WO2010073307A1 - スパッタリング装置および成膜方法 - Google Patents

スパッタリング装置および成膜方法 Download PDF

Info

Publication number
WO2010073307A1
WO2010073307A1 PCT/JP2008/073295 JP2008073295W WO2010073307A1 WO 2010073307 A1 WO2010073307 A1 WO 2010073307A1 JP 2008073295 W JP2008073295 W JP 2008073295W WO 2010073307 A1 WO2010073307 A1 WO 2010073307A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering
substrate
support surface
shielding plate
sputtered particles
Prior art date
Application number
PCT/JP2008/073295
Other languages
English (en)
French (fr)
Inventor
徹哉 遠藤
アインシタイン ノエル アバラ
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to PCT/JP2008/073295 priority Critical patent/WO2010073307A1/ja
Priority to JP2009522039A priority patent/JP4352104B1/ja
Priority to CN2008801018804A priority patent/CN101855381B/zh
Priority to US12/683,921 priority patent/US7955480B2/en
Publication of WO2010073307A1 publication Critical patent/WO2010073307A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon

Definitions

  • the present invention relates to a sputtering apparatus and a film forming method.
  • the purpose of obliquely entering the sputtered particles is to generate shape magnetic anisotropy in the film by the oblique incidence and to impart high magnetic anisotropy. So the important thing is [1] How to suppress variations in magnetic anisotropy, [2] How to align the easy magnetization axis (hard magnetization axis), It is. This is because a large amount of head chips are cut out from a single wafer, and if the above two points vary greatly within the wafer surface, the performance of the cut out individual heads will become gusseted.
  • the collimator 1 may be disposed between the target 2 and the substrate 4 as shown in FIG. 1 ⁇ Case 1>.
  • the collimator 1 may be disposed between the target 2 and the substrate 4 as shown in FIG. 1 ⁇ Case 1>.
  • ⁇ Case 2> As shown in ⁇ Case 2> of FIG. 1, when the diameter of the collimator 1 is increased, the sputtered particles 3 are incident on the substrate 4 from various directions. Therefore, there is a possibility of causing variations in magnetic anisotropy, but there is expectation for mass productivity.
  • ⁇ Case 3> it is necessary to move the substrate 4 or the target 2 in order to form a film uniformly over the entire surface of the substrate 4.
  • the incident angle of the sputtered particles 3 on the substrate 4 varies depending on the relative positional relationship between the target 2 and the substrate 4. That is, as shown in ⁇ Case 3> in FIG. 1, when the target 2 is fixed and the substrate 4 is moved, the incident angle of the sputtered particles 3 is increased or decreased depending on the position of the moving substrate 4. . Therefore, when the incident angles of the sputtered particles 3 are different, the magnetic anisotropy of the film formed on the substrate 4 varies.
  • the “incident angle” refers to an angle formed between the normal line of the film formation target substrate on which the sputtered particles are incident and the incident direction of the incident sputtered particles. Therefore, the “low incident angle” is the incident angle when the incident direction of the sputtered particle is relatively small from the substrate normal, and the “high incident angle” is the incident direction of the sputtered particle, This is the incident angle when the inclination from the substrate normal is relatively large.
  • the reason why the magnetic anisotropy varies with the incident angle is that the direction of the easy magnetization axis (hard magnetization axis) and the magnitude of the anisotropic magnetic field (Hk) strongly depend on the incident angle.
  • the incident angle of the sputtered particles 5 is in the range of 10 ° to 70 °
  • the easy magnetization axis 6 is formed in a direction perpendicular to the incident direction.
  • the incident angle of the sputtered particles 5 is 70 ° or more, the easy magnetization axis 6 is formed parallel to the incident direction.
  • the direction of the easy magnetization axis changes depending on the incident angle at which the magnetic film is composed of incident sputtered particles, and finally the skew dispersion angle (definition: angle deviation width of the easy magnetization axis). To affect.
  • Patent Document 1 discloses a technique for controlling the anisotropy of a formed ferromagnetic film in a carousel type sputtering apparatus. Specifically, a mask capable of changing the opening width is disposed between the magnetic target and the rotating substrate holder, and the direction and magnitude of the magnetic anisotropy are changed by changing the opening width of the mask. Is controlling.
  • Patent Document 2 discloses a method for depositing an insulating thin film on a magnetic head and forming the insulating thin film uniformly on a large surface area.
  • FIG. 3 is a schematic view of the deposition apparatus disclosed in Patent Document 2. As shown in FIG. The deposition apparatus shown in FIG. 3 includes a chamber 11 that houses a first ion beam gun 12, a second ion beam gun 13, a target holder 14, and a substrate support 16.
  • the substrate support 16 has a turntable 16a that can rotate around the shaft 16b (around the shaft 21a) and a substrate mounting base 16c that can rotate around the shaft 21b.
  • a substrate 17 on which a target material is deposited can be disposed on the substrate support 16c.
  • the target holder 14 is configured to be swingable in the arrow direction 22, and the target 15 can be attached thereto.
  • the first ion beam gun 12 is arranged so that the ion beam 18 is incident on the target 15, and the target material is dispersed from the target 15 in a random direction 20 by the ion beam 18.
  • the second ion beam gun 13 is provided so that another ion beam 19 is incident on the substrate 17 during the deposition process.
  • a uniform film thickness can be achieved on the substrate 17 by appropriately rotating the target holder 14, the turntable 16a, and the substrate mounting base 16c in the above-described configuration.
  • Patent Document 1 when the direction of the easy magnetization axis is set in the first direction (for example, the X direction) of the substrate, the opening width of the mask is controlled to be narrow. .
  • Patent Document 2 indicates that the component (X) parallel to the first direction and the component (Y) parallel to the second direction (Y direction) orthogonal to the first direction are not incident on the substrate by the mask. 1 is disclosed.
  • the component (X) parallel to the first direction is perpendicular to the substrate.
  • the component (Y) parallel to the second direction (Y direction) enters the substrate at an acute angle (high incident angle).
  • FIGS. 5A and 5B are different at both ends of the substrate 51 as shown in FIGS. 5A and 5B.
  • 5A is an explanatory diagram when the opening width of the mask 52 is narrow
  • FIG. 5B is an explanatory diagram when the opening width of the mask 52 is wide.
  • the substrate holder on which the substrates 41 and 51 are arranged is omitted for the sake of simplification of the drawings.
  • the rotation speed of the substrate holder of the carousel type sputtering apparatus of Patent Document 1 is constant, it is difficult to adjust the film thickness distribution.
  • Patent Document 2 film formation is performed while rotating the turntable 16a and the substrate mounting base 16c for the purpose of forming an insulating thin film so that the thickness is uniform. Therefore, the sputtered particles at each incident angle are incident on the substrate 17 from all directions. Furthermore, the light enters the substrate 17 at any angle from a low incident angle to a high incident angle. Accordingly, the magnetic anisotropy formed on the substrate 17 is isotropic, and it has been difficult to satisfactorily align the easy axis of magnetization. In the first place, Patent Document 2 does not discuss anything about reducing variation in magnetic anisotropy. Further, in Patent Document 2, the second ion beam gun 13 is used to form a thin film having a good density.
  • Patent Document 2 the film adhesion is improved by appropriate bombardment (striking) by the auxiliary beam irradiated from the second ion beam gun 13.
  • the first ion beam gun and the second ion beam gun are required to form a uniform thin film while improving the density of the thin film to be formed. This leads to cost increase.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a sputtering apparatus and a film forming method capable of forming a magnetic film with reduced variation in the direction of magnetic anisotropy. It is in.
  • Another object is to provide a sputtering apparatus and a film forming method capable of achieving a uniform atomic density in a film formed by sputtering with a simple configuration.
  • a first embodiment of the present invention is a sputtering apparatus, a cathode having a sputtering target support surface, the cathode capable of rotating the sputtering target support surface about a first rotation axis, and a substrate support surface
  • a stage capable of rotating the substrate support surface about a second rotation axis arranged in parallel with the first rotation axis, and between the sputtering support surface and the substrate support surface Of the sputtered particles generated from the sputtering target supported by the sputtering target support surface during sputtering, the shielding plate being rotatable about the first rotating shaft or the second rotating shaft.
  • the sputtered particles incident at an angle of 0 ° or more and 50 ° or less with the normal to the substrate support surface are incident on the substrate support surface.
  • the rotation of at least one of the sputtering target support surface, the substrate support surface, and the shielding plate is controlled so as to be incident on the substrate supported by the substrate.
  • a second embodiment of the present invention is a cathode having a sputtering target support surface, the cathode having a rotation target that can rotate about the first rotation axis, and a stage having a substrate support surface.
  • a film forming method using a sputtering apparatus comprising a shielding plate rotatable about the first rotating shaft or the second rotating shaft, and generated from a sputtering target supported on the sputtering target support surface during sputtering Among the sputtered particles, a sputter incident at an angle of 0 ° to 50 ° with the normal to the substrate support surface. It is characterized in that at least one of the sputtering target support surface, the substrate support surface, and the shielding plate is independently rotated so that the particles are
  • FIG. It is a side view of the sputtering device concerning one embodiment of the present invention. It is a perspective view of the sputtering device concerning one embodiment of the present invention. It is a side view of the stage for substrate mounting which concerns on one Embodiment of this invention. It is a perspective view of the stage for substrate mounting which concerns on one Embodiment of this invention. It is a figure which shows an example of the sputtering device which concerns on one Embodiment of this invention. It is a figure for demonstrating that variation arises in the direction of the easy axis of magnetization of the magnetic film formed with the conventional carousel type sputtering device.
  • FIG. 6A is a side view of a sputtering apparatus 600 according to an embodiment of the present invention.
  • FIG. 6B is a perspective view of a sputtering apparatus 600 according to an embodiment of the present invention.
  • a sputtering apparatus 600 includes a stage 601 on which a substrate 604 is placed, a cathode 602 and a shielding plate 606 that support a target 603, and a target support surface of the cathode 602 and a substrate support of the stage 601. It arrange
  • the stage 601 and the cathode 602 each include a rotation axis A and a rotation axis B, and the stage 601 and the cathode 602 can rotate at any angle around the rotation axis A and the rotation axis B, respectively.
  • the stage 601 and the cathode 602 can be rotated by using a rotating unit such as a motor, and the rotating unit can be controlled by a control device.
  • the rotation axis A and the rotation axis B are arranged in parallel to each other, and the cathode 602 can support the target 603 so as to be parallel to the rotation axis B.
  • a target 603 supported by a cathode 602 that can be rotated at an arbitrary angle around the rotation axis B causes sputtered particles to collide with ions in the plasma against the surface of the target 603 in both cases of stationary and rotating. 605 can be deposited on the substrate 604.
  • the substrate 604 on which the film formation process is performed by the target 603 is placed on a stage 601 that can rotate around the rotation axis A at an arbitrary angle.
  • the substrate support surface of the stage 601 and the target support surface of the cathode 602 are configured to be independently rotatable about the rotation axis A and the rotation axis B, respectively.
  • a shielding plate 606 is provided between the target 603 and the stage 601.
