WO2010058599A1 - α-スルホ脂肪酸アルキルエステル塩水溶液の製造方法 - Google Patents

α-スルホ脂肪酸アルキルエステル塩水溶液の製造方法 Download PDF

Info

Publication number
WO2010058599A1
WO2010058599A1 PCT/JP2009/006282 JP2009006282W WO2010058599A1 WO 2010058599 A1 WO2010058599 A1 WO 2010058599A1 JP 2009006282 W JP2009006282 W JP 2009006282W WO 2010058599 A1 WO2010058599 A1 WO 2010058599A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
component
concentration
aqueous solution
solid
Prior art date
Application number
PCT/JP2009/006282
Other languages
English (en)
French (fr)
Inventor
増井宏之
板倉健介
後藤博
Original Assignee
ライオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライオン株式会社 filed Critical ライオン株式会社
Priority to CN2009801468247A priority Critical patent/CN102216262B/zh
Priority to JP2010539157A priority patent/JP5538235B2/ja
Priority to US13/129,867 priority patent/US8168580B2/en
Publication of WO2010058599A1 publication Critical patent/WO2010058599A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/32Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of salts of sulfonic acids

Definitions

  • the present invention relates to a method for producing an aqueous ⁇ -sulfo fatty acid alkyl ester salt solution.
  • ⁇ -Sulfo fatty acid alkyl ester salts (hereinafter sometimes referred to as ⁇ -SF salts) have high detergency, good biodegradability, and little impact on the environment. Has been.
  • natural raw materials that can be recycled from the viewpoint of resources are also advantageous in terms of cost, and are also regarded as important from the viewpoint of protecting the global environment.
  • a fatty acid alkyl ester is sulfonated using SO 3 gas or the like to obtain an ⁇ -sulfo fatty acid alkyl ester (hereinafter sometimes referred to as ⁇ -SF).
  • a general method is to obtain a liquid or paste-like ⁇ -SF salt-containing aqueous solution by neutralization with an alkali.
  • the ⁇ -SF salt-containing aqueous solution described above increases in viscosity as the ⁇ -SF salt concentration increases, and becomes a non-flowable gel.
  • ⁇ -SF salts are generally distributed as solids such as flakes and pellets.
  • the solid ⁇ -SF salt described above is dissolved in water to form an ⁇ -SF salt aqueous solution, and the detergent slurry comprising the ⁇ -SF salt aqueous solution and a powder raw material is spray-dried, or the ⁇ -Granulate powder raw material using SF salt aqueous solution as binder. Therefore, it is desirable to increase the ⁇ -SF salt concentration of the ⁇ -SF salt aqueous solution as much as possible while maintaining fluidity.
  • the ⁇ -SF salt concentration is increased, the ⁇ -SF salt aqueous solution gels during production, obstructs the flow path of the production equipment, or adheres to the heat transfer surface and reduces the heat transfer efficiency.
  • methods for reducing the viscosity of an ⁇ -SF salt aqueous solution have been reported so far.
  • Patent Document 1 describes that the fluidity of an aqueous liquid of ⁇ -SF salt can be improved by using ⁇ -SF salt, ⁇ -sulfo fatty acid di-salt, and inorganic sulfate in specific amounts.
  • Patent Document 2 describes a method for improving the flowability of a surfactant slurry by stepwise concentrating a surfactant slurry containing an ⁇ -SF salt in the presence of sodium sulfate.
  • Patent Document 3 describes that by using an inorganic sulfate as an essential component, an ⁇ -SF salt aqueous solution having a handleable ⁇ -SF salt concentration of 30 to 60% by weight can be obtained.
  • Patent Document 4 describes that an ⁇ -SF salt aqueous solution having an excellent ⁇ -SF salt concentration of 40% by mass or more can be obtained by containing an inorganic chloride.
  • Patent Document 5 describes that by containing an inorganic sulfate and a polyoxyalkylene-added polyhydric alcohol, an ⁇ -SF salt aqueous solution having a handleable ⁇ -SF salt concentration of 30 to 60% by weight can be obtained. Yes.
  • Japanese Patent Laid-Open No. 3-101828 JP 2003-82395 A Japanese Patent Laid-Open No. 61-280467 JP 2007-320978 A Japanese Patent Laid-Open No. 62-116698
  • an object of the present invention is to provide a method for producing an ⁇ -SF salt aqueous solution that facilitates dissolution of solid ⁇ -SF salt in water even at an industrial level, and maintains fluidity and is excellent in production suitability.
  • solid (a) component: ⁇ -sulfo fatty acid alkyl ester salt and (b) component: inorganic sodium salt and / or inorganic potassium salt are added to water as a solvent.
  • the solid component (a) is converted into water as a solvent under a temperature condition of 50 ° C. or higher while maintaining the following condition (i) or (ii): It is characterized by dissolving.
  • the solid component (a) may be dissolved in a solvent while maintaining the following condition (iii).
  • y represents the concentration (mass%) of the component (a)
  • x represents the total concentration (mol / kg) of the sodium ion and potassium ion derived from the component (b).
  • the solvent 20% by mass or more of the solvent is used as an initial solvent, and at least a part of the solid component (a) and the component (b) is dissolved in the initial solvent. Thereafter, it is preferable to add the remainder of the solvent and dissolve the solid component (a) and the remainder of the component (b), and the solid (a) component with respect to the solvent represented by the following formula (2) speed added relative is preferably less than 0.1 h -1 or 10h -1.
  • an ⁇ -SF salt aqueous solution of the present invention it is possible to obtain an ⁇ -SF salt aqueous solution that facilitates dissolution of a solid ⁇ -SF salt in water, maintains fluidity, and is excellent in production suitability. it can.
  • FIG. 6 is a graph showing the relationship between the MES concentration, the Na ion concentration derived from the component (b), and the overall evaluation determination result in Examples 1 to 33 and Comparative Examples 1 to 10.
  • FIG. 4 is a cross-sectional view illustrating a dissolution tank used in slurry preparation steps of Formulation Examples 1 to 4.
  • the ⁇ -SF salt aqueous solution obtained by the method for producing an ⁇ -SF salt aqueous solution of the present invention is an aqueous solution containing an ⁇ -SF salt and an inorganic sodium salt and / or an inorganic potassium salt.
  • the component (a) is an ⁇ -SF salt.
  • the ⁇ -SF salt is a salt of a sulfonated product of a fatty acid alkyl ester and is typically represented by the following general formula (I).
  • R 1 represents a linear or branched alkyl group having 6 to 22 carbon atoms or an alkenyl group
  • R 2 represents a linear or branched alkyl group having 1 to 6 carbon atoms
  • M represents a counter ion. Represents.
  • the alkyl group represented by R 1 in the formula (I) may be linear or branched, and has 6 to 22 carbon atoms, preferably 10 to 16 carbon atoms, More preferably, the number is from 12 to 16.
  • the alkenyl group for R 1 may be linear or branched and has 6 to 22 carbon atoms, preferably 10 to 16 carbon atoms, and preferably 12 to 16 carbon atoms. Is more preferable.
  • R 1 is preferably an alkyl group. That is, the ⁇ -SF salt is preferably an ⁇ -sulfo saturated fatty acid alkyl ester salt.
  • the alkyl group represented by R 2 in the formula (I) may be linear or branched, has 1 to 6 carbon atoms, and more preferably has 1 carbon atom. That is, the ⁇ -SF salt is preferably ⁇ -sulfo fatty acid methyl ester.
  • the counter ion represented by M is R 1 —CH (CO—O—R 2 ) —SO 3 — (R 1 and R 2 are the same as R 1 and R 2 in the formula (I))
  • the water-soluble salt include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt; ammonium salt; ethanolamine salt and the like. Among these, an alkali metal salt is preferable, and a sodium salt is more preferable.
  • ⁇ -SF salt examples include sodium salt (MES) of ⁇ -sulfo fatty acid methyl ester.
  • the concentration of the component (a) in the ⁇ -SF salt aqueous solution can be determined according to the concentration of the component (b), and is preferably 30% by mass or more, more preferably 30 to 55% by mass, The content is more preferably 30 to 53% by mass, and particularly preferably 30 to 50% by mass.
  • concentration of the component (b) in the ⁇ -SF salt aqueous solution can be determined according to the concentration of the component (b), and is preferably 30% by mass or more, more preferably 30 to 55% by mass, The content is more preferably 30 to 53% by mass, and particularly preferably 30 to 50% by mass.
  • ⁇ -SF salt can be produced by a known method. For example, a fatty acid alkyl ester is sulfonated to obtain a sulfonated product containing ⁇ -SF (sulfonated step), then the sulfonated product is esterified (esterified step), and then neutralized to neutralize containing ⁇ -SF salt. After the product is obtained (neutralization step), it is bleached (bleaching step) to obtain an ⁇ -SF salt-containing paste. By concentrating the ⁇ -SF salt-containing paste as necessary, an ⁇ -SF salt-containing concentrate (hereinafter referred to as a concentrate) containing a solid ⁇ -SF salt can be obtained.
  • a concentrate ⁇ -SF salt-containing concentrate
  • a flake-like or pellet-like solid ⁇ -SF salt-containing material By subjecting this concentrate to a molding / cooling treatment, a flake-like or pellet-like solid ⁇ -SF salt-containing material can be obtained. Further, the solid ⁇ -SF salt-containing material such as powder can be obtained by pulverizing the flaky and pellet-like solid ⁇ -SF salt-containing material.
  • the ⁇ -SF salt as the component (a) the ⁇ -sulfo fatty acid dialkali salt produced as a by-product and the inorganic sulfuric acid used as a coloring inhibitor in the production process of the ⁇ -SF salt Salts and the like may be included.
  • Such a solid ⁇ -SF salt-containing material can be suitably used as a supply source of the solid component (a) in the present invention.
  • the fatty acid alkyl ester is preferably a saturated fatty acid alkyl ester, derived from animal fats derived from beef tallow, fish oil, lanolin, etc., derived from vegetable fats derived from palm oil, palm oil, soybean oil, etc. Any alkyl ester derived from a synthetic fatty acid derived from the ⁇ -oxo method may be used.
  • fatty acid alkyl esters examples include methyl laurate, ethyl or propyl, methyl myristate, ethyl or propyl, methyl palmitate, ethyl or propyl, methyl stearate, ethyl or propyl, hardened tallow fatty acid methyl, ethyl or Mention may be made of propyl, hydrogenated fish oil fatty acid methyl, ethyl or propyl, coconut oil fatty acid methyl, ethyl or propyl, palm oil fatty acid methyl, ethyl or propyl, palm kernel oil fatty acid methyl, ethyl or propyl and the like.
  • a known method can be used for the sulfonation step.
  • a sulfonated product of fatty acid alkyl ester containing ⁇ -SF is obtained by contacting a fatty acid alkyl ester with a sulfonated gas such as SO 3 gas or fuming sulfuric acid.
  • a sulfonated gas such as SO 3 gas or fuming sulfuric acid.
  • the sulfonation method may be any sulfonation method such as a falling film type sulfonation method or a batch type sulfonation method.
  • esterification step a lower alcohol is added to the sulfonated product obtained in the sulfonation step to advance the ester reaction to obtain an esterified product.
  • the esterified product obtained in the esterification step is neutralized by adding and mixing an alkali to obtain an ⁇ -SF salt-containing neutralized product (hereinafter referred to as neutralized product).
  • the neutralization step is preferably performed under conditions such that the reaction mixture of alkali and esterified product is in the acidic or weakly alkaline range, that is, in the range of pH 4-9.
  • alkali used in the neutralization step examples include alkali metals, alkaline earth metals, ammonia, and ethanolamine. These alkalis are usually used as an aqueous solution, and the concentration thereof is about 2 to 50% by mass.
  • the ⁇ -SF salt-containing neutralized product obtained in the neutralization step is bleached using a bleaching agent such as hydrogen peroxide or hypochlorite.
  • a bleaching agent such as hydrogen peroxide or hypochlorite.
  • a known method can be used for the bleaching treatment. For example, an arbitrary amount of a bleaching agent can be added to and mixed with the neutralized product.
  • the concentration of the ⁇ -SF salt-containing paste can be performed by a known method.
  • a concentrate can be obtained using a vacuum thin film evaporator.
  • the component (b) is an inorganic sodium salt and / or an inorganic potassium salt.
  • the inorganic sodium salt is generally only required to be blended as a detergent component, and examples thereof include sodium sulfate, sodium sulfite, sodium chloride, sodium bicarbonate, and sodium nitrate. Among these, sodium sulfate and sodium chloride are preferable from the viewpoint of being a neutral salt and not promoting hydrolysis of the ⁇ -SF salt.
  • the inorganic potassium salt may be anything that is generally blended as a detergent component, and examples thereof include potassium sulfate, potassium sulfite, potassium chloride, potassium hydrogen carbonate, and potassium nitrate. Of these, potassium sulfate and potassium chloride are preferable from the viewpoint of being a neutral salt and not promoting hydrolysis of the ⁇ -SF salt.
  • the concentration of the component (b) in the ⁇ -SF salt aqueous solution is within the range where the total concentration of sodium ions and potassium ions derived from the component (b) is less than 4.3 mol / kg. It can be determined in consideration of the ⁇ -SF salt concentration.
  • B When the total concentration of the sodium ions and potassium ions derived from the component is 4.3 mol / kg or more, the viscosity of the ⁇ -SF salt aqueous solution is remarkably increased due to salting out, and the work such as stirring and transfer is difficult. Because it becomes.
  • ⁇ Method for producing ⁇ -SF salt aqueous solution In the method for producing an ⁇ -SF salt aqueous solution of the present invention, the solid component (a) and component (b) are maintained under the temperature conditions of 50 ° C. or higher while maintaining the following conditions (i) to (iii). This is a method for producing an ⁇ -SF salt aqueous solution in which a solid component (a) is dissolved in water as a solvent.
  • the supply source of the solid (a) component for example, the above-mentioned solid ⁇ -SF salt-containing material can be used.
