WO2010073945A1 - サファイア単結晶の製造方法 - Google Patents

サファイア単結晶の製造方法 Download PDF

Info

Publication number
WO2010073945A1
WO2010073945A1 PCT/JP2009/070957 JP2009070957W WO2010073945A1 WO 2010073945 A1 WO2010073945 A1 WO 2010073945A1 JP 2009070957 W JP2009070957 W JP 2009070957W WO 2010073945 A1 WO2010073945 A1 WO 2010073945A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
sapphire single
melt
volume
mixed gas
Prior art date
Application number
PCT/JP2009/070957
Other languages
English (en)
French (fr)
Inventor
智博 庄内
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN2009801430339A priority Critical patent/CN102197166A/zh
Priority to US13/141,886 priority patent/US20110253031A1/en
Publication of WO2010073945A1 publication Critical patent/WO2010073945A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/28Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using weight changes of the crystal or the melt, e.g. flotation methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides

Definitions

  • the present invention relates to a method for producing a sapphire single crystal using a melt of aluminum oxide.
  • a sapphire single crystal has been widely used as a substrate material for growing an epitaxial film of a group III nitride semiconductor (such as GaN) when manufacturing a blue LED, for example.
  • sapphire single crystals are widely used as a holding member for a polarizer used in a liquid crystal projector, for example.
  • Such a sapphire single crystal plate that is, a wafer is generally obtained by cutting an ingot of a sapphire single crystal to a predetermined thickness.
  • Various proposals have been made for a method for producing a sapphire single crystal ingot, but it is often produced by a melt-solidification method because of its good crystal characteristics and ease of obtaining a large crystal size.
  • the Czochralski method which is one of the melt solidification methods, is widely used for the production of sapphire single crystal ingots.
  • a crucible In order to manufacture an ingot of a sapphire single crystal by the Czochralski method, a crucible is first filled with a raw material of aluminum oxide, and the crucible is heated by a high frequency induction heating method or a resistance heating method to melt the raw material. After the raw material is melted, a seed crystal cut in a predetermined crystal orientation is brought into contact with the surface of the raw material melt, and a single crystal is grown by pulling upward at a predetermined speed while rotating the seed crystal at a predetermined rotation speed (for example, , See Patent Document 1).
  • the shape of the tip (referred to as the tail) of the ingot that contacts the raw material melt may be convex during the manufacture of the ingot. If the tail of the ingot becomes convex in this way, the tip of the tail hits the bottom of the crucible when the amount of melt in the crucible decreases with the growth of the ingot, and further crystal growth cannot be performed. . Since the convex portion thus formed cannot be used as a wafer, the effective length of the ingot that can be used for cutting out the wafer is shortened, resulting in a decrease in yield.
  • Patent Document 2 the aluminum oxide raw material filled in the crucible is heated under a reduced pressure until it is melted, and after the raw material is melted, the raw material is melted in an atmospheric pressure with an oxygen partial pressure of 10 to 500 Pa.
  • An object of the present invention is to further suppress the formation of convex portions in the tail portion of a sapphire single crystal when the sapphire single crystal is grown from a melt of aluminum oxide.
  • a method for producing a sapphire single crystal to which the present invention is applied includes a melting step of melting aluminum oxide in a crucible placed in a chamber to obtain a molten aluminum oxide, A first gas mixture having an oxygen concentration set to the first concentration is supplied, a growth step of pulling and growing a sapphire single crystal from the melt, and an oxygen concentration higher than the first concentration in the chamber And a separation step of supplying the second mixed gas set to the second concentration and separating the sapphire single crystal by further pulling it up and separating it from the melt.
  • the first mixed gas and the second mixed gas can be obtained by mixing an inert gas and oxygen.
  • the second concentration of the second mixed gas in the separation step can be set to 1.0 volume% or more and 5.0 volume% or less. In the present specification, the volume concentration of gas may be simply indicated by “%”.
  • the first concentration of the first mixed gas in the growth step can be set to 0.6 volume% or more and 3.0 volume% or less.
  • the sapphire single crystal is grown in the c-axis direction.
  • the method for producing a sapphire single crystal to which the present invention is applied is a growth process in which the sapphire single crystal is pulled and grown from a melt of aluminum oxide in a crucible placed in a chamber, A mixed gas containing oxygen and an inert gas and having an oxygen concentration set to 1.0% by volume or more and 5.0% by volume or less is supplied into the chamber, and the sapphire single crystal is further lifted to melt. And a separation step of separating from the substrate.
  • the oxygen concentration of the mixed gas in the separation step can be set to 3.0% by volume or more and 5.0% by volume or less.
  • the sapphire single crystal can be grown in the c-axis direction.
  • the present invention provides a method for producing a sapphire single crystal in which the sapphire single crystal is pulled up from the melt of aluminum oxide in a crucible.
  • the second concentration in the separation step may be 1.0 volume% or more and 5.0 volume% or less.
  • the first concentration in the growth step may be 0.6 volume% or more and 3.0 volume% or less.
  • the present invention when a sapphire single crystal is grown from a melt of aluminum oxide, it is possible to further suppress the formation of convex portions in the tail portion of the sapphire single crystal.
  • FIG. 1 is a diagram for explaining the configuration of a single crystal pulling apparatus 1 to which the present embodiment is applied.
  • the single crystal pulling apparatus 1 includes a heating furnace 10 for growing a sapphire ingot 200 made of a single crystal of sapphire.
  • the heating furnace 10 includes a heat insulating container 11.
  • the heat insulation container 11 has a columnar outer shape, and a columnar space is formed in the inside.
  • the heat insulation container 11 is comprised by assembling the components which consist of a heat insulating material made from zirconia.
  • the heating furnace 10 further includes a chamber 14 that houses the heat insulating container 11 in an internal space.
  • the heating furnace 10 is formed to penetrate the side surface of the chamber 14, and the gas supply pipe 12 that supplies gas from the outside of the chamber 14 to the inside of the heat insulating container 11 through the chamber 14 is formed to penetrate the side surface of the chamber 14. And a gas discharge pipe 13 for discharging gas from the inside of the heat insulating container 11 to the outside through the chamber 14.
  • a crucible 20 that accommodates an alumina melt 300 obtained by melting aluminum oxide is disposed below the inner side of the heat insulating container 11 so as to open vertically upward.
  • the crucible 20 is made of iridium and has a circular bottom surface.
  • the diameter of the crucible 20 is 150 mm, the height is 200 mm, and the thickness is 2 mm.
  • the heating furnace 10 includes a metal heating coil 30 wound around a portion that is outside the side surface on the lower side of the heat insulating container 11 and inside the side surface on the lower side of the chamber 14.
  • the heating coil 30 is disposed so as to face the wall surface of the crucible 20 through the heat insulating container 11.
  • the lower end of the heating coil 30 is located below the lower end of the crucible 20, and the upper end of the heating coil 30 is located above the upper end of the crucible 20.
  • the heating furnace 10 includes a pulling rod 40 that extends downward from above through through holes provided in the upper surfaces of the heat insulating container 11 and the chamber 14, respectively.
  • the pulling rod 40 is attached so as to be able to move in the vertical direction and rotate around the axis.
  • a sealing material (not shown) is provided between the through hole provided in the chamber 14 and the lifting rod 40.
  • a holding member 41 for attaching and holding a seed crystal 210 (see FIG. 2 described later) serving as a base for growing the sapphire ingot 200 is attached to an end portion of the pulling bar 40 on the vertically lower side. Yes.
  • the single crystal pulling apparatus 1 includes a pulling drive unit 50 for pulling the pulling bar 40 vertically upward and a rotation driving unit 60 for rotating the pulling bar 40.
  • the pulling drive unit 50 is configured by a motor or the like, and can adjust the pulling speed of the pulling rod 40.
  • the rotation drive part 60 is also comprised by the motor etc., and can adjust the rotational speed of the raising rod 40 now.
  • the single crystal pulling apparatus 1 includes a gas supply unit 70 that supplies gas into the chamber 14 via the gas supply pipe 12.
  • the gas supply unit 70 supplies a mixed gas in which oxygen supplied from the O 2 source 71 and nitrogen as an example of an inert gas supplied from the N 2 source 72 are mixed. ing.
  • the gas supply unit 70 can adjust the concentration of oxygen in the mixed gas by changing the mixing ratio of oxygen and nitrogen, and the flow rate of the mixed gas supplied into the chamber 14 can be adjusted. Adjustment is also possible.