  • the shielding plate 606 has means for rotating at any angle around either the rotation axis A or the rotation axis B, and finely adjusts the film thickness distribution of the deposited film and the incident angle of the sputtered particles. It fulfills the function of enhancing the selectivity.
  • the shielding plate 606 can be rotated about the rotation axis A or the rotation axis B by an arbitrary method, but is configured to be rotatable about the rotation axis A in the embodiment described below.
  • the shielding plate 606 can be controlled by a control device so as to rotate independently of the cathode 603 or the stage 601.
  • FIG. 7A is a side view of a stage 701 that can be used as the stage of the sputtering apparatus of FIG. 6A.
  • the stage 701 has a substrate mounting table 702, and a substrate 703 is mounted on the substrate mounting table 702.
  • FIG. 7B is a perspective view of a stage 701 according to an embodiment of the present invention.
  • the stage 701 is configured to be rotatable about the rotation axis A as in FIG.
  • the substrate mounting table 702 of the stage 701 is configured to be rotatable around a rotation axis C that is perpendicular to the rotation axis A and passes through the center of the substrate 703, and rotates the substrate 703 around the rotation axis C. Is possible.
  • the substrate mounting table 702 can be rotated using, for example, a rotating means such as a motor, and the rotating means can be controlled by a control device.
  • FIG. 8 is a view showing an example of a sputtering apparatus according to another embodiment of the present invention.
  • the sputtering apparatus 800 includes a stage 801 on which a substrate 804 is placed, a cathode 802 that supports a target 803, and a shielding plate 805.
  • Each of the stage 801 and the cathode 802 includes a rotation axis A and a rotation axis B, and at least one of the stage 801 and the cathode 802 rotates at an arbitrary angle around the rotation axis A and the rotation axis B. It is configured.
  • At least one of the stage 801 and the cathode 802 can be rotated using a rotating unit such as a motor, and the rotating unit can be controlled by a control device.
  • the rotation axis A and the rotation axis B are arranged in parallel to each other, and the target 803 is supported by the cathode 802 so as to be parallel to the rotation axis B.
  • a target 803 supported by a cathode 802 that can be rotated at an arbitrary angle around the rotation axis B causes sputtered particles to collide with ions in the plasma against the surface of the target 803 in both cases of stationary and rotating. Can be deposited on the substrate 804.
  • the substrate 804 on which film formation processing is performed by the targets 803a to 803c is placed on a stage 801 that can be rotated around the rotation axis A at an arbitrary angle.
  • the stage 801 includes a substrate mounting table 807, and a substrate 804 can be provided on the substrate mounting table 807.
  • the substrate mounting table 807 of the stage 801 is configured to be rotatable about a rotation axis (not shown) that is perpendicular to the rotation axis A and passes through the center of the substrate 804, and the substrate 804 is centered on the rotation axis. It is possible to rotate.
  • the substrate mounting table 807 can be rotated using a rotating means such as a motor, for example, and the rotating means can be controlled by a control device.
  • a shielding plate 805 is provided between the target and the stage 801, and the shielding plate 805 has means for rotating at an arbitrary angle around the rotation axis A, and the film to be deposited is included in the shielding plate 805. It functions to finely adjust the film thickness distribution and increase the selectivity of the incident angle of sputtered particles.
  • the shielding plate 805 can be rotated around the rotation axis A independently of the cathode 802 or the stage 801 by appropriately controlling the shielding plate rotating means 806 by a control device.
  • a film with improved orientation is composed of a plurality of layers, and typical examples thereof are Ta / FeCo, NiFe / FeCo, and NiFeCr / FeCo.
  • targets 803 supported by the cathode 802.
  • targets 803a, 803b, and 803c there are a plurality of targets 803a, 803b, and 803c, and the targets 803a, 803b, and 803c can be properly used according to the intended use.
  • the rotation axis A and the rotation axis B are arranged in parallel to each other, and the targets 803a, 803b, and 803c are supported by the cathode 802 so as to be parallel to the rotation axis B.
  • the targets 803a, 803b, and 803c which are rotatable about the rotation axis B, cause the ions in the plasma to collide with the surface of the target 803 to deposit sputtered particles on the substrate 804.
  • One of the important things in the present invention is that the variation in the easy axis (difficult axis) of the magnetic film formed by sputtering is reduced, and the atomic density in the formed magnetic film is made uniform with a simple configuration. It is to be.
  • variation occurs in the direction of the easy axis of magnetization of the formed magnetic film.
  • FIG. 9 is a diagram for explaining the occurrence of variation in the direction of the easy axis of the magnetic film formed by the conventional carousel type sputtering apparatus.
  • a substrate 902 is supported on a rotatable substrate holder 901, and a target 903 is disposed apart from the substrate holder 901 by a predetermined distance.
  • Step 1 of FIG. 9 sputtered particles 906 are incident on the first end 904 of the substrate 902 at a high incident angle in the initial stage of sputtering on a certain substrate 902. To do.
  • sputtered particles 906 are incident on the second end 905 of the substrate 902 at a low incident angle.
  • Step 2 ⁇ Step 3 in FIG. 9 are performed.
  • the incident angle of the sputtered particles 906 incident on the first end 904 is from the high incident angle. It continuously changes to a low incident angle. Therefore, at the first end 904, easy axes of magnetization in different directions are distributed along the thickness direction of the deposited film.
  • the incident angle of the sputtered particles 906 incident on the first end 905 is from a low incident angle. It continuously changes to a high incident angle. Accordingly, in this case, too, easy magnetization axes in different directions are distributed along the thickness direction of the deposited film at the second end 905.
  • the direction of the easy axis may change by 90 ° depending on the incident angle of the sputtered particles incident on the substrate. Therefore, if the incident angle dependence of the sputtered particles occurs in the substrate surface, a region where the easy axis of magnetization is different by 90 ° in the film thickness direction may be generated, and the skew dispersion angle may be deteriorated.
  • the incident angle of the sputtered particles increases, the atomic density in the magnetic film to be formed decreases, the distribution of the specific resistance in the surface of the magnetic film also occurs, and the saturation magnetic flux density also decreases. Become.
  • FIG. 10 is a schematic diagram for explaining the variation in magnetic characteristics and the variation in the easy magnetization axis.
  • reference numeral 1001 denotes a magnetic film formed by sputtering.
  • Reference numeral 1001a denotes a magnetic film formed in steps 1 and 2 of FIG. 9, which schematically represents variations in magnetic characteristics and variations in the easy axis of magnetization.
  • reference numeral 1001b denotes a magnetic film formed in steps 2 to 3 in FIG. 9, which schematically represents variations in magnetic characteristics and variations in the easy axis of magnetization.
  • FIG. 10 is a schematic diagram for explaining the variation in magnetic characteristics and the variation in the easy magnetization axis.
  • reference numeral 1001 denotes a magnetic film formed by sputtering.
  • Reference numeral 1001a denotes a magnetic film formed in steps 1 and 2 of FIG. 9, which schematically represents variations in magnetic characteristics and variations in the easy axis of magnetization.
  • reference numeral 1001b denotes a magnetic film formed in steps 2
  • the magnetic films 1001a and 1001b in the magnetic films 1001a and 1001b, the larger the inclination of the oblique line is from the normal direction of the substrate 902, the more sputtered particles are incident at a high incident angle. The smaller the angle from the normal direction, the more sputtered particles were incident at a low incident angle.
  • the magnetic films 1001a and 1001b are schematic views, and in FIG. 10, the magnetic film 1001a and the magnetic film 1001b are shown apart from each other, but this is for the sake of easy understanding of the drawing.
  • Step 1 of FIG. 9 From Step 1 to Step 2, most of the sputtered particles are incident at a high incident angle at the first end 904 of the substrate 902 and many of the sputtered particles are incident at the second end 905. Is incident at a low incident angle. Therefore, a magnetic film is formed as indicated by reference numeral 1001a.
  • Step 3 of FIG. 9 from Step 2 to Step 3, most of the sputtered particles are incident at a low incident angle at the first end 904 and most of the sputtered particles are incident at the second end 905. Incident at a high incident angle. Therefore, a magnetic film is formed as indicated by reference numeral 1001b.
  • the incident angle of sputtered particles contributing to film formation differs between the region grown in the initial stage and the region grown in the final stage. Therefore, the direction of the easy magnetization axis may be different between the region grown in the initial stage and the region grown in the final stage, which leads to variations in the easy magnetization axis and variations in magnetic characteristics.
  • one of the objects is to optimize the mask mechanism such as the shielding plates 606 and 805 and the operation thereof, and reduce the variation of the easy magnetization axis and the variation of the magnetic characteristics.
  • the inventors of the present application have conducted intensive studies and experiments. As a result, even when the incident angle of the sputtered particles to the substrate is low, magnetic anisotropy is imparted to the formed film. I found out that
  • the present embodiment is characterized in that the shielding plate is controlled so that sputtered particles incident at a high incident angle are appropriately shielded and sputtered particles incident at a low incident angle are incident on the substrate.
  • the shielding plate is controlled so that sputtered particles incident at a high incident angle are appropriately shielded and sputtered particles incident at a low incident angle are incident on the substrate.
  • FIG. 11 is a diagram illustrating a sputtering apparatus according to the present embodiment.
  • an erosion track (erosion part) 808 is formed on the target 803a. This erosion track may be formed on the targets 803b and 803c.
  • the substrate 804 is disposed on a substrate mounting table 807 that can rotate at an arbitrary angle around the rotation axis C that is the normal direction of the substrate support surface of the stage 801.
  • the sputtered particles incident on the substrate at a high incident angle can be appropriately blocked, and the incident angle of the sputtered particles incident on the substrate from the target can be in the range of the low incident angle. It is important to unify as much as possible. That is, the operation of the shielding plate 805 is controlled so that film formation is performed by sputtered particles incident at a low incident angle.
  • At the start of sputtering at least the first end 809a of the shielding plate 805 in the rotation direction of the shielding plate 805 is located at a position facing the region surrounded by the erosion track formed on the target. Position a part. That is, at least the shielding plate 805 side of the erosion track 808 is shielded with respect to the substrate 804 in the moving direction of the substrate 804 (that is, the rotation direction of the stage 801), and the first end 809a of the shielding plate 805 is surrounded by the erosion track.
  • the blocking plate 805 is disposed so as to be positioned on the region.
  • the shielding plate 805 When the shielding plate 805 is arranged in this manner, as a result, the first end 809a of the shielding plate 805 is positioned between the erosion track regions 808a and 808b.
  • the shielding plate 805 may be moved (rotated) during sputtering as long as the first end 809a of the shielding plate 805 is located within the range between the region 808a and the region 808b. Alternatively, the shielding plate 805 may be stopped during sputtering.
