정보를 용이하게 적용할 수 있는 장점이 있다.
도 1은 종래의 차동전류 구동방식에서 전송라인쌍에 인가되는 차동전류 레벨의 예시도.
도 2는 본 발명에 따른 독립 전류신호를 이용한 전류 구동방식의 송신기 회로도.
도 3은 본 발명에 따라 독립 전류신호를 이용한 전류 구동방식에서 전송라인쌍에 인가되는 차동전류 레벨의 예시도.
도 4는 본 발명에 따라 단일 IV 컨버터가 구비된 독립 전류신호를 이용한 전류 구동방식의 수신기의 제1실시예를 나타내는 회로도.
도 5는 본 발명에 따라 단일 IV 컨버터가 구비된 독립 전류신호를 이용한 전류 구동방식의 수신기의 제2실시예를 나타내는 회로도.
도 6은 본 발명에 따른 수신기의 제1실시예를 이용한 전류 구동방식의 인터페이스 시스템 구성도.
도 7은 본 발명에 따른 수신기의 제2실시예를 이용한 전류 구동방식의 인터페이스 시스템 구성도.
이하에서는 본 발명의 구체적인 실시예를 도면을 참조하여 상세히 설명하도록 한다.
본 발명의 일 실시예에 따른 독립 전류신호를 이용한 전류 구동방식의 송신기는 도 2에 도시된 바와 같이, 정데이터전류를 생성하는 제1데이터전류원(100)과, 부데이터전류를 생성하는 제2데이터전류원(200)과, 전송하고자 하는 데이터의 천이여부에 따라 정데이터 전류와 부데이터 전류가 공급되는 전송라인을 선택하는 선택스위치와, 데이터 전송 후 새로운 데이터의 전송 전에 전송라인쌍의 전위를 균등하게 하는 균등화스위치(400), 및 전송하고자 하는 데이터에 의해 상기 선택스위치와 균등화스위치의 스위칭 작용을 제어하는 스위칭컨트롤러를 포함하여 구성된다.
상기 제1데이터전류원(100)과 제2데이터전류원(200)은 트루라인(TX+)과 바라인(TX-)으로 이루어진 전송라인쌍을 통하여 수신기로 전송하는 차동전류를 독립적으로 생성하는 전류 미러(Current Mirror)로 구성되며, 이와 같이 전송하고자 하는 데이터의 변화에 따른 논리 상태를 독립적으로 생성하기 위하여 상기 제1데이터전류원(100)은 하나의 논리 상태를 나타내는 정데이터전류를 생성하고, 상기 제2데이터전류원(200)은 다른 하나의 논리 상태를 나타내는 부데이터전류를 생성하도록 구성된다.
상기 제1데이터전류원(100)은 기준 전류(Iref)를 공급하는 제1모스트랜지스터(MR)에 연결되어 전류 미러를 이루는 제2모스트랜지스터(MM)로 구성되며, 상기 제2모스트랜지스터(MM)는 일 단자가 전원전압(VDD)에 연결되고, 다른 일 단자가 제1선택스위치(310)에 연결되며, 게이트가 상기 제1모스트랜지스터(MR)의 게이트에 연결되어 구성된다.
이와 같이 구성된 상기 제1데이터전류원(100)은 상기 제1모스트랜지스터(MR)를 통해 미러링(mirroring)된 정데이터전류(I1)를 상기 제1선택스위치(310)의 스위칭작용에 의해 트루라인(TX+)이나 바라인(TX-)에 선택적으로 공급하게 된다.
상기 제2데이터전류원(200)은 기준 전류(Iref)를 공급하는 제1모스트랜지스터(MR)에 연결되어 전류 미러를 이루는 제3모스트랜지스터(MN)로 구성되며, 상기 제3모스트랜지스터(MN)는 일 단자가 상기 전원전압(VDD)에 연결되고, 다른 일 단자가 제2선택스위치(320)에 연결되며, 게이트가 상기 제1모스트랜지스터(MR)의 게이트에 연결되어 구성된다.
이와 같이 구성된 상기 제2데이터전류원(200)은 상기 제1모스트랜지스터(MR)를 통해 미러링(mirroring)된 부데이터전류(I2)를 상기 제2선택스위치(320)의 스위칭작용에 의해 바라인(TX-)이나 트루라인(TX+)에 선택적으로 공급하게 된다.
이때, 상기 제1데이터전류원(MM)(100)에서 공급되는 정데이터전류(I1)와 상기 제2데이터전류원(MN)(200)에서 공급되는 부데이터전류(I2)는 동일한 제1모스트랜지스터(MR)로부터 기준전류(Iref)를 공급받으므로, 상기 기준전류(Iref)에 일정하게 비례하는 크기로 생성되어 제1선택스위치(310)와 제2선택스위치(320)로 각각 공급된다. 즉, 상기 제1데이터전류원(MM)과 제2데이터전류원(MN)은 일정한 차동전류를 공급하여 데이터의 논리상태를 전송할 수 있도록 일정한 비율, 예를 들어 1:a 또는 1:b 등(a와 b는 자연수)으로 구성되는 것이 바람직하다.
상기 선택스위치는 상기 제1데이터전류원(MM)(100)에서 공급되는 전류를 트루라인(TX+)과 바라인(TX-)간에 스위칭하며 공급하는 제1선택스위치(310)와, 상기 제2데이터전류원(MN)(200)에서 공급되는 전류를 바라인(TX-)과 트루라인(TX+)간에 스위칭하며 공급하는 제2선택스위치(320)를 포함하여 구성된다.
상기 제1선택스위치(310)는 일 단자가 상기 제1데이터전류원(MM)에 공통으로 연결되고, 게이트에 정데이터신호(D+) 및 부데이터신호(D-)가 인가되며, 다른 일 단자가 바라인(TX-)과 트루라인(TX+)에 각각 연결되어 상기 정데이터신호(D+)와 부데이터신호(D-)에 의해 스위칭하며 정데이터전류(I1)가 공급되는 전송라인을 선택하는 제1 및 제2트랜스미션 게이트(311, 312)로 구성되는 것이 바람직하다.
이때, 상기 제1트랜스미션 게이트(311)는 일 단자가 상기 제1데이터전류원(MM)의 다른 일 단자에 연결되고, 다른 일 단자가 바라인(TX-)에 연결되며, N모스트랜지스터의 게이트에 정데이터신호(D+)가 인가되고, P모스트랜지스터의 게이트에 부데이터신호(D-)가 인가되도록 구성된다.