  • the single crystal pulling apparatus 1 includes an exhaust unit 80 that exhausts gas from the inside of the chamber 14 via the gas exhaust pipe 13.
  • the exhaust unit 80 includes, for example, a vacuum pump or the like, and can decompress the chamber 14 and exhaust the gas supplied from the gas supply unit 70.
  • the single crystal pulling apparatus 1 includes a coil power supply 90 that supplies a current to the heating coil 30.
  • the coil power supply 90 can set whether or not to supply current to the heating coil 30 and the amount of current to be supplied.
  • the single crystal pulling apparatus 1 includes a weight detection unit 110 that detects the weight of the sapphire ingot 200 that grows on the lower side of the pulling bar 40 via the pulling bar 40.
  • the weight detection unit 110 includes, for example, a known weight sensor.
  • the single crystal pulling apparatus 1 includes a control unit 100 that controls operations of the pulling drive unit 50, the rotation drive unit 60, the gas supply unit 70, the exhaust unit 80, and the coil power supply 90 described above. Further, the control unit 100 calculates the crystal diameter of the sapphire ingot 200 to be pulled up based on the weight signal output from the weight detection unit 110 and feeds it back to the coil power supply 90.
  • FIG. 2 shows an example of the configuration of a sapphire ingot 200 manufactured using the single crystal pulling apparatus 1 shown in FIG.
  • the sapphire ingot 200 includes a seed crystal 210 that serves as a base for growing the sapphire ingot 200, a shoulder 220 that extends under the seed crystal 210 and is integrated with the seed crystal 210, and a lower portion of the shoulder 220.
  • a straight body portion 230 extending and integrated with the shoulder portion 220, and a tail portion 240 extending under the straight body portion 230 and integrated with the straight body portion 230 are provided.
  • a single crystal of sapphire grows in the c-axis direction from the upper side, that is, from the seed crystal 210 side, to the lower side, that is, from the tail part 240 side.
  • the shoulder portion 220 has a shape in which the diameter gradually increases from the seed crystal 210 side toward the straight body portion 230 side.
  • the straight body portion 230 has such a shape that the diameters thereof are substantially the same from the upper side to the lower side.
  • the diameter of the straight body 230 is set to a value slightly larger than the diameter of the desired sapphire single crystal wafer.
  • the tail part 240 has the shape which becomes convex shape from upper direction to the downward direction, when the diameter reduces gradually toward the downward direction from the upper part.
  • FIG. 3 is a flowchart for explaining a procedure for manufacturing the sapphire ingot 200 shown in FIG. 2 using the single crystal pulling apparatus 1 shown in FIG.
  • a melting step is performed in which solid aluminum oxide filled in the crucible 20 in the chamber 14 is melted by heating (step 101).
  • a seeding step is performed in which temperature adjustment is performed in a state where the lower end portion of the seed crystal 210 is in contact with the aluminum oxide melt, that is, the alumina melt 300 (step 102).
  • the shoulder crystal forming step is performed in which the shoulder crystal 220 is formed below the seed crystal 210 by pulling upward while rotating the seed crystal 210 in contact with the alumina melt 300 (step 103).
  • a straight body part forming process as an example of a growth process for forming the straight body part 230 below the shoulder part 220 is performed by pulling upward while rotating the shoulder part 220 through the seed crystal 210 ( Step 104). Further, the tail forming step of forming the tail 240 below the straight body 230 by pulling up and separating from the alumina melt 300 while rotating the straight body 230 through the seed crystal 210 and the shoulder 220. Is executed (step 105). Then, after the obtained sapphire ingot 200 is cooled, it is taken out of the chamber 14 and a series of manufacturing steps is completed.
  • the sapphire ingot 200 thus obtained is first cut at the boundary between the shoulder 220 and the straight body 230 and at the boundary between the straight body 230 and the tail 240, and the straight body 230 is cut out. .
  • the cut out straight body portion 230 is further cut in a direction orthogonal to the longitudinal direction to form a sapphire single crystal wafer.
  • the main surface of the obtained wafer is the c-plane ((0001) plane).
  • the obtained wafer is used for manufacturing blue LEDs and polarizers.
  • a ⁇ 0001> c-axis seed crystal 210 is prepared.
  • the seed crystal 210 is attached to the holding member 41 of the pulling rod 40 and set at a predetermined position.
  • the raw material of aluminum oxide is filled in the crucible 20, and the heat insulating container 11 is assembled in the chamber 14 using parts made of heat insulating material made of zirconia.
  • the inside of the chamber 14 is decompressed using the exhaust unit 80 in a state where the gas supply from the gas supply unit 70 is not performed.
  • the gas supply unit 70 supplies nitrogen into the chamber 14 using the N 2 source 72 to bring the inside of the chamber 14 to normal pressure. Therefore, when the preparation process is completed, the inside of the chamber 14 is set to a state where the nitrogen concentration is very high and the oxygen concentration is very low.
  • the gas supply unit 70 continuously supplies nitrogen into the chamber 14 at a flow rate of 5 l / min using the N 2 source 72.
  • the rotation driving unit 60 rotates the pulling rod 40 at the first rotation speed.
  • the coil power supply 90 supplies a high-frequency alternating current (referred to as a high-frequency current in the following description) to the heating coil 30.
  • a high frequency current is supplied from the coil power supply 90 to the heating coil 30, the magnetic flux repeatedly generates and disappears around the heating coil 30.
  • the gas supply unit 70 supplies a mixed gas in which nitrogen and oxygen are mixed at a predetermined ratio into the chamber 14 using the O 2 source 71 and the N 2 source 72.
  • the pulling drive unit 50 lowers the pulling rod 40 to a position where the lower end of the seed crystal 210 attached to the holding member 41 comes into contact with the alumina melt 300 in the crucible 20 to stop.
  • the coil power supply 90 adjusts the high-frequency current supplied to the heating coil 30 based on the weight signal from the weight detection unit 110.
  • the shoulder forming step the high frequency current supplied from the coil power supply 90 to the heating coil 30 is adjusted, and then held for a while until the temperature of the alumina melt 300 is stabilized, and then the lifting rod 40 is moved to the first rotational speed. Pull up at the first pulling speed while rotating.
  • the seed crystal 210 is pulled up while being rotated with its lower end immersed in the alumina melt 300, and a shoulder 220 that expands vertically downward is formed at the lower end of the seed crystal 210. It will be done. Note that the shoulder forming step is completed when the diameter of the shoulder 220 becomes about several mm larger than the desired diameter of the wafer.
  • the gas supply unit 70 mixes nitrogen and oxygen at a predetermined ratio using the O 2 source 71 and the N 2 source 72, and the oxygen concentration is 0.6 volume% or more and 3.0 volume%.
  • a mixed gas set in the following range is supplied into the chamber 14.
  • the coil power supply 90 continues to supply a high-frequency current to the heating coil 30 to heat the alumina melt 300 through the crucible 20.
  • the pulling drive unit 50 pulls the pulling rod 40 at the second pulling speed.
  • the second pulling speed may be the same as or different from the first pulling speed in the shoulder forming step.
  • the rotation drive unit 60 rotates the pulling rod 40 at the second rotation speed.
  • the second rotation speed may be the same speed as the first rotation speed in the shoulder forming step, or may be a different speed.
  • the shoulder 220 integrated with the seed crystal 210 is pulled up while being rotated while the lower end of the shoulder 220 is immersed in the alumina melt 300.
  • the trunk portion 230 is formed.
  • the straight body 230 may be a body having a diameter equal to or larger than a desired wafer diameter.
  • the gas supply unit 70 supplies a mixed gas in which nitrogen and oxygen are mixed at a predetermined ratio into the chamber 14 using the O 2 source 71 and the N 2 source 72.
  • the oxygen concentration in the mixed gas in the tail portion forming step is approximately the same as that of the straight barrel portion forming step or lower than that of the straight barrel portion forming step from the viewpoint of suppressing deterioration due to oxidation of the crucible 20.
  • the vertical length H see FIG. 2 of the tail 240 in the sapphire ingot 200 to be obtained and improving productivity, it is preferable to the straight body portion forming step.
  • a high concentration is preferable.
  • the coil power supply 90 continues to supply a high-frequency current to the heating coil 30 to heat the alumina melt 300 through the crucible 20.
  • the pulling drive unit 50 pulls the pulling rod 40 at the third pulling speed.
  • the third pulling speed may be the same as the first pulling speed in the shoulder forming process or the second pulling speed in the straight body forming process, or may be a speed different from these.
  • the rotation drive unit 60 rotates the pulling rod 40 at the third rotation speed.
  • the third rotation speed may be the same as the first rotation speed in the shoulder forming process or the second rotation speed in the straight body forming process, or may be different from these. Also good.
  • the lower end of the tail 240 is kept in contact with the alumina melt 300.