  • the sputtered particles generated from the region 808a of the erosion track 808 enter the substrate 804 at a high incident angle. It is possible to appropriately block the sputtered particles. That is, the incidence of sputtered particles at a high incident angle on the substrate 804 can be suppressed. Further, since the sputtered particles generated from the region 808b of the erosion track 808 are appropriately blocked by the shielding plate 805, the incident angle of the sputtered particles from the target 808 to the substrate 804 can be kept within the range of the low incident angle. .
  • the cathode 802 that can rotate around the rotation axis B may be rotated during sputtering, or may be stopped.
  • the film thickness distribution may be adjusted by adjusting the rotational angular velocity of the stage 801.
  • the rotational angular velocity of the stage 801 increases, the deposition rate of the corresponding region on the substrate 804 decreases. Therefore, the rotation of the stage 801 is controlled so that the rotation angular speed is slowed at the start of sputtering with a slow film formation rate, and the rotation angular speed is fast when the film formation rate is fast or the target surface and the substrate surface are parallel. Just do it.
  • At least a part of the first end 809a of the shielding plate 805 is placed on a region surrounded by the erosion track 808 formed on the target 803a (region 808a and region 808b). At least one of the stage 801, the cathode 802, and the shielding plate 805 is rotated while maintaining a state of being positioned between the two. By such control, the incident angle of the sputtered particles from the target 808 to the substrate 804 is kept within a predetermined range.
  • the stage 801, the cathode 802, and the shielding plate 805 so that the incident angle from a region that is not shielded by the shielding plate 805 with respect to the substrate 804 is within a predetermined low incident angle range. At least one of them is controlled to rotate.
  • the range of the predetermined low incident angle is preferably 0 ° to 50 °, more preferably 10 ° to 50 °.
  • FIG. 12 is a diagram showing the incident angle dependence of the incident angle and magnetic characteristics of the sputtered particles of the present embodiment.
  • the incident angle is within the range of 0 ° to 50 ° (range 1201), the direction of the easy axis of magnetization can be well aligned and the saturation magnetic flux density is also increased. be able to. Furthermore, if the incident angle falls within the range of 10 ° to 50 ° (range 1202), the incident angle of 0 ° to less than 10 °, which slightly lowers the anisotropic magnetic field, can be cut, so that magnetization is easy. The direction of the axis can be made even better.
  • the incident angle when the incident angle is larger than 50 ° (range 1203), the saturation magnetic flux density of the formed magnetic film is lowered. Furthermore, when the incident angle is 70 ° or more (range 1204), the direction of the easy axis of magnetization changes by 90 °.
  • the stage 801, the cathode 802, and the shielding plate 805 are made to increase the saturation magnetic flux density so that the incident angle is within the range 1201, 1202 during the sputtering. Variations in the direction of the easy axis of magnetization can be suppressed.
  • the rotation of the stage 801, the cathode 802, and the shielding plate 805 is independently controlled so that the sputtered particles are incident on the substrate 804 within the above range 1201 at each instant of sputtering.
  • the rotation of the stage 801, the cathode 802, and the shielding plate 805 is independently controlled so that the incident of sputtered particles having an incident angle greater than 50 ° does not enter the substrate 804. That is, as shown in FIG. 13, for example, among the sputtered particles generated from the region 808a of the erosion track 808, sputtered particles 1301 having an incident angle of 50 ° or less are incident on the substrate 804, and from 50 ° from the region 808a. Control is performed so that sputtered particles having a large incident angle and sputtered particles 1302 generated from the region 808 b are not incident on the substrate 804.
  • the sputtering apparatus controls the cathode 802 and the shielding plate 805 so that the first end 809a of the shielding plate 805 is located between the regions 808a and 808b of the erosion track 808. .
  • the stage 801, the cathode 802, and the shielding plate 805 are positioned so as to shield an incident angle larger than 50 ° among the sputtered particles incident on the substrate 804 from the target 803a. Such positioning may be obtained in advance by experiments or the like.
  • the sputtering apparatus rotates the stage 801 along the arrow P and the cathode 802 along the arrow Q in each of the steps a to e.
  • the shielding plate 805 is located between the regions 808a and 808b and shields the sputtered particles 1402 incident from the target 803a at an incident angle larger than 50 °, and sputters having an incident angle of 0 ° or more and 50 ° or less.
  • the shielding plate 805 is appropriately rotated so that the particles 1401 are incident on the substrate 804.
  • the sputtering apparatus independently controls the rotation of the stage 801, the cathode 802, and the shielding plate 805 so that the sputtered particles 1401 having an incident angle of 0 ° to 50 ° are incident on the substrate 804 during the sputtering process. ing. Control of such conditions may be obtained in advance by experiments or the like.
  • the rotation of the stage 801 is continuously changed from the slow state to the fast state from the step a to the step c, and the rotation of the stage 801 is continuously changed from the early state to the slow state from the step c to the step e.
  • the film thickness distribution can be adjusted by changing the distance.
  • the shielding plate 805 can prevent sputter particles having a high incident angle (for example, an incident angle higher than 50 °) from contributing to film formation. Therefore, the incident angle of the sputtered particles contributing to the film formation can be kept within the range of the low incident angle (for example, 0 ° or more and 50 ° or less), so that variations in the easy magnetization axis and the saturation magnetic flux density are reduced. Can be suppressed.
  • the present embodiment can also be applied to the case where a target on which an erosion track such as a new target is not formed is used.
  • a target on which an erosion track such as a new target is not formed.
  • the cathode having a first magnet of one polarity and a second substantially rectangular magnet of the other polarity arranged so as to surround and not touch the first magnet
  • an assembly of regions in which the vertical component with respect to the target support surface of the cathode is 0 becomes an erosion track.
  • the first end may be disposed on the region surrounded by the aggregate.
  • the aggregate becomes an erosion track as sputtering proceeds. Therefore, whether or not the target has an erosion track, the above effect can be obtained if at least a part of one end of the shielding plate is present on the region surrounded by the assembly.
  • a circular magnet may be used instead of the second rectangular magnet.
  • FIG. 15 shows skew divergence and normalized sheet resistance of the magnetic film obtained by the sputtering, and skew divergence and normalized sheet resistance produced by a conventional method.
  • reference numeral 1501 is a diagram showing skew dispersion of the magnetic film manufactured in this example, and reference numeral 1502 is manufactured by a conventional method that does not remove the high incident angle component of the sputtered particles. It is a figure which shows Skew dispersion
  • Reference numeral 1503 is a diagram showing the normalized sheet resistance of the magnetic film produced in this example, and reference numeral 1504 is a diagram showing the normalized sheet resistance of the magnetic film produced by the conventional method. It is.
  • the skew divergence is uniform and the formed easy magnetization axes are well aligned.
  • the skew divergence occurs in the region 1505a, which causes variations in the easy magnetization axis. Yes.
  • This region 1505a is a region where there are many sputtered particles with an incident angle of greater than 50 °.
  • the normalized sheet resistance of the magnetic film produced in this example is good.
  • FIG. 1504 showing the conventional normalized sheet resistance in the magnetic film produced by the conventional method, an increase in the sheet resistance value is observed in the region 1505b, and the atomic density in the film is reduced. It is falling.
  • This region 1505b is a region where there are many sputtered particles having an incident angle larger than 50 °.
  • the sputtering apparatus is configured so that a high incident angle component (for example, an angle larger than 50 °) is not incident on the substrate as much as possible and a low incident angle component (for example, 0 ° or more and 50 ° or less) is incident on the substrate. Is controlling. Therefore, formation of the easy magnetization axis shifted by 90 ° can be suppressed, and the direction of the easy magnetization axis can be well aligned. In addition, since the sputtered particles incident at a high incident angle are prevented from entering the substrate as much as possible, it is possible to suppress a decrease in atomic density of the formed film.
  • a high incident angle component for example, an angle larger than 50 °
  • a low incident angle component for example, 0 ° or more and 50 ° or less
  • the conventional method does not remove the high incident angle component of the sputtered particles, and thus the magnetic property distribution becomes large.
  • the selectivity of the incident angle of the sputtered particles is increased. And the magnetic property distribution can be improved.
  • a second shielding plate is further provided in the sputtering apparatus described in the first embodiment.
  • the additional shielding plate it is possible to block an incident angle component in a predetermined range on the 0 ° side (for example, 0 ° or more and less than 10 °) among the low incident angles.
  • FIG. 16 is a diagram showing a sputtering apparatus according to this embodiment.
  • reference numeral 1601 denotes a second shielding plate.
  • the second shielding plate 1602 has means for rotating at an arbitrary angle around the rotation axis A, and finely adjusts the film thickness distribution of the film deposited together with the shielding plate 805 and the incident angle of the sputtered particles. It fulfills the function of enhancing the selectivity.
  • the second shielding plate 1601 can rotate around the rotation axis A independently of the cathode 802, the stage 801, or the shielding plate 805 by appropriately controlling the shielding plate rotating means by the control device. it can.
  • a high incident angle component (an angle larger than 50 °) is blocked by the shielding plate 805, and an incident angle component of 0 ° or more and less than 10 °.
  • the sputtering apparatus controls at least one of the stage 801, the cathode 802, the shielding plate 805, and the second shielding plate 1601. Therefore, the incident angle to the substrate 804 can be within a range of 10 ° to 50 ° which is a more preferable low incident angle range.
  • sputtering is performed on the entire surface of the substrate at one time as shown in steps a to e in FIG.
  • the substrate transport method during sputtering, or the positional relationship between the mask mechanism, the substrate, and the target is optimally controlled so that the magnetic properties in the upper and lower sides (left and right) in the formed film are symmetric. ing. That is, in this embodiment, when the film formation up to half of the film to be formed is completed, the remaining half of the film is formed by rotating the substrate 180 ° or moving the shielding plate.
  • the steps a to c in FIG. 14 are performed to form the film on the half of the substrate, and the film is formed to the half of the substrate 804.
  • the substrate mounting table 807 is rotated by 180 °, and the stage 801, the cathode 802, and the shielding plate 805 are returned to the positions shown in step a of FIG.
  • steps a to c in FIG. 14 are performed to form a film on the remaining half of the substrate 804.
  • the shielding plate 805 when the shielding plate 805 is moved when the film formation on half of the substrate is completed, the second end 809b of the shielding plate 805 is positioned between the region 808a and the region 808b of the erosion track 808.
  • the shielding plate 805 is rotated, and the region shielded from the substrate 804 by the shielding plate 805 is changed from the region 808b to the region 808a.
  • steps a to c in FIG. 14 are performed under the same control, the remaining half of the substrate 804 can be formed. In this manner, by forming the halves of the substrate in the same process, the in-plane asymmetry of the formed film can be reduced.
  • the above-described embodiment can be applied not only to the above-described target material (Fe 65 Co 35 ), but also to FeCo alloys typified by FeCoB and the like, and NiFe alloys.