  • the component (b) includes inorganic sodium salt and / or inorganic potassium salt contained in the solid ⁇ -SF salt-containing material in addition to newly adding the inorganic sodium salt and / or inorganic potassium salt to the solvent. .
  • the total concentration of sodium ions and potassium ions derived from (i) :( b) component is less than 0.55 mol / kg. It is preferable to carry out while maintaining at 35% by mass or less, while maintaining the concentration of the component (a) at 33% by mass or less.
  • the total concentration of sodium ions and potassium ions derived from (ii) :( b) component is 0.55 mol / kg or more and less than 1.8 mol / kg (
  • the concentration of the component a) is maintained at 55% by mass or less, and the concentration of the component (a) is more preferably 53% by mass or less, and further preferably 50% by mass or less.
  • the dissolution of the solid component (a) in water is as follows: (iii): When the total concentration of sodium ions and potassium ions derived from the component (b) is 1.8 mol / kg or more and less than 4.3 mol / kg, a) The concentration of the component is maintained while maintaining the range represented by the following formula (1).
  • y represents the concentration (mass%) of the component (a)
  • x represents the total concentration (mol / kg) of the sodium ion and potassium ion derived from the component (b).
  • the above formula (1) is not satisfied. This is because the components are difficult to dissolve.
  • the total concentration of the sodium ions and potassium ions derived from component (b) is 4.3 mol / kg or more, a significant increase in viscosity of the ⁇ -SF salt aqueous solution occurs due to salting-out, and stirring, transfer, etc. This is because the work becomes difficult.
  • the method for dissolving the solid component (a) and the component (b) in water is not limited as long as the above conditions (i) to (iii) can be maintained.
  • water as a solvent and the component (b) are dissolved in a dissolution tank.
  • stirring to dissolve the component (b) then adding the solid component (a) while maintaining water at a predetermined temperature, and stirring to dissolve.
  • water as a solvent may be added stepwise to the solid component (a) and component (b) to dissolve.
  • a part of the total amount of water as a solvent (total amount charged) is charged into a dissolution tank as an initial solvent, and the components (i) to Add and dissolve while maintaining the condition of (iii) (preliminary dissolution step).
  • eliminated the quantity of the initial stage solvent from the total injection amount of water is thrown into a dissolution tank.
  • the remainder obtained by removing the solid (a) component and the (b) component used in the preliminary dissolution step from the total input amount of the solid (a) component and the (b) component is the above (i) to (iii).
  • the amount of the initial solvent is preferably 20% by mass or more of the total input amount, more preferably 30% by mass or more, further preferably 40% by mass or more, and 60% by mass or more. It is particularly preferred.
  • the operation of dissolving the component (a) can be started smoothly. If the initial solvent is less than 20% by mass of the total amount of water added, the ⁇ -SF salt becomes difficult to dissolve, the amount of ⁇ -SF salt adhering to the production equipment increases, and the ⁇ -SF salt aqueous solution has a significant viscosity. This is because a rise occurs and operations such as stirring and transfer become difficult.
  • the temperature condition for dissolving the solid component (a) in water is 50 ° C. or higher, preferably 55 ° C. or higher, and more preferably 60 to 90 ° C.
  • the temperature is lower than 50 ° C.
  • the viscosity of the ⁇ -SF salt aqueous solution increases, and operations such as stirring and transfer become difficult. This is because if the temperature is too high, water as a solvent tends to evaporate and it becomes difficult to adjust the concentration of each component. If it is the said temperature range, (a) component can be melt
  • the rate of addition of the solid (a) component to water can be determined in consideration of the total concentration of sodium ions and potassium ions derived from the (b) component.
  • the rate of addition of water to the component (a) of the solid it follows (2) relative rate of addition of component (a) of the solid to the solvent of the formula is less than 0.1 h -1 or 10h -1 are preferred, more preferably in less than 0.3h -1 than 8h -1, more preferably less than 0.5h -1 than 5h -1.
  • the relative addition rate of the solid component (a) is less than 0.1 h ⁇ 1 , the productivity of the ⁇ -SF salt aqueous solution is undesirably lowered.
  • the relative addition rate of the solid component (a) is 10 h ⁇ 1 or more, the concentration of the ⁇ -SF salt is partially increased and the viscosity of the ⁇ -SF salt aqueous solution is increased. This is because it becomes difficult.
  • the solid component (a) is converted into water under a temperature condition of 50 ° C. or higher while maintaining the condition (i) or (ii).
  • the solid ⁇ -SF salt can be easily dissolved in water, and the significant increase in viscosity of the ⁇ -SF salt aqueous solution can be suppressed. Therefore, the fluidity of the ⁇ -SF salt aqueous solution can be maintained, and the ⁇ -SF salt can be prevented from adhering to various production equipment, and the work suitability can be improved without hindering operations such as stirring and transfer. I can plan.
  • the method for producing an aqueous ⁇ -SF salt solution of the present invention comprises dissolving the solid component (a) in a solvent under a temperature condition of 50 ° C. or higher while maintaining the condition (iii).
  • the increase in viscosity of the ⁇ -SF salt aqueous solution due to salting out can be prevented, and the work suitability can be improved.
  • the ⁇ -SF salt concentration in the ⁇ -SF salt aqueous solution is more than 35% by mass and 55% by mass or less, the total concentration of sodium ions and potassium ions is less than 0.55 mol / kg.
  • the ⁇ -SF salt has an alkyl chain arranged in a circle on the inner side, the sulfonic acid group that is an anion group is on the outer side, and adjacent sulfonic acid groups repel each other.
  • the ⁇ -SF salt has a circular shape because the repulsive force between sulfonic acid groups weakens. Arrangement cannot be maintained, and it will be arranged in parallel. Since this arrangement is a lamellar liquid crystal, the viscosity is significantly lower than that of the hexagonal liquid crystal.
  • the ⁇ -SF salt in the process of producing an ⁇ -SF salt aqueous solution, the ⁇ -SF salt is prevented from forming hexagonal liquid crystal, or the ⁇ -SF salt partially formed with hexagonal liquid crystal is changed into a lamellar liquid crystal, thereby producing ⁇ -SF salt. It is considered that the increase in the viscosity of the SF salt aqueous solution is suppressed.
  • the ⁇ -SF salt becomes difficult to dissolve, and the sodium derived from the component (b) Salting out is performed according to the ion and / or potassium ion concentration. For this reason, the viscosity of the ⁇ -SF salt aqueous solution is remarkably increased by the precipitated ⁇ -SF salt. That is, it is considered that the increase in viscosity of the aqueous ⁇ -SF salt solution is suppressed by maintaining the dissolution of the ⁇ -SF salt in the solvent.
  • the ⁇ -sulfo fatty acid ester salt aqueous solution of the present invention is mixed with other ingredients to form a slurry, and then spray-dried particles obtained by spray drying to obtain a powder detergent composition for textiles and a powder detergent composition for dishware. Can be blended.
  • the components contained in these powder detergent compositions include anionic surfactants such as ⁇ -SF salts, linear alkylbenzene sulfonates, alpha olefin sulfonates, alkyl sulfates, soaps; nonionic surfactants
  • anionic surfactants such as ⁇ -SF salts, linear alkylbenzene sulfonates, alpha olefin sulfonates, alkyl sulfates, soaps
  • nonionic surfactants For example, an alkylene oxide adduct of a higher alcohol; a builder such as zeolite, sodium sulfate or sodium sulfite as an inorganic builder; an alkaline agent such as sodium carbonate or potassium carbonate; a fluorescent agent; a bleaching agent; a bleaching activator; an enzyme;
  • softeners include bentonite, cationized cellulose, and powdered cellulose; examples of anti-staining agents include carb
  • MES ⁇ -sulfo fatty acid methyl ester sodium salt
  • AI indicates an ⁇ -SF salt which is an active ingredient.
  • the ⁇ -SF salt-containing paste contains not only MES but also ⁇ -sulfo fatty acid di-salt such as sodium salt of ⁇ -sulfo fatty acid (di-Na salt), and by-products such as inorganic sulfates. Is included.
  • the color tone of the obtained ⁇ -SF salt-containing paste was 30.
  • a 5% ethanol solution of the obtained ⁇ -SF salt paste was prepared, and the optical path length of 40 mm, No. It was measured with a Kret photoelectric photometer using a 42 blue filter.
  • ⁇ Concentration of paste containing ⁇ -SF salt> The obtained ⁇ -SF salt-containing paste was rotated at a rotation speed of 1,060 rpm and a blade tip speed of about 11 m / sec (vacuum thin film evaporator (heat transfer surface: 0.5 m 2 , inner diameter of cylindrical processing section). : 205 mm, clearance between heat transfer surface and blade tip as scraping means: 3 mm, product name: Exeva, manufactured by Shinko Pantech Co., Ltd. at 35 kg / h, inner wall heating temperature (heat transfer surface temperature) Concentration was performed under the conditions of 135 ° C.
  • the temperature of the concentrate of the obtained ⁇ -SF salt-containing paste was 115 ° C., and the water content was 2.4%.
  • the water content was measured using a Karl Fischer moisture meter (manufactured by Kyoto Electronics Industry Co., Ltd., model: MKC-210, Method: 2, stirring speed: 4). The sample amount was about 0.05 g.
  • composition of the obtained ⁇ -SF salt-containing paste concentrate was measured by the following method. ⁇ Measurement of total concentration of MES and di-Na salt >> 0.3 g of the ⁇ -SF salt-containing paste concentrate was accurately weighed into a 200 mL volumetric flask, and ion-exchanged water (distilled water) was added up to the marked line and dissolved by ultrasonic waves.
  • ⁇ -SF salt-containing paste concentrate 1.5 g was accurately weighed into a 200 mL volumetric flask, about 50 mL of water and about 50 mL of ethanol were added and dissolved using ultrasonic waves. After dissolution, the mixture was cooled to about 25 ° C., and methanol was accurately added up to the marked line to make a test solution. About 2 mL of the test solution was filtered using a 0.45 ⁇ m chromatographic disk, then analyzed by high performance liquid chromatography under the same measurement conditions as above, and the concentration of di-Na salt in the sample solution was determined using the calibration curve prepared above. Asked.
  • ⁇ -SF salt-containing paste concentrate is accurately weighed into a 200 mL volumetric flask, ion-exchanged water (distilled water) is added up to the marked line, and dissolved using ultrasonic waves. After dissolution, the solution was cooled to about 25 ° C. and used as a test solution. About 2 mL of the test solution was filtered using a 0.45 ⁇ m chromatographic disk, and then analyzed by an ion chromatograph under the same measurement conditions as described above. Using the calibration curve created above, the methyl sulfate concentration and sulfuric acid in the sample solution were analyzed. The sodium concentration was determined, and the methyl sulfate concentration and sodium sulfate concentration (mass%) in the sample were calculated.
  • composition of the concentrate obtained by the above measurement is as follows.
  • MES 85.4% Moisture ⁇ ⁇ ⁇ ⁇ 2.4% Methyl sulfate 6.1% Sodium sulfate 2.5% di-Na salt 3.6% Methanol ⁇ trace (traces are observed) Unreacted methyl ester ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ trace Other minor components ⁇ ⁇ ⁇ ⁇ ⁇ trace (traces are observed) Total ⁇ ⁇ ⁇ ⁇ 100.0%
  • ⁇ -SF salt-containing paste concentrate was continuously supplied at 222 kg / h to a double belt type belt cooler (NR3-Lo. Cooler) manufactured by Nippon Belting Co., Ltd. with a clearance between input pulleys adjusted to 2 mm. And cooled.
  • the belt moving speed is set to the following value, and the cooling water flow rate is 1500 L / h on the upper belt side (cooled by flowing down on the back surface of the belt in a countercurrent manner) and 1800 L / h on the lower belt side (belt
  • the cooling water supply temperature was 20 ° C.
  • the 25 ° C surfactant-containing sheet obtained by discharging from the cooling belt is crushed at a rotation speed of 200 rpm by an attached crusher installed near the discharge pulley, and contains a solid ⁇ -SF salt. ⁇ -SF salt-containing flakes were obtained.
  • Double Belt Belt Cooler Pulley center distance (up / down) [mm] ... 3270/3630 Upper belt specification (L x W x T) [mm] ... 8440 x 650 x 0.8 Lower belt specification (L x W x T) [mm] ... 8440 x 650 x 0.8 Belt speed [m / min] ... 6 Effective cooling length [m] ... 3.1 Effective cooling width [m]... 0.47
  • ⁇ ⁇ -SF salt-containing pellets Equipped with an intermediate orifice (first intermediate orifice hole diameter ⁇ 6mm, second intermediate orifice hole diameter 4.5mm) Extrude Omix (manufactured by Hosokawa Micron Corporation, EM-6 type, spindle rotation speed) 70 rpm), the ⁇ -SF salt-containing flakes are continuously added at a processing rate of 80 kg / h, and kneaded and extruded to obtain a 0.8-mm noodle-like ⁇ -SF salt-containing material. (Temperature 60 ° C.). In this case, the jacket water inlet temperature of the Extrude Omix was 30 ° C.
  • noodle-like ⁇ -SF salt-containing material was cooled to 30 ° C. at room temperature, it was applied to a speed mill (manufactured by Okada Seiko Co., Ltd., ND-10 type, blade rotation speed 840 rpm, screen ⁇ 2 mm) at a processing speed of 1 kg / min.
  • the mixture was crushed to obtain ⁇ -SF salt-containing pellets having an average major axis (pellet length) of 2.4 mm containing solid ⁇ -SF salt as a solid ⁇ -SF salt-containing product.
