WO2010061891A1 - 半導体レーザのチューニング方法 - Google Patents

半導体レーザのチューニング方法 Download PDF

Info

Publication number
WO2010061891A1
WO2010061891A1 PCT/JP2009/069957 JP2009069957W WO2010061891A1 WO 2010061891 A1 WO2010061891 A1 WO 2010061891A1 JP 2009069957 W JP2009069957 W JP 2009069957W WO 2010061891 A1 WO2010061891 A1 WO 2010061891A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
semiconductor laser
region
wavelength selection
temperature
Prior art date
Application number
PCT/JP2009/069957
Other languages
English (en)
French (fr)
Inventor
田中宏和
石川務
町田豊稔
Original Assignee
住友電工デバイス・イノベーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工デバイス・イノベーション株式会社 filed Critical 住友電工デバイス・イノベーション株式会社
Priority to EP09829136.2A priority Critical patent/EP2372850B1/en
Priority to CN2009801474591A priority patent/CN102227854B/zh
Publication of WO2010061891A1 publication Critical patent/WO2010061891A1/ja
Priority to US13/117,557 priority patent/US8681826B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1209Sampled grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1212Chirped grating

Definitions

  • the present invention relates to a semiconductor laser tuning method.
  • the wavelength tunable laser disclosed in Patent Document 1 is provided with an SG-DBR (Sampled Distributed Distributed Bragg Reflector) region having a plurality of wavelength selection regions, the temperature of each wavelength selection region is controlled by a heater, and the refraction is performed. The selected wavelength characteristic due to rate change is controlled.
  • SG-DBR Sampled Distributed Distributed Bragg Reflector
  • the reflection spectrum wavelength selected by superimposing the wavelength characteristics of each wavelength selection region in the SG-DBR region and the gain spectrum wavelength in the SG-DFB (Sampled Distributed Distributed Feedback) region are matched. Then, an operation of fixing to a predetermined oscillation wavelength is performed.
  • the above-mentioned wavelength tunable laser needs to tune the parameter value of the wavelength selection region for each wavelength channel in advance.
  • this type of tunable laser it is necessary to make the relationship between the wavelength selection regions constant so that only a predetermined single wavelength can be selected.
  • An object of the present invention is to provide a semiconductor laser tuning method capable of selecting an oscillation wavelength while suppressing power consumption.
  • the semiconductor laser tuning method includes a step of performing refractive index control on the wavelength selection region in a semiconductor laser having a plurality of wavelength selection regions each having a periodic wavelength characteristic, and the refractive index control. Confirming that the wavelength characteristic of each of the wavelength selection regions realized by the step changes by one period or more compared to the wavelength characteristic realized by the specified value of the refractive index in a state where the refractive index control is not given, and the confirmation And a step of shifting the refractive index of the selected wavelength selection region to the specified value side by the unit of one period. According to the present invention, the control amount of the wavelength selection region can be reduced, and the power consumption required for the control can be reduced.
  • a region defined by dividing a distributed reflection region having a plurality of segments in which a space portion is connected to a diffraction grating portion having a diffraction grating can be used.
  • the parameter value for controlling the wavelength selection region can be the temperature of the segment.
  • the parameter value for controlling the wavelength selection region may be a current value injected into the segment.
  • optical lengths of the plurality of segments may be different from each other.
  • the wavelength selection region may include a plurality of segments in which a spacer is connected to a diffraction grating portion having a diffraction grating, and may be optically connected to a gain region having a gain.
  • each of the plurality of wavelength selection regions may be a ring resonator.
  • FIG. 3 is a diagram for explaining the principle of control of the semiconductor laser according to the first embodiment. It is a figure which shows an example of the flowchart performed by a controller. It is a figure which shows the relationship between the temperature of a segment, and the reflection spectrum of a CSG-DBR area
  • 6 is a schematic diagram showing a semiconductor laser according to Example 2.
  • FIG. 1 is a schematic diagram showing an overall configuration of a laser apparatus 100 according to Embodiment 1 of the present invention.
  • the laser device 100 includes a semiconductor laser 10, a temperature control device 20, and a controller 30.
  • the semiconductor laser 10 is disposed on the temperature control device 20. Next, details of each part will be described.
  • the semiconductor laser 10 includes a CSG-DBR (Chirped Sampled Grafted Distributed Bragg Reflector) region 11, an SG-DFB region 12, and a semiconductor optical amplification (SOA: Semiconductor Optical Amplifier) region 13 connected in order.
  • CSG-DBR Cold Sampled Grafted Distributed Bragg Reflector
  • SOA Semiconductor Optical Amplifier
  • the CSG-DBR region 11 includes an optical waveguide in which gratings are provided at predetermined intervals.
  • the optical waveguide of the CSG-DBR region 11 is provided with a plurality of segments in which a space portion is connected to a diffraction grating portion having a diffraction grating. In the CSG-DBR region 11, the optical length of each segment is different.
  • the optical waveguide of the CSG-DBR region 11 is made of a semiconductor crystal whose absorption edge wavelength is shorter than the laser oscillation wavelength.
  • a heater is provided for each segment.
  • three heaters 14a, 14b, and 14c are provided on the CSG-DBR region 11 corresponding to the segments CSG1 to CSG3.
  • the SG-DFB region 12 includes an optical waveguide in which gratings are provided at predetermined intervals.
  • the optical waveguide of the SG-DFB region 12 is provided with a plurality of segments in which a space part is connected to a diffraction grating part having a diffraction grating. In the SG-DFB region 12, the optical length of each segment is substantially the same.
  • the optical waveguide of the SG-DFB region 12 is made of a semiconductor crystal having a gain with respect to laser oscillation at a target wavelength.
  • An electrode 15 is provided on the SG-DFB region 12.
  • the SOA region 13 includes an optical waveguide made of a semiconductor crystal that gives a gain to light by current control or absorbs the light.