  • the pulling drive unit 50 increases the pulling speed of the pulling bar 40 and pulls the pulling bar 40 further upward, thereby lowering the lower end of the tail 240. Pull away from melt 300. Thereby, the sapphire ingot 200 shown in FIG. 2 is obtained.
  • a gas mixture in which the oxygen concentration is set to 1.0% by volume or more and 5.0% by volume or less is supplied into the chamber 14 in the tail forming step.
  • the oxygen concentration in the mixed gas in the tail forming step is set to 1.0% by volume or more, compared with the case where the oxygen concentration is less than 1.0% by volume, the tail in the sapphire ingot 200 obtained is obtained.
  • the vertical length H 240 (see FIG. 2) can be shortened.
  • the period until the tail portion 240 hits the bottom surface of the crucible 20 can be lengthened, and the sapphire ingot 200 having more straight body portions 230 from the alumina melt 300 having the same capacity. Can be obtained.
  • the crucible made of iridium is used. Deterioration due to oxidation of 20 can be suppressed, and the life of the crucible 20 can be extended.
  • a mixed gas in which the oxygen concentration is set to 0.6 volume% or more and 3.0 volume% or less is supplied into the chamber 14 in the straight body forming step.
  • the straight body part 230 is compared with the case where the oxygen concentration is less than 0.6% by volume. Incorporation of bubbles into the sapphire single crystal to be configured is suppressed, and generation of bubble defects in the straight body portion 230 can be suppressed.
  • bubbles are more easily captured than when crystal growth is performed in the a-axis direction, and as a result, crystal growth is performed in the c-axis direction, which is known to cause bubble defects.
  • the body 230 is formed, it is possible to suppress the occurrence of bubble defects. Further, by setting the oxygen concentration in the mixed gas in the straight body forming step to 3.0% by volume or less, compared with the case where the oxygen concentration in the mixed gas is more than 3.0% by volume, it is made of iridium. Deterioration due to oxidation of the crucible 20 is suppressed, and the life of the crucible 20 can be extended.
  • the shoulder section it becomes possible to suppress generation
  • a mixed gas in which oxygen and nitrogen are mixed is used.
  • the present invention is not limited to this.
  • a mixture of oxygen and argon as an example of an inert gas is used. It doesn't matter.
  • the crucible 20 is heated using a so-called electromagnetic induction heating method, but the invention is not limited to this, and for example, a resistance heating method may be adopted.
  • the inventor uses the single crystal pulling apparatus 1 shown in FIG. 1 to vary various manufacturing conditions in the sapphire single crystal growth process, in particular, the oxygen concentration in the mixed gas supplied into the chamber 14 in the tail formation process.
  • the sapphire ingot 200 is manufactured under the condition of the sapphire, and the vertical length H of the tail 240 in the obtained sapphire ingot 200, the state of deterioration of the crucible 20 used, and the straight body 230 of the 4-inch crystal are generated.
  • the state of foam defects to be investigated was examined.
  • FIG. 4 shows the relationship between various manufacturing conditions in Examples 1 to 9 and Comparative Examples 1 to 3 and the evaluation results.
  • the rotation speed of the lifting rod 40 in the shoulder forming step (corresponding to the first rotation speed), the lifting speed of the lifting rod 40 (corresponding to the first lifting speed), the chamber 14, the oxygen concentration in the mixed gas supplied into the cylinder 14, the rotational speed of the lifting rod 40 in the straight body forming step (corresponding to the second rotational speed), the lifting speed of the lifting rod 40 (corresponding to the second lifting speed)
  • the oxygen concentration in the mixed gas supplied into the chamber 14 the rotational speed of the lifting rod 40 in the tail forming step (corresponding to the third rotational speed), the lifting speed of the lifting rod 40 (corresponding to the third lifting speed)
  • the oxygen concentration in the mixed gas supplied into the chamber 14 is described.
  • FIG. 4 shows, as evaluation items, the state of the vertical length H (tail length) of the tail 240 in four ranks A to D, and the deterioration state of the crucible 20 after the sapphire ingot 200 is manufactured as A.
  • the states of bubble defects existing in the straight body portion 230 are shown by 4 ranks A to D, respectively.
  • the evaluation “A” means “good”, the evaluation [B] means slightly good, the evaluation “C” means “slightly bad”, and the evaluation “D” means “bad”.
  • “A” indicates that the length of the protrusion on the melt side is less than 20 mm with respect to an ingot diameter of 4 inches
  • “B” indicates that the length is 20 mm or more and less than 40 mm.
  • the case of 40 mm or more and less than 60 mm was designated as “C”
  • the case of 60 mm or more was designated as “D”.
  • the deterioration of the crucible 20 is evaluated by the rate of change (mass%) of the weight loss of the crucible 20 before and after use, and “A” and “0.01 mass%” when “less than 0.01 mass%”. "B” when “more than 0.03% by mass”, “C” when “more than 0.03% by mass and less than 0.08% by mass”, and “0.08% by mass or more” was “D”.
  • bubble defect in the straight body portion 230 “A” indicates “no bubble (transparent)”, “B” indicates “there is a bubble but exists locally”, and “there is a bubble in the entire area. Is “C”, and “D” is the case where “there is air bubbles in the entire area and white turbidity (air bubbles)”.
  • the oxygen concentration in the mixed gas supplied into the chamber 14 in the tail formation step is 1.0 volume% or more and 5.0 volume% or less, and the tail length
  • the evaluation result was “A” or “B”.
  • the evaluation results of the tail length were all “A”. This is because part of this oxygen is taken into the alumina melt 300 in the crucible 20 or the alumina melt in the crucible 20 increases as the oxygen concentration in the mixed gas supplied into the chamber 14 increases.
  • the viscosity of the alumina melt 300 in the tail forming step is lower than before, and this is considered to be caused by the fact that the alumina melt 300 is easily separated from the tail 240. .
  • Example 7 the evaluation result of the deterioration of the crucible 20 was “C”. This is because the oxygen concentration in the mixed gas in the straight body forming step was extremely high at 4.0% by volume. From this, it is considered that this is caused by the fact that the oxidation of the crucible 20 was promoted in the straight body forming step that is performed for a longer time than the tail forming step.
  • the oxygen concentration in the mixed gas supplied into the chamber 14 in the straight body forming step is 0.6% by volume or more. And it became 3.0 volume% or less, and it became "A" or "B" about the evaluation result of the bubble defect.
  • the evaluation results of bubble defects were all “A”. This is because part of this oxygen is taken into the alumina melt 300 in the crucible 20 or the alumina melt in the crucible 20 increases as the oxygen concentration in the mixed gas supplied into the chamber 14 increases.
  • the viscosity of the alumina melt 300 in the straight body forming process is lower than the conventional one, and as a result, bubbles are less likely to be taken into the single crystal. it is conceivable that.
  • Comparative Examples 1 to 3 in Comparative Example 1, the oxygen concentration in the mixed gas supplied into the chamber 14 in the tail forming step is as low as 0.5% by volume, and the tail length is evaluated. The result was “D”. Further, in Comparative Examples 2 and 3, the oxygen concentration in the mixed gas supplied into the chamber 14 in the tail forming step is as high as 6.0% by volume, and the evaluation result of the bubble defect is “A” or “ B ".
  • Comparative Example 1 the evaluation result of deterioration of the crucible 20 was “A”, but for Comparative Examples 2 and 3, the evaluation result of deterioration of the crucible 20 was “D”. This is considered to be due to the fact that the oxidation of the crucible 20 was promoted in the tail forming step due to the high oxygen concentration in the mixed gas in the tail forming step.
  • Comparative Examples 1 to 3 in Comparative Example 1, the oxygen concentration in the mixed gas supplied into the chamber 14 in the straight body forming process is as low as 0.5% by volume, and the bubble defect The evaluation result was “D”. Furthermore, in Comparative Example 2, the evaluation result of the bubble defect was “A” because the oxygen concentration in the mixed gas supplied into the chamber 14 in the straight body forming process was 3.0% by volume. . In Comparative Example 3, the oxygen concentration in the mixed gas supplied into the chamber 14 in the straight body forming process is as high as 4.0% by volume, and the evaluation result of the bubble defect is “B”. It was.
  • Comparative Example 1 is effective for the deterioration of the crucible 20 but insufficient for shortening the tail length and generating bubble defects.
  • Comparative Examples 2 and 3 it is effective for shortening the tail length and generating bubble defects, but it is insufficient for deterioration of the crucible 20.
  • the oxygen concentration in the mixed gas supplied into the chamber 14 is 1.0 volume% or more and 5.0 volume% or less, more preferably It is understood that the vertical length H of the tail 240 in the obtained sapphire ingot 200 is shortened and deterioration of the crucible 20 is suppressed by setting the volume ratio to 3.0 volume% or more and 5.0 volume% or less. Is done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