  • ⁇ -SF salt-containing powder Fitzmill made by Hosokawa Micron Corporation, DKA-3 type, first-stage screen diameter 8 mm ⁇ , second-stage screen diameter 3.5 mm ⁇ , in which ⁇ -SF salt-containing flakes are arranged in series in two stages Blade rotation speed 1st stage: 4700 rpm, 2nd stage 2820 rpm
  • dehumidified cold air at 15 ° C. (dew point: ⁇ 5 ° C., air volume: 6 Nm 3 / min), ground at a processing speed of 200 kg / h, and solid
  • An ⁇ -SF salt-containing powder having an average particle size of 500 ⁇ m and containing an ⁇ -SF salt was obtained.
  • “Nm 3 ” represents “m 3 (standard state)”.
  • Hydrogen peroxide solution First grade reagent, aqueous solution containing 35% hydrogen peroxide (manufactured by Junsei Co., Ltd.) ⁇ Sodium sulfate: neutral anhydrous sodium sulfate A0 (manufactured by Shikoku Kasei Co., Ltd.) -Potassium sulfate: Reagent primary potassium sulfate (manufactured by Takasugi Pharmaceutical Co., Ltd.) ⁇ Sodium chloride: Deer grade 1 sodium chloride (manufactured by Kanto Chemical Co., Inc.) -Potassium chloride: Industrial potassium chloride (manufactured by Takasugi Pharmaceutical Co., Ltd.) ⁇ Sodium sulfite: Anhydrous sodium sulfite (manufactured by Shinshu Chemical Co., Ltd.) -Potassium sulfite: Potassium sulfite (manufactured by Daito)
  • the average particle size of the ⁇ -SF salt-containing powder was measured by the following method.
  • the ⁇ -SF salt-containing powder which is an object to be measured (sample), is classified using a 9-stage sieve having a mesh opening of 1680 ⁇ m, 1410 ⁇ m, 1190 ⁇ m, 1000 ⁇ m, 710 ⁇ m, 500 ⁇ m, 350 ⁇ m, 250 ⁇ m, and 149 ⁇ m and a tray. I did it.
  • a sieve with a small opening and a sieve with a large opening are stacked in the order of the sieve, and a spray-dried particle sample of 100 g / times is put on the top of the top 1680 ⁇ m sieve, and the lid is covered and a low-tap type sieve shaker (Iida Seisakusho Co., Ltd., Tapping: 156 times / min, Rolling: 290 times / min), and vibrated for 10 minutes under an atmospheric condition of a temperature of 25 ° C. and a relative humidity of 40%. The sample remaining on the top was collected for each sieve, and the mass of the sample was measured.
  • a low-tap type sieve shaker Iida Seisakusho Co., Ltd., Tapping: 156 times / min, Rolling: 290 times / min
  • the opening of the first sieve where the integrated mass frequency is 50% or more is a ⁇ m
  • the opening of the sieve that is one step larger than a ⁇ m is b ⁇ m.
  • the average particle size (mass 50%) was calculated by the following equation (3), where c% was the cumulative mass frequency from the saucer to the a ⁇ m sieve and d% was the mass frequency on the a ⁇ m sieve.
  • ⁇ Measurement of viscosity of ⁇ -SF salt aqueous solution A cylindrical stainless steel container having a depth of 115 mm and a diameter of 110 mm was filled with 800 g of an ⁇ -SF salt aqueous solution, and the measurement was performed using a B8H viscometer manufactured by Tokimec Co., Ltd. under the following conditions. The measured value was a value 10 seconds after the start of rotor rotation.
  • ⁇ Measurement temperature condition >> ⁇ Measured at 55 ° C. when the temperature of the ⁇ -SF salt aqueous solution is 50 ° C. or higher and lower than 60 ° C. ⁇ Measured at 65 ° C when the production temperature of the ⁇ -SF salt aqueous solution is 60 ° C or higher and lower than 70 ° C. ⁇ Measured at 75 ° C. when the production temperature of the ⁇ -SF salt aqueous solution is 70 ° C. or higher and lower than 80 ° C.
  • ⁇ Measurement conditions When the viscosity range of the ⁇ -SF salt aqueous solution is less than 10 Pa ⁇ s, No. Measured at 4 rotors and 20 rpm. When the viscosity range of the ⁇ -SF salt aqueous solution is 10 Pa ⁇ s or more and less than 20 Pa ⁇ s, No. Measured with 5 rotors and 20 rpm. When the viscosity range of the ⁇ -SF salt aqueous solution is 20 Pa ⁇ s or more and less than 50 Pa ⁇ s, No. Measured with 6 rotors and 20 rpm.
  • FIG. 1 is a cross-sectional view of the dissolution tank 10.
  • the dissolution tank 10 has a main body part 12, a jacket part 14 provided on the outer periphery of the main body part 12, and a stirring part 20.
  • the stirring unit 20 includes an anchor blade type stirring blade 22 and a stirring shaft 24, and the stirring shaft 24 is connected to the drive unit 30 via a torque meter 32.
  • the dissolution tank 10 has a structure in which the inside of the main body portion 12 can be adjusted to an arbitrary temperature by circulating a heat medium through the jacket portion 14.
  • a rotational torque meter (Yamazaki type rotational torque meter SS-50 type, manufactured by Yamazaki Seiki Laboratory Co., Ltd.) was used.
  • the measurement of the maximum power required for stirring was performed by measuring the maximum rotational torque during the production of the ⁇ -SF salt aqueous solution with the torque meter 32. From the maximum rotation torque and the number of rotations at that time, the maximum required power for stirring was calculated by the following equation (4).
  • the adhesion state of the solid ⁇ -SF salt to the stirring blade 22 and the stirring shaft 24 of the dissolution tank 10 shown in FIG. 1 was visually observed and evaluated according to the following evaluation criteria.
  • the solid state means a state in which flakes, pellets, and powders are left in the form without being dissolved in water.
  • Examples 1 to 47, 50 to 53 and Comparative Examples 1 to 11 25 kg of each ⁇ -SF salt aqueous solution was produced by the following method. First, steam at 100 ° C. is passed through the jacket portion 14 of the dissolution tank 10 shown in FIG. 1, and finally the compositions of the ⁇ -SF salt aqueous solutions shown in Tables 1 to 8 are used. Temperature water was added. Subsequently, rotation of the stirring unit 20 was started at a rotation speed of 103 rpm, and the entire amount of inorganic sodium salt and / or potassium salt was added all at once.
  • the solid ⁇ -SF salt-containing material was added at the relative addition rates shown in Tables 1 to 8. After the addition, stirring was continued for another 15 minutes to obtain an ⁇ -SF salt aqueous solution.
  • the amount of steam supplied to the jacket part 14 was controlled so that the temperature of the ⁇ -SF salt aqueous solution during the production could be maintained within the temperature range shown in Tables 1-8.
  • the ⁇ -SF salt aqueous solution produced by the above production method is described as “a” in the column of the order of addition of the production conditions in Tables 1-8.
  • Example 48 According to the composition shown in Table 8, 25 kg of each ⁇ -SF salt aqueous solution was produced by the method shown below. First, steam at 100 ° C. was passed through the jacket portion 14 of the dissolution tank 10 shown in FIG. 1, and water having a temperature shown in Table 8 corresponding to 55% of the total input amount was charged into the dissolution tank 10 as an initial solvent. Subsequently, rotation of the stirring unit 20 was started at a rotation speed of 103 rpm, and the whole amount of inorganic sodium salt or potassium salt was added all at once. After stirring for 2 minutes, the solid ⁇ -SF salt-containing material was added at the relative addition rate shown in Table 8 (preliminary dissolution step).
  • Example 49 According to the composition shown in Table 8, 25 kg of an ⁇ -SF salt aqueous solution was obtained in the same manner as in Example 48 except that the initial solvent was changed to 60% of the total input amount.
  • the ⁇ -SF salt aqueous solution produced by the production method described above is described as “b” in the column of the order of addition of the production conditions in Table 8.
  • Example 54 According to the composition shown in Table 8, 25 kg of an ⁇ -SF salt aqueous solution was obtained in the same manner as in Example 1 except that the addition of sodium sulfate and the solid ⁇ -SF salt-containing material was started simultaneously. At this time, the relative addition rate of sodium sulfate was 0.20 h ⁇ 1 , and the relative addition rate of the solid ⁇ -SF salt-containing material was 1.50 h ⁇ 1 .
  • the ⁇ -SF salt aqueous solution produced by the above production method is described as “c” in the column of the order of addition of the production conditions in Table 8.
  • Example 55 According to the composition shown in Table 8, 25 kg of an ⁇ -SF salt aqueous solution having an MES concentration of 48.0% and an inorganic salt-derived sodium ion concentration of 0.8 mol / kg was produced by the following method. First, steam at 100 ° C. was passed through the jacket portion 14 of the dissolution tank 10 shown in FIG. 1, and water having the temperature shown in Table 8 was added so that the aqueous solution composition finally shown in Table 8 was obtained.
  • the rotation of the stirring unit 20 is started at a rotation speed of 103 rpm, the solid ⁇ -SF salt-containing material is added at a relative addition rate of 1.50 h ⁇ 1 , and when the MES concentration reaches 30%, the solid ⁇ - The addition of the SF salt-containing material was temporarily suspended.
  • the sodium ion concentration derived from the inorganic salt at this time was 0.11 mol / kg.
  • 4.4% sodium sulfate equivalent was added all at once, and 2 minutes after the addition, the remainder of the solid ⁇ -SF salt-containing material was added again at a relative addition rate of 1.50 h ⁇ 1 , and another 15 minutes after the addition.
  • Stirring was continued to obtain an ⁇ -SF salt aqueous solution.
  • the ⁇ -SF salt aqueous solution produced by the above production method is described as “d” in the column of the order of addition of the production conditions in Table 8.
  • the initial solvent was 20% water of the total input amount, and 25 kg of an ⁇ -SF salt aqueous solution having an MES concentration of 43.2% and an inorganic salt-derived sodium ion concentration of 1.1 mol / kg by the following method.
  • Manufactured 100 ° C. steam was passed through the jacket portion 14 of the dissolution tank 10 shown in FIG. 1, and water having a temperature shown in Table 8 corresponding to 20% of the total amount of water as an initial solvent was charged into the dissolution tank 10. .
  • rotation of the stirring unit 20 was started at a rotation speed of 103 rpm, and 20% of the total addition amount of sodium sulfate was added all at once.
  • the solid ⁇ -SF salt-containing material was added at the relative addition rate shown in Table 9.
  • the MES concentration reached 38.4% (sodium ion concentration derived from inorganic salt: 0.44 mol / kg)
  • the ⁇ -SF salt aqueous solution produced by the above production method is indicated as “f” in the column of the order of addition of the production conditions in Table 9.
  • FIG. 3 is a cross-sectional view of the dissolution tank 40 used in the slurry preparation process.
  • the dissolution tank 40 has a structure in which the inside of the blending container 41 can be adjusted to an arbitrary temperature by circulating a heat medium through the jacket portion 47.
  • Formulating an effective volume of 700 L having two-stage inclined paddle blades 44, 45 (blade length 640 mm, blade width 65 mm) and two baffle plates 46 (length 600 mm, width 50 mm, wall clearance 30 mm) with an inclination angle of 45 ° 25 ° C. water was added to the container 41 (see FIG.
  • Example 13 Example 16, and Example 30 was added, and while stirring was continued, 0.1 MPa (gauge pressure) steam or 8 ° C. was applied to the jacket of the compounding tank.
  • the slurry temperature was adjusted to the slurry temperature shown in Table 10, and stirring was continued for 1 hour while maintaining the temperature. In this way, 600 kg of a slurry having a moisture content of 42% was prepared.
  • the amount of sodium sulfate to be added is the sum of the amount brought in from each of the ⁇ -SF-Na slurries used, and the formulation examples 1 to 3 in Table 10 as the compositions after spray drying (Examples 13 and 16 respectively). , 30 ⁇ -SF-Na slurry was used).
  • ⁇ Prescription Example 4> (Slurry preparation process) Add builders in the following order: Fluorescent agent added at the same time as Na hydroxide, sodium silicate, polyacrylic acid Na, acrylic acid / maleic acid copolymer Na, zeolite, sodium sulfate, sodium sulfite, STPP, carbonate K, and carbonate Na Thereafter, a slurry was prepared in the same manner as in Formulation Examples 1 to 3, except that soap was added and finally ⁇ -SF-Na obtained in Example 13 was added. The amount of sodium sulfate to be added was added to the amount brought in from the used ⁇ -SF-Na slurry and adjusted so as to be the composition of Formulation Example 4 in Table 11 as the composition after spray drying. .
  • Na hydroxide Flaked caustic soda (manufactured by Tsurumi Soda Co., Ltd.)
  • STPP sodium tripolyphosphate (manufactured by Taiyo Chemical Industry Co., Ltd.)
  • Silicate Na S50 ° sodium silicate No.
  • FIG. 2 shows the MES concentration (mass%) on the vertical axis and the sodium ion concentration (mol / kg) derived from the component (b) on the horizontal axis, and the corresponding Examples 1 to 33 and Comparative Examples 1 to 10 The overall evaluation is plotted.
  • the legend ( ⁇ ) represents the comprehensive evaluation “A”
  • the legend ( ⁇ ) represents the comprehensive evaluation “B”
  • the legend ( ⁇ ) represents the comprehensive evaluation “C”
  • the legend ( ⁇ ) represents the comprehensive evaluation “D”.
  • the order of addition of production conditions is “a”. As shown in FIG.
  • y represents the concentration (mass%) of the component (a)
  • x represents the total concentration (mol / kg) of the sodium ion and potassium ion derived from the component (b).
  • the viscosity is relatively low as long as the production conditions of the present invention are satisfied, regardless of the kind of inorganic sodium salt and inorganic potassium salt to be added. It was found that an ⁇ -SF salt aqueous solution can be produced.
  • an ⁇ -SF salt aqueous solution that facilitates dissolution of a solid ⁇ -SF salt in water, maintains fluidity and is excellent in production suitability. Is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Detergent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 流動性を維持し製造適正に優れるα-SF塩水溶液の製造方法を目的とする。固体の(a)成分:α-スルホ脂肪酸アルキルエステル塩と、(b)成分:無機ナトリウム塩及び/又は無機カリウム塩とを下記(i)又は(ii)の条件を維持しながら、50℃以上の温度条件下で前記固体の(a)成分を溶媒である水に溶解することよりなる。  (i):(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が0.55mol/kg未満の場合、(a)成分の濃度が35質量%以下  (ii):(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が0.55mol/kg以上1.8mol/kg未満の場合、(a)成分の濃度が55質量%以下