  • An electrode 16 is provided on the SOA region 13. Note that the optical waveguides of the CSG-DBR region 11, the SG-DFB region 12, and the SOA region 13 are optically coupled to each other.
  • the temperature control device 20 includes a Peltier element and controls the temperature of the semiconductor laser 10.
  • the controller 30 includes a control unit such as a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory), a power source, and the like.
  • the ROM of the controller 30 stores control information, control programs, and the like for the semiconductor laser 10.
  • the controller 30 supplies a predetermined current to the electrode 15. Thereby, light is generated in the optical waveguide in the SG-DFB region 12. The generated light is repeatedly reflected and amplified while propagating through the optical waveguides of the CSG-DBR region 11, the SG-DFB region 12, and the SOA region 13, and is oscillated outside.
  • a predetermined current is supplied to the electrode 16 from the controller 30. Thereby, the output from the semiconductor laser 10 is kept constant.
  • the controller 30 changes the equivalent refractive index of the segments CSG1 to CSG3 by controlling the temperature of the segments CSG1 to CSG3 by controlling the heaters 14a to 14c.
  • the reflection characteristics of the segments CSG1 to CSG3 change.
  • the oscillation wavelength of the semiconductor laser 10 can be changed.
  • the laser device 100 can cause the semiconductor laser 10 to oscillate at a desired wavelength.
  • FIG. 2 (a) schematically shows the reflection spectra of the segments CSG1 to CSG3 before heating by the heaters 14a to 14c.
  • FIG. 2B is a diagram in which the reflection spectra of the segments CSG1 to CSG3 shown in FIG. Since the segments CSG1 to CSG3 have different optical lengths, the peak periods of the reflection spectra of the segments CSG1 to CSG3 are different from each other as shown in FIG. Accordingly, as shown in FIG. 2B, a wavelength where the peaks of the reflection spectrum overlap and a wavelength where the peaks do not overlap appear.
  • FIG. 3A shows a reflection spectrum of the CSG-DBR region 11.
  • the reflection spectrum of the CSG-DBR region 11 is obtained by superimposing the reflection spectra of the segments CSG1 to CSG3.
  • Fig.3 (a) reflection intensity differs for every wavelength, and a bell-shaped envelope is formed.
  • an envelope like a plurality of bells arranged is formed.
  • the wavelength dependence of the reflection intensity appears.
  • FIG. 3B is a diagram showing a reflection spectrum of the SG-DFB region 12.
  • the optical length of each segment is substantially the same and the temperature of each segment is controlled to be constant by the temperature control device 20, the reflection intensity is almost the same for each peak wavelength. Become.
  • the laser oscillation wavelength can be selected by changing the wavelength-reflection intensity characteristic of the CSG-DBR region 11.
  • the number of segments in the CSG-DBR region whose temperature is controlled is set to two.
  • the semiconductor laser is oscillated at room temperature.
  • the reflection spectrum of the entire CSG-DBR region is determined by superimposing the reflection spectra of the segments in the CSG-DBR region.
  • the temperature of each segment before supplying power to the heater is referred to as a base value.
  • the base value is 0 ° C.
  • a gradient is set to the temperature of the segment by supplying power to the heater.
  • the temperature gradient is set so that the semiconductor laser oscillates at a wavelength close to the desired wavelength.
  • the temperature of each segment in this case is hereinafter referred to as an initial value.
  • the initial value of the temperature of one segment is 15 ° C.
  • the initial value of the temperature of the other segment is 0 ° C.
  • the temperature of both segments is raised until the oscillation wavelength of the semiconductor laser reaches a desired wavelength while keeping the temperature gradient of the segments substantially constant.
  • the temperature of one segment is controlled to 35 ° C.
  • the temperature of the other segment is controlled to 20 ° C.
  • the oscillation wavelength is shifted to the longer wavelength side by increasing the temperature of each segment.
  • the oscillation wavelength is shifted to the long wavelength side by raising the temperature of each segment, and when the temperature reaches a predetermined temperature, the oscillation wavelength jumps to a predetermined value on the short wavelength side. Furthermore, by raising the temperature of each segment, the oscillation wavelength is shifted to the long wavelength side.
  • the oscillation wavelength repeats in one direction a value within a predetermined range at a predetermined temperature cycle. In the example of FIG. 4C, it is assumed that the temperature period at which the oscillation wavelength repeats in one direction is 30 ° C.
  • the temperature of each segment is controlled to be higher than the base value by one cycle or more.
  • the temperature of the segment is shifted to the base value side by the period unit.
  • the temperature of the segment that has reached 70 ° C. is controlled to 5 ° C. by reducing it by 30 ° C. for one cycle.
  • the amount of power supplied to the heater can be reduced without changing the oscillation wavelength.
  • the power consumption of the laser apparatus 100 can be reduced.
  • the temperature of the semiconductor laser is lowered, the deterioration of the semiconductor laser can be suppressed and the reliability of the semiconductor laser is improved.
  • FIG. 5 is a diagram illustrating an example of a flowchart executed by the controller 30.
  • FIG. 6 is a diagram showing the relationship between the temperatures of the segments CSG1 to CSG3 and the reflection spectrum of the CSG-DBR region 11. In FIG.
  • the controller 30 supplies a predetermined current to the electrodes 15 and 16 and supplies power to the heaters 14a to 14c so that the temperatures of the segments CSG1 to CSG3 become initial values (step). S1).
  • the controller 30 supplies the heaters 14a to 14c so that the temperature difference between the segments CSG1 to CSG3 is set in accordance with the ratio of the optical lengths of the segments CSG1 to CSG3. Control power.
  • the reflection spectrum of the CSG-DBR region 11 can be controlled in a bell shape.
  • the wavelength of the reflection spectrum having the highest reflection intensity is ⁇ 1.
  • the controller 30 increases the temperature of the segments CSG1 to CSG3 (step S2).
  • the controller 30 increases the temperature of the segments CSG1 to CSG3 while keeping the temperature difference between the segments CSG1 to CSG3 substantially constant.
  • the peak wavelength can be shifted without changing the wavelength region of the bell-shaped wavelength characteristic.