또한, 상기 제2트랜스미션 게이트(312)는 일 단자가 상기 제1데이터전류원(MM)의 다른 일 단자에 연결되고, 다른 일 단자가 트루라인(TX+)에 연결되며, P모스트랜지스터의 게이트에 정데이터신호(D+)가 인가되고, N모스트랜지스터의 게이트에 부데이터신호(D-)가 인가되도록 구성된다.
그에 따라, 전송하고자 하는 데이터가 천이(transition)하여 정데이터신호(D+)가 논리 하이 상태이면 상기 제1트랜스미션 게이트(311)가 턴 온 되고 제2트랜스미션 게이트(312)는 턴 오프 되어 상기 제1데이터전류원(MM)에서 공급되는 정데이터전류(I1)가 바라인(TX-)으로 공급되고, 상기 정데이터신호(D+)가 논리 로우 상태이면 상기 제1트랜스미션 게이트(311)는 턴 오프 되고 제2트랜스미션 게이트(312)가 턴 온 되어 상기 제1데이터전류원(MM)에서 공급되는 정데이터전류(I1)가 트루라인(TX+)으로 공급된다.
그리고, 상기 제2선택스위치(320)는 일 단자가 상기 제2데이터전류원(MN)에 공통으로 연결되고, 게이트에 정,부데이터신호(D+, D-)가 인가되며, 다른 일 단자가 트루라인(TX+)과 바라인(TX-)에 각각 연결되어 상기 정,부데이터신호(D+,D-)에 의해 스위칭하며 부데이터전류(I2)가 공급되는 전송라인을 선택하는 제3 및 제4트랜스미션 게이트(321, 322)로 구성되는 것이 바람직하다.
이때, 상기 제3트랜스미션 게이트(321)는 일 단자가 상기 제2데이터전류원(MN)의 다른 일 단자에 연결되고, 다른 일 단자가 트루라인(TX+)에 연결되며, N모스트랜지스터의 게이트에 정데이터신호(D+)가 인가되고, P모스트랜지스터의 게이트에 부데이터신호(D-)가 인가되도록 구성된다.
또한, 상기 제4트랜스미션 게이트(322)는 일 단자가 상기 제2데이터전류원(MN)의 다른 일 단자에 연결되고, 다른 일 단자가 바라인(TX-)에 연결되며, P모스트랜지스터의 게이트에 정데이터신호(D+)가 인가되고, N모스트랜지스터의 게이트에 부데이터신호(D-)가 인가되도록 구성된다.
그에 따라, 전송하고자 하는 데이터가 천이(transition)하여 정데이터신호(D+)가 논리 하이 상태이면 상기 제3트랜스미션 게이트(321)가 턴 온 되고 제4트랜스미션 게이트(322)는 턴 오프 되어 상기 제2데이터전류원(MN)에서 공급되는 부데이터전류(I2)가 트루라인(TX+)으로 공급되며, 상기 정데이터신호(D+)가 논리 로우 상태이면 상기 제3트랜스미션 게이트(321)는 턴 오프 되고 제4트랜스미션 게이트(322)가 턴 온 되어 상기 제2데이터전류원(MN)에서 공급되는 부데이터전류(I2)가 바라인(TX-)으로 공급된다.
이와 같이 구성된 제1 및 제2선택스위치(310, 320)의 스위칭 작용에 의해 정데이터전류(I1)가 바라인(TX-)으로 공급될 경우에는 부데이터전류(I2)는 트루라인(TX+)으로 공급되어 차동전류를 송신기로 공급하며, 정데이터전류(I1)가 트루라인(TX+)으로 공급될 경우에는 부데이터전류(I2)가 바라인(TX-)으로 공급되어 차동전류를 송신기로 공급하게 된다.
상기 균등화스위치(400)는 데이터 전송 후 새로운 천이가 발생할 때에 일정 시간동안 턴 온 되어 트루라인(TX+)과 바라인(TX-)의 준위를 균등화 시킨 후 턴 오프되어 정데이터전류(I1)와 부데이터전류(I2)를 공급하도록, 트루라인(TX+)과 바라인(TX-) 간에 양 단자가 연결되고, 게이트에 균등화 제어신호가 인가되는 제5트랜스미션 게이트로 구성된다.
또한, 상기 스위칭컨트롤러는 송신기에서 전송하고자 하는 데이터의 논리 상태와 천이여부에 따라 상기 정데이터신호(D+)와 부데이터신호(D-)를 생성하여 제1 내지 제4트랜스미션 게이트(311, 312, 321, 322)에 인가함으로써 상기 정데이터전류(I1)와 부데이터전류(I2)가 공급되는 전송라인을 선택하고, 전송하고자 하는 데이터의 천이여부에 따라 상기 균등화 제어신호를 생성하여 제5트랜스미션 게이트에 인가함으로써 상기 트루라인(TX+)과 바라인(TX-)의 전위를 균등화시켜 전송되는 전류값을 안정화시키도록 구성된다.
이와 같이 구성된 송신기에 의해 상기 제1선택스위치(310)의 스위칭작용에 의해 상기 제1데이터전류원(MM)이 트루라인(TX+)과 바라인(TX-)에 각각 독립적으로 공급되고, 상기 제2선택스위치(320)의 스위칭작용에 의해 상기 제2데이터전류원(MN)이 바라인(TX-)과 트루라인(TX+)에 각각 독립적으로 공급된다. 이때, 상기 전송라인쌍인 트루라인(TX+)과 바라인(TX-)을 통해 수신기로 전송되는 차동전류는 외부에서 인가되는 추가적인 전류에 의한 영향을 받지 않고 정데이터전류(I1)와 부데이터전류(I2)의 차이에 의해 독립적으로 결정되므로, 도 3에 도시된 바와 같이 별도의 오프셋(offset) 없이 일정한 값으로 결정된다.
즉, 전류원의 설계 및 공정상의 원인이나 테스트 환경의 원인으로 인하여 일정한 오차가 발생하더라도 두 개의 전류원인 제1데이터전류원(MM)과 제2데이터전류원(MN)의 차이에 의해 발생되는 차동전류는 항상 일정하게 결정되므로, 상기 제1데이터전류원(MM)은 정데이터전류(I1)의 레벨에 의해 하나의 독립적 논리 상태를 나타내고, 상기 제2데이터전류원(MN)은 부데이터전류(I2)의 레벨에 의해 다른 하나의 독립적 논리 상태를 나타내는 것으로 볼 수 있으며, 송신기에서 전송하고자 하는 데이터는 이러한 독립적인 정데이터전류(I1)와 부데이터전류(I2)의 값의 차이에 의한 논리 상태로 표현할 수 있게 된다.