Description

α-スルホ脂肪酸アルキルエステル塩水溶液の製造方法
 本発明はα-スルホ脂肪酸アルキルエステル塩水溶液の製造方法に関する。
 本願は、2008年11月21日に、日本に出願された特願2008-298469号に基づき優先権を主張し、その内容をここに援用する。
 α-スルホ脂肪酸アルキルエステル塩(以下、α-SF塩ということがある)は、洗浄力が高く、生分解性が良好で、環境に対する影響が少ないことから、洗浄剤材料としての性能が高く評価されている。加えて、資源面からも再生可能な天然原料系でコスト的にも有利であり、地球環境保護の面からも重要視されている。
 α-SF塩の製造方法としては、脂肪酸アルキルエステルを、SOガス等を用いてスルホン化してα-スルホ脂肪酸アルキルエステル(以下、α-SFということがある)を得、前記α-SFをアルカリによって中和して、液状又はペースト状のα-SF塩含有水溶液を得る方法が一般的である。
 ところで、上述のα-SF塩含有水溶液は、α-SF塩濃度が高くなるに従って粘度が増加し、流動性のないゲルとなる。このように流動性のない状態ではローリーや船での輸送が難しく、流動性が維持できるような希薄なα-SF塩含有水溶液では輸送コストがかかる。このため、α-SF塩は、フレークやペレット等、固体として流通するのが一般的である。
 粒状洗剤の製造においては、上述した固体のα-SF塩を水に溶解してα-SF塩水溶液とし、前記α-SF塩水溶液と粉体原料からなる洗剤スラリーを噴霧乾燥したり、前記α-SF塩水溶液をバインダーとして粉体原料を造粒したりする。このため、α-SF塩水溶液は、流動性を維持したままα-SF塩濃度をできるだけ高めることが望ましい。一方で、α-SF塩水溶液は、α-SF塩濃度を高めると製造中にゲル化し、製造機器の流路を閉塞させたり、伝熱面に付着して伝熱効率を低下させるような障害の原因となる。こうした問題に対し、これまでにもα-SF塩水溶液の粘度低下を図る方法が報告されている。
 例えば、特許文献1には、α-SF塩とα-スルホ脂肪酸ジ塩と無機硫酸塩とを特定の配合量とすることで、α-SF塩の水性液の流動性を改善できることが記載されている。特許文献2には、硫酸ナトリウムの存在下でα-SF塩を含む界面活性剤スラリーを段階的に濃縮することで、界面活性剤スラリーの流動性を改善する方法が記載されている。特許文献3には、無機硫酸塩を必須成分とすることで、ハンドリング可能なα-SF塩濃度30~60重量%のα-SF塩水溶液を得られることが記載されている。特許文献4には、無機塩化物を含むことで、流動性が良好なα-SF塩濃度40質量%以上のα-SF塩水溶液を得られることが記載されている。特許文献5には、無機硫酸塩とポリオキシアルキレン付加多価アルコールとを含むことで、ハンドリング可能なα-SF塩濃度30~60重量%のα-SF塩水溶液を得られることが記載されている。
特開平3-101828号公報 特開2003-82395号公報 特開昭61-280467号公報 特開2007-320978号公報 特開昭62-116698号公報
 しかしながら、固体のα-SF塩を水に溶解してα-SF塩水溶液を製造する場合、α-SF塩水溶液を濃縮する場合に比べ、α-SF塩濃度の低下に伴う流動性の低下やゲル化による影響がより顕著に現れる。このため、固体のα-SF塩を用いたα-SF塩水溶液の製造方法に、特許文献1、2に記載の発明を単に適用することは困難である。さらに、工業レベルにおけるα-SF塩水溶液の製造の観点から、特許文献3~5に記載の発明では、α-SF塩水溶液の製造中のゲル化を有効に防止し、製造に適した流動性を安定的に維持できないおそれがある。
 そこで本発明は、工業レベルにおいても固体のα-SF塩の水への溶解を容易にし、かつ、流動性を維持し製造適正に優れるα-SF塩水溶液の製造方法を目的とする。
 本発明のα-SF塩水溶液の製造方法は、固体の(a)成分:α-スルホ脂肪酸アルキルエステル塩と、(b)成分:無機ナトリウム塩及び/又は無機カリウム塩とを溶媒である水に溶解するα-スルホ脂肪酸エステル塩水溶液の製造方法において、下記(i)又は(ii)の条件を維持しながら、50℃以上の温度条件下で前記固体の(a)成分を溶媒である水に溶解することを特徴とする。
(i):(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が0.55mol/kg未満の場合、(a)成分の濃度が35質量%以下
(ii):(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が0.55mol/kg以上1.8mol/kg未満の場合、(a)成分の濃度が55質量%以下
 さらに、下記(iii)の条件を維持しながら、前記固体の(a)成分を溶媒に溶解してもよい。
(iii):(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が1.8mol/kg以上4.3mol/kg未満の場合、(a)成分の濃度が下記(1)式で表される範囲
 y≦-22x+95 ・・・(1)
[上記(1)式中、yは(a)成分の濃度(質量%)、xは(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度(mol/kg)を表す。]
 本発明のα-SF塩水溶液の製造方法は、前記溶媒の20質量%以上を初期溶媒とし、前記初期溶媒に対し前記固体の(a)成分及び前記(b)成分の少なくとも一部を溶解した後、前記溶媒の残部を添加し、さらに前記固体の(a)成分及び前記(b)成分の残部を溶解することが好ましく、下記(2)式で表される溶媒に対する固体の(a)成分の相対添加速度が、0.1h-1以上10h-1未満であることが好ましい。
 固体の(a)成分の相対添加速度=固体の(a)成分添加速度(kg/h)/最終のα-スルホ脂肪酸アルキルエステル塩水溶液量(kg) ・・・(2)
 本発明のα-SF塩水溶液の製造方法によれば、固体のα-SF塩の水への溶解を容易にし、かつ、流動性を維持し製造適正に優れるα-SF塩水溶液を得ることができる。
実施例に用いた溶解槽を説明する断面図である。 実施例1~33、比較例1~10における、MES濃度と(b)成分由来のNaイオン濃度と総合評価判定結果との関係を示すグラフである。 処方例1~4のスラリー調製工程で用いた溶解槽を説明する断面図である。
<α-SF塩水溶液>
 本発明のα-SF塩水溶液の製造方法で得られるα-SF塩水溶液は、α-SF塩と、無機ナトリウム塩及び/又は無機カリウム塩とを含む水溶液である。
[(a)成分:α-SF塩]
 (a)成分はα-SF塩である。α-SF塩は、脂肪酸アルキルエステルのスルホン化物の塩であり、典型的に下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000001
 [(I)式中、Rは炭素数6~22の直鎖もしくは分岐アルキル基又はアルケニル基を表し、Rは炭素数1~6の直鎖もしくは分岐アルキル基を表し、Mは対イオンを表す。]
 前記(I)式中のRのアルキル基は、直鎖状であっても分岐鎖状であってもよく、炭素数6~22であり、炭素数10~16であることが好ましく、炭素数12~16であることがより好ましい。Rのアルケニル基は、直鎖状であっても分岐鎖状であってもよく、炭素数6~22であり、炭素数10~16であることが好ましく、炭素数12~16であることがより好ましい。中でも、Rとしては、アルキル基が好ましい。すなわち、α-SF塩は、α-スルホ飽和脂肪酸アルキルエステル塩であることが好ましい。
 前記(I)式中のRのアルキル基は、直鎖状であっても分岐鎖状であってもよく、炭素数1~6であり、炭素数1であることがより好ましい。即ち、α-SF塩は、α-スルホ脂肪酸メチルエステルであることが好ましい。
 Mで表される対イオンとしては、R-CH(CO-O-R)-SO-(R、Rは、前記(I)式中のR、Rと同じ)と水溶性の塩を形成するものであればよい。前記水溶性の塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩等のアルカリ土類金属塩;アンモニウム塩;エタノールアミン塩等が挙げられる。中でも、アルカリ金属塩であることが好ましく、ナトリウム塩であることがより好ましい。
 このようなα-SF塩としては、例えば、α-スルホ脂肪酸メチルエステルのナトリウム塩(MES)が挙げられる。
 α-SF塩水溶液中の(a)成分濃度は、(b)成分の濃度に応じて決定でき、例えば、30質量%以上であることが好ましく、30~55質量%であることがより好ましく、30~53質量%であることがさらに好ましく、30~50質量%であることが特に好ましい。上記範囲であれば、α-SF塩水溶液の流動性の制御、α-SF塩の溶解性の効果が顕著に現れ、かつ、粒状洗剤の製造における噴霧乾燥や造粒を効率的に行えるためである。
 α-SF塩は、公知の方法により製造できる。例えば、脂肪酸アルキルエステルをスルホン化してα-SFを含むスルホン化物とし(スルホン化工程)、次いで前記スルホン化物のエステル化を行い(エステル化工程)、その後中和してα-SF塩含有中和物を得た(中和工程)後、漂白(漂白工程)することによりα-SF塩含有ペーストが得られる。このα-SF塩含有ペーストを必要に応じて濃縮することで、固体のα-SF塩を含有するα-SF塩含有濃縮物(以下、濃縮物という)を得ることができる。この濃縮物に成型・冷却処理を施すことによりフレーク状、ペレット状の固体α-SF塩含有物が得られる。さらに、フレーク状、ペレット状の固体α-SF塩含有物を粉砕処理することにより、粉体状等の固体α-SF塩含有物が得られる。固体α-SF塩含有物には、(a)成分であるα-SF塩の他、副生物として生成したα-スルホ脂肪酸ジアルカリ塩、α-SF塩製造過程で着色防止剤として使用した無機硫酸塩等が含まれていてもよい。このような固体α-SF塩含有物は、本発明における固体の(a)成分の供給源として好適に用いることができる。
 前記脂肪酸アルキルエステルとしては、好ましくは飽和脂肪酸アルキルエステルであって、牛脂、魚油、ラノリン等から誘導される動物系油脂由来、ヤシ油、パーム油、大豆油等から誘導される植物系油脂由来、α-オキソ法から誘導される合成脂肪酸由来のアルキルエステルのいずれであってもよい。
 このような脂肪酸アルキルエステルとしては、例えば、ラウリン酸メチル、エチル又はプロピル、ミリスチン酸メチル、エチル又はプロピル、パルミチン酸メチル、エチル又はプロピル、ステアリン酸メチル、エチル又はプロピル、硬化牛脂脂肪酸メチル、エチル又はプロピル、硬化魚油脂肪酸メチル、エチル又はプロピル、ヤシ油脂肪酸メチル、エチル又はプロピル、パーム油脂肪酸メチル、エチル又はプロピル、パーム核油脂肪酸メチル、エチル又はプロピル等を挙げることができる。
 スルホン化工程は公知の方法を用いることができ、例えば、脂肪酸アルキルエステルに、SOガスや発煙硫酸等のスルホン化ガスを接触させて、α-SFを含む脂肪酸アルキルエステルのスルホン化物を得ることができる。スルホン化方法としては、流下薄膜式スルホン化法、回分式スルホン化法等のいずれのスルホン化法であってもよい。
 エステル化工程は、スルホン化工程で得られたスルホン化物に低級アルコールを添加してエステル反応を進行させ、エステル化物を得るものである。エステル化工程を行うことにより、副生物の生成が抑制され、α-SFの純度が向上する。
 中和工程は、エステル化工程で得られたエステル化物に、アルカリを添加混合することにより中和して、α-SF塩含有中和物(以下、中和物という)を得るものである。中和工程は、アルカリとエステル化物との反応混合液が酸性或いは弱アルカリ性の範囲、すなわちpH4~9の範囲となるような条件で行うことが好ましい。
 中和工程に用いるアルカリとしては、例えばアルカリ金属、アルカリ土類金属、アンモニア、エタノールアミンが挙げられる。これらのアルカリは通常、水溶液として用いられ、その濃度は2~50質量%程度とされる。
 漂白工程は、過酸化水素又は次亜塩素酸塩等の漂白剤を用いて、中和工程で得られたα-SF塩含有中和物を漂白処理するものである。漂白処理は公知の方法を用いることができ、例えば、中和物に任意の量の漂白剤を添加混合することにより行うことができる。
 α-SF塩含有ペーストの濃縮は、公知の方法により行うことができ、例えば、真空薄膜蒸発機を用いて、濃縮物を得ることができる。
[(b)成分:無機ナトリウム塩及び/又は無機カリウム塩]
 (b)成分は、無機ナトリウム塩及び/又は無機カリウム塩である。
 無機ナトリウム塩は一般に洗剤成分として配合されるものであればよく、硫酸ナトリウム、亜硫酸ナトリウム、塩化ナトリウム、炭酸水素ナトリウム、硝酸ナトリウム等が挙げられる。中でも、中性塩でありα-SF塩の加水分解を助長しない観点から、硫酸ナトリウム、塩化ナトリウムが好ましい。
 無機カリウム塩は一般に洗剤成分として配合されるものであればよく、硫酸カリウム、亜硫酸カリウム、塩化カリウム、炭酸水素カリウム、硝酸カリウム等が挙げられる。中でも、中性塩でありα-SF塩の加水分解を助長しない観点から、硫酸カリウム、塩化カリウムが好ましい。
 α-SF塩水溶液中の(b)成分濃度は、(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が4.3mol/kg未満となる範囲で、目的とするα-SF塩水溶液のα-SF塩濃度を勘案して決定することができる。(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が4.3mol/kg以上であると、塩析によりα-SF塩水溶液の粘度が著しく高くなり、攪拌、移送等の作業が困難になるためである。
<α-SF塩水溶液の製造方法>
 本発明のα-SF塩水溶液の製造方法は、固体の(a)成分と(b)成分とを下記(i)~(iii)の条件を維持しながら、50℃以上の温度条件下で前記固体の(a)成分を溶媒である水に溶解するα-SF塩水溶液の製造方法である。
 固体の(a)成分の供給源としては、例えば、上述した固体α-SF塩含有物を用いることができる。(b)成分としては、無機ナトリウム塩及び/又は無機カリウム塩を新たに溶媒に添加するものに加え、固体α-SF塩含有物に含有された無機ナトリウム塩及び/又は無機カリウム塩をも含む。
 固体の(a)成分の水への溶解は、(i):(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が0.55mol/kg未満の場合、(a)成分の濃度を35質量%以下に維持しながら行い、(a)成分の濃度を33質量%以下に維持しながら行うことが好ましい。(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が0.55mol/kg未満では、(a)成分の濃度が35質量%を超えると、α-SF塩が溶解し難くなり、製造機器へのα-SF塩の付着量が増大したり、α-SF塩水溶液の著しい粘度上昇が生じ、攪拌、移送等の作業が困難になるためである。
 固体の(a)成分の水への溶解は、(ii):(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が0.55mol/kg以上1.8mol/kg未満の場合、(a)成分の濃度を55質量%以下に維持しながら行い、(a)成分の濃度を53質量%以下とすることがより好ましく、50質量%以下とすることがさらに好ましい。(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が0.55mol/kg以上1.8mol/kg未満では、(a)成分の濃度が55質量%を超えると、α-SF塩が溶解し難くなり製造機器へのα-SF塩の付着量が増大したり、α-SF塩水溶液の著しい粘度上昇が生じ、攪拌、移送等の作業が困難になるためである。
 固体の(a)成分の水への溶解は、(iii):(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が1.8mol/kg以上4.3mol/kg未満の場合、(a)成分の濃度が下記(1)式で表される範囲を維持しながら行う。
 y≦-22x+95 ・・・(1)
 [上記(1)式中、yは(a)成分の濃度(質量%)、xは(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度(mol/kg)を表す。]
 α-SF塩水溶液の(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が1.8mol/kg以上4.3mol/kg未満では、上記(1)式を満たさなければ、(a)成分は溶解し難くなるためである。加えて、(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が4.3mol/kg以上であると、塩析によりα-SF塩水溶液の著しい粘度上昇が生じ、攪拌、移送等の作業が困難になるためである。
 固体の(a)成分及び(b)成分の水への溶解方法は、上述の(i)~(iii)の条件を維持できればよく、例えば、溶媒である水と(b)成分とを溶解槽に投入し、攪拌して(b)成分を溶解した後、水を所定の温度に維持しながら固体の(a)成分を添加し、攪拌して溶解する方法が挙げられる。また、例えば、溶媒である水を溶解槽に投入し、所定の温度に維持しながら固体の(a)成分と(b)成分とを同時に添加し、攪拌して溶解する方法が挙げられる。
 また、例えば、溶媒である水を段階的に固体の(a)成分及び(b)成分に加えて溶解を行ってもよい。例えば、溶媒である水の全量(全投入量)の一部を初期溶媒として溶解槽に投入し、前記初期溶媒に対して固体の(a)成分と(b)成分とを前記(i)~(iii)の条件を維持しながら添加し溶解する(予備溶解工程)。次いで、水の全投入量から初期溶媒の量を除いた残部を溶解槽に投入する。その後、固体の(a)成分及び(b)成分の全投入量から、予備溶解工程で用いた固体の(a)成分及び(b)成分を除いた残部を前記(i)~(iii)の条件を維持しながら添加し溶解する(主溶解工程)。この際、初期溶媒の量は、全投入量の20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましく、60質量%以上であることが特に好ましい。水の全投入量の20質量%以上を初期溶媒としてα-SF塩水溶液の製造を開始することで、(a)成分の溶解操作を円滑に開始できる。初期溶媒が水の全投入量の20質量%未満であると、α-SF塩が溶解し難くなり製造機器へのα-SF塩の付着量が増大したり、α-SF塩水溶液の著しい粘度上昇が生じ、攪拌、移送等の作業が困難になるためである。
 固体の(a)成分を水に溶解する際の温度条件は50℃以上であり、55℃以上であることが好ましく、60~90℃であることがより好ましい。50℃未満であると、α-SF塩水溶液の粘度が上昇し、攪拌、移送等の作業が困難になる。温度が高すぎると、溶媒である水が蒸発しやすくなり、各成分の濃度調節が困難になるためである。上記温度範囲であれば、(a)成分を良好に溶解することができる。
 固体の(a)成分の水への添加速度は、(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度を勘案して決定することができる。固体の(a)成分の水への添加速度は、下記(2)式で表される溶媒に対する固体の(a)成分の相対添加速度が、0.1h-1以上10h-1未満であることが好ましく、0.3h-1以上8h-1未満あることがより好ましく、0.5h-1以上5h-1未満であることがさらに好ましい。固体の(a)成分の相対添加速度が0.1h-1未満であると、α-SF塩水溶液の生産性が低下して好ましくない。固体の(a)成分の相対添加速度が10h-1以上であると、α-SF塩の濃度が部分的に高くなってα-SF塩水溶液の粘度上昇が生じ、攪拌、移送等の作業が困難になるためである。 
 固体の(a)成分の相対添加速度=固体の(a)成分添加速度(kg/h)/最終のα-スルホ脂肪酸アルキルエステル塩水溶液量(kg) ・・・(2)
 上述のとおり、本発明のα-SF塩水溶液の製造方法は、前記(i)又は(ii)の条件を維持しながら、50℃以上の温度条件下で前記固体の(a)成分を水に溶解することで、固体のα-SF塩は水に容易に溶解でき、かつ、α-SF塩水溶液の著しい粘度上昇を抑制することができる。このため、α-SF塩水溶液の流動性が維持される上、各種製造機器へのα-SF塩の付着を防止でき、攪拌、移送等の作業に支障を来たすことなく、作業適正の向上が図れる。
 加えて、本発明のα-SF塩水溶液の製造方法は、前記(iii)の条件を維持しながら、50℃以上の温度条件下で前記固体の(a)成分を溶媒に溶解することで、塩析によるα-SF塩水溶液の粘度上昇を防止し、作業適正の向上が図れる。
 このような、α-SF塩水溶液の粘度上昇の抑制効果の機構について考察する。
 (b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が0.55mol/kg未満の場合、α-SF塩濃度が35質量%を超えると、ナトリウムイオン及びカリウムイオン添加の効果が不十分となり、α-SF塩のヘキサゴナル液晶形成により急激に粘度が増加する。即ち、α-SF塩濃度を35質量%以下とすることで、α-SF塩のヘキサゴナル液晶形成を防止し、α-SF塩水溶液の粘度上昇を抑制していると考えられる。
 α-SF塩水溶液中のα-SF塩濃度が35質量%を超え55質量%以下の場合、ナトリウムイオンとカリウムイオンとの合計の濃度が0.55mol/kg未満であると、α-SF塩はヘキサゴナル液晶を形成していると考えられる。ヘキサゴナル液晶状態では、α-SF塩はアルキル鎖を内側に円形に配列し、アニオン基であるスルホン酸基は外側にあり隣り合うスルホン酸基同士は反発しあっている。しかし、カチオンであるナトリウムイオン及び/又はカリウムイオンが所定の濃度(0.55mol/kg以上1.8mol/kg未満)となると、α-SF塩は、スルホン酸基同士の反発力が弱まり円形の配列が保てなくなり、平行に配列するようになる。この配列はラメラ液晶となるため、粘度はヘキサゴナル液晶に比べて著しく低くなる。即ち、α-SF塩水溶液の製造過程で、α-SF塩のヘキサゴナル液晶形成の防止、又は、部分的にヘキサゴナル液晶を形成したα-SF塩をラメラ液晶へ状態変化させることによりにより、α-SF塩水溶液の粘度上昇を抑制していると考えられる。
 (b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が1.8mol/kg以上、4.3mol/kg未満の場合、α-SF塩が溶解し難くなり、(b)成分由来のナトリウムイオン及び又はカリウムイオン濃度に応じて塩析される。このため、析出したα-SF塩により、α-SF塩水溶液の粘度は著しく上昇する。即ち、溶媒へのα-SF塩の溶解を維持することで、α-SF塩水溶液の粘度上昇を抑制していると考えられる。
 本発明のα-スルホ脂肪酸エステル塩水溶液は、他の成分と混合してスラリーにした後、噴霧乾燥することにより得られる噴霧乾燥粒子として、繊維製品用粉末洗剤組成物や食器用粉末洗剤組成物に配合することができる。これらの粉末洗剤組成物に含まれる成分としては、アニオン性界面活性剤として、例えば、α-SF塩、直鎖アルキルベンゼンスルホン酸塩、アルファオレフィンスルホン酸塩、アルキル硫酸塩、石鹸;ノニオン界面活性剤として、例えば高級アルコールのアルキレンオキサイド付加物;ビルダー、例えば無機ビルダーとしてゼオライト、硫酸ナトリウム、亜硫酸ナトリウム;アルカリ剤として、例えば炭酸ナトリウム、炭酸カリウム;蛍光剤;漂白剤;漂白活性化剤;酵素;香料;柔軟剤として、例えばベントナイト、カチオン化セルロース、粉末セルロース;再汚染防止剤として、例えば、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ポリエチレングリコール等があげられる。
 以下、本発明について実施例を挙げて具体的に説明するが、実施例に限定されるものではない。なお、特に断りがない限り「%」は「質量%」を表し、「部」は「質量部」を表す。
(使用原料)
・α-SF塩含有フレーク
<α-SF塩含有ペーストの製造>
攪拌機付きの容量1kLの反応装置に、脂肪酸メチルエステル混合物(パルミチン酸メチル(ライオン株式会社製、商品名:パステルM-16)と、ステアリン酸メチル(ライオン株式会社製、商品名:パステルM-180)を9:1の質量比になるように予め混合した混合物)330kgを投入した。脂肪酸メチルエステル混合物を反応装置で撹拌しながら、着色抑制剤として無水硫酸ナトリウムを前記脂肪酸メチルエステル混合物100部に対して5部投入した。反応装置の攪拌を継続しながら、反応温度80℃で、窒素ガスで4容量%に希釈したSOガス(スルホン化ガス)110kg(前記脂肪酸メチルエステル混合物に対して1.2倍モル)をバブリングしながら3時間かけて等速で吹き込んだ。その後、80℃に保ちながら30分間熟成を行った。
 低級アルコールとしてメタノール14kgを反応装置に供給し、スルホン化物のエステル化を行った。エステル化温度は80℃、熟成時間は30分とし、エステル化物を得た。
 反応装置からエステル化物を抜き出し、ラインミキサーを用いて水酸化ナトリウム水溶液を添加することにより連続的に中和し、α-SF塩含有中和物を得た。
 次いで、得られたα-SF塩含有中和物を漂白剤混合ラインに注入し、35%過酸化水素水を純分換算で、100部のAIに対して純分で1~2部を供給、混合し、80℃に保ち漂白を行い、α-SF塩であるα-スルホ脂肪酸メチルエステルのナトリウム塩(MES)を含むα-SF塩含有ペーストを得た。ここで、「AI」とは、有効成分であるα-SF塩を示す。通常、α-SF塩含有ペースト中には、MESの他、α-スルホ脂肪酸ナトリウムのジ塩(di-Na塩)等のα-スルホ脂肪酸のジ塩が含まれ、無機硫酸塩等の副生物が含まれる。
得られたα-SF塩含有ペーストの色調は30であった。色調は、得られたα-SF塩ペーストの5%エタノール溶液を調整し、40mm光路長、No.42ブルーフィルターを用いてクレット光電光度計により測定した。
<α-SF塩含有ペーストの濃縮>
 得られたα-SF塩含有ペーストを、回転数1,060rpm、羽根先端速度約11m/secで回転している真空薄膜蒸発機(伝熱面:0.5m、筒状の処理部の内径:205mm、伝熱面と掻き取り手段である羽根先端とのクリアランス:3mm、商品名:エクセバ、神鋼パンテック株式会社製)に35kg/hで導入し、内壁加熱温度(伝熱面の温度)135℃、真空度(処理部内の圧力)0.007~0.014MPaの条件で濃縮を行い、α-SF塩含有ペーストの濃縮物を得た。
 得られたα-SF塩含有ペーストの濃縮物の温度は115℃であり水分含有量は2.4%であった。なお、水分含有量は、カールフィッシャー水分計(京都電子工業株式会社製、モデル:MKC-210、Method:2、撹拌速度:4)を用いて測定した。サンプル量は約0.05gとした。
 得られたα-SF塩含有ペーストの濃縮物の組成を、以下の方法により測定した。