  • the peak wavelength is shifted from ⁇ 1 to ⁇ n. As a result, it is possible to cause the semiconductor laser 10 to oscillate at a desired wavelength.
  • step S3 determines whether or not the temperatures of the segments CSG1 to CSG3 are higher than the base value by one cycle or more. If it is not determined in step S3 that the temperatures of the segments CSG1 to CSG3 are higher than the base value by one cycle or more, the controller 30 executes step S3 again.
  • step S3 If it is determined in step S3 that the temperatures of the segments CSG1 to CSG3 are higher than the base value by one cycle or more, the controller 30 decreases the temperature of the corresponding segment by one cycle as shown in FIG. 6 (e) (step S4). Thereafter, the controller 30 executes Step S3 again.
  • the amount of power supplied to the heaters 14a to 14c can be reduced without changing the oscillation wavelength. Thereby, the power consumption of the laser apparatus 100 can be reduced. In addition, since the temperature of the semiconductor laser 10 is lowered, the deterioration of the semiconductor laser 10 can be suppressed and the reliability of the semiconductor laser 10 is improved.
  • the temperature difference error between the segments CSG1 to CSG3 is preferably within about ⁇ 0.5 ° C. to 0.5 ° C.
  • FIG. 7 is a diagram for explaining the actual temperature control of the heaters 14a to 14c.
  • a broken line in FIG. 7 shows a case where the temperatures of the segments CSG1 to CSG3 are increased.
  • the solid line in FIG. 7 shows a case where the temperatures of the segments CSG1 and CSG2 are lowered by one cycle. Therefore, the temperature of the segment CSG3 is the same in any case.
  • the temperature of the segment CSG2 is lowered after the temperature of the segment CSG1 is lowered.
  • the total amount of heater power was reduced by lowering the temperature of segment CSG1, and the total amount of heater power was further reduced by lowering the temperature of segment CSG2.
  • the oscillation wavelength can be maintained even if the temperature of the segment is decreased on a periodic basis.
  • the CSG-DBR is used as the distributed reflector, but the present invention is not limited to this.
  • SG-DBR in which the optical length of each segment is substantially the same may be used. Even in this case, by setting a temperature gradient in each segment, the reflection spectrum of SG-DBR can be shaped like a bell. Therefore, when the segment temperature is higher than the base value by one cycle or more, the temperature of the segment is decreased to the base value side in units of cycles, thereby reducing the amount of power supplied to the heater without changing the oscillation wavelength. it can.
  • the segment temperature is used as a parameter for controlling the refractive index of the segment.
  • the present invention is not limited to this.
  • the temperature of the heater and the amount of electric power supplied to the heater may be used as parameters for controlling the refractive index of the segment.
  • the refractive index of the segment may be controlled by current injection into the segment, and this current injection value may be used as a parameter for controlling the refractive index of the segment.
  • FIG. 8 is a schematic diagram illustrating the semiconductor laser 10a according to the second embodiment.
  • the semiconductor laser 10a is a ring resonator type laser.
  • the semiconductor laser 10 a includes ring resonators 61, 62, and 63 that are optically coupled to each other, and an SOA region 64 that is optically coupled to the ring resonators 61, 62, and 63.
  • the ring resonator 61, ring resonator 62, and ring resonator 63 are optically coupled in order from the SOA region 64 side.
  • An AR (Anti Reflection) film 66 is formed on the end face on the ring resonator 61 side
  • an HR (High Reflection) film 67 is formed on the end face on the ring resonator 63 side.
  • the ring resonator 61 is a resonator having a periodic peak in wavelength characteristics, and functions as a filter having a reflection spectrum peak periodically at a predetermined wavelength interval.
  • the ring resonator 61 has a wavelength characteristic equivalent to the wavelength characteristic of the SG-DFB region 12 of the semiconductor laser 10 according to the first embodiment, and has a function of determining the oscillation possible wavelength of the semiconductor laser 10a.
  • the ring resonators 62 and 63 are resonators having a periodic peak in wavelength characteristics, and function as a filter having a reflection spectrum peak periodically at a predetermined wavelength interval.
  • Each of the ring resonators 62 and 63 has a radius different from that of the ring resonator 61.
  • the ring resonator 62 has a radius different from that of the ring resonator 63.
  • the ring resonators 62 and 63 are provided with heaters at the top or bottom of the ring, respectively. Each heater has a function of controlling the refractive index of the ring resonators 62 and 63. Therefore, the oscillation wavelength of the semiconductor laser 10a can be controlled by controlling the temperature of each heater.
  • the vernier effect is generated by the superposition of the reflection spectrum peak of the ring resonator 61 and the reflection spectrum peaks of the ring resonators 62 and 63, and a wavelength capable of oscillation is selected.
  • the SOA region 64 is a semiconductor optical amplifier that gives gain to these resonators.
  • the wavelength characteristics described with reference to FIG. 4 also appear in the semiconductor laser 10a according to the present embodiment. Therefore, when the temperature of the ring resonators 62 and 63 is higher than the base value by one cycle or more, the temperature of the ring resonator is decreased to the base value side in units of cycles. In this case, the power supply amount to the heater can be reduced without changing the oscillation wavelength. Thereby, power consumption can be reduced.
  • the temperature of the resonator is used as a parameter for controlling the refractive index of the ring resonator, but the present invention is not limited to this.
  • the temperature of the heater and the amount of power supplied to the heater may be used as parameters for controlling the refractive index of the resonator.
  • the refractive index of the resonator may be controlled by current injection into the resonator, and this current injection value may be used as a parameter for controlling the refractive index of the resonator.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 半導体レーザの制御方法は、それぞれが周期的な波長特性を有する複数の波長選択領域を有する半導体レーザにおいて、波長選択領域に対して屈折率制御をなすステップと、屈折率制御によって実現された、波長選択領域それぞれの波長特性が、屈折率制御を与えない状態での屈折率の規定値によって実現される波長特性に比べて、1周期以上変化することを確認するステップと、確認された波長選択領域の屈折率を規定値側に前記1周期単位でシフトさせるステップと、を含む。