Abstract

 本発明は、磁気異方性の方向のバラツキを低減した磁性膜を形成可能なスパッタリング装置および成膜方法を提供する。本発明のスパッタリング装置は、回転可能なカソード(802)と、回転可能なステージ(801)と、回転可能な遮蔽板(805)とを備える。上記スパッタリング装置は、スパッタリング中において、ターゲット(803a)から発生したスパッタ粒子のうち、基板(804)の法線との成す角度が0°以上50°以下の角度で入射するスパッタ粒子を基板(804)に入射させるように、カソード(802)、ステージ(801)、および遮蔽板(805)の少なくとも1つの回転を制御する。

Description

スパッタリング装置および成膜方法
 本発明は、スパッタリング装置および成膜方法に関する。
 近年、読み込み・書き込みヘッドやマイクロインダクタ、マイクロ変圧器などにおいて磁気素子の高周波用途が広がってきており、GHz帯域においても良好な高周波特性をもつ磁性薄膜が求められていることから、これらに関係する研究開発も積極的に行われている。磁性薄膜を高周波帯域で使用するには、薄膜の電気抵抗を高めることで渦電流損を減らし、かつ共鳴周波数を高めることが必要である。この共鳴周波数を高める方法としては異方性磁界Hkや飽和磁化Msを高めることが挙げられるが、HkとMsを同時に高めることは一般的に困難であり、トレードオフの関係を持つ。しかし近年、スパッタリング法やイオンビーム法を使用して、基板に対してスパッタ粒子を斜めに入射、配向させることで結晶の形状効果による一軸磁気異方性を高めることが可能になり、高いMsを保持しつつ、Hkも高めることが可能となった。
 上述のようにスパッタ粒子を斜め入射する目的は、該斜め入射により膜内で形状磁気異方性を発生させ、高い磁気異方性を付与することである。そこで重要となるのは、 
 [1]磁気異方性のバラツキを如何に抑えるか、 
 [2]磁化容易軸(磁化困難軸)をどの程度そろえるか、 
である。これは、一枚のウエハからヘッドチップを大量に切り出すため、ウエハ面内において、上記2点のバラツキが大きいと、切り出された個々のヘッド性能がマチマチになってしまうからである。
 現在の、スパッタ粒子の斜め入射成膜においては、量産性を考慮した場合、様々な入射角度を持つスパッタ粒子が基板に到来し、該様々な入射角度が磁気異方性のバラツキを生じさせる。
 <ケース1> 
 例えば、スパッタ粒子の入射角度をそろえるための成膜では、図1<ケース1>に示すように、コリメータ1をターゲット2と基板4との間に配置することが挙げられる。これにより、ターゲット2から発生したスパッタ粒子3の入射方向を選別することで均一性の高い成膜が可能である。ところが、この方法では、スパッタ粒子3の飛来数が減少し、生産性を落としてしまう。
 <ケース2> 
 図1の<ケース2>に示すように、コリメータ1の径を広げると、様々な方向からスパッタ粒子3が基板4に入射することになる。従って、磁気異方性のバラツキを生じさせる可能性はあるが、量産性には期待が持てる。
 <ケース3> 
 しかしながら<ケース2>の場合、基板4全面にわたり均一に成膜するには、基板4またはターゲット2を移動させる必要がある。この際、ターゲット2と基板4との相対的な位置関係に応じて基板4へのスパッタ粒子3の入射角度が異なることになる。すなわち、図1の<ケース3>に示すように、ターゲット2を固定し、基板4を移動させる場合、移動する基板4の位置によってはスパッタ粒子3の入射角度が大きくなったり、小さくなったりする。よって、このスパッタ粒子3の入射角度が異なることで、基板4に形成される膜の磁気異方性にバラツキが生じることになる。
 なお、本明細書において、「入射角度」とは、スパッタ粒子を入射する成膜対象の基板の法線と、入射するスパッタ粒子の入射方向とのなす角度を指す。従って、「低入射角度」とは、スパッタ粒子の入射方向の、基板法線からの傾きが相対的に小さい場合の入射角度であり、「高入射角度」とは、スパッタ粒子の入射方向の、基板法線からの傾きが相対的に大きい場合の入射角度である。
 さて、入射角度によって磁気異方性にバラツキが生じる理由は、磁化容易軸(磁化困難軸)の方向や異方性磁界の大きさ(Hk)が入射角度に強く依存するからである。 
 例えば、図2に示すように、スパッタ粒子5の入射角度が10°~70°の範囲では、入射方向に対して垂直な方向に磁化容易軸6が形成される。一方、スパッタ粒子5の入射角度が70°以上では、入射方向に対して平行に磁化容易軸6が形成される。つまり、磁性膜がどの入射角度で入射したスパッタ粒子で構成されるかに応じて、磁化容易軸の方向が変わってくるため、最終的にskew分散角(定義:磁化容易軸の角度ズレ幅)に影響を与える。
 特許文献1では、カルーセル形式のスパッタリング装置において、形成される強磁性膜の異方性を制御する技術が開示されている。具体的には、磁性体ターゲットと、回転する基板ホルダーとの間に、開口幅を変えることができるマスクを配置し、該マスクの開口幅を変えることで、磁気異方性の方向および大きさを制御している。
 また、特許文献2には、磁気ヘッドに絶縁薄膜を堆積させる方法であって、大きな表面積に均一に絶縁薄膜を形成するための方法が開示されている。図3は、特許文献2に開示された堆積装置の概略図である。図3に示す堆積装置は、第1のイオンビームガン12、第2のイオンビームガン13、ターゲットホルダー14、および基板支持体16を収納したチャンバ11を備えている。
 基板支持体16は、シャフト16bの周り(軸21aの周り)を回転可能なターンテーブル16aと、軸21bの周りを回転可能な基板取付台16cとを有している。基板支持台16c上にはターゲット材を堆積させる基板17を配置することができる。一方、ターゲットホルダー14は、矢印方向22に揺動可能に構成されており、ターゲット15を取り付けることが可能である。
 第1のイオンビームガン12は、イオンビーム18がターゲット15に入射するように配置されており、該イオンビーム18によりターゲット15からターゲット材がランダムな方向20に分散される。また、第2のイオンビームガン13は、堆積プロセス中に、もう1つのイオンビーム19を基板17に入射するように設けられている。
 特許文献2に開示された方法では、上述の構成においてターゲットホルダー14、ターンテーブル16a、基板取付台16cを適切に回転させることにより、基板17上に均一な膜厚を達成することができる。
特開平7-54145号公報 特開平8-296042号公報
 上述のように特許文献1に開示された方法では、基板の第1の方向(例えば、X方向)に磁化容易軸の方向を設定する場合、マスクの開口幅を狭くなるように制御している。この制御により、回転する基板ホルダーに配置された基板面とターゲット面とが対向する位置(平行な位置)以外の位置(位置A)に基板が位置する場合は、基板に入射するスパッタ粒子のうち、第1の方向に平行な成分(X)、および第1の方向とは直交する第2の方向(Y方向)に平行な成分(Y)は、マスクにより基板に入射しないということが特許文献1には開示されている。一方、回転する基板ホルダーに配置された基板面とターゲット面とが対向する位置(位置B)に基板が位置する場合は、上記第1の方向に平行な成分(X)は基板に対して垂直に近い角度で入射し、上記第2の方向(Y方向)に平行な成分(Y)は基板に対して鋭角(高入射角度)で入射するようになる。これにより、上記第1の方向の磁化容易軸の増加を図っている。
 しかしながら、図4に示すように、マスク42の開口幅を狭くしても、位置Aに基板が位置する場合において、基板41に対して鋭角(高入射角度)に入射するスパッタ粒子(第1の方向に平行な成分(X)44)が存在する場合がある。この成分(X)は第2の方向に磁化容易軸を形成することになる。従って、第1の方向のみならず、第2の方向にまで磁化容易軸が形成されることになり、磁化容易軸の乱れを招いてしまう。
 また、基板ホルダーを回転させながら成膜をする場合、図5Aおよび5Bに示すように、基板51の両端において、ターゲット53から基板51へと入射されるスパッタ粒子54の入射角度が異なってしまう。これは、まさに<ケース3>にて説明した、現在抱えている問題に他ならない。図5Aは、マスク52の開口幅が狭い場合についての説明図であり、図5Bは、マスク52の開口幅が広い場合についての説明図である。 
 なお、図4、5A,5Bにおいて、基板41、51が配置される基板ホルダーを、図面の簡便化を図って省略している。
 さらに、特許文献1のカルーセル型のスパッタリング装置の基板ホルダーの回転速度は一定であるため、膜厚分布を調節することが難しい。
 このように、特許文献1に開示された技術では、形成される磁化容易軸の方向を制御することは可能であるが、磁気異方性や膜厚分布を均一にすることは難しかった。
 また、特許文献2では、厚みが均一になるように絶縁薄膜を形成することを目的として、ターンテーブル16a、および基板取付台16cを回転させながら成膜を行っている。従って、各入射角度のスパッタ粒子はあらゆる方向から基板17に入射することになる。さらに、基板17には、低入射角度から高入射角度まであらゆる角度で基板17に入射することになる。従って、基板17に形成される磁気異方性は等方的なものとなり、磁化容易軸を良好に揃えることは困難であった。そもそも、特許文献2には、磁気異方性のバラツキを低減させることについては何ら議論されていない。
 さらに、特許文献2では、良好な密度を有する薄膜を形成するために、第2のイオンビームガン13を用いている。すなわち、特許文献2では、第2のイオンビームガン13から照射される補助ビームによる適度のボンバード(叩き)により膜の接着性の改善を図っている。
 このように、特許文献2では、形成される薄膜の密度を良好にしつつ、均一な薄膜を形成するために、第1のイオンビームガンおよび第2のイオンビームガンが必要であり、装置の複雑化、コストアップに繋がっている。
 本発明は、このような問題に鑑みてなされたもので、その目的とするところは、磁気異方性の方向のバラツキを低減した磁性膜を形成可能なスパッタリング装置および成膜方法を提供することにある。
 さらに、他の目的は、簡便な構成で、スパッタリングにより形成される膜中の原子密度の均一化を図ることが可能なスパッタリング装置および成膜方法を提供することにある。
 本発明の第1の実施態様は、スパッタリング装置であって、スパッタリングターゲット支持面を有するカソードであって、第1の回転軸を中心に前記スパッタリングターゲット支持面が回転可能なカソードと、基板支持面を有するステージであって、前記第1の回転軸と平行に配置された第2の回転軸を中心に前記基板支持面が回転可能なステージと、前記スパッタリング支持面と前記基板支持面との間に配置され、前記第1の回転軸または第2の回転軸を中心に回転可能な遮蔽板とを備え、スパッタリング中において、前記スパッタリングターゲット支持面に支持されるスパッタリングターゲットから発生したスパッタ粒子のうち、前記基板支持面の法線との成す角度が0°以上50°以下の角度で入射するスパッタ粒子を前記基板支持面に支持される基板に入射させるように、前記スパッタリングターゲット支持面、前記基板支持面、および遮蔽板の少なくとも1つの回転を制御することを特徴とする。
 さらに、本発明の第2の実施態様は、スパッタリングターゲット支持面を有するカソードであって、第1の回転軸を中心に前記スパッタリングターゲット支持面が回転可能なカソードと、基板支持面を有するステージであって、前記第1の回転軸と平行に配置された第2の回転軸を中心に前記基板支持面が回転可能なステージと、前記スパッタリング支持面と前記基板支持面との間に配置され、前記第1の回転軸または第2の回転軸を中心に回転可能な遮蔽板とを備えるスパッタリング装置による成膜方法であって、スパッタリング中において、前記スパッタリングターゲット支持面に支持されるスパッタリングターゲットから発生したスパッタ粒子のうち、前記基板支持面の法線との成す角度が0°以上50°以下の角度で入射するスパッタ粒子を前記基板支持面に支持される基板に入射させるように、前記スパッタリングターゲット支持面、前記基板支持面、および遮蔽板の少なくとも1つを独立に回転させることを特徴とする。
従来の、様々な入射角度も持つスパッタ粒子により、磁気異方性のバラツキが生じることを説明するための図である。 入射角度によって、形成される磁化容易軸の方向が変化する様子を説明するための図である。 従来の、堆積装置の概略構成図である。 特許文献1に開示されたスパッタリング方法において磁化容易軸の乱れが発生することを説明するための図である。 特許文献1に開示されたスパッタリング方法において磁化容易軸の乱れが発生することを説明するための図である。 特許文献1に開示されたスパッタリング方法において磁化容易軸の乱れが発生することを説明するための図である。 本発明の一実施形態に係るスパッタリング装置の側面図である。 本発明の一実施形態に係るスパッタリング装置の斜視図である。 本発明の一実施形態に係る基板載置用ステージの側面図である。 本発明の一実施形態に係る基板載置用ステージの斜視図である。 本発明の一実施形態に係るスパッタリング装置の一例を示す図である。 従来のカルーセル型スパッタリング装置により形成された磁性膜の磁化容易軸の方向にバラツキが生じることを説明するための図である。 磁性特性のバラツキ、磁化容易軸のバラツキを説明するための模式図である。 本発明の一実施形態に係るスパッタリング装置を示す図である。 本発明の一実施形態に係るスパッタ粒子の入射角度と磁気特性との入射角依存性を示す図である。 本発明の一実施形態に係るスパッタリング装置の制御を説明するための図である。 本発明の一実施形態に係るスパッタリング装置の動作を説明するための図である。 本発明の一実施形態に係るスパッタリング装置により作製した磁性膜の効果を説明するための図である。 本発明の一実施形態に係るスパッタリング装置を示す図である。
 以下、図面を参照して本発明の実施形態を詳細に説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。 
 <基本構成> 
 図6Aは、本発明の一実施形態に係るスパッタリング装置600の側面図である。図6Bは、本発明の一実施形態に係るスパッタリング装置600の斜視図である。
 図6A及びBにおいて、スパッタリング装置600は、基板604を載置するステージ601と、ターゲット603を支持するカソード602及び遮蔽板606とを備えており、カソード602のターゲット支持面とステージ601の基板支持面とが互いに対面するように配置されている。ステージ601及びカソード602はそれぞれ、回転軸A及び回転軸Bを備えており、且つ、ステージ601及びカソード602はそれぞれ、回転軸A及び回転軸Bを中心に任意の角度で回転可能である。例えば、ステージ601及びカソード602は、モーターなどの回転手段を用いて回転させることが回転させることが可能であり、この回転手段を制御装置により制御することが可能である。
 回転軸Aと回転軸Bは、互いに平行に配置されており、カソード602は、ターゲット603を回転軸Bに対して平行となるように支持することができる。回転軸Bを中心に任意の角度で回転可能であるカソード602により支持されるターゲット603は、静止中及び回転中いずれの場合においても、プラズマ中のイオンをターゲット603表面に衝突させることによってスパッタ粒子605を基板604に堆積させることが出来る。
 成膜処理時では、ターゲット603によって成膜処理が施される基板604は、回転軸Aを中心に任意の角度で回転可能であるステージ601上に載置される。ステージ601の基板支持面とカソード602のターゲット支持面とは、それぞれ回転軸A及び回転軸Bを中心として、独立して回転可能に構成されている。
 さらに、ターゲット603とステージ601との間に遮蔽板606が設けられている。遮蔽板606は、回転軸A又は回転軸Bのいずれかを中心に任意の角度で回転するための手段を有しており、堆積される膜の膜厚分布の微調整やスパッタ粒子の入射角の選択性を高める機能を果たす。遮蔽板606は、任意の方法で、回転軸A又は回転軸Bを中心として回転することが出来るが、以下で説明する実施形態では回転軸Aを中心として回転可能と構成している。遮蔽板606は、カソード603又はステージ601とは独立して回転運動をするように、制御装置により制御することが可能である。
 図7Aは、図6Aのスパッタリング装置のステージとして利用可能なステージ701の側面図である。ステージ701は基板載置台702を有しており、基板載置台702上には基板703が載置されている。図7Bは、本発明に一実施形態に係るステージ701の斜視図である。ステージ701は、図6と同様に、回転軸Aを中心に回転可能に構成されている。ステージ701の基板載置台702は、回転軸Aに垂直であり且つ基板703の中心を通過する回転軸Cを中心に回転可能に構成されており、回転軸Cを中心に基板703を回転させることが可能である。基板載置台702は、例えばモーターなどの回転手段を用いて回転させることが可能であり、この回転手段を制御装置により制御することが可能である。
 図8は、本発明の別の実施形態に係るスパッタリング装置の一例を示す図である。スパッタリング装置800は、基板804を載置するステージ801と、ターゲット803を支持するカソード802及び遮蔽板805とを備えている。ステージ801及びカソード802はそれぞれ、回転軸A及び回転軸Bを備えており、且つ、ステージ801及びカソード802の少なくとも一方は、回転軸A及び回転軸Bを中心に任意の角度で回転するように構成されている。例えば、ステージ801及びカソード802の少なくとも一方は、モーターなどの回転手段を用いて回転させることが可能であり、回転手段を制御装置によって制御することが可能である。回転軸Aと回転軸Bは、互いに平行に配置されており、ターゲット803は、回転軸Bに対して平行となるように、カソード802によって支持されている。
 回転軸Bを中心に任意の角度で回転可能であるカソード802により支持されるターゲット803は、静止中及び回転中いずれの場合においても、プラズマ中のイオンをターゲット803表面に衝突させることによってスパッタ粒子を基板804上に堆積させることが出来る。
 ターゲット803a~803cによって成膜処理が施される基板804は、回転軸Aを中心に任意の角度で回転可能であるステージ801上に載置されている。ステージ801は基板載置台807を有しており、基板載置台807上には基板804を設けることができる。ステージ801の基板載置台807は、回転軸Aに垂直であり且つ基板804の中心を通過する回転軸(不図示)を中心に回転可能に構成されており、該回転軸を中心に基板804を回転させることが可能である。基板載置台807は、例えばモーターなどの回転手段を用いて回転させることが可能であり、この回転手段を制御装置により制御することが可能である。
 さらに、ターゲットとステージ801との間に遮蔽板805が設けられており、遮蔽板805は、回転軸Aを中心に任意の角度で回転するための手段を有しており、堆積される膜の膜厚分布の微調整やスパッタ粒子の入射角の選択性を高める機能を果たす。遮蔽板805は、遮蔽板用回転手段806を制御装置によって適切に制御することによって、カソード802又はステージ801とは独立して、回転軸Aを中心に回転することができる。
 通常、配向性を高めた膜は複数層からなっており、その代表例はTa/FeCo,NiFe/FeCo,NiFeCr/FeCoである。このような複数層からなる膜を製作するためには、カソード802に支持されるターゲット803は複数であることが望ましい。図8の形態においては、複数のターゲット803a、803b及び803cが存在しており、使用用途に応じて適宜ターゲット803a、803b及び803cを使い分けることが可能である。回転軸Aと回転軸Bは、互いに平行に配置されており、ターゲット803a、803b及び803cは、回転軸Bに対して平行となるように、カソード802によって支持されている。回転軸Bを中心に回転可能であるターゲット803a、803b及び803cは、プラズマ中のイオンをターゲット803表面に衝突させることによってスパッタ粒子を基板804に堆積させる。
 (第1の実施形態) 
 本発明で重要なことの1つは、スパッタリングにより形成される磁性膜の磁化容易軸(困難軸)のバラツキを低減し、かつ簡便な構成で、形成される磁性膜中の原子密度を均一にすることである。
 例えば、特許文献1に開示されたカルーセル型のスパッタリング装置の場合、以下に示すように、形成される磁性膜の磁化容易軸の方向にバラツキが生じる。図9は、従来のカルーセル型スパッタリング装置により形成された磁性膜の磁化容易軸の方向にバラツキが生じることを説明するための図である。
 図9において、回転可能な基板ホルダー901には、基板902が支持されており、基板ホルダー901と所定の距離だけ離間してターゲット903が配置されている。このような構成でスパッタリングを開始すると、図9の工程1に示すように、ある基板902へのスパッタリングの初期段階では、基板902の第1の端904にはスパッタ粒子906が高入射角度で入射する。一方、基板902の第2の端905にはスパッタ粒子906が低入射角度で入射する。その後、図9の矢印方向に基板ホルダー901が回転してスパッタリングが進行すると、図9の工程2→工程3が行われる。
 このとき、第1の端904に着目すると、図9の工程1から工程3へと処理が進行する際に、第1の端904に入射されるスパッタ粒子906の入射角度は、高入射角度から低入射角度へと連続的に変化する。従って、第1の端904においては、堆積される膜の厚さ方向に沿って、異なる方向の磁化容易軸が分布することになる。同様に、第2の端905に着目すると、図9の工程1から工程3へと処理が進行する際に、第1の端905に入射されるスパッタ粒子906の入射角度は、低入射角度から高入射角度へと連続的に変化する。従って、この場合も、第2の端905においては、堆積される膜の厚さ方向に沿って、異なる方向の磁化容易軸が分布することになる。
 すなわち、上述したように、基板に入射するスパッタ粒子の入射角度により、磁化容易軸の方向が90°変わることがある。よって、基板面内でスパッタ粒子の入射角度依存性が発生すると、膜厚方向において磁化容易軸が90°異なっている領域が発生することがあり、skew分散角を悪化させる可能性がある。
 また、スパッタ粒子の入射角度が大きいほど、形成される磁性膜中の原子密度が下がり、該磁性膜の面内の比抵抗にも分布が生じることになると共に、飽和磁束密度も減少することになる。
 さらに、膜厚分布が均一でも、図10に示すように、基板902の左右で結晶成長が変わる可能性がある。図10は、磁性特性のバラツキ、磁化容易軸のバラツキを説明するための模式図である。図10において、符号1001は、スパッタリングにより形成された磁性膜を示す。また、符号1001aは、図9の工程1~2において形成される磁性膜であって、磁気特性のバラツキ、および磁化容易軸のバラツキを模式的に表現した磁性膜である。同様に、符号1001bは、図9の工程2~3において形成される磁性膜であって、磁気特性のバラツキ、および磁化容易軸のバラツキを模式的に表現した磁性膜である。図10において、磁性膜1001aおよび1001bにおいて、斜線の傾きが基板902の法線方向より大きな角度であるほど、高入射角度で入射したスパッタ粒子が多かったことを示し、斜線の傾きが基板902の法線方向より小さな角度であるほど、低入射角度で入射したスパッタ粒子が多かったことを示す。
 なお、磁性膜1001aおよび1001bは模式図であり、図10では、磁性膜1001aと磁性膜1001bとを離間して示しているが、これは、図面を見やすくするためである。
 図9の工程1に示されるように、工程1から工程2にかけては、基板902の第1の端904ではスパッタ粒子の多くは高入射角度で入射し、第2の端905ではスパッタ粒子の多くは低入射角度で入射する。よって、符号1001aに示すように磁性膜が形成される。一方、図9の工程3に示されるように、工程2から工程3にかけては、第1の端904ではスパッタ粒子の多くは低入射角度で入射し、第2の端905ではスパッタ粒子の多くは高入射角度で入射する。よって、符号1001bに示すように磁性膜が形成される。従って、最終的に形成された磁性膜1001においては、初期段階で成長した領域と、最終段階で成長した領域とで、膜形成に寄与するスパッタ粒子の入射角度が異なることになる。よって、初期段階で成長した領域と、最終段階で成長した領域とにおいて、磁化容易軸の方向が異なることがあり、磁化容易軸のバラツキや、磁気特性のバラツキに繋がってしまう。
 本実施形態では、遮蔽板606、805といったマスク機構、およびその動作を最適化し、磁化容易軸のバラツキや磁気特性のバラツキを低減することを目的の一つとしている。このような目的を達成するに当たり本出願の発明者は、鋭意検討、実験した結果、スパッタ粒子の、基板への入射角度が低角度であっても、形成される膜に磁気異方性が付与されることを見出した。
 さて、上述のように、高入射角度でスパッタ粒子が入射すると、形成される膜中の原子密度が下がり、膜面内の比抵抗の分布が生じ、さらに飽和磁束密度も減少することになり、磁気特性のバラツキに繋がってしまう。
 そこで、本実施形態では、高入射角度で入射するスパッタ粒子を適切に遮蔽し、低入射角度で入射するスパッタ粒子を基板に入射するように、遮蔽板を制御することを特徴としている。このように制御することで、磁気特性の低下の原因となる高入射角度で入射するスパッタ粒子の入射を抑制し、かつ入射するスパッタ粒子の入射角度を、磁気異方性を付与可能な低入射角度に可能な限り限定することができる。従って、基板に入射するスパッタ粒子の入射角度を小さく抑えることで、比抵抗のバラツキを抑え、飽和磁束密度の低下を抑えつつ、磁化容易軸の方向の均一化を図ることができる。
 以下では、図8に示したスパッタリング装置を用いて本実施形態に係るスパッタリング装置の構造、動作を説明する。
 図11は、本実施形態に係るスパッタリング装置を示す図である。 
 図11において、ターゲット803aにはエロージョントラック(侵食部)808が形成されている。このエロージョントラックは、ターゲット803b、803cに形成されている場合もある。また、基板804は、ステージ801の基板支持面の法線方向である回転軸Cを中心に任意の角度で回転可能な基板載置台807上に配置されている。
 本実施形態では、上述した通り、スパッタリング中において、基板に高入射角度で入射するスパッタ粒子を適切にブロックし、ターゲットから基板へ入射されるスパッタ粒子の入射角度を低入射角度の範囲に可能な限り統一することが重要である。すなわち、低入射角度で入射するスパッタ粒子により成膜が行われるように、遮蔽板805の動作を制御している。
 従って、本実施形態では、スパッタリングの開始時において、ターゲットに形成されたエロージョントラックに囲まれる領域に対向する位置に、遮蔽板805の、該遮蔽板805の回転方向における第1の端809aの少なくとも一部を位置させる。すなわち、基板804に対して、基板804の移動方向(すなわち、ステージ801の回転方向)においてエロージョントラック808の遮蔽板805側を少なくとも遮蔽し、遮蔽板805の第1の端809aがエロージョントラックに囲まれた領域上に位置するように、遮断板805を配置する。このように遮断板805を配置させると、結果的に、遮断板805の第1の端809aがエロージョントラックの領域808aと808bとの間に位置することになる。遮蔽板805は、スパッタリング中において、遮蔽板805の第1の端809aが領域808aと領域808bとの間の範囲内に位置していれば、移動(回転)動作してもかまわない。あるいは、スパッタリング中に遮蔽板805を止めていても良い。