다음에는 본 발명에 따른 독립 전류신호를 이용한 전류 구동방식의 수신기를 설명한다.
먼저, 상기 독립 전류신호를 이용한 전류 구동방식의 수신기는 제1실시예를 나타내는 도 4에 도시된 바와 같이, 전송라인쌍 중 트루라인(TX+)에 흐르는 전류를 수신하는 트루라인 전류 미러(500)와, 바라인(TX-)에 흐르는 전류를 수신하는 바라인 전류 미러(600)와, 상기 트루라인 전류 미러(500)와 바라인 전류 미러(600)에서 수신한 전류에 대응하는 수신전압을 생성하는 단일 IV 컨버터(700)와, 상기 수신전압의 레벨을 증폭하는 차동증폭부(900)를 포함하여 구성된다.
상기 트루라인 전류 미러(500)는 트루라인(TX+)을 통해 상기 송신기에서 전송되는 정데이터전류(I1)나 부데이터전류(I2)를 수신하여 트루라인 수신전류(Irx+)를 생성하는 것으로서, 일 단자와 게이트가 상기 트루라인(TX+)에 연결되고 다른 일 단자가 접지전원에 연결된 제1입력트랜지스터(MI1)와, 게이트가 상기 제1입력트랜지스터의 게이트에 연결되고 일 단자가 접지전원에 연결되며 다른 일 단자를 통해 미러링된 트루라인 수신전류(Irx+)를 출력하는 제1출력트랜지스터(MO1)를 포함하여 구성된다.
또한, 상기 바라인 전류 미러(600)는 바라인(TX-)을 통해 상기 송신기에서 전송되는 부데이터전류(I2)나 정데이터전류(I1)를 수신하여 바라인 수신전류(Irx-)를 생성하는 것으로서, 일 단자와 게이트가 상기 바라인(TX-)에 연결되고 다른 일 단자가 접지전원에 연결된 제2입력트랜지스터(MI2)와, 게이트가 상기 제2입력트랜지스터의 게이트에 연결되고 일 단자가 접지전원에 연결되며 다른 일 단자를 통해 미러링된 바라인 수신전류(Irx-)를 출력하는 제2출력트랜지스터(MO2)를 포함하여 구성된다.
이때, 상기 트루라인 전류 미러(500)와 바라인 전류 미러(600)는 후술하는 단일 IV 컨버터에서 최적의 성능을 구현하기 위해, 상기 제1 및 제2출력트랜지스터의 채널 폭이 상기 트루라인과 바라인에서 전송되는 전류를 각각 일정한 비율로 증가시킬 수 있도록 상기 제1 및 제2입력트랜지스터 채널 폭의 임의의 배수(예를 들어, 1 : n)만큼 크게 형성되어 일정한 배율로 미러링 가능하도록 구성되는 것이 바람직하다.
상기 단일 IV 컨버터(700)는 상기 트루라인 수신전류(Irx+)가 공급되는 노드에 일단이 연결된 제1저항(R1)과, 상기 바라인 수신전류(Irx-)가 공급되는 노드에 일단이 연결된 제2저항(R2)과, 상기 제1저항과 제2저항의 타단에 공통으로 연결되어 있는 전류원(Is)과, 상기 전류원에 의해 트루라인 수신전류(Irx+)와 바라인 수신전류(Irx-)가 동시에 유출입되면서 수신한 전류에 대응하는 트루라인 수신전압과 바라인 수신전압의 레벨을 생성하는 전원전압(VDD)을 포함하여 구성된다.
따라서, 상기 단일 IV 컨버터(700)는 상기 트루라인 전류 미러(500)와 바라인 전류 미러(600)에서 생성되는 전류 레벨의 차이를 동시에 전압 레벨로 변환하게 되며, 이와 같이 하나의 단일 IV 컨버터를 통해 전류 레벨을 전압 레벨로 변환함으로써 트루라인과 바라인 간의 오차를 줄일 수 있게 된다.
또한, 상기 트루라인 전류 미러(500)와 바라인 전류 미러(600)를 통해 상기 단일 IV 컨버터(700)에서 변환되어 차동증폭부(900)로 입력되는 트루라인 수신전압과 바라인 수신전압의 레벨을 일정한 크기로 만들어 상기 차동증폭부가 안정적으로 동작할 수 있게 하는 공통전압 생성부(800)가 더 포함되어 구성될 수도 있다. 그에 따라, 수신기에서 안정적인 동작점을 유지하게 되어 상기 차동증폭부의 성능을 최적화할 수 있게 된다. 이때, 상기 공통전압 생성부(800)는 제1단자가 상기 전류원에 연결되고, 제2단자가 상기 트루라인 전류 미러(500)와 제1저항(R1)의 연결노드에 연결되어 차동증폭부(900)의 비반전단자로 연결되고, 제3단자가 상기 바라인 전류 미러(600)와 제2저항(R2)의 연결노드에 연결되어 차동증폭부(900)의 반전단자로 연결된다.
이와 같이, 상기 공통전압 생성부(800)에서 다양한 값의 공통전압을 생성할 수 있게 되므로 고속데이터 전송을 위한 인터페이스의 표준인 기존의 저전압 차동신호(LVDS : Low Voltage Differential Signal) 방식이나 미니 저전압 차동신호(m-LVDS : mini Low Voltage Differential Signal) 방식의 차동증폭부 설계정보를 그대로 사용할 수 있게 된다.
상기 차동증폭부(900)는 상기 단일 IV 컨버터에서 생성된 트루라인 수신전압과 바라인 수신전압을 비반전단자와 반전단자로 입력받아 양 전압의 차이를 일정한 레벨로 증폭하여 송신기에서 전송된 데이터를 복원하도록 구성된다.
다음으로, 상기 독립 전류신호를 이용한 전류 구동방식의 수신기는 제2실시예를 나타내는 도 5에 도시된 바와 같이, 전송라인쌍 중 트루라인(TX+)에 흐르는 전류와 바라인(TX-)에 흐르는 전류를 수신하여 양 전류의 레벨 차이를 동시에 전압레벨로 변환하는 단일 IV 컨버터(710)와, 상기 단일 IV 컨버터에서 변환된 전압레벨을 차동증폭부가 안정적으로 동작할 수 있는 전압레벨로 일정하게 만드는 공통전압 생성부(810)와, 상기 단일 IV 컨버터에서 변환되고 안정적인 동작전압으로 생성된 전압레벨을 비반전단자와 반전단자로 입력받아 양 전압의 차이를 증폭하여 데이터를 복원하는 차동증폭부(910)를 포함하여 구성된다.