るつぼ中の酸化アルミニウムを溶融させてアルミナ融液を得る溶融工程と、アルミナ融液に接触させた種結晶を引き上げることにより、種結晶の下方に肩部を形成する肩部形成工程と、融液からサファイア単結晶を引き上げて直胴部を形成する直胴部形成工程と、酸素と不活性ガスとを含み、酸素の濃度が1.0体積%以上且つ5.0体積%以下に設定された混合ガスを供給するとともに、融液からサファイア単結晶を引き離して尾部を形成する尾部形成工程とを実行する。それにより、酸化アルミニウムの融液からサファイア単結晶を成長させる際に、サファイア単結晶の尾部における凸状部の形成をより抑制する。

Description

サファイア単結晶の製造方法
 本発明は、酸化アルミニウムの融液を用いたサファイア単結晶の製造方法に関する。
 近年、サファイア単結晶は、例えば青色LEDを製造する際のIII族窒化物半導体(GaN等)のエピ膜成長用の基板材料として広く利用されている。また、サファイア単結晶は、例えば液晶プロジェクタに用いられる偏光子の保持部材等としても広く用いられている。
 このようなサファイア単結晶の板材すなわちウエハは、一般に、サファイア単結晶のインゴットを所定の厚さに切り出すことによって得られる。サファイア単結晶のインゴットを製造する方法については種々の提案がなされているが、その結晶特性がよいことや大きな結晶径のものが得やすいということから、溶融固化法で製造されることが多い。特に、溶融固化法の一つであるチョクラルスキー法(Cz法)は、サファイア単結晶のインゴットの製造に広く用いられている。
 チョクラルスキー法によってサファイア単結晶のインゴットを製造するには、まず坩堝に酸化アルミニウムの原料を充填し、高周波誘導加熱法や抵抗加熱法によって坩堝を加熱し原料を溶融する。原料が溶融した後、所定の結晶方位に切り出した種結晶を原料融液表面に接触させ、種結晶を所定の回転速度で回転させながら所定の速度で上方に引き上げて単結晶を成長させる(例えば、特許文献1参照)。
 また、結晶用原料を加熱溶融する際に、加熱によって結晶用原料から発生するガスを除去するに十分な程度の圧力に、炉体内の圧を減圧した後、該ガスを除去しながら徐々に結晶用原料を溶融させ、引き続き、酸素および窒素または不活性ガスからなる混合ガスを導入し、十分な酸素分圧下、炉体内の圧を大気圧に戻してから成長結晶を引き上げることも知られている(例えば、特許文献2参照)。
特開2008-207993号公報 特開2007-246320号公報
 ところで、チョクラルスキー法によってサファイア単結晶のインゴットを製造する際、インゴットの製造中に原料融液と接するインゴットの先端部(尾部という)の形状が凸状となってしまうこともある。このようにインゴットの尾部が凸状になると、インゴットの成長に伴って坩堝中の融液量が低下した状態において、尾部の先端が坩堝の底面に当たってしまい、それ以上の結晶成長が行えなくなってしまう。このようにして形成された凸状部は、ウエハとしては使用できないので、ウエハの切り出しに使用することのできるインゴットの有効長が短くなってしまい、歩留まりの低下を招いてしまう。
 また、チョクラルスキー法によってサファイア単結晶のインゴットを製造する場合、インゴットを成長させた後、坩堝内の原料融液に接しているインゴットの尾部を原料融液から引き離す操作が行われる。このとき、インゴットと原料融液との離れが悪いと、インゴットの尾部に尾を引くように酸化アルミニウムが固化した状態で付着し、尾部に形成される凸状部がさらに長くなってしまう。このような現象が生じた場合には、さらなる歩留まりの低下を招いてしまうことになる。
 かかる問題に対し、上記特許文献2では、坩堝に充填した酸化アルミニウム原料を減圧下において融解するまで加熱し、原料の融解後に酸素分圧を10~500Paとした常圧の雰囲気下において、原料融液からサファイア単結晶を成長させることが提案されているが、特許文献2記載の条件にてサファイア単結晶のインゴットを製造した場合においても、インゴットの尾部に形成される凸状部の抑制には不十分であった。
 本発明は、酸化アルミニウムの融液からサファイア単結晶を成長させる際に、サファイア単結晶の尾部における凸状部の形成をより抑制することを目的とする。
 かかる目的のもと、本発明が適用されるサファイア単結晶の製造方法は、チャンバ内に置かれたるつぼ中の酸化アルミニウムを溶融させて酸化アルミニウムの融液を得る溶融工程と、チャンバ内に、酸素濃度が第1の濃度に設定された第1の混合ガスを供給するとともに、融液からサファイア単結晶を引き上げて成長させる成長工程と、チャンバ内に、酸素濃度が第1の濃度よりも高い第2の濃度に設定された第2の混合ガスを供給するとともに、サファイア単結晶をさらに引き上げて融液から引き離して分離させる分離工程とを有することを特徴としている。
 このようなサファイア単結晶の製造方法において、第1混合ガスおよび第2の混合ガスは、不活性ガスと酸素とを混合してなることを特徴とすることができる。
 また、分離工程における第2の混合ガスの第2の濃度が1.0体積%以上且つ5.0体積%以下に設定されることを特徴とすることができる。なお、本明細書では気体の体積濃度を単に『%』で表示することもある。
 さらに、成長工程における第1の混合ガスの第1の濃度が0.6体積%以上且つ3.0体積%以下に設定されることを特徴とすることができる。
 そして、成長工程において、サファイア単結晶をc軸方向に成長させることを特徴とすることができる。
 また、他の観点から捉えると、本発明が適用されるサファイア単結晶の製造方法は、チャンバ内に置かれたるつぼ中の酸化アルミニウムの融液からサファイア単結晶を引き上げて成長させる成長工程と、チャンバ内に、酸素と不活性ガスとを含み、酸素の濃度が1.0体積%以上且つ5.0体積%以下に設定された混合ガスを供給するとともに、サファイア単結晶をさらに引き上げて融液から引き離して分離させる分離工程とを有することを特徴としている。
 このようなサファイア単結晶の製造方法において、分離工程における混合ガスの酸素の濃度が3.0体積%以上且つ5.0体積%以下に設定されることを特徴とすることができる。
 また、成長工程において、サファイア単結晶をc軸方向に成長させることを特徴とすることができる。
 さらに、他の観点から捉えると、本発明は、るつぼ中の酸化アルミニウムの融液からサファイア単結晶を引き上げるサファイア単結晶の製造方法において、酸素濃度が第1の濃度の雰囲気中で、融液からサファイア単結晶を引き上げて成長させる成長工程と、酸素濃度が第1の濃度よりも高い第2の濃度の雰囲気中で、サファイア単結晶をさらに引き上げて融液から引き離して分離させる分離工程とを有することを特徴としている。
 このようなサファイア単結晶の製造方法において、分離工程における第2の濃度が1.0体積%以上且つ5.0体積%以下であることを特徴とすることができる。
 また、成長工程における第1の濃度が0.6体積%以上且つ3.0体積%以下であることを特徴とすることができる。
 本発明によれば、酸化アルミニウムの融液からサファイア単結晶を成長させる際に、サファイア単結晶の尾部における凸状部の形成をより抑制することができる。
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
 図1は本実施の形態が適用される単結晶引き上げ装置1の構成を説明するための図である。
 この単結晶引き上げ装置1は、サファイアの単結晶からなるサファイアインゴット200を成長させるための加熱炉10を備えている。この加熱炉10は断熱容器11を備えている。ここで、断熱容器11は円柱状の外形を有しており、その内部には円柱状の空間が形成されている。そして、断熱容器11は、ジルコニア製の断熱材からなる部品を組み立てることで構成されている。また、加熱炉10は、内部の空間に断熱容器11を収容するチャンバ14をさらに備えている。さらに、加熱炉10は、チャンバ14の側面に貫通形成され、チャンバ14の外部からチャンバ14を介して断熱容器11の内部にガスを供給するガス供給管12と、同じくチャンバ14の側面に貫通形成され、断熱容器11の内部からチャンバ14を介して外部にガスを排出するガス排出管13とをさらに備えている。