 このように、スパッタリング中において、第1の端809aを領域803aと領域803bとの間に位置させることによって、エロージョントラック808の領域808aから発生するスパッタ粒子のうち、高入射角度で基板804に入射するスパッタ粒子を適切にブロックすることができる。すなわち、基板804への高入射角度でのスパッタ粒子の入射を抑制することができる。また、エロージョントラック808の領域808bから発生するスパッタ粒子は遮蔽板805によって適切にブロックされるので、ターゲット808から基板804へのスパッタ粒子の入射角度を、低入射角度の範囲内に収めることができる。
 本実施形態では、スパッタリング中に、回転軸Bを中心に回転可能なカソード802を回転させても良いし、止めたままでも良い。
 また、ステージ801の回転角速度を調節して膜厚分布を調節しても良い。ステージ801の回転角速度が速くなるほど、基板804上の、対応する領域の成膜レートは遅くなる。従って、成膜レートが遅いスパッタリング開始時等では回転角速度を遅くし、成膜レートが早い、ターゲット表面と基板表面とが平行になる場合等では回転角速度を早くするようにステージ801の回転を制御すれば良い。
 さて、本実施形態では、スパッタリング中に、遮蔽板805の第1の端809aの少なくとも一部を、対象となるターゲット803aに形成されたエロージョントラック808に囲まれる領域上(領域808aと領域808bとの間)に位置させる状態を維持しながら、ステージ801、カソード802、および遮蔽板805の少なくとも1つを回転させている。このような制御により、ターゲット808から基板804へのスパッタ粒子の入射角度を所定の範囲内に収めている。すなわち、エロージョントラック808のうち、基板804に対して遮蔽板805により遮蔽されていない領域からの入射角度が所定の低入射角度の範囲内になるように、ステージ801、カソード802、および遮蔽板805の少なくとも1つを回転制御する。
 本実施形態において、上記所定の低入射角度の範囲は、0°以上50°以下であることが好ましく、10°以上50°以下がさらに好ましい。図12は、本実施形態のスパッタ粒子の入射角度と磁気特性との入射角依存性を示す図である。
 図12から分かるように、入射角度が0°以上50°以下(範囲1201)の範囲内に収まるようにすれば、磁化容易軸の方向を良好に揃えることができ、かつ飽和磁束密度も大きくすることができる。さらに、入射角度が10°以上50°以下(範囲1202)の範囲内に収まるようにすれば、異方性磁界が多少下がってしまう0°以上10°未満の入射角度をカットできるので、磁化容易軸の方向をさらに良好に揃えることができる。
 これに対して、入射角度が50°より大きくなると(範囲1203)、形成された磁性膜の飽和磁束密度が低下してしまう。さらに、入射角度が70°以上となると(範囲1204)、磁化容易軸の方向が90°変わってしまう。
 このように、図12からも分かるように、スパッタリング中に入射角度が範囲1201、1202内となるように、ステージ801、カソード802、および遮蔽板805させることで、飽和磁束密度を大きくしつつ、磁化容易軸の方向のバラツキを抑えることができる。本実施形態では、スパッタリングの各瞬間において、上記範囲1201内でスパッタ粒子が基板804に入射するように、ステージ801、カソード802、および遮蔽板805の回転を独立に制御する。
 ただし、低入射角度の好ましい範囲である範囲1201、1202でのスパッタ粒子を積極的に増やしても、50°よりも大きな入射角度で入射するスパッタ粒子の入射割合が増えると、上述したように、磁化容易軸の方向が90°変わったり、膜中の原子密度の低下を招いてしまう。このため、本来狙うべき方向と異なる方向に異方性が形成されてしまい、磁化容易軸の面内分布のバラツキに繋がってしまう。
 そこで、本実施形態では、50°より大きい入射角度のスパッタ粒子の入射が基板804に入射しないように、ステージ801、カソード802、および遮蔽板805の回転を独立に制御している。すなわち、図13に示すように、例えば、エロージョントラック808の領域808aから発生するスパッタ粒子のうち、入射角度が50°以下であるスパッタ粒子1301を基板804に入射させ、領域808aからの50°よりも大きな入射角度のスパッタ粒子、および領域808bから発生するスパッタ粒子1302を基板804に入射させないように制御している。
 次に、図14を用いて本実施形態に係るスパッタリング装置の動作を説明する。 
 まずは、スパッタリングの開始に先立って、スパッタリング装置は、遮蔽板805の第1の端809aが、エロージョントラック808の領域808aと808bとの間に位置するように、カソード802および遮蔽板805を制御する。次いで、ターゲット803aから基板804へと入射されるスパッタ粒子のうち、50°よりも大きな入射角度を遮蔽するように、ステージ801、カソード802、および遮蔽板805を位置決めする。なお、このような位置決めは、予め実験等により求めておけば良い。
 次いで、スパッタ処理が開始されると、図14の工程a~工程eに従ってスパッタリングが行われる。このとき、スパッタリング装置は、工程a~eの各々において、ステージ801を矢印Pに沿って回転させ、カソード802を矢印Qに沿って回転させる。また、遮蔽板805が領域808aと808bとの間に位置し、かつターゲット803aからの50°よりも大きな入射角度で入射するスパッタ粒子1402を遮蔽し、0°以上50°以下の入射角度のスパッタ粒子1401を基板804に入射させるように、遮蔽板805を適宜回転させる。すなわち、スパッタリング装置は、スパッタ処理中において、入射角度が0°以上50°以下のスパッタ粒子1401が基板804に入射するように、ステージ801、カソード802、および遮蔽板805の回転を独立に制御している。このような条件の制御は、予め実験等によって求めておけば良い。
 なお、図14の工程aから工程cに向かってステージ801の回転を遅い状態から早い状態に連続的に変化させ、工程cから工程eに向かってステージ801の回転を早い状態から遅い状態に連続的に変化させることによって、膜厚分布を調節することができる。
 このように動作させることで、遮蔽板805によって、高入射角度(例えば、50°よりも高い入射角度)のスパッタ粒子が成膜に寄与しないようにすることができる。従って、成膜に寄与するスパッタ粒子の入射角度を低入射角度の範囲内(例えば、0°以上50°以下)になるべく収めることができるので、磁化容易軸のバラツキ、および飽和磁束密度の低下を抑えることができる。
 なお、上記説明では、エロージョントラックが形成されたターゲットを用いた場合について説明したが、本実施形態は、新品のターゲット等のエロージョントラックが形成されてないターゲットを用いる場合にも適用可能である。例えば、一方の極性の第1の磁石と、該第1の磁石を囲むようにかつ、接しないように配置された、他方の極性の第2の略矩形状磁石とを有するカソードを用いる場合、ターゲット上に発生した磁場のうち、第1の磁石と第2の略矩形磁石との間に生じる磁気トンネルのうち、カソードのターゲット支持面に対する垂直成分が0になる領域の集合体がエロージョントラックに略対応する。よって、エロージョントラックが形成されていないターゲットを用いる場合は、上記集合体に囲まれる領域の上に、第1の端を配置すれば良い。上記集合体はスパッタリングが進行するについてエロージョントラックになる。従って、ターゲットにエロージョントラックがあろうが無かろうが、上記集合体に囲まれる領域上に遮蔽板の一方の端の少なくとも一部が存在するようにすれば、上記効果を奏することができる。
 なお、本実施形態では、第2の矩形状磁石の代わりに円形状磁石を用いても良い。本実施形態では、他方の磁性の磁石により、第1の磁石を囲むようにループ形態を形成することが重要であり、該ループ形態の形状はいずれの形状でも良い。
 (実施例) 
 以下の条件に従ってスパッタリングを行った。 
 <装置構成> 
 ステージ801の回転中心から基板面までの距離:330mm 
 基板サイズ(直径):200mm 
 遮蔽板805の径:390mm 
 ターゲットと基板とが略平行に向かい合ったときの距離:100mm 
 カソード802の回転軸Bとターゲット面までの距離:160mm 
 ターゲットサイズ:450mm×130mm 
 ターゲット厚み:4mm 
 ターゲット材質:Fe65Co35(atomic%)
 <成膜条件> 
 ガス:アルゴン 
 ガス圧:0.05Pa 
 放電電力:4000W 
 メインに入射されるスパッタ粒子の入射角度:35°
 上記条件で、図11に示したスパッタリング装置を用いて、図14にて説明した動作によりスパッタリングを行った。該スパッタリングにより得られた磁性膜のSkew発散および規格化シート抵抗、並びに従来の方法で作製したSkew発散および規格化シート抵抗を図15に示す。
 図15において、符号1501は、本実施例にて作製された磁性膜のSkew分散を示す図であり、符号1502は、スパッタ粒子の高入射角度成分を除去していない従来の方法にて作製された磁性膜のSkew分散を示す図である。また、符号1503は、本実施例にて作製された磁性膜の規格化シート抵抗を示す図であり、符号1504は、上記従来の方法にて作製された磁性膜の規格化シート抵抗を示す図である。
 本発明のSkew発散を示す図1501から分かるように、本実施例にて作製された磁性膜においては、Skew発散が均一であり、形成された磁化容易軸が良好に揃っている。一方、従来のSkew発散を示す図1502から分かるように、従来の方法にて作製された磁性膜においては、領域1505aではSkew発散にズレが生じており、磁化容易軸のバラツキの原因となっている。この領域1505aは、入射角が50°より大きいスパッタ粒子が多い領域である。
 また、本発明の規格化シート抵抗を示す図1503から分かるように、本実施例にて作製された磁性膜の規格化シート抵抗は良好である。これに対し、従来の規格化シート抵抗を示す図1504から分かるように、従来の方法にて作製された磁性膜においては、領域1505bにおいてシート抵抗値の上昇が見られ、膜中の原子密度が低下している。この領域1505bは、入射角が50°より大きいスパッタ粒子が多い領域である。
 本実施例では、高入射角度成分(例えば、50°よりも大きい角度)をなるべく基板に入射させず、低入射角度成分(例えば、0°以上50°以下)を基板に入射するようにスパッタリング装置を制御している。従って、90°ずれた磁化容易軸の形成を抑制することができ、磁化容易軸の方向を良好に揃えることができる。また、高入射角度で入射するスパッタ粒子を基板になるべく入射しないようにしているので、形成された膜の原子密度の低下を抑制することができる。
 このように、従来の方法では、スパッタ粒子の高入射角度成分を除去していないので、磁気特性分布が大きくなってしまうが、本実施形態を適用することで、スパッタ粒子の入射角度の選択性が高まり、磁気特性分布を改善することができる。
 (第2の実施形態) 
 本実施形態では、第1の実施形態にて説明したスパッタリング装置にさらに第2の遮蔽板を設けている。このように、追加の遮蔽板を設けることで、低入射角度のうち、0°側の所定の範囲(例えば、0°以上10度未満)の入射角度成分をブロックすることができる。
 図16は、本実施形態に係るスパッタリング装置を示す図である。 
 図16において、符号1601は、第2の遮蔽板である。第2の遮蔽板1602は、回転軸Aを中心に任意の角度で回転するための手段を有しており、遮蔽板805と共に堆積される膜の膜厚分布の微調整やスパッタ粒子の入射角の選択性を高める機能を果たす。第2の遮蔽板1601は、遮蔽板用回転手段を制御装置によって適切に制御することによって、カソード802、ステージ801、または遮蔽板805とは独立して、回転軸Aを中心に回転することができる。
 本実施形態では、例えばエロージョントラック808の領域808aから発生するスパッタ粒子において、高入射角度成分(50°よりも大きい角度)を遮蔽板805にてブロックし、0°以上10°未満の入射角度成分を第2の遮蔽板1601にてブロックするように、スパッタリング装置はステージ801、カソード802、遮蔽板805、および第2の遮蔽板1601の少なくとも1つを制御する。よって、基板804への入射角度を、より好ましい低入射角度の範囲である10°以上50°以下の範囲内に収めることができる。
 (第3の実施形態) 
 上述の実施形態では、図14の工程a~工程eに示すように、一度に基板全面にスパッタリングを行っている。本実施形態では、スパッタリング中の基板搬送方法、またはマスク機構、基板、およびターゲットの位置関係を最適に制御することで、形成された膜中の上下(左右)における磁気特性が対称になるようにしている。すなわち、本実施形態では、形成すべき膜の半分までの成膜が完了したら、基板を180°回転させる、または遮蔽板を移動させて、残り半分の成膜を行う。
 例えば、基板の半分の成膜が終わった時点で基板を180°回転させる場合は、図14の工程a~工程cまで行って基板の半分について成膜を行い、基板804の半分まで成膜が終わった後、一旦スパッタ動作を停止し、基板載置台807を180°回転させ、ステージ801、カソード802、および遮蔽板805を図14の工程aに示す位置に戻す。その後、また図14の工程a~工程cを行うことで、基板804の残りの半分について成膜を行う。
 また、例えば、基板の半分の成膜が終わった時点で遮蔽板805を移動させる場合は、遮蔽板805の第2の端809bが、エロージョントラック808の領域808aと領域808bとの間に位置するように遮蔽板805を回転させ、遮蔽板805により基板804に対して遮蔽する領域を、領域808bから領域808aに変更する。後は、図14の工程aから工程cを同様な制御で行えば、基板804の残りの半分の成膜を行うことができる。
 このように、基板の半分ずつ、同様の工程で成膜することで、成膜された膜の面内の非対称性を低減することができる。
 なお、上述の実施形態は、上述のターゲット材料(Fe65Co35)のみならず、FeCoBなどに代表されるFeCo合金や、NiFe合金にも展開できる。