즉, 상기 제2실시예에서는 별도의 전류 미러 없이 전송라인쌍으로부터 수신한 트루라인 수신전류(Irx+)와 바라인 수신전류(Irx-)를 단일 IV 컨버터(710)에서 직접 전압레벨로 변환한 후 차동증폭부(910)의 입력단자로 공급하도록 구성된다.
그에 따라, 상기 단일 IV 컨버터(710)는 전송라인쌍 중 트루라인(TX+)에 일단이 연결된 제3저항(R3)과, 바라인(TX-)에 일단이 연결된 제4저항(R4)과, 일 단자가 상기 제3저항과 제4저항의 타단에 공통으로 연결되고 다른 일 단자가 접지전원에 연결되어 있는 전류원(Is)으로 구성된다. 이때, 상기 제3저항과 제4저항의 일 단자로 동시에 유입되는 상기 트루라인 수신전류(Irx+)와 바라인 수신전류(Irx-)에 의해 상기 전류원에서 그에 대응하는 전류가 유출입되면서 각 수신전류에 대응하는 트루라인 수신전압과 바라인 수신전압의 전압레벨을 생성하게 된다.
또한, 상기 공통전압 생성부(810)는 전송라인쌍에서 직접 수신한 미세한 수신전류에 의해 변환되는 수신전압의 레벨을 수신기가 안정적으로 동작할 수 있는 정도의 레벨로 일정하게 만들어주며, 제1단자가 상기 전류원에 연결되고, 제2단자가 상기 제3저항의 일 단자와 공통노드를 이루며 차동증폭부(910)의 비반전단자에 연결되고, 제3단자가 상기 제4저항의 일 단자와 공통노드를 이루며 차동증폭부(910)의 반전단자에 연결된다.
이와 같이, 상기 제2실시예는 안정적인 동작을 위해 수신전류를 일정한 비율로 미러링하는 별도의 전류미러를 이용하지 않으므로 전류사용량을 현저히 줄일 수 있게 되며, 수신기에서의 안정적인 동작은 수신전류를 변환한 후의 수신전압의 레벨을 상기 공통전압 생성부에서 일정하게 유지함으로써 구현할 수 있게 된다.
다음에는 본 발명에 따른 독립 전류신호를 이용한 전류 구동방식의 송신기와 수신기를 이용한 COG 애플리케이션을 위한 인터페이스 시스템을 설명한다.
상기 독립 전류신호를 이용한 전류 구동방식의 송신기와 수신기를 이용한 인터페이스 시스템은 도 6에 도시된 바와 같이, 정데이터전류와 부데이터전류가 스위칭하면서 트루라인(TX+)과 바라인(TX-)에 선택적으로 전송되어 전송하고자 하는 데이터의 논리 상태를 나타내는 차동전류를 생성하는 송신기와, 상기 트루라인과 바라인으로 구성되어 상기 송신기에서 수신한 정데이터전류와 부데이터전류를 전송하는 전송라인, 및 상기 트루라인과 바라인으로 수신한 트루라인 수신전류와 바라인 수신전류의 레벨차이를 동시에 전압레벨로 변환하여 데이터를 복원하는 수신기를 포함하여 구성된다.
이때, 상기 송신기는 전송하고자 하는 데이터의 논리상태를 일정한 차이를 갖는 차동전류에 의해 생성하기 위해, 하나의 논리상태를 나타내는 정데이터전류(I1)를 공급하는 제1데이터전류원과, 다른 하나의 논리상태를 나타내는 부데이터전류(I2)를 공급하는 제2데이터전류원과, 전송하려는 데이터의 값에 따라 정데이터전류와 부데이터전류가 공급되는 전송라인을 트루라인(TX+)과 바라인(TX-)간에 스위칭하며 선택하는 선택스위치와, 전송라인쌍의 전위를 균등하게 하는 균등화스위치, 및 전송하려는 데이터의 값에 따라 스위칭 작용을 제어하는 스위칭컨트롤러를 포함하여 구성된다.
또한, 상기 수신기는 상기 트루라인(TX+)을 통해 수신한 트루라인 수신전류(Irx+)와 상기 바라인(TX-)을 통해 수신한 바라인 수신전류(Irx-)의 전류레벨 차이를 단일의 IV 컨버터에 의해 전압레벨 차이로 직접 변환하고 변환된 전압레벨의 차이를 입력받아 증폭하는 차동증폭부를 포함하여 구성될 수 있다.
즉, 상기 수신기는 도 6에 도시된 바와 같이, 상기 트루라인에 흐르는 전류를 수신하여 트루라인 수신전류(Irx+)를 생성하는 트루라인 전류 미러와, 바라인에 흐르는 전류를 수신하는 바라인 수신전류(Irx-)를 생성하는 바라인 전류 미러와, 상기 트루라인 수신전류와 바라인 수신전류의 전류레벨 차이를 전압레벨 차이로 직접 변환하는 단일 IV 컨버터와, 차동증폭부가 안정적인 동작점을 유지할 수 있도록 컨버터에서 변환된 트루라인 수신전압과 바라인 수신전압의 레벨을 일정하게 하는 공통전압 생성부, 및 이와 같이 변환된 수신전압의 전압레벨을 입력받아 증폭하여 데이터를 복원하는 차동증폭부를 포함하여 구성될 수 있다.
또한, 상기 수신기는 도 7에 도시된 바와 같이, 상기 트루라인(TX+)에 흐르는 전류와 바라인(TX-)에 흐르는 전류를 수신하여 양 전류의 레벨 차이를 동시에 전압레벨로 변환하는 단일 IV 컨버터와, 상기 단일 IV 컨버터에서 변환된 전압레벨을 차동증폭부가 안정적으로 동작할 수 있는 전압레벨로 일정하게 만드는 공통전압 생성부, 및 단일 IV 컨버터에서 변환되고 안정적인 동작전압으로 생성된 전압레벨을 입력받아 증폭하여 데이터를 복원하는 차동증폭부를 포함하여 구성될 수 있다.
이때, 상기 송신기 및 수신기들의 상세한 설명은 독립 전류신호를 이용한 전류 구동방식의 송신기 및 수신기의 제1 내지 제2실시예에서 설명한 내용과 동일하므로 생략한다.
이상에서는 본 발명에 대한 기술사상을 첨부 도면과 함께 서술하였지만 이는 본 발명의 바람직한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 이라면 누구나 본 발명의 기술적 사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.