 また、断熱容器11の内側下方には、酸化アルミニウムを溶融してなるアルミナ融液300を収容するるつぼ20が、鉛直上方に向かって開口するように配置されている。るつぼ20はイリジウムによって構成されており、その底面は円形状となっている。そして、るつぼ20の直径は150mm、高さは200mm、厚さは2mmである。
 さらに、加熱炉10は、断熱容器11の下部側の側面外側であってチャンバ14の下部側の側面内側となる部位に巻き回された金属製の加熱コイル30を備えている。ここで、加熱コイル30は、断熱容器11を介してるつぼ20の壁面と対向するように配置されている。そして、加熱コイル30の下側端部はるつぼ20の下端よりも下側に位置し、加熱コイル30の上側端部はるつぼ20の上端よりも上側に位置するようになっている。
 さらにまた、加熱炉10は、断熱容器11、チャンバ14それぞれの上面に設けられた貫通孔を介して上方から下方に伸びる引き上げ棒40を備えている。この引き上げ棒40は、鉛直方向への移動および軸を中心とする回転が可能となるように取り付けられている。なお、チャンバ14に設けられた貫通孔と引き上げ棒40との間には、図示しないシール材が設けられている。そして、引き上げ棒40の鉛直下方側の端部には、サファイアインゴット200を成長させるための基となる種結晶210(後述する図2参照)を装着、保持させるための保持部材41が取り付けられている。
 また、単結晶引き上げ装置1は、引き上げ棒40を鉛直上方に引き上げるための引き上げ駆動部50および引き上げ棒40を回転させるための回転駆動部60を備えている。ここで、引き上げ駆動部50はモータ等で構成されており、引き上げ棒40の引き上げ速度を調整できるようになっている。また、回転駆動部60もモータ等で構成されており、引き上げ棒40の回転速度を調整できるようになっている。
 さらに、単結晶引き上げ装置1は、ガス供給管12を介してチャンバ14の内部にガスを供給するガス供給部70を備えている。本実施の形態において、ガス供給部70は、O2源71から供給される酸素とN2源72から供給される不活性ガスの一例としての窒素とを混合した混合ガスを供給するようになっている。そして、ガス供給部70は、酸素と窒素との混合比を可変することで混合ガス中の酸素の濃度の調整が可能となっており、また、チャンバ14の内部に供給する混合ガスの流量の調整も可能となっている。
 一方、単結晶引き上げ装置1は、ガス排出管13を介してチャンバ14の内部からガスを排出する排気部80を備えている。排気部80は例えば真空ポンプ等を備えており、チャンバ14内の減圧や、ガス供給部70から供給されたガスの排気をすることが可能となっている。
 さらにまた、単結晶引き上げ装置1は、加熱コイル30に電流を供給するコイル電源90を備えている。コイル電源90は、加熱コイル30への電流の供給の有無および供給する電流量を設定できるようになっている。
 また、単結晶引き上げ装置1は、引き上げ棒40を介して引き上げ棒40の下部側に成長するサファイアインゴット200の重量を検出する重量検出部110を備えている。この重量検出部110は、例えば公知の重量センサ等を含んで構成される。
 そして、単結晶引き上げ装置1は、上述した引き上げ駆動部50、回転駆動部60、ガス供給部70、排気部80およびコイル電源90の動作を制御する制御部100を備えている。また、制御部100は、重量検出部110から出力される重量信号に基づき、引き上げられるサファイアインゴット200の結晶直径の計算をおこない、コイル電源90にフィードバックする。
 図2は、図1に示す単結晶引き上げ装置1を用いて製造されるサファイアインゴット200の構成の一例を示している。
 このサファイアインゴット200は、サファイアインゴット200を成長させるための基となる種結晶210と、種結晶210の下部に延在しこの種結晶210と一体化した肩部220と、肩部220の下部に延在し肩部220と一体化した直胴部230と、直胴部230の下部に延在し直胴部230と一体化した尾部240とを備えている。そして、このサファイアインゴット200においては、上方すなわち種結晶210側から下方すなわち尾部240側に向けてc軸方向にサファイアの単結晶が成長している。
 ここで、肩部220は、種結晶210側から直胴部230側に向けて、徐々にその直径が拡大していく形状を有している。また、直胴部230は、上方から下方に向けてその直径がほぼ同じとなるような形状を有している。なお、直胴部230の直径は、所望とするサファイア単結晶のウエハの直径よりもわずかに大きな値に設定される。そして、尾部240は、上方から下方に向けて徐々にその直径が縮小していくことにより、上方から下方に向けて凸状となる形状を有している。
 図3は、図1に示す単結晶引き上げ装置1を用いて、図2に示すサファイアインゴット200を製造する手順を説明するためのフローチャートである。
 サファイアインゴット200の製造にあたっては、まず、チャンバ14内のるつぼ20内に充填された固体の酸化アルミニウムを加熱によって溶融する溶融工程を実行する(ステップ101)。
 次に、酸化アルミニウムの融液すなわちアルミナ融液300に種結晶210の下端部を接触させた状態で温度調整を行う種付け工程を実行する(ステップ102)。
 次いで、アルミナ融液300に接触させた種結晶210を回転させながら上方に引き上げることにより、種結晶210の下方に肩部220を形成する肩部形成工程を実行する(ステップ103)。
 引き続いて、種結晶210を介して肩部220を回転させながら上方に引き上げることにより、肩部220の下方に直胴部230を形成する成長工程の一例としての直胴部形成工程を実行する(ステップ104)。
 さらに引き続いて、種結晶210および肩部220を介して直胴部230を回転させながら上方に引き上げてアルミナ融液300から引き離すことにより、直胴部230の下方に尾部240を形成する尾部形成工程を実行する(ステップ105)。
 その後、得られたサファイアインゴット200が冷却された後にチャンバ14の外部に取り出され、一連の製造工程を完了する。
 なお、このようにして得られたサファイアインゴット200は、まず、肩部220と直胴部230との境界および直胴部230と尾部240との境界においてそれぞれ切断され、直胴部230が切り出される。次に、切り出された直胴部230は、さらに、長手方向に直交する方向に切断され、サファイア単結晶のウエハとなる。このとき、本実施の形態のサファイアインゴット200はc軸方向に結晶成長していることから、得られるウエハの主面はc面((0001)面)となる。そして、得られたウエハは、青色LEDや偏光子の製造等に用いられる。
 では、上述した各工程について具体的に説明を行う。ただし、ここでは、ステップ101の溶融工程の前に実行される準備工程から順を追って説明を行う。
(準備工程)
 準備工程では、まず、<0001>c軸の種結晶210を用意する。次に、引き上げ棒40の保持部材41に種結晶210を取り付け、所定の位置にセットする。続いて、るつぼ20内に酸化アルミニウムの原材料を充填し、ジルコニア製の断熱材からなる部品を用いて、チャンバ14内に断熱容器11を組み立てる。
 そして、ガス供給部70からのガス供給を行わない状態で、排気部80を用いてチャンバ14内を減圧する。その後、ガス供給部70がN2源72を用いてチャンバ14内に窒素を供給し、チャンバ14の内部を常圧にする。したがって、準備工程が完了した状態において、チャンバ14の内部は、窒素濃度が非常に高く、且つ、酸素濃度が非常に低い状態に設定される。
(溶融工程)