Claims (16)

  1.  スパッタリングターゲット支持面を有するカソードであって、第1の回転軸を中心に前記スパッタリングターゲット支持面が回転可能なカソードと、
     基板支持面を有するステージであって、前記第1の回転軸と平行に配置された第2の回転軸を中心に前記基板支持面が回転可能なステージと、
     前記スパッタリング支持面と前記基板支持面との間に配置され、前記第1の回転軸、または第2の回転軸を中心に回転可能な遮蔽板とを備え、
     スパッタリング中において、前記スパッタリングターゲット支持面に支持されるスパッタリングターゲットから発生したスパッタ粒子のうち、前記基板支持面の法線との成す角度が0°以上50°以下の角度で入射するスパッタ粒子を前記基板支持面に支持される基板に入射させるように、前記スパッタリングターゲット支持面、前記基板支持面、および遮蔽板の少なくとも1つの回転を制御することを特徴とするスパッタリング装置。
  2.  前記スパッタリングターゲット支持面にターゲットを配置してスパッタリングを行う際に、
     前記カソードに配置されたターゲットのうち、前記カソードから発生する磁場の、前記スパッタリングターゲット支持面に対する垂直成分が0になる領域の集合体に囲まれる領域上に、前記遮蔽板の回転方向における第1の端の少なくとも一部を位置させることを特徴とする請求項1に記載のスパッタリング装置。
  3.  前記スパッタリング中において、形成されるべき膜の半分までの成膜が完了すると、前記遮蔽板の前記第1の端と反対側の第2の端の少なくとも一部を、前記領域上に位置させることを特徴とする請求項2に記載のスパッタリング装置。
  4.  前記スパッタリング装置は、スパッタリング中において、前記スパッタリングターゲット支持面に支持されるスパッタリングターゲットから発生したスパッタ粒子のうち、前記法線との成す角度が10°以上50°以下の角度で入射するスパッタ粒子を前記基板支持面に支持される基板に入射させるように、前記カソード、ステージ、および遮蔽板の少なくとも1つの回転を制御することを特徴とする請求項1に記載のスパッタリング装置。
  5.  前記スパッタリング支持面と前記基板支持面との間に配置され、前記第1の回転軸、または第2の回転軸を中心に回転可能な第2の遮蔽板をさらに備え、
     前記遮蔽板と前記第2の遮蔽板とにより、前記スパッタリングターゲットから発生したスパッタ粒子のうち、前記法線との成す角度が0°以上10°未満、および50°以上の角度で入射するスパッタ粒子を前記基板に対して遮蔽することを特徴とする請求項4に記載のスパッタリング装置。
  6.  前記スパッタリング装置は、前記スパッタリングターゲットから発生したスパッタ粒子のうち、前記法線との成す角度が50°よりも大きい角度で入射するスパッタ粒子を前記基板に対して遮蔽するように、前記スパッタリングターゲット支持面、前記基板支持面、および遮蔽板の少なくとも1つの回転を制御することを特徴とする請求項1に記載のスパッタリング装置。
  7.  前記ステージは、前記第2の回転軸に対して垂直な第3の回転軸を中心に回転可能な基板載置台を有し、
     前記スパッタリング中において、形成されるべき膜の半分までの成膜が完了すると、前記第3の回転軸を中心に前記基板載置台を180°回転させることを特徴とする請求項1に記載のスパッタリング装置。
  8.  前記スパッタリングターゲット支持面、前記基板支持面、および遮蔽板の少なくとも1つの回転を制御するための制御装置をさらに備えることを特徴とする請求項1に記載のスパッタリング装置。
  9.  前記カソードは、複数のスパッタリングターゲット支持面を有し、該複数のスパッタリングターゲット支持面は前記カソードの周囲に配置されていることを特徴とする請求項1に記載のスパッタリング装置。
  10.  スパッタリングターゲット支持面を有するカソードであって、第1の回転軸を中心に前記スパッタリングターゲット支持面が回転可能なカソードと、
     基板支持面を有するステージであって、前記第1の回転軸と平行に配置された第2の回転軸を中心に前記基板支持面が回転可能なステージと、
     前記スパッタリング支持面と前記基板支持面との間に配置され、前記第1の回転軸または第2の回転軸を中心に回転可能な遮蔽板とを備えるスパッタリング装置による成膜方法であって、
     スパッタリング中において、前記スパッタリングターゲット支持面に支持されるスパッタリングターゲットから発生したスパッタ粒子のうち、前記基板支持面の法線との成す角度が0°以上50°以下の角度で入射するスパッタ粒子を前記基板支持面に支持される基板に入射させるように、前記スパッタリングターゲット支持面、前記基板支持面、および遮蔽板の少なくとも1つを独立に回転させることを特徴とする成膜方法。
  11.  前記スパッタリング中は、前記カソードに配置されたターゲットのうち、前記カソードから発生する磁場の、前記スパッタリングターゲット支持面に対する垂直成分が0になる領域の集合体に囲まれる領域上に、前記遮蔽板の回転方向における第1の端の少なくとも一部を位置させることを特徴とする請求項10に記載の成膜方法。
  12.  前記スパッタリング中において、形成されるべき膜の半分までの成膜が完了すると、前記遮蔽板の前記第1の端と反対側の第2の端の少なくとも一部を、前記領域上に位置させることを特徴とする請求項11に記載の成膜方法。
  13.  スパッタリング中において、前記スパッタリングターゲット支持面に支持されるスパッタリングターゲットから発生したスパッタ粒子のうち、前記法線との成す角度が10°以上50°以下の角度で入射するスパッタ粒子を前記基板支持面に支持される基板に入射させるように、前記カソード、ステージ、および遮蔽板の少なくとも1つを独立に回転させることを特徴とする請求項10に記載の成膜方法。
  14.  前記スパッタリング装置は、前記スパッタリング支持面と前記基板支持面との間に配置され、前記第1の回転軸または第2の回転軸を中心に回転可能な第2の遮蔽板をさらに備え、
     前記遮蔽板と前記第2の遮蔽板との回転を独立に制御することにより、前記スパッタリングターゲットから発生したスパッタ粒子のうち、前記法線との成す角度が0°以上10°未満、および50°以上の角度で入射するスパッタ粒子を前記基板に対して遮蔽することを特徴とする請求項13に記載の成膜方法。
  15.  前記スパッタリングターゲットから発生したスパッタ粒子のうち、前記法線との成す角度が50°よりも大きい角度で入射するスパッタ粒子を前記基板に対して遮蔽するように、前記スパッタリングターゲット支持面、前記基板支持面、および遮蔽板の少なくとも1つを独立に回転させることを特徴とする請求項10に記載の成膜方法。
  16.  前記ステージは、前記第2の回転軸に対して垂直な第3の回転軸を中心に回転可能な基板載置台を有し、
     前記スパッタリング中において、形成されるべき膜の半分までの成膜が完了すると、前記第3の回転軸を中心に前記基板載置台を180°回転させることを特徴とする請求項10に記載の成膜方法。
PCT/JP2008/073295 2008-12-22 2008-12-22 スパッタリング装置および成膜方法 WO2010073307A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2008/073295 WO2010073307A1 (ja) 2008-12-22 2008-12-22 スパッタリング装置および成膜方法
JP2009522039A JP4352104B1 (ja) 2008-12-22 2008-12-22 スパッタリング装置および成膜方法
CN2008801018804A CN101855381B (zh) 2008-12-22 2008-12-22 溅射设备和膜沉积方法
US12/683,921 US7955480B2 (en) 2008-12-22 2010-01-07 Sputtering apparatus and film deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/073295 WO2010073307A1 (ja) 2008-12-22 2008-12-22 スパッタリング装置および成膜方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/683,921 Continuation US7955480B2 (en) 2008-12-22 2010-01-07 Sputtering apparatus and film deposition method

Publications (1)

Publication Number Publication Date
WO2010073307A1 true WO2010073307A1 (ja) 2010-07-01

Family

ID=41314390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073295 WO2010073307A1 (ja) 2008-12-22 2008-12-22 スパッタリング装置および成膜方法

Country Status (4)

Country Link
US (1) US7955480B2 (ja)
JP (1) JP4352104B1 (ja)
CN (1) CN101855381B (ja)
WO (1) WO2010073307A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5280459B2 (ja) * 2008-12-25 2013-09-04 キヤノンアネルバ株式会社 スパッタリング装置
JP2013253316A (ja) * 2012-05-09 2013-12-19 Iza Corp スパッタリング装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021078A1 (ja) * 2008-08-18 2010-02-25 キヤノンアネルバ株式会社 磁石ユニットおよびマグネトロンスパッタリング装置
JP6224677B2 (ja) * 2012-05-09 2017-11-01 シーゲイト テクノロジー エルエルシーSeagate Technology LLC スパッタリング装置
WO2014083728A1 (ja) 2012-11-30 2014-06-05 キヤノンアネルバ株式会社 スパッタリング装置および基板処理装置
CN103789743B (zh) * 2014-01-14 2015-09-16 南京工业大学 一种斜角入射微纳米薄膜沉积系统
CN105671489B (zh) * 2016-03-25 2018-08-21 沈阳大学 一种制备结构可控功能薄膜的装置
JP6823392B2 (ja) * 2016-07-05 2021-02-03 東京エレクトロン株式会社 絶縁膜を形成する方法
CN108690962B (zh) * 2017-04-06 2020-06-19 北京北方华创微电子装备有限公司 磁控溅射设备及磁控溅射沉积方法
JP7471236B2 (ja) * 2018-02-13 2024-04-19 エヴァテック・アーゲー マグネトロンスパッタリングのための方法および装置
EP3587619B1 (en) * 2018-06-25 2022-06-22 Deutsches Elektronen-Synchrotron DESY An apparatus for depositing material on the surface of a substrate
CN110592547A (zh) * 2019-10-22 2019-12-20 武汉奥亿特科技有限公司 一种方向性可控的磁控溅射镀膜装置
JP2022101218A (ja) * 2020-12-24 2022-07-06 東京エレクトロン株式会社 スパッタ装置及びスパッタ装置の制御方法
US11631535B1 (en) * 2021-10-07 2023-04-18 Western Digital Technologies, Inc. Longitudinal sensor bias structures and method of formation thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257941A (ja) * 1987-04-15 1988-10-25 Oki Electric Ind Co Ltd 光磁気記録用媒体の製造方法
JPH11200040A (ja) * 1998-01-20 1999-07-27 Victor Co Of Japan Ltd 磁気抵抗効果用磁性膜の製造方法
JP2002266071A (ja) * 2001-03-08 2002-09-18 Nippon Sheet Glass Co Ltd 薄膜形成方法及び薄膜形成装置
JP3444917B2 (ja) * 1993-03-19 2003-09-08 株式会社フジクラ 多結晶薄膜の製造方法と製造装置および多結晶薄膜を備えた酸化物超電導導体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1017354B (zh) * 1988-11-09 1992-07-08 四川大学 用离子束反应溅射方法成膜的装置
JPH0754145A (ja) 1993-06-10 1995-02-28 Matsushita Electric Ind Co Ltd スパッタリング装置および強磁性積層膜の形成方法
EP0739001B1 (en) * 1995-04-17 2001-02-21 Read-Rite Corporation Deposition of insulating thin film by plurality of ion beams
US6224718B1 (en) * 1999-07-14 2001-05-01 Veeco Instruments, Inc. Target assembly for ion beam sputter deposition with multiple paddles each having targets on both sides
JP2008019498A (ja) 2006-07-14 2008-01-31 Seiko Epson Corp 成膜方法及び成膜装置
JP4642789B2 (ja) * 2006-07-14 2011-03-02 セイコーエプソン株式会社 成膜装置及び成膜方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257941A (ja) * 1987-04-15 1988-10-25 Oki Electric Ind Co Ltd 光磁気記録用媒体の製造方法
JP3444917B2 (ja) * 1993-03-19 2003-09-08 株式会社フジクラ 多結晶薄膜の製造方法と製造装置および多結晶薄膜を備えた酸化物超電導導体の製造方法
JPH11200040A (ja) * 1998-01-20 1999-07-27 Victor Co Of Japan Ltd 磁気抵抗効果用磁性膜の製造方法
JP2002266071A (ja) * 2001-03-08 2002-09-18 Nippon Sheet Glass Co Ltd 薄膜形成方法及び薄膜形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5280459B2 (ja) * 2008-12-25 2013-09-04 キヤノンアネルバ株式会社 スパッタリング装置
JP2013253316A (ja) * 2012-05-09 2013-12-19 Iza Corp スパッタリング装置
US9437404B2 (en) 2012-05-09 2016-09-06 Seagate Technology Llc Sputtering apparatus

Also Published As

Publication number Publication date
JP4352104B1 (ja) 2009-10-28
US20100155229A1 (en) 2010-06-24
JPWO2010073307A1 (ja) 2012-05-31
CN101855381A (zh) 2010-10-06
US7955480B2 (en) 2011-06-07
CN101855381B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4352104B1 (ja) スパッタリング装置および成膜方法
JP4503098B2 (ja) スパッタリングによる成膜方法とその装置
JP3151445B2 (ja) イオン・ビーム・スパッタ付着システム及び磁気抵抗センサ構築方法
WO2010073711A1 (ja) スパッタリング装置、スパッタリング方法及び電子デバイスの製造方法
JP2010144247A (ja) スパッタリング装置および成膜方法
JP5364172B2 (ja) スパッタリング装置による成膜方法およびスパッタリング装置
JP2003049266A (ja) 基板の表面に膜を堆積するための装置
JP5280459B2 (ja) スパッタリング装置
TW200848533A (en) Method for producing a directional layer by cathode sputtering, and device for implementing the method
US20140141624A1 (en) Method of manufacturing tunnel barrier layer or gate insulator film and apparatus for manufacturing tunnel barrier layer or gate insulator film
US20100155227A1 (en) Sputtering apparatus and film forming method
JPH0878333A (ja) 膜形成用プラズマ装置
JP2002020864A (ja) 磁性薄膜用のスパッタリング装置及び磁性薄膜形成方法
JP4974582B2 (ja) 成膜装置
US8852412B2 (en) Magnetron source and method of manufacturing
JPS6233764A (ja) スパツタリング装置
JP2001207257A (ja) Gmr膜の製造方法及び製造装置
JP3038287B2 (ja) 薄膜作成装置
JP4396885B2 (ja) マグネトロンスパッタ装置
JP2010095799A (ja) スパッタリングによる成膜方法とその装置
JPH0375369A (ja) スパッタリング装置
JP4502975B2 (ja) スパッタリング装置
JPH10245675A (ja) 磁性薄膜形成装置
JP2010150652A (ja) スパッタリング装置および成膜方法
JPH0512657A (ja) 薄膜磁気テープ、その製造方法および製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880101880.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009522039

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08879105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08879105

Country of ref document: EP

Kind code of ref document: A1