Claims (15)

  1. 데이터의 논리상태를 트루라인과 바라인으로 이루어진 전송라인쌍을 통해 공급되는 차동전류에 의해 전송하는 전류 구동방식의 송신기에 있어서,
    상기 차동전류를 이루는 정데이터전류를 독립적으로 생성하여 공급하는 제1데이터전류원;
    상기 차동전류를 이루는 부데이터전류를 독립적으로 생성하여 공급하는 제2데이터전류원;
    전송하려는 데이터의 논리상태에 따라 상기 제1데이터전류원에서 생성되는 정데이터전류를 상기 트루라인과 바라인 간에 스위칭하며 공급하는 제1선택스위치와, 상기 제2데이터전류원에서 생성되는 부데이터전류를 상기 바라인과 트루라인 간에 스위칭하며 공급하는 제2선택스위치가 구비된 선택스위치;
    상기 트루라인과 바라인 상호간에 연결되어 스위칭하며 전위를 균등하게 하는 균등화스위치; 및
    전송하려는 데이터의 천이여부에 따른 상기 선택스위치와 균등화스위치의 스위칭 작용을 제어하는 스위칭컨트롤러를 포함하는 것을 특징으로 하는 독립 전류신호를 이용한 전류 구동방식의 송신기.
  2. 제1항에 있어서,
    상기 제1데이터전류원은,
    기준전류를 공급하는 제1모스트랜지스터에 연결되어 정데이터전류를 독립적으로 생성하는 전류 미러로서, 일 단자가 전원전압에 연결되고, 다른 일 단자가 제1선택스위치에 연결되며, 게이트가 상기 제1모스트랜지스터의 게이트에 연결된 제2모스트랜지스터로 구성되며;
    상기 제2데이터전류원은,
    상기 제1모스트랜지스터에 연결되어 부데이터전류를 독립적으로 생성하는 전류 미러로서, 일 단자가 전원전압에 연결되고, 다른 일 단자가 제2선택스위치에 연결되며, 게이트가 상기 제1모스트랜지스터의 게이트에 연결된 제3모스트랜지스터로 구성되는 것을 특징으로 하는 독립 전류신호를 이용한 전류 구동방식의 송신기.
  3. 제1항에 있어서,
    상기 제1선택스위치는 일 단자가 상기 제1데이터전류원에 공통으로 연결되고, 게이트에 정데이터신호와 부데이터신호가 인가되며, 다른 일 단자가 상기 바라인과 트
    루라인에 각각 연결되어 상기 정데이터전류가 공급되는 전송라인을 스위칭하면서 선택하는 제1 및 제2트랜스미션 게이트로 구성되며;
    상기 제2선택스위치는 일 단자가 상기 제2데이터전류원에 공통으로 연결되고, 게이트에 정데이터신호와 부데이터신호가 인가되며, 다른 일 단자가 상기 트루라인과 바라인에 각각 연결되어 상기 부데이터전류가 공급되는 전송라인을 스위칭하면서 선택하는 제3 및 제4트랜스미션 게이트로 구성되는 것을 특징으로 하는 독립 전류신호를 이용한 전류 구동방식의 송신기.
  4. 제3항에 있어서,
    상기 제1트랜스미션 게이트는 일 단자가 상기 제1데이터전류원에 연결되고, 다른 일 단자가 바라인에 연결되며, N모스트랜지스터의 게이트에 정데이터신호가 인가되고, P모스트랜지스터의 게이트에 부데이터신호가 인가되도록 구성되며;
    상기 제2트랜스미션 게이트는 일 단자가 상기 제1데이터전류원에 연결되고, 다른 일 단자가 트루라인에 연결되며, P모스트랜지스터의 게이트에 정데이터신호가 인가되고, N모스트랜지스터의 게이트에 부데이터신호가 인가되도록 구성되며;
    상기 제3트랜스미션 게이트는 일 단자가 상기 제2데이터전류원에 연결되고, 다른 일 단자가 트루라인에 연결되며, N모스트랜지스터의 게이트에 정데이터신호가 인가되고, P모스트랜지스터의 게이트에 부데이터신호가 인가되도록 구성되며;
    상기 제4트랜스미션 게이트는 일 단자가 상기 제2데이터전류원에 연결되고, 다른 일 단자가 바라인에 연결되며, P모스트랜지스터의 게이트에 정데이터신호가 인가되고, N모스트랜지스터의 게이트에 부데이터신호가 인가되도록 구성되는 것을 특징으로 하는 독립 전류신호를 이용한 전류 구동방식의 송신기.
  5. 트루라인과 바라인으로 이루어진 전송라인쌍으로 차동전류를 수신하여 데이터의 논리상태를 복원하는 전류 구동방식의 수신기에 있어서,
    상기 트루라인에 흐르는 전류를 수신하여 트루라인 수신전류를 생성하는 트루라인 전류 미러;
    상기 바라인에 흐르는 전류를 수신하여 바라인 수신전류를 생성하는 바라인 전류 미러;
    상기 트루라인 수신전류와 바라인 수신전류의 전류레벨 차이를 그에 대응하는 전압레벨로 동시에 변환하는 단일 IV 컨버터; 및
    상기 변환된 수신전압을 증폭하는 차동증폭부를 포함하며,
    상기 단일 IV 컨버터는,
    상기 트루라인 수신전류가 공급되는 노드에 일단이 연결된 제1저항, 상기 바라인 수신전류가 공급되는 노드에 일단이 연결된 제2저항, 상기 제1저항과 제2저항의 타단에 공통으로 연결되어 있는 전류원, 및 상기 전류원에 의해 트루라인 수신전류와 바라인 수신전류가 유출입되면서 수신전압의 레벨을 생성하는 전원전압을 포함하는 것을 특징으로 하는 독립 전류신호를 이용한 전류 구동방식의 수신기.
  6. 제5항에 있어서,
    상기 단일 IV 컨버터는,
    제1단자가 상기 전류원에 연결되고, 제2단자가 상기 트루라인 전류 미러와 제1저항의 연결노드에 연결되어 차동증폭부의 비반전단자로 연결되며, 제3단자가 상기 바라인 전류 미러와 제2저항의 연결노드에 연결되어 차동증폭부의 반전단자로 연결되는 공통전압 생성부를 더 포함하는 것을 특징으로 하는 독립 전류신호를 이용한 전류 구동방식의 수신기.
  7. 트루라인과 바라인으로 이루어진 전송라인쌍으로 차동전류를 수신하여 데이터의 논리상태를 복원하는 전류 구동방식의 수신기에 있어서,
    상기 트루라인에 일단이 연결되어 트루라인 수신전류가 입력되는 제3저항과, 상기 바라인에 일단이 연결되어 바라인 수신전류가 입력되는 제4저항과, 일 단자가 상기 제3저항과 제4저항의 타단에 공통으로 연결되고 다른 일 단자가 접지전원에 연결된 전류원이 구비된 단일 IV 컨버터; 및
    상기 단일 IV 컨버터에서 변환된 전압레벨의 차이를 비반전단자와 반전단자로 입력받아 증폭하는 차동증폭부를 포함하는 것을 특징으로 하는 독립 전류신호를 이용한 전류 구동방식의 수신기.
  8. 제7항에 있어서.
    상기 단일 IV 컨버터는,
    제1단자가 상기 전류원에 연결되고, 제2단자가 상기 제3저항의 일 단자와 공통노드를 이루며 차동증폭부의 비반전단자에 연결되고, 제3단자가 상기 제4저항의 일 단자와 공통노드를 이루며 차동증폭부의 반전단자로 연결되는 공통전압 생성부를 더 포함하는 것을 특징으로 하는 독립 전류신호를 이용한 전류 구동방식의 수신기.
  9. 데이터의 논리상태를 차동전류에 의해 전송하고, 이를 수신하여 데이터의 논리상태를 복원하는 COG 애플리케이션을 위한 인터페이스 시스템에 있어서,
    차동전류를 이루는 정데이터전류를 독립적으로 생성하여 공급하는 제1데이터전류원과, 부데이터전류를 독립적으로 생성하여 공급하는 제2데이터전류원과, 전송하려는 데이터의 논리상태에 따라 상기 정데이터전류를 트루라인과 바라인 간에 스위칭하며 공급하는 제1선택스위치와, 상기 부데이터전류를 상기 바라인과 트루라인 간에 스위칭하며 공급하는 제2선택스위치와, 상기 트루라인과 바라인 상호간에 연결되어 스위칭하며 전송라인의 전위를 균등하게 하는 균등화스위치와, 스위칭 작용을 제어하는 스위칭컨트롤러를 포함하는 송신기;
    상기 제1 및 제2선택스위치가 스위칭하면서 정데이터전류와 부데이터전류를 공급하는 트루라인과 바라인으로 이루어진 전송라인쌍; 및
    상기 트루라인으로 수신한 트루라인 수신전류와 상기 바라인으로 수신한 바라인 수신전류의 레벨차이를 동시에 전압레벨로 변환하여 데이터를 복원하는 수신기를 포함하는 COG 애플리케이션을 위한 인터페이스 시스템.
  10. 제9항에 있어서,
    상기 제1데이터전류원은 기준전류를 공급하는 제1모스트랜지스터에 연결되어 정데이터전류를 독립적으로 생성하는 전류 미러로서, 일 단자가 전원전압에 연결되고, 다른 일 단자가 제1선택스위치에 연결되며, 게이트가 상기 제1모스트랜지스터의 게이트에 연결된 제2모스트랜지스터로 구성되고;
    상기 제2데이터전류원은 상기 제1모스트랜지스터에 연결되어 부데이터전류를 독립적으로 생성하는 전류 미러로서, 일 단자가 전원전압에 연결되고, 다른 일 단자가 제2선택스위치에 연결되며, 게이트가 상기 제1모스트랜지스터의 게이트에 연결된 제3모스트랜지스터로 구성되는 것을 특징으로 하는 COG 애플리케이션을 위한 인터페이스 시스템.
  11. 제9항에 있어서,
    상기 제1선택스위치는 일 단자가 상기 제1데이터전류원에 공통으로 연결되고, 게이트에 정데이터신호와 부데이터신호가 인가되며, 다른 일 단자가 상기 바라인과 트루라인에 각각 연결되어 상기 정데이터전류가 공급되는 전송라인을 스위칭하면서 선택하는 제1 및 제2트랜스미션 게이트로 구성되며,
    상기 제2선택스위치는 일 단자가 상기 제2데이터전류원에 공통으로 연결되고, 게이트에 정데이터신호와 부데이터신호가 인가되며, 다른 일 단자가 상기 트루라인과 바라인에 각각 연결되어 상기 부데이터전류가 공급되는 전송라인을 스위칭하면서 선택하는 제3 및 제4트랜스미션 게이트로 구성되는 것을 특징으로 하는 COG 애플리케이션을 위한 인터페이스 시스템.
  12. 제9항에 있어서,
    상기 수신기는,
    상기 트루라인에 흐르는 전류를 수신하여 트루라인 수신전류를 생성하는 트루라인 전류 미러;
    상기 바라인에 흐르는 전류를 수신하여 바라인 수신전류를 생성하는 바라인 전류 미러;
    상기 트루라인 수신전류가 공급되는 노드에 일단이 연결된 제1저항, 상기 바라인 수신전류가 공급되는 노드에 일단이 연결된 제2저항, 상기 제1저항과 제2저항의 타단에 공통으로 연결된 전류원, 및 상기 전류원에 의해 트루라인 수신전류와 바라인
    수신전류가 유출입되면서 수신전압의 레벨을 생성하는 전원전압이 구비된 단일 IV 컨버터; 및
    상기 수신전압의 레벨의 차이를 입력받아 증폭하는 차동증폭부를 포함하여 구성되는 것을 특징으로 하는 COG 애플리리케이션을 위한 인터페이스 시스템.
  13. 제12항에 있어서,
    상기 단일 IV 컨버터는,
    제1단자가 상기 전류원에 연결되고, 제2단자가 상기 트루라인 전류 미러와 제1저항의 연결노드에 연결되어 차동증폭부의 비반전단자로 연결되며, 제3단자가 상기 바라인 전류 미러와 제2저항의 연결노드에 연결되어 차동증폭부의 반전단자로 연결되는 공통전압 생성부를 더 포함하여 구성되는 것을 특징으로 하는 COG 애플리케이션을 위한 인터페이스 시스템.
  14. 제9항에 있어서,
    상기 수신기는,
    상기 트루라인에 일단이 연결되어 트루라인 수신전류가 입력되는 제1저항과, 상기 바라인에 일단이 연결되어 바라인 수신전류가 입력되는 제2저항과, 일 단자가 상기 제1저항과 제2저항의 타단에 공통으로 연결되고 다른 일 단자가 접지전원에 연결된 전류원이 구비된 단일 IV 컨버터; 및
    상기 단일 IV 컨버터에서 변환된 전압레벨의 차이를 비반전단자와 반전단자로 입력받아 증폭하는 차동증폭부를 포함하여 구성되는 것을 특징으로 하는 COG 애플리케이션을 위한 인터페이스 시스템.
  15. 제14항에 있어서,
    상기 단일 IV 컨버터는,
    제1단자가 상기 전류원에 연결되고, 제2단자가 상기 제1저항의 일 단자와 공통노드를 이루며 차동증폭부의 비반전단자에 연결되고, 제3단자가 상기 제2저항의 일 단자와 공통노드를 이루며 차동증폭부의 반전단자로 연결되는 공통전압 생성부를 더 포함하는 것을 특징으로 하는 COG 애플리케이션을 위한 인터페이스 시스템.
PCT/KR2009/007828 2008-12-29 2009-12-28 Cog 애플리케이션을 위한 인터페이스 시스템 WO2010077037A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980153078.4A CN102265518B (zh) 2008-12-29 2009-12-28 用于cog应用的接口系统
JP2011544368A JP5632390B2 (ja) 2008-12-29 2009-12-28 Cogアプリケーションのためのインターフェースシステム
US13/142,413 US8400194B2 (en) 2008-12-29 2009-12-28 Interface system for a cog application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080135783A KR101030957B1 (ko) 2008-12-29 2008-12-29 차동전류 구동 방식의 인터페이스 시스템
KR10-2008-0135783 2008-12-29

Publications (3)

Publication Number Publication Date
WO2010077037A2 WO2010077037A2 (ko) 2010-07-08
WO2010077037A3 WO2010077037A3 (ko) 2010-10-07
WO2010077037A4 true WO2010077037A4 (ko) 2010-11-25

Family

ID=42310359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007828 WO2010077037A2 (ko) 2008-12-29 2009-12-28 Cog 애플리케이션을 위한 인터페이스 시스템

Country Status (6)

Country Link
US (1) US8400194B2 (ko)
JP (1) JP5632390B2 (ko)
KR (1) KR101030957B1 (ko)
CN (1) CN102265518B (ko)
TW (1) TWI416873B (ko)
WO (1) WO2010077037A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007029526A1 (de) * 2007-06-25 2009-01-15 Sitronic Gesellschaft für elektrotechnische Ausrüstung mbH. & Co. KG Elektronisches Modul und Anordnung zur Signalübertragung damit
JP5838650B2 (ja) 2011-08-16 2016-01-06 株式会社ソシオネクスト 出力回路
JP2014039214A (ja) * 2012-08-20 2014-02-27 Lapis Semiconductor Co Ltd データ受信回路及び半導体装置
KR101588489B1 (ko) 2012-10-29 2016-01-25 주식회사 엘지화학 차동 입력 방식 통신의 종단 저항 발생 장치 및 차동 입력 방식 통신 장치
KR20210156982A (ko) * 2020-06-19 2021-12-28 주식회사 엘엑스세미콘 디스플레이 구동 장치