Description

半導体レーザのチューニング方法
 本発明は、半導体レーザのチューニング方法に関する。
 特許文献1に開示されている波長可変レーザにおいては、複数の波長選択領域を備えるSG-DBR(Sampled Grating Distributed Bragg Reflector)領域が設けられ、各波長選択領域の温度がヒータで制御され、その屈折率変化による選択波長特性が制御されている。
 上記波長可変レーザにおいては、SG-DBR領域の各波長選択領域の波長特性の重ね合わせによって選択された反射スペクトル波長とSG-DFB(Sampled Grating Distributed Feedback)領域の利得スペクトル波長とを一致させることによって、所定の発振波長に固定する動作が行われる。
特開2007-48988号公報
 ところで、上記の波長可変レーザは、あらかじめ、波長チャンネルごとに波長選択領域のパラメータ値をチューニングする必要がある。一方、このタイプの波長可変レーザは、所定の単一の波長のみを選択可能にするために、各波長選択領域の関係を一定の関係にする必要がある。しかしながら、その関係を保ったまま、波長チャンネルごとにパラメータ値をチューニングする方法では、非常に大きなパラメータ値を与える必要が生じる場合があることがわかった。
 本発明の目的は、電力消費量を抑制しつつ発振波長を選択することができる半導体レーザのチューニング方法を提供することを目的とする。
 本発明に係る半導体レーザのチューニング方法は、それぞれが周期的な波長特性を有する複数の波長選択領域を有する半導体レーザにおいて、前記波長選択領域に対して屈折率制御をなすステップと、前記屈折率制御によって実現された前記波長選択領域それぞれの波長特性が屈折率制御を与えない状態での屈折率の規定値によって実現される波長特性に比べて1周期以上変化することを確認するステップと、前記確認された波長選択領域の屈折率を前記規定値側に前記1周期単位でシフトさせるステップと、を含むことを特徴とするものである。本発明によれば、波長選択領域の制御量を小さくでき、その制御に必要な消費電力を低減することができる。
 前記複数の波長選択領域として、回折格子を有する回折格子部にスペース部が連結されたセグメントを複数有する分布反射領域を分割して画定されたものを利用することができる。
 また、前記波長選択領域を制御するパラメータ値は、前記セグメントの温度とすることができる。
 また、前記波長選択領域を制御するパラメータ値は、前記セグメントに注入する電流値とすることができる。
 なお、前記複数のセグメントの各光学的長さは、互いに異なるように作成されてもよい。
 また、前記波長選択領域は、回折格子を有する回折格子部にスペーサが連結されたセグメントを複数有するとともに、利得を有する利得領域と光学的に接続されていてもよい。
 また、前記複数の波長選択領域は、それぞれがリング共振器であってもよい。
 本発明によれば、電力消費量を抑制しつつ発振波長を選択することができる。
本発明の実施例1に係るレーザ装置の全体構成を示す模式図である。 ヒータによる加熱前におけるセグメントの反射スペクトルを示す図である。 CSG-DBR領域およびSG-DFB領域の反射スペクトルを示す図である。 実施例1に係る半導体レーザの制御の原理について説明するための図である。 コントローラによって実行されるフローチャートの一例を示す図である。 セグメントの温度とCSG-DBR領域の反射スペクトルとの関係を示す図である。 ヒータの実際の温度制御について説明するための図である。 実施例2に係る半導体レーザを示す模式図である。
 以下、本発明を実施するための最良の形態を説明する。
 図1は、本発明の実施例1に係るレーザ装置100の全体構成を示す模式図である。図1に示すように、レーザ装置100は、半導体レーザ10、温度制御装置20およびコントローラ30を備える。半導体レーザ10は、温度制御装置20上に配置されている。次に、各部の詳細を説明する。
 半導体レーザ10は、CSG-DBR(Chirped Sampled Grating Distributed Bragg Reflector)領域11、SG-DFB領域12および半導体光増幅(SOA:Semiconductor Optical Amplifier)領域13が順に連結した構造を有する。
 CSG-DBR領域11は、グレーティングが所定の間隔で設けられた光導波路を含む。CSG-DBR領域11の光導波路には、回折格子を有する回折格子部にスペース部が連結されたセグメントが複数設けられている。CSG-DBR領域11においては、各セグメントの光学的長さが異なっている。
 CSG-DBR領域11の光導波路は、吸収端波長がレーザ発振波長よりも短波長側にある半導体結晶からなる。本実施例においては、CSG-DBR領域11にセグメントが3組(セグメントCSG1~CSG3)形成されているものとする。CSG-DBR領域11には、各セグメントにヒータが設けられている。本実施例においては、セグメントCSG1~CSG3に対応して3つのヒータ14a,14b,14cがCSG-DBR領域11上に設けられている。
 SG-DFB領域12は、グレーティングが所定の間隔で設けられた光導波路を含む。SG-DFB領域12の光導波路には、回折格子を有する回折格子部にスペース部が連結されたセグメントが複数設けられている。SG-DFB領域12においては、各セグメントの光学的長さが実質的に同一になっている。SG-DFB領域12の光導波路は、目的とする波長でのレーザ発振に対して利得を有する半導体結晶からなる。SG-DFB領域12上には、電極15が設けられている。
 SOA領域13は、電流制御によって光に利得を与える、または光を吸収するための半導体結晶からなる光導波路を含む。SOA領域13上には、電極16が設けられている。なお、CSG-DBR領域11、SG-DFB領域12およびSOA領域13の光導波路は、互いに光結合している。
 温度制御装置20は、ペルチェ素子等を備え、半導体レーザ10の温度を制御する。コントローラ30は、CPU(中央演算処理装置)、RAM(ランダムアクセスメモリ)、ROM(リードオンリメモリ)等の制御部、電源等から構成される。コントローラ30のROMには、半導体レーザ10の制御情報、制御プログラム等が格納されている。