 溶融工程では、ガス供給部70が、引き続きN2源72を用いて5l/minの流量でチャンバ14内に窒素の供給を行う。このとき、回転駆動部60は、引き上げ棒40を第1の回転速度で回転させる。
 また、コイル電源90が加熱コイル30に高周波の交流電流(以下の説明では高周波電流と呼ぶ)を供給する。コイル電源90から加熱コイル30に高周波電流が供給されると、加熱コイル30の周囲において磁束が生成・消滅を繰り返す。そして、加熱コイル30で生じた磁束が、断熱容器11を介してるつぼ20を横切ると、るつぼ20の壁面にはその磁界の変化をさまたげるような磁界が発生し、それによってるつぼ20内に渦電流が発生する。そして、るつぼ20は、渦電流(I)によってるつぼ20の表皮抵抗(R)に比例したジュール熱(W=IR)が発生し、るつぼ20が加熱されることになる。るつぼ20が加熱され、それに伴ってるつぼ20内に収容される酸化アルミニウムがその融点(2054℃)を超えて加熱されると、るつぼ20内において酸化アルミニウムが溶融し、アルミナ融液300となる。
(種付け工程)
 種付け工程では、ガス供給部70が、O2源71およびN2源72を用いて窒素および酸素を所定の割合で混合させた混合ガスをチャンバ14内に供給する。ただし、種付け工程においては、後述するように、必ずしも酸素と窒素との混合ガスを供給する必要はなく、例えば窒素のみを供給するようにしても差し支えない。
 さらに、引き上げ駆動部50は、保持部材41に取り付けられた種結晶210の下端が、るつぼ20内のアルミナ融液300と接触する位置まで引き上げ棒40を下降させて停止させる。その状態で、コイル電源90は、重量検出部110からの重量信号をもとに加熱コイル30に供給する高周波電流を調節する。
(肩部形成工程)
 肩部形成工程では、コイル電源90が加熱コイル30に供給する高周波電流を調節したのち、アルミナ融液300の温度が安定するまでしばらくの間保持し、その後、引き上げ棒40を第1の回転速度で回転させながら第1の引き上げ速度にて引き上げる。
 すると、種結晶210は、その下端部がアルミナ融液300に浸った状態で回転されつつ引き上げられることになり、種結晶210の下端には、鉛直下方に向かって拡開する肩部220が形成されていく。
 なお、肩部220の直径が所望とするウエハの直径よりも数mm程度大きくなった時点で、肩部形成工程を完了する。
(直胴部形成工程)
 直胴部形成工程では、ガス供給部70がO2源71およびN2源72を用いて窒素および酸素を所定の割合で混合させ、酸素濃度を0.6体積%以上且つ3.0体積%以下の範囲に設定した混合ガスをチャンバ14内に供給する。
 また、コイル電源90は、引き続き加熱コイル30に高周波電流の供給を行い、るつぼ20を介したアルミナ融液300を加熱する。
 さらに、引き上げ駆動部50は、引き上げ棒40を第2の引き上げ速度にて引き上げる。ここで第2の引き上げ速度は、肩部形成工程における第1の引き上げ速度と同じ速度であってもよいし、異なる速度であってもよい。
 さらにまた、回転駆動部60は、引き上げ棒40を第2の回転速度で回転させる。ここで、第2の回転速度は、肩部形成工程における第1の回転速度と同じ速度であってもよいし、異なる速度であってもよい。
 種結晶210と一体化した肩部220は、その下端部がアルミナ融液300に浸った状態で回転されつつ引き上げられることになるため、肩部220の下端部には、好ましくは円柱状の直胴部230が形成されていく。直胴部230は、所望とするウエハの直径以上の胴体であればよい。
(尾部形成工程)
 尾部形成工程では、ガス供給部70がO2源71およびN2源72を用いて窒素および酸素を所定の割合で混合させた混合ガスをチャンバ14内に供給する。なお、尾部形成工程における混合ガス中の酸素濃度については、るつぼ20の酸化による劣化を抑制するという観点からすれば、直胴部形成工程と同程度とするかあるいは直胴部形成工程よりも低濃度とすることが好ましいが、得られるサファイアインゴット200における尾部240の鉛直方向長さH(図2参照)を短くし、生産性の向上を図るという観点からすれば、直胴部形成工程よりも高濃度とすることが好ましい。
 また、コイル電源90は、引き続き加熱コイル30に高周波電流の供給を行い、るつぼ20を介したアルミナ融液300を加熱する。
 さらに、引き上げ駆動部50は、引き上げ棒40を第3の引き上げ速度にて引き上げる。ここで第3の引き上げ速度は、肩部形成工程における第1の引き上げ速度あるいは直胴部形成工程における第2の引き上げ速度と同じ速度であってもよいし、これらとは異なる速度であってもよい。
 さらにまた、回転駆動部60は、引き上げ棒40を第3の回転速度で回転させる。ここで、第3の回転速度は、肩部形成工程における第1の回転速度あるいは直胴部形成工程における第2の回転速度と同じ速度であってもよいし、これらとは異なる速度であってもよい。
 なお、尾部形成工程の序盤において、尾部240の下端は、アルミナ融液300と接触した状態を維持する。
 そして、所定の時間が経過した尾部形成工程の終盤において、引き上げ駆動部50は、引き上げ棒40の引き上げ速度を増速させて引き上げ棒40をさらに上方に引き上げさせることにより、尾部240の下端をアルミナ融液300から引き離す。これにより、図2に示すサファイアインゴット200が得られる。
 本実施の形態では、尾部形成工程においてチャンバ14内に酸素濃度を1.0体積%以上且つ5.0体積%以下に設定した混合ガスを供給するようにした。ここで、尾部形成工程における混合ガス中の酸素濃度を1.0体積%以上に設定することにより、酸素濃度を1.0体積%未満とした場合と比較して、得られるサファイアインゴット200における尾部240の鉛直方向長さH(図2参照)を短くすることができる。その結果、従来の製法と比較して、尾部240がるつぼ20の底面にあたるまでの期間を長くすることができ、同一の容量のアルミナ融液300からより多くの直胴部230を有するサファイアインゴット200を得ることができる。また、尾部形成工程における混合ガス中の酸素濃度を5.0体積%以下に設定することにより、混合ガス中の酸素濃度を5.0体積%超とした場合と比較して、イリジウム製のるつぼ20の酸化による劣化が抑制されるようになり、るつぼ20を長寿命化させることができる。
 また、本実施の形態では、直胴部形成工程においてチャンバ14内に酸素濃度を0.6体積%以上且つ3.0体積%以下に設定した混合ガスを供給するようにした。ここで、直胴部形成工程における混合ガス中の酸素濃度を0.6体積%以上に設定することにより、酸素濃度を0.6体積%未満とした場合と比較して、直胴部230を構成するサファイア単結晶への気泡の取り込みが抑制されるようになり、直胴部230における泡欠陥の発生を抑制することができる。特に、本実施の形態では、a軸方向に結晶成長させた場合よりも気泡が取り込まれやすく、結果として泡欠陥が生じやすいことが知られているc軸方向に結晶成長を行わせることで直胴部230を形成する場合においても、泡欠陥の発生を抑制することが可能になる。また、直胴部形成工程における混合ガス中の酸素濃度を3.0体積%以下に設定することにより、混合ガス中の酸素濃度を3.0体積%超とした場合と比較して、イリジウム製のるつぼ20の酸化による劣化が抑制されるようになり、るつぼ20を長寿命化させることができる。
 また、本実施の形態において、肩部形成工程において酸素濃度を0.6体積%以上且つ3.0体積%以下の範囲に設定した混合ガスを断熱容器11内に供給した場合には、肩部220における泡欠陥の発生を抑制することが可能となり、肩部220の下にさらに形成される直胴部230の結晶性がより良好なものとなる。
 なお、本実施の形態では、酸素と窒素とを混合した混合ガスを用いていたが、これに限られるものではなく、例えば酸素と不活性ガスの一例としてのアルゴンとを混合したものを用いてもかまわない。
 また、本実施の形態では、所謂電磁誘導加熱方式を用いてるつぼ20の加熱を行っていたが、これに限られるものではなく、例えば抵抗加熱方式を採用するようにしても差し支えない。