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977796A (en) * 1997-06-26 1999-11-02 Lucent Technologies, Inc. Low voltage differential swing interconnect buffer circuit
US6295323B1 (en) * 1998-12-28 2001-09-25 Agere Systems Guardian Corp. Method and system of data transmission using differential and common mode data signaling
JP3467441B2 (ja) * 1999-12-01 2003-11-17 Necエレクトロニクス株式会社 バッファ回路
DE10134874B4 (de) * 2001-07-18 2012-03-29 Lantiq Deutschland Gmbh Leitungstreiber
US20030085737A1 (en) * 2001-11-08 2003-05-08 Tinsley Steven J. Innovative high speed LVDS driver circuit
JP3916502B2 (ja) * 2002-04-26 2007-05-16 富士通株式会社 出力回路
US6593801B1 (en) * 2002-06-07 2003-07-15 Pericom Semiconductor Corp. Power down mode signaled by differential transmitter's high-Z state detected by receiver sensing same voltage on differential lines
JP3730607B2 (ja) * 2002-08-29 2006-01-05 株式会社東芝 差動データドライバー回路
JP4170972B2 (ja) * 2003-11-21 2008-10-22 松下電器産業株式会社 差動出力回路
JP4026593B2 (ja) * 2003-12-25 2007-12-26 セイコーエプソン株式会社 受信装置
US7119600B2 (en) * 2004-04-20 2006-10-10 Taiwan Semiconductor Manufacturing Co., Ltd. Wide common mode high-speed differential receiver using thin and thick gate oxide MOSFETS in deep-submicron technology
CA2601453A1 (en) * 2005-03-23 2006-09-28 Qualcomm Incorporated Current mode interface for off-chip high speed communication
KR100588752B1 (ko) * 2005-04-26 2006-06-12 매그나칩 반도체 유한회사 차동 전류 구동 방식의 전송 시스템
JP4578316B2 (ja) * 2005-05-02 2010-11-10 ザインエレクトロニクス株式会社 送信装置
US7362146B2 (en) * 2005-07-25 2008-04-22 Steven Mark Macaluso Large supply range differential line driver
JP4685813B2 (ja) * 2007-02-19 2011-05-18 富士通株式会社 レシーバ
US8228096B2 (en) * 2007-03-02 2012-07-24 Kawasaki Microelectronics, Inc. Circuit and method for current-mode output driver with pre-emphasis
KR100913528B1 (ko) * 2008-08-26 2009-08-21 주식회사 실리콘웍스 차동전류구동방식의 송신부, 차동전류구동방식의 수신부 및상기 송신부와 상기 수신부를 구비하는 차동전류구동방식의 인터페이스 시스템

Also Published As

Publication number Publication date
KR20100077750A (ko) 2010-07-08
US20110267022A1 (en) 2011-11-03
US8400194B2 (en) 2013-03-19
JP5632390B2 (ja) 2014-11-26
CN102265518B (zh) 2014-08-06
TWI416873B (zh) 2013-11-21
KR101030957B1 (ko) 2011-04-28
TW201031115A (en) 2010-08-16
WO2010077037A2 (ko) 2010-07-08
CN102265518A (zh) 2011-11-30
JP2012514413A (ja) 2012-06-21
WO2010077037A3 (ko) 2010-10-07

Similar Documents

Publication Publication Date Title
EP1662734B1 (en) Transmitter circuit, receiver circuit, interface circuit, and electronic device
US6836149B2 (en) Versatile RSDS-LVDS-miniLVDS-BLVDS differential signal interface circuit
EP1662658B1 (en) Data transfer control apparatus and electronic device
KR100676289B1 (ko) 데이터 송신장치, 데이터 수신장치, 데이터 송수신장치 및데이터 송수신방법
US20080116935A1 (en) Source-coupled differential low-swing driver circuits
KR100297045B1 (ko) 과부하의 경우에 저전압 차동 스윙을 이용하는 출력 고전압 클램핑 회로
US7528636B2 (en) Low differential output voltage circuit
JP2009111794A (ja) シングルエンド伝送及び差動伝送の切替えが可能なインタフェース回路
WO2010077037A4 (ko) Cog 애플리케이션을 위한 인터페이스 시스템
EP1662657B1 (en) Receiver circuit, interface circuit and electronic device
US6339622B1 (en) Data transmission device
US9178418B2 (en) Pre-emphasis circuit
DE60129660D1 (de) Optisches Übertragungsschnittstellenmodule für USB
WO2011081330A2 (ko) 스퀄치 감지 회로
WO2010024523A2 (ko) 차동전류구동방식의 송신부, 차동전류구동방식의 수신부 및 상기 송신부와 상기 수신부를 구비하는 차동전류구동방식의 인터페이스 시스템
KR100688593B1 (ko) 데이타 복원 및 스큐 보상 회로와 데이타 복원 방법
WO2013027898A1 (ko) 저전력 고속의 송수신 장치
KR100763603B1 (ko) 개선된 저전압 차동 신호 전송 회로
WO2015170845A1 (ko) 저전압 차동 신호 전송기
EP1382119B1 (en) Output driver circuit with current detection
KR100780881B1 (ko) 전류원 스위칭에 의한 저전력 듀얼 레벨 차동신호 전송회로
CN101339226A (zh) 测试电路和测试方法
US8212589B2 (en) Circuit, apparatus, and method for signal transfer
KR20080058631A (ko) 차동 전류 구동 방식의 데이터 전송 시스템
CN111107294B (zh) 半导体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980153078.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836358

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13142413

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011544368

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09836358

Country of ref document: EP

Kind code of ref document: A2