 続いて、レーザ装置100の動作の概略について説明する。コントローラ30は、電極15に所定の電流を供給する。それにより、SG-DFB領域12の光導波路において光が発生する。発生した光は、CSG-DBR領域11、SG-DFB領域12およびSOA領域13の光導波路を伝播しつつ繰返し反射および増幅されるとともに、外部に発振される。また、電極16にコントローラ30から所定の電流が供給される。それにより、半導体レーザ10からの出力が一定に維持される。
 次に、コントローラ30は、ヒータ14a~14cの制御によりセグメントCSG1~CSG3の温度を制御することによって、セグメントCSG1~CSG3の等価屈折率を変化させる。この場合、セグメントCSG1~CSG3の反射特性が変化する。それにより、半導体レーザ10の発振波長を変化させることができる。以上の制御により、レーザ装置100は、所望の波長において半導体レーザ10にレーザ発振させることができる。
 図2(a)は、ヒータ14a~14cによる加熱前におけるセグメントCSG1~CSG3の反射スペクトルを模式的に示した図である。図2(b)は、図2(a)に示すセグメントCSG1~CSG3の反射スペクトルを重ね合わせた図である。セグメントCSG1~CSG3がそれぞれ互いに異なる光学的長さを有していることから、図2(a)に示すように、セグメントCSG1~CSG3の反射スペクトルのピーク周期が互いに異なる。したがって、図2(b)に示すように、反射スペクトルのピークが重なる波長とピークが重ならない波長とが現れる。
 図3(a)は、CSG-DBR領域11の反射スペクトルを示す図である。CSG-DBR領域11の反射スペクトルは、セグメントCSG1~CSG3の反射スペクトルを重ね合わせることによって得られる。図3(a)に示すように、波長ごとに反射強度が異なり、釣鐘状の包絡線が形成される。波長範囲をさらに拡げると、複数の釣鐘を並べたような包絡線が形成される。このように、CSG-DBR領域11においては、反射強度に波長依存性が現れる。
 図3(b)は、SG-DFB領域12の反射スペクトルを示す図である。SG-DFB領域12においては各セグメントの光学的長さが実質的に同一でありかつ温度制御装置20によって各セグメントの温度が一定に制御されることから、ピーク波長ごとに反射強度はほとんど同じになる。
 本実施例に係る半導体レーザ10は、CSG-DBR領域11の反射スペクトルのうち反射強度が大きい波長とSG-DFB領域12の反射スペクトルのいずれかの波長とが一致する場合に、この一致した波長においてレーザ発振する。したがって、CSG-DBR領域11の波長-反射強度特性を変化させることによって、レーザ発振波長を選択することができる。
 続いて、図4(a)~図4(d)を参照しつつ、本実施例に係る半導体レーザの制御の原理について説明する。なお、図面の簡単化のために、温度制御されるCSG-DBR領域のセグメント数を2とする。まず、図4(a)に示すように、室温において半導体レーザにレーザ発振させる。この場合、CSG-DBR領域の各セグメントの反射スペクトルの重ね合わせによって、CSG-DBR領域全体の反射スペクトルが定まる。ここで、ヒータへの電力供給前の各セグメントの温度を基底値と称する。図4(a)の例では、基底値は0℃である。
 次に、図4(b)に示すように、ヒータへの電力供給によって、セグメントの温度に勾配を設定する。この場合、半導体レーザが所望の波長に近い波長においてレーザ発振するように、温度勾配を設定する。この場合の各セグメントの温度を以下、初期値と称する。図4(b)の例では、一方のセグメントの温度の初期値は15℃であり、他方のセグメントの温度の初期値は0℃である。
 次いで、図4(c)に示すように、セグメントの温度勾配を実質的に一定に保ちつつ、半導体レーザの発振波長が所望の波長になるまで両方のセグメントの温度を上昇させる。図4(c)の例では、一方のセグメントの温度を35℃に制御し、他方のセグメントの温度を20℃に制御する。
 ここで、各セグメントの温度を上昇させることによって、発振波長が長波長側にシフトする場合について説明する。この場合、各セグメントの温度を上昇させることによって発振波長が長波長側にシフトし、所定の温度に到達すると発振波長が短波長側の所定値にジャンプする。さらに各セグメントの温度を上昇させることによって、発振波長が長波長側にシフトする。このように、所定の温度周期で、発振波長が所定の範囲の値を一方向に繰り返す。図4(c)の例では、発振波長が一方向に繰り返す温度周期が30℃であるとする。
 セグメントの温度を高温に維持するためには、多量のヒータ電力を必要とする。そこで、本実施例においては、各セグメントの温度が基底値から1周期以上高く制御されているか否かを判定する。セグメントの温度が基底値から1周期以上高い場合には、そのセグメントの温度を基底値側に周期単位でシフトさせる。図4(d)の例では、70℃に到達したセグメントの温度を1周期分の30℃低下させて5℃に制御する。
 この場合、発振波長を変化させずにヒータへの電力供給量を低減させることができる。それにより、レーザ装置100の消費電力を低減させることができる。また、半導体レーザの温度が低くなることから、半導体レーザの劣化を抑制することができるとともに、半導体レーザの信頼性が向上する。
 以上の制御について、図5および図6を参照しつつ、本実施例に係るレーザ装置100に適用して説明する。図5は、コントローラ30によって実行されるフローチャートの一例を示す図である。図6は、セグメントCSG1~CSG3の温度とCSG-DBR領域11の反射スペクトルとの関係を示す図である。
 まず、図5に示すように、コントローラ30は、電極15,16に所定の電流を供給するとともに、セグメントCSG1~CSG3の温度が初期値になるようにヒータ14a~14cに電力を供給する(ステップS1)。この場合、コントローラ30は、図6(a)に示すように、セグメントCSG1~CSG3の温度差がセグメントCSG1~CSG3の光学長の比率に応じて設定されるように、ヒータ14a~14cに供給する電力を制御する。それにより、図6(b)に示すように、CSG-DBR領域11の反射スペクトルを釣鐘状に制御することができる。図6(b)の例では、最も反射強度の高い反射スペクトルの波長はλ1である。