<<MESとdi-Na塩の合計濃度の測定>>
 α-SF塩含有ペーストの濃縮物0.3gを200mLメスフラスコに正確に量り取り、イオン交換水(蒸留水)を標線まで加えて超音波で溶解させた。溶解後、約25℃まで冷却し、この中から5mLをホールピペットで滴定瓶にとり、MB指示薬(メチレンブルー)25mLとクロロホルム15mLを加え、さらに0.004mol/L塩化ベンゼトニウム溶液を5mL加えた後、0.002mol/Lアルキルベンゼンスルホン酸ナトリウム溶液で滴定した。滴定は、その都度滴定瓶に栓をして激しく振とうした後静置し、白色板を背景として両層が同一色調になった点を終点とした。同様に空試験(漂白品を使用しない以外は上記と同じ試験)を行い、滴定量の差からMESとdi-Na塩の合計濃度を算出した。
<<di-Na塩濃度測定>>MESとdi-Na塩の合計濃度中のdi-Na塩の割合
 di-Na塩の標準品0.02、0.05、0.1gを200mLメスフラスコに正確に量りとり、水約50mLとエタノール約50mLを加えて超音波を用いて溶解させた。溶解後、約25℃まで冷却し、メタノールを標線まで正確に加え、これを標準液とした。
 前記標準液約2mLを、0.45μmのクロマトディスクを用いて濾過後、下記測定条件の高速液体クロマトグラフ分析を行い、ピーク面積から検量線を作成した。
*高速液体クロマトグラフ分析測定条件
・装置:LC-6A(株式会社島津製作所製)
・カラム:Nucleosil 5SB(ジーエルサイエンス株式会社製)
・カラム温度:40℃
・検出器:示差屈折率検出器RID-6A(株式会社島津製作所製)
・移動相:0.7%過塩素酸ナトリウムのHO/CHOH=1/4(体積比)溶液
・流量:1.0mL/min
・注入量:100μL
 次に、α-SF塩含有ペーストの濃縮物1.5gを200mLメスフラスコに正確に量りとり、水約50mLとエタノール約50mLを加えて超音波を用いて溶解させた。溶解後、約25℃まで冷却し、メタノールを標線まで正確に加え、これを試験溶液とした。試験溶液約2mLを0.45μmのクロマトディスクを用いて濾過後、上記と同じ測定条件の高速液体クロマトグラフィーで分析し、上記で作成した検量線を用いて、試料溶液中のdi-Na塩濃度を求めた。
 求めたdi-Na塩濃度と、上記「<<MESとdi-Na塩の合計濃度の測定>>」で求めたMESとdi-Na塩の合計濃度とから、上記「<<MESとdi-Na塩の合計濃度の測定>>」で得られたMESとdi-Na塩の合計濃度中のMES及びdi-Na塩の割合(質量%)を算出した。
<<硫酸ナトリウム濃度及びメチルサルフェート濃度の測定>>
 硫酸ナトリウム及びメチルサルフェートの標準品をそれぞれ0.02,0.04,0.1,0.2gずつ、200mLメスフラスコに正確に量りとり、イオン交換水(蒸留水)を標線まで加え、超音波を用いて溶解させた。溶解後、約25℃まで冷却し、これを標準液とした。この標準液約2mLを、0.45μmのクロマトディスクを用いて濾過後、下記測定条件のイオンクロマトグラフ分析を行い、メチルサルフェート及び硫酸ナトリウム標準液のピーク面積から検量線を作成した。
*イオンクロマトグラフ分析測定条件
・装置:DX-500(日本ダイオネクス株式会社製)
・検出器:電気伝導度検出器CD-20(日本ダイオネクス株式会社製)
・ポンプ:IP-25(日本ダイオネクス株式会社製)
・オーブン:LC-25(日本ダイオネクス株式会社製)
・インテグレータ:C-R6A(株式会社島津製作所製)
・分離カラム:AS-12A(日本ダイオネクス株式会社製)
・ガードカラム:AG-12A(日本ダイオネクス株式会社製)
・溶離液:2.5mM NaCO/2.5mM NaOH/5%(体積)アセトニトリル水溶液
・溶離液流量:1.3mL/min
・再生液:純水
・カラム温度:30℃
・ループ容量:25μL
 次に、α-SF塩含有ペーストの濃縮物0.3gを200mLメスフラスコに正確に量り、イオン交換水(蒸留水)を標線まで加え、超音波を用いて溶解させる。溶解後、約25℃まで冷却し、これを試験溶液とした。試験溶液約2mLを、0.45μmのクロマトディスクを用いて濾過後、上記と同じ測定条件のイオンクロマトグラフで分析し、上記で作成した検量線を用いて、試料溶液中のメチルサルフェート濃度及び硫酸ナトリウム濃度を求め、試料中のメチルサルフェート濃度及び硫酸ナトリウム濃度(質量%)を算出した。
<<メタノール濃度及び未反応メチルエステル濃度の測定>>
 常法に従ってガスクロマトグラフ分析を行い、メタノール及び未反応メチルエステルの試験品と標準品のピーク面積の比からメタノール濃度及び未反応メチルエステル濃度を算出した。
 上述の測定で得られた濃縮物の組成は、以下のとおりである。
 MES        ・・・・・85.4%
 水分         ・・・・・・2.4%
 メチルサルフェート  ・・・・・・6.1%
 硫酸ナトリウム    ・・・・・・2.5%
 di-Na塩     ・・・・・・3.6%
 メタノール      ・・・・・・trace(痕跡が認められる)
 未反応メチルエステル ・・・・・・trace(痕跡が認められる)
 その他微量成分    ・・・・・・trace(痕跡が認められる)
 合計         ・・・・100.0%
<濃縮品のフレーク化>
 得られたα-SF塩含有ペーストの濃縮物を、投入プーリー間クリアランスを2mmに調整した日本ベルティング株式会社製ダブルベルト式ベルトクーラー(NR3-Lo.クーラー)に連続的に222kg/hで供給し、冷却した。この際、ベルト移動速度は下記に示した値とし、また、冷却水の流量は上ベルト側1500L/h(ベルト裏面上に向流方式で流下して冷却)、下ベルト側1800L/h(ベルト裏面に噴霧して冷却)とし、冷却水供給温度は20℃であった。冷却ベルトから排出されて得られた25℃の界面活性剤含有物シートを排出プーリー付近に設置された付属の解砕機にて200rpmの回転数で解砕し、固体のα-SF塩を含有するα-SF塩含有フレークを得た。
<<ダブルベルト式ベルトクーラーの仕様>>
プーリー芯間距離(上/下)[mm]・・・・3270/3630    
上ベルト仕様(L×W×T)[mm]・・・・8440×650×0.8
下ベルト仕様(L×W×T)[mm]・・・・8440×650×0.8
ベルト速度[m/min]     ・・・・6
有効冷却長[m]         ・・・・3.1
有効冷却幅[m]         ・・・・0.47
・α-SF塩含有ペレット
 中間オリフィスを装備した(第1中間オリフィス穴径φ6mm、第2中間オリフィス穴径4.5mm)エクストルード・オーミックス(ホソカワミクロン株式会社製、EM-6型、主軸回転数70rpm)の原料投入口に、α-SF塩含有フレークを80kg/hの処理速度で連続的に投入し、混練・押出し処理を行い、φ0.8mmのヌードル状のα-SF塩含有物を得た(温度60℃)。なお、この際のエクストルード・オーミックスのジャケット水入口温度は30℃であった。このヌードル状のα-SF塩含有物を室温にて30℃まで冷却した後、スピードミル(岡田精工株式会社製、ND-10型、ブレード回転数840rpm、スクリーンφ2mm)に処理速度1kg/minで投入して解砕し、固体のα-SF塩を含有する平均長径(ペレット長さ)2.4mmのα-SF塩含有ペレットを固体α-SF塩含有物として得た。
・α-SF塩含有粉体
 α-SF塩含有フレークを2段直列に配列したフィッツミル(ホソカワミクロン株式会社製、DKA-3型、1段目スクリーン径8mmφ、2段目スクリーン径3.5mmφ、ブレード回転数1段目:4700rpm、2段目2820rpm)に、15℃の除湿した冷風(露点:-5℃、風量:6Nm/min)とともに導入し、処理速度200kg/hで粉砕し、固体のα-SF塩を含有する平均粒子径500μmのα-SF塩含有粉体を得た。なお、「Nm」は「m(標準状態)」を表す。
・過酸化水素水:一級試薬、過酸化水素35%含有水溶液(純正化学株式会社製)
・硫酸ナトリウム:中性無水芒硝A0(四国化成株式会社製)
・硫酸カリウム:試薬一級硫酸カリウム(高杉製薬株式会社製)
・塩化ナトリウム:鹿1級塩化ナトリウム(関東化学株式会社製)
・塩化カリウム:工業用塩化カリウム(高杉製薬株式会社製)
・亜硫酸ナトリウム:無水亜硫酸曹達(神州化学株式会社製)
・亜硫酸カリウム:亜硫酸カリ(大東化学株式会社製)
・硝酸カリウム:鹿1級硝酸カリウム(関東化学株式会社製)
・炭酸水素カリウム:鹿1級炭酸水素カリウム(関東化学株式会社製)
(測定方法及び評価方法)
<平均粒子径の測定>
 α-SF塩含有粉体の平均粒子径は、以下の方法により測定した。
 測定対象物(サンプル)であるα-SF塩含有粉体について、目開き1680μm、1410μm、1190μm、1000μm、710μm、500μm、350μm、250μm、149μm、の9段の篩と受け皿を用いて分級操作を行なった。分級操作は、受け皿に目開きの小さな篩から目開きの大きな篩の順に積み重ね、最上部の1680μmの篩の上から100g/回の噴霧乾燥粒子サンプルを入れ、蓋をしてロータップ型ふるい振盪機(株式会社飯田製作所製、タッピング:156回/分、ローリング:290回/分)に取り付け、温度25℃、相対湿度40%の雰囲気条件化で、10分間振動させた後、それぞれの篩及び受け皿上に残留したサンプルを篩目ごとに回収して、サンプルの質量を測定した。そして、受け皿と各篩との質量頻度を積算していくと、積算の質量頻度が、50%以上となる最初の篩の目開きをaμmとし、aμmよりも一段大きい篩の目開きをbμmとし、受け皿からaμmの篩までの質量頻度の積算をc%、またaμmの篩上の質量頻度をd%として、下記(3)式により平均粒子径(質量50%)を求めた。
Figure JPOXMLDOC01-appb-M000001
<α-SF塩水溶液粘度の測定>
 α-SF塩水溶液を深さ115mm、直径110mmの円筒状ステンレス製容器に800g充填し、トキメック株式会社製B8H型粘度計を用いて下記条件にて測定した。なお、測定値はローター回転開始後10秒後の値とした。
<<測定温度条件>>
・α-SF塩水溶液の製造時温度が50℃以上60℃未満の時、55℃にて測定。
・α-SF塩水溶液の製造時温度が60℃以上70℃未満の時、65℃にて測定。
・α-SF塩水溶液の製造時温度が70℃以上80℃未満の時、75℃にて測定。
<<測定条件>>
・α-SF塩水溶液の粘度範囲が10Pa・s未満の場合、No.4ロータ、20rpmで測定。
・α-SF塩水溶液の粘度範囲が10Pa・s以上20Pa・s未満の場合、No.5ロータ、20rpmで測定。
・α-SF塩水溶液の粘度範囲が20Pa・s以上50Pa・s未満の場合、No.6ロータ、20rpmで測定。
<最大撹拌所要動力の測定>
 撹拌所要動力は、図1に示す攪拌翼付き溶解槽(以下、単に溶解槽という)10を用い、以下のようにして測定した。
 図1は、溶解槽10の断面図である。溶解槽10は、本体部12と、本体部12の外周に設けられたジャケット部14と、攪拌部20とを有している。攪拌部20は、アンカー翼型の攪拌翼22と、攪拌軸24とで構成され、攪拌軸24はトルク計32を介して駆動部30と接続されている。溶解槽10は、ジャケット部14に熱媒体を流通させることで、本体部12内を任意の温度に調節できる構造である。トルク計32には、回転トルク計(山崎式回転トルクメーター SS-50型、株式会社山崎精機研究所製)を用いた。
 最大攪拌所要動力の測定は、α-SF塩水溶液の製造中の最大回転トルクをトルク計32で測定した。前記最大回転トルクとその際の回転数から、下記(4)式により最大撹拌所要動力を算出した。
P=T×2π×n ・・・(4)
P:最大撹拌所要動力[W]
T:最大回転トルク[J]
n:回転数[rps]
<撹拌翼・軸への付着性の評価>
 α-SF塩水溶液の製造操作終了後に、図1に示す溶解槽10の攪拌翼22及び撹拌軸24に対する固体状のα-SF塩の付着状況を目視により観察し、以下の評価基準に従い評価した。ここで固体状とは、水に溶解せずにフレーク、ペレット、粉体の形態を残した状態を意味する。
<<評価基準>>
A:固体状のα-SF塩の付着がほとんどない
B:固体状のα-SF塩の付着が若干観察される
C:固体状のα-SF塩の付着が多量に観察される
<総合評価>
 実施例1~56、比較例1~13で得られたα-SF塩水溶液について、最大攪拌所要動力、粘度、付着性の評価結果を基に、以下の評価基準に従い、総合評価を行った。総合評価A、B、Cは、実製造に適した品質であると判断した。
<<評価基準>>
A:最大攪拌所要動力;20W以下、粘度;10Pa・s以下、付着性:Aの全てを満たす
B:最大攪拌所要動力;20W超40W以下、粘度;10Pa・s以下、付着性:Aの全てを満たす
C:総合評価「D」以外のものであって、最大攪拌所要動力;40Wを超え55W以下、又は、粘度;10Pa・s超25Pa・s以下の少なくともいずれかを満たし、かつ、付着性:B又はAである
D:最大攪拌所要動力;55W超、粘度;25Pa・s超、付着性:Cの少なくともいずれか1つを満たす
(実施例1~47、50~53及び比較例1~11)
 表1~8に示す組成に従って、以下に示す方法により、各例のα-SF塩水溶液25kgを製造した。まず、図1に示した溶解槽10のジャケット部14に100℃のスチームを通し、最終的に表1~8に示したα-SF塩水溶液の組成となるように、表1~8記載の温度の水を投入した。続いて103rpmの回転数で攪拌部20の回転を開始し、無機ナトリウム塩及び/又はカリウム塩の全量を一斉に添加した。2分間撹拌操作を継続した後に、表1~8に示した相対添加速度で固体α-SF塩含有物を添加した。添加後、さらに15分間撹拌を継続し、α-SF塩水溶液を得た。ジャケット部14へのスチームの供給量は製造中のα-SF塩水溶液の温度を表1~8記載の温度範囲に維持できるように、スチーム供給量をコントロールした。上述の製造方法において製造したα-SF塩水溶液は、表1~8中、製造条件の添加順序の欄に「a」と記載した。
(実施例48)
 表8に示す組成に従って、以下に示す方法により、各例のα-SF塩水溶液25kgを製造した。まず、図1に示した溶解槽10のジャケット部14に100℃のスチームを通し、初期溶媒として全投入量の55%に相当する表8記載の温度の水を溶解槽10に投入した。続いて103rpmの回転数で攪拌部20の回転を開始し、無機ナトリウム塩又はカリウム塩の全量を一斉に添加した。2分間撹拌操作を継続した後に、表8に示した相対添加速度で固体α-SF塩含有物を添加した(予備溶解工程)。次いで、表8記載の温度の水の残部(全投入量の水の45%分)を一斉に投入し、投入後さらに15分間撹拌を継続し、α-SF塩水溶液を得た(本溶解工程)。ジャケット部14へのスチームの供給量は製造中のα-SF塩水溶液の温度を表8記載の温度範囲に維持できるように、スチーム供給量をコントロールした。上述の製造方法において製造したα-SF塩水溶液は、表8中、製造条件の添加順序の欄に「b」と記載した。
(実施例49)
 表8に示す組成に従って、初期溶媒を全投入量の60%とした以外は、実施例48と同様にしてα-SF塩水溶液25kgを得た。上述の製造方法において製造したα-SF塩水溶液は、表8中、製造条件の添加順序の欄に「b」と記載した。
(実施例54)
 表8に示す組成に従って、硫酸ナトリウム及び固体α-SF塩含有物の添加を同時に開始した以外は、実施例1と同様にして、α-SF塩水溶液25kgを得た。この際、硫酸ナトリウムの相対添加速度は0.20h-1であり、固体α-SF塩含有物の相対添加速度は1.50h-1であった。上述の製造方法において製造したα-SF塩水溶液は、表8中、製造条件の添加順序の欄に「c」と記載した。
(実施例55)
 表8に示す組成に従って、下記の方法によりMES濃度48.0%、無機塩由来のナトリウムイオン濃度0.8mol/kgのα-SF塩水溶液25kgを製造した。まず、図1に示した溶解槽10のジャケット部14に100℃のスチームを通し、最終的に表8に示した水溶液組成になるように、表8記載の温度の水を投入した。続いて103rpmの回転数で攪拌部20の回転を開始し、固体α-SF塩含有物を相対添加速度1.50h-1で添加し、MES濃度が30%となった時点で、固体α-SF塩含有物の添加を一時中断した。この時点での無機塩由来のナトリウムイオン濃度は、0.11mol/kgであった。次いで、硫酸ナトリウム4.4%相当分を一斉に添加し、添加2分後に、再度、固体α-SF塩含有物の残部を相対添加速度1.50h-1で添加し、投入後さらに15分間撹拌を継続して、α-SF塩水溶液を得た。上述の製造方法において製造したα-SF塩水溶液は、表8中、製造条件の添加順序の欄に「d」と記載した。
(実施例56)
 表8に示す組成に従って、初期溶媒を全投入量の20%の水とし、下記の方法によりMES濃度43.2%、無機塩由来のナトリウムイオン濃度1.1mol/kgのα-SF塩水溶液25kgを製造した。まず、図1に示した溶解槽10のジャケット部14に100℃のスチームを通し、初期溶媒として全投入量の水の20%に相当する表8記載の温度の水を溶解槽10に投入した。続いて103rpmの回転数で攪拌部20の回転を開始し、硫酸ナトリウムを全添加量の20%分を一斉に添加した。2分間撹拌操作を継続した後に、表8に示した相対添加速度で固体α-SF塩含有物を全添加量の20%分を添加した。次いで、表8記載の温度の水の残部(全投入量の80%分)を一斉に投入し、2分間撹拌操作を継続した後に、さらに硫酸ナトリウムの残部(全添加量の80%分)を一斉に添加した。2分間撹拌操作後に、表8に示した相対添加速度で固体α-SF塩含有物の残部(全添加量の80%分)を添加し、添加後さらに15分間撹拌を継続し、α-SF塩水溶液を得た。上述の製造方法において製造したα-SF塩水溶液は、表8中、製造条件の添加順序の欄に「e」と記載した。
(比較例12)
 表9に示す組成に従って、下記の方法によりMES濃度43.2%、無機塩由来のナトリウムイオン濃度1.1mol/kgのα-SF塩水溶液25kgの製造を試みた。まず、図1に示した溶解槽10のジャケット部14に100℃のスチームを通し、最終的に表9に示したα-SF塩水溶液の組成となるように、表9記載の温度の水を投入した。続いて103rpmの回転数で攪拌部20の回転を開始し、硫酸ナトリウムの最終組成の内1.7%相当分を一斉に添加した。2分間撹拌操作を継続した後に、表9に示した相対添加速度で固体α-SF塩含有物を添加した。MES濃度が38.4%となった時点(無機塩由来のナトリウムイオン濃度:0.44mol/kg)で、水溶液が増粘し、攪拌部20の駆動が困難となったため製造を中断した。よって、MES濃度43.2%、無機塩由来のナトリウムイオン濃度1.1mol/kgのα-SF塩水溶液を得ることはできなかった。上述の製造方法において製造したα-SF塩水溶液は、表9中、製造条件の添加順序の欄に「f」と記載した。
(比較例13)
 表9に示す組成に従って、下記の方法によりMES濃度48.0%、無機塩由来のナトリウムイオン濃度0.8mol/kgのα-SF塩水溶液25kgの製造を試みた。まず、図1に示した溶解槽10のジャケット部14に100℃のスチームを通し、最終的に表9に示した水溶液組成になるように表9記載の温度の水を投入した。続いて103rpmの回転数で撹拌部20の回転を開始し、固体α-SF塩含有物を相対添加速度1.50h-1で添加した。MES濃度が30%となった時点で、硫酸ナトリウムを相対添加速度0.22h-1で添加し、この時点からは硫酸ナトリウムと固体α-SF塩含有物とを同時に添加した。しかし、MES濃度が38.4%となった時点(無機塩由来のナトリウムイオン濃度:0.52mol/kg)で、水溶液が増粘し、攪拌部20の駆動が困難となったため製造を中断した。よって、MES濃度48.0%、無機塩由来のナトリウムイオン濃度0.8mol/kgのα-SF塩水溶液を得ることはできなかった。上述の製造方法において製造したα-SF塩水溶液は、表9中、製造条件の添加順序の欄に「g」と記載した。
<処方例1~3>
(スラリー調製工程)
 図3はスラリー調製工程で使用した溶解槽40の断面図である。溶解槽40は、ジャケット部47に熱媒体を流通させることで、配合容器41内を任意の温度に調節できる構造である。
 傾斜角45°の2段傾斜パドル翼44、45(翼長640mm、翼幅65mm)及び2枚の邪魔板46(長さ600mm、幅50mm、壁面とのクリアランス30mm)を有する有効容積700Lの配合容器41(図3参照)に25℃の水を加え傾斜パドル翼44、45を駆動部42及び撹拌軸43と接続して120rpmで回転させつつ(配合終了まで撹拌は継続した)、水酸化Naを添加し、水に溶解させた後、LAS-Hを添加して中和し、LAS-Naを生成させた(表10のLAS-NaはLAS-Hと水酸化Naの配合により中和生成した量を示す。生成LAS-Na:添加水酸化Na:添加LAS-H=10.00:1.25:9.36(質量比))。その後、ポリアクリル酸Na、硫酸Na、トリポリリン酸ナトリウム(STPP)及び炭酸Naの順にビルダー類を添加した。最後に、実施例13、実施例16、実施例30で得られたα-SF-Naを添加し、撹拌を継続しつつ、配合槽のジャケットに0.1MPa(ゲージ圧)のスチームもしくは8℃の冷水を通し、表10に示したスラリー温度に調製し、その温度に保ちつつ1時間撹拌を継続した。このようにして、水分42%のスラリー600kgを調製した。
 なお、添加する硫酸Naの量は、それぞれの使用したα-SF-Naスラリーからの持ち込み分と合計して、噴霧乾燥後の組成として表10の処方例1~3(それぞれ実施例13、16、30のα-SF-Naスラリーを使用)の組成となるように調整して添加した。
(噴霧乾燥工程)
 その後、向流式、塔径2.0m、有効長5.6mの乾燥塔に加圧ノズルを使用して400kg/hrの能力で乾燥塔上部からスラリーを供給及び噴霧し、表10に示した水分の噴霧乾燥粒子を得た。ノズルは特開平9-75786号公報の実施例2記載のものと同様のものを使用し、噴霧圧2~3.5MPaで噴霧した。 この時の乾燥塔での熱風温度は噴霧乾燥粒子が表10に記載の水分になるように270℃~400℃の範囲で調節した。排風量は240m/minであり、得られた噴霧乾燥粒子の性状は表10に示した。
<処方例4>
(スラリー調製工程)
 蛍光剤を水酸化Naと同時に添加した点と、珪酸曹達、ポリアクリル酸Na、アクリル酸/マレイン酸コポリマーNa、ゼオライト、硫酸Na、亜硫酸Na、STPP、炭酸K及び炭酸Naの順にビルダー類を添加し、その後、石鹸を添加し、最後に実施例13で得られたα-SF-Naを添加した点以外は、処方例1~3と同様にしてスラリーを調製した。
 なお、添加する硫酸Naの量は、使用したα-SF-Naスラリーからの持ち込み分と合計して、噴霧乾燥後の組成として表11の処方例4の組成となるように調整して添加した。
(噴霧乾燥工程)
 その後、前記処方例1~3と同様にして、表11に示した水分の噴霧乾燥粒子を得た。得られた噴霧乾燥粒子の性状は表11に示した。
 処方例1~4で使用した原料を以下に示す。
・LAS-H:直鎖アルキルベンゼンスルホン酸(ライオン(株)製、ライポンLH-200)(AV値(LAS-Hを1g中和するに要する水酸化カリウムのmg数)=180.0)
・水酸化Na:フレーク状か性ソーダ(鶴見曹達(株)製)
・STPP:トリポリリン酸ナトリウム(太洋化学工業(株)製)
・珪酸Na:S50°珪酸ソーダ1号(日本化学工業(株)製)(SiO/NaOモル比=2.15)
・ポリアクリル酸Na:アクアリックDL-453((株)日本触媒製)(純分35質量%水溶液)
・アクリル酸/マレイン酸コポリマーNa:アクアリックTL-400((株)日本触媒製)(純分40質量%水溶液)
・ゼオライト:A型ゼオライト(純分47.5質量%)(日本化学工業(株)製)
・炭酸Na:粒灰(ソーダアッシュジャパン(株)製)
・炭酸K:炭酸カリウム(粉末)(旭硝子(株)製)
・亜硫酸Na:無水亜硫酸曹達(神州化学(株)製)
・硫酸Na:中性無水芒硝A0(四国化成(株)製)
・石鹸:炭素数12~18の脂肪酸ナトリウム(純分67質量%、タイター40~45℃、分子量289)
・蛍光剤:チノパールCBS-X(チバ・ジャパン株式会社)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 図2は、縦軸にMES濃度(質量%)をとり、横軸に(b)成分由来のナトリウムイオン濃度(mol/kg)をとり、対応する実施例1~33、比較例1~10の総合評価をプロットしたものである。図2中、凡例(α)は総合評価「A」、凡例(β)は総合評価「B」、凡例(γ)は総合評価「C」、凡例(δ)は総合評価「D」を表す。実施例1~33、比較例1~10は、いずれも製造条件の添加順序は「a」である。図2に示すように、(b)成分由来のナトリウムイオン濃度が0.55mol/kg以上1.8mol/kg未満では、MES濃度35質量%を超え55質量%の範囲で、総合評価が良好であることが判る。また、(b)成分由来のナトリウムイオン濃度が1.8mol/kg以上では、下記(1)式を満たす領域で総合評価が良好であることが判る。
 y≦-22x+95 ・・・(1)
 [上記(1)式中、yは(a)成分の濃度(質量%)、xは(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度(mol/kg)を表す。]
 表1~4、6~8に示すとおり、本発明のα-SF塩水溶液の製造方法によって製造された実施例1~56のα-SF塩水溶液は、いずれの総合評価もC以上の評価であり、実製造に適応できる性状であった。これに対し、表4、5、9に示すとおり、比較例1~13は、いずれも最大攪拌所要動力が55Wを超え、溶解装置への負荷が高くなっていた。加えて、付着性の評価もDであり、実製造に適応できる性状ではなかった。即ち、実施例1~56は、比較例1~13に比べて、低い粘度で流動性があるα-SF塩水溶液が製造できることが確認できた。
 加えて、実施例1~56と比較例12、13との比較において、無機塩由来のナトリウムイオンとカリウムイオンとの合計の濃度と、α-SF塩であるMESの濃度との関係は、製造工程を通じて維持されることで、低い粘度で流動性のあるα-SF塩水溶液を製造できることが判った。
 実施例15、36と、実施例40~45との比較において、添加する無機ナトリウム塩、無機カリウム塩の種類にかかわらず、本発明の製造条件を満たす限りにおいて、比較的粘度が低く、製造適正があるα-SF塩水溶液が製造できることが判った。
 本発明のα-SF塩水溶液の製造方法によれば、固体のα-SF塩の水への溶解を容易にし、かつ、流動性を維持し製造適正に優れるα-SF塩水溶液を利用することが可能である。
 10   溶解槽
 12   本体部
 14   ジャケット部
 20   攪拌部
 22   攪拌翼
 24   攪拌軸
 30   駆動部
 32   トルク計
 40   溶解槽
 41   配合容器
 42   駆動部
 43   撹拌軸
 44   傾斜パドル翼
 45   傾斜パドル翼
 46   邪魔板
 47   ジャケット部

Claims (4)

  1.  固体の(a)成分:α-スルホ脂肪酸アルキルエステル塩と、(b)成分:無機ナトリウム塩及び/又は無機カリウム塩とを溶媒である水に溶解するα-スルホ脂肪酸エステル塩水溶液の製造方法において、
     下記(i)又は(ii)の条件を維持しながら、50℃以上の温度条件下で前記固体の(a)成分を溶媒である水に溶解することを特徴とする、α-スルホ脂肪酸アルキルエステル塩水溶液の製造方法。
     (i):(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が0.55mol/kg未満の場合、(a)成分の濃度が35質量%以下
     (ii):(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が0.55mol/kg以上1.8mol/kg未満の場合、(a)成分の濃度が55質量%以下
  2.  さらに、下記(iii)の条件を維持しながら、前記固体の(a)成分を溶媒に溶解することを特徴とする、請求項1に記載のα-スルホ脂肪酸アルキルエステル塩水溶液の製造方法。
     (iii):(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度が1.8mol/kg以上4.3mol/kg未満の場合、(a)成分の濃度が下記(1)式で表される範囲
     y≦-22x+95 ・・・(1)
    [上記(1)式中、yは(a)成分の濃度(質量%)、xは(b)成分由来のナトリウムイオンとカリウムイオンとの合計の濃度(mol/kg)を表す。]
  3.  前記溶媒の20質量%以上を初期溶媒とし、前記初期溶媒に対し前記固体の(a)成分及び前記(b)成分の少なくとも一部を溶解した後、前記溶媒の残部を添加し、さらに前記固体の(a)成分及び前記(b)成分の残部を溶解することを特徴とする、請求項1又は2に記載のα-スルホ脂肪酸アルキルエステル塩水溶液の製造方法。
  4.  下記(2)式で表される溶媒に対する固体の(a)成分の相対添加速度が、0.1h-1以上10h-1未満であることを特徴とする、請求項1~3のいずれか1項に記載のα-スルホ脂肪酸アルキルエステル塩水溶液の製造方法。
    固体の(a)成分の相対添加速度=固体の(a)成分添加速度(kg/h)/最終のα-スルホ脂肪酸アルキルエステル塩水溶液量(kg) ・・・(2)
     
     
     
PCT/JP2009/006282 2008-11-21 2009-11-20 α-スルホ脂肪酸アルキルエステル塩水溶液の製造方法 WO2010058599A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801468247A CN102216262B (zh) 2008-11-21 2009-11-20 α-磺基脂肪酸烷基酯盐水溶液的制造方法
JP2010539157A JP5538235B2 (ja) 2008-11-21 2009-11-20 α−スルホ脂肪酸アルキルエステル塩水溶液の製造方法
US13/129,867 US8168580B2 (en) 2008-11-21 2009-11-20 Method for producing aqueous α-sulfo fatty acid alkyl ester salt solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-298469 2008-11-21
JP2008298469 2008-11-21

Publications (1)

Publication Number Publication Date
WO2010058599A1 true WO2010058599A1 (ja) 2010-05-27

Family

ID=42198042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006282 WO2010058599A1 (ja) 2008-11-21 2009-11-20 α-スルホ脂肪酸アルキルエステル塩水溶液の製造方法

Country Status (6)

Country Link
US (1) US8168580B2 (ja)
JP (1) JP5538235B2 (ja)
KR (1) KR101581987B1 (ja)
CN (1) CN102216262B (ja)
MY (1) MY149706A (ja)
WO (1) WO2010058599A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994258A (zh) * 2012-12-20 2013-03-27 广州市浪奇实业股份有限公司 一种含α-磺基脂肪酸烷基酯盐的洗涤剂用组合物的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9242525B2 (en) * 2013-09-30 2016-01-26 Herbert S Kobayashi Rotating air conditioner and method
JPWO2015064746A1 (ja) * 2013-10-31 2017-03-09 ライオン株式会社 界面活性剤含有液
WO2016160407A1 (en) 2015-03-31 2016-10-06 Stepan Company Detergents based on alpha-sulfonated fatty ester surfactants

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280467A (ja) * 1985-06-05 1986-12-11 Kao Corp α−スルホ脂肪酸エステル塩高濃度水溶液
JPH03106436A (ja) * 1989-09-18 1991-05-07 Lion Corp 高濃度α―スルホ脂肪酸エステル塩水性スラリー
JPH0912532A (ja) * 1995-06-27 1997-01-14 Lion Corp 色調の改善されたα−スルホ脂肪酸アルキルエステル塩含有水性スラリー
JP2007320978A (ja) * 2006-05-30 2007-12-13 Kao Corp 界面活性剤組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658727A (en) * 1969-05-02 1972-04-25 Procter & Gamble Enzyme-containing detergent compositions for neutral washing
JPS62116698A (ja) 1985-11-15 1987-05-28 花王株式会社 α−スルホ脂肪酸エステル塩高濃度水溶液
JP2781870B2 (ja) 1989-09-14 1998-07-30 ライオン株式会社 α―スルホ脂肪酸エステル塩の水性高濃度組成物
JPH03118128A (ja) * 1989-10-02 1991-05-20 Asahi Glass Co Ltd 板状体の枠成形装置
DE4017463A1 (de) * 1990-05-30 1991-12-05 Henkel Kgaa Verfahren zur herstellung hochkonzentrierter pasten von alpha-sulfofettsaeure- alkylester-alkalimetallsalzen
JP3106436B2 (ja) * 1991-08-02 2000-11-06 住友電気工業株式会社 光電子集積回路
JPH0975786A (ja) 1995-09-12 1997-03-25 Lion Corp 圧力噴霧ノズルおよび噴霧方法
DE10084723B4 (de) * 1999-06-25 2007-11-15 Lion Corp. Verfahren zur Herstellung von α-Sulfonfettsäurealkylestersalzen
JP4828058B2 (ja) 2001-09-11 2011-11-30 ライオン株式会社 洗剤の製造方法
JP4379586B2 (ja) * 2003-12-25 2009-12-09 ライオン株式会社 高嵩密度粒状洗剤組成物の製造方法
WO2005111183A1 (ja) * 2004-05-19 2005-11-24 Lion Corporation α-スルホ脂肪酸アルキルエステル塩を含むアニオン界面活性剤の製造方法、アニオン界面活性剤及びこれを含む洗浄剤組成物
CN101835885A (zh) * 2007-10-22 2010-09-15 狮王株式会社 喷雾干燥颗粒及其制造方法以及含有喷雾干燥颗粒的颗粒状洗涤剂组合物
CN101440331B (zh) * 2008-12-16 2011-03-30 广州市浪奇实业股份有限公司 一种洗涤剂用组合物及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280467A (ja) * 1985-06-05 1986-12-11 Kao Corp α−スルホ脂肪酸エステル塩高濃度水溶液
JPH03106436A (ja) * 1989-09-18 1991-05-07 Lion Corp 高濃度α―スルホ脂肪酸エステル塩水性スラリー
JPH0912532A (ja) * 1995-06-27 1997-01-14 Lion Corp 色調の改善されたα−スルホ脂肪酸アルキルエステル塩含有水性スラリー
JP2007320978A (ja) * 2006-05-30 2007-12-13 Kao Corp 界面活性剤組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994258A (zh) * 2012-12-20 2013-03-27 广州市浪奇实业股份有限公司 一种含α-磺基脂肪酸烷基酯盐的洗涤剂用组合物的制备方法

Also Published As

Publication number Publication date
KR101581987B1 (ko) 2015-12-31
US20110230389A1 (en) 2011-09-22
JPWO2010058599A1 (ja) 2012-04-19
CN102216262B (zh) 2013-11-27
CN102216262A (zh) 2011-10-12
MY149706A (en) 2013-09-30
US8168580B2 (en) 2012-05-01
KR20110087289A (ko) 2011-08-02
JP5538235B2 (ja) 2014-07-02

Similar Documents

Publication Publication Date Title
JP4761045B2 (ja) α−スルホ脂肪酸アルキルエステル塩を高濃度含有するパウダー、フレーク又はペレットの製造方法、並びに粒状洗剤の製造方法
JP5538235B2 (ja) α−スルホ脂肪酸アルキルエステル塩水溶液の製造方法
US8501972B2 (en) Solid fatty alkyl ester sulfonate metal salt and method for producing powder thereof with sharp particle size distribution
JP5388208B2 (ja) 噴霧乾燥粒子、その製造方法及び噴霧乾燥粒子を含有する粒状洗剤組成物
JP4614065B2 (ja) 高濃度α−スルホ脂肪酸アルキルエステル塩含有粒子及びその製造方法、ならびに洗剤
JP5656696B2 (ja) 粒状洗剤組成物の製造方法
JP5452481B2 (ja) 気泡を含ませたα−スルホ脂肪酸アルキルエステル塩固形物及びその製造方法
JP4488211B2 (ja) α−スルホ脂肪酸アルキルエステル塩含有粒子の製造方法
JP2007320978A (ja) 界面活性剤組成物
JP5515140B2 (ja) α−スルホ脂肪酸アルキルエステル塩含有ペーストの製造方法
JP6060013B2 (ja) α−スルホ脂肪酸アルキルエステル塩水溶液の製造方法
US9708252B2 (en) Fatty acid alkyl ester sulfonate metal salt powder mixture and method for producing the same
JP6774798B2 (ja) 被覆α−スルホ脂肪酸アルキルエステル塩粒子群
JP2009149778A (ja) 漂白活性化成分の造粒物およびそれを含有する洗浄剤組成物、ならびに漂白活性化成分の造粒物の製造方法
JP4379586B2 (ja) 高嵩密度粒状洗剤組成物の製造方法
JP6644000B2 (ja) 被覆α−スルホ脂肪酸アルキルエステル塩粒子群及びその製造方法並びに粉末洗剤
JP5315553B2 (ja) α−スルホ脂肪酸アルキルエステル塩含有ペーストの製造方法
JP2761577B2 (ja) 高嵩密度粒状洗剤組成物
JPWO2018003905A1 (ja) 粉末洗剤組成物及びその製造方法
JP2008156409A (ja) 粒状洗剤組成物の製造方法
JP2011006636A (ja) 水溶性中性無機塩を含有するα−スルホ脂肪酸アルキルエステル塩固形物及びその製造方法
JP2003105398A (ja) 粒状洗剤組成物の製造方法
JPH04359099A (ja) 高嵩密度洗剤組成物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146824.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010539157

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117011042

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13129867

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827380

Country of ref document: EP

Kind code of ref document: A1