 では次に、本発明の実施例について説明を行うが、本発明は実施例に限定されない。
 本発明者は、図1に示す単結晶引き上げ装置1を用いて、サファイア単結晶の成長工程における各種製造条件、特にここでは尾部形成工程においてチャンバ14内に供給する混合ガス中の酸素濃度を異ならせた状態でサファイアインゴット200の製造を行い、得られたサファイアインゴット200における尾部240の鉛直方向長さHの状態、使用したるつぼ20の劣化の状態および4インチ結晶の直胴部230中に発生する泡欠陥の状態について検討を行った。
 図4は、実施例1~9および比較例1~3における各種製造条件と、各々の評価結果との関係を示している。
 ここで、図4には、製造条件として、肩部形成工程における引き上げ棒40の回転速度(第1の回転速度に対応)、引き上げ棒40の引き上げ速度(第1の引き上げ速度に対応)、チャンバ14内に供給する混合ガス中の酸素濃度と、直胴部形成工程における引き上げ棒40の回転速度(第2の回転速度に対応)、引き上げ棒40の引き上げ速度(第2の引き上げ速度に対応)、チャンバ14内に供給する混合ガス中の酸素濃度と、尾部形成工程における引き上げ棒40の回転速度(第3の回転速度に対応)、引き上げ棒40の引き上げ速度(第3の引き上げ速度に対応)、チャンバ14内に供給する混合ガス中の酸素濃度とを記載している。
 さらに、図4には、評価項目として、尾部240の鉛直方向長さHの状態(尾部長さ)をA~Dの4ランクで、サファイアインゴット200を製造した後のるつぼ20の劣化状態をA~Dの4ランクで、また、直胴部230内に存在する泡欠陥の状態をA~Dの4ランクで、それぞれ示している。なお、評価「A」は「良」、評価[B]はやや良、評価「C」は「やや不良」、そして評価「D」は「不良」を、それぞれ意味している。
 ここで、尾部240の鉛直方向長さHについては、インゴット直径4インチに対する、融液側への凸部長さが20mm未満である場合を「A」、20mm以上40mm未満である場合を「B」、40mm以上60mm未満である場合を「C」、そして60mm以上である場合を「D」とした。
 また、るつぼ20の劣化については、使用前後のるつぼ20の重量減の変化率(質量%)で評価し、『0.01質量%未満』である場合を「A」、『0.01質量%以上0.03質量%未満』である場合を「B」、『0.03質量%以上0.08質量%未満』である場合を「C」、そして『0.08質量%以上』である場合を「D」とした。
 さらに、直胴部230中の泡欠陥については、『気泡なし(透明)』の場合を「A」、『気泡があるが局所的に存在する』場合を「B」、『全域で気泡があるが一部に透明な部分(気泡がない)』がある場合を「C」、そして『全域で気泡があり白濁(気泡がある)している』場合を「D」とした。
 実施例1~9においては、いずれも、尾部形成工程においてチャンバ14内に供給される混合ガス中の酸素濃度が1.0体積%以上且つ5.0体積%以下となっており、尾部長さの評価結果については「A」または「B」となった。特に、混合ガス中の酸素濃度が3.0体積%以上且つ5.0体積%以下の範囲では、尾部長さの評価結果がすべて「A」となった。なお、この理由は、チャンバ14内に供給する混合ガス中の酸素濃度が高まることにより、この酸素の一部がるつぼ20内のアルミナ融液300に取り込まれるか、あるいは、るつぼ20内のアルミナ融液300からの酸素の離脱を抑制するかにより、尾部形成工程におけるアルミナ融液300の粘度が従来よりも低下し、尾部240からアルミナ融液300が離れやすくなったことに起因するものと考えられる。
 また、実施例1~9のうち、実施例1~6および実施例8、9については、るつぼ20の劣化の評価結果が「A」または「B」となった。なお、実施例7では、るつぼ20の劣化の評価結果が「C」となったが、これは、直胴部形成工程における混合ガス中の酸素濃度が4.0体積%と非常に高くなっていることから、これについては、尾部形成工程よりも長時間にわたって行われる直胴部形成工程においてるつぼ20の酸化が促進されたことに起因するものと考えられる。
 さらに、実施例1~9のうち、実施例1~6および実施例8、9については、直胴部形成工程においてチャンバ14内に供給される混合ガス中の酸素濃度が0.6体積%以上且つ3.0体積%以下となっており、泡欠陥の評価結果については「A」または「B」となった。特に、混合ガス中の酸素濃度が1.5体積%以上且つ3.0体積%以下の範囲では、泡欠陥の評価結果がすべて「A」となった。なお、この理由は、チャンバ14内に供給する混合ガス中の酸素濃度が高まることにより、この酸素の一部がるつぼ20内のアルミナ融液300に取り込まれるか、あるいは、るつぼ20内のアルミナ融液300からの酸素の離脱を抑制するかにより、直胴部形成工程におけるアルミナ融液300の粘度が従来よりも低下し、結果として単結晶中に気泡が取り込まれにくくなったことに起因するものと考えられる。
 一方、比較例1~3のうち、比較例1においては、尾部形成工程においてチャンバ14内に供給される混合ガス中の酸素濃度が0.5体積%と低くなっており、尾部長さの評価結果は「D」となった。また、比較例2、3においては、尾部形成工程においてチャンバ14内に供給される混合ガス中の酸素濃度が6.0体積%と高くなっており、泡欠陥の評価結果は「A」または「B」となった。
 また、比較例1については、るつぼ20の劣化の評価結果が「A」となったが、比較例2、3については、るつぼ20の劣化の評価結果が「D」となった。これは、尾部形成工程における混合ガス中の酸素濃度が高いことにより、尾部形成工程においてるつぼ20の酸化が促進されたことに起因するものと考えられる。
 さらに、比較例1~3のうち、比較例1においては、直胴部形成工程においてチャンバ14内に供給される混合ガス中の酸素濃度が0.5体積%と低くなっており、泡欠陥の評価結果は「D」となった。さらにまた、比較例2においては、直胴部形成工程においてチャンバ14内に供給される混合ガス中の酸素濃度が3.0体積%であるため、泡欠陥の評価結果は「A」となった。そして、比較例3においては、直胴部形成工程においてチャンバ14内に供給される混合ガス中の酸素濃度が4.0体積%と高くなっており、泡欠陥の評価結果は「B」となった。
 したがって、比較例1では、るつぼ20の劣化に対しては効果的であるものの、尾部長さの短縮化および泡欠陥の発生に対しては不十分であるといえる。また、比較例2、3では、尾部長さの短縮化および泡欠陥の発生に対しては効果的であるものの、るつぼ20の劣化に対しては不十分であるといえる。
 以上説明したように、サファイアインゴット200の尾部240を形成する尾部形成工程において、チャンバ14内に供給する混合ガス中の酸素濃度を1.0体積%以上且つ5.0体積%以下、より好ましくは3.0体積%以上且つ5.0体積%以下とすることにより、得られたサファイアインゴット200における尾部240の鉛直方向長さHが短くなり、且つ、るつぼ20の劣化も抑制されることが理解される。
本実施の形態が適用される単結晶引き上げ装置の構成を説明するための図である。 単結晶引き上げ装置を用いて得られたサファイアインゴットの構成の一例を示す図である。 単結晶引き上げ装置を用いてサファイアインゴットを製造する手順を説明するためのフローチャートである。 各実施例および各比較例におけるサファイアインゴットの製造条件および評価結果を示す図である。
1…単結晶引き上げ装置、10…加熱炉、11…断熱容器、12…ガス供給管、13…ガス排出管、14…チャンバ、20…るつぼ、30…加熱コイル、40…引き上げ棒、41…保持部材、50…引き上げ駆動部、60…回転駆動部、70…ガス供給部、71…O2源、72…N2源、80…排気部、90…コイル電源、100…制御部、110…重量検出部、200…サファイアインゴット、210…種結晶、220…肩部、230…直胴部、240…尾部、300…アルミナ融液

Claims (11)

  1.  チャンバ内に置かれたるつぼ中の酸化アルミニウムを溶融させて当該酸化アルミニウムの融液を得る溶融工程と、
     前記チャンバ内に、酸素濃度が第1の濃度に設定された第1の混合ガスを供給するとともに、前記融液からサファイア単結晶を引き上げて成長させる成長工程と、
     前記チャンバ内に、酸素濃度が前記第1の濃度よりも高い第2の濃度に設定された第2の混合ガスを供給するとともに、前記サファイア単結晶をさらに引き上げて前記融液から引き離して分離させる分離工程と
    を有することを特徴とするサファイア単結晶の製造方法。
  2.  前記第1の混合ガスおよび前記第2の混合ガスは、不活性ガスと酸素とを混合してなることを特徴とする請求項1記載のサファイア単結晶の製造方法。
  3.  前記分離工程における前記第2の混合ガスの前記第2の濃度が1.0体積%以上且つ5.0体積%以下に設定されることを特徴とする請求項1記載のサファイア単結晶の製造方法。
  4.  前記成長工程における前記第1の混合ガスの前記第1の濃度が0.6体積%以上且つ3.0体積%以下に設定されることを特徴とする請求項1記載のサファイア単結晶の製造方法。
  5.  前記成長工程において、前記サファイア単結晶をc軸方向に成長させることを特徴とする請求項1記載のサファイア単結晶の製造方法。
  6.  チャンバ内に置かれたるつぼ中の酸化アルミニウムの融液からサファイア単結晶を引き上げて成長させる成長工程と、
     前記チャンバ内に、酸素と不活性ガスとを含み、当該酸素の濃度が1.0体積%以上且つ5.0体積%以下に設定された混合ガスを供給するとともに、前記サファイア単結晶をさらに引き上げて前記融液から引き離して分離させる分離工程と
    を有することを特徴とするサファイア単結晶の製造方法。
  7.  前記分離工程における前記混合ガスの前記酸素の濃度が3.0体積%以上且つ5.0体積%以下に設定されることを特徴とする請求項6記載のサファイア単結晶の製造方法。
  8.  前記成長工程において、前記サファイア単結晶をc軸方向に成長させることを特徴とする請求項6記載のサファイア単結晶の製造方法。
  9.  るつぼ中の酸化アルミニウムの融液からサファイア単結晶を引き上げるサファイア単結晶の製造方法において、酸素濃度が第1の濃度の雰囲気中で、当該融液からサファイア単結晶を引き上げて成長させる成長工程と、
     酸素濃度が前記第1の濃度よりも高い第2の濃度の雰囲気中で、前記サファイア単結晶をさらに引き上げて前記融液から引き離して分離させる分離工程と
    を有することを特徴とするサファイア単結晶の製造方法。
  10.  前記分離工程における前記第2の濃度が1.0体積%以上且つ5.0体積%以下であることを特徴とする請求項9記載のサファイア単結晶の製造方法。
  11.  前記成長工程における前記第1の濃度が0.6体積%以上且つ3.0体積%以下であることを特徴とする請求項9記載のサファイア単結晶の製造方法。
PCT/JP2009/070957 2008-12-24 2009-12-16 サファイア単結晶の製造方法 WO2010073945A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801430339A CN102197166A (zh) 2008-12-24 2009-12-16 蓝宝石单晶的制造方法
US13/141,886 US20110253031A1 (en) 2008-12-24 2009-12-16 Process for producing single-crystal sapphire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-327786 2008-12-24
JP2008327786A JP2010150056A (ja) 2008-12-24 2008-12-24 サファイア単結晶の製造方法

Publications (1)

Publication Number Publication Date
WO2010073945A1 true WO2010073945A1 (ja) 2010-07-01

Family

ID=42287560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070957 WO2010073945A1 (ja) 2008-12-24 2009-12-16 サファイア単結晶の製造方法

Country Status (6)

Country Link
US (1) US20110253031A1 (ja)
JP (1) JP2010150056A (ja)
KR (1) KR20110069104A (ja)
CN (1) CN102197166A (ja)
TW (1) TW201033414A (ja)
WO (1) WO2010073945A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383187B (zh) * 2011-11-28 2014-04-23 天通控股股份有限公司 一种蓝宝石单晶生长方法
JP5953884B2 (ja) * 2012-03-30 2016-07-20 株式会社Sumco サファイア単結晶の製造方法
US9194238B2 (en) 2012-11-28 2015-11-24 General Electric Company System for damping vibrations in a turbine
CN103060900B (zh) * 2013-01-24 2016-02-24 天通控股股份有限公司 一种cz法蓝宝石长晶锥形尾部长度的控制方法
JP2014162673A (ja) * 2013-02-25 2014-09-08 Tokuyama Corp サファイア単結晶コアおよびその製造方法
KR101472351B1 (ko) * 2013-03-20 2014-12-12 주식회사 엘지실트론 사파이어 단결정 성장의 해석 방법 및 사파이어 단결정의 성장 방법
JP2015205793A (ja) * 2014-04-21 2015-11-19 グローバルウェーハズ・ジャパン株式会社 単結晶引き上げ方法
EP3042986A1 (en) * 2015-01-09 2016-07-13 Forschungsverbund Berlin e.V. Method for growing beta phase of gallium oxide (ß-Ga2O3) single crystals from the melt contained within a metal crucible by controlling the partial pressure of oxygen.
DE102016219605A1 (de) * 2016-10-10 2018-04-12 Siltronic Ag Verfahren zum Ziehen eines Einkristalls aus Halbleitermaterial aus einer Schmelze, die in einem Tiegel enthalten ist

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278592A (ja) * 1996-04-18 1997-10-28 Mitsubishi Heavy Ind Ltd チタンを含む酸化アルミニウム単結晶の製造方法
JP2004083407A (ja) * 2002-08-24 2004-03-18 Carl Zeiss Stiftung コランダム単結晶を成長させる方法および装置
JP2007246320A (ja) * 2006-03-15 2007-09-27 Sumitomo Metal Mining Co Ltd 酸化アルミニウム単結晶の製造方法及び得られる酸化アルミニウム単結晶
JP2008207992A (ja) * 2007-02-26 2008-09-11 Hitachi Chem Co Ltd サファイア単結晶の製造方法
JP2008266078A (ja) * 2007-04-23 2008-11-06 Shin Etsu Chem Co Ltd サファイア単結晶の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278592A (ja) * 1996-04-18 1997-10-28 Mitsubishi Heavy Ind Ltd チタンを含む酸化アルミニウム単結晶の製造方法
JP2004083407A (ja) * 2002-08-24 2004-03-18 Carl Zeiss Stiftung コランダム単結晶を成長させる方法および装置
JP2007246320A (ja) * 2006-03-15 2007-09-27 Sumitomo Metal Mining Co Ltd 酸化アルミニウム単結晶の製造方法及び得られる酸化アルミニウム単結晶
JP2008207992A (ja) * 2007-02-26 2008-09-11 Hitachi Chem Co Ltd サファイア単結晶の製造方法
JP2008266078A (ja) * 2007-04-23 2008-11-06 Shin Etsu Chem Co Ltd サファイア単結晶の製造方法

Also Published As

Publication number Publication date
CN102197166A (zh) 2011-09-21
TW201033414A (en) 2010-09-16
US20110253031A1 (en) 2011-10-20
KR20110069104A (ko) 2011-06-22
JP2010150056A (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
WO2010071142A1 (ja) サファイア単結晶の製造方法
WO2010073945A1 (ja) サファイア単結晶の製造方法
WO2016010039A1 (ja) Fe-Ga基合金単結晶の育成方法及び育成装置
WO2011001905A1 (ja) サファイア単結晶の製造方法、及び当該方法で得られたサファイア単結晶
WO2011062092A1 (ja) 単結晶引き上げ装置
JP4844428B2 (ja) サファイア単結晶の製造方法
WO2021020539A1 (ja) ScAlMgO4単結晶及びその作成方法並びに自立基板
TWI580827B (zh) Sapphire single crystal nucleus and its manufacturing method
KR20130111253A (ko) 사파이어 단결정 및 그의 제조 방법
WO2011074533A1 (ja) 単結晶引き上げ装置および単結晶引き上げ方法
JP2018150198A (ja) 大口径ScAlMgO4単結晶並びにその育成方法及び育成装置
JP2011006314A (ja) 単結晶引き上げ装置
JP2010173929A (ja) サファイア単結晶引き上げ装置、サファイア単結晶製造用るつぼ、サファイア単結晶の製造方法
JP2010059031A (ja) 酸化アルミニウム単結晶、及び、その製造方法
JP4930166B2 (ja) 酸化アルミニウム単結晶の製造方法
JP2013147361A (ja) サファイア単結晶およびサファイア単結晶の製造方法
JP2010189242A (ja) サファイア単結晶の製造方法およびサファイア単結晶引き上げ装置
WO2011108417A1 (ja) サファイア単結晶の製造方法、サファイア単結晶引き上げ装置及びサファイア単結晶
US20070163487A1 (en) A method for producing a single crystal and an apparatus for producing a single crystal
JP2011032104A (ja) サファイア単結晶およびサファイア単結晶の製造方法
JP2011037643A (ja) 単結晶引き上げ装置、単結晶の製造方法及び単結晶
JP2011046558A (ja) サファイア単結晶の製造方法、サファイア単結晶引き上げ装置
JP2013049607A (ja) サファイア単結晶の製造方法
JP6323382B2 (ja) 単結晶の製造方法
JP2014189413A (ja) サファイアインゴットの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143033.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117008755

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13141886

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834748

Country of ref document: EP

Kind code of ref document: A1