 次に、コントローラ30は、セグメントCSG1~CSG3の温度を上昇させる(ステップS2)。この場合、コントローラ30は、図6(c)に示すように、セグメントCSG1~CSG3の温度差を実質的に一定に保ちつつ、セグメントCSG1~CSG3の温度を上昇させる。それにより、図6(d)に示すように、上記釣鐘状の波長特性の波長領域を変化させることなく、ピーク波長をシフトさせることができる。図6(d)の例では、ピーク波長はλ1からλnにシフトする。その結果、半導体レーザ10に、所望の波長においてレーザ発振させることができる。
 次いで、コントローラ30は、セグメントCSG1~CSG3の温度が基底値から1周期以上高いか否かを判定する(ステップS3)。ステップS3においてセグメントCSG1~CSG3の温度が基底値から1周期以上高いと判定されなかった場合、コントローラ30は、ステップS3を再度実行する。
 ステップS3においてセグメントCSG1~CSG3の温度が基底値から1周期以上高いと判定された場合、コントローラ30は、図6(e)に示すように、該当するセグメントの温度を1周期低下させる(ステップS4)。その後、コントローラ30は、ステップS3を再度実行する。
 図5のフローチャートによれば、発振波長を変化させずにヒータ14a~14cへの電力供給量を低減させることができる。それにより、レーザ装置100の消費電力を低減させることができる。また、半導体レーザ10の温度が低くなることから、半導体レーザ10の劣化を抑制することができるとともに、半導体レーザ10の信頼性が向上する。
 なお、ステップS2においてセグメントCSG1~CSG3の温度差を上昇させる際、セグメントCSG1~CSG3の温度差の誤差は、-0.5℃~0.5℃程度以内であることが好ましい。
 図7は、ヒータ14a~14cの実際の温度制御について説明するための図である。図7の破線は、セグメントCSG1~CSG3の温度を上昇させた場合を示す。図7の実線は、セグメントCSG1,CSG2の温度を1周期低下させた場合を示す。したがって、セグメントCSG3の温度は、いずれにおいても同じである。図7の実線の場合には、セグメントCSG1の温度を低下させた後にセグメントCSG2の温度を低下させてある。
 図7に示すように、セグメントCSG1の温度を低下させることによってヒータ電力の総量が低下し、さらにセグメントCSG2の温度を低下させることによってヒータ電力の総量がさらに低下した。一方で、発振波長に大きな変化は見られなかった。このように、セグメントの温度を周期単位で低下させても、発振波長を維持することができる。
 なお、本実施例においては分布反射器としてCSG-DBRを用いたが、それに限られない。各セグメントの光学的長さが実質的に同一であるSG-DBRを用いてもよい。この場合においても、各セグメントに温度勾配を設定することによって、SG-DBRの反射スペクトルを釣鐘状にすることができる。したがって、セグメントの温度が基底値から1周期以上高い場合にそのセグメントの温度を基底値側に周期単位で低下させることによって、発振波長を変化させずにヒータへの電力供給量を低減させることができる。
 また、本実施例においてはセグメントの屈折率制御用のパラメータとしてセグメントの温度を用いたが、それに限られない。例えば、ヒータの温度、ヒータへの供給電力量をセグメントの屈折率制御用のパラメータとして用いてもよい。また、セグメントへの電流注入によってセグメントの屈折率を制御し、この電流注入値をセグメントの屈折率制御用のパラメータとして用いてもよい。
 図8は、実施例2に係る半導体レーザ10aを示す模式図である。半導体レーザ10aは、リング共振器型レーザである。図8に示すように、半導体レーザ10aは、互いに光結合するリング共振器61,62,63と、リング共振器61,62,63と光結合するSOA領域64と、を備える。SOA領域64側から順に、リング共振器61、リング共振器62およびリング共振器63が光結合している。リング共振器61側の端面には、AR(Anti Reflection)膜66が、リング共振器63側の端面にはHR(High Reflection)膜67が形成されている。
 リング共振器61は、波長特性に周期的なピークを持つ共振器であり、所定の波長間隔で周期的に反射スペクトルのピークを持つフィルタとして機能する。リング共振器61は、実施例1に係る半導体レーザ10のSG-DFB領域12が有する波長特性と同等の波長特性を有し、半導体レーザ10aの発振可能波長を決定する機能を有する。
 リング共振器62,63は、波長特性に周期的なピークを有する共振器であり、所定の波長間隔で周期的に反射スペクトルのピークを持つフィルタとして機能する。リング共振器62,63のいずれもリング共振器61と異なる半径を有する。また、リング共振器62は、リング共振器63と異なる半径を有する。リング共振器62,63が設けられていることにより、所定の波長帯域にのみ、周期的な反射スペクトルのピークが実現される。したがって、リング共振器62,63は、実施例1に係る半導体レーザ10aのCSG-DBR領域11が有する波長特性と同等の波長特性を有する。
 リング共振器62,63には、リングの上部または下部にそれぞれヒータが設けられている。それぞれのヒータは、リング共振器62,63の屈折率を制御する機能を有する。したがって、それぞれのヒータの温度を制御することによって、半導体レーザ10aの発振波長を制御することができる。
 半導体レーザ10aにおいては、リング共振器61の反射スペクトルのピークとリング共振器62,63の反射スペクトルのピークとの重ね合わせによりバーニア効果が生じ、発振可能な波長が選択される。SOA領域64は、これらの共振器に利得を与える半導体光増幅器である。
 本実施例に係る半導体レーザ10aにおいても、図4で説明した波長特性が現れる。したがって、リング共振器62,63の温度が基底値から1周期以上高い場合には、そのリング共振器の温度を基底値側に周期単位で低下させる。この場合、発振波長を変化させずにヒータへの電力供給量を低減させることができる。それにより、消費電力を低減させることができる。
 なお、本実施例においてはリング共振器の屈折率制御用のパラメータとして共振器の温度を用いたが、それに限られない。例えば、ヒータの温度、ヒータへの供給電力量を共振器の屈折率制御用のパラメータとして用いてもよい。また、共振器への電流注入によって共振器の屈折率を制御し、この電流注入値を共振器の屈折率制御用のパラメータとして用いてもよい。

Claims (7)

  1.  それぞれが周期的な波長特性を有する複数の波長選択領域を有する半導体レーザにおいて、
     前記波長選択領域に対して屈折率制御をなすステップと、
     前記屈折率制御によって実現された、前記波長選択領域それぞれの波長特性が、前記屈折率制御を与えない状態での屈折率の規定値によって実現される波長特性に比べて、1周期以上変化することを確認するステップと、
     前記確認された波長選択領域の屈折率を前記規定値側に前記1周期単位でシフトさせるステップと、
     を含むことを特徴とする半導体レーザのチューニング方法。
  2.  前記複数の波長選択領域は、回折格子を有する回折格子部にスペース部が連結されたセグメントを複数有する分布反射領域を分割して画定されることを特徴とする請求項1記載の半導体レーザのチューニング方法。
  3.  前記波長選択領域を制御するパラメータ値は、前記セグメントの温度であることを特徴とする請求項1記載の半導体レーザのチューニング方法。
  4.  前記波長選択領域を制御するパラメータ値は、前記セグメントに注入する電流値であることを特徴とする請求項1記載の半導体レーザのチューニング方法。
  5.  前記複数のセグメントの各光学的長さは、互いに異なることを特徴とする請求項2記載の半導体レーザのチューニング方法。
  6.  前記波長選択領域は、回折格子を有する回折格子部にスペーサが連結されたセグメントを複数有するとともに、利得を有する利得領域と光学的に接続されていることを特徴とする請求項1記載の半導体レーザのチューニング方法。
  7.  前記複数の波長選択領域は、それぞれがリング共振器であることを特徴とする請求項1記載の半導体レーザのチューニング方法。
PCT/JP2009/069957 2008-11-28 2009-11-26 半導体レーザのチューニング方法 WO2010061891A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09829136.2A EP2372850B1 (en) 2008-11-28 2009-11-26 Method for tuning semiconductor laser
CN2009801474591A CN102227854B (zh) 2008-11-28 2009-11-26 半导体激光器的调节方法
US13/117,557 US8681826B2 (en) 2008-11-28 2011-05-27 Method for tuning semiconductor laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008303939A JP5474338B2 (ja) 2008-11-28 2008-11-28 半導体レーザのチューニング方法
JP2008-303939 2008-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/117,557 Continuation US8681826B2 (en) 2008-11-28 2011-05-27 Method for tuning semiconductor laser

Publications (1)

Publication Number Publication Date
WO2010061891A1 true WO2010061891A1 (ja) 2010-06-03

Family

ID=42225762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069957 WO2010061891A1 (ja) 2008-11-28 2009-11-26 半導体レーザのチューニング方法

Country Status (5)

Country Link
US (1) US8681826B2 (ja)
EP (1) EP2372850B1 (ja)
JP (1) JP5474338B2 (ja)
CN (1) CN102227854B (ja)
WO (1) WO2010061891A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174938A (ja) * 2011-02-22 2012-09-10 Sumitomo Electric Ind Ltd 光半導体素子およびその製造方法
CN103384950B (zh) * 2013-01-21 2015-09-30 华为技术有限公司 激光器波导装置
US9531155B2 (en) * 2014-04-09 2016-12-27 Applied Optoelectronics, Inc. Switched radio frequency (RF) driver for tunable laser with multiple in-line sections
JP6821901B2 (ja) 2016-07-11 2021-01-27 住友電工デバイス・イノベーション株式会社 波長可変レーザの駆動条件設定方法及び波長可変レーザシステム
CN112448266B (zh) * 2019-08-30 2022-03-25 华为技术有限公司 一种多波长激光器以及波长控制方法
CN110911961B (zh) * 2019-12-06 2021-05-04 中国科学院长春光学精密机械与物理研究所 一种可调谐窄线宽激光器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263817A (ja) * 1994-01-31 1995-10-13 Telefon Ab L M Ericsson 半導体レーザとその調整方法
JPH0974250A (ja) * 1995-09-06 1997-03-18 Anritsu Corp 半導体光モジュール
JP2003017803A (ja) * 2001-07-04 2003-01-17 Mitsubishi Electric Corp 波長可変半導体レーザおよび光モジュール
JP2003023208A (ja) * 2001-07-05 2003-01-24 Nec Corp 波長可変半導体レーザ
JP2003069138A (ja) * 2001-08-30 2003-03-07 Oki Electric Ind Co Ltd モード同期半導体レーザ
JP2003318483A (ja) * 2002-02-19 2003-11-07 Mitsubishi Electric Corp 波長可変半導体レーザ
JP2006245086A (ja) * 2005-03-01 2006-09-14 Mitsubishi Electric Corp 半導体レーザおよび半導体レーザの駆動方法
JP2007048988A (ja) 2005-08-11 2007-02-22 Eudyna Devices Inc 半導体レーザ、レーザモジュール、光学部品、レーザ装置、半導体レーザの製造方法および半導体レーザの制御方法
WO2007029647A1 (ja) * 2005-09-06 2007-03-15 Nec Corporation 波長可変フィルタおよび波長可変レーザ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716303B1 (fr) * 1994-02-11 1996-04-05 Franck Delorme Laser à réflecteurs de Bragg distribués, accordable en longueur d'onde, à réseaux de diffraction virtuels activés sélectivement.
US7366220B2 (en) * 2005-03-17 2008-04-29 Fujitsu Limited Tunable laser
JP2006278769A (ja) * 2005-03-29 2006-10-12 Nec Corp 波長可変レーザ
JP2007273650A (ja) * 2006-03-30 2007-10-18 Eudyna Devices Inc 光半導体装置
JP4772560B2 (ja) * 2006-03-31 2011-09-14 住友電工デバイス・イノベーション株式会社 光半導体装置、およびその制御方法
EP2244341A4 (en) * 2008-02-05 2014-12-24 Sedi Inc LASER DEVICE AND CONTROL DATA FOR LASER DEVICE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263817A (ja) * 1994-01-31 1995-10-13 Telefon Ab L M Ericsson 半導体レーザとその調整方法
JPH0974250A (ja) * 1995-09-06 1997-03-18 Anritsu Corp 半導体光モジュール
JP2003017803A (ja) * 2001-07-04 2003-01-17 Mitsubishi Electric Corp 波長可変半導体レーザおよび光モジュール
JP2003023208A (ja) * 2001-07-05 2003-01-24 Nec Corp 波長可変半導体レーザ
JP2003069138A (ja) * 2001-08-30 2003-03-07 Oki Electric Ind Co Ltd モード同期半導体レーザ
JP2003318483A (ja) * 2002-02-19 2003-11-07 Mitsubishi Electric Corp 波長可変半導体レーザ
JP2006245086A (ja) * 2005-03-01 2006-09-14 Mitsubishi Electric Corp 半導体レーザおよび半導体レーザの駆動方法
JP2007048988A (ja) 2005-08-11 2007-02-22 Eudyna Devices Inc 半導体レーザ、レーザモジュール、光学部品、レーザ装置、半導体レーザの製造方法および半導体レーザの制御方法
WO2007029647A1 (ja) * 2005-09-06 2007-03-15 Nec Corporation 波長可変フィルタおよび波長可変レーザ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2372850A4 *

Also Published As

Publication number Publication date
CN102227854A (zh) 2011-10-26
EP2372850A4 (en) 2013-01-23
EP2372850A1 (en) 2011-10-05
US20110228800A1 (en) 2011-09-22
JP5474338B2 (ja) 2014-04-16
US8681826B2 (en) 2014-03-25
EP2372850B1 (en) 2015-09-16
CN102227854B (zh) 2012-08-22
JP2010129830A (ja) 2010-06-10

Similar Documents

Publication Publication Date Title
JP5193732B2 (ja) 波長可変レーザモジュール、波長可変レーザ装置、及び、波長可変レーザの制御方法
JP5154581B2 (ja) レーザ装置およびレーザ装置の制御データ
JP4943255B2 (ja) 半導体レーザの制御方法
JP5457873B2 (ja) 波長可変レーザの制御方法
JP4657853B2 (ja) 半導体レーザ、レーザモジュール、光学部品、レーザ装置、半導体レーザの製造方法および半導体レーザの制御方法
JP4893026B2 (ja) 波長可変共振器及びこれを用いた波長可変光源並びに多重共振器の波長可変方法
WO2010061891A1 (ja) 半導体レーザのチューニング方法
JP5303124B2 (ja) 半導体レーザ装置の制御方法
JP5556137B2 (ja) 半導体レーザ装置
JP6308456B2 (ja) 波長可変レーザの制御方法
JP6304582B2 (ja) 波長可変レーザの制御方法
JP6292499B2 (ja) 波長可変レーザの制御方法
JP6256745B2 (ja) 波長可変レーザの制御方法
JP6256746B2 (ja) 波長可変レーザの制御方法
JP6382506B2 (ja) 波長可変レーザの制御方法
JP6998903B2 (ja) 波長可変光源装置および波長可変光源装置の制御方法
JP2003315581A (ja) 光導波路、多波長光源、及び波長可変光源
KR100818448B1 (ko) 반도체 레이저, 광학 부품, 레이저 장치 및 반도체레이저의 제어 방법
JP6294049B2 (ja) 波長可変レーザの制御方法
JP2012156558A (ja) 半導体レーザ装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147459.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829136

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009829